1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (c)  2018 Intel Corporation */
3
4#include <linux/module.h>
5#include <linux/types.h>
6#include <linux/if_vlan.h>
7#include <linux/tcp.h>
8#include <linux/udp.h>
9#include <linux/ip.h>
10#include <linux/pm_runtime.h>
11#include <net/pkt_sched.h>
12#include <linux/bpf_trace.h>
13#include <net/xdp_sock_drv.h>
14#include <linux/pci.h>
15
16#include <net/ipv6.h>
17
18#include "igc.h"
19#include "igc_hw.h"
20#include "igc_tsn.h"
21#include "igc_xdp.h"
22
23#define DRV_SUMMARY	"Intel(R) 2.5G Ethernet Linux Driver"
24
25#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
26
27#define IGC_XDP_PASS		0
28#define IGC_XDP_CONSUMED	BIT(0)
29#define IGC_XDP_TX		BIT(1)
30#define IGC_XDP_REDIRECT	BIT(2)
31
32static int debug = -1;
33
34MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
35MODULE_DESCRIPTION(DRV_SUMMARY);
36MODULE_LICENSE("GPL v2");
37module_param(debug, int, 0);
38MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
39
40char igc_driver_name[] = "igc";
41static const char igc_driver_string[] = DRV_SUMMARY;
42static const char igc_copyright[] =
43	"Copyright(c) 2018 Intel Corporation.";
44
45static const struct igc_info *igc_info_tbl[] = {
46	[board_base] = &igc_base_info,
47};
48
49static const struct pci_device_id igc_pci_tbl[] = {
50	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LM), board_base },
51	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_V), board_base },
52	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_I), board_base },
53	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I220_V), board_base },
54	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K), board_base },
55	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K2), board_base },
56	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_K), board_base },
57	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LMVP), board_base },
58	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LMVP), board_base },
59	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_IT), board_base },
60	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LM), board_base },
61	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_V), board_base },
62	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_IT), board_base },
63	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I221_V), board_base },
64	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_BLANK_NVM), board_base },
65	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_BLANK_NVM), board_base },
66	/* required last entry */
67	{0, }
68};
69
70MODULE_DEVICE_TABLE(pci, igc_pci_tbl);
71
72enum latency_range {
73	lowest_latency = 0,
74	low_latency = 1,
75	bulk_latency = 2,
76	latency_invalid = 255
77};
78
79void igc_reset(struct igc_adapter *adapter)
80{
81	struct net_device *dev = adapter->netdev;
82	struct igc_hw *hw = &adapter->hw;
83	struct igc_fc_info *fc = &hw->fc;
84	u32 pba, hwm;
85
86	/* Repartition PBA for greater than 9k MTU if required */
87	pba = IGC_PBA_34K;
88
89	/* flow control settings
90	 * The high water mark must be low enough to fit one full frame
91	 * after transmitting the pause frame.  As such we must have enough
92	 * space to allow for us to complete our current transmit and then
93	 * receive the frame that is in progress from the link partner.
94	 * Set it to:
95	 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
96	 */
97	hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
98
99	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
100	fc->low_water = fc->high_water - 16;
101	fc->pause_time = 0xFFFF;
102	fc->send_xon = 1;
103	fc->current_mode = fc->requested_mode;
104
105	hw->mac.ops.reset_hw(hw);
106
107	if (hw->mac.ops.init_hw(hw))
108		netdev_err(dev, "Error on hardware initialization\n");
109
110	/* Re-establish EEE setting */
111	igc_set_eee_i225(hw, true, true, true);
112
113	if (!netif_running(adapter->netdev))
114		igc_power_down_phy_copper_base(&adapter->hw);
115
116	/* Enable HW to recognize an 802.1Q VLAN Ethernet packet */
117	wr32(IGC_VET, ETH_P_8021Q);
118
119	/* Re-enable PTP, where applicable. */
120	igc_ptp_reset(adapter);
121
122	/* Re-enable TSN offloading, where applicable. */
123	igc_tsn_reset(adapter);
124
125	igc_get_phy_info(hw);
126}
127
128/**
129 * igc_power_up_link - Power up the phy link
130 * @adapter: address of board private structure
131 */
132static void igc_power_up_link(struct igc_adapter *adapter)
133{
134	igc_reset_phy(&adapter->hw);
135
136	igc_power_up_phy_copper(&adapter->hw);
137
138	igc_setup_link(&adapter->hw);
139}
140
141/**
142 * igc_release_hw_control - release control of the h/w to f/w
143 * @adapter: address of board private structure
144 *
145 * igc_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
146 * For ASF and Pass Through versions of f/w this means that the
147 * driver is no longer loaded.
148 */
149static void igc_release_hw_control(struct igc_adapter *adapter)
150{
151	struct igc_hw *hw = &adapter->hw;
152	u32 ctrl_ext;
153
154	if (!pci_device_is_present(adapter->pdev))
155		return;
156
157	/* Let firmware take over control of h/w */
158	ctrl_ext = rd32(IGC_CTRL_EXT);
159	wr32(IGC_CTRL_EXT,
160	     ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD);
161}
162
163/**
164 * igc_get_hw_control - get control of the h/w from f/w
165 * @adapter: address of board private structure
166 *
167 * igc_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
168 * For ASF and Pass Through versions of f/w this means that
169 * the driver is loaded.
170 */
171static void igc_get_hw_control(struct igc_adapter *adapter)
172{
173	struct igc_hw *hw = &adapter->hw;
174	u32 ctrl_ext;
175
176	/* Let firmware know the driver has taken over */
177	ctrl_ext = rd32(IGC_CTRL_EXT);
178	wr32(IGC_CTRL_EXT,
179	     ctrl_ext | IGC_CTRL_EXT_DRV_LOAD);
180}
181
182static void igc_unmap_tx_buffer(struct device *dev, struct igc_tx_buffer *buf)
183{
184	dma_unmap_single(dev, dma_unmap_addr(buf, dma),
185			 dma_unmap_len(buf, len), DMA_TO_DEVICE);
186
187	dma_unmap_len_set(buf, len, 0);
188}
189
190/**
191 * igc_clean_tx_ring - Free Tx Buffers
192 * @tx_ring: ring to be cleaned
193 */
194static void igc_clean_tx_ring(struct igc_ring *tx_ring)
195{
196	u16 i = tx_ring->next_to_clean;
197	struct igc_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
198	u32 xsk_frames = 0;
199
200	while (i != tx_ring->next_to_use) {
201		union igc_adv_tx_desc *eop_desc, *tx_desc;
202
203		switch (tx_buffer->type) {
204		case IGC_TX_BUFFER_TYPE_XSK:
205			xsk_frames++;
206			break;
207		case IGC_TX_BUFFER_TYPE_XDP:
208			xdp_return_frame(tx_buffer->xdpf);
209			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
210			break;
211		case IGC_TX_BUFFER_TYPE_SKB:
212			dev_kfree_skb_any(tx_buffer->skb);
213			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
214			break;
215		default:
216			netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n");
217			break;
218		}
219
220		/* check for eop_desc to determine the end of the packet */
221		eop_desc = tx_buffer->next_to_watch;
222		tx_desc = IGC_TX_DESC(tx_ring, i);
223
224		/* unmap remaining buffers */
225		while (tx_desc != eop_desc) {
226			tx_buffer++;
227			tx_desc++;
228			i++;
229			if (unlikely(i == tx_ring->count)) {
230				i = 0;
231				tx_buffer = tx_ring->tx_buffer_info;
232				tx_desc = IGC_TX_DESC(tx_ring, 0);
233			}
234
235			/* unmap any remaining paged data */
236			if (dma_unmap_len(tx_buffer, len))
237				igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
238		}
239
240		tx_buffer->next_to_watch = NULL;
241
242		/* move us one more past the eop_desc for start of next pkt */
243		tx_buffer++;
244		i++;
245		if (unlikely(i == tx_ring->count)) {
246			i = 0;
247			tx_buffer = tx_ring->tx_buffer_info;
248		}
249	}
250
251	if (tx_ring->xsk_pool && xsk_frames)
252		xsk_tx_completed(tx_ring->xsk_pool, xsk_frames);
253
254	/* reset BQL for queue */
255	netdev_tx_reset_queue(txring_txq(tx_ring));
256
257	/* Zero out the buffer ring */
258	memset(tx_ring->tx_buffer_info, 0,
259	       sizeof(*tx_ring->tx_buffer_info) * tx_ring->count);
260
261	/* Zero out the descriptor ring */
262	memset(tx_ring->desc, 0, tx_ring->size);
263
264	/* reset next_to_use and next_to_clean */
265	tx_ring->next_to_use = 0;
266	tx_ring->next_to_clean = 0;
267}
268
269/**
270 * igc_free_tx_resources - Free Tx Resources per Queue
271 * @tx_ring: Tx descriptor ring for a specific queue
272 *
273 * Free all transmit software resources
274 */
275void igc_free_tx_resources(struct igc_ring *tx_ring)
276{
277	igc_disable_tx_ring(tx_ring);
278
279	vfree(tx_ring->tx_buffer_info);
280	tx_ring->tx_buffer_info = NULL;
281
282	/* if not set, then don't free */
283	if (!tx_ring->desc)
284		return;
285
286	dma_free_coherent(tx_ring->dev, tx_ring->size,
287			  tx_ring->desc, tx_ring->dma);
288
289	tx_ring->desc = NULL;
290}
291
292/**
293 * igc_free_all_tx_resources - Free Tx Resources for All Queues
294 * @adapter: board private structure
295 *
296 * Free all transmit software resources
297 */
298static void igc_free_all_tx_resources(struct igc_adapter *adapter)
299{
300	int i;
301
302	for (i = 0; i < adapter->num_tx_queues; i++)
303		igc_free_tx_resources(adapter->tx_ring[i]);
304}
305
306/**
307 * igc_clean_all_tx_rings - Free Tx Buffers for all queues
308 * @adapter: board private structure
309 */
310static void igc_clean_all_tx_rings(struct igc_adapter *adapter)
311{
312	int i;
313
314	for (i = 0; i < adapter->num_tx_queues; i++)
315		if (adapter->tx_ring[i])
316			igc_clean_tx_ring(adapter->tx_ring[i]);
317}
318
319static void igc_disable_tx_ring_hw(struct igc_ring *ring)
320{
321	struct igc_hw *hw = &ring->q_vector->adapter->hw;
322	u8 idx = ring->reg_idx;
323	u32 txdctl;
324
325	txdctl = rd32(IGC_TXDCTL(idx));
326	txdctl &= ~IGC_TXDCTL_QUEUE_ENABLE;
327	txdctl |= IGC_TXDCTL_SWFLUSH;
328	wr32(IGC_TXDCTL(idx), txdctl);
329}
330
331/**
332 * igc_disable_all_tx_rings_hw - Disable all transmit queue operation
333 * @adapter: board private structure
334 */
335static void igc_disable_all_tx_rings_hw(struct igc_adapter *adapter)
336{
337	int i;
338
339	for (i = 0; i < adapter->num_tx_queues; i++) {
340		struct igc_ring *tx_ring = adapter->tx_ring[i];
341
342		igc_disable_tx_ring_hw(tx_ring);
343	}
344}
345
346/**
347 * igc_setup_tx_resources - allocate Tx resources (Descriptors)
348 * @tx_ring: tx descriptor ring (for a specific queue) to setup
349 *
350 * Return 0 on success, negative on failure
351 */
352int igc_setup_tx_resources(struct igc_ring *tx_ring)
353{
354	struct net_device *ndev = tx_ring->netdev;
355	struct device *dev = tx_ring->dev;
356	int size = 0;
357
358	size = sizeof(struct igc_tx_buffer) * tx_ring->count;
359	tx_ring->tx_buffer_info = vzalloc(size);
360	if (!tx_ring->tx_buffer_info)
361		goto err;
362
363	/* round up to nearest 4K */
364	tx_ring->size = tx_ring->count * sizeof(union igc_adv_tx_desc);
365	tx_ring->size = ALIGN(tx_ring->size, 4096);
366
367	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
368					   &tx_ring->dma, GFP_KERNEL);
369
370	if (!tx_ring->desc)
371		goto err;
372
373	tx_ring->next_to_use = 0;
374	tx_ring->next_to_clean = 0;
375
376	return 0;
377
378err:
379	vfree(tx_ring->tx_buffer_info);
380	netdev_err(ndev, "Unable to allocate memory for Tx descriptor ring\n");
381	return -ENOMEM;
382}
383
384/**
385 * igc_setup_all_tx_resources - wrapper to allocate Tx resources for all queues
386 * @adapter: board private structure
387 *
388 * Return 0 on success, negative on failure
389 */
390static int igc_setup_all_tx_resources(struct igc_adapter *adapter)
391{
392	struct net_device *dev = adapter->netdev;
393	int i, err = 0;
394
395	for (i = 0; i < adapter->num_tx_queues; i++) {
396		err = igc_setup_tx_resources(adapter->tx_ring[i]);
397		if (err) {
398			netdev_err(dev, "Error on Tx queue %u setup\n", i);
399			for (i--; i >= 0; i--)
400				igc_free_tx_resources(adapter->tx_ring[i]);
401			break;
402		}
403	}
404
405	return err;
406}
407
408static void igc_clean_rx_ring_page_shared(struct igc_ring *rx_ring)
409{
410	u16 i = rx_ring->next_to_clean;
411
412	dev_kfree_skb(rx_ring->skb);
413	rx_ring->skb = NULL;
414
415	/* Free all the Rx ring sk_buffs */
416	while (i != rx_ring->next_to_alloc) {
417		struct igc_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
418
419		/* Invalidate cache lines that may have been written to by
420		 * device so that we avoid corrupting memory.
421		 */
422		dma_sync_single_range_for_cpu(rx_ring->dev,
423					      buffer_info->dma,
424					      buffer_info->page_offset,
425					      igc_rx_bufsz(rx_ring),
426					      DMA_FROM_DEVICE);
427
428		/* free resources associated with mapping */
429		dma_unmap_page_attrs(rx_ring->dev,
430				     buffer_info->dma,
431				     igc_rx_pg_size(rx_ring),
432				     DMA_FROM_DEVICE,
433				     IGC_RX_DMA_ATTR);
434		__page_frag_cache_drain(buffer_info->page,
435					buffer_info->pagecnt_bias);
436
437		i++;
438		if (i == rx_ring->count)
439			i = 0;
440	}
441}
442
443static void igc_clean_rx_ring_xsk_pool(struct igc_ring *ring)
444{
445	struct igc_rx_buffer *bi;
446	u16 i;
447
448	for (i = 0; i < ring->count; i++) {
449		bi = &ring->rx_buffer_info[i];
450		if (!bi->xdp)
451			continue;
452
453		xsk_buff_free(bi->xdp);
454		bi->xdp = NULL;
455	}
456}
457
458/**
459 * igc_clean_rx_ring - Free Rx Buffers per Queue
460 * @ring: ring to free buffers from
461 */
462static void igc_clean_rx_ring(struct igc_ring *ring)
463{
464	if (ring->xsk_pool)
465		igc_clean_rx_ring_xsk_pool(ring);
466	else
467		igc_clean_rx_ring_page_shared(ring);
468
469	clear_ring_uses_large_buffer(ring);
470
471	ring->next_to_alloc = 0;
472	ring->next_to_clean = 0;
473	ring->next_to_use = 0;
474}
475
476/**
477 * igc_clean_all_rx_rings - Free Rx Buffers for all queues
478 * @adapter: board private structure
479 */
480static void igc_clean_all_rx_rings(struct igc_adapter *adapter)
481{
482	int i;
483
484	for (i = 0; i < adapter->num_rx_queues; i++)
485		if (adapter->rx_ring[i])
486			igc_clean_rx_ring(adapter->rx_ring[i]);
487}
488
489/**
490 * igc_free_rx_resources - Free Rx Resources
491 * @rx_ring: ring to clean the resources from
492 *
493 * Free all receive software resources
494 */
495void igc_free_rx_resources(struct igc_ring *rx_ring)
496{
497	igc_clean_rx_ring(rx_ring);
498
499	xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
500
501	vfree(rx_ring->rx_buffer_info);
502	rx_ring->rx_buffer_info = NULL;
503
504	/* if not set, then don't free */
505	if (!rx_ring->desc)
506		return;
507
508	dma_free_coherent(rx_ring->dev, rx_ring->size,
509			  rx_ring->desc, rx_ring->dma);
510
511	rx_ring->desc = NULL;
512}
513
514/**
515 * igc_free_all_rx_resources - Free Rx Resources for All Queues
516 * @adapter: board private structure
517 *
518 * Free all receive software resources
519 */
520static void igc_free_all_rx_resources(struct igc_adapter *adapter)
521{
522	int i;
523
524	for (i = 0; i < adapter->num_rx_queues; i++)
525		igc_free_rx_resources(adapter->rx_ring[i]);
526}
527
528/**
529 * igc_setup_rx_resources - allocate Rx resources (Descriptors)
530 * @rx_ring:    rx descriptor ring (for a specific queue) to setup
531 *
532 * Returns 0 on success, negative on failure
533 */
534int igc_setup_rx_resources(struct igc_ring *rx_ring)
535{
536	struct net_device *ndev = rx_ring->netdev;
537	struct device *dev = rx_ring->dev;
538	u8 index = rx_ring->queue_index;
539	int size, desc_len, res;
540
541	/* XDP RX-queue info */
542	if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
543		xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
544	res = xdp_rxq_info_reg(&rx_ring->xdp_rxq, ndev, index,
545			       rx_ring->q_vector->napi.napi_id);
546	if (res < 0) {
547		netdev_err(ndev, "Failed to register xdp_rxq index %u\n",
548			   index);
549		return res;
550	}
551
552	size = sizeof(struct igc_rx_buffer) * rx_ring->count;
553	rx_ring->rx_buffer_info = vzalloc(size);
554	if (!rx_ring->rx_buffer_info)
555		goto err;
556
557	desc_len = sizeof(union igc_adv_rx_desc);
558
559	/* Round up to nearest 4K */
560	rx_ring->size = rx_ring->count * desc_len;
561	rx_ring->size = ALIGN(rx_ring->size, 4096);
562
563	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
564					   &rx_ring->dma, GFP_KERNEL);
565
566	if (!rx_ring->desc)
567		goto err;
568
569	rx_ring->next_to_alloc = 0;
570	rx_ring->next_to_clean = 0;
571	rx_ring->next_to_use = 0;
572
573	return 0;
574
575err:
576	xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
577	vfree(rx_ring->rx_buffer_info);
578	rx_ring->rx_buffer_info = NULL;
579	netdev_err(ndev, "Unable to allocate memory for Rx descriptor ring\n");
580	return -ENOMEM;
581}
582
583/**
584 * igc_setup_all_rx_resources - wrapper to allocate Rx resources
585 *                                (Descriptors) for all queues
586 * @adapter: board private structure
587 *
588 * Return 0 on success, negative on failure
589 */
590static int igc_setup_all_rx_resources(struct igc_adapter *adapter)
591{
592	struct net_device *dev = adapter->netdev;
593	int i, err = 0;
594
595	for (i = 0; i < adapter->num_rx_queues; i++) {
596		err = igc_setup_rx_resources(adapter->rx_ring[i]);
597		if (err) {
598			netdev_err(dev, "Error on Rx queue %u setup\n", i);
599			for (i--; i >= 0; i--)
600				igc_free_rx_resources(adapter->rx_ring[i]);
601			break;
602		}
603	}
604
605	return err;
606}
607
608static struct xsk_buff_pool *igc_get_xsk_pool(struct igc_adapter *adapter,
609					      struct igc_ring *ring)
610{
611	if (!igc_xdp_is_enabled(adapter) ||
612	    !test_bit(IGC_RING_FLAG_AF_XDP_ZC, &ring->flags))
613		return NULL;
614
615	return xsk_get_pool_from_qid(ring->netdev, ring->queue_index);
616}
617
618/**
619 * igc_configure_rx_ring - Configure a receive ring after Reset
620 * @adapter: board private structure
621 * @ring: receive ring to be configured
622 *
623 * Configure the Rx unit of the MAC after a reset.
624 */
625static void igc_configure_rx_ring(struct igc_adapter *adapter,
626				  struct igc_ring *ring)
627{
628	struct igc_hw *hw = &adapter->hw;
629	union igc_adv_rx_desc *rx_desc;
630	int reg_idx = ring->reg_idx;
631	u32 srrctl = 0, rxdctl = 0;
632	u64 rdba = ring->dma;
633	u32 buf_size;
634
635	xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
636	ring->xsk_pool = igc_get_xsk_pool(adapter, ring);
637	if (ring->xsk_pool) {
638		WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
639						   MEM_TYPE_XSK_BUFF_POOL,
640						   NULL));
641		xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq);
642	} else {
643		WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
644						   MEM_TYPE_PAGE_SHARED,
645						   NULL));
646	}
647
648	if (igc_xdp_is_enabled(adapter))
649		set_ring_uses_large_buffer(ring);
650
651	/* disable the queue */
652	wr32(IGC_RXDCTL(reg_idx), 0);
653
654	/* Set DMA base address registers */
655	wr32(IGC_RDBAL(reg_idx),
656	     rdba & 0x00000000ffffffffULL);
657	wr32(IGC_RDBAH(reg_idx), rdba >> 32);
658	wr32(IGC_RDLEN(reg_idx),
659	     ring->count * sizeof(union igc_adv_rx_desc));
660
661	/* initialize head and tail */
662	ring->tail = adapter->io_addr + IGC_RDT(reg_idx);
663	wr32(IGC_RDH(reg_idx), 0);
664	writel(0, ring->tail);
665
666	/* reset next-to- use/clean to place SW in sync with hardware */
667	ring->next_to_clean = 0;
668	ring->next_to_use = 0;
669
670	if (ring->xsk_pool)
671		buf_size = xsk_pool_get_rx_frame_size(ring->xsk_pool);
672	else if (ring_uses_large_buffer(ring))
673		buf_size = IGC_RXBUFFER_3072;
674	else
675		buf_size = IGC_RXBUFFER_2048;
676
677	srrctl = rd32(IGC_SRRCTL(reg_idx));
678	srrctl &= ~(IGC_SRRCTL_BSIZEPKT_MASK | IGC_SRRCTL_BSIZEHDR_MASK |
679		    IGC_SRRCTL_DESCTYPE_MASK);
680	srrctl |= IGC_SRRCTL_BSIZEHDR(IGC_RX_HDR_LEN);
681	srrctl |= IGC_SRRCTL_BSIZEPKT(buf_size);
682	srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF;
683
684	wr32(IGC_SRRCTL(reg_idx), srrctl);
685
686	rxdctl |= IGC_RX_PTHRESH;
687	rxdctl |= IGC_RX_HTHRESH << 8;
688	rxdctl |= IGC_RX_WTHRESH << 16;
689
690	/* initialize rx_buffer_info */
691	memset(ring->rx_buffer_info, 0,
692	       sizeof(struct igc_rx_buffer) * ring->count);
693
694	/* initialize Rx descriptor 0 */
695	rx_desc = IGC_RX_DESC(ring, 0);
696	rx_desc->wb.upper.length = 0;
697
698	/* enable receive descriptor fetching */
699	rxdctl |= IGC_RXDCTL_QUEUE_ENABLE;
700
701	wr32(IGC_RXDCTL(reg_idx), rxdctl);
702}
703
704/**
705 * igc_configure_rx - Configure receive Unit after Reset
706 * @adapter: board private structure
707 *
708 * Configure the Rx unit of the MAC after a reset.
709 */
710static void igc_configure_rx(struct igc_adapter *adapter)
711{
712	int i;
713
714	/* Setup the HW Rx Head and Tail Descriptor Pointers and
715	 * the Base and Length of the Rx Descriptor Ring
716	 */
717	for (i = 0; i < adapter->num_rx_queues; i++)
718		igc_configure_rx_ring(adapter, adapter->rx_ring[i]);
719}
720
721/**
722 * igc_configure_tx_ring - Configure transmit ring after Reset
723 * @adapter: board private structure
724 * @ring: tx ring to configure
725 *
726 * Configure a transmit ring after a reset.
727 */
728static void igc_configure_tx_ring(struct igc_adapter *adapter,
729				  struct igc_ring *ring)
730{
731	struct igc_hw *hw = &adapter->hw;
732	int reg_idx = ring->reg_idx;
733	u64 tdba = ring->dma;
734	u32 txdctl = 0;
735
736	ring->xsk_pool = igc_get_xsk_pool(adapter, ring);
737
738	/* disable the queue */
739	wr32(IGC_TXDCTL(reg_idx), 0);
740	wrfl();
741
742	wr32(IGC_TDLEN(reg_idx),
743	     ring->count * sizeof(union igc_adv_tx_desc));
744	wr32(IGC_TDBAL(reg_idx),
745	     tdba & 0x00000000ffffffffULL);
746	wr32(IGC_TDBAH(reg_idx), tdba >> 32);
747
748	ring->tail = adapter->io_addr + IGC_TDT(reg_idx);
749	wr32(IGC_TDH(reg_idx), 0);
750	writel(0, ring->tail);
751
752	txdctl |= IGC_TX_PTHRESH;
753	txdctl |= IGC_TX_HTHRESH << 8;
754	txdctl |= IGC_TX_WTHRESH << 16;
755
756	txdctl |= IGC_TXDCTL_QUEUE_ENABLE;
757	wr32(IGC_TXDCTL(reg_idx), txdctl);
758}
759
760/**
761 * igc_configure_tx - Configure transmit Unit after Reset
762 * @adapter: board private structure
763 *
764 * Configure the Tx unit of the MAC after a reset.
765 */
766static void igc_configure_tx(struct igc_adapter *adapter)
767{
768	int i;
769
770	for (i = 0; i < adapter->num_tx_queues; i++)
771		igc_configure_tx_ring(adapter, adapter->tx_ring[i]);
772}
773
774/**
775 * igc_setup_mrqc - configure the multiple receive queue control registers
776 * @adapter: Board private structure
777 */
778static void igc_setup_mrqc(struct igc_adapter *adapter)
779{
780	struct igc_hw *hw = &adapter->hw;
781	u32 j, num_rx_queues;
782	u32 mrqc, rxcsum;
783	u32 rss_key[10];
784
785	netdev_rss_key_fill(rss_key, sizeof(rss_key));
786	for (j = 0; j < 10; j++)
787		wr32(IGC_RSSRK(j), rss_key[j]);
788
789	num_rx_queues = adapter->rss_queues;
790
791	if (adapter->rss_indir_tbl_init != num_rx_queues) {
792		for (j = 0; j < IGC_RETA_SIZE; j++)
793			adapter->rss_indir_tbl[j] =
794			(j * num_rx_queues) / IGC_RETA_SIZE;
795		adapter->rss_indir_tbl_init = num_rx_queues;
796	}
797	igc_write_rss_indir_tbl(adapter);
798
799	/* Disable raw packet checksumming so that RSS hash is placed in
800	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
801	 * offloads as they are enabled by default
802	 */
803	rxcsum = rd32(IGC_RXCSUM);
804	rxcsum |= IGC_RXCSUM_PCSD;
805
806	/* Enable Receive Checksum Offload for SCTP */
807	rxcsum |= IGC_RXCSUM_CRCOFL;
808
809	/* Don't need to set TUOFL or IPOFL, they default to 1 */
810	wr32(IGC_RXCSUM, rxcsum);
811
812	/* Generate RSS hash based on packet types, TCP/UDP
813	 * port numbers and/or IPv4/v6 src and dst addresses
814	 */
815	mrqc = IGC_MRQC_RSS_FIELD_IPV4 |
816	       IGC_MRQC_RSS_FIELD_IPV4_TCP |
817	       IGC_MRQC_RSS_FIELD_IPV6 |
818	       IGC_MRQC_RSS_FIELD_IPV6_TCP |
819	       IGC_MRQC_RSS_FIELD_IPV6_TCP_EX;
820
821	if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV4_UDP)
822		mrqc |= IGC_MRQC_RSS_FIELD_IPV4_UDP;
823	if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV6_UDP)
824		mrqc |= IGC_MRQC_RSS_FIELD_IPV6_UDP;
825
826	mrqc |= IGC_MRQC_ENABLE_RSS_MQ;
827
828	wr32(IGC_MRQC, mrqc);
829}
830
831/**
832 * igc_setup_rctl - configure the receive control registers
833 * @adapter: Board private structure
834 */
835static void igc_setup_rctl(struct igc_adapter *adapter)
836{
837	struct igc_hw *hw = &adapter->hw;
838	u32 rctl;
839
840	rctl = rd32(IGC_RCTL);
841
842	rctl &= ~(3 << IGC_RCTL_MO_SHIFT);
843	rctl &= ~(IGC_RCTL_LBM_TCVR | IGC_RCTL_LBM_MAC);
844
845	rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_RDMTS_HALF |
846		(hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT);
847
848	/* enable stripping of CRC. Newer features require
849	 * that the HW strips the CRC.
