1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (c)  2019 Intel Corporation */
3
4#include "igc.h"
5
6#include <linux/module.h>
7#include <linux/device.h>
8#include <linux/pci.h>
9#include <linux/ptp_classify.h>
10#include <linux/clocksource.h>
11#include <linux/ktime.h>
12#include <linux/delay.h>
13#include <linux/iopoll.h>
14
15#define INCVALUE_MASK		0x7fffffff
16#define ISGN			0x80000000
17
18#define IGC_PTP_TX_TIMEOUT		(HZ * 15)
19
20#define IGC_PTM_STAT_SLEEP		2
21#define IGC_PTM_STAT_TIMEOUT		100
22
23/* SYSTIM read access for I225 */
24void igc_ptp_read(struct igc_adapter *adapter, struct timespec64 *ts)
25{
26	struct igc_hw *hw = &adapter->hw;
27	u32 sec, nsec;
28
29	/* The timestamp is latched when SYSTIML is read. */
30	nsec = rd32(IGC_SYSTIML);
31	sec = rd32(IGC_SYSTIMH);
32
33	ts->tv_sec = sec;
34	ts->tv_nsec = nsec;
35}
36
37static void igc_ptp_write_i225(struct igc_adapter *adapter,
38			       const struct timespec64 *ts)
39{
40	struct igc_hw *hw = &adapter->hw;
41
42	wr32(IGC_SYSTIML, ts->tv_nsec);
43	wr32(IGC_SYSTIMH, ts->tv_sec);
44}
45
46static int igc_ptp_adjfine_i225(struct ptp_clock_info *ptp, long scaled_ppm)
47{
48	struct igc_adapter *igc = container_of(ptp, struct igc_adapter,
49					       ptp_caps);
50	struct igc_hw *hw = &igc->hw;
51	int neg_adj = 0;
52	u64 rate;
53	u32 inca;
54
55	if (scaled_ppm < 0) {
56		neg_adj = 1;
57		scaled_ppm = -scaled_ppm;
58	}
59	rate = scaled_ppm;
60	rate <<= 14;
61	rate = div_u64(rate, 78125);
62
63	inca = rate & INCVALUE_MASK;
64	if (neg_adj)
65		inca |= ISGN;
66
67	wr32(IGC_TIMINCA, inca);
68
69	return 0;
70}
71
72static int igc_ptp_adjtime_i225(struct ptp_clock_info *ptp, s64 delta)
73{
74	struct igc_adapter *igc = container_of(ptp, struct igc_adapter,
75					       ptp_caps);
76	struct timespec64 now, then = ns_to_timespec64(delta);
77	unsigned long flags;
78
79	spin_lock_irqsave(&igc->tmreg_lock, flags);
80
81	igc_ptp_read(igc, &now);
82	now = timespec64_add(now, then);
83	igc_ptp_write_i225(igc, (const struct timespec64 *)&now);
84
85	spin_unlock_irqrestore(&igc->tmreg_lock, flags);
86
87	return 0;
88}
89
90static int igc_ptp_gettimex64_i225(struct ptp_clock_info *ptp,
91				   struct timespec64 *ts,
92				   struct ptp_system_timestamp *sts)
93{
94	struct igc_adapter *igc = container_of(ptp, struct igc_adapter,
95					       ptp_caps);
96	struct igc_hw *hw = &igc->hw;
97	unsigned long flags;
98
99	spin_lock_irqsave(&igc->tmreg_lock, flags);
100
101	ptp_read_system_prets(sts);
102	ts->tv_nsec = rd32(IGC_SYSTIML);
103	ts->tv_sec = rd32(IGC_SYSTIMH);
104	ptp_read_system_postts(sts);
105
106	spin_unlock_irqrestore(&igc->tmreg_lock, flags);
107
108	return 0;
109}
110
111static int igc_ptp_settime_i225(struct ptp_clock_info *ptp,
112				const struct timespec64 *ts)
113{
114	struct igc_adapter *igc = container_of(ptp, struct igc_adapter,
115					       ptp_caps);
116	unsigned long flags;
117
118	spin_lock_irqsave(&igc->tmreg_lock, flags);
119
120	igc_ptp_write_i225(igc, ts);
121
122	spin_unlock_irqrestore(&igc->tmreg_lock, flags);
123
124	return 0;
125}
126
127static void igc_pin_direction(int pin, int input, u32 *ctrl, u32 *ctrl_ext)
128{
129	u32 *ptr = pin < 2 ? ctrl : ctrl_ext;
130	static const u32 mask[IGC_N_SDP] = {
131		IGC_CTRL_SDP0_DIR,
132		IGC_CTRL_SDP1_DIR,
133		IGC_CTRL_EXT_SDP2_DIR,
134		IGC_CTRL_EXT_SDP3_DIR,
135	};
136
137	if (input)
138		*ptr &= ~mask[pin];
139	else
140		*ptr |= mask[pin];
141}
142
143static void igc_pin_perout(struct igc_adapter *igc, int chan, int pin, int freq)
144{
145	static const u32 igc_aux0_sel_sdp[IGC_N_SDP] = {
146		IGC_AUX0_SEL_SDP0, IGC_AUX0_SEL_SDP1, IGC_AUX0_SEL_SDP2, IGC_AUX0_SEL_SDP3,
147	};
148	static const u32 igc_aux1_sel_sdp[IGC_N_SDP] = {
149		IGC_AUX1_SEL_SDP0, IGC_AUX1_SEL_SDP1, IGC_AUX1_SEL_SDP2, IGC_AUX1_SEL_SDP3,
150	};
151	static const u32 igc_ts_sdp_en[IGC_N_SDP] = {
152		IGC_TS_SDP0_EN, IGC_TS_SDP1_EN, IGC_TS_SDP2_EN, IGC_TS_SDP3_EN,
153	};
154	static const u32 igc_ts_sdp_sel_tt0[IGC_N_SDP] = {
155		IGC_TS_SDP0_SEL_TT0, IGC_TS_SDP1_SEL_TT0,
156		IGC_TS_SDP2_SEL_TT0, IGC_TS_SDP3_SEL_TT0,
157	};
158	static const u32 igc_ts_sdp_sel_tt1[IGC_N_SDP] = {
159		IGC_TS_SDP0_SEL_TT1, IGC_TS_SDP1_SEL_TT1,
160		IGC_TS_SDP2_SEL_TT1, IGC_TS_SDP3_SEL_TT1,
161	};