850	 */
851	rctl |= IGC_RCTL_SECRC;
852
853	/* disable store bad packets and clear size bits. */
854	rctl &= ~(IGC_RCTL_SBP | IGC_RCTL_SZ_256);
855
856	/* enable LPE to allow for reception of jumbo frames */
857	rctl |= IGC_RCTL_LPE;
858
859	/* disable queue 0 to prevent tail write w/o re-config */
860	wr32(IGC_RXDCTL(0), 0);
861
862	/* This is useful for sniffing bad packets. */
863	if (adapter->netdev->features & NETIF_F_RXALL) {
864		/* UPE and MPE will be handled by normal PROMISC logic
865		 * in set_rx_mode
866		 */
867		rctl |= (IGC_RCTL_SBP | /* Receive bad packets */
868			 IGC_RCTL_BAM | /* RX All Bcast Pkts */
869			 IGC_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
870
871		rctl &= ~(IGC_RCTL_DPF | /* Allow filtered pause */
872			  IGC_RCTL_CFIEN); /* Disable VLAN CFIEN Filter */
873	}
874
875	wr32(IGC_RCTL, rctl);
876}
877
878/**
879 * igc_setup_tctl - configure the transmit control registers
880 * @adapter: Board private structure
881 */
882static void igc_setup_tctl(struct igc_adapter *adapter)
883{
884	struct igc_hw *hw = &adapter->hw;
885	u32 tctl;
886
887	/* disable queue 0 which icould be enabled by default */
888	wr32(IGC_TXDCTL(0), 0);
889
890	/* Program the Transmit Control Register */
891	tctl = rd32(IGC_TCTL);
892	tctl &= ~IGC_TCTL_CT;
893	tctl |= IGC_TCTL_PSP | IGC_TCTL_RTLC |
894		(IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT);
895
896	/* Enable transmits */
897	tctl |= IGC_TCTL_EN;
898
899	wr32(IGC_TCTL, tctl);
900}
901
902/**
903 * igc_set_mac_filter_hw() - Set MAC address filter in hardware
904 * @adapter: Pointer to adapter where the filter should be set
905 * @index: Filter index
906 * @type: MAC address filter type (source or destination)
907 * @addr: MAC address
908 * @queue: If non-negative, queue assignment feature is enabled and frames
909 *         matching the filter are enqueued onto 'queue'. Otherwise, queue
910 *         assignment is disabled.
911 */
912static void igc_set_mac_filter_hw(struct igc_adapter *adapter, int index,
913				  enum igc_mac_filter_type type,
914				  const u8 *addr, int queue)
915{
916	struct net_device *dev = adapter->netdev;
917	struct igc_hw *hw = &adapter->hw;
918	u32 ral, rah;
919
920	if (WARN_ON(index >= hw->mac.rar_entry_count))
921		return;
922
923	ral = le32_to_cpup((__le32 *)(addr));
924	rah = le16_to_cpup((__le16 *)(addr + 4));
925
926	if (type == IGC_MAC_FILTER_TYPE_SRC) {
927		rah &= ~IGC_RAH_ASEL_MASK;
928		rah |= IGC_RAH_ASEL_SRC_ADDR;
929	}
930
931	if (queue >= 0) {
932		rah &= ~IGC_RAH_QSEL_MASK;
933		rah |= (queue << IGC_RAH_QSEL_SHIFT);
934		rah |= IGC_RAH_QSEL_ENABLE;
935	}
936
937	rah |= IGC_RAH_AV;
938
939	wr32(IGC_RAL(index), ral);
940	wr32(IGC_RAH(index), rah);
941
942	netdev_dbg(dev, "MAC address filter set in HW: index %d", index);
943}
944
945/**
946 * igc_clear_mac_filter_hw() - Clear MAC address filter in hardware
947 * @adapter: Pointer to adapter where the filter should be cleared
948 * @index: Filter index
949 */
950static void igc_clear_mac_filter_hw(struct igc_adapter *adapter, int index)
951{
952	struct net_device *dev = adapter->netdev;
953	struct igc_hw *hw = &adapter->hw;
954
955	if (WARN_ON(index >= hw->mac.rar_entry_count))
956		return;
957
958	wr32(IGC_RAL(index), 0);
959	wr32(IGC_RAH(index), 0);
960
961	netdev_dbg(dev, "MAC address filter cleared in HW: index %d", index);
962}
963
964/* Set default MAC address for the PF in the first RAR entry */
965static void igc_set_default_mac_filter(struct igc_adapter *adapter)
966{
967	struct net_device *dev = adapter->netdev;
968	u8 *addr = adapter->hw.mac.addr;
969
970	netdev_dbg(dev, "Set default MAC address filter: address %pM", addr);
971
972	igc_set_mac_filter_hw(adapter, 0, IGC_MAC_FILTER_TYPE_DST, addr, -1);
973}
974
975/**
976 * igc_set_mac - Change the Ethernet Address of the NIC
977 * @netdev: network interface device structure
978 * @p: pointer to an address structure
979 *
980 * Returns 0 on success, negative on failure
981 */
982static int igc_set_mac(struct net_device *netdev, void *p)
983{
984	struct igc_adapter *adapter = netdev_priv(netdev);
985	struct igc_hw *hw = &adapter->hw;
986	struct sockaddr *addr = p;
987
988	if (!is_valid_ether_addr(addr->sa_data))
989		return -EADDRNOTAVAIL;
990
991	eth_hw_addr_set(netdev, addr->sa_data);
992	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
993
994	/* set the correct pool for the new PF MAC address in entry 0 */
995	igc_set_default_mac_filter(adapter);
996
997	return 0;
998}
999
1000/**
1001 *  igc_write_mc_addr_list - write multicast addresses to MTA
1002 *  @netdev: network interface device structure
1003 *
1004 *  Writes multicast address list to the MTA hash table.
1005 *  Returns: -ENOMEM on failure
1006 *           0 on no addresses written
1007 *           X on writing X addresses to MTA
1008 **/
1009static int igc_write_mc_addr_list(struct net_device *netdev)
1010{
1011	struct igc_adapter *adapter = netdev_priv(netdev);
1012	struct igc_hw *hw = &adapter->hw;
1013	struct netdev_hw_addr *ha;
1014	u8  *mta_list;
1015	int i;
1016
1017	if (netdev_mc_empty(netdev)) {
1018		/* nothing to program, so clear mc list */
1019		igc_update_mc_addr_list(hw, NULL, 0);
1020		return 0;
1021	}
1022
1023	mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
1024	if (!mta_list)
1025		return -ENOMEM;
1026
1027	/* The shared function expects a packed array of only addresses. */
1028	i = 0;
1029	netdev_for_each_mc_addr(ha, netdev)
1030		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
1031
1032	igc_update_mc_addr_list(hw, mta_list, i);
1033	kfree(mta_list);
1034
1035	return netdev_mc_count(netdev);
1036}
1037
1038static __le32 igc_tx_launchtime(struct igc_ring *ring, ktime_t txtime,
1039				bool *first_flag, bool *insert_empty)
1040{
1041	struct igc_adapter *adapter = netdev_priv(ring->netdev);
1042	ktime_t cycle_time = adapter->cycle_time;
1043	ktime_t base_time = adapter->base_time;
1044	ktime_t now = ktime_get_clocktai();
1045	ktime_t baset_est, end_of_cycle;
1046	s32 launchtime;
1047	s64 n;
1048
1049	n = div64_s64(ktime_sub_ns(now, base_time), cycle_time);
1050
1051	baset_est = ktime_add_ns(base_time, cycle_time * (n));
1052	end_of_cycle = ktime_add_ns(baset_est, cycle_time);
1053
1054	if (ktime_compare(txtime, end_of_cycle) >= 0) {
1055		if (baset_est != ring->last_ff_cycle) {
1056			*first_flag = true;
1057			ring->last_ff_cycle = baset_est;
1058
1059			if (ktime_compare(end_of_cycle, ring->last_tx_cycle) > 0)
1060				*insert_empty = true;
1061		}
1062	}
1063
1064	/* Introducing a window at end of cycle on which packets
1065	 * potentially not honor launchtime. Window of 5us chosen
1066	 * considering software update the tail pointer and packets
1067	 * are dma'ed to packet buffer.
1068	 */
1069	if ((ktime_sub_ns(end_of_cycle, now) < 5 * NSEC_PER_USEC))
1070		netdev_warn(ring->netdev, "Packet with txtime=%llu may not be honoured\n",
1071			    txtime);
1072
1073	ring->last_tx_cycle = end_of_cycle;
1074
1075	launchtime = ktime_sub_ns(txtime, baset_est);
1076	if (launchtime > 0)
1077		div_s64_rem(launchtime, cycle_time, &launchtime);
1078	else
1079		launchtime = 0;
1080
1081	return cpu_to_le32(launchtime);
1082}
1083
1084static int igc_init_empty_frame(struct igc_ring *ring,
1085				struct igc_tx_buffer *buffer,
1086				struct sk_buff *skb)
1087{
1088	unsigned int size;
1089	dma_addr_t dma;
1090
1091	size = skb_headlen(skb);
1092
1093	dma = dma_map_single(ring->dev, skb->data, size, DMA_TO_DEVICE);
1094	if (dma_mapping_error(ring->dev, dma)) {
1095		netdev_err_once(ring->netdev, "Failed to map DMA for TX\n");
1096		return -ENOMEM;
1097	}
1098
1099	buffer->skb = skb;
1100	buffer->protocol = 0;
1101	buffer->bytecount = skb->len;
1102	buffer->gso_segs = 1;
1103	buffer->time_stamp = jiffies;
1104	dma_unmap_len_set(buffer, len, skb->len);
1105	dma_unmap_addr_set(buffer, dma, dma);
1106
1107	return 0;
1108}
1109
1110static int igc_init_tx_empty_descriptor(struct igc_ring *ring,
1111					struct sk_buff *skb,
1112					struct igc_tx_buffer *first)
1113{
1114	union igc_adv_tx_desc *desc;
1115	u32 cmd_type, olinfo_status;
1116	int err;
1117
1118	if (!igc_desc_unused(ring))
1119		return -EBUSY;
1120
1121	err = igc_init_empty_frame(ring, first, skb);
1122	if (err)
1123		return err;
1124
1125	cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
1126		   IGC_ADVTXD_DCMD_IFCS | IGC_TXD_DCMD |
1127		   first->bytecount;
1128	olinfo_status = first->bytecount << IGC_ADVTXD_PAYLEN_SHIFT;
1129
1130	desc = IGC_TX_DESC(ring, ring->next_to_use);
1131	desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1132	desc->read.olinfo_status = cpu_to_le32(olinfo_status);
1133	desc->read.buffer_addr = cpu_to_le64(dma_unmap_addr(first, dma));
1134
1135	netdev_tx_sent_queue(txring_txq(ring), skb->len);
1136
1137	first->next_to_watch = desc;
1138
1139	ring->next_to_use++;
1140	if (ring->next_to_use == ring->count)
1141		ring->next_to_use = 0;
1142
1143	return 0;
1144}
1145
1146#define IGC_EMPTY_FRAME_SIZE 60
1147
1148static void igc_tx_ctxtdesc(struct igc_ring *tx_ring,
1149			    __le32 launch_time, bool first_flag,
1150			    u32 vlan_macip_lens, u32 type_tucmd,
1151			    u32 mss_l4len_idx)
1152{
1153	struct igc_adv_tx_context_desc *context_desc;
1154	u16 i = tx_ring->next_to_use;
1155
1156	context_desc = IGC_TX_CTXTDESC(tx_ring, i);
1157
1158	i++;
1159	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1160
1161	/* set bits to identify this as an advanced context descriptor */
1162	type_tucmd |= IGC_TXD_CMD_DEXT | IGC_ADVTXD_DTYP_CTXT;
1163
1164	/* For i225, context index must be unique per ring. */
1165	if (test_bit(IGC_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
1166		mss_l4len_idx |= tx_ring->reg_idx << 4;
1167
1168	if (first_flag)
1169		mss_l4len_idx |= IGC_ADVTXD_TSN_CNTX_FIRST;
1170
1171	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
1172	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
1173	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
1174	context_desc->launch_time	= launch_time;
1175}
1176
1177static void igc_tx_csum(struct igc_ring *tx_ring, struct igc_tx_buffer *first,
1178			__le32 launch_time, bool first_flag)
1179{
1180	struct sk_buff *skb = first->skb;
1181	u32 vlan_macip_lens = 0;
1182	u32 type_tucmd = 0;
1183
1184	if (skb->ip_summed != CHECKSUM_PARTIAL) {
1185csum_failed:
1186		if (!(first->tx_flags & IGC_TX_FLAGS_VLAN) &&
1187		    !tx_ring->launchtime_enable)
1188			return;
1189		goto no_csum;
1190	}
1191
1192	switch (skb->csum_offset) {
1193	case offsetof(struct tcphdr, check):
1194		type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1195		fallthrough;
1196	case offsetof(struct udphdr, check):
1197		break;
1198	case offsetof(struct sctphdr, checksum):
1199		/* validate that this is actually an SCTP request */
1200		if (skb_csum_is_sctp(skb)) {
1201			type_tucmd = IGC_ADVTXD_TUCMD_L4T_SCTP;
1202			break;
1203		}
1204		fallthrough;
1205	default:
1206		skb_checksum_help(skb);
1207		goto csum_failed;
1208	}
1209
1210	/* update TX checksum flag */
1211	first->tx_flags |= IGC_TX_FLAGS_CSUM;
1212	vlan_macip_lens = skb_checksum_start_offset(skb) -
1213			  skb_network_offset(skb);
1214no_csum:
1215	vlan_macip_lens |= skb_network_offset(skb) << IGC_ADVTXD_MACLEN_SHIFT;
1216	vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1217
1218	igc_tx_ctxtdesc(tx_ring, launch_time, first_flag,
1219			vlan_macip_lens, type_tucmd, 0);
1220}
1221
1222static int __igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1223{
1224	struct net_device *netdev = tx_ring->netdev;
1225
1226	netif_stop_subqueue(netdev, tx_ring->queue_index);
1227
1228	/* memory barriier comment */
1229	smp_mb();
1230
1231	/* We need to check again in a case another CPU has just
1232	 * made room available.
1233	 */
1234	if (igc_desc_unused(tx_ring) < size)
1235		return -EBUSY;
1236
1237	/* A reprieve! */
1238	netif_wake_subqueue(netdev, tx_ring->queue_index);
1239
1240	u64_stats_update_begin(&tx_ring->tx_syncp2);
1241	tx_ring->tx_stats.restart_queue2++;
1242	u64_stats_update_end(&tx_ring->tx_syncp2);
1243
1244	return 0;
1245}
1246
1247static inline int igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1248{
1249	if (igc_desc_unused(tx_ring) >= size)
1250		return 0;
1251	return __igc_maybe_stop_tx(tx_ring, size);
1252}
1253
1254#define IGC_SET_FLAG(_input, _flag, _result) \
1255	(((_flag) <= (_result)) ?				\
1256	 ((u32)((_input) & (_flag)) * ((_result) / (_flag))) :	\
1257	 ((u32)((_input) & (_flag)) / ((_flag) / (_result))))
1258
1259static u32 igc_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
1260{
1261	/* set type for advanced descriptor with frame checksum insertion */
1262	u32 cmd_type = IGC_ADVTXD_DTYP_DATA |
1263		       IGC_ADVTXD_DCMD_DEXT |
1264		       IGC_ADVTXD_DCMD_IFCS;
1265
1266	/* set HW vlan bit if vlan is present */
1267	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_VLAN,
1268				 IGC_ADVTXD_DCMD_VLE);
1269
1270	/* set segmentation bits for TSO */
1271	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSO,
1272				 (IGC_ADVTXD_DCMD_TSE));
1273
1274	/* set timestamp bit if present, will select the register set
1275	 * based on the _TSTAMP(_X) bit.
1276	 */
1277	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP,
1278				 (IGC_ADVTXD_MAC_TSTAMP));
1279
1280	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_1,
1281				 (IGC_ADVTXD_TSTAMP_REG_1));
1282
1283	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_2,
1284				 (IGC_ADVTXD_TSTAMP_REG_2));
1285
1286	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_3,
1287				 (IGC_ADVTXD_TSTAMP_REG_3));
1288
1289	/* insert frame checksum */
1290	cmd_type ^= IGC_SET_FLAG(skb->no_fcs, 1, IGC_ADVTXD_DCMD_IFCS);
1291
1292	return cmd_type;
1293}
1294
1295static void igc_tx_olinfo_status(struct igc_ring *tx_ring,
1296				 union igc_adv_tx_desc *tx_desc,
1297				 u32 tx_flags, unsigned int paylen)
1298{
1299	u32 olinfo_status = paylen << IGC_ADVTXD_PAYLEN_SHIFT;
1300
1301	/* insert L4 checksum */
1302	olinfo_status |= (tx_flags & IGC_TX_FLAGS_CSUM) *
1303			  ((IGC_TXD_POPTS_TXSM << 8) /
1304			  IGC_TX_FLAGS_CSUM);
1305
1306	/* insert IPv4 checksum */
1307	olinfo_status |= (tx_flags & IGC_TX_FLAGS_IPV4) *
1308			  (((IGC_TXD_POPTS_IXSM << 8)) /
1309			  IGC_TX_FLAGS_IPV4);
1310
1311	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
1312}
1313
1314static int igc_tx_map(struct igc_ring *tx_ring,
1315		      struct igc_tx_buffer *first,
1316		      const u8 hdr_len)
1317{
1318	struct sk_buff *skb = first->skb;
1319	struct igc_tx_buffer *tx_buffer;
1320	union igc_adv_tx_desc *tx_desc;
1321	u32 tx_flags = first->tx_flags;
1322	skb_frag_t *frag;
1323	u16 i = tx_ring->next_to_use;
1324	unsigned int data_len, size;
1325	dma_addr_t dma;
1326	u32 cmd_type;
1327
1328	cmd_type = igc_tx_cmd_type(skb, tx_flags);
1329	tx_desc = IGC_TX_DESC(tx_ring, i);
1330
1331	igc_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
1332
1333	size = skb_headlen(skb);
1334	data_len = skb->data_len;
1335
1336	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1337
1338	tx_buffer = first;
1339
1340	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1341		if (dma_mapping_error(tx_ring->dev, dma))
1342			goto dma_error;
1343
1344		/* record length, and DMA address */
1345		dma_unmap_len_set(tx_buffer, len, size);
1346		dma_unmap_addr_set(tx_buffer, dma, dma);
1347
1348		tx_desc->read.buffer_addr = cpu_to_le64(dma);
1349
1350		while (unlikely(size > IGC_MAX_DATA_PER_TXD)) {
1351			tx_desc->read.cmd_type_len =
1352				cpu_to_le32(cmd_type ^ IGC_MAX_DATA_PER_TXD);
1353
1354			i++;
1355			tx_desc++;
1356			if (i == tx_ring->count) {
1357				tx_desc = IGC_TX_DESC(tx_ring, 0);
1358				i = 0;
1359			}
1360			tx_desc->read.olinfo_status = 0;
1361
1362			dma += IGC_MAX_DATA_PER_TXD;
1363			size -= IGC_MAX_DATA_PER_TXD;
1364
1365			tx_desc->read.buffer_addr = cpu_to_le64(dma);
1366		}
1367
1368		if (likely(!data_len))
1369			break;
1370
1371		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
1372
1373		i++;
1374		tx_desc++;
1375		if (i == tx_ring->count) {
1376			tx_desc = IGC_TX_DESC(tx_ring, 0);
1377			i = 0;
1378		}
1379		tx_desc->read.olinfo_status = 0;
1380
1381		size = skb_frag_size(frag);
1382		data_len -= size;
1383
1384		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
1385				       size, DMA_TO_DEVICE);
1386
1387		tx_buffer = &tx_ring->tx_buffer_info[i];
1388	}
1389
1390	/* write last descriptor with RS and EOP bits */
1391	cmd_type |= size | IGC_TXD_DCMD;
1392	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1393
1394	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1395
1396	/* set the timestamp */
1397	first->time_stamp = jiffies;
1398
1399	skb_tx_timestamp(skb);
1400
1401	/* Force memory writes to complete before letting h/w know there
1402	 * are new descriptors to fetch.  (Only applicable for weak-ordered
1403	 * memory model archs, such as IA-64).
1404	 *
1405	 * We also need this memory barrier to make certain all of the
1406	 * status bits have been updated before next_to_watch is written.
1407	 */
1408	wmb();
1409
1410	/* set next_to_watch value indicating a packet is present */
1411	first->next_to_watch = tx_desc;
1412
1413	i++;
1414	if (i == tx_ring->count)
1415		i = 0;
1416
1417	tx_ring->next_to_use = i;
1418
1419	/* Make sure there is space in the ring for the next send. */
1420	igc_maybe_stop_tx(tx_ring, DESC_NEEDED);
1421
1422	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
1423		writel(i, tx_ring->tail);
1424	}
1425
1426	return 0;
1427dma_error:
1428	netdev_err(tx_ring->netdev, "TX DMA map failed\n");
1429	tx_buffer = &tx_ring->tx_buffer_info[i];
1430
1431	/* clear dma mappings for failed tx_buffer_info map */
1432	while (tx_buffer != first) {
1433		if (dma_unmap_len(tx_buffer, len))
1434			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
1435
1436		if (i-- == 0)
1437			i += tx_ring->count;
1438		tx_buffer = &tx_ring->tx_buffer_info[i];
1439	}
1440
1441	if (dma_unmap_len(tx_buffer, len))
1442		igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
1443
1444	dev_kfree_skb_any(tx_buffer->skb);
1445	tx_buffer->skb = NULL;
1446
1447	tx_ring->next_to_use = i;
1448
1449	return -1;
1450}
1451
1452static int igc_tso(struct igc_ring *tx_ring,
1453		   struct igc_tx_buffer *first,
1454		   __le32 launch_time, bool first_flag,
1455		   u8 *hdr_len)
1456{
1457	u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
1458	struct sk_buff *skb = first->skb;
1459	union {
1460		struct iphdr *v4;
1461		struct ipv6hdr *v6;
1462		unsigned char *hdr;
1463	} ip;
1464	union {
1465		struct tcphdr *tcp;
1466		struct udphdr *udp;
1467		unsigned char *hdr;
1468	} l4;
1469	u32 paylen, l4_offset;
1470	int err;
1471
1472	if (skb->ip_summed != CHECKSUM_PARTIAL)
1473		return 0;
1474
1475	if (!skb_is_gso(skb))
1476		return 0;
1477
1478	err = skb_cow_head(skb, 0);
1479	if (err < 0)
1480		return err;
1481
1482	ip.hdr = skb_network_header(skb);
1483	l4.hdr = skb_checksum_start(skb);
1484
1485	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1486	type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1487
1488	/* initialize outer IP header fields */
1489	if (ip.v4->version == 4) {
1490		unsigned char *csum_start = skb_checksum_start(skb);
1491		unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
1492
1493		/* IP header will have to cancel out any data that
1494		 * is not a part of the outer IP header
1495		 */
1496		ip.v4->check = csum_fold(csum_partial(trans_start,
1497						      csum_start - trans_start,
1498						      0));
1499		type_tucmd |= IGC_ADVTXD_TUCMD_IPV4;
1500
1501		ip.v4->tot_len = 0;
1502		first->tx_flags |= IGC_TX_FLAGS_TSO |
1503				   IGC_TX_FLAGS_CSUM |
1504				   IGC_TX_FLAGS_IPV4;
1505	} else {
1506		ip.v6->payload_len = 0;
1507		first->tx_flags |= IGC_TX_FLAGS_TSO |
1508				   IGC_TX_FLAGS_CSUM;
1509	}
1510
1511	/* determine offset of inner transport header */
1512	l4_offset = l4.hdr - skb->data;
1513
1514	/* remove payload length from inner checksum */
1515	paylen = skb->len - l4_offset;
1516	if (type_tucmd & IGC_ADVTXD_TUCMD_L4T_TCP) {
1517		/* compute length of segmentation header */
1518		*hdr_len = (l4.tcp->doff * 4) + l4_offset;
1519		csum_replace_by_diff(&l4.tcp->check,
1520				     (__force __wsum)htonl(paylen));
1521	} else {
1522		/* compute length of segmentation header */
1523		*hdr_len = sizeof(*l4.udp) + l4_offset;
1524		csum_replace_by_diff(&l4.udp->check,
1525				     (__force __wsum)htonl(paylen));
1526	}
1527
1528	/* update gso size and bytecount with header size */
1529	first->gso_segs = skb_shinfo(skb)->gso_segs;
1530	first->bytecount += (first->gso_segs - 1) * *hdr_len;
1531
1532	/* MSS L4LEN IDX */
1533	mss_l4len_idx = (*hdr_len - l4_offset) << IGC_ADVTXD_L4LEN_SHIFT;
1534	mss_l4len_idx |= skb_shinfo(skb)->gso_size << IGC_ADVTXD_MSS_SHIFT;
1535
1536	/* VLAN MACLEN IPLEN */
1537	vlan_macip_lens = l4.hdr - ip.hdr;
1538	vlan_macip_lens |= (ip.hdr - skb->data) << IGC_ADVTXD_MACLEN_SHIFT;
1539	vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1540
1541	igc_tx_ctxtdesc(tx_ring, launch_time, first_flag,
1542			vlan_macip_lens, type_tucmd, mss_l4len_idx);
1543
1544	return 1;
1545}
1546
1547static bool igc_request_tx_tstamp(struct igc_adapter *adapter, struct sk_buff *skb, u32 *flags)
1548{
1549	int i;
1550
1551	for (i = 0; i < IGC_MAX_TX_TSTAMP_REGS; i++) {
1552		struct igc_tx_timestamp_request *tstamp = &adapter->tx_tstamp[i];
1553
1554		if (tstamp->skb)
1555			continue;
1556
1557		tstamp->skb = skb_get(skb);
1558		tstamp->start = jiffies;
1559		*flags = tstamp->flags;
1560
1561		return true;
1562	}
1563
1564	return false;
1565}
1566
1567static netdev_tx_t igc_xmit_frame_ring(struct sk_buff *skb,
1568				       struct igc_ring *tx_ring)
1569{
1570	struct igc_adapter *adapter = netdev_priv(tx_ring->netdev);
1571	bool first_flag = false, insert_empty = false;
1572	u16 count = TXD_USE_COUNT(skb_headlen(skb));
1573	__be16 protocol = vlan_get_protocol(skb);
1574	struct igc_tx_buffer *first;
1575	__le32 launch_time = 0;
1576	u32 tx_flags = 0;
1577	unsigned short f;
1578	ktime_t txtime;
1579	u8 hdr_len = 0;
1580	int tso = 0;
1581
1582	/* need: 1 descriptor per page * PAGE_SIZE/IGC_MAX_DATA_PER_TXD,
1583	 *	+ 1 desc for skb_headlen/IGC_MAX_DATA_PER_TXD,
1584	 *	+ 2 desc gap to keep tail from touching head,
1585	 *	+ 1 desc for context descriptor,
1586	 * otherwise try next time
1587	 */
1588	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1589		count += TXD_USE_COUNT(skb_frag_size(
1590						&skb_shinfo(skb)->frags[f]));
1591
1592	if (igc_maybe_stop_tx(tx_ring, count + 5)) {
1593		/* this is a hard error */
1594		return NETDEV_TX_BUSY;
1595	}
1596
1597	if (!tx_ring->launchtime_enable)
1598		goto done;
1599
1600	txtime = skb->tstamp;
1601	skb->tstamp = ktime_set(0, 0);
1602	launch_time = igc_tx_launchtime(tx_ring, txtime, &first_flag, &insert_empty);
1603
1604	if (insert_empty) {
1605		struct igc_tx_buffer *empty_info;
1606		struct sk_buff *empty;
1607		void *data;
1608
1609		empty_info = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1610		empty = alloc_skb(IGC_EMPTY_FRAME_SIZE, GFP_ATOMIC);
1611		if (!empty)
1612			goto done;
1613
1614		data = skb_put(empty, IGC_EMPTY_FRAME_SIZE);
1615		memset(data, 0, IGC_EMPTY_FRAME_SIZE);
1616
1617		igc_tx_ctxtdesc(tx_ring, 0, false, 0, 0, 0);
1618
1619		if (igc_init_tx_empty_descriptor(tx_ring,
1620						 empty,
1621						 empty_info) < 0)
1622			dev_kfree_skb_any(empty);
1623	}
1624
1625done:
1626	/* record the location of the first descriptor for this packet */
1627	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1628	first->type = IGC_TX_BUFFER_TYPE_SKB;
1629	first->skb = skb;
1630	first->bytecount = skb->len;
1631	first->gso_segs = 1;
1632
1633	if (adapter->qbv_transition || tx_ring->oper_gate_closed)
1634		goto out_drop;
1635
1636	if (tx_ring->max_sdu > 0 && first->bytecount > tx_ring->max_sdu) {
1637		adapter->stats.txdrop++;
1638		goto out_drop;
1639	}
1640
1641	if (unlikely(test_bit(IGC_RING_FLAG_TX_HWTSTAMP, &tx_ring->flags) &&
1642		     skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
1643		/* FIXME: add support for retrieving timestamps from
1644		 * the other timer registers before skipping the
1645		 * timestamping request.
1646		 */
1647		unsigned long flags;
1648		u32 tstamp_flags;
1649
1650		spin_lock_irqsave(&adapter->ptp_tx_lock, flags);
1651		if (igc_request_tx_tstamp(adapter, skb, &tstamp_flags)) {
1652			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1653			tx_flags |= IGC_TX_FLAGS_TSTAMP | tstamp_flags;
1654		} else {
1655			adapter->tx_hwtstamp_skipped++;
1656		}
1657
1658		spin_unlock_irqrestore(&adapter->ptp_tx_lock, flags);
1659	}
1660
1661	if (skb_vlan_tag_present(skb)) {
1662		tx_flags |= IGC_TX_FLAGS_VLAN;
1663		tx_flags |= (skb_vlan_tag_get(skb) << IGC_TX_FLAGS_VLAN_SHIFT);
1664	}
1665
1666	/* record initial flags and protocol */
1667	first->tx_flags = tx_flags;
1668	first->protocol = protocol;
1669
1670	tso = igc_tso(tx_ring, first, launch_time, first_flag, &hdr_len);
1671	if (tso < 0)
1672		goto out_drop;
1673	else if (!tso)
1674		igc_tx_csum(tx_ring, first, launch_time, first_flag);
1675
1676	igc_tx_map(tx_ring, first, hdr_len);
1677
1678	return NETDEV_TX_OK;
1679
1680out_drop:
1681	dev_kfree_skb_any(first->skb);
1682	first->skb = NULL;
1683
1684	return NETDEV_TX_OK;
1685}
1686
1687static inline struct igc_ring *igc_tx_queue_mapping(struct igc_adapter *adapter,
1688						    struct sk_buff *skb)
1689{
1690	unsigned int r_idx = skb->queue_mapping;
1691
1692	if (r_idx >= adapter->num_tx_queues)
1693		r_idx = r_idx % adapter->num_tx_queues;
1694
1695	return adapter->tx_ring[r_idx];
1696}
1697
1698static netdev_tx_t igc_xmit_frame(struct sk_buff *skb,
1699				  struct net_device *netdev)
1700{
1701	struct igc_adapter *adapter = netdev_priv(netdev);
1702
1703	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
1704	 * in order to meet this minimum size requirement.
1705	 */
1706	if (skb->len < 17) {
1707		if (skb_padto(skb, 17))
1708			return NETDEV_TX_OK;
1709		skb->len = 17;
1710	}
1711
1712	return igc_xmit_frame_ring(skb, igc_tx_queue_mapping(adapter, skb));
1713}
1714
1715static void igc_rx_checksum(struct igc_ring *ring,
1716			    union igc_adv_rx_desc *rx_desc,
1717			    struct sk_buff *skb)
1718{
1719	skb_checksum_none_assert(skb);
1720
1721	/* Ignore Checksum bit is set */
1722	if (igc_test_staterr(rx_desc, IGC_RXD_STAT_IXSM))
1723		return;
1724
1725	/* Rx checksum disabled via ethtool */
1726	if (!(ring->netdev->features & NETIF_F_RXCSUM))
1727		return;
1728
1729	/* TCP/UDP checksum error bit is set */
1730	if (igc_test_staterr(rx_desc,
1731			     IGC_RXDEXT_STATERR_L4E |
1732			     IGC_RXDEXT_STATERR_IPE)) {
1733		/* work around errata with sctp packets where the TCPE aka
1734		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
1735		 * packets (aka let the stack check the crc32c)
1736		 */
1737		if (!(skb->len == 60 &&
1738		      test_bit(IGC_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
1739			u64_stats_update_begin(&ring->rx_syncp);
1740			ring->rx_stats.csum_err++;
1741			u64_stats_update_end(&ring->rx_syncp);
1742		}
1743		/* let the stack verify checksum errors */
1744		return;
1745	}
1746	/* It must be a TCP or UDP packet with a valid checksum */
1747	if (igc_test_staterr(rx_desc, IGC_RXD_STAT_TCPCS |
1748				      IGC_RXD_STAT_UDPCS))
1749		skb->ip_summed = CHECKSUM_UNNECESSARY;
1750
1751	netdev_dbg(ring->netdev, "cksum success: bits %08X\n",
1752		   le32_to_cpu(rx_desc->wb.upper.status_error));
1753}
1754
1755/* Mapping HW RSS Type to enum pkt_hash_types */
1756static const enum pkt_hash_types igc_rss_type_table[IGC_RSS_TYPE_MAX_TABLE] = {
1757	[IGC_RSS_TYPE_NO_HASH]		= PKT_HASH_TYPE_L2,
1758	[IGC_RSS_TYPE_HASH_TCP_IPV4]	= PKT_HASH_TYPE_L4,
1759	[IGC_RSS_TYPE_HASH_IPV4]	= PKT_HASH_TYPE_L3,
1760	[IGC_RSS_TYPE_HASH_TCP_IPV6]	= PKT_HASH_TYPE_L4,
1761	[IGC_RSS_TYPE_HASH_IPV6_EX]	= PKT_HASH_TYPE_L3,
1762	[IGC_RSS_TYPE_HASH_IPV6]	= PKT_HASH_TYPE_L3,
1763	[IGC_RSS_TYPE_HASH_TCP_IPV6_EX] = PKT_HASH_TYPE_L4,
1764	[IGC_RSS_TYPE_HASH_UDP_IPV4]	= PKT_HASH_TYPE_L4,
1765	[IGC_RSS_TYPE_HASH_UDP_IPV6]	= PKT_HASH_TYPE_L4,
1766	[IGC_RSS_TYPE_HASH_UDP_IPV6_EX] = PKT_HASH_TYPE_L4,
1767	[10] = PKT_HASH_TYPE_NONE, /* RSS Type above 9 "Reserved" by HW  */
1768	[11] = PKT_HASH_TYPE_NONE, /* keep array sized for SW bit-mask   */
1769	[12] = PKT_HASH_TYPE_NONE, /* to handle future HW revisons       */
1770	[13] = PKT_HASH_TYPE_NONE,
1771	[14] = PKT_HASH_TYPE_NONE,
1772	[15] = PKT_HASH_TYPE_NONE,
1773};
1774
1775static inline void igc_rx_hash(struct igc_ring *ring,
1776			       union igc_adv_rx_desc *rx_desc,
1777			       struct sk_buff *skb)
1778{
1779	if (ring->netdev->features & NETIF_F_RXHASH) {
1780		u32 rss_hash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss);
1781		u32 rss_type = igc_rss_type(rx_desc);
1782
1783		skb_set_hash(skb, rss_hash, igc_rss_type_table[rss_type]);
1784	}
1785}
1786
1787static void igc_rx_vlan(struct igc_ring *rx_ring,
1788			union igc_adv_rx_desc *rx_desc,
1789			struct sk_buff *skb)
1790{
1791	struct net_device *dev = rx_ring->netdev;
1792	u16 vid;
1793
1794	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1795	    igc_test_staterr(rx_desc, IGC_RXD_STAT_VP)) {
1796		if (igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_LB) &&
1797		    test_bit(IGC_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
1798			vid = be16_to_cpu((__force __be16)rx_desc->wb.upper.vlan);
1799		else
1800			vid = le16_to_cpu(rx_desc->wb.upper.vlan);
1801
1802		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
1803	}
1804}
1805
1806/**
1807 * igc_process_skb_fields - Populate skb header fields from Rx descriptor
1808 * @rx_ring: rx descriptor ring packet is being transacted on
1809 * @rx_desc: pointer to the EOP Rx descriptor
1810 * @skb: pointer to current skb being populated
1811 *
1812 * This function checks the ring, descriptor, and packet information in order
1813 * to populate the hash, checksum, VLAN, protocol, and other fields within the
1814 * skb.
1815 */
1816static void igc_process_skb_fields(struct igc_ring *rx_ring,
1817				   union igc_adv_rx_desc *rx_desc,
1818				   struct sk_buff *skb)
1819{
1820	igc_rx_hash(rx_ring, rx_desc, skb);
1821
1822	igc_rx_checksum(rx_ring, rx_desc, skb);
1823
1824	igc_rx_vlan(rx_ring, rx_desc, skb);
1825
1826	skb_record_rx_queue(skb, rx_ring->queue_index);
1827
1828	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1829}
1830
1831static void igc_vlan_mode(struct net_device *netdev, netdev_features_t features)
1832{
1833	bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
1834	struct igc_adapter *adapter = netdev_priv(netdev);
1835	struct igc_hw *hw = &adapter->hw;
1836	u32 ctrl;
1837
1838	ctrl = rd32(IGC_CTRL);
1839
1840	if (enable) {
1841		/* enable VLAN tag insert/strip */
1842		ctrl |= IGC_CTRL_VME;
1843	} else {
1844		/* disable VLAN tag insert/strip */
1845		ctrl &= ~IGC_CTRL_VME;
1846	}
1847	wr32(IGC_CTRL, ctrl);
1848}
1849
1850static void igc_restore_vlan(struct igc_adapter *adapter)
1851{
1852	igc_vlan_mode(adapter->netdev, adapter->netdev->features);
1853}
1854
1855static struct igc_rx_buffer *igc_get_rx_buffer(struct igc_ring *rx_ring,
1856					       const unsigned int size,
1857					       int *rx_buffer_pgcnt)
1858{
1859	struct igc_rx_buffer *rx_buffer;
1860
1861	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
1862	*rx_buffer_pgcnt =
1863#if (PAGE_SIZE < 8192)
1864		page_count(rx_buffer->page);
1865#else
1866		0;
1867#endif
1868	prefetchw(rx_buffer->page);
1869
1870	/* we are reusing so sync this buffer for CPU use */
1871	dma_sync_single_range_for_cpu(rx_ring->dev,
1872				      rx_buffer->dma,
1873				      rx_buffer->page_offset,
1874				      size,
1875				      DMA_FROM_DEVICE);
1876
1877	rx_buffer->pagecnt_bias--;
1878
1879	return rx_buffer;
1880}
1881
1882static void igc_rx_buffer_flip(struct igc_rx_buffer *buffer,
1883			       unsigned int truesize)
1884{
1885#if (PAGE_SIZE < 8192)
1886	buffer->page_offset ^= truesize;
1887#else
1888	buffer->page_offset += truesize;
1889#endif
1890}
1891
1892static unsigned int igc_get_rx_frame_truesize(struct igc_ring *ring,
1893					      unsigned int size)
1894{
1895	unsigned int truesize;
1896
1897#if (PAGE_SIZE < 8192)
1898	truesize = igc_rx_pg_size(ring) / 2;
1899#else
1900	truesize = ring_uses_build_skb(ring) ?
1901		   SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1902		   SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1903		   SKB_DATA_ALIGN(size);
1904#endif
1905	return truesize;
1906}
1907
1908/**
1909 * igc_add_rx_frag - Add contents of Rx buffer to sk_buff
1910 * @rx_ring: rx descriptor ring to transact packets on
1911 * @rx_buffer: buffer containing page to add
1912 * @skb: sk_buff to place the data into
1913 * @size: size of buffer to be added
1914 *
1915 * This function will add the data contained in rx_buffer->page to the skb.
1916 */
1917static void igc_add_rx_frag(struct igc_ring *rx_ring,
1918			    struct igc_rx_buffer *rx_buffer,
1919			    struct sk_buff *skb,
1920			    unsigned int size)
1921{
1922	unsigned int truesize;
1923
1924#if (PAGE_SIZE < 8192)
1925	truesize = igc_rx_pg_size(rx_ring) / 2;
1926#else
1927	truesize = ring_uses_build_skb(rx_ring) ?
1928		   SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1929		   SKB_DATA_ALIGN(size);
1930#endif
1931	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1932			rx_buffer->page_offset, size, truesize);
1933
1934	igc_rx_buffer_flip(rx_buffer, truesize);
1935}
1936
1937static struct sk_buff *igc_build_skb(struct igc_ring *rx_ring,
1938				     struct igc_rx_buffer *rx_buffer,
1939				     struct xdp_buff *xdp)
1940{
1941	unsigned int size = xdp->data_end - xdp->data;
1942	unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size);
1943	unsigned int metasize = xdp->data - xdp->data_meta;
1944	struct sk_buff *skb;
1945
1946	/* prefetch first cache line of first page */
1947	net_prefetch(xdp->data_meta);
1948
1949	/* build an skb around the page buffer */
1950	skb = napi_build_skb(xdp->data_hard_start, truesize);
1951	if (unlikely(!skb))
1952		return NULL;
1953
1954	/* update pointers within the skb to store the data */
1955	skb_reserve(skb, xdp->data - xdp->data_hard_start);
1956	__skb_put(skb, size);
1957	if (metasize)
1958		skb_metadata_set(skb, metasize);
1959
1960	igc_rx_buffer_flip(rx_buffer, truesize);
1961	return skb;
1962}
1963
1964static struct sk_buff *igc_construct_skb(struct igc_ring *rx_ring,
1965					 struct igc_rx_buffer *rx_buffer,
1966					 struct xdp_buff *xdp,
1967					 ktime_t timestamp)
1968{
1969	unsigned int metasize = xdp->data - xdp->data_meta;
1970	unsigned int size = xdp->data_end - xdp->data;
1971	unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size);
1972	void *va = xdp->data;
1973	unsigned int headlen;
1974	struct sk_buff *skb;
1975
1976	/* prefetch first cache line of first page */
1977	net_prefetch(xdp->data_meta);
1978
1979	/* allocate a skb to store the frags */
1980	skb = napi_alloc_skb(&rx_ring->q_vector->napi,
1981			     IGC_RX_HDR_LEN + metasize);
1982	if (unlikely(!skb))
1983		return NULL;
1984
1985	if (timestamp)
1986		skb_hwtstamps(skb)->hwtstamp = timestamp;
1987
1988	/* Determine available headroom for copy */
1989	headlen = size;
1990	if (headlen > IGC_RX_HDR_LEN)
1991		headlen = eth_get_headlen(skb->dev, va, IGC_RX_HDR_LEN);
1992
1993	/* align pull length to size of long to optimize memcpy performance */
1994	memcpy(__skb_put(skb, headlen + metasize), xdp->data_meta,
1995	       ALIGN(headlen + metasize, sizeof(long)));
1996
1997	if (metasize) {
1998		skb_metadata_set(skb, metasize);
1999		__skb_pull(skb, metasize);
2000	}
2001
2002	/* update all of the pointers */
2003	size -= headlen;
2004	if (size) {
2005		skb_add_rx_frag(skb, 0, rx_buffer->page,
2006				(va + headlen) - page_address(rx_buffer->page),
2007				size, truesize);
2008		igc_rx_buffer_flip(rx_buffer, truesize);
2009	} else {
2010		rx_buffer->pagecnt_bias++;
2011	}
2012
2013	return skb;
2014}
2015
2016/**
2017 * igc_reuse_rx_page - page flip buffer and store it back on the ring
2018 * @rx_ring: rx descriptor ring to store buffers on
2019 * @old_buff: donor buffer to have page reused
2020 *
2021 * Synchronizes page for reuse by the adapter
2022 */
2023static void igc_reuse_rx_page(struct igc_ring *rx_ring,
2024			      struct igc_rx_buffer *old_buff)
2025{
2026	u16 nta = rx_ring->next_to_alloc;
2027	struct igc_rx_buffer *new_buff;
2028
2029	new_buff = &rx_ring->rx_buffer_info[nta];
2030
2031	/* update, and store next to alloc */
2032	nta++;
2033	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
2034
2035	/* Transfer page from old buffer to new buffer.
2036	 * Move each member individually to avoid possible store
2037	 * forwarding stalls.
2038	 */
2039	new_buff->dma		= old_buff->dma;
2040	new_buff->page		= old_buff->page;
2041	new_buff->page_offset	= old_buff->page_offset;
2042	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
2043}
2044
2045static bool igc_can_reuse_rx_page(struct igc_rx_buffer *rx_buffer,
2046				  int rx_buffer_pgcnt)
2047{
2048	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
2049	struct page *page = rx_buffer->page;
2050
2051	/* avoid re-using remote and pfmemalloc pages */
2052	if (!dev_page_is_reusable(page))
2053		return false;
2054
2055#if (PAGE_SIZE < 8192)
2056	/* if we are only owner of page we can reuse it */
2057	if (unlikely((rx_buffer_pgcnt - pagecnt_bias) > 1))
2058		return false;
2059#else
2060#define IGC_LAST_OFFSET \
2061	(SKB_WITH_OVERHEAD(PAGE_SIZE) - IGC_RXBUFFER_2048)
2062
2063	if (rx_buffer->page_offset > IGC_LAST_OFFSET)
2064		return false;
2065#endif
2066
2067	/* If we have drained the page fragment pool we need to update
2068	 * the pagecnt_bias and page count so that we fully restock the
2069	 * number of references the driver holds.
2070	 */
2071	if (unlikely(pagecnt_bias == 1)) {
2072		page_ref_add(page, USHRT_MAX - 1);
2073		rx_buffer->pagecnt_bias = USHRT_MAX;
2074	}
2075
2076	return true;
2077}
2078
2079/**
2080 * igc_is_non_eop - process handling of non-EOP buffers
2081 * @rx_ring: Rx ring being processed
2082 * @rx_desc: Rx descriptor for current buffer
2083 *
2084 * This function updates next to clean.  If the buffer is an EOP buffer
2085 * this function exits returning false, otherwise it will place the
2086 * sk_buff in the next buffer to be chained and return true indicating
2087 * that this is in fact a non-EOP buffer.
2088 */
2089static bool igc_is_non_eop(struct igc_ring *rx_ring,
2090			   union igc_adv_rx_desc *rx_desc)
2091{
2092	u32 ntc = rx_ring->next_to_clean + 1;
2093
2094	/* fetch, update, and store next to clean */
2095	ntc = (ntc < rx_ring->count) ? ntc : 0;
2096	rx_ring->next_to_clean = ntc;
2097
2098	prefetch(IGC_RX_DESC(rx_ring, ntc));
2099
2100	if (likely(igc_test_staterr(rx_desc, IGC_RXD_STAT_EOP)))
2101		return false;
2102
2103	return true;
2104}
2105
2106/**
2107 * igc_cleanup_headers - Correct corrupted or empty headers
2108 * @rx_ring: rx descriptor ring packet is being transacted on
2109 * @rx_desc: pointer to the EOP Rx descriptor
2110 * @skb: pointer to current skb being fixed
2111 *
2112 * Address the case where we are pulling data in on pages only
2113 * and as such no data is present in the skb header.
2114 *
2115 * In addition if skb is not at least 60 bytes we need to pad it so that
2116 * it is large enough to qualify as a valid Ethernet frame.
2117 *
2118 * Returns true if an error was encountered and skb was freed.
2119 */
2120static bool igc_cleanup_headers(struct igc_ring *rx_ring,
2121				union igc_adv_rx_desc *rx_desc,
2122				struct sk_buff *skb)
2123{
2124	/* XDP packets use error pointer so abort at this point */
2125	if (IS_ERR(skb))
2126		return true;
2127
2128	if (unlikely(igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_RXE))) {
2129		struct net_device *netdev = rx_ring->netdev;
2130
2131		if (!(netdev->features & NETIF_F_RXALL)) {
2132			dev_kfree_skb_any(skb);
2133			return true;
2134		}
2135	}
2136
2137	/* if eth_skb_pad returns an error the skb was freed */
2138	if (eth_skb_pad(skb))
2139		return true;
2140
2141	return false;
2142}
2143
2144static void igc_put_rx_buffer(struct igc_ring *rx_ring,
2145			      struct igc_rx_buffer *rx_buffer,
2146			      int rx_buffer_pgcnt)
2147{
2148	if (igc_can_reuse_rx_page(rx_buffer, rx_buffer_pgcnt)) {
2149		/* hand second half of page back to the ring */
2150		igc_reuse_rx_page(rx_ring, rx_buffer);
2151	} else {
2152		/* We are not reusing the buffer so unmap it and free
2153		 * any references we are holding to it
2154		 */
2155		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
2156				     igc_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
2157				     IGC_RX_DMA_ATTR);
2158		__page_frag_cache_drain(rx_buffer->page,
2159					rx_buffer->pagecnt_bias);
2160	}
2161
2162	/* clear contents of rx_buffer */
2163	rx_buffer->page = NULL;
2164}
2165
2166static inline unsigned int igc_rx_offset(struct igc_ring *rx_ring)
2167{
2168	struct igc_adapter *adapter = rx_ring->q_vector->adapter;
2169
2170	if (ring_uses_build_skb(rx_ring))
2171		return IGC_SKB_PAD;
2172	if (igc_xdp_is_enabled(adapter))
2173		return XDP_PACKET_HEADROOM;
2174
2175	return 0;
2176}
2177
2178static bool igc_alloc_mapped_page(struct igc_ring *rx_ring,
2179				  struct igc_rx_buffer *bi)
2180{
2181	struct page *page = bi->page;
2182	dma_addr_t dma;
2183
2184	/* since we are recycling buffers we should seldom need to alloc */
2185	if (likely(page))
2186		return true;
2187
2188	/* alloc new page for storage */
2189	page = dev_alloc_pages(igc_rx_pg_order(rx_ring));
2190	if (unlikely(!page)) {
2191		rx_ring->rx_stats.alloc_failed++;
2192		return false;
2193	}
2194
2195	/* map page for use */
2196	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
2197				 igc_rx_pg_size(rx_ring),
2198				 DMA_FROM_DEVICE,
2199				 IGC_RX_DMA_ATTR);
2200
2201	/* if mapping failed free memory back to system since
2202	 * there isn't much point in holding memory we can't use
2203	 */
2204	if (dma_mapping_error(rx_ring->dev, dma)) {
2205		__free_page(page);
2206
2207		rx_ring->rx_stats.alloc_failed++;
2208		return false;
2209	}
2210
2211	bi->dma = dma;
2212	bi->page = page;
2213	bi->page_offset = igc_rx_offset(rx_ring);
2214	page_ref_add(page, USHRT_MAX - 1);
2215	bi->pagecnt_bias = USHRT_MAX;
2216
2217	return true;
2218}
2219
2220/**
2221 * igc_alloc_rx_buffers - Replace used receive buffers; packet split
2222 * @rx_ring: rx descriptor ring
2223 * @cleaned_count: number of buffers to clean
2224 */
2225static void igc_alloc_rx_buffers(struct igc_ring *rx_ring, u16 cleaned_count)
2226{
2227	union igc_adv_rx_desc *rx_desc;
2228	u16 i = rx_ring->next_to_use;
2229	struct igc_rx_buffer *bi;
2230	u16 bufsz;
2231
2232	/* nothing to do */
2233	if (!cleaned_count)
2234		return;
2235
2236	rx_desc = IGC_RX_DESC(rx_ring, i);
2237	bi = &rx_ring->rx_buffer_info[i];
2238	i -= rx_ring->count;
2239
2240	bufsz = igc_rx_bufsz(rx_ring);
2241
2242	do {
2243		if (!igc_alloc_mapped_page(rx_ring, bi))
2244			break;
2245
2246		/* sync the buffer for use by the device */
2247		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
2248						 bi->page_offset, bufsz,
2249						 DMA_FROM_DEVICE);
2250
2251		/* Refresh the desc even if buffer_addrs didn't change
2252		 * because each write-back erases this info.
2253		 */
2254		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
2255
2256		rx_desc++;
2257		bi++;
2258		i++;
2259		if (unlikely(!i)) {
2260			rx_desc = IGC_RX_DESC(rx_ring, 0);
2261			bi = rx_ring->rx_buffer_info;
2262			i -= rx_ring->count;
2263		}
2264
2265		/* clear the length for the next_to_use descriptor */
2266		rx_desc->wb.upper.length = 0;
2267
2268		cleaned_count--;
2269	} while (cleaned_count);
2270
2271	i += rx_ring->count;
2272
2273	if (rx_ring->next_to_use != i) {
2274		/* record the next descriptor to use */
2275		rx_ring->next_to_use = i;
2276
2277		/* update next to alloc since we have filled the ring */
2278		rx_ring->next_to_alloc = i;
2279
2280		/* Force memory writes to complete before letting h/w
2281		 * know there are new descriptors to fetch.  (Only
2282		 * applicable for weak-ordered memory model archs,
2283		 * such as IA-64).
2284		 */
2285		wmb();
2286		writel(i, rx_ring->tail);
2287	}
2288}
2289
2290static bool igc_alloc_rx_buffers_zc(struct igc_ring *ring, u16 count)
2291{
2292	union igc_adv_rx_desc *desc;
2293	u16 i = ring->next_to_use;
2294	struct igc_rx_buffer *bi;
2295	dma_addr_t dma;
2296	bool ok = true;
2297
2298	if (!count)
2299		return ok;
2300
2301	XSK_CHECK_PRIV_TYPE(struct igc_xdp_buff);
2302
2303	desc = IGC_RX_DESC(ring, i);
2304	bi = &ring->rx_buffer_info[i];
2305	i -= ring->count;
2306
2307	do {
2308		bi->xdp = xsk_buff_alloc(ring->xsk_pool);
2309		if (!bi->xdp) {
2310			ok = false;
2311			break;
2312		}
2313
2314		dma = xsk_buff_xdp_get_dma(bi->xdp);
2315		desc->read.pkt_addr = cpu_to_le64(dma);
2316
2317		desc++;
2318		bi++;
2319		i++;
2320		if (unlikely(!i)) {
2321			desc = IGC_RX_DESC(ring, 0);
2322			bi = ring->rx_buffer_info;
2323			i -= ring->count;
2324		}
2325
2326		/* Clear the length for the next_to_use descriptor. */
2327		desc->wb.upper.length = 0;
2328
2329		count--;
2330	} while (count);
2331
2332	i += ring->count;
2333
2334	if (ring->next_to_use != i) {
2335		ring->next_to_use = i;
2336
2337		/* Force memory writes to complete before letting h/w
2338		 * know there are new descriptors to fetch.  (Only
2339		 * applicable for weak-ordered memory model archs,
2340		 * such as IA-64).
2341		 */
2342		wmb();
2343		writel(i, ring->tail);
2344	}
2345
2346	return ok;
2347}
2348
2349/* This function requires __netif_tx_lock is held by the caller. */
2350static int igc_xdp_init_tx_descriptor(struct igc_ring *ring,
2351				      struct xdp_frame *xdpf)
2352{
2353	struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
2354	u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0;
2355	u16 count, index = ring->next_to_use;
2356	struct igc_tx_buffer *head = &ring->tx_buffer_info[index];
2357	struct igc_tx_buffer *buffer = head;
2358	union igc_adv_tx_desc *desc = IGC_TX_DESC(ring, index);
2359	u32 olinfo_status, len = xdpf->len, cmd_type;
2360	void *data = xdpf->data;
2361	u16 i;
2362
2363	count = TXD_USE_COUNT(len);
2364	for (i = 0; i < nr_frags; i++)
2365		count += TXD_USE_COUNT(skb_frag_size(&sinfo->frags[i]));
2366
2367	if (igc_maybe_stop_tx(ring, count + 3)) {
2368		/* this is a hard error */
2369		return -EBUSY;
2370	}
2371
2372	i = 0;
2373	head->bytecount = xdp_get_frame_len(xdpf);
2374	head->type = IGC_TX_BUFFER_TYPE_XDP;
2375	head->gso_segs = 1;
2376	head->xdpf = xdpf;
2377
2378	olinfo_status = head->bytecount << IGC_ADVTXD_PAYLEN_SHIFT;
2379	desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2380
2381	for (;;) {
2382		dma_addr_t dma;
2383
2384		dma = dma_map_single(ring->dev, data, len, DMA_TO_DEVICE);
2385		if (dma_mapping_error(ring->dev, dma)) {
2386			netdev_err_once(ring->netdev,
2387					"Failed to map DMA for TX\n");
2388			goto unmap;
2389		}
2390
2391		dma_unmap_len_set(buffer, len, len);
2392		dma_unmap_addr_set(buffer, dma, dma);
2393
2394		cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
2395			   IGC_ADVTXD_DCMD_IFCS | len;
2396
2397		desc->read.cmd_type_len = cpu_to_le32(cmd_type);
2398		desc->read.buffer_addr = cpu_to_le64(dma);
2399
2400		buffer->protocol = 0;
2401
2402		if (++index == ring->count)
2403			index = 0;
2404
2405		if (i == nr_frags)
2406			break;
2407
2408		buffer = &ring->tx_buffer_info[index];
2409		desc = IGC_TX_DESC(ring, index);
2410		desc->read.olinfo_status = 0;
2411
2412		data = skb_frag_address(&sinfo->frags[i]);
2413		len = skb_frag_size(&sinfo->frags[i]);
2414		i++;
2415	}
2416	desc->read.cmd_type_len |= cpu_to_le32(IGC_TXD_DCMD);
2417
2418	netdev_tx_sent_queue(txring_txq(ring), head->bytecount);
2419	/* set the timestamp */
2420	head->time_stamp = jiffies;
2421	/* set next_to_watch value indicating a packet is present */
2422	head->next_to_watch = desc;
2423	ring->next_to_use = index;
2424
2425	return 0;
2426
2427unmap:
2428	for (;;) {
2429		buffer = &ring->tx_buffer_info[index];
2430		if (dma_unmap_len(buffer, len))
2431			dma_unmap_page(ring->dev,
2432				       dma_unmap_addr(buffer, dma),
2433				       dma_unmap_len(buffer, len),
2434				       DMA_TO_DEVICE);
2435		dma_unmap_len_set(buffer, len, 0);
2436		if (buffer == head)
2437			break;
2438
2439		if (!index)
2440			index += ring->count;
2441		index--;
2442	}
2443
2444	return -ENOMEM;
2445}
2446
2447static struct igc_ring *igc_xdp_get_tx_ring(struct igc_adapter *adapter,
2448					    int cpu)
2449{
2450	int index = cpu;
2451
2452	if (unlikely(index < 0))
2453		index = 0;
2454
2455	while (index >= adapter->num_tx_queues)
2456		index -= adapter->num_tx_queues;
2457
2458	return adapter->tx_ring[index];
2459}
2460
2461static int igc_xdp_xmit_back(struct igc_adapter *adapter, struct xdp_buff *xdp)
2462{
2463	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2464	int cpu = smp_processor_id();
2465	struct netdev_queue *nq;
2466	struct igc_ring *ring;
2467	int res;
2468
2469	if (unlikely(!xdpf))
2470		return -EFAULT;
2471
2472	ring = igc_xdp_get_tx_ring(adapter, cpu);
2473	nq = txring_txq(ring);
2474
2475	__netif_tx_lock(nq, cpu);
2476	/* Avoid transmit queue timeout since we share it with the slow path */
2477	txq_trans_cond_update(nq);
2478	res = igc_xdp_init_tx_descriptor(ring, xdpf);
2479	__netif_tx_unlock(nq);
2480	return res;
2481}
2482
2483/* This function assumes rcu_read_lock() is held by the caller. */
2484static int __igc_xdp_run_prog(struct igc_adapter *adapter,
2485			      struct bpf_prog *prog,
2486			      struct xdp_buff *xdp)
2487{
2488	u32 act = bpf_prog_run_xdp(prog, xdp);
2489
2490	switch (act) {
2491	case XDP_PASS:
2492		return IGC_XDP_PASS;
2493	case XDP_TX:
2494		if (igc_xdp_xmit_back(adapter, xdp) < 0)
2495			goto out_failure;
2496		return IGC_XDP_TX;
2497	case XDP_REDIRECT:
2498		if (xdp_do_redirect(adapter->netdev, xdp, prog) < 0)
2499			goto out_failure;
2500		return IGC_XDP_REDIRECT;
2501		break;
2502	default:
2503		bpf_warn_invalid_xdp_action(adapter->netdev, prog, act);
2504		fallthrough;
2505	case XDP_ABORTED:
2506out_failure:
2507		trace_xdp_exception(adapter->netdev, prog, act);
2508		fallthrough;
2509	case XDP_DROP:
2510		return IGC_XDP_CONSUMED;
2511	}
2512}
2513
2514static struct sk_buff *igc_xdp_run_prog(struct igc_adapter *adapter,
2515					struct xdp_buff *xdp)
2516{
2517	struct bpf_prog *prog;
2518	int res;
2519
2520	prog = READ_ONCE(adapter->xdp_prog);
2521	if (!prog) {
2522		res = IGC_XDP_PASS;
2523		goto out;
2524	}
2525
2526	res = __igc_xdp_run_prog(adapter, prog, xdp);
2527
2528out:
2529	return ERR_PTR(-res);
2530}
2531
2532/* This function assumes __netif_tx_lock is held by the caller. */
2533static void igc_flush_tx_descriptors(struct igc_ring *ring)
2534{
2535	/* Once tail pointer is updated, hardware can fetch the descriptors
2536	 * any time so we issue a write membar here to ensure all memory
2537	 * writes are complete before the tail pointer is updated.