162	static const u32 igc_ts_sdp_sel_fc0[IGC_N_SDP] = {
163		IGC_TS_SDP0_SEL_FC0, IGC_TS_SDP1_SEL_FC0,
164		IGC_TS_SDP2_SEL_FC0, IGC_TS_SDP3_SEL_FC0,
165	};
166	static const u32 igc_ts_sdp_sel_fc1[IGC_N_SDP] = {
167		IGC_TS_SDP0_SEL_FC1, IGC_TS_SDP1_SEL_FC1,
168		IGC_TS_SDP2_SEL_FC1, IGC_TS_SDP3_SEL_FC1,
169	};
170	static const u32 igc_ts_sdp_sel_clr[IGC_N_SDP] = {
171		IGC_TS_SDP0_SEL_FC1, IGC_TS_SDP1_SEL_FC1,
172		IGC_TS_SDP2_SEL_FC1, IGC_TS_SDP3_SEL_FC1,
173	};
174	struct igc_hw *hw = &igc->hw;
175	u32 ctrl, ctrl_ext, tssdp = 0;
176
177	ctrl = rd32(IGC_CTRL);
178	ctrl_ext = rd32(IGC_CTRL_EXT);
179	tssdp = rd32(IGC_TSSDP);
180
181	igc_pin_direction(pin, 0, &ctrl, &ctrl_ext);
182
183	/* Make sure this pin is not enabled as an input. */
184	if ((tssdp & IGC_AUX0_SEL_SDP3) == igc_aux0_sel_sdp[pin])
185		tssdp &= ~IGC_AUX0_TS_SDP_EN;
186
187	if ((tssdp & IGC_AUX1_SEL_SDP3) == igc_aux1_sel_sdp[pin])
188		tssdp &= ~IGC_AUX1_TS_SDP_EN;
189
190	tssdp &= ~igc_ts_sdp_sel_clr[pin];
191	if (freq) {
192		if (chan == 1)
193			tssdp |= igc_ts_sdp_sel_fc1[pin];
194		else
195			tssdp |= igc_ts_sdp_sel_fc0[pin];
196	} else {
197		if (chan == 1)
198			tssdp |= igc_ts_sdp_sel_tt1[pin];
199		else
200			tssdp |= igc_ts_sdp_sel_tt0[pin];
201	}
202	tssdp |= igc_ts_sdp_en[pin];
203
204	wr32(IGC_TSSDP, tssdp);
205	wr32(IGC_CTRL, ctrl);
206	wr32(IGC_CTRL_EXT, ctrl_ext);
207}
208
209static void igc_pin_extts(struct igc_adapter *igc, int chan, int pin)
210{
211	static const u32 igc_aux0_sel_sdp[IGC_N_SDP] = {
212		IGC_AUX0_SEL_SDP0, IGC_AUX0_SEL_SDP1, IGC_AUX0_SEL_SDP2, IGC_AUX0_SEL_SDP3,
213	};
214	static const u32 igc_aux1_sel_sdp[IGC_N_SDP] = {
215		IGC_AUX1_SEL_SDP0, IGC_AUX1_SEL_SDP1, IGC_AUX1_SEL_SDP2, IGC_AUX1_SEL_SDP3,
216	};
217	static const u32 igc_ts_sdp_en[IGC_N_SDP] = {
218		IGC_TS_SDP0_EN, IGC_TS_SDP1_EN, IGC_TS_SDP2_EN, IGC_TS_SDP3_EN,
219	};
220	struct igc_hw *hw = &igc->hw;
221	u32 ctrl, ctrl_ext, tssdp = 0;
222
223	ctrl = rd32(IGC_CTRL);
224	ctrl_ext = rd32(IGC_CTRL_EXT);
225	tssdp = rd32(IGC_TSSDP);
226
227	igc_pin_direction(pin, 1, &ctrl, &ctrl_ext);
228
229	/* Make sure this pin is not enabled as an output. */
230	tssdp &= ~igc_ts_sdp_en[pin];
231
232	if (chan == 1) {
233		tssdp &= ~IGC_AUX1_SEL_SDP3;
234		tssdp |= igc_aux1_sel_sdp[pin] | IGC_AUX1_TS_SDP_EN;
235	} else {
236		tssdp &= ~IGC_AUX0_SEL_SDP3;
237		tssdp |= igc_aux0_sel_sdp[pin] | IGC_AUX0_TS_SDP_EN;
238	}
239
240	wr32(IGC_TSSDP, tssdp);
241	wr32(IGC_CTRL, ctrl);
242	wr32(IGC_CTRL_EXT, ctrl_ext);
243}
244
245static int igc_ptp_feature_enable_i225(struct ptp_clock_info *ptp,
246				       struct ptp_clock_request *rq, int on)
247{
248	struct igc_adapter *igc =
249		container_of(ptp, struct igc_adapter, ptp_caps);
250	struct igc_hw *hw = &igc->hw;
251	unsigned long flags;
252	struct timespec64 ts;
253	int use_freq = 0, pin = -1;
254	u32 tsim, tsauxc, tsauxc_mask, tsim_mask, trgttiml, trgttimh, freqout;
255	s64 ns;
256
257	switch (rq->type) {
258	case PTP_CLK_REQ_EXTTS:
259		/* Reject requests with unsupported flags */
260		if (rq->extts.flags & ~(PTP_ENABLE_FEATURE |
261					PTP_RISING_EDGE |
262					PTP_FALLING_EDGE |
263					PTP_STRICT_FLAGS))
264			return -EOPNOTSUPP;
265
266		/* Reject requests failing to enable both edges. */
267		if ((rq->extts.flags & PTP_STRICT_FLAGS) &&
268		    (rq->extts.flags & PTP_ENABLE_FEATURE) &&
269		    (rq->extts.flags & PTP_EXTTS_EDGES) != PTP_EXTTS_EDGES)
270			return -EOPNOTSUPP;
271
272		if (on) {
273			pin = ptp_find_pin(igc->ptp_clock, PTP_PF_EXTTS,
274					   rq->extts.index);
275			if (pin < 0)
276				return -EBUSY;
277		}
278		if (rq->extts.index == 1) {
279			tsauxc_mask = IGC_TSAUXC_EN_TS1;
280			tsim_mask = IGC_TSICR_AUTT1;
281		} else {
282			tsauxc_mask = IGC_TSAUXC_EN_TS0;
283			tsim_mask = IGC_TSICR_AUTT0;
284		}
285		spin_lock_irqsave(&igc->tmreg_lock, flags);
286		tsauxc = rd32(IGC_TSAUXC);
287		tsim = rd32(IGC_TSIM);
288		if (on) {
289			igc_pin_extts(igc, rq->extts.index, pin);
290			tsauxc |= tsauxc_mask;
291			tsim |= tsim_mask;
292		} else {
293			tsauxc &= ~tsauxc_mask;
294			tsim &= ~tsim_mask;
295		}
296		wr32(IGC_TSAUXC, tsauxc);
297		wr32(IGC_TSIM, tsim);
298		spin_unlock_irqrestore(&igc->tmreg_lock, flags);
299		return 0;
300
301	case PTP_CLK_REQ_PEROUT:
302		/* Reject requests with unsupported flags */
303		if (rq->perout.flags)
304			return -EOPNOTSUPP;
305
306		if (on) {
307			pin = ptp_find_pin(igc->ptp_clock, PTP_PF_PEROUT,
308					   rq->perout.index);
309			if (pin < 0)
310				return -EBUSY;
311		}
312		ts.tv_sec = rq->perout.period.sec;
313		ts.tv_nsec = rq->perout.period.nsec;
314		ns = timespec64_to_ns(&ts);
315		ns = ns >> 1;
316		if (on && (ns <= 70000000LL || ns == 125000000LL ||
317			   ns == 250000000LL || ns == 500000000LL)) {
318			if (ns < 8LL)
319				return -EINVAL;
320			use_freq = 1;
321		}
322		ts = ns_to_timespec64(ns);
323		if (rq->perout.index == 1) {
324			if (use_freq) {
325				tsauxc_mask = IGC_TSAUXC_EN_CLK1 | IGC_TSAUXC_ST1;
326				tsim_mask = 0;
327			} else {
328				tsauxc_mask = IGC_TSAUXC_EN_TT1;
329				tsim_mask = IGC_TSICR_TT1;
330			}
331			trgttiml = IGC_TRGTTIML1;
332			trgttimh = IGC_TRGTTIMH1;
333			freqout = IGC_FREQOUT1;
334		} else {
335			if (use_freq) {
336				tsauxc_mask = IGC_TSAUXC_EN_CLK0 | IGC_TSAUXC_ST0;
337				tsim_mask = 0;
338			} else {
339				tsauxc_mask = IGC_TSAUXC_EN_TT0;
340				tsim_mask = IGC_TSICR_TT0;
341			}
342			trgttiml = IGC_TRGTTIML0;
343			trgttimh = IGC_TRGTTIMH0;
344			freqout = IGC_FREQOUT0;
345		}
346		spin_lock_irqsave(&igc->tmreg_lock, flags);
347		tsauxc = rd32(IGC_TSAUXC);
348		tsim = rd32(IGC_TSIM);
349		if (rq->perout.index == 1) {
350			tsauxc &= ~(IGC_TSAUXC_EN_TT1 | IGC_TSAUXC_EN_CLK1 |
351				    IGC_TSAUXC_ST1);
352			tsim &= ~IGC_TSICR_TT1;
353		} else {
354			tsauxc &= ~(IGC_TSAUXC_EN_TT0 | IGC_TSAUXC_EN_CLK0 |
355				    IGC_TSAUXC_ST0);
356			tsim &= ~IGC_TSICR_TT0;
357		}
358		if (on) {
359			struct timespec64 safe_start;
360			int i = rq->perout.index;
361
362			igc_pin_perout(igc, i, pin, use_freq);
363			igc_ptp_read(igc, &safe_start);
364
365			/* PPS output start time is triggered by Target time(TT)
366			 * register. Programming any past time value into TT
367			 * register will cause PPS to never start. Need to make
368			 * sure we program the TT register a time ahead in
369			 * future. There isn't a stringent need to fire PPS out
370			 * right away. Adding +2 seconds should take care of
371			 * corner cases. Let's say if the SYSTIML is close to
372			 * wrap up and the timer keeps ticking as we program the
373			 * register, adding +2seconds is safe bet.
374			 */
375			safe_start.tv_sec += 2;
376
377			if (rq->perout.start.sec < safe_start.tv_sec)
378				igc->perout[i].start.tv_sec = safe_start.tv_sec;
379			else
380				igc->perout[i].start.tv_sec = rq->perout.start.sec;
381			igc->perout[i].start.tv_nsec = rq->perout.start.nsec;
382			igc->perout[i].period.tv_sec = ts.tv_sec;
383			igc->perout[i].period.tv_nsec = ts.tv_nsec;
384			wr32(trgttimh, (u32)igc->perout[i].start.tv_sec);
385			/* For now, always select timer 0 as source. */
386			wr32(trgttiml, (u32)(igc->perout[i].start.tv_nsec |
387					     IGC_TT_IO_TIMER_SEL_SYSTIM0));
388			if (use_freq)
389				wr32(freqout, ns);
390			tsauxc |= tsauxc_mask;
391			tsim |= tsim_mask;
392		}
393		wr32(IGC_TSAUXC, tsauxc);
394		wr32(IGC_TSIM, tsim);
395		spin_unlock_irqrestore(&igc->tmreg_lock, flags);
396		return 0;
397
398	case PTP_CLK_REQ_PPS:
399		spin_lock_irqsave(&igc->tmreg_lock, flags);
400		tsim = rd32(IGC_TSIM);
401		if (on)
402			tsim |= IGC_TSICR_SYS_WRAP;
403		else
404			tsim &= ~IGC_TSICR_SYS_WRAP;
405		igc->pps_sys_wrap_on = on;
406		wr32(IGC_TSIM, tsim);
407		spin_unlock_irqrestore(&igc->tmreg_lock, flags);
408		return 0;
409
410	default:
411		break;
412	}
413
414	return -EOPNOTSUPP;
415}
416
417static int igc_ptp_verify_pin(struct ptp_clock_info *ptp, unsigned int pin,
418			      enum ptp_pin_function func, unsigned int chan)
419{
420	switch (func) {
421	case PTP_PF_NONE:
422	case PTP_PF_EXTTS:
423	case PTP_PF_PEROUT:
424		break;
425	case PTP_PF_PHYSYNC:
426		return -1;
427	}
428	return 0;
429}
430
431/**
432 * igc_ptp_systim_to_hwtstamp - convert system time value to HW timestamp
433 * @adapter: board private structure
434 * @hwtstamps: timestamp structure to update
435 * @systim: unsigned 64bit system time value
436 *
437 * We need to convert the system time value stored in the RX/TXSTMP registers
438 * into a hwtstamp which can be used by the upper level timestamping functions.