2538	 */
2539	wmb();
2540	writel(ring->next_to_use, ring->tail);
2541}
2542
2543static void igc_finalize_xdp(struct igc_adapter *adapter, int status)
2544{
2545	int cpu = smp_processor_id();
2546	struct netdev_queue *nq;
2547	struct igc_ring *ring;
2548
2549	if (status & IGC_XDP_TX) {
2550		ring = igc_xdp_get_tx_ring(adapter, cpu);
2551		nq = txring_txq(ring);
2552
2553		__netif_tx_lock(nq, cpu);
2554		igc_flush_tx_descriptors(ring);
2555		__netif_tx_unlock(nq);
2556	}
2557
2558	if (status & IGC_XDP_REDIRECT)
2559		xdp_do_flush();
2560}
2561
2562static void igc_update_rx_stats(struct igc_q_vector *q_vector,
2563				unsigned int packets, unsigned int bytes)
2564{
2565	struct igc_ring *ring = q_vector->rx.ring;
2566
2567	u64_stats_update_begin(&ring->rx_syncp);
2568	ring->rx_stats.packets += packets;
2569	ring->rx_stats.bytes += bytes;
2570	u64_stats_update_end(&ring->rx_syncp);
2571
2572	q_vector->rx.total_packets += packets;
2573	q_vector->rx.total_bytes += bytes;
2574}
2575
2576static int igc_clean_rx_irq(struct igc_q_vector *q_vector, const int budget)
2577{
2578	unsigned int total_bytes = 0, total_packets = 0;
2579	struct igc_adapter *adapter = q_vector->adapter;
2580	struct igc_ring *rx_ring = q_vector->rx.ring;
2581	struct sk_buff *skb = rx_ring->skb;
2582	u16 cleaned_count = igc_desc_unused(rx_ring);
2583	int xdp_status = 0, rx_buffer_pgcnt;
2584
2585	while (likely(total_packets < budget)) {
2586		union igc_adv_rx_desc *rx_desc;
2587		struct igc_rx_buffer *rx_buffer;
2588		unsigned int size, truesize;
2589		struct igc_xdp_buff ctx;
2590		ktime_t timestamp = 0;
2591		int pkt_offset = 0;
2592		void *pktbuf;
2593
2594		/* return some buffers to hardware, one at a time is too slow */
2595		if (cleaned_count >= IGC_RX_BUFFER_WRITE) {
2596			igc_alloc_rx_buffers(rx_ring, cleaned_count);
2597			cleaned_count = 0;
2598		}
2599
2600		rx_desc = IGC_RX_DESC(rx_ring, rx_ring->next_to_clean);
2601		size = le16_to_cpu(rx_desc->wb.upper.length);
2602		if (!size)
2603			break;
2604
2605		/* This memory barrier is needed to keep us from reading
2606		 * any other fields out of the rx_desc until we know the
2607		 * descriptor has been written back
2608		 */
2609		dma_rmb();
2610
2611		rx_buffer = igc_get_rx_buffer(rx_ring, size, &rx_buffer_pgcnt);
2612		truesize = igc_get_rx_frame_truesize(rx_ring, size);
2613
2614		pktbuf = page_address(rx_buffer->page) + rx_buffer->page_offset;
2615
2616		if (igc_test_staterr(rx_desc, IGC_RXDADV_STAT_TSIP)) {
2617			timestamp = igc_ptp_rx_pktstamp(q_vector->adapter,
2618							pktbuf);
2619			ctx.rx_ts = timestamp;
2620			pkt_offset = IGC_TS_HDR_LEN;
2621			size -= IGC_TS_HDR_LEN;
2622		}
2623
2624		if (!skb) {
2625			xdp_init_buff(&ctx.xdp, truesize, &rx_ring->xdp_rxq);
2626			xdp_prepare_buff(&ctx.xdp, pktbuf - igc_rx_offset(rx_ring),
2627					 igc_rx_offset(rx_ring) + pkt_offset,
2628					 size, true);
2629			xdp_buff_clear_frags_flag(&ctx.xdp);
2630			ctx.rx_desc = rx_desc;
2631
2632			skb = igc_xdp_run_prog(adapter, &ctx.xdp);
2633		}
2634
2635		if (IS_ERR(skb)) {
2636			unsigned int xdp_res = -PTR_ERR(skb);
2637
2638			switch (xdp_res) {
2639			case IGC_XDP_CONSUMED:
2640				rx_buffer->pagecnt_bias++;
2641				break;
2642			case IGC_XDP_TX:
2643			case IGC_XDP_REDIRECT:
2644				igc_rx_buffer_flip(rx_buffer, truesize);
2645				xdp_status |= xdp_res;
2646				break;
2647			}
2648
2649			total_packets++;
2650			total_bytes += size;
2651		} else if (skb)
2652			igc_add_rx_frag(rx_ring, rx_buffer, skb, size);
2653		else if (ring_uses_build_skb(rx_ring))
2654			skb = igc_build_skb(rx_ring, rx_buffer, &ctx.xdp);
2655		else
2656			skb = igc_construct_skb(rx_ring, rx_buffer, &ctx.xdp,
2657						timestamp);
2658
2659		/* exit if we failed to retrieve a buffer */
2660		if (!skb) {
2661			rx_ring->rx_stats.alloc_failed++;
2662			rx_buffer->pagecnt_bias++;
2663			break;
2664		}
2665
2666		igc_put_rx_buffer(rx_ring, rx_buffer, rx_buffer_pgcnt);
2667		cleaned_count++;
2668
2669		/* fetch next buffer in frame if non-eop */
2670		if (igc_is_non_eop(rx_ring, rx_desc))
2671			continue;
2672
2673		/* verify the packet layout is correct */
2674		if (igc_cleanup_headers(rx_ring, rx_desc, skb)) {
2675			skb = NULL;
2676			continue;
2677		}
2678
2679		/* probably a little skewed due to removing CRC */
2680		total_bytes += skb->len;
2681
2682		/* populate checksum, VLAN, and protocol */
2683		igc_process_skb_fields(rx_ring, rx_desc, skb);
2684
2685		napi_gro_receive(&q_vector->napi, skb);
2686
2687		/* reset skb pointer */
2688		skb = NULL;
2689
2690		/* update budget accounting */
2691		total_packets++;
2692	}
2693
2694	if (xdp_status)
2695		igc_finalize_xdp(adapter, xdp_status);
2696
2697	/* place incomplete frames back on ring for completion */
2698	rx_ring->skb = skb;
2699
2700	igc_update_rx_stats(q_vector, total_packets, total_bytes);
2701
2702	if (cleaned_count)
2703		igc_alloc_rx_buffers(rx_ring, cleaned_count);
2704
2705	return total_packets;
2706}
2707
2708static struct sk_buff *igc_construct_skb_zc(struct igc_ring *ring,
2709					    struct xdp_buff *xdp)
2710{
2711	unsigned int totalsize = xdp->data_end - xdp->data_meta;
2712	unsigned int metasize = xdp->data - xdp->data_meta;
2713	struct sk_buff *skb;
2714
2715	net_prefetch(xdp->data_meta);
2716
2717	skb = __napi_alloc_skb(&ring->q_vector->napi, totalsize,
2718			       GFP_ATOMIC | __GFP_NOWARN);
2719	if (unlikely(!skb))
2720		return NULL;
2721
2722	memcpy(__skb_put(skb, totalsize), xdp->data_meta,
2723	       ALIGN(totalsize, sizeof(long)));
2724
2725	if (metasize) {
2726		skb_metadata_set(skb, metasize);
2727		__skb_pull(skb, metasize);
2728	}
2729
2730	return skb;
2731}
2732
2733static void igc_dispatch_skb_zc(struct igc_q_vector *q_vector,
2734				union igc_adv_rx_desc *desc,
2735				struct xdp_buff *xdp,
2736				ktime_t timestamp)
2737{
2738	struct igc_ring *ring = q_vector->rx.ring;
2739	struct sk_buff *skb;
2740
2741	skb = igc_construct_skb_zc(ring, xdp);
2742	if (!skb) {
2743		ring->rx_stats.alloc_failed++;
2744		return;
2745	}
2746
2747	if (timestamp)
2748		skb_hwtstamps(skb)->hwtstamp = timestamp;
2749
2750	if (igc_cleanup_headers(ring, desc, skb))
2751		return;
2752
2753	igc_process_skb_fields(ring, desc, skb);
2754	napi_gro_receive(&q_vector->napi, skb);
2755}
2756
2757static struct igc_xdp_buff *xsk_buff_to_igc_ctx(struct xdp_buff *xdp)
2758{
2759	/* xdp_buff pointer used by ZC code path is alloc as xdp_buff_xsk. The
2760	 * igc_xdp_buff shares its layout with xdp_buff_xsk and private
2761	 * igc_xdp_buff fields fall into xdp_buff_xsk->cb
2762	 */
2763       return (struct igc_xdp_buff *)xdp;
2764}
2765
2766static int igc_clean_rx_irq_zc(struct igc_q_vector *q_vector, const int budget)
2767{
2768	struct igc_adapter *adapter = q_vector->adapter;
2769	struct igc_ring *ring = q_vector->rx.ring;
2770	u16 cleaned_count = igc_desc_unused(ring);
2771	int total_bytes = 0, total_packets = 0;
2772	u16 ntc = ring->next_to_clean;
2773	struct bpf_prog *prog;
2774	bool failure = false;
2775	int xdp_status = 0;
2776
2777	rcu_read_lock();
2778
2779	prog = READ_ONCE(adapter->xdp_prog);
2780
2781	while (likely(total_packets < budget)) {
2782		union igc_adv_rx_desc *desc;
2783		struct igc_rx_buffer *bi;
2784		struct igc_xdp_buff *ctx;
2785		ktime_t timestamp = 0;
2786		unsigned int size;
2787		int res;
2788
2789		desc = IGC_RX_DESC(ring, ntc);
2790		size = le16_to_cpu(desc->wb.upper.length);
2791		if (!size)
2792			break;
2793
2794		/* This memory barrier is needed to keep us from reading
2795		 * any other fields out of the rx_desc until we know the
2796		 * descriptor has been written back
2797		 */
2798		dma_rmb();
2799
2800		bi = &ring->rx_buffer_info[ntc];
2801
2802		ctx = xsk_buff_to_igc_ctx(bi->xdp);
2803		ctx->rx_desc = desc;
2804
2805		if (igc_test_staterr(desc, IGC_RXDADV_STAT_TSIP)) {
2806			timestamp = igc_ptp_rx_pktstamp(q_vector->adapter,
2807							bi->xdp->data);
2808			ctx->rx_ts = timestamp;
2809
2810			bi->xdp->data += IGC_TS_HDR_LEN;
2811
2812			/* HW timestamp has been copied into local variable. Metadata
2813			 * length when XDP program is called should be 0.
2814			 */
2815			bi->xdp->data_meta += IGC_TS_HDR_LEN;
2816			size -= IGC_TS_HDR_LEN;
2817		}
2818
2819		bi->xdp->data_end = bi->xdp->data + size;
2820		xsk_buff_dma_sync_for_cpu(bi->xdp, ring->xsk_pool);
2821
2822		res = __igc_xdp_run_prog(adapter, prog, bi->xdp);
2823		switch (res) {
2824		case IGC_XDP_PASS:
2825			igc_dispatch_skb_zc(q_vector, desc, bi->xdp, timestamp);
2826			fallthrough;
2827		case IGC_XDP_CONSUMED:
2828			xsk_buff_free(bi->xdp);
2829			break;
2830		case IGC_XDP_TX:
2831		case IGC_XDP_REDIRECT:
2832			xdp_status |= res;
2833			break;
2834		}
2835
2836		bi->xdp = NULL;
2837		total_bytes += size;
2838		total_packets++;
2839		cleaned_count++;
2840		ntc++;
2841		if (ntc == ring->count)
2842			ntc = 0;
2843	}
2844
2845	ring->next_to_clean = ntc;
2846	rcu_read_unlock();
2847
2848	if (cleaned_count >= IGC_RX_BUFFER_WRITE)
2849		failure = !igc_alloc_rx_buffers_zc(ring, cleaned_count);
2850
2851	if (xdp_status)
2852		igc_finalize_xdp(adapter, xdp_status);
2853
2854	igc_update_rx_stats(q_vector, total_packets, total_bytes);
2855
2856	if (xsk_uses_need_wakeup(ring->xsk_pool)) {
2857		if (failure || ring->next_to_clean == ring->next_to_use)
2858			xsk_set_rx_need_wakeup(ring->xsk_pool);
2859		else
2860			xsk_clear_rx_need_wakeup(ring->xsk_pool);
2861		return total_packets;
2862	}
2863
2864	return failure ? budget : total_packets;
2865}
2866
2867static void igc_update_tx_stats(struct igc_q_vector *q_vector,
2868				unsigned int packets, unsigned int bytes)
2869{
2870	struct igc_ring *ring = q_vector->tx.ring;
2871
2872	u64_stats_update_begin(&ring->tx_syncp);
2873	ring->tx_stats.bytes += bytes;
2874	ring->tx_stats.packets += packets;
2875	u64_stats_update_end(&ring->tx_syncp);
2876
2877	q_vector->tx.total_bytes += bytes;
2878	q_vector->tx.total_packets += packets;
2879}
2880
2881static void igc_xdp_xmit_zc(struct igc_ring *ring)
2882{
2883	struct xsk_buff_pool *pool = ring->xsk_pool;
2884	struct netdev_queue *nq = txring_txq(ring);
2885	union igc_adv_tx_desc *tx_desc = NULL;
2886	int cpu = smp_processor_id();
2887	struct xdp_desc xdp_desc;
2888	u16 budget, ntu;
2889
2890	if (!netif_carrier_ok(ring->netdev))
2891		return;
2892
2893	__netif_tx_lock(nq, cpu);
2894
2895	/* Avoid transmit queue timeout since we share it with the slow path */
2896	txq_trans_cond_update(nq);
2897
2898	ntu = ring->next_to_use;
2899	budget = igc_desc_unused(ring);
2900
2901	while (xsk_tx_peek_desc(pool, &xdp_desc) && budget--) {
2902		u32 cmd_type, olinfo_status;
2903		struct igc_tx_buffer *bi;
2904		dma_addr_t dma;
2905
2906		cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
2907			   IGC_ADVTXD_DCMD_IFCS | IGC_TXD_DCMD |
2908			   xdp_desc.len;
2909		olinfo_status = xdp_desc.len << IGC_ADVTXD_PAYLEN_SHIFT;
2910
2911		dma = xsk_buff_raw_get_dma(pool, xdp_desc.addr);
2912		xsk_buff_raw_dma_sync_for_device(pool, dma, xdp_desc.len);
2913
2914		tx_desc = IGC_TX_DESC(ring, ntu);
2915		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
2916		tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2917		tx_desc->read.buffer_addr = cpu_to_le64(dma);
2918
2919		bi = &ring->tx_buffer_info[ntu];
2920		bi->type = IGC_TX_BUFFER_TYPE_XSK;
2921		bi->protocol = 0;
2922		bi->bytecount = xdp_desc.len;
2923		bi->gso_segs = 1;
2924		bi->time_stamp = jiffies;
2925		bi->next_to_watch = tx_desc;
2926
2927		netdev_tx_sent_queue(txring_txq(ring), xdp_desc.len);
2928
2929		ntu++;
2930		if (ntu == ring->count)
2931			ntu = 0;
2932	}
2933
2934	ring->next_to_use = ntu;
2935	if (tx_desc) {
2936		igc_flush_tx_descriptors(ring);
2937		xsk_tx_release(pool);
2938	}
2939
2940	__netif_tx_unlock(nq);
2941}
2942
2943/**
2944 * igc_clean_tx_irq - Reclaim resources after transmit completes
2945 * @q_vector: pointer to q_vector containing needed info
2946 * @napi_budget: Used to determine if we are in netpoll
2947 *
2948 * returns true if ring is completely cleaned
2949 */
2950static bool igc_clean_tx_irq(struct igc_q_vector *q_vector, int napi_budget)
2951{
2952	struct igc_adapter *adapter = q_vector->adapter;
2953	unsigned int total_bytes = 0, total_packets = 0;
2954	unsigned int budget = q_vector->tx.work_limit;
2955	struct igc_ring *tx_ring = q_vector->tx.ring;
2956	unsigned int i = tx_ring->next_to_clean;
2957	struct igc_tx_buffer *tx_buffer;
2958	union igc_adv_tx_desc *tx_desc;
2959	u32 xsk_frames = 0;
2960
2961	if (test_bit(__IGC_DOWN, &adapter->state))
2962		return true;
2963
2964	tx_buffer = &tx_ring->tx_buffer_info[i];
2965	tx_desc = IGC_TX_DESC(tx_ring, i);
2966	i -= tx_ring->count;
2967
2968	do {
2969		union igc_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
2970
2971		/* if next_to_watch is not set then there is no work pending */
2972		if (!eop_desc)
2973			break;
2974
2975		/* prevent any other reads prior to eop_desc */
2976		smp_rmb();
2977
2978		/* if DD is not set pending work has not been completed */
2979		if (!(eop_desc->wb.status & cpu_to_le32(IGC_TXD_STAT_DD)))
2980			break;
2981
2982		/* clear next_to_watch to prevent false hangs */
2983		tx_buffer->next_to_watch = NULL;
2984
2985		/* update the statistics for this packet */
2986		total_bytes += tx_buffer->bytecount;
2987		total_packets += tx_buffer->gso_segs;
2988
2989		switch (tx_buffer->type) {
2990		case IGC_TX_BUFFER_TYPE_XSK:
2991			xsk_frames++;
2992			break;
2993		case IGC_TX_BUFFER_TYPE_XDP:
2994			xdp_return_frame(tx_buffer->xdpf);
2995			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
2996			break;
2997		case IGC_TX_BUFFER_TYPE_SKB:
2998			napi_consume_skb(tx_buffer->skb, napi_budget);
2999			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
3000			break;
3001		default:
3002			netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n");
3003			break;
3004		}
3005
3006		/* clear last DMA location and unmap remaining buffers */
3007		while (tx_desc != eop_desc) {
3008			tx_buffer++;
3009			tx_desc++;
3010			i++;
3011			if (unlikely(!i)) {
3012				i -= tx_ring->count;
3013				tx_buffer = tx_ring->tx_buffer_info;
3014				tx_desc = IGC_TX_DESC(tx_ring, 0);
3015			}
3016
3017			/* unmap any remaining paged data */
3018			if (dma_unmap_len(tx_buffer, len))
3019				igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
3020		}
3021
3022		/* move us one more past the eop_desc for start of next pkt */
3023		tx_buffer++;
3024		tx_desc++;
3025		i++;
3026		if (unlikely(!i)) {
3027			i -= tx_ring->count;
3028			tx_buffer = tx_ring->tx_buffer_info;
3029			tx_desc = IGC_TX_DESC(tx_ring, 0);
3030		}
3031
3032		/* issue prefetch for next Tx descriptor */
3033		prefetch(tx_desc);
3034
3035		/* update budget accounting */
3036		budget--;
3037	} while (likely(budget));
3038
3039	netdev_tx_completed_queue(txring_txq(tx_ring),
3040				  total_packets, total_bytes);
3041
3042	i += tx_ring->count;
3043	tx_ring->next_to_clean = i;
3044
3045	igc_update_tx_stats(q_vector, total_packets, total_bytes);
3046
3047	if (tx_ring->xsk_pool) {
3048		if (xsk_frames)
3049			xsk_tx_completed(tx_ring->xsk_pool, xsk_frames);
3050		if (xsk_uses_need_wakeup(tx_ring->xsk_pool))
3051			xsk_set_tx_need_wakeup(tx_ring->xsk_pool);
3052		igc_xdp_xmit_zc(tx_ring);
3053	}
3054
3055	if (test_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
3056		struct igc_hw *hw = &adapter->hw;
3057
3058		/* Detect a transmit hang in hardware, this serializes the
3059		 * check with the clearing of time_stamp and movement of i
3060		 */
3061		clear_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
3062		if (tx_buffer->next_to_watch &&
3063		    time_after(jiffies, tx_buffer->time_stamp +
3064		    (adapter->tx_timeout_factor * HZ)) &&
3065		    !(rd32(IGC_STATUS) & IGC_STATUS_TXOFF) &&
3066		    (rd32(IGC_TDH(tx_ring->reg_idx)) != readl(tx_ring->tail)) &&
3067		    !tx_ring->oper_gate_closed) {
3068			/* detected Tx unit hang */
3069			netdev_err(tx_ring->netdev,
3070				   "Detected Tx Unit Hang\n"
3071				   "  Tx Queue             <%d>\n"
3072				   "  TDH                  <%x>\n"
3073				   "  TDT                  <%x>\n"
3074				   "  next_to_use          <%x>\n"
3075				   "  next_to_clean        <%x>\n"
3076				   "buffer_info[next_to_clean]\n"
3077				   "  time_stamp           <%lx>\n"
3078				   "  next_to_watch        <%p>\n"
3079				   "  jiffies              <%lx>\n"
3080				   "  desc.status          <%x>\n",
3081				   tx_ring->queue_index,
3082				   rd32(IGC_TDH(tx_ring->reg_idx)),
3083				   readl(tx_ring->tail),
3084				   tx_ring->next_to_use,
3085				   tx_ring->next_to_clean,
3086				   tx_buffer->time_stamp,
3087				   tx_buffer->next_to_watch,
3088				   jiffies,
3089				   tx_buffer->next_to_watch->wb.status);
3090			netif_stop_subqueue(tx_ring->netdev,
3091					    tx_ring->queue_index);
3092
3093			/* we are about to reset, no point in enabling stuff */
3094			return true;
3095		}
3096	}
3097
3098#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
3099	if (unlikely(total_packets &&
3100		     netif_carrier_ok(tx_ring->netdev) &&
3101		     igc_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
3102		/* Make sure that anybody stopping the queue after this
3103		 * sees the new next_to_clean.
3104		 */
3105		smp_mb();
3106		if (__netif_subqueue_stopped(tx_ring->netdev,
3107					     tx_ring->queue_index) &&
3108		    !(test_bit(__IGC_DOWN, &adapter->state))) {
3109			netif_wake_subqueue(tx_ring->netdev,
3110					    tx_ring->queue_index);
3111
3112			u64_stats_update_begin(&tx_ring->tx_syncp);
3113			tx_ring->tx_stats.restart_queue++;
3114			u64_stats_update_end(&tx_ring->tx_syncp);
3115		}
3116	}
3117
3118	return !!budget;
3119}
3120
3121static int igc_find_mac_filter(struct igc_adapter *adapter,
3122			       enum igc_mac_filter_type type, const u8 *addr)
3123{
3124	struct igc_hw *hw = &adapter->hw;
3125	int max_entries = hw->mac.rar_entry_count;
3126	u32 ral, rah;
3127	int i;
3128
3129	for (i = 0; i < max_entries; i++) {
3130		ral = rd32(IGC_RAL(i));
3131		rah = rd32(IGC_RAH(i));
3132
3133		if (!(rah & IGC_RAH_AV))
3134			continue;
3135		if (!!(rah & IGC_RAH_ASEL_SRC_ADDR) != type)
3136			continue;
3137		if ((rah & IGC_RAH_RAH_MASK) !=
3138		    le16_to_cpup((__le16 *)(addr + 4)))
3139			continue;
3140		if (ral != le32_to_cpup((__le32 *)(addr)))
3141			continue;
3142
3143		return i;
3144	}
3145
3146	return -1;
3147}
3148
3149static int igc_get_avail_mac_filter_slot(struct igc_adapter *adapter)
3150{
3151	struct igc_hw *hw = &adapter->hw;
3152	int max_entries = hw->mac.rar_entry_count;
3153	u32 rah;
3154	int i;
3155
3156	for (i = 0; i < max_entries; i++) {
3157		rah = rd32(IGC_RAH(i));
3158
3159		if (!(rah & IGC_RAH_AV))
3160			return i;
3161	}
3162
3163	return -1;
3164}
3165
3166/**
3167 * igc_add_mac_filter() - Add MAC address filter
3168 * @adapter: Pointer to adapter where the filter should be added
3169 * @type: MAC address filter type (source or destination)
3170 * @addr: MAC address
3171 * @queue: If non-negative, queue assignment feature is enabled and frames
3172 *         matching the filter are enqueued onto 'queue'. Otherwise, queue
3173 *         assignment is disabled.
3174 *
3175 * Return: 0 in case of success, negative errno code otherwise.
3176 */
3177static int igc_add_mac_filter(struct igc_adapter *adapter,
3178			      enum igc_mac_filter_type type, const u8 *addr,
3179			      int queue)
3180{
3181	struct net_device *dev = adapter->netdev;
3182	int index;
3183
3184	index = igc_find_mac_filter(adapter, type, addr);
3185	if (index >= 0)
3186		goto update_filter;
3187
3188	index = igc_get_avail_mac_filter_slot(adapter);
3189	if (index < 0)
3190		return -ENOSPC;
3191
3192	netdev_dbg(dev, "Add MAC address filter: index %d type %s address %pM queue %d\n",
3193		   index, type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
3194		   addr, queue);
3195
3196update_filter:
3197	igc_set_mac_filter_hw(adapter, index, type, addr, queue);
3198	return 0;
3199}
3200
3201/**
3202 * igc_del_mac_filter() - Delete MAC address filter
3203 * @adapter: Pointer to adapter where the filter should be deleted from
3204 * @type: MAC address filter type (source or destination)
3205 * @addr: MAC address
3206 */
3207static void igc_del_mac_filter(struct igc_adapter *adapter,
3208			       enum igc_mac_filter_type type, const u8 *addr)
3209{
3210	struct net_device *dev = adapter->netdev;
3211	int index;
3212
3213	index = igc_find_mac_filter(adapter, type, addr);
3214	if (index < 0)
3215		return;
3216
3217	if (index == 0) {
3218		/* If this is the default filter, we don't actually delete it.
3219		 * We just reset to its default value i.e. disable queue
3220		 * assignment.
3221		 */
3222		netdev_dbg(dev, "Disable default MAC filter queue assignment");
3223
3224		igc_set_mac_filter_hw(adapter, 0, type, addr, -1);
3225	} else {
3226		netdev_dbg(dev, "Delete MAC address filter: index %d type %s address %pM\n",
3227			   index,
3228			   type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
3229			   addr);
3230
3231		igc_clear_mac_filter_hw(adapter, index);
3232	}
3233}
3234
3235/**
3236 * igc_add_vlan_prio_filter() - Add VLAN priority filter
3237 * @adapter: Pointer to adapter where the filter should be added
3238 * @prio: VLAN priority value
3239 * @queue: Queue number which matching frames are assigned to
3240 *
3241 * Return: 0 in case of success, negative errno code otherwise.