439 *
440 * Returns 0 on success.
441 **/
442static int igc_ptp_systim_to_hwtstamp(struct igc_adapter *adapter,
443				      struct skb_shared_hwtstamps *hwtstamps,
444				      u64 systim)
445{
446	switch (adapter->hw.mac.type) {
447	case igc_i225:
448		memset(hwtstamps, 0, sizeof(*hwtstamps));
449		/* Upper 32 bits contain s, lower 32 bits contain ns. */
450		hwtstamps->hwtstamp = ktime_set(systim >> 32,
451						systim & 0xFFFFFFFF);
452		break;
453	default:
454		return -EINVAL;
455	}
456	return 0;
457}
458
459/**
460 * igc_ptp_rx_pktstamp - Retrieve timestamp from Rx packet buffer
461 * @adapter: Pointer to adapter the packet buffer belongs to
462 * @buf: Pointer to packet buffer
463 *
464 * This function retrieves the timestamp saved in the beginning of packet
465 * buffer. While two timestamps are available, one in timer0 reference and the
466 * other in timer1 reference, this function considers only the timestamp in
467 * timer0 reference.
468 *
469 * Returns timestamp value.
470 */
471ktime_t igc_ptp_rx_pktstamp(struct igc_adapter *adapter, __le32 *buf)
472{
473	ktime_t timestamp;
474	u32 secs, nsecs;
475	int adjust;
476
477	/* Timestamps are saved in little endian at the beginning of the packet
478	 * buffer following the layout:
479	 *
480	 * DWORD: | 0              | 1              | 2              | 3              |
481	 * Field: | Timer1 SYSTIML | Timer1 SYSTIMH | Timer0 SYSTIML | Timer0 SYSTIMH |
482	 *
483	 * SYSTIML holds the nanoseconds part while SYSTIMH holds the seconds
484	 * part of the timestamp.
485	 */
486	nsecs = le32_to_cpu(buf[2]);
487	secs = le32_to_cpu(buf[3]);
488
489	timestamp = ktime_set(secs, nsecs);
490
491	/* Adjust timestamp for the RX latency based on link speed */
492	switch (adapter->link_speed) {
493	case SPEED_10:
494		adjust = IGC_I225_RX_LATENCY_10;
495		break;
496	case SPEED_100:
497		adjust = IGC_I225_RX_LATENCY_100;
498		break;
499	case SPEED_1000:
500		adjust = IGC_I225_RX_LATENCY_1000;
501		break;
502	case SPEED_2500:
503		adjust = IGC_I225_RX_LATENCY_2500;
504		break;
505	default:
506		adjust = 0;
507		netdev_warn_once(adapter->netdev, "Imprecise timestamp\n");
508		break;
509	}
510
511	return ktime_sub_ns(timestamp, adjust);
512}
513
514static void igc_ptp_disable_rx_timestamp(struct igc_adapter *adapter)
515{
516	struct igc_hw *hw = &adapter->hw;
517	u32 val;
518	int i;
519
520	wr32(IGC_TSYNCRXCTL, 0);
521
522	for (i = 0; i < adapter->num_rx_queues; i++) {
523		val = rd32(IGC_SRRCTL(i));
524		val &= ~IGC_SRRCTL_TIMESTAMP;
525		wr32(IGC_SRRCTL(i), val);
526	}
527
528	val = rd32(IGC_RXPBS);
529	val &= ~IGC_RXPBS_CFG_TS_EN;
530	wr32(IGC_RXPBS, val);
531}
532
533static void igc_ptp_enable_rx_timestamp(struct igc_adapter *adapter)
534{
535	struct igc_hw *hw = &adapter->hw;
536	u32 val;
537	int i;
538
539	val = rd32(IGC_RXPBS);
540	val |= IGC_RXPBS_CFG_TS_EN;
541	wr32(IGC_RXPBS, val);
542
543	for (i = 0; i < adapter->num_rx_queues; i++) {
544		val = rd32(IGC_SRRCTL(i));
545		/* FIXME: For now, only support retrieving RX timestamps from
546		 * timer 0.
547		 */
548		val |= IGC_SRRCTL_TIMER1SEL(0) | IGC_SRRCTL_TIMER0SEL(0) |
549		       IGC_SRRCTL_TIMESTAMP;
550		wr32(IGC_SRRCTL(i), val);
551	}
552
553	val = IGC_TSYNCRXCTL_ENABLED | IGC_TSYNCRXCTL_TYPE_ALL |
554	      IGC_TSYNCRXCTL_RXSYNSIG;
555	wr32(IGC_TSYNCRXCTL, val);
556}
557
558static void igc_ptp_clear_tx_tstamp(struct igc_adapter *adapter)
559{
560	unsigned long flags;
561	int i;
562
563	spin_lock_irqsave(&adapter->ptp_tx_lock, flags);
564
565	for (i = 0; i < IGC_MAX_TX_TSTAMP_REGS; i++) {
566		struct igc_tx_timestamp_request *tstamp = &adapter->tx_tstamp[i];
567
568		dev_kfree_skb_any(tstamp->skb);
569		tstamp->skb = NULL;
570	}
571
572	spin_unlock_irqrestore(&adapter->ptp_tx_lock, flags);
573}
574
575static void igc_ptp_disable_tx_timestamp(struct igc_adapter *adapter)
576{
577	struct igc_hw *hw = &adapter->hw;
578	int i;
579
580	/* Clear the flags first to avoid new packets to be enqueued
581	 * for TX timestamping.
582	 */
583	for (i = 0; i < adapter->num_tx_queues; i++) {
584		struct igc_ring *tx_ring = adapter->tx_ring[i];
585
586		clear_bit(IGC_RING_FLAG_TX_HWTSTAMP, &tx_ring->flags);
587	}
588
589	/* Now we can clean the pending TX timestamp requests. */
590	igc_ptp_clear_tx_tstamp(adapter);
591
592	wr32(IGC_TSYNCTXCTL, 0);
593}
594
595static void igc_ptp_enable_tx_timestamp(struct igc_adapter *adapter)
596{
597	struct igc_hw *hw = &adapter->hw;
598	int i;
599
600	wr32(IGC_TSYNCTXCTL, IGC_TSYNCTXCTL_ENABLED | IGC_TSYNCTXCTL_TXSYNSIG);
601
602	/* Read TXSTMP registers to discard any timestamp previously stored. */
603	rd32(IGC_TXSTMPL);
604	rd32(IGC_TXSTMPH);
605
606	/* The hardware is ready to accept TX timestamp requests,
607	 * notify the transmit path.