3242 */
3243static int igc_add_vlan_prio_filter(struct igc_adapter *adapter, int prio,
3244				    int queue)
3245{
3246	struct net_device *dev = adapter->netdev;
3247	struct igc_hw *hw = &adapter->hw;
3248	u32 vlanpqf;
3249
3250	vlanpqf = rd32(IGC_VLANPQF);
3251
3252	if (vlanpqf & IGC_VLANPQF_VALID(prio)) {
3253		netdev_dbg(dev, "VLAN priority filter already in use\n");
3254		return -EEXIST;
3255	}
3256
3257	vlanpqf |= IGC_VLANPQF_QSEL(prio, queue);
3258	vlanpqf |= IGC_VLANPQF_VALID(prio);
3259
3260	wr32(IGC_VLANPQF, vlanpqf);
3261
3262	netdev_dbg(dev, "Add VLAN priority filter: prio %d queue %d\n",
3263		   prio, queue);
3264	return 0;
3265}
3266
3267/**
3268 * igc_del_vlan_prio_filter() - Delete VLAN priority filter
3269 * @adapter: Pointer to adapter where the filter should be deleted from
3270 * @prio: VLAN priority value
3271 */
3272static void igc_del_vlan_prio_filter(struct igc_adapter *adapter, int prio)
3273{
3274	struct igc_hw *hw = &adapter->hw;
3275	u32 vlanpqf;
3276
3277	vlanpqf = rd32(IGC_VLANPQF);
3278
3279	vlanpqf &= ~IGC_VLANPQF_VALID(prio);
3280	vlanpqf &= ~IGC_VLANPQF_QSEL(prio, IGC_VLANPQF_QUEUE_MASK);
3281
3282	wr32(IGC_VLANPQF, vlanpqf);
3283
3284	netdev_dbg(adapter->netdev, "Delete VLAN priority filter: prio %d\n",
3285		   prio);
3286}
3287
3288static int igc_get_avail_etype_filter_slot(struct igc_adapter *adapter)
3289{
3290	struct igc_hw *hw = &adapter->hw;
3291	int i;
3292
3293	for (i = 0; i < MAX_ETYPE_FILTER; i++) {
3294		u32 etqf = rd32(IGC_ETQF(i));
3295
3296		if (!(etqf & IGC_ETQF_FILTER_ENABLE))
3297			return i;
3298	}
3299
3300	return -1;
3301}
3302
3303/**
3304 * igc_add_etype_filter() - Add ethertype filter
3305 * @adapter: Pointer to adapter where the filter should be added
3306 * @etype: Ethertype value
3307 * @queue: If non-negative, queue assignment feature is enabled and frames
3308 *         matching the filter are enqueued onto 'queue'. Otherwise, queue
3309 *         assignment is disabled.
3310 *
3311 * Return: 0 in case of success, negative errno code otherwise.
3312 */
3313static int igc_add_etype_filter(struct igc_adapter *adapter, u16 etype,
3314				int queue)
3315{
3316	struct igc_hw *hw = &adapter->hw;
3317	int index;
3318	u32 etqf;
3319
3320	index = igc_get_avail_etype_filter_slot(adapter);
3321	if (index < 0)
3322		return -ENOSPC;
3323
3324	etqf = rd32(IGC_ETQF(index));
3325
3326	etqf &= ~IGC_ETQF_ETYPE_MASK;
3327	etqf |= etype;
3328
3329	if (queue >= 0) {
3330		etqf &= ~IGC_ETQF_QUEUE_MASK;
3331		etqf |= (queue << IGC_ETQF_QUEUE_SHIFT);
3332		etqf |= IGC_ETQF_QUEUE_ENABLE;
3333	}
3334
3335	etqf |= IGC_ETQF_FILTER_ENABLE;
3336
3337	wr32(IGC_ETQF(index), etqf);
3338
3339	netdev_dbg(adapter->netdev, "Add ethertype filter: etype %04x queue %d\n",
3340		   etype, queue);
3341	return 0;
3342}
3343
3344static int igc_find_etype_filter(struct igc_adapter *adapter, u16 etype)
3345{
3346	struct igc_hw *hw = &adapter->hw;
3347	int i;
3348
3349	for (i = 0; i < MAX_ETYPE_FILTER; i++) {
3350		u32 etqf = rd32(IGC_ETQF(i));
3351
3352		if ((etqf & IGC_ETQF_ETYPE_MASK) == etype)
3353			return i;
3354	}
3355
3356	return -1;
3357}
3358
3359/**
3360 * igc_del_etype_filter() - Delete ethertype filter
3361 * @adapter: Pointer to adapter where the filter should be deleted from
3362 * @etype: Ethertype value
3363 */
3364static void igc_del_etype_filter(struct igc_adapter *adapter, u16 etype)
3365{
3366	struct igc_hw *hw = &adapter->hw;
3367	int index;
3368
3369	index = igc_find_etype_filter(adapter, etype);
3370	if (index < 0)
3371		return;
3372
3373	wr32(IGC_ETQF(index), 0);
3374
3375	netdev_dbg(adapter->netdev, "Delete ethertype filter: etype %04x\n",
3376		   etype);
3377}
3378
3379static int igc_flex_filter_select(struct igc_adapter *adapter,
3380				  struct igc_flex_filter *input,
3381				  u32 *fhft)
3382{
3383	struct igc_hw *hw = &adapter->hw;
3384	u8 fhft_index;
3385	u32 fhftsl;
3386
3387	if (input->index >= MAX_FLEX_FILTER) {
3388		dev_err(&adapter->pdev->dev, "Wrong Flex Filter index selected!\n");
3389		return -EINVAL;
3390	}
3391
3392	/* Indirect table select register */
3393	fhftsl = rd32(IGC_FHFTSL);
3394	fhftsl &= ~IGC_FHFTSL_FTSL_MASK;
3395	switch (input->index) {
3396	case 0 ... 7:
3397		fhftsl |= 0x00;
3398		break;
3399	case 8 ... 15:
3400		fhftsl |= 0x01;
3401		break;
3402	case 16 ... 23:
3403		fhftsl |= 0x02;
3404		break;
3405	case 24 ... 31:
3406		fhftsl |= 0x03;
3407		break;
3408	}
3409	wr32(IGC_FHFTSL, fhftsl);
3410
3411	/* Normalize index down to host table register */
3412	fhft_index = input->index % 8;
3413
3414	*fhft = (fhft_index < 4) ? IGC_FHFT(fhft_index) :
3415		IGC_FHFT_EXT(fhft_index - 4);
3416
3417	return 0;
3418}
3419
3420static int igc_write_flex_filter_ll(struct igc_adapter *adapter,
3421				    struct igc_flex_filter *input)
3422{
3423	struct device *dev = &adapter->pdev->dev;
3424	struct igc_hw *hw = &adapter->hw;
3425	u8 *data = input->data;
3426	u8 *mask = input->mask;
3427	u32 queuing;
3428	u32 fhft;
3429	u32 wufc;
3430	int ret;
3431	int i;
3432
3433	/* Length has to be aligned to 8. Otherwise the filter will fail. Bail
3434	 * out early to avoid surprises later.
3435	 */
3436	if (input->length % 8 != 0) {
3437		dev_err(dev, "The length of a flex filter has to be 8 byte aligned!\n");
3438		return -EINVAL;
3439	}
3440
3441	/* Select corresponding flex filter register and get base for host table. */
3442	ret = igc_flex_filter_select(adapter, input, &fhft);
3443	if (ret)
3444		return ret;
3445
3446	/* When adding a filter globally disable flex filter feature. That is
3447	 * recommended within the datasheet.
3448	 */
3449	wufc = rd32(IGC_WUFC);
3450	wufc &= ~IGC_WUFC_FLEX_HQ;
3451	wr32(IGC_WUFC, wufc);
3452
3453	/* Configure filter */
3454	queuing = input->length & IGC_FHFT_LENGTH_MASK;
3455	queuing |= (input->rx_queue << IGC_FHFT_QUEUE_SHIFT) & IGC_FHFT_QUEUE_MASK;
3456	queuing |= (input->prio << IGC_FHFT_PRIO_SHIFT) & IGC_FHFT_PRIO_MASK;
3457
3458	if (input->immediate_irq)
3459		queuing |= IGC_FHFT_IMM_INT;
3460
3461	if (input->drop)
3462		queuing |= IGC_FHFT_DROP;
3463
3464	wr32(fhft + 0xFC, queuing);
3465
3466	/* Write data (128 byte) and mask (128 bit) */
3467	for (i = 0; i < 16; ++i) {
3468		const size_t data_idx = i * 8;
3469		const size_t row_idx = i * 16;
3470		u32 dw0 =
3471			(data[data_idx + 0] << 0) |
3472			(data[data_idx + 1] << 8) |
3473			(data[data_idx + 2] << 16) |
3474			(data[data_idx + 3] << 24);
3475		u32 dw1 =
3476			(data[data_idx + 4] << 0) |
3477			(data[data_idx + 5] << 8) |
3478			(data[data_idx + 6] << 16) |
3479			(data[data_idx + 7] << 24);
3480		u32 tmp;
3481
3482		/* Write row: dw0, dw1 and mask */
3483		wr32(fhft + row_idx, dw0);
3484		wr32(fhft + row_idx + 4, dw1);
3485
3486		/* mask is only valid for MASK(7, 0) */
3487		tmp = rd32(fhft + row_idx + 8);
3488		tmp &= ~GENMASK(7, 0);
3489		tmp |= mask[i];
3490		wr32(fhft + row_idx + 8, tmp);
3491	}
3492
3493	/* Enable filter. */
3494	wufc |= IGC_WUFC_FLEX_HQ;
3495	if (input->index > 8) {
3496		/* Filter 0-7 are enabled via WUFC. The other 24 filters are not. */
3497		u32 wufc_ext = rd32(IGC_WUFC_EXT);
3498
3499		wufc_ext |= (IGC_WUFC_EXT_FLX8 << (input->index - 8));
3500
3501		wr32(IGC_WUFC_EXT, wufc_ext);
3502	} else {
3503		wufc |= (IGC_WUFC_FLX0 << input->index);
3504	}
3505	wr32(IGC_WUFC, wufc);
3506
3507	dev_dbg(&adapter->pdev->dev, "Added flex filter %u to HW.\n",
3508		input->index);
3509
3510	return 0;
3511}
3512
3513static void igc_flex_filter_add_field(struct igc_flex_filter *flex,
3514				      const void *src, unsigned int offset,
3515				      size_t len, const void *mask)
3516{
3517	int i;
3518
3519	/* data */
3520	memcpy(&flex->data[offset], src, len);
3521
3522	/* mask */
3523	for (i = 0; i < len; ++i) {
3524		const unsigned int idx = i + offset;
3525		const u8 *ptr = mask;
3526
3527		if (mask) {
3528			if (ptr[i] & 0xff)
3529				flex->mask[idx / 8] |= BIT(idx % 8);
3530
3531			continue;
3532		}
3533
3534		flex->mask[idx / 8] |= BIT(idx % 8);
3535	}
3536}
3537
3538static int igc_find_avail_flex_filter_slot(struct igc_adapter *adapter)
3539{
3540	struct igc_hw *hw = &adapter->hw;
3541	u32 wufc, wufc_ext;
3542	int i;
3543
3544	wufc = rd32(IGC_WUFC);
3545	wufc_ext = rd32(IGC_WUFC_EXT);
3546
3547	for (i = 0; i < MAX_FLEX_FILTER; i++) {
3548		if (i < 8) {
3549			if (!(wufc & (IGC_WUFC_FLX0 << i)))
3550				return i;
3551		} else {
3552			if (!(wufc_ext & (IGC_WUFC_EXT_FLX8 << (i - 8))))
3553				return i;
3554		}
3555	}
3556
3557	return -ENOSPC;
3558}
3559
3560static bool igc_flex_filter_in_use(struct igc_adapter *adapter)
3561{
3562	struct igc_hw *hw = &adapter->hw;
3563	u32 wufc, wufc_ext;
3564
3565	wufc = rd32(IGC_WUFC);
3566	wufc_ext = rd32(IGC_WUFC_EXT);
3567
3568	if (wufc & IGC_WUFC_FILTER_MASK)
3569		return true;
3570
3571	if (wufc_ext & IGC_WUFC_EXT_FILTER_MASK)
3572		return true;
3573
3574	return false;
3575}
3576
3577static int igc_add_flex_filter(struct igc_adapter *adapter,
3578			       struct igc_nfc_rule *rule)
3579{
3580	struct igc_flex_filter flex = { };
3581	struct igc_nfc_filter *filter = &rule->filter;
3582	unsigned int eth_offset, user_offset;
3583	int ret, index;
3584	bool vlan;
3585
3586	index = igc_find_avail_flex_filter_slot(adapter);
3587	if (index < 0)
3588		return -ENOSPC;
3589
3590	/* Construct the flex filter:
3591	 *  -> dest_mac [6]
3592	 *  -> src_mac [6]
3593	 *  -> tpid [2]
3594	 *  -> vlan tci [2]
3595	 *  -> ether type [2]
3596	 *  -> user data [8]
3597	 *  -> = 26 bytes => 32 length
3598	 */
3599	flex.index    = index;
3600	flex.length   = 32;
3601	flex.rx_queue = rule->action;
3602
3603	vlan = rule->filter.vlan_tci || rule->filter.vlan_etype;
3604	eth_offset = vlan ? 16 : 12;
3605	user_offset = vlan ? 18 : 14;
3606
3607	/* Add destination MAC  */
3608	if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR)
3609		igc_flex_filter_add_field(&flex, &filter->dst_addr, 0,
3610					  ETH_ALEN, NULL);
3611
3612	/* Add source MAC */
3613	if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR)
3614		igc_flex_filter_add_field(&flex, &filter->src_addr, 6,
3615					  ETH_ALEN, NULL);
3616
3617	/* Add VLAN etype */
3618	if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_ETYPE)
3619		igc_flex_filter_add_field(&flex, &filter->vlan_etype, 12,
3620					  sizeof(filter->vlan_etype),
3621					  NULL);
3622
3623	/* Add VLAN TCI */
3624	if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI)
3625		igc_flex_filter_add_field(&flex, &filter->vlan_tci, 14,
3626					  sizeof(filter->vlan_tci), NULL);
3627
3628	/* Add Ether type */
3629	if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) {
3630		__be16 etype = cpu_to_be16(filter->etype);
3631
3632		igc_flex_filter_add_field(&flex, &etype, eth_offset,
3633					  sizeof(etype), NULL);
3634	}
3635
3636	/* Add user data */
3637	if (rule->filter.match_flags & IGC_FILTER_FLAG_USER_DATA)
3638		igc_flex_filter_add_field(&flex, &filter->user_data,
3639					  user_offset,
3640					  sizeof(filter->user_data),
3641					  filter->user_mask);
3642
3643	/* Add it down to the hardware and enable it. */
3644	ret = igc_write_flex_filter_ll(adapter, &flex);
3645	if (ret)
3646		return ret;
3647
3648	filter->flex_index = index;
3649
3650	return 0;
3651}
3652
3653static void igc_del_flex_filter(struct igc_adapter *adapter,
3654				u16 reg_index)
3655{
3656	struct igc_hw *hw = &adapter->hw;
3657	u32 wufc;
3658
3659	/* Just disable the filter. The filter table itself is kept
3660	 * intact. Another flex_filter_add() should override the "old" data
3661	 * then.
3662	 */
3663	if (reg_index > 8) {
3664		u32 wufc_ext = rd32(IGC_WUFC_EXT);
3665
3666		wufc_ext &= ~(IGC_WUFC_EXT_FLX8 << (reg_index - 8));
3667		wr32(IGC_WUFC_EXT, wufc_ext);
3668	} else {
3669		wufc = rd32(IGC_WUFC);
3670
3671		wufc &= ~(IGC_WUFC_FLX0 << reg_index);
3672		wr32(IGC_WUFC, wufc);
3673	}
3674
3675	if (igc_flex_filter_in_use(adapter))
3676		return;
3677
3678	/* No filters are in use, we may disable flex filters */
3679	wufc = rd32(IGC_WUFC);
3680	wufc &= ~IGC_WUFC_FLEX_HQ;
3681	wr32(IGC_WUFC, wufc);
3682}
3683
3684static int igc_enable_nfc_rule(struct igc_adapter *adapter,
3685			       struct igc_nfc_rule *rule)
3686{
3687	int err;
3688
3689	if (rule->flex) {
3690		return igc_add_flex_filter(adapter, rule);
3691	}
3692
3693	if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) {
3694		err = igc_add_etype_filter(adapter, rule->filter.etype,
3695					   rule->action);
3696		if (err)
3697			return err;
3698	}
3699
3700	if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR) {
3701		err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
3702					 rule->filter.src_addr, rule->action);
3703		if (err)
3704			return err;
3705	}
3706
3707	if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR) {
3708		err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
3709					 rule->filter.dst_addr, rule->action);
3710		if (err)
3711			return err;
3712	}
3713
3714	if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
3715		int prio = (rule->filter.vlan_tci & VLAN_PRIO_MASK) >>
3716			   VLAN_PRIO_SHIFT;
3717
3718		err = igc_add_vlan_prio_filter(adapter, prio, rule->action);
3719		if (err)
3720			return err;
3721	}
3722
3723	return 0;
3724}
3725
3726static void igc_disable_nfc_rule(struct igc_adapter *adapter,
3727				 const struct igc_nfc_rule *rule)
3728{
3729	if (rule->flex) {
3730		igc_del_flex_filter(adapter, rule->filter.flex_index);
3731		return;
3732	}
3733
3734	if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE)
3735		igc_del_etype_filter(adapter, rule->filter.etype);
3736
3737	if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
3738		int prio = (rule->filter.vlan_tci & VLAN_PRIO_MASK) >>
3739			   VLAN_PRIO_SHIFT;
3740
3741		igc_del_vlan_prio_filter(adapter, prio);
3742	}
3743
3744	if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR)
3745		igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
3746				   rule->filter.src_addr);
3747
3748	if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR)
3749		igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
3750				   rule->filter.dst_addr);
3751}
3752
3753/**
3754 * igc_get_nfc_rule() - Get NFC rule
3755 * @adapter: Pointer to adapter
3756 * @location: Rule location
3757 *
3758 * Context: Expects adapter->nfc_rule_lock to be held by caller.
3759 *
3760 * Return: Pointer to NFC rule at @location. If not found, NULL.
3761 */
3762struct igc_nfc_rule *igc_get_nfc_rule(struct igc_adapter *adapter,
3763				      u32 location)
3764{
3765	struct igc_nfc_rule *rule;
3766
3767	list_for_each_entry(rule, &adapter->nfc_rule_list, list) {
3768		if (rule->location == location)
3769			return rule;
3770		if (rule->location > location)
3771			break;
3772	}
3773
3774	return NULL;
3775}
3776
3777/**
3778 * igc_del_nfc_rule() - Delete NFC rule
3779 * @adapter: Pointer to adapter
3780 * @rule: Pointer to rule to be deleted
3781 *
3782 * Disable NFC rule in hardware and delete it from adapter.
3783 *
3784 * Context: Expects adapter->nfc_rule_lock to be held by caller.
3785 */
3786void igc_del_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
3787{
3788	igc_disable_nfc_rule(adapter, rule);
3789
3790	list_del(&rule->list);
3791	adapter->nfc_rule_count--;
3792
3793	kfree(rule);
3794}
3795
3796static void igc_flush_nfc_rules(struct igc_adapter *adapter)
3797{
3798	struct igc_nfc_rule *rule, *tmp;
3799
3800	mutex_lock(&adapter->nfc_rule_lock);
3801
3802	list_for_each_entry_safe(rule, tmp, &adapter->nfc_rule_list, list)
3803		igc_del_nfc_rule(adapter, rule);
3804
3805	mutex_unlock(&adapter->nfc_rule_lock);
3806}
3807
3808/**
3809 * igc_add_nfc_rule() - Add NFC rule
3810 * @adapter: Pointer to adapter
3811 * @rule: Pointer to rule to be added
3812 *
3813 * Enable NFC rule in hardware and add it to adapter.
3814 *
3815 * Context: Expects adapter->nfc_rule_lock to be held by caller.
3816 *
3817 * Return: 0 on success, negative errno on failure.
3818 */
3819int igc_add_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
3820{
3821	struct igc_nfc_rule *pred, *cur;
3822	int err;
3823
3824	err = igc_enable_nfc_rule(adapter, rule);
3825	if (err)
3826		return err;
3827
3828	pred = NULL;
3829	list_for_each_entry(cur, &adapter->nfc_rule_list, list) {
3830		if (cur->location >= rule->location)
3831			break;
3832		pred = cur;
3833	}
3834
3835	list_add(&rule->list, pred ? &pred->list : &adapter->nfc_rule_list);
3836	adapter->nfc_rule_count++;
3837	return 0;
3838}
3839
3840static void igc_restore_nfc_rules(struct igc_adapter *adapter)
3841{
3842	struct igc_nfc_rule *rule;
3843
3844	mutex_lock(&adapter->nfc_rule_lock);
3845
3846	list_for_each_entry_reverse(rule, &adapter->nfc_rule_list, list)
3847		igc_enable_nfc_rule(adapter, rule);
3848
3849	mutex_unlock(&adapter->nfc_rule_lock);
3850}
3851
3852static int igc_uc_sync(struct net_device *netdev, const unsigned char *addr)
3853{
3854	struct igc_adapter *adapter = netdev_priv(netdev);
3855
3856	return igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr, -1);
3857}
3858
3859static int igc_uc_unsync(struct net_device *netdev, const unsigned char *addr)
3860{
3861	struct igc_adapter *adapter = netdev_priv(netdev);
3862
3863	igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr);
3864	return 0;
3865}
3866
3867/**
3868 * igc_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3869 * @netdev: network interface device structure
3870 *
3871 * The set_rx_mode entry point is called whenever the unicast or multicast
3872 * address lists or the network interface flags are updated.  This routine is
3873 * responsible for configuring the hardware for proper unicast, multicast,
3874 * promiscuous mode, and all-multi behavior.
3875 */
3876static void igc_set_rx_mode(struct net_device *netdev)
3877{
3878	struct igc_adapter *adapter = netdev_priv(netdev);
3879	struct igc_hw *hw = &adapter->hw;
3880	u32 rctl = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
3881	int count;
3882
3883	/* Check for Promiscuous and All Multicast modes */
3884	if (netdev->flags & IFF_PROMISC) {
3885		rctl |= IGC_RCTL_UPE | IGC_RCTL_MPE;
3886	} else {
3887		if (netdev->flags & IFF_ALLMULTI) {
3888			rctl |= IGC_RCTL_MPE;
3889		} else {
3890			/* Write addresses to the MTA, if the attempt fails
3891			 * then we should just turn on promiscuous mode so
3892			 * that we can at least receive multicast traffic
3893			 */
3894			count = igc_write_mc_addr_list(netdev);
3895			if (count < 0)
3896				rctl |= IGC_RCTL_MPE;
3897		}
3898	}
3899
3900	/* Write addresses to available RAR registers, if there is not
3901	 * sufficient space to store all the addresses then enable
3902	 * unicast promiscuous mode
3903	 */
3904	if (__dev_uc_sync(netdev, igc_uc_sync, igc_uc_unsync))
3905		rctl |= IGC_RCTL_UPE;
3906
3907	/* update state of unicast and multicast */
3908	rctl |= rd32(IGC_RCTL) & ~(IGC_RCTL_UPE | IGC_RCTL_MPE);
3909	wr32(IGC_RCTL, rctl);
3910
3911#if (PAGE_SIZE < 8192)
3912	if (adapter->max_frame_size <= IGC_MAX_FRAME_BUILD_SKB)
3913		rlpml = IGC_MAX_FRAME_BUILD_SKB;
3914#endif
3915	wr32(IGC_RLPML, rlpml);
3916}
3917
3918/**
3919 * igc_configure - configure the hardware for RX and TX
3920 * @adapter: private board structure
3921 */
3922static void igc_configure(struct igc_adapter *adapter)
3923{
3924	struct net_device *netdev = adapter->netdev;
3925	int i = 0;
3926
3927	igc_get_hw_control(adapter);
3928	igc_set_rx_mode(netdev);
3929
3930	igc_restore_vlan(adapter);
3931
3932	igc_setup_tctl(adapter);
3933	igc_setup_mrqc(adapter);
3934	igc_setup_rctl(adapter);
3935
3936	igc_set_default_mac_filter(adapter);
3937	igc_restore_nfc_rules(adapter);
3938
3939	igc_configure_tx(adapter);
3940	igc_configure_rx(adapter);
3941
3942	igc_rx_fifo_flush_base(&adapter->hw);
3943
3944	/* call igc_desc_unused which always leaves
3945	 * at least 1 descriptor unused to make sure
3946	 * next_to_use != next_to_clean
3947	 */
3948	for (i = 0; i < adapter->num_rx_queues; i++) {
3949		struct igc_ring *ring = adapter->rx_ring[i];
3950
3951		if (ring->xsk_pool)
3952			igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring));
3953		else
3954			igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
3955	}
3956}
3957
3958/**
3959 * igc_write_ivar - configure ivar for given MSI-X vector
3960 * @hw: pointer to the HW structure
3961 * @msix_vector: vector number we are allocating to a given ring
3962 * @index: row index of IVAR register to write within IVAR table
3963 * @offset: column offset of in IVAR, should be multiple of 8
3964 *
3965 * The IVAR table consists of 2 columns,
3966 * each containing an cause allocation for an Rx and Tx ring, and a
3967 * variable number of rows depending on the number of queues supported.
3968 */
3969static void igc_write_ivar(struct igc_hw *hw, int msix_vector,
3970			   int index, int offset)
3971{
3972	u32 ivar = array_rd32(IGC_IVAR0, index);
3973
3974	/* clear any bits that are currently set */
3975	ivar &= ~((u32)0xFF << offset);
3976
3977	/* write vector and valid bit */
3978	ivar |= (msix_vector | IGC_IVAR_VALID) << offset;
3979
3980	array_wr32(IGC_IVAR0, index, ivar);
3981}
3982
3983static void igc_assign_vector(struct igc_q_vector *q_vector, int msix_vector)
3984{
3985	struct igc_adapter *adapter = q_vector->adapter;
3986	struct igc_hw *hw = &adapter->hw;
3987	int rx_queue = IGC_N0_QUEUE;
3988	int tx_queue = IGC_N0_QUEUE;
3989
3990	if (q_vector->rx.ring)
3991		rx_queue = q_vector->rx.ring->reg_idx;
3992	if (q_vector->tx.ring)
3993		tx_queue = q_vector->tx.ring->reg_idx;
3994
3995	switch (hw->mac.type) {
3996	case igc_i225:
3997		if (rx_queue > IGC_N0_QUEUE)
3998			igc_write_ivar(hw, msix_vector,
3999				       rx_queue >> 1,
4000				       (rx_queue & 0x1) << 4);
4001		if (tx_queue > IGC_N0_QUEUE)
4002			igc_write_ivar(hw, msix_vector,
4003				       tx_queue >> 1,
4004				       ((tx_queue & 0x1) << 4) + 8);
4005		q_vector->eims_value = BIT(msix_vector);
4006		break;
4007	default:
4008		WARN_ONCE(hw->mac.type != igc_i225, "Wrong MAC type\n");
4009		break;
4010	}
4011
4012	/* add q_vector eims value to global eims_enable_mask */
4013	adapter->eims_enable_mask |= q_vector->eims_value;
4014
4015	/* configure q_vector to set itr on first interrupt */
4016	q_vector->set_itr = 1;
4017}
4018
4019/**
4020 * igc_configure_msix - Configure MSI-X hardware
4021 * @adapter: Pointer to adapter structure
4022 *
4023 * igc_configure_msix sets up the hardware to properly
4024 * generate MSI-X interrupts.
4025 */
4026static void igc_configure_msix(struct igc_adapter *adapter)
4027{
4028	struct igc_hw *hw = &adapter->hw;
4029	int i, vector = 0;
4030	u32 tmp;
4031
4032	adapter->eims_enable_mask = 0;
4033
4034	/* set vector for other causes, i.e. link changes */
4035	switch (hw->mac.type) {
4036	case igc_i225:
4037		/* Turn on MSI-X capability first, or our settings
4038		 * won't stick.  And it will take days to debug.
4039		 */
4040		wr32(IGC_GPIE, IGC_GPIE_MSIX_MODE |
4041		     IGC_GPIE_PBA | IGC_GPIE_EIAME |
4042		     IGC_GPIE_NSICR);
4043
4044		/* enable msix_other interrupt */
4045		adapter->eims_other = BIT(vector);
4046		tmp = (vector++ | IGC_IVAR_VALID) << 8;
4047
4048		wr32(IGC_IVAR_MISC, tmp);
4049		break;
4050	default:
4051		/* do nothing, since nothing else supports MSI-X */
4052		break;
4053	} /* switch (hw->mac.type) */
4054
4055	adapter->eims_enable_mask |= adapter->eims_other;
4056
4057	for (i = 0; i < adapter->num_q_vectors; i++)
4058		igc_assign_vector(adapter->q_vector[i], vector++);
4059
4060	wrfl();
4061}
4062
4063/**
4064 * igc_irq_enable - Enable default interrupt generation settings
4065 * @adapter: board private structure
4066 */
4067static void igc_irq_enable(struct igc_adapter *adapter)
4068{
4069	struct igc_hw *hw = &adapter->hw;
4070
4071	if (adapter->msix_entries) {
4072		u32 ims = IGC_IMS_LSC | IGC_IMS_DOUTSYNC | IGC_IMS_DRSTA;
4073		u32 regval = rd32(IGC_EIAC);
4074
4075		wr32(IGC_EIAC, regval | adapter->eims_enable_mask);
4076		regval = rd32(IGC_EIAM);
4077		wr32(IGC_EIAM, regval | adapter->eims_enable_mask);
4078		wr32(IGC_EIMS, adapter->eims_enable_mask);
4079		wr32(IGC_IMS, ims);
4080	} else {
4081		wr32(IGC_IMS, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
4082		wr32(IGC_IAM, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
4083	}
4084}
4085
4086/**
4087 * igc_irq_disable - Mask off interrupt generation on the NIC
4088 * @adapter: board private structure
4089 */
4090static void igc_irq_disable(struct igc_adapter *adapter)
4091{
4092	struct igc_hw *hw = &adapter->hw;
4093
4094	if (adapter->msix_entries) {
4095		u32 regval = rd32(IGC_EIAM);
4096
4097		wr32(IGC_EIAM, regval & ~adapter->eims_enable_mask);
4098		wr32(IGC_EIMC, adapter->eims_enable_mask);
4099		regval = rd32(IGC_EIAC);
4100		wr32(IGC_EIAC, regval & ~adapter->eims_enable_mask);
4101	}
4102
4103	wr32(IGC_IAM, 0);
4104	wr32(IGC_IMC, ~0);
4105	wrfl();
4106
4107	if (adapter->msix_entries) {
4108		int vector = 0, i;
4109
4110		synchronize_irq(adapter->msix_entries[vector++].vector);
4111
4112		for (i = 0; i < adapter->num_q_vectors; i++)
4113			synchronize_irq(adapter->msix_entries[vector++].vector);
4114	} else {
4115		synchronize_irq(adapter->pdev->irq);
4116	}
4117}
4118
4119void igc_set_flag_queue_pairs(struct igc_adapter *adapter,
4120			      const u32 max_rss_queues)
4121{
4122	/* Determine if we need to pair queues. */
4123	/* If rss_queues > half of max_rss_queues, pair the queues in
4124	 * order to conserve interrupts due to limited supply.