608	 */
609	for (i = 0; i < adapter->num_tx_queues; i++) {
610		struct igc_ring *tx_ring = adapter->tx_ring[i];
611
612		set_bit(IGC_RING_FLAG_TX_HWTSTAMP, &tx_ring->flags);
613	}
614
615}
616
617/**
618 * igc_ptp_set_timestamp_mode - setup hardware for timestamping
619 * @adapter: networking device structure
620 * @config: hwtstamp configuration
621 *
622 * Return: 0 in case of success, negative errno code otherwise.
623 */
624static int igc_ptp_set_timestamp_mode(struct igc_adapter *adapter,
625				      struct hwtstamp_config *config)
626{
627	switch (config->tx_type) {
628	case HWTSTAMP_TX_OFF:
629		igc_ptp_disable_tx_timestamp(adapter);
630		break;
631	case HWTSTAMP_TX_ON:
632		igc_ptp_enable_tx_timestamp(adapter);
633		break;
634	default:
635		return -ERANGE;
636	}
637
638	switch (config->rx_filter) {
639	case HWTSTAMP_FILTER_NONE:
640		igc_ptp_disable_rx_timestamp(adapter);
641		break;
642	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
643	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
644	case HWTSTAMP_FILTER_PTP_V2_EVENT:
645	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
646	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
647	case HWTSTAMP_FILTER_PTP_V2_SYNC:
648	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
649	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
650	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
651	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
652	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
653	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
654	case HWTSTAMP_FILTER_NTP_ALL:
655	case HWTSTAMP_FILTER_ALL:
656		igc_ptp_enable_rx_timestamp(adapter);
657		config->rx_filter = HWTSTAMP_FILTER_ALL;
658		break;
659	default:
660		return -ERANGE;
661	}
662
663	return 0;
664}
665
666/* Requires adapter->ptp_tx_lock held by caller. */
667static void igc_ptp_tx_timeout(struct igc_adapter *adapter,
668			       struct igc_tx_timestamp_request *tstamp)
669{
670	dev_kfree_skb_any(tstamp->skb);
671	tstamp->skb = NULL;
672	adapter->tx_hwtstamp_timeouts++;
673
674	netdev_warn(adapter->netdev, "Tx timestamp timeout\n");
675}
676
677void igc_ptp_tx_hang(struct igc_adapter *adapter)
678{
679	struct igc_tx_timestamp_request *tstamp;
680	struct igc_hw *hw = &adapter->hw;
681	unsigned long flags;
682	bool found = false;
683	int i;
684
685	spin_lock_irqsave(&adapter->ptp_tx_lock, flags);
686
687	for (i = 0; i < IGC_MAX_TX_TSTAMP_REGS; i++) {
688		tstamp = &adapter->tx_tstamp[i];
689
690		if (!tstamp->skb)
691			continue;
692
693		if (time_is_after_jiffies(tstamp->start + IGC_PTP_TX_TIMEOUT))
694			continue;
695
696		igc_ptp_tx_timeout(adapter, tstamp);
697		found = true;
698	}
699
700	if (found) {
701		/* Reading the high register of the first set of timestamp registers
702		 * clears all the equivalent bits in the TSYNCTXCTL register.
703		 */
704		rd32(IGC_TXSTMPH_0);
705	}
706
707	spin_unlock_irqrestore(&adapter->ptp_tx_lock, flags);
708}
709
710static void igc_ptp_tx_reg_to_stamp(struct igc_adapter *adapter,
711				    struct igc_tx_timestamp_request *tstamp, u64 regval)
712{
713	struct skb_shared_hwtstamps shhwtstamps;
714	struct sk_buff *skb;
715	int adjust = 0;
716
717	skb = tstamp->skb;
718	if (!skb)
719		return;
720
721	if (igc_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval))
722		return;
723
724	switch (adapter->link_speed) {
725	case SPEED_10:
726		adjust = IGC_I225_TX_LATENCY_10;
727		break;
728	case SPEED_100:
729		adjust = IGC_I225_TX_LATENCY_100;
730		break;
731	case SPEED_1000:
732		adjust = IGC_I225_TX_LATENCY_1000;
733		break;
734	case SPEED_2500:
735		adjust = IGC_I225_TX_LATENCY_2500;
736		break;
737	}
738
739	shhwtstamps.hwtstamp =
740		ktime_add_ns(shhwtstamps.hwtstamp, adjust);
741
742	tstamp->skb = NULL;
743
744	skb_tstamp_tx(skb, &shhwtstamps);
745	dev_kfree_skb_any(skb);
746}
747
748/**
749 * igc_ptp_tx_hwtstamp - utility function which checks for TX time stamp
750 * @adapter: Board private structure
751 *
752 * Check against the ready mask for which of the timestamp register
753 * sets are ready to be retrieved, then retrieve that and notify the
754 * rest of the stack.
755 *
756 * Context: Expects adapter->ptp_tx_lock to be held by caller.
757 */
758static void igc_ptp_tx_hwtstamp(struct igc_adapter *adapter)
759{
760	struct igc_hw *hw = &adapter->hw;
761	u64 regval;
762	u32 mask;
763	int i;
764
765	mask = rd32(IGC_TSYNCTXCTL) & IGC_TSYNCTXCTL_TXTT_ANY;
766	if (mask & IGC_TSYNCTXCTL_TXTT_0) {
767		regval = rd32(IGC_TXSTMPL);
768		regval |= (u64)rd32(IGC_TXSTMPH) << 32;
769	} else {
770		/* There's a bug in the hardware that could cause
771		 * missing interrupts for TX timestamping. The issue
772		 * is that for new interrupts to be triggered, the
773		 * IGC_TXSTMPH_0 register must be read.
774		 *
775		 * To avoid discarding a valid timestamp that just
776		 * happened at the "wrong" time, we need to confirm
777		 * that there was no timestamp captured, we do that by
778		 * assuming that no two timestamps in sequence have
779		 * the same nanosecond value.
780		 *
781		 * So, we read the "low" register, read the "high"
782		 * register (to latch a new timestamp) and read the
783		 * "low" register again, if "old" and "new" versions
784		 * of the "low" register are different, a valid
785		 * timestamp was captured, we can read the "high"
786		 * register again.