4125	 */
4126	if (adapter->rss_queues > (max_rss_queues / 2))
4127		adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
4128	else
4129		adapter->flags &= ~IGC_FLAG_QUEUE_PAIRS;
4130}
4131
4132unsigned int igc_get_max_rss_queues(struct igc_adapter *adapter)
4133{
4134	return IGC_MAX_RX_QUEUES;
4135}
4136
4137static void igc_init_queue_configuration(struct igc_adapter *adapter)
4138{
4139	u32 max_rss_queues;
4140
4141	max_rss_queues = igc_get_max_rss_queues(adapter);
4142	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
4143
4144	igc_set_flag_queue_pairs(adapter, max_rss_queues);
4145}
4146
4147/**
4148 * igc_reset_q_vector - Reset config for interrupt vector
4149 * @adapter: board private structure to initialize
4150 * @v_idx: Index of vector to be reset
4151 *
4152 * If NAPI is enabled it will delete any references to the
4153 * NAPI struct. This is preparation for igc_free_q_vector.
4154 */
4155static void igc_reset_q_vector(struct igc_adapter *adapter, int v_idx)
4156{
4157	struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
4158
4159	/* if we're coming from igc_set_interrupt_capability, the vectors are
4160	 * not yet allocated
4161	 */
4162	if (!q_vector)
4163		return;
4164
4165	if (q_vector->tx.ring)
4166		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
4167
4168	if (q_vector->rx.ring)
4169		adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
4170
4171	netif_napi_del(&q_vector->napi);
4172}
4173
4174/**
4175 * igc_free_q_vector - Free memory allocated for specific interrupt vector
4176 * @adapter: board private structure to initialize
4177 * @v_idx: Index of vector to be freed
4178 *
4179 * This function frees the memory allocated to the q_vector.
4180 */
4181static void igc_free_q_vector(struct igc_adapter *adapter, int v_idx)
4182{
4183	struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
4184
4185	adapter->q_vector[v_idx] = NULL;
4186
4187	/* igc_get_stats64() might access the rings on this vector,
4188	 * we must wait a grace period before freeing it.
4189	 */
4190	if (q_vector)
4191		kfree_rcu(q_vector, rcu);
4192}
4193
4194/**
4195 * igc_free_q_vectors - Free memory allocated for interrupt vectors
4196 * @adapter: board private structure to initialize
4197 *
4198 * This function frees the memory allocated to the q_vectors.  In addition if
4199 * NAPI is enabled it will delete any references to the NAPI struct prior
4200 * to freeing the q_vector.
4201 */
4202static void igc_free_q_vectors(struct igc_adapter *adapter)
4203{
4204	int v_idx = adapter->num_q_vectors;
4205
4206	adapter->num_tx_queues = 0;
4207	adapter->num_rx_queues = 0;
4208	adapter->num_q_vectors = 0;
4209
4210	while (v_idx--) {
4211		igc_reset_q_vector(adapter, v_idx);
4212		igc_free_q_vector(adapter, v_idx);
4213	}
4214}
4215
4216/**
4217 * igc_update_itr - update the dynamic ITR value based on statistics
4218 * @q_vector: pointer to q_vector
4219 * @ring_container: ring info to update the itr for
4220 *
4221 * Stores a new ITR value based on packets and byte
4222 * counts during the last interrupt.  The advantage of per interrupt
4223 * computation is faster updates and more accurate ITR for the current
4224 * traffic pattern.  Constants in this function were computed
4225 * based on theoretical maximum wire speed and thresholds were set based
4226 * on testing data as well as attempting to minimize response time
4227 * while increasing bulk throughput.
4228 * NOTE: These calculations are only valid when operating in a single-
4229 * queue environment.
4230 */
4231static void igc_update_itr(struct igc_q_vector *q_vector,
4232			   struct igc_ring_container *ring_container)
4233{
4234	unsigned int packets = ring_container->total_packets;
4235	unsigned int bytes = ring_container->total_bytes;
4236	u8 itrval = ring_container->itr;
4237
4238	/* no packets, exit with status unchanged */
4239	if (packets == 0)
4240		return;
4241
4242	switch (itrval) {
4243	case lowest_latency:
4244		/* handle TSO and jumbo frames */
4245		if (bytes / packets > 8000)
4246			itrval = bulk_latency;
4247		else if ((packets < 5) && (bytes > 512))
4248			itrval = low_latency;
4249		break;
4250	case low_latency:  /* 50 usec aka 20000 ints/s */
4251		if (bytes > 10000) {
4252			/* this if handles the TSO accounting */
4253			if (bytes / packets > 8000)
4254				itrval = bulk_latency;
4255			else if ((packets < 10) || ((bytes / packets) > 1200))
4256				itrval = bulk_latency;
4257			else if ((packets > 35))
4258				itrval = lowest_latency;
4259		} else if (bytes / packets > 2000) {
4260			itrval = bulk_latency;
4261		} else if (packets <= 2 && bytes < 512) {
4262			itrval = lowest_latency;
4263		}
4264		break;
4265	case bulk_latency: /* 250 usec aka 4000 ints/s */
4266		if (bytes > 25000) {
4267			if (packets > 35)
4268				itrval = low_latency;
4269		} else if (bytes < 1500) {
4270			itrval = low_latency;
4271		}
4272		break;
4273	}
4274
4275	/* clear work counters since we have the values we need */
4276	ring_container->total_bytes = 0;
4277	ring_container->total_packets = 0;
4278
4279	/* write updated itr to ring container */
4280	ring_container->itr = itrval;
4281}
4282
4283static void igc_set_itr(struct igc_q_vector *q_vector)
4284{
4285	struct igc_adapter *adapter = q_vector->adapter;
4286	u32 new_itr = q_vector->itr_val;
4287	u8 current_itr = 0;
4288
4289	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4290	switch (adapter->link_speed) {
4291	case SPEED_10:
4292	case SPEED_100:
4293		current_itr = 0;
4294		new_itr = IGC_4K_ITR;
4295		goto set_itr_now;
4296	default:
4297		break;
4298	}
4299
4300	igc_update_itr(q_vector, &q_vector->tx);
4301	igc_update_itr(q_vector, &q_vector->rx);
4302
4303	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4304
4305	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4306	if (current_itr == lowest_latency &&
4307	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4308	    (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4309		current_itr = low_latency;
4310
4311	switch (current_itr) {
4312	/* counts and packets in update_itr are dependent on these numbers */
4313	case lowest_latency:
4314		new_itr = IGC_70K_ITR; /* 70,000 ints/sec */
4315		break;
4316	case low_latency:
4317		new_itr = IGC_20K_ITR; /* 20,000 ints/sec */
4318		break;
4319	case bulk_latency:
4320		new_itr = IGC_4K_ITR;  /* 4,000 ints/sec */
4321		break;
4322	default:
4323		break;
4324	}
4325
4326set_itr_now:
4327	if (new_itr != q_vector->itr_val) {
4328		/* this attempts to bias the interrupt rate towards Bulk
4329		 * by adding intermediate steps when interrupt rate is
4330		 * increasing
4331		 */
4332		new_itr = new_itr > q_vector->itr_val ?
4333			  max((new_itr * q_vector->itr_val) /
4334			  (new_itr + (q_vector->itr_val >> 2)),
4335			  new_itr) : new_itr;
4336		/* Don't write the value here; it resets the adapter's
4337		 * internal timer, and causes us to delay far longer than
4338		 * we should between interrupts.  Instead, we write the ITR
4339		 * value at the beginning of the next interrupt so the timing
4340		 * ends up being correct.
4341		 */
4342		q_vector->itr_val = new_itr;
4343		q_vector->set_itr = 1;
4344	}
4345}
4346
4347static void igc_reset_interrupt_capability(struct igc_adapter *adapter)
4348{
4349	int v_idx = adapter->num_q_vectors;
4350
4351	if (adapter->msix_entries) {
4352		pci_disable_msix(adapter->pdev);
4353		kfree(adapter->msix_entries);
4354		adapter->msix_entries = NULL;
4355	} else if (adapter->flags & IGC_FLAG_HAS_MSI) {
4356		pci_disable_msi(adapter->pdev);
4357	}
4358
4359	while (v_idx--)
4360		igc_reset_q_vector(adapter, v_idx);
4361}
4362
4363/**
4364 * igc_set_interrupt_capability - set MSI or MSI-X if supported
4365 * @adapter: Pointer to adapter structure
4366 * @msix: boolean value for MSI-X capability
4367 *
4368 * Attempt to configure interrupts using the best available
4369 * capabilities of the hardware and kernel.
4370 */
4371static void igc_set_interrupt_capability(struct igc_adapter *adapter,
4372					 bool msix)
4373{
4374	int numvecs, i;
4375	int err;
4376
4377	if (!msix)
4378		goto msi_only;
4379	adapter->flags |= IGC_FLAG_HAS_MSIX;
4380
4381	/* Number of supported queues. */
4382	adapter->num_rx_queues = adapter->rss_queues;
4383
4384	adapter->num_tx_queues = adapter->rss_queues;
4385
4386	/* start with one vector for every Rx queue */
4387	numvecs = adapter->num_rx_queues;
4388
4389	/* if Tx handler is separate add 1 for every Tx queue */
4390	if (!(adapter->flags & IGC_FLAG_QUEUE_PAIRS))
4391		numvecs += adapter->num_tx_queues;
4392
4393	/* store the number of vectors reserved for queues */
4394	adapter->num_q_vectors = numvecs;
4395
4396	/* add 1 vector for link status interrupts */
4397	numvecs++;
4398
4399	adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
4400					GFP_KERNEL);
4401
4402	if (!adapter->msix_entries)
4403		return;
4404
4405	/* populate entry values */
4406	for (i = 0; i < numvecs; i++)
4407		adapter->msix_entries[i].entry = i;
4408
4409	err = pci_enable_msix_range(adapter->pdev,
4410				    adapter->msix_entries,
4411				    numvecs,
4412				    numvecs);
4413	if (err > 0)
4414		return;
4415
4416	kfree(adapter->msix_entries);
4417	adapter->msix_entries = NULL;
4418
4419	igc_reset_interrupt_capability(adapter);
4420
4421msi_only:
4422	adapter->flags &= ~IGC_FLAG_HAS_MSIX;
4423
4424	adapter->rss_queues = 1;
4425	adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
4426	adapter->num_rx_queues = 1;
4427	adapter->num_tx_queues = 1;
4428	adapter->num_q_vectors = 1;
4429	if (!pci_enable_msi(adapter->pdev))
4430		adapter->flags |= IGC_FLAG_HAS_MSI;
4431}
4432
4433/**
4434 * igc_update_ring_itr - update the dynamic ITR value based on packet size
4435 * @q_vector: pointer to q_vector
4436 *
4437 * Stores a new ITR value based on strictly on packet size.  This
4438 * algorithm is less sophisticated than that used in igc_update_itr,
4439 * due to the difficulty of synchronizing statistics across multiple
4440 * receive rings.  The divisors and thresholds used by this function
4441 * were determined based on theoretical maximum wire speed and testing
4442 * data, in order to minimize response time while increasing bulk
4443 * throughput.
4444 * NOTE: This function is called only when operating in a multiqueue
4445 * receive environment.
4446 */
4447static void igc_update_ring_itr(struct igc_q_vector *q_vector)
4448{
4449	struct igc_adapter *adapter = q_vector->adapter;
4450	int new_val = q_vector->itr_val;
4451	int avg_wire_size = 0;
4452	unsigned int packets;
4453
4454	/* For non-gigabit speeds, just fix the interrupt rate at 4000
4455	 * ints/sec - ITR timer value of 120 ticks.
4456	 */
4457	switch (adapter->link_speed) {
4458	case SPEED_10:
4459	case SPEED_100:
4460		new_val = IGC_4K_ITR;
4461		goto set_itr_val;
4462	default:
4463		break;
4464	}
4465
4466	packets = q_vector->rx.total_packets;
4467	if (packets)
4468		avg_wire_size = q_vector->rx.total_bytes / packets;
4469
4470	packets = q_vector->tx.total_packets;
4471	if (packets)
4472		avg_wire_size = max_t(u32, avg_wire_size,
4473				      q_vector->tx.total_bytes / packets);
4474
4475	/* if avg_wire_size isn't set no work was done */
4476	if (!avg_wire_size)
4477		goto clear_counts;
4478
4479	/* Add 24 bytes to size to account for CRC, preamble, and gap */
4480	avg_wire_size += 24;
4481
4482	/* Don't starve jumbo frames */
4483	avg_wire_size = min(avg_wire_size, 3000);
4484
4485	/* Give a little boost to mid-size frames */
4486	if (avg_wire_size > 300 && avg_wire_size < 1200)
4487		new_val = avg_wire_size / 3;
4488	else
4489		new_val = avg_wire_size / 2;
4490
4491	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4492	if (new_val < IGC_20K_ITR &&
4493	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4494	    (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4495		new_val = IGC_20K_ITR;
4496
4497set_itr_val:
4498	if (new_val != q_vector->itr_val) {
4499		q_vector->itr_val = new_val;
4500		q_vector->set_itr = 1;
4501	}
4502clear_counts:
4503	q_vector->rx.total_bytes = 0;
4504	q_vector->rx.total_packets = 0;
4505	q_vector->tx.total_bytes = 0;
4506	q_vector->tx.total_packets = 0;
4507}
4508
4509static void igc_ring_irq_enable(struct igc_q_vector *q_vector)
4510{
4511	struct igc_adapter *adapter = q_vector->adapter;
4512	struct igc_hw *hw = &adapter->hw;
4513
4514	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
4515	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
4516		if (adapter->num_q_vectors == 1)
4517			igc_set_itr(q_vector);
4518		else
4519			igc_update_ring_itr(q_vector);
4520	}
4521
4522	if (!test_bit(__IGC_DOWN, &adapter->state)) {
4523		if (adapter->msix_entries)
4524			wr32(IGC_EIMS, q_vector->eims_value);
4525		else
4526			igc_irq_enable(adapter);
4527	}
4528}
4529
4530static void igc_add_ring(struct igc_ring *ring,
4531			 struct igc_ring_container *head)
4532{
4533	head->ring = ring;
4534	head->count++;
4535}
4536
4537/**
4538 * igc_cache_ring_register - Descriptor ring to register mapping
4539 * @adapter: board private structure to initialize
4540 *
4541 * Once we know the feature-set enabled for the device, we'll cache
4542 * the register offset the descriptor ring is assigned to.
4543 */
4544static void igc_cache_ring_register(struct igc_adapter *adapter)
4545{
4546	int i = 0, j = 0;
4547
4548	switch (adapter->hw.mac.type) {
4549	case igc_i225:
4550	default:
4551		for (; i < adapter->num_rx_queues; i++)
4552			adapter->rx_ring[i]->reg_idx = i;
4553		for (; j < adapter->num_tx_queues; j++)
4554			adapter->tx_ring[j]->reg_idx = j;
4555		break;
4556	}
4557}
4558
4559/**
4560 * igc_poll - NAPI Rx polling callback
4561 * @napi: napi polling structure
4562 * @budget: count of how many packets we should handle
4563 */
4564static int igc_poll(struct napi_struct *napi, int budget)
4565{
4566	struct igc_q_vector *q_vector = container_of(napi,
4567						     struct igc_q_vector,
4568						     napi);
4569	struct igc_ring *rx_ring = q_vector->rx.ring;
4570	bool clean_complete = true;
4571	int work_done = 0;
4572
4573	if (q_vector->tx.ring)
4574		clean_complete = igc_clean_tx_irq(q_vector, budget);
4575
4576	if (rx_ring) {
4577		int cleaned = rx_ring->xsk_pool ?
4578			      igc_clean_rx_irq_zc(q_vector, budget) :
4579			      igc_clean_rx_irq(q_vector, budget);
4580
4581		work_done += cleaned;
4582		if (cleaned >= budget)
4583			clean_complete = false;
4584	}
4585
4586	/* If all work not completed, return budget and keep polling */
4587	if (!clean_complete)
4588		return budget;
4589
4590	/* Exit the polling mode, but don't re-enable interrupts if stack might
4591	 * poll us due to busy-polling
4592	 */
4593	if (likely(napi_complete_done(napi, work_done)))
4594		igc_ring_irq_enable(q_vector);
4595
4596	return min(work_done, budget - 1);
4597}
4598
4599/**
4600 * igc_alloc_q_vector - Allocate memory for a single interrupt vector
4601 * @adapter: board private structure to initialize
4602 * @v_count: q_vectors allocated on adapter, used for ring interleaving
4603 * @v_idx: index of vector in adapter struct
4604 * @txr_count: total number of Tx rings to allocate
4605 * @txr_idx: index of first Tx ring to allocate
4606 * @rxr_count: total number of Rx rings to allocate
4607 * @rxr_idx: index of first Rx ring to allocate
4608 *
4609 * We allocate one q_vector.  If allocation fails we return -ENOMEM.
4610 */
4611static int igc_alloc_q_vector(struct igc_adapter *adapter,
4612			      unsigned int v_count, unsigned int v_idx,
4613			      unsigned int txr_count, unsigned int txr_idx,
4614			      unsigned int rxr_count, unsigned int rxr_idx)
4615{
4616	struct igc_q_vector *q_vector;
4617	struct igc_ring *ring;
4618	int ring_count;
4619
4620	/* igc only supports 1 Tx and/or 1 Rx queue per vector */
4621	if (txr_count > 1 || rxr_count > 1)
4622		return -ENOMEM;
4623
4624	ring_count = txr_count + rxr_count;
4625
4626	/* allocate q_vector and rings */
4627	q_vector = adapter->q_vector[v_idx];
4628	if (!q_vector)
4629		q_vector = kzalloc(struct_size(q_vector, ring, ring_count),
4630				   GFP_KERNEL);
4631	else
4632		memset(q_vector, 0, struct_size(q_vector, ring, ring_count));
4633	if (!q_vector)
4634		return -ENOMEM;
4635
4636	/* initialize NAPI */
4637	netif_napi_add(adapter->netdev, &q_vector->napi, igc_poll);
4638
4639	/* tie q_vector and adapter together */
4640	adapter->q_vector[v_idx] = q_vector;
4641	q_vector->adapter = adapter;
4642
4643	/* initialize work limits */
4644	q_vector->tx.work_limit = adapter->tx_work_limit;
4645
4646	/* initialize ITR configuration */
4647	q_vector->itr_register = adapter->io_addr + IGC_EITR(0);
4648	q_vector->itr_val = IGC_START_ITR;
4649
4650	/* initialize pointer to rings */
4651	ring = q_vector->ring;
4652
4653	/* initialize ITR */
4654	if (rxr_count) {
4655		/* rx or rx/tx vector */
4656		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
4657			q_vector->itr_val = adapter->rx_itr_setting;
4658	} else {
4659		/* tx only vector */
4660		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
4661			q_vector->itr_val = adapter->tx_itr_setting;
4662	}
4663
4664	if (txr_count) {
4665		/* assign generic ring traits */
4666		ring->dev = &adapter->pdev->dev;
4667		ring->netdev = adapter->netdev;
4668
4669		/* configure backlink on ring */
4670		ring->q_vector = q_vector;
4671
4672		/* update q_vector Tx values */
4673		igc_add_ring(ring, &q_vector->tx);
4674
4675		/* apply Tx specific ring traits */
4676		ring->count = adapter->tx_ring_count;
4677		ring->queue_index = txr_idx;
4678
4679		/* assign ring to adapter */
4680		adapter->tx_ring[txr_idx] = ring;
4681
4682		/* push pointer to next ring */
4683		ring++;
4684	}
4685
4686	if (rxr_count) {
4687		/* assign generic ring traits */
4688		ring->dev = &adapter->pdev->dev;
4689		ring->netdev = adapter->netdev;
4690
4691		/* configure backlink on ring */
4692		ring->q_vector = q_vector;
4693
4694		/* update q_vector Rx values */
4695		igc_add_ring(ring, &q_vector->rx);
4696
4697		/* apply Rx specific ring traits */
4698		ring->count = adapter->rx_ring_count;
4699		ring->queue_index = rxr_idx;
4700
4701		/* assign ring to adapter */
4702		adapter->rx_ring[rxr_idx] = ring;
4703	}
4704
4705	return 0;
4706}
4707
4708/**
4709 * igc_alloc_q_vectors - Allocate memory for interrupt vectors
4710 * @adapter: board private structure to initialize
4711 *
4712 * We allocate one q_vector per queue interrupt.  If allocation fails we
4713 * return -ENOMEM.
4714 */
4715static int igc_alloc_q_vectors(struct igc_adapter *adapter)
4716{
4717	int rxr_remaining = adapter->num_rx_queues;
4718	int txr_remaining = adapter->num_tx_queues;
4719	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
4720	int q_vectors = adapter->num_q_vectors;
4721	int err;
4722
4723	if (q_vectors >= (rxr_remaining + txr_remaining)) {
4724		for (; rxr_remaining; v_idx++) {
4725			err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
4726						 0, 0, 1, rxr_idx);
4727
4728			if (err)
4729				goto err_out;
4730
4731			/* update counts and index */
4732			rxr_remaining--;
4733			rxr_idx++;
4734		}
4735	}
4736
4737	for (; v_idx < q_vectors; v_idx++) {
4738		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
4739		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
4740
4741		err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
4742					 tqpv, txr_idx, rqpv, rxr_idx);
4743
4744		if (err)
4745			goto err_out;
4746
4747		/* update counts and index */
4748		rxr_remaining -= rqpv;
4749		txr_remaining -= tqpv;
4750		rxr_idx++;
4751		txr_idx++;
4752	}
4753
4754	return 0;
4755
4756err_out:
4757	adapter->num_tx_queues = 0;
4758	adapter->num_rx_queues = 0;
4759	adapter->num_q_vectors = 0;
4760
4761	while (v_idx--)
4762		igc_free_q_vector(adapter, v_idx);
4763
4764	return -ENOMEM;
4765}
4766
4767/**
4768 * igc_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
4769 * @adapter: Pointer to adapter structure
4770 * @msix: boolean for MSI-X capability
4771 *
4772 * This function initializes the interrupts and allocates all of the queues.
4773 */
4774static int igc_init_interrupt_scheme(struct igc_adapter *adapter, bool msix)
4775{
4776	struct net_device *dev = adapter->netdev;
4777	int err = 0;
4778
4779	igc_set_interrupt_capability(adapter, msix);
4780
4781	err = igc_alloc_q_vectors(adapter);
4782	if (err) {
4783		netdev_err(dev, "Unable to allocate memory for vectors\n");
4784		goto err_alloc_q_vectors;
4785	}
4786
4787	igc_cache_ring_register(adapter);
4788
4789	return 0;
4790
4791err_alloc_q_vectors:
4792	igc_reset_interrupt_capability(adapter);
4793	return err;
4794}
4795
4796/**
4797 * igc_sw_init - Initialize general software structures (struct igc_adapter)
4798 * @adapter: board private structure to initialize
4799 *
4800 * igc_sw_init initializes the Adapter private data structure.
4801 * Fields are initialized based on PCI device information and
4802 * OS network device settings (MTU size).
4803 */
4804static int igc_sw_init(struct igc_adapter *adapter)
4805{
4806	struct net_device *netdev = adapter->netdev;
4807	struct pci_dev *pdev = adapter->pdev;
4808	struct igc_hw *hw = &adapter->hw;
4809
4810	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
4811
4812	/* set default ring sizes */
4813	adapter->tx_ring_count = IGC_DEFAULT_TXD;
4814	adapter->rx_ring_count = IGC_DEFAULT_RXD;
4815
4816	/* set default ITR values */
4817	adapter->rx_itr_setting = IGC_DEFAULT_ITR;
4818	adapter->tx_itr_setting = IGC_DEFAULT_ITR;
4819
4820	/* set default work limits */
4821	adapter->tx_work_limit = IGC_DEFAULT_TX_WORK;
4822
4823	/* adjust max frame to be at least the size of a standard frame */
4824	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
4825				VLAN_HLEN;
4826	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4827
4828	mutex_init(&adapter->nfc_rule_lock);
4829	INIT_LIST_HEAD(&adapter->nfc_rule_list);
4830	adapter->nfc_rule_count = 0;
4831
4832	spin_lock_init(&adapter->stats64_lock);
4833	spin_lock_init(&adapter->qbv_tx_lock);
4834	/* Assume MSI-X interrupts, will be checked during IRQ allocation */
4835	adapter->flags |= IGC_FLAG_HAS_MSIX;
4836
4837	igc_init_queue_configuration(adapter);
4838
4839	/* This call may decrease the number of queues */
4840	if (igc_init_interrupt_scheme(adapter, true)) {
4841		netdev_err(netdev, "Unable to allocate memory for queues\n");
4842		return -ENOMEM;
4843	}
4844
4845	/* Explicitly disable IRQ since the NIC can be in any state. */
4846	igc_irq_disable(adapter);
4847
4848	set_bit(__IGC_DOWN, &adapter->state);
4849
4850	return 0;
4851}
4852
4853/**
4854 * igc_up - Open the interface and prepare it to handle traffic
4855 * @adapter: board private structure
4856 */
4857void igc_up(struct igc_adapter *adapter)
4858{
4859	struct igc_hw *hw = &adapter->hw;
4860	int i = 0;
4861
4862	/* hardware has been reset, we need to reload some things */
4863	igc_configure(adapter);
4864
4865	clear_bit(__IGC_DOWN, &adapter->state);
4866
4867	for (i = 0; i < adapter->num_q_vectors; i++)
4868		napi_enable(&adapter->q_vector[i]->napi);
4869
4870	if (adapter->msix_entries)
4871		igc_configure_msix(adapter);
4872	else
4873		igc_assign_vector(adapter->q_vector[0], 0);
4874
4875	/* Clear any pending interrupts. */
4876	rd32(IGC_ICR);
4877	igc_irq_enable(adapter);
4878
4879	netif_tx_start_all_queues(adapter->netdev);
4880
4881	/* start the watchdog. */
4882	hw->mac.get_link_status = true;
4883	schedule_work(&adapter->watchdog_task);
4884}
4885
4886/**
4887 * igc_update_stats - Update the board statistics counters
4888 * @adapter: board private structure
4889 */
4890void igc_update_stats(struct igc_adapter *adapter)
4891{
4892	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
4893	struct pci_dev *pdev = adapter->pdev;
4894	struct igc_hw *hw = &adapter->hw;
4895	u64 _bytes, _packets;
4896	u64 bytes, packets;
4897	unsigned int start;
4898	u32 mpc;
4899	int i;
4900
4901	/* Prevent stats update while adapter is being reset, or if the pci
4902	 * connection is down.
4903	 */
4904	if (adapter->link_speed == 0)
4905		return;
4906	if (pci_channel_offline(pdev))
4907		return;
4908
4909	packets = 0;
4910	bytes = 0;
4911
4912	rcu_read_lock();
4913	for (i = 0; i < adapter->num_rx_queues; i++) {
4914		struct igc_ring *ring = adapter->rx_ring[i];
4915		u32 rqdpc = rd32(IGC_RQDPC(i));
4916
4917		if (hw->mac.type >= igc_i225)
4918			wr32(IGC_RQDPC(i), 0);
4919
4920		if (rqdpc) {
4921			ring->rx_stats.drops += rqdpc;
4922			net_stats->rx_fifo_errors += rqdpc;
4923		}
4924
4925		do {
4926			start = u64_stats_fetch_begin(&ring->rx_syncp);
4927			_bytes = ring->rx_stats.bytes;
4928			_packets = ring->rx_stats.packets;
4929		} while (u64_stats_fetch_retry(&ring->rx_syncp, start));
4930		bytes += _bytes;
4931		packets += _packets;
4932	}
4933
4934	net_stats->rx_bytes = bytes;
4935	net_stats->rx_packets = packets;
4936
4937	packets = 0;
4938	bytes = 0;
4939	for (i = 0; i < adapter->num_tx_queues; i++) {
4940		struct igc_ring *ring = adapter->tx_ring[i];
4941
4942		do {
4943			start = u64_stats_fetch_begin(&ring->tx_syncp);
4944			_bytes = ring->tx_stats.bytes;
4945			_packets = ring->tx_stats.packets;
4946		} while (u64_stats_fetch_retry(&ring->tx_syncp, start));
4947		bytes += _bytes;
4948		packets += _packets;
4949	}
4950	net_stats->tx_bytes = bytes;
4951	net_stats->tx_packets = packets;
4952	rcu_read_unlock();
4953
4954	/* read stats registers */
4955	adapter->stats.crcerrs += rd32(IGC_CRCERRS);
4956	adapter->stats.gprc += rd32(IGC_GPRC);
4957	adapter->stats.gorc += rd32(IGC_GORCL);
4958	rd32(IGC_GORCH); /* clear GORCL */
4959	adapter->stats.bprc += rd32(IGC_BPRC);
4960	adapter->stats.mprc += rd32(IGC_MPRC);
4961	adapter->stats.roc += rd32(IGC_ROC);
4962
4963	adapter->stats.prc64 += rd32(IGC_PRC64);
4964	adapter->stats.prc127 += rd32(IGC_PRC127);
4965	adapter->stats.prc255 += rd32(IGC_PRC255);
4966	adapter->stats.prc511 += rd32(IGC_PRC511);
4967	adapter->stats.prc1023 += rd32(IGC_PRC1023);
4968	adapter->stats.prc1522 += rd32(IGC_PRC1522);
4969	adapter->stats.tlpic += rd32(IGC_TLPIC);
4970	adapter->stats.rlpic += rd32(IGC_RLPIC);
4971	adapter->stats.hgptc += rd32(IGC_HGPTC);
4972
4973	mpc = rd32(IGC_MPC);
4974	adapter->stats.mpc += mpc;
4975	net_stats->rx_fifo_errors += mpc;
4976	adapter->stats.scc += rd32(IGC_SCC);
4977	adapter->stats.ecol += rd32(IGC_ECOL);
4978	adapter->stats.mcc += rd32(IGC_MCC);
4979	adapter->stats.latecol += rd32(IGC_LATECOL);
4980	adapter->stats.dc += rd32(IGC_DC);
4981	adapter->stats.rlec += rd32(IGC_RLEC);
4982	adapter->stats.xonrxc += rd32(IGC_XONRXC);
4983	adapter->stats.xontxc += rd32(IGC_XONTXC);
4984	adapter->stats.xoffrxc += rd32(IGC_XOFFRXC);
4985	adapter->stats.xofftxc += rd32(IGC_XOFFTXC);
4986	adapter->stats.fcruc += rd32(IGC_FCRUC);
4987	adapter->stats.gptc += rd32(IGC_GPTC);
4988	adapter->stats.gotc += rd32(IGC_GOTCL);
4989	rd32(IGC_GOTCH); /* clear GOTCL */
4990	adapter->stats.rnbc += rd32(IGC_RNBC);
4991	adapter->stats.ruc += rd32(IGC_RUC);
4992	adapter->stats.rfc += rd32(IGC_RFC);
4993	adapter->stats.rjc += rd32(IGC_RJC);
4994	adapter->stats.tor += rd32(IGC_TORH);
4995	adapter->stats.tot += rd32(IGC_TOTH);
4996	adapter->stats.tpr += rd32(IGC_TPR);
4997
4998	adapter->stats.ptc64 += rd32(IGC_PTC64);
4999	adapter->stats.ptc127 += rd32(IGC_PTC127);
5000	adapter->stats.ptc255 += rd32(IGC_PTC255);
5001	adapter->stats.ptc511 += rd32(IGC_PTC511);
5002	adapter->stats.ptc1023 += rd32(IGC_PTC1023);
5003	adapter->stats.ptc1522 += rd32(IGC_PTC1522);
5004
5005	adapter->stats.mptc += rd32(IGC_MPTC);
5006	adapter->stats.bptc += rd32(IGC_BPTC);
5007
5008	adapter->stats.tpt += rd32(IGC_TPT);
5009	adapter->stats.colc += rd32(IGC_COLC);
5010	adapter->stats.colc += rd32(IGC_RERC);
5011
5012	adapter->stats.algnerrc += rd32(IGC_ALGNERRC);
5013
5014	adapter->stats.tsctc += rd32(IGC_TSCTC);
5015
5016	adapter->stats.iac += rd32(IGC_IAC);
5017
5018	/* Fill out the OS statistics structure */
5019	net_stats->multicast = adapter->stats.mprc;
5020	net_stats->collisions = adapter->stats.colc;
5021
5022	/* Rx Errors */
5023
5024	/* RLEC on some newer hardware can be incorrect so build
5025	 * our own version based on RUC and ROC
5026	 */
5027	net_stats->rx_errors = adapter->stats.rxerrc +
5028		adapter->stats.crcerrs + adapter->stats.algnerrc +
5029		adapter->stats.ruc + adapter->stats.roc +
5030		adapter->stats.cexterr;
5031	net_stats->rx_length_errors = adapter->stats.ruc +
5032				      adapter->stats.roc;
5033	net_stats->rx_crc_errors = adapter->stats.crcerrs;
5034	net_stats->rx_frame_errors = adapter->stats.algnerrc;
5035	net_stats->rx_missed_errors = adapter->stats.mpc;
5036
5037	/* Tx Errors */
5038	net_stats->tx_errors = adapter->stats.ecol +
5039			       adapter->stats.latecol;
5040	net_stats->tx_aborted_errors = adapter->stats.ecol;
5041	net_stats->tx_window_errors = adapter->stats.latecol;
5042	net_stats->tx_carrier_errors = adapter->stats.tncrs;
5043
5044	/* Tx Dropped */
5045	net_stats->tx_dropped = adapter->stats.txdrop;
5046
5047	/* Management Stats */
5048	adapter->stats.mgptc += rd32(IGC_MGTPTC);
5049	adapter->stats.mgprc += rd32(IGC_MGTPRC);
5050	adapter->stats.mgpdc += rd32(IGC_MGTPDC);
5051}
5052
5053/**
5054 * igc_down - Close the interface
5055 * @adapter: board private structure
5056 */
5057void igc_down(struct igc_adapter *adapter)
5058{
5059	struct net_device *netdev = adapter->netdev;
5060	struct igc_hw *hw = &adapter->hw;
5061	u32 tctl, rctl;
5062	int i = 0;
5063
5064	set_bit(__IGC_DOWN, &adapter->state);
5065
5066	igc_ptp_suspend(adapter);
5067
5068	if (pci_device_is_present(adapter->pdev)) {
5069		/* disable receives in the hardware */
5070		rctl = rd32(IGC_RCTL);
5071		wr32(IGC_RCTL, rctl & ~IGC_RCTL_EN);
5072		/* flush and sleep below */
5073	}
5074	/* set trans_start so we don't get spurious watchdogs during reset */
5075	netif_trans_update(netdev);
5076
5077	netif_carrier_off(netdev);
5078	netif_tx_stop_all_queues(netdev);
5079
5080	if (pci_device_is_present(adapter->pdev)) {
5081		/* disable transmits in the hardware */
5082		tctl = rd32(IGC_TCTL);
5083		tctl &= ~IGC_TCTL_EN;
5084		wr32(IGC_TCTL, tctl);
5085		/* flush both disables and wait for them to finish */
5086		wrfl();
5087		usleep_range(10000, 20000);
5088
5089		igc_irq_disable(adapter);
5090	}
5091
5092	adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
5093
5094	for (i = 0; i < adapter->num_q_vectors; i++) {
5095		if (adapter->q_vector[i]) {
5096			napi_synchronize(&adapter->q_vector[i]->napi);
5097			napi_disable(&adapter->q_vector[i]->napi);
5098		}
5099	}
5100
5101	del_timer_sync(&adapter->watchdog_timer);
5102	del_timer_sync(&adapter->phy_info_timer);
5103
5104	/* record the stats before reset*/
5105	spin_lock(&adapter->stats64_lock);
5106	igc_update_stats(adapter);
5107	spin_unlock(&adapter->stats64_lock);
5108
5109	adapter->link_speed = 0;
5110	adapter->link_duplex = 0;
5111
5112	if (!pci_channel_offline(adapter->pdev))
5113		igc_reset(adapter);
5114
5115	/* clear VLAN promisc flag so VFTA will be updated if necessary */
5116	adapter->flags &= ~IGC_FLAG_VLAN_PROMISC;
5117
5118	igc_disable_all_tx_rings_hw(adapter);
5119	igc_clean_all_tx_rings(adapter);
5120	igc_clean_all_rx_rings(adapter);
5121}
5122
5123void igc_reinit_locked(struct igc_adapter *adapter)
5124{
5125	while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
5126		usleep_range(1000, 2000);
5127	igc_down(adapter);
5128	igc_up(adapter);
5129	clear_bit(__IGC_RESETTING, &adapter->state);
5130}
5131
5132static void igc_reset_task(struct work_struct *work)
5133{
5134	struct igc_adapter *adapter;
5135
5136	adapter = container_of(work, struct igc_adapter, reset_task);
5137
5138	rtnl_lock();
5139	/* If we're already down or resetting, just bail */
5140	if (test_bit(__IGC_DOWN, &adapter->state) ||
5141	    test_bit(__IGC_RESETTING, &adapter->state)) {
5142		rtnl_unlock();
5143		return;
5144	}
5145
5146	igc_rings_dump(adapter);
5147	igc_regs_dump(adapter);
5148	netdev_err(adapter->netdev, "Reset adapter\n");
5149	igc_reinit_locked(adapter);
5150	rtnl_unlock();
5151}
5152
5153/**
5154 * igc_change_mtu - Change the Maximum Transfer Unit
5155 * @netdev: network interface device structure
5156 * @new_mtu: new value for maximum frame size
5157 *
5158 * Returns 0 on success, negative on failure
5159 */
5160static int igc_change_mtu(struct net_device *netdev, int new_mtu)
5161{
5162	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
5163	struct igc_adapter *adapter = netdev_priv(netdev);
5164
5165	if (igc_xdp_is_enabled(adapter) && new_mtu > ETH_DATA_LEN) {
5166		netdev_dbg(netdev, "Jumbo frames not supported with XDP");
5167		return -EINVAL;
5168	}
5169
5170	/* adjust max frame to be at least the size of a standard frame */
5171	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5172		max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5173
5174	while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
5175		usleep_range(1000, 2000);
5176
5177	/* igc_down has a dependency on max_frame_size */
5178	adapter->max_frame_size = max_frame;
5179
5180	if (netif_running(netdev))
5181		igc_down(adapter);
5182
5183	netdev_dbg(netdev, "changing MTU from %d to %d\n", netdev->mtu, new_mtu);
5184	netdev->mtu = new_mtu;
5185
5186	if (netif_running(netdev))
5187		igc_up(adapter);
5188	else
5189		igc_reset(adapter);
5190
5191	clear_bit(__IGC_RESETTING, &adapter->state);
5192
5193	return 0;
5194}
5195
5196/**
5197 * igc_tx_timeout - Respond to a Tx Hang
5198 * @netdev: network interface device structure
5199 * @txqueue: queue number that timed out
5200 **/
5201static void igc_tx_timeout(struct net_device *netdev,
5202			   unsigned int __always_unused txqueue)
5203{
5204	struct igc_adapter *adapter = netdev_priv(netdev);
5205	struct igc_hw *hw = &adapter->hw;
5206
5207	/* Do the reset outside of interrupt context */
5208	adapter->tx_timeout_count++;
5209	schedule_work(&adapter->reset_task);
5210	wr32(IGC_EICS,
5211	     (adapter->eims_enable_mask & ~adapter->eims_other));
5212}
5213
5214/**
5215 * igc_get_stats64 - Get System Network Statistics
5216 * @netdev: network interface device structure
5217 * @stats: rtnl_link_stats64 pointer
5218 *
5219 * Returns the address of the device statistics structure.
5220 * The statistics are updated here and also from the timer callback.
5221 */
5222static void igc_get_stats64(struct net_device *netdev,
5223			    struct rtnl_link_stats64 *stats)
5224{
5225	struct igc_adapter *adapter = netdev_priv(netdev);
5226
5227	spin_lock(&adapter->stats64_lock);
5228	if (!test_bit(__IGC_RESETTING, &adapter->state))
5229		igc_update_stats(adapter);
5230	memcpy(stats, &adapter->stats64, sizeof(*stats));
5231	spin_unlock(&adapter->stats64_lock);
5232}
5233
5234static netdev_features_t igc_fix_features(struct net_device *netdev,
5235					  netdev_features_t features)
5236{
5237	/* Since there is no support for separate Rx/Tx vlan accel
5238	 * enable/disable make sure Tx flag is always in same state as Rx.
5239	 */
5240	if (features & NETIF_F_HW_VLAN_CTAG_RX)
5241		features |= NETIF_F_HW_VLAN_CTAG_TX;
5242	else
5243		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
5244
5245	return features;
5246}
5247
5248static int igc_set_features(struct net_device *netdev,
5249			    netdev_features_t features)
5250{
5251	netdev_features_t changed = netdev->features ^ features;
5252	struct igc_adapter *adapter = netdev_priv(netdev);
5253
5254	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
5255		igc_vlan_mode(netdev, features);
5256
5257	/* Add VLAN support */
5258	if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
5259		return 0;
5260
5261	if (!(features & NETIF_F_NTUPLE))
5262		igc_flush_nfc_rules(adapter);
5263
5264	netdev->features = features;
5265
5266	if (netif_running(netdev))
5267		igc_reinit_locked(adapter);
5268	else
5269		igc_reset(adapter);
5270
5271	return 1;
5272}
5273
5274static netdev_features_t
5275igc_features_check(struct sk_buff *skb, struct net_device *dev,
5276		   netdev_features_t features)
5277{
5278	unsigned int network_hdr_len, mac_hdr_len;
5279
5280	/* Make certain the headers can be described by a context descriptor */
5281	mac_hdr_len = skb_network_header(skb) - skb->data;
5282	if (unlikely(mac_hdr_len > IGC_MAX_MAC_HDR_LEN))
5283		return features & ~(NETIF_F_HW_CSUM |
5284				    NETIF_F_SCTP_CRC |
5285				    NETIF_F_HW_VLAN_CTAG_TX |
5286				    NETIF_F_TSO |
5287				    NETIF_F_TSO6);
5288
5289	network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
5290	if (unlikely(network_hdr_len >  IGC_MAX_NETWORK_HDR_LEN))
5291		return features & ~(NETIF_F_HW_CSUM |
5292				    NETIF_F_SCTP_CRC |
5293				    NETIF_F_TSO |
5294				    NETIF_F_TSO6);
5295
5296	/* We can only support IPv4 TSO in tunnels if we can mangle the
5297	 * inner IP ID field, so strip TSO if MANGLEID is not supported.
5298	 */
5299	if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
5300		features &= ~NETIF_F_TSO;
5301
5302	return features;
5303}
5304
5305static void igc_tsync_interrupt(struct igc_adapter *adapter)
5306{
5307	struct igc_hw *hw = &adapter->hw;
5308	u32 tsauxc, sec, nsec, tsicr;
5309	struct ptp_clock_event event;
5310	struct timespec64 ts;
5311
5312	tsicr = rd32(IGC_TSICR);
5313
5314	if (tsicr & IGC_TSICR_SYS_WRAP) {
5315		event.type = PTP_CLOCK_PPS;
5316		if (adapter->ptp_caps.pps)
5317			ptp_clock_event(adapter->ptp_clock, &event);
5318	}
5319
5320	if (tsicr & IGC_TSICR_TXTS) {
5321		/* retrieve hardware timestamp */
5322		igc_ptp_tx_tstamp_event(adapter);
5323	}
5324
5325	if (tsicr & IGC_TSICR_TT0) {
5326		spin_lock(&adapter->tmreg_lock);
5327		ts = timespec64_add(adapter->perout[0].start,
5328				    adapter->perout[0].period);
5329		wr32(IGC_TRGTTIML0, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0);
5330		wr32(IGC_TRGTTIMH0, (u32)ts.tv_sec);
5331		tsauxc = rd32(IGC_TSAUXC);
5332		tsauxc |= IGC_TSAUXC_EN_TT0;
5333		wr32(IGC_TSAUXC, tsauxc);
5334		adapter->perout[0].start = ts;
5335		spin_unlock(&adapter->tmreg_lock);
5336	}
5337
5338	if (tsicr & IGC_TSICR_TT1) {
5339		spin_lock(&adapter->tmreg_lock);
5340		ts = timespec64_add(adapter->perout[1].start,
5341				    adapter->perout[1].period);
5342		wr32(IGC_TRGTTIML1, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0);
5343		wr32(IGC_TRGTTIMH1, (u32)ts.tv_sec);
5344		tsauxc = rd32(IGC_TSAUXC);
5345		tsauxc |= IGC_TSAUXC_EN_TT1;
5346		wr32(IGC_TSAUXC, tsauxc);
5347		adapter->perout[1].start = ts;
5348		spin_unlock(&adapter->tmreg_lock);
5349	}
5350
5351	if (tsicr & IGC_TSICR_AUTT0) {
5352		nsec = rd32(IGC_AUXSTMPL0);
5353		sec  = rd32(IGC_AUXSTMPH0);
5354		event.type = PTP_CLOCK_EXTTS;
5355		event.index = 0;
5356		event.timestamp = sec * NSEC_PER_SEC + nsec;
5357		ptp_clock_event(adapter->ptp_clock, &event);
5358	}
5359
5360	if (tsicr & IGC_TSICR_AUTT1) {
5361		nsec = rd32(IGC_AUXSTMPL1);
5362		sec  = rd32(IGC_AUXSTMPH1);
5363		event.type = PTP_CLOCK_EXTTS;
5364		event.index = 1;
5365		event.timestamp = sec * NSEC_PER_SEC + nsec;
5366		ptp_clock_event(adapter->ptp_clock, &event);
5367	}
5368}
5369
5370/**
5371 * igc_msix_other - msix other interrupt handler
5372 * @irq: interrupt number
5373 * @data: pointer to a q_vector
5374 */
5375static irqreturn_t igc_msix_other(int irq, void *data)
5376{
5377	struct igc_adapter *adapter = data;
5378	struct igc_hw *hw = &adapter->hw;
5379	u32 icr = rd32(IGC_ICR);
5380
5381	/* reading ICR causes bit 31 of EICR to be cleared */
5382	if (icr & IGC_ICR_DRSTA)
5383		schedule_work(&adapter->reset_task);
5384
5385	if (icr & IGC_ICR_DOUTSYNC) {
5386		/* HW is reporting DMA is out of sync */
5387		adapter->stats.doosync++;
5388	}
5389
5390	if (icr & IGC_ICR_LSC) {
5391		hw->mac.get_link_status = true;
5392		/* guard against interrupt when we're going down */
5393		if (!test_bit(__IGC_DOWN, &adapter->state))
5394			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5395	}
5396
5397	if (icr & IGC_ICR_TS)
5398		igc_tsync_interrupt(adapter);
5399
5400	wr32(IGC_EIMS, adapter->eims_other);
5401
5402	return IRQ_HANDLED;
5403}
5404
5405static void igc_write_itr(struct igc_q_vector *q_vector)
5406{
5407	u32 itr_val = q_vector->itr_val & IGC_QVECTOR_MASK;
5408
5409	if (!q_vector->set_itr)
5410		return;
5411
5412	if (!itr_val)
5413		itr_val = IGC_ITR_VAL_MASK;
5414
5415	itr_val |= IGC_EITR_CNT_IGNR;
5416
5417	writel(itr_val, q_vector->itr_register);
5418	q_vector->set_itr = 0;
5419}
5420
5421static irqreturn_t igc_msix_ring(int irq, void *data)
5422{
5423	struct igc_q_vector *q_vector = data;
5424
5425	/* Write the ITR value calculated from the previous interrupt. */
5426	igc_write_itr(q_vector);
5427
5428	napi_schedule(&q_vector->napi);
5429
5430	return IRQ_HANDLED;
5431}
5432
5433/**
5434 * igc_request_msix - Initialize MSI-X interrupts
5435 * @adapter: Pointer to adapter structure
5436 *
5437 * igc_request_msix allocates MSI-X vectors and requests interrupts from the
5438 * kernel.
5439 */
5440static int igc_request_msix(struct igc_adapter *adapter)
5441{
5442	unsigned int num_q_vectors = adapter->num_q_vectors;
5443	int i = 0, err = 0, vector = 0, free_vector = 0;
5444	struct net_device *netdev = adapter->netdev;
5445
5446	err = request_irq(adapter->msix_entries[vector].vector,
5447			  &igc_msix_other, 0, netdev->name, adapter);
5448	if (err)
5449		goto err_out;
5450
5451	if (num_q_vectors > MAX_Q_VECTORS) {
5452		num_q_vectors = MAX_Q_VECTORS;
5453		dev_warn(&adapter->pdev->dev,
5454			 "The number of queue vectors (%d) is higher than max allowed (%d)\n",
5455			 adapter->num_q_vectors, MAX_Q_VECTORS);
5456	}
5457	for (i = 0; i < num_q_vectors; i++) {
5458		struct igc_q_vector *q_vector = adapter->q_vector[i];
5459
5460		vector++;
5461
5462		q_vector->itr_register = adapter->io_addr + IGC_EITR(vector);
5463
5464		if (q_vector->rx.ring && q_vector->tx.ring)
5465			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
5466				q_vector->rx.ring->queue_index);
5467		else if (q_vector->tx.ring)
5468			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
5469				q_vector->tx.ring->queue_index);
5470		else if (q_vector->rx.ring)
5471			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
5472				q_vector->rx.ring->queue_index);
5473		else
5474			sprintf(q_vector->name, "%s-unused", netdev->name);
5475
5476		err = request_irq(adapter->msix_entries[vector].vector,
5477				  igc_msix_ring, 0, q_vector->name,
5478				  q_vector);
5479		if (err)
5480			goto err_free;
5481	}
5482
5483	igc_configure_msix(adapter);
5484	return 0;
5485
5486err_free:
5487	/* free already assigned IRQs */
5488	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
5489
5490	vector--;
5491	for (i = 0; i < vector; i++) {
5492		free_irq(adapter->msix_entries[free_vector++].vector,
5493			 adapter->q_vector[i]);
5494	}
5495err_out:
5496	return err;
5497}
5498
5499/**
5500 * igc_clear_interrupt_scheme - reset the device to a state of no interrupts
5501 * @adapter: Pointer to adapter structure
5502 *
5503 * This function resets the device so that it has 0 rx queues, tx queues, and
5504 * MSI-X interrupts allocated.
5505 */
5506static void igc_clear_interrupt_scheme(struct igc_adapter *adapter)
5507{
5508	igc_free_q_vectors(adapter);
5509	igc_reset_interrupt_capability(adapter);
5510}
5511
5512/* Need to wait a few seconds after link up to get diagnostic information from
5513 * the phy
5514 */
5515static void igc_update_phy_info(struct timer_list *t)
5516{
5517	struct igc_adapter *adapter = from_timer(adapter, t, phy_info_timer);
5518
5519	igc_get_phy_info(&adapter->hw);
5520}
5521
5522/**
5523 * igc_has_link - check shared code for link and determine up/down
5524 * @adapter: pointer to driver private info
5525 */
5526bool igc_has_link(struct igc_adapter *adapter)
5527{
5528	struct igc_hw *hw = &adapter->hw;
5529	bool link_active = false;
5530
5531	/* get_link_status is set on LSC (link status) interrupt or
5532	 * rx sequence error interrupt.  get_link_status will stay
5533	 * false until the igc_check_for_link establishes link
5534	 * for copper adapters ONLY
5535	 */
5536	if (!hw->mac.get_link_status)
5537		return true;
5538	hw->mac.ops.check_for_link(hw);
5539	link_active = !hw->mac.get_link_status;
5540
5541	if (hw->mac.type == igc_i225) {
5542		if (!netif_carrier_ok(adapter->netdev)) {
5543			adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
5544		} else if (!(adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)) {
5545			adapter->flags |= IGC_FLAG_NEED_LINK_UPDATE;
5546			adapter->link_check_timeout = jiffies;
5547		}
5548	}
5549
5550	return link_active;
5551}
5552
5553/**
5554 * igc_watchdog - Timer Call-back
5555 * @t: timer for the watchdog
5556 */
5557static void igc_watchdog(struct timer_list *t)
5558{
5559	struct igc_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5560	/* Do the rest outside of interrupt context */
5561	schedule_work(&adapter->watchdog_task);
5562}
5563
5564static void igc_watchdog_task(struct work_struct *work)
5565{
5566	struct igc_adapter *adapter = container_of(work,
5567						   struct igc_adapter,
5568						   watchdog_task);
5569	struct net_device *netdev = adapter->netdev;
5570	struct igc_hw *hw = &adapter->hw;
5571	struct igc_phy_info *phy = &hw->phy;
5572	u16 phy_data, retry_count = 20;
5573	u32 link;
5574	int i;
5575
5576	link = igc_has_link(adapter);
5577
5578	if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) {
5579		if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
5580			adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
5581		else
5582			link = false;
5583	}
5584
5585	if (link) {
5586		/* Cancel scheduled suspend requests. */
5587		pm_runtime_resume(netdev->dev.parent);
5588
5589		if (!netif_carrier_ok(netdev)) {
5590			u32 ctrl;
5591
5592			hw->mac.ops.get_speed_and_duplex(hw,
5593							 &adapter->link_speed,
5594							 &adapter->link_duplex);
5595
5596			ctrl = rd32(IGC_CTRL);
5597			/* Link status message must follow this format */
5598			netdev_info(netdev,
5599				    "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5600				    adapter->link_speed,
5601				    adapter->link_duplex == FULL_DUPLEX ?
5602				    "Full" : "Half",
5603				    (ctrl & IGC_CTRL_TFCE) &&
5604				    (ctrl & IGC_CTRL_RFCE) ? "RX/TX" :
5605				    (ctrl & IGC_CTRL_RFCE) ?  "RX" :
5606				    (ctrl & IGC_CTRL_TFCE) ?  "TX" : "None");
5607
5608			/* disable EEE if enabled */
5609			if ((adapter->flags & IGC_FLAG_EEE) &&
5610			    adapter->link_duplex == HALF_DUPLEX) {
5611				netdev_info(netdev,
5612					    "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex\n");
5613				adapter->hw.dev_spec._base.eee_enable = false;
5614				adapter->flags &= ~IGC_FLAG_EEE;
5615			}
5616
5617			/* check if SmartSpeed worked */
5618			igc_check_downshift(hw);
5619			if (phy->speed_downgraded)
5620				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5621
5622			/* adjust timeout factor according to speed/duplex */
5623			adapter->tx_timeout_factor = 1;
5624			switch (adapter->link_speed) {
5625			case SPEED_10:
5626				adapter->tx_timeout_factor = 14;
5627				break;
5628			case SPEED_100:
5629			case SPEED_1000:
5630			case SPEED_2500:
5631				adapter->tx_timeout_factor = 1;
5632				break;
5633			}
5634
5635			/* Once the launch time has been set on the wire, there
5636			 * is a delay before the link speed can be determined
5637			 * based on link-up activity. Write into the register
5638			 * as soon as we know the correct link speed.
5639			 */
5640			igc_tsn_adjust_txtime_offset(adapter);
5641
5642			if (adapter->link_speed != SPEED_1000)
5643				goto no_wait;
5644
5645			/* wait for Remote receiver status OK */
5646retry_read_status:
5647			if (!igc_read_phy_reg(hw, PHY_1000T_STATUS,
5648					      &phy_data)) {
5649				if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5650				    retry_count) {
5651					msleep(100);
5652					retry_count--;
5653					goto retry_read_status;
5654				} else if (!retry_count) {
5655					netdev_err(netdev, "exceed max 2 second\n");
5656				}
5657			} else {
5658				netdev_err(netdev, "read 1000Base-T Status Reg\n");
5659			}
5660no_wait:
5661			netif_carrier_on(netdev);
5662
5663			/* link state has changed, schedule phy info update */
5664			if (!test_bit(__IGC_DOWN, &adapter->state))
5665				mod_timer(&adapter->phy_info_timer,
5666					  round_jiffies(jiffies + 2 * HZ));
5667		}
5668	} else {
5669		if (netif_carrier_ok(netdev)) {
5670			adapter->link_speed = 0;
5671			adapter->link_duplex = 0;
5672
5673			/* Links status message must follow this format */
5674			netdev_info(netdev, "NIC Link is Down\n");
5675			netif_carrier_off(netdev);
5676
5677			/* link state has changed, schedule phy info update */
5678			if (!test_bit(__IGC_DOWN, &adapter->state))
5679				mod_timer(&adapter->phy_info_timer,
5680					  round_jiffies(jiffies + 2 * HZ));
5681
5682			pm_schedule_suspend(netdev->dev.parent,
5683					    MSEC_PER_SEC * 5);
5684		}
5685	}
5686
5687	spin_lock(&adapter->stats64_lock);
5688	igc_update_stats(adapter);
5689	spin_unlock(&adapter->stats64_lock);
5690
5691	for (i = 0; i < adapter->num_tx_queues; i++) {
5692		struct igc_ring *tx_ring = adapter->tx_ring[i];
5693
5694		if (!netif_carrier_ok(netdev)) {
5695			/* We've lost link, so the controller stops DMA,
5696			 * but we've got queued Tx work that's never going
5697			 * to get done, so reset controller to flush Tx.
5698			 * (Do the reset outside of interrupt context).