787		 */
788		u32 txstmpl_old, txstmpl_new;
789
790		txstmpl_old = rd32(IGC_TXSTMPL);
791		rd32(IGC_TXSTMPH);
792		txstmpl_new = rd32(IGC_TXSTMPL);
793
794		if (txstmpl_old == txstmpl_new)
795			goto done;
796
797		regval = txstmpl_new;
798		regval |= (u64)rd32(IGC_TXSTMPH) << 32;
799	}
800
801	igc_ptp_tx_reg_to_stamp(adapter, &adapter->tx_tstamp[0], regval);
802
803done:
804	/* Now that the problematic first register was handled, we can
805	 * use retrieve the timestamps from the other registers
806	 * (starting from '1') with less complications.
807	 */
808	for (i = 1; i < IGC_MAX_TX_TSTAMP_REGS; i++) {
809		struct igc_tx_timestamp_request *tstamp = &adapter->tx_tstamp[i];
810
811		if (!(tstamp->mask & mask))
812			continue;
813
814		regval = rd32(tstamp->regl);
815		regval |= (u64)rd32(tstamp->regh) << 32;
816
817		igc_ptp_tx_reg_to_stamp(adapter, tstamp, regval);
818	}
819}
820
821/**
822 * igc_ptp_tx_tstamp_event
823 * @adapter: board private structure
824 *
825 * Called when a TX timestamp interrupt happens to retrieve the
826 * timestamp and send it up to the socket.
827 */
828void igc_ptp_tx_tstamp_event(struct igc_adapter *adapter)
829{
830	unsigned long flags;
831
832	spin_lock_irqsave(&adapter->ptp_tx_lock, flags);
833
834	igc_ptp_tx_hwtstamp(adapter);
835
836	spin_unlock_irqrestore(&adapter->ptp_tx_lock, flags);
837}
838
839/**
840 * igc_ptp_set_ts_config - set hardware time stamping config
841 * @netdev: network interface device structure
842 * @ifr: interface request data
843 *
844 **/
845int igc_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr)
846{
847	struct igc_adapter *adapter = netdev_priv(netdev);
848	struct hwtstamp_config config;
849	int err;
850
851	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
852		return -EFAULT;
853
854	err = igc_ptp_set_timestamp_mode(adapter, &config);
855	if (err)
856		return err;
857
858	/* save these settings for future reference */
859	memcpy(&adapter->tstamp_config, &config,
860	       sizeof(adapter->tstamp_config));
861
862	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
863		-EFAULT : 0;
864}
865
866/**
867 * igc_ptp_get_ts_config - get hardware time stamping config
868 * @netdev: network interface device structure
869 * @ifr: interface request data
870 *
871 * Get the hwtstamp_config settings to return to the user. Rather than attempt
872 * to deconstruct the settings from the registers, just return a shadow copy
873 * of the last known settings.
874 **/
875int igc_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr)
876{
877	struct igc_adapter *adapter = netdev_priv(netdev);
878	struct hwtstamp_config *config = &adapter->tstamp_config;
879
880	return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
881		-EFAULT : 0;
882}
883
884/* The two conditions below must be met for cross timestamping via
885 * PCIe PTM:
886 *
887 * 1. We have an way to convert the timestamps in the PTM messages
888 *    to something related to the system clocks (right now, only
889 *    X86 systems with support for the Always Running Timer allow that);
890 *
891 * 2. We have PTM enabled in the path from the device to the PCIe root port.
892 */
893static bool igc_is_crosststamp_supported(struct igc_adapter *adapter)
894{
895	if (!IS_ENABLED(CONFIG_X86_TSC))
896		return false;
897
898	/* FIXME: it was noticed that enabling support for PCIe PTM in
899	 * some i225-V models could cause lockups when bringing the
900	 * interface up/down. There should be no downsides to
901	 * disabling crosstimestamping support for i225-V, as it
902	 * doesn't have any PTP support. That way we gain some time
903	 * while root causing the issue.
904	 */
905	if (adapter->pdev->device == IGC_DEV_ID_I225_V)
906		return false;
907
908	return pcie_ptm_enabled(adapter->pdev);
909}
910
911static struct system_counterval_t igc_device_tstamp_to_system(u64 tstamp)
912{
913#if IS_ENABLED(CONFIG_X86_TSC) && !defined(CONFIG_UML)
914	return convert_art_ns_to_tsc(tstamp);
915#else
916	return (struct system_counterval_t) { };
917#endif
918}
919
920static void igc_ptm_log_error(struct igc_adapter *adapter, u32 ptm_stat)
921{
922	struct net_device *netdev = adapter->netdev;
923
924	switch (ptm_stat) {
925	case IGC_PTM_STAT_RET_ERR:
926		netdev_err(netdev, "PTM Error: Root port timeout\n");
927		break;
928	case IGC_PTM_STAT_BAD_PTM_RES:
929		netdev_err(netdev, "PTM Error: Bad response, PTM Response Data expected\n");
930		break;
931	case IGC_PTM_STAT_T4M1_OVFL:
932		netdev_err(netdev, "PTM Error: T4 minus T1 overflow\n");
933		break;
934	case IGC_PTM_STAT_ADJUST_1ST:
935		netdev_err(netdev, "PTM Error: 1588 timer adjusted during first PTM cycle\n");
936		break;
937	case IGC_PTM_STAT_ADJUST_CYC:
938		netdev_err(netdev, "PTM Error: 1588 timer adjusted during non-first PTM cycle\n");
939		break;
940	default:
941		netdev_err(netdev, "PTM Error: Unknown error (%#x)\n", ptm_stat);
942		break;
943	}
944}
945
946static int igc_phc_get_syncdevicetime(ktime_t *device,
947				      struct system_counterval_t *system,
948				      void *ctx)
949{
950	u32 stat, t2_curr_h, t2_curr_l, ctrl;
951	struct igc_adapter *adapter = ctx;
952	struct igc_hw *hw = &adapter->hw;
953	int err, count = 100;
954	ktime_t t1, t2_curr;
955
956	/* Get a snapshot of system clocks to use as historic value. */
957	ktime_get_snapshot(&adapter->snapshot);
958
959	do {
960		/* Doing this in a loop because in the event of a
961		 * badly timed (ha!) system clock adjustment, we may
962		 * get PTM errors from the PCI root, but these errors
963		 * are transitory. Repeating the process returns valid
964		 * data eventually.