5699			 */
5700			if (igc_desc_unused(tx_ring) + 1 < tx_ring->count) {
5701				adapter->tx_timeout_count++;
5702				schedule_work(&adapter->reset_task);
5703				/* return immediately since reset is imminent */
5704				return;
5705			}
5706		}
5707
5708		/* Force detection of hung controller every watchdog period */
5709		set_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5710	}
5711
5712	/* Cause software interrupt to ensure Rx ring is cleaned */
5713	if (adapter->flags & IGC_FLAG_HAS_MSIX) {
5714		u32 eics = 0;
5715
5716		for (i = 0; i < adapter->num_q_vectors; i++)
5717			eics |= adapter->q_vector[i]->eims_value;
5718		wr32(IGC_EICS, eics);
5719	} else {
5720		wr32(IGC_ICS, IGC_ICS_RXDMT0);
5721	}
5722
5723	igc_ptp_tx_hang(adapter);
5724
5725	/* Reset the timer */
5726	if (!test_bit(__IGC_DOWN, &adapter->state)) {
5727		if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)
5728			mod_timer(&adapter->watchdog_timer,
5729				  round_jiffies(jiffies +  HZ));
5730		else
5731			mod_timer(&adapter->watchdog_timer,
5732				  round_jiffies(jiffies + 2 * HZ));
5733	}
5734}
5735
5736/**
5737 * igc_intr_msi - Interrupt Handler
5738 * @irq: interrupt number
5739 * @data: pointer to a network interface device structure
5740 */
5741static irqreturn_t igc_intr_msi(int irq, void *data)
5742{
5743	struct igc_adapter *adapter = data;
5744	struct igc_q_vector *q_vector = adapter->q_vector[0];
5745	struct igc_hw *hw = &adapter->hw;
5746	/* read ICR disables interrupts using IAM */
5747	u32 icr = rd32(IGC_ICR);
5748
5749	igc_write_itr(q_vector);
5750
5751	if (icr & IGC_ICR_DRSTA)
5752		schedule_work(&adapter->reset_task);
5753
5754	if (icr & IGC_ICR_DOUTSYNC) {
5755		/* HW is reporting DMA is out of sync */
5756		adapter->stats.doosync++;
5757	}
5758
5759	if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
5760		hw->mac.get_link_status = true;
5761		if (!test_bit(__IGC_DOWN, &adapter->state))
5762			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5763	}
5764
5765	if (icr & IGC_ICR_TS)
5766		igc_tsync_interrupt(adapter);
5767
5768	napi_schedule(&q_vector->napi);
5769
5770	return IRQ_HANDLED;
5771}
5772
5773/**
5774 * igc_intr - Legacy Interrupt Handler
5775 * @irq: interrupt number
5776 * @data: pointer to a network interface device structure
5777 */
5778static irqreturn_t igc_intr(int irq, void *data)
5779{
5780	struct igc_adapter *adapter = data;
5781	struct igc_q_vector *q_vector = adapter->q_vector[0];
5782	struct igc_hw *hw = &adapter->hw;
5783	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
5784	 * need for the IMC write
5785	 */
5786	u32 icr = rd32(IGC_ICR);
5787
5788	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5789	 * not set, then the adapter didn't send an interrupt
5790	 */
5791	if (!(icr & IGC_ICR_INT_ASSERTED))
5792		return IRQ_NONE;
5793
5794	igc_write_itr(q_vector);
5795
5796	if (icr & IGC_ICR_DRSTA)
5797		schedule_work(&adapter->reset_task);
5798
5799	if (icr & IGC_ICR_DOUTSYNC) {
5800		/* HW is reporting DMA is out of sync */
5801		adapter->stats.doosync++;
5802	}
5803
5804	if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
5805		hw->mac.get_link_status = true;
5806		/* guard against interrupt when we're going down */
5807		if (!test_bit(__IGC_DOWN, &adapter->state))
5808			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5809	}
5810
5811	if (icr & IGC_ICR_TS)
5812		igc_tsync_interrupt(adapter);
5813
5814	napi_schedule(&q_vector->napi);
5815
5816	return IRQ_HANDLED;
5817}
5818
5819static void igc_free_irq(struct igc_adapter *adapter)
5820{
5821	if (adapter->msix_entries) {
5822		int vector = 0, i;
5823
5824		free_irq(adapter->msix_entries[vector++].vector, adapter);
5825
5826		for (i = 0; i < adapter->num_q_vectors; i++)
5827			free_irq(adapter->msix_entries[vector++].vector,
5828				 adapter->q_vector[i]);
5829	} else {
5830		free_irq(adapter->pdev->irq, adapter);
5831	}
5832}
5833
5834/**
5835 * igc_request_irq - initialize interrupts
5836 * @adapter: Pointer to adapter structure
5837 *
5838 * Attempts to configure interrupts using the best available
5839 * capabilities of the hardware and kernel.
5840 */
5841static int igc_request_irq(struct igc_adapter *adapter)
5842{
5843	struct net_device *netdev = adapter->netdev;
5844	struct pci_dev *pdev = adapter->pdev;
5845	int err = 0;
5846
5847	if (adapter->flags & IGC_FLAG_HAS_MSIX) {
5848		err = igc_request_msix(adapter);
5849		if (!err)
5850			goto request_done;
5851		/* fall back to MSI */
5852		igc_free_all_tx_resources(adapter);
5853		igc_free_all_rx_resources(adapter);
5854
5855		igc_clear_interrupt_scheme(adapter);
5856		err = igc_init_interrupt_scheme(adapter, false);
5857		if (err)
5858			goto request_done;
5859		igc_setup_all_tx_resources(adapter);
5860		igc_setup_all_rx_resources(adapter);
5861		igc_configure(adapter);
5862	}
5863
5864	igc_assign_vector(adapter->q_vector[0], 0);
5865
5866	if (adapter->flags & IGC_FLAG_HAS_MSI) {
5867		err = request_irq(pdev->irq, &igc_intr_msi, 0,
5868				  netdev->name, adapter);
5869		if (!err)
5870			goto request_done;
5871
5872		/* fall back to legacy interrupts */
5873		igc_reset_interrupt_capability(adapter);
5874		adapter->flags &= ~IGC_FLAG_HAS_MSI;
5875	}
5876
5877	err = request_irq(pdev->irq, &igc_intr, IRQF_SHARED,
5878			  netdev->name, adapter);
5879
5880	if (err)
5881		netdev_err(netdev, "Error %d getting interrupt\n", err);
5882
5883request_done:
5884	return err;
5885}
5886
5887/**
5888 * __igc_open - Called when a network interface is made active
5889 * @netdev: network interface device structure
5890 * @resuming: boolean indicating if the device is resuming
5891 *
5892 * Returns 0 on success, negative value on failure
5893 *
5894 * The open entry point is called when a network interface is made
5895 * active by the system (IFF_UP).  At this point all resources needed
5896 * for transmit and receive operations are allocated, the interrupt
5897 * handler is registered with the OS, the watchdog timer is started,
5898 * and the stack is notified that the interface is ready.
5899 */
5900static int __igc_open(struct net_device *netdev, bool resuming)
5901{
5902	struct igc_adapter *adapter = netdev_priv(netdev);
5903	struct pci_dev *pdev = adapter->pdev;
5904	struct igc_hw *hw = &adapter->hw;
5905	int err = 0;
5906	int i = 0;
5907
5908	/* disallow open during test */
5909
5910	if (test_bit(__IGC_TESTING, &adapter->state)) {
5911		WARN_ON(resuming);
5912		return -EBUSY;
5913	}
5914
5915	if (!resuming)
5916		pm_runtime_get_sync(&pdev->dev);
5917
5918	netif_carrier_off(netdev);
5919
5920	/* allocate transmit descriptors */
5921	err = igc_setup_all_tx_resources(adapter);
5922	if (err)
5923		goto err_setup_tx;
5924
5925	/* allocate receive descriptors */
5926	err = igc_setup_all_rx_resources(adapter);
5927	if (err)
5928		goto err_setup_rx;
5929
5930	igc_power_up_link(adapter);
5931
5932	igc_configure(adapter);
5933
5934	err = igc_request_irq(adapter);
5935	if (err)
5936		goto err_req_irq;
5937
5938	/* Notify the stack of the actual queue counts. */
5939	err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues);
5940	if (err)
5941		goto err_set_queues;
5942
5943	err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues);
5944	if (err)
5945		goto err_set_queues;
5946
5947	clear_bit(__IGC_DOWN, &adapter->state);
5948
5949	for (i = 0; i < adapter->num_q_vectors; i++)
5950		napi_enable(&adapter->q_vector[i]->napi);
5951
5952	/* Clear any pending interrupts. */
5953	rd32(IGC_ICR);
5954	igc_irq_enable(adapter);
5955
5956	if (!resuming)
5957		pm_runtime_put(&pdev->dev);
5958
5959	netif_tx_start_all_queues(netdev);
5960
5961	/* start the watchdog. */
5962	hw->mac.get_link_status = true;
5963	schedule_work(&adapter->watchdog_task);
5964
5965	return IGC_SUCCESS;
5966
5967err_set_queues:
5968	igc_free_irq(adapter);
5969err_req_irq:
5970	igc_release_hw_control(adapter);
5971	igc_power_down_phy_copper_base(&adapter->hw);
5972	igc_free_all_rx_resources(adapter);
5973err_setup_rx:
5974	igc_free_all_tx_resources(adapter);
5975err_setup_tx:
5976	igc_reset(adapter);
5977	if (!resuming)
5978		pm_runtime_put(&pdev->dev);
5979
5980	return err;
5981}
5982
5983int igc_open(struct net_device *netdev)
5984{
5985	return __igc_open(netdev, false);
5986}
5987
5988/**
5989 * __igc_close - Disables a network interface
5990 * @netdev: network interface device structure
5991 * @suspending: boolean indicating the device is suspending
5992 *
5993 * Returns 0, this is not allowed to fail
5994 *
5995 * The close entry point is called when an interface is de-activated
5996 * by the OS.  The hardware is still under the driver's control, but
5997 * needs to be disabled.  A global MAC reset is issued to stop the
5998 * hardware, and all transmit and receive resources are freed.
5999 */
6000static int __igc_close(struct net_device *netdev, bool suspending)
6001{
6002	struct igc_adapter *adapter = netdev_priv(netdev);
6003	struct pci_dev *pdev = adapter->pdev;
6004
6005	WARN_ON(test_bit(__IGC_RESETTING, &adapter->state));
6006
6007	if (!suspending)
6008		pm_runtime_get_sync(&pdev->dev);
6009
6010	igc_down(adapter);
6011
6012	igc_release_hw_control(adapter);
6013
6014	igc_free_irq(adapter);
6015
6016	igc_free_all_tx_resources(adapter);
6017	igc_free_all_rx_resources(adapter);
6018
6019	if (!suspending)
6020		pm_runtime_put_sync(&pdev->dev);
6021
6022	return 0;
6023}
6024
6025int igc_close(struct net_device *netdev)
6026{
6027	if (netif_device_present(netdev) || netdev->dismantle)
6028		return __igc_close(netdev, false);
6029	return 0;
6030}
6031
6032/**
6033 * igc_ioctl - Access the hwtstamp interface
6034 * @netdev: network interface device structure
6035 * @ifr: interface request data
6036 * @cmd: ioctl command
6037 **/
6038static int igc_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6039{
6040	switch (cmd) {
6041	case SIOCGHWTSTAMP:
6042		return igc_ptp_get_ts_config(netdev, ifr);
6043	case SIOCSHWTSTAMP:
6044		return igc_ptp_set_ts_config(netdev, ifr);
6045	default:
6046		return -EOPNOTSUPP;
6047	}
6048}
6049
6050static int igc_save_launchtime_params(struct igc_adapter *adapter, int queue,
6051				      bool enable)
6052{
6053	struct igc_ring *ring;
6054
6055	if (queue < 0 || queue >= adapter->num_tx_queues)
6056		return -EINVAL;
6057
6058	ring = adapter->tx_ring[queue];
6059	ring->launchtime_enable = enable;
6060
6061	return 0;
6062}
6063
6064static bool is_base_time_past(ktime_t base_time, const struct timespec64 *now)
6065{
6066	struct timespec64 b;
6067
6068	b = ktime_to_timespec64(base_time);
6069
6070	return timespec64_compare(now, &b) > 0;
6071}
6072
6073static bool validate_schedule(struct igc_adapter *adapter,
6074			      const struct tc_taprio_qopt_offload *qopt)
6075{
6076	int queue_uses[IGC_MAX_TX_QUEUES] = { };
6077	struct igc_hw *hw = &adapter->hw;
6078	struct timespec64 now;
6079	size_t n;
6080
6081	if (qopt->cycle_time_extension)
6082		return false;
6083
6084	igc_ptp_read(adapter, &now);
6085
6086	/* If we program the controller's BASET registers with a time
6087	 * in the future, it will hold all the packets until that
6088	 * time, causing a lot of TX Hangs, so to avoid that, we
6089	 * reject schedules that would start in the future.
6090	 * Note: Limitation above is no longer in i226.
6091	 */
6092	if (!is_base_time_past(qopt->base_time, &now) &&
6093	    igc_is_device_id_i225(hw))
6094		return false;
6095
6096	for (n = 0; n < qopt->num_entries; n++) {
6097		const struct tc_taprio_sched_entry *e, *prev;
6098		int i;
6099
6100		prev = n ? &qopt->entries[n - 1] : NULL;
6101		e = &qopt->entries[n];
6102
6103		/* i225 only supports "global" frame preemption
6104		 * settings.
6105		 */
6106		if (e->command != TC_TAPRIO_CMD_SET_GATES)
6107			return false;
6108
6109		for (i = 0; i < adapter->num_tx_queues; i++)
6110			if (e->gate_mask & BIT(i)) {
6111				queue_uses[i]++;
6112
6113				/* There are limitations: A single queue cannot
6114				 * be opened and closed multiple times per cycle
6115				 * unless the gate stays open. Check for it.
6116				 */
6117				if (queue_uses[i] > 1 &&
6118				    !(prev->gate_mask & BIT(i)))
6119					return false;
6120			}
6121	}
6122
6123	return true;
6124}
6125
6126static int igc_tsn_enable_launchtime(struct igc_adapter *adapter,
6127				     struct tc_etf_qopt_offload *qopt)
6128{
6129	struct igc_hw *hw = &adapter->hw;
6130	int err;
6131
6132	if (hw->mac.type != igc_i225)
6133		return -EOPNOTSUPP;
6134
6135	err = igc_save_launchtime_params(adapter, qopt->queue, qopt->enable);
6136	if (err)
6137		return err;
6138
6139	return igc_tsn_offload_apply(adapter);
6140}
6141
6142static int igc_qbv_clear_schedule(struct igc_adapter *adapter)
6143{
6144	unsigned long flags;
6145	int i;
6146
6147	adapter->base_time = 0;
6148	adapter->cycle_time = NSEC_PER_SEC;
6149	adapter->taprio_offload_enable = false;
6150	adapter->qbv_config_change_errors = 0;
6151	adapter->qbv_count = 0;
6152
6153	for (i = 0; i < adapter->num_tx_queues; i++) {
6154		struct igc_ring *ring = adapter->tx_ring[i];
6155
6156		ring->start_time = 0;
6157		ring->end_time = NSEC_PER_SEC;
6158		ring->max_sdu = 0;
6159	}
6160
6161	spin_lock_irqsave(&adapter->qbv_tx_lock, flags);
6162
6163	adapter->qbv_transition = false;
6164
6165	for (i = 0; i < adapter->num_tx_queues; i++) {
6166		struct igc_ring *ring = adapter->tx_ring[i];
6167
6168		ring->oper_gate_closed = false;
6169		ring->admin_gate_closed = false;
6170	}
6171
6172	spin_unlock_irqrestore(&adapter->qbv_tx_lock, flags);
6173
6174	return 0;
6175}
6176
6177static int igc_tsn_clear_schedule(struct igc_adapter *adapter)
6178{
6179	igc_qbv_clear_schedule(adapter);
6180
6181	return 0;
6182}
6183
6184static void igc_taprio_stats(struct net_device *dev,
6185			     struct tc_taprio_qopt_stats *stats)
6186{
6187	/* When Strict_End is enabled, the tx_overruns counter
6188	 * will always be zero.
6189	 */
6190	stats->tx_overruns = 0;
6191}
6192
6193static void igc_taprio_queue_stats(struct net_device *dev,
6194				   struct tc_taprio_qopt_queue_stats *queue_stats)
6195{
6196	struct tc_taprio_qopt_stats *stats = &queue_stats->stats;
6197
6198	/* When Strict_End is enabled, the tx_overruns counter
6199	 * will always be zero.
6200	 */
6201	stats->tx_overruns = 0;
6202}
6203
6204static int igc_save_qbv_schedule(struct igc_adapter *adapter,
6205				 struct tc_taprio_qopt_offload *qopt)
6206{
6207	bool queue_configured[IGC_MAX_TX_QUEUES] = { };
6208	struct igc_hw *hw = &adapter->hw;
6209	u32 start_time = 0, end_time = 0;
6210	struct timespec64 now;
6211	unsigned long flags;
6212	size_t n;
6213	int i;
6214
6215	switch (qopt->cmd) {
6216	case TAPRIO_CMD_REPLACE:
6217		break;
6218	case TAPRIO_CMD_DESTROY:
6219		return igc_tsn_clear_schedule(adapter);
6220	case TAPRIO_CMD_STATS:
6221		igc_taprio_stats(adapter->netdev, &qopt->stats);
6222		return 0;
6223	case TAPRIO_CMD_QUEUE_STATS:
6224		igc_taprio_queue_stats(adapter->netdev, &qopt->queue_stats);
6225		return 0;
6226	default:
6227		return -EOPNOTSUPP;
6228	}
6229
6230	if (qopt->base_time < 0)
6231		return -ERANGE;
6232
6233	if (igc_is_device_id_i225(hw) && adapter->taprio_offload_enable)
6234		return -EALREADY;
6235
6236	if (!validate_schedule(adapter, qopt))
6237		return -EINVAL;
6238
6239	adapter->cycle_time = qopt->cycle_time;
6240	adapter->base_time = qopt->base_time;
6241	adapter->taprio_offload_enable = true;
6242
6243	igc_ptp_read(adapter, &now);
6244
6245	for (n = 0; n < qopt->num_entries; n++) {
6246		struct tc_taprio_sched_entry *e = &qopt->entries[n];
6247
6248		end_time += e->interval;
6249
6250		/* If any of the conditions below are true, we need to manually
6251		 * control the end time of the cycle.
6252		 * 1. Qbv users can specify a cycle time that is not equal
6253		 * to the total GCL intervals. Hence, recalculation is
6254		 * necessary here to exclude the time interval that
6255		 * exceeds the cycle time.
6256		 * 2. According to IEEE Std. 802.1Q-2018 section 8.6.9.2,
6257		 * once the end of the list is reached, it will switch
6258		 * to the END_OF_CYCLE state and leave the gates in the
6259		 * same state until the next cycle is started.
6260		 */
6261		if (end_time > adapter->cycle_time ||
6262		    n + 1 == qopt->num_entries)
6263			end_time = adapter->cycle_time;
6264
6265		for (i = 0; i < adapter->num_tx_queues; i++) {
6266			struct igc_ring *ring = adapter->tx_ring[i];
6267
6268			if (!(e->gate_mask & BIT(i)))
6269				continue;
6270
6271			/* Check whether a queue stays open for more than one
6272			 * entry. If so, keep the start and advance the end
6273			 * time.
6274			 */
6275			if (!queue_configured[i])
6276				ring->start_time = start_time;
6277			ring->end_time = end_time;
6278
6279			if (ring->start_time >= adapter->cycle_time)
6280				queue_configured[i] = false;
6281			else
6282				queue_configured[i] = true;
6283		}
6284
6285		start_time += e->interval;
6286	}
6287
6288	spin_lock_irqsave(&adapter->qbv_tx_lock, flags);
6289
6290	/* Check whether a queue gets configured.
6291	 * If not, set the start and end time to be end time.
6292	 */
6293	for (i = 0; i < adapter->num_tx_queues; i++) {
6294		struct igc_ring *ring = adapter->tx_ring[i];
6295
6296		if (!is_base_time_past(qopt->base_time, &now)) {
6297			ring->admin_gate_closed = false;
6298		} else {
6299			ring->oper_gate_closed = false;
6300			ring->admin_gate_closed = false;
6301		}
6302
6303		if (!queue_configured[i]) {
6304			if (!is_base_time_past(qopt->base_time, &now))
6305				ring->admin_gate_closed = true;
6306			else
6307				ring->oper_gate_closed = true;
6308
6309			ring->start_time = end_time;
6310			ring->end_time = end_time;
6311		}
6312	}
6313
6314	spin_unlock_irqrestore(&adapter->qbv_tx_lock, flags);
6315
6316	for (i = 0; i < adapter->num_tx_queues; i++) {
6317		struct igc_ring *ring = adapter->tx_ring[i];
6318		struct net_device *dev = adapter->netdev;
6319
6320		if (qopt->max_sdu[i])
6321			ring->max_sdu = qopt->max_sdu[i] + dev->hard_header_len - ETH_TLEN;
6322		else
6323			ring->max_sdu = 0;
6324	}
6325
6326	return 0;
6327}
6328
6329static int igc_tsn_enable_qbv_scheduling(struct igc_adapter *adapter,
6330					 struct tc_taprio_qopt_offload *qopt)
6331{
6332	struct igc_hw *hw = &adapter->hw;
6333	int err;
6334
6335	if (hw->mac.type != igc_i225)
6336		return -EOPNOTSUPP;
6337
6338	err = igc_save_qbv_schedule(adapter, qopt);
6339	if (err)
6340		return err;
6341
6342	return igc_tsn_offload_apply(adapter);
6343}
6344
6345static int igc_save_cbs_params(struct igc_adapter *adapter, int queue,
6346			       bool enable, int idleslope, int sendslope,
6347			       int hicredit, int locredit)
6348{
6349	bool cbs_status[IGC_MAX_SR_QUEUES] = { false };
6350	struct net_device *netdev = adapter->netdev;
6351	struct igc_ring *ring;
6352	int i;
6353
6354	/* i225 has two sets of credit-based shaper logic.
6355	 * Supporting it only on the top two priority queues
6356	 */
6357	if (queue < 0 || queue > 1)
6358		return -EINVAL;
6359
6360	ring = adapter->tx_ring[queue];
6361
6362	for (i = 0; i < IGC_MAX_SR_QUEUES; i++)
6363		if (adapter->tx_ring[i])
6364			cbs_status[i] = adapter->tx_ring[i]->cbs_enable;
6365
6366	/* CBS should be enabled on the highest priority queue first in order
6367	 * for the CBS algorithm to operate as intended.
6368	 */
6369	if (enable) {
6370		if (queue == 1 && !cbs_status[0]) {
6371			netdev_err(netdev,
6372				   "Enabling CBS on queue1 before queue0\n");
6373			return -EINVAL;
6374		}
6375	} else {
6376		if (queue == 0 && cbs_status[1]) {
6377			netdev_err(netdev,
6378				   "Disabling CBS on queue0 before queue1\n");
6379			return -EINVAL;
6380		}
6381	}
6382
6383	ring->cbs_enable = enable;
6384	ring->idleslope = idleslope;
6385	ring->sendslope = sendslope;
6386	ring->hicredit = hicredit;
6387	ring->locredit = locredit;
6388
6389	return 0;
6390}
6391
6392static int igc_tsn_enable_cbs(struct igc_adapter *adapter,
6393			      struct tc_cbs_qopt_offload *qopt)
6394{
6395	struct igc_hw *hw = &adapter->hw;
6396	int err;
6397
6398	if (hw->mac.type != igc_i225)
6399		return -EOPNOTSUPP;
6400
6401	if (qopt->queue < 0 || qopt->queue > 1)
6402		return -EINVAL;
6403
6404	err = igc_save_cbs_params(adapter, qopt->queue, qopt->enable,
6405				  qopt->idleslope, qopt->sendslope,
6406				  qopt->hicredit, qopt->locredit);
6407	if (err)
6408		return err;
6409
6410	return igc_tsn_offload_apply(adapter);
6411}
6412
6413static int igc_tc_query_caps(struct igc_adapter *adapter,
6414			     struct tc_query_caps_base *base)
6415{
6416	struct igc_hw *hw = &adapter->hw;
6417
6418	switch (base->type) {
6419	case TC_SETUP_QDISC_TAPRIO: {
6420		struct tc_taprio_caps *caps = base->caps;
6421
6422		caps->broken_mqprio = true;
6423
6424		if (hw->mac.type == igc_i225) {
6425			caps->supports_queue_max_sdu = true;
6426			caps->gate_mask_per_txq = true;
6427		}
6428
6429		return 0;
6430	}
6431	default:
6432		return -EOPNOTSUPP;
6433	}
6434}
6435
6436static int igc_setup_tc(struct net_device *dev, enum tc_setup_type type,
6437			void *type_data)
6438{
6439	struct igc_adapter *adapter = netdev_priv(dev);
6440
6441	adapter->tc_setup_type = type;
6442
6443	switch (type) {
6444	case TC_QUERY_CAPS:
6445		return igc_tc_query_caps(adapter, type_data);
6446	case TC_SETUP_QDISC_TAPRIO:
6447		return igc_tsn_enable_qbv_scheduling(adapter, type_data);
6448
6449	case TC_SETUP_QDISC_ETF:
6450		return igc_tsn_enable_launchtime(adapter, type_data);
6451
6452	case TC_SETUP_QDISC_CBS:
6453		return igc_tsn_enable_cbs(adapter, type_data);
6454
6455	default:
6456		return -EOPNOTSUPP;
6457	}
6458}
6459
6460static int igc_bpf(struct net_device *dev, struct netdev_bpf *bpf)
6461{
6462	struct igc_adapter *adapter = netdev_priv(dev);
6463
6464	switch (bpf->command) {
6465	case XDP_SETUP_PROG:
6466		return igc_xdp_set_prog(adapter, bpf->prog, bpf->extack);
6467	case XDP_SETUP_XSK_POOL:
6468		return igc_xdp_setup_pool(adapter, bpf->xsk.pool,
6469					  bpf->xsk.queue_id);
6470	default:
6471		return -EOPNOTSUPP;
6472	}
6473}
6474
6475static int igc_xdp_xmit(struct net_device *dev, int num_frames,
6476			struct xdp_frame **frames, u32 flags)
6477{
6478	struct igc_adapter *adapter = netdev_priv(dev);
6479	int cpu = smp_processor_id();
6480	struct netdev_queue *nq;
6481	struct igc_ring *ring;
6482	int i, nxmit;
6483
6484	if (unlikely(!netif_carrier_ok(dev)))
6485		return -ENETDOWN;
6486
6487	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
6488		return -EINVAL;
6489
6490	ring = igc_xdp_get_tx_ring(adapter, cpu);
6491	nq = txring_txq(ring);
6492
6493	__netif_tx_lock(nq, cpu);
6494
6495	/* Avoid transmit queue timeout since we share it with the slow path */
6496	txq_trans_cond_update(nq);
6497
6498	nxmit = 0;
6499	for (i = 0; i < num_frames; i++) {
6500		int err;
6501		struct xdp_frame *xdpf = frames[i];
6502
6503		err = igc_xdp_init_tx_descriptor(ring, xdpf);
6504		if (err)
6505			break;
6506		nxmit++;
6507	}
6508
6509	if (flags & XDP_XMIT_FLUSH)
6510		igc_flush_tx_descriptors(ring);
6511
6512	__netif_tx_unlock(nq);
6513
6514	return nxmit;
6515}
6516
6517static void igc_trigger_rxtxq_interrupt(struct igc_adapter *adapter,
6518					struct igc_q_vector *q_vector)
6519{
6520	struct igc_hw *hw = &adapter->hw;
6521	u32 eics = 0;
6522
6523	eics |= q_vector->eims_value;
6524	wr32(IGC_EICS, eics);
6525}
6526
6527int igc_xsk_wakeup(struct net_device *dev, u32 queue_id, u32 flags)
6528{
6529	struct igc_adapter *adapter = netdev_priv(dev);
6530	struct igc_q_vector *q_vector;
6531	struct igc_ring *ring;
6532
6533	if (test_bit(__IGC_DOWN, &adapter->state))
6534		return -ENETDOWN;
6535
6536	if (!igc_xdp_is_enabled(adapter))
6537		return -ENXIO;
6538
6539	if (queue_id >= adapter->num_rx_queues)
6540		return -EINVAL;
6541
6542	ring = adapter->rx_ring[queue_id];
6543
6544	if (!ring->xsk_pool)
6545		return -ENXIO;
6546
6547	q_vector = adapter->q_vector[queue_id];
6548	if (!napi_if_scheduled_mark_missed(&q_vector->napi))
6549		igc_trigger_rxtxq_interrupt(adapter, q_vector);
6550
6551	return 0;
6552}
6553
6554static const struct net_device_ops igc_netdev_ops = {
6555	.ndo_open		= igc_open,
6556	.ndo_stop		= igc_close,
6557	.ndo_start_xmit		= igc_xmit_frame,
6558	.ndo_set_rx_mode	= igc_set_rx_mode,
6559	.ndo_set_mac_address	= igc_set_mac,
6560	.ndo_change_mtu		= igc_change_mtu,
6561	.ndo_tx_timeout		= igc_tx_timeout,
6562	.ndo_get_stats64	= igc_get_stats64,
6563	.ndo_fix_features	= igc_fix_features,
6564	.ndo_set_features	= igc_set_features,
6565	.ndo_features_check	= igc_features_check,
6566	.ndo_eth_ioctl		= igc_ioctl,
6567	.ndo_setup_tc		= igc_setup_tc,
6568	.ndo_bpf		= igc_bpf,
6569	.ndo_xdp_xmit		= igc_xdp_xmit,
6570	.ndo_xsk_wakeup		= igc_xsk_wakeup,
6571};
6572
6573/* PCIe configuration access */
6574void igc_read_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
6575{
6576	struct igc_adapter *adapter = hw->back;
6577
6578	pci_read_config_word(adapter->pdev