965		 */
966
967		/* To "manually" start the PTM cycle we need to clear and
968		 * then set again the TRIG bit.
969		 */
970		ctrl = rd32(IGC_PTM_CTRL);
971		ctrl &= ~IGC_PTM_CTRL_TRIG;
972		wr32(IGC_PTM_CTRL, ctrl);
973		ctrl |= IGC_PTM_CTRL_TRIG;
974		wr32(IGC_PTM_CTRL, ctrl);
975
976		/* The cycle only starts "for real" when software notifies
977		 * that it has read the registers, this is done by setting
978		 * VALID bit.
979		 */
980		wr32(IGC_PTM_STAT, IGC_PTM_STAT_VALID);
981
982		err = readx_poll_timeout(rd32, IGC_PTM_STAT, stat,
983					 stat, IGC_PTM_STAT_SLEEP,
984					 IGC_PTM_STAT_TIMEOUT);
985		if (err < 0) {
986			netdev_err(adapter->netdev, "Timeout reading IGC_PTM_STAT register\n");
987			return err;
988		}
989
990		if ((stat & IGC_PTM_STAT_VALID) == IGC_PTM_STAT_VALID)
991			break;
992
993		if (stat & ~IGC_PTM_STAT_VALID) {
994			/* An error occurred, log it. */
995			igc_ptm_log_error(adapter, stat);
996			/* The STAT register is write-1-to-clear (W1C),
997			 * so write the previous error status to clear it.
998			 */
999			wr32(IGC_PTM_STAT, stat);
1000			continue;
1001		}
1002	} while (--count);
1003
1004	if (!count) {
1005		netdev_err(adapter->netdev, "Exceeded number of tries for PTM cycle\n");
1006		return -ETIMEDOUT;
1007	}
1008
1009	t1 = ktime_set(rd32(IGC_PTM_T1_TIM0_H), rd32(IGC_PTM_T1_TIM0_L));
1010
1011	t2_curr_l = rd32(IGC_PTM_CURR_T2_L);
1012	t2_curr_h = rd32(IGC_PTM_CURR_T2_H);
1013
1014	/* FIXME: When the register that tells the endianness of the
1015	 * PTM registers are implemented, check them here and add the
1016	 * appropriate conversion.
1017	 */
1018	t2_curr_h = swab32(t2_curr_h);
1019
1020	t2_curr = ((s64)t2_curr_h << 32 | t2_curr_l);
1021
1022	*device = t1;
1023	*system = igc_device_tstamp_to_system(t2_curr);
1024
1025	return 0;
1026}
1027
1028static int igc_ptp_getcrosststamp(struct ptp_clock_info *ptp,
1029				  struct system_device_crosststamp *cts)
1030{
1031	struct igc_adapter *adapter = container_of(ptp, struct igc_adapter,
1032						   ptp_caps);
1033
1034	return get_device_system_crosststamp(igc_phc_get_syncdevicetime,
1035					     adapter, &adapter->snapshot, cts);
1036}
1037
1038/**
1039 * igc_ptp_init - Initialize PTP functionality
1040 * @adapter: Board private structure
1041 *
1042 * This function is called at device probe to initialize the PTP
1043 * functionality.
1044 */
1045void igc_ptp_init(struct igc_adapter *adapter)
1046{
1047	struct net_device *netdev = adapter->netdev;
1048	struct igc_tx_timestamp_request *tstamp;
1049	struct igc_hw *hw = &adapter->hw;
1050	int i;
1051
1052	tstamp = &adapter->tx_tstamp[0];
1053	tstamp->mask = IGC_TSYNCTXCTL_TXTT_0;
1054	tstamp->regl = IGC_TXSTMPL_0;
1055	tstamp->regh = IGC_TXSTMPH_0;
1056	tstamp->flags = 0;
1057
1058	tstamp = &adapter->tx_tstamp[1];
1059	tstamp->mask = IGC_TSYNCTXCTL_TXTT_1;
1060	tstamp->regl = IGC_TXSTMPL_1;
1061	tstamp->regh = IGC_TXSTMPH_1;
1062	tstamp->flags = IGC_TX_FLAGS_TSTAMP_1;
1063
1064	tstamp = &adapter->tx_tstamp[2];
1065	tstamp->mask = IGC_TSYNCTXCTL_TXTT_2;
1066	tstamp->regl = IGC_TXSTMPL_2;
1067	tstamp->regh = IGC_TXSTMPH_2;
1068	tstamp->flags = IGC_TX_FLAGS_TSTAMP_2;
1069
1070	tstamp = &adapter->tx_tstamp[3];
1071	tstamp->mask = IGC_TSYNCTXCTL_TXTT_3;
1072	tstamp->regl = IGC_TXSTMPL_3;
1073	tstamp->regh = IGC_TXSTMPH_3;
1074	tstamp->flags = IGC_TX_FLAGS_TSTAMP_3;
1075
1076	switch (hw->mac.type) {
1077	case igc_i225:
1078		for (i = 0; i < IGC_N_SDP; i++) {
1079			struct ptp_pin_desc *ppd = &adapter->sdp_config[i];
1080
1081			snprintf(ppd->name, sizeof(ppd->name), "SDP%d", i);
1082			ppd->index = i;
1083			ppd->func = PTP_PF_NONE;
1084		}
1085		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1086		adapter->ptp_caps.owner = THIS_MODULE;
1087		adapter->ptp_caps.max_adj = 62499999;
1088		adapter->ptp_caps.adjfine = igc_ptp_adjfine_i225;
1089		adapter->ptp_caps.adjtime = igc_ptp_adjtime_i225;
1090		adapter->ptp_caps.gettimex64 = igc_ptp_gettimex64_i225;
1091		adapter->ptp_caps.settime64 = igc_ptp_settime_i225;
1092		adapter->ptp_caps.enable = igc_ptp_feature_enable_i225;
1093		adapter->ptp_caps.pps = 1;
1094		adapter->ptp_caps.pin_config = adapter->sdp_config;
1095		adapter->ptp_caps.n_ext_ts = IGC_N_EXTTS;
1096		adapter->ptp_caps.n_per_out = IGC_N_PEROUT;
1097		adapter->ptp_caps.n_pins = IGC_N_SDP;
1098		adapter->ptp_caps.verify = igc_ptp_verify_pin;
1099
1100		if (!igc_is_crosststamp_supported(adapter))
1101			break;
1102
1103		adapter->ptp_caps.getcrosststamp = igc_ptp_getcrosststamp;
1104		break;
1105	default:
1106		adapter->ptp_clock = NULL;
1107		return;
1108	}
1109
1110	spin_lock_init(&adapter->ptp_tx_lock);
1111	spin_lock_init(&adapter->tmreg_lock);
1112
1113	adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
1114	adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
1115
1116	adapter->prev_ptp_time = ktime_to_timespec64(ktime_get_real());
1117	adapter->ptp_reset_start = ktime_get();
1118
1119	adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
1120						&adapter->pdev->dev);
1121	if (IS_ERR(adapter->ptp_clock)) {
1122		adapter->ptp_clock = NULL;
1123		netdev_err(netdev, "ptp_clock_register failed\n");
1124	} else if (adapter->ptp_clock) {
1125		netdev_info(netdev, "PHC added\n");
1126		adapter->ptp_flags |= IGC_PTP_ENABLED;
1127	}
1128}
1129
1130static void igc_ptp_time_save(struct igc_adapter *adapter)
1131{
1132	igc_ptp_read(adapter, &adapter->prev_ptp_time);
1133	adapter->ptp_reset_start = ktime_get();
1134}
1135
1136static void igc_ptp_time_restore(struct igc_adapter *adapter)
1137{
1138	struct timespec64 ts = adapter->prev_ptp_time;
1139	ktime_t delta;
1140
1141	delta = ktime_sub(ktime_get(), adapter->ptp_reset_start);
1142
1143	timespec64_add_ns(&ts, ktime_to_ns(delta));
1144
1145	igc_ptp_write_i225(adapter, &ts);
1146}
1147
1148static void igc_ptm_stop(struct igc_adapter *adapter)
1149{
1150	struct igc_hw *hw = &adapter->hw;
1151	u32 ctrl;
1152
1153	ctrl = rd32(IGC_PTM_CTRL);
1154	ctrl &= ~IGC_PTM_CTRL_EN;
1155
1156	wr32(IGC_PTM_CTRL, ctrl);
1157}
1158
1159/**
1160 * igc_ptp_suspend - Disable PTP work items and prepare for suspend
1161 * @adapter: Board private structure
1162 *
1163 * This function stops the overflow check work and PTP Tx timestamp work, and
1164 * will prepare the device for OS suspend.
1165 */
1166void igc_ptp_suspend(struct igc_adapter *adapter)
1167{
1168	if (!(adapter->ptp_flags & IGC_PTP_ENABLED))
1169		return;
1170
1171	igc_ptp_clear_tx_tstamp(adapter);
1172
1173	if (pci_device_is_present(adapter->pdev)) {
1174		igc_ptp_time_save(adapter);
1175		igc_ptm_stop(adapter);
1176	}
1177}
1178
1179/**
1180 * igc_ptp_stop - Disable PTP device and stop the overflow check.
1181 * @adapter: Board private structure.
1182 *
1183 * This function stops the PTP support and cancels the delayed work.
1184 **/
1185void igc_ptp_stop(struct igc_adapter *adapter)
1186{
1187	igc_ptp_suspend(adapter);
1188
1189	if (adapter->ptp_clock) {
1190		ptp_clock_unregister(adapter->ptp_clock);
1191		netdev_info(adapter->netdev, "PHC removed\n");
1192		adapter->ptp_flags &= ~IGC_PTP_ENABLED;
1193	}
1194}
1195
1196/**
1197 * igc_ptp_reset - Re-enable the adapter for PTP following a reset.
1198 * @adapter: Board private structure.
1199 *
1200 * This function handles the reset work required to re-enable the PTP device.
1201 **/
1202void igc_ptp_reset(struct igc_adapter *adapter)
1203{
1204	struct igc_hw *hw = &adapter->hw;
1205	u32 cycle_ctrl, ctrl;
1206	unsigned long flags;
1207	u32 timadj;
1208
1209	/* reset the tstamp_config */
1210	igc_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
1211
1212	spin_lock_irqsave(&adapter->tmreg_lock, flags);
1213
1214	switch (adapter->hw.mac.type) {
1215	case igc_i225:
1216		timadj = rd32(IGC_TIMADJ);
1217		timadj |= IGC_TIMADJ_ADJUST_METH;
1218		wr32(IGC_TIMADJ, timadj);
1219
1220		wr32(IGC_TSAUXC, 0x0);
1221		wr32(IGC_TSSDP, 0x0);
1222		wr32(IGC_TSIM,
1223		     IGC_TSICR_INTERRUPTS |
1224		     (adapter->pps_sys_wrap_on ? IGC_TSICR_SYS_WRAP : 0));
1225		wr32(IGC_IMS, IGC_IMS_TS);
1226
1227		if (!igc_is_crosststamp_supported(adapter))
1228			break;
1229
1230		wr32(IGC_PCIE_DIG_DELAY, IGC_PCIE_DIG_DELAY_DEFAULT);
1231		wr32(IGC_PCIE_PHY_DELAY, IGC_PCIE_PHY_DELAY_DEFAULT);
1232
1233		cycle_ctrl = IGC_PTM_CYCLE_CTRL_CYC_TIME(IGC_PTM_CYC_TIME_DEFAULT);
1234
1235		wr32(IGC_PTM_CYCLE_CTRL, cycle_ctrl);
1236
1237		ctrl = IGC_PTM_CTRL_EN |
1238			IGC_PTM_CTRL_START_NOW |
1239			IGC_PTM_CTRL_SHRT_CYC(IGC_PTM_SHORT_CYC_DEFAULT) |
1240			IGC_PTM_CTRL_PTM_TO(IGC_PTM_TIMEOUT_DEFAULT) |
1241			IGC_PTM_CTRL_TRIG;
1242
1243		wr32(IGC_PTM_CTRL, ctrl);
1244
1245		/* Force the first cycle to run. */
1246		wr32(IGC_PTM_STAT, IGC_PTM_STAT_VALID);
1247
1248		break;
1249	default:
1250		/* No work to do. */
1251		goto out;
1252	}
1253
1254	/* Re-initialize the timer. */
1255	if (hw->mac.type == igc_i225) {
1256		igc_ptp_time_restore(adapter);
1257	} else {
1258		timecounter_init(&adapter->tc, &adapter->cc,
1259				 ktime_to_ns(ktime_get_real()));
1260	}
1261out:
1262	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
1263
1264	wrfl();
1265}
1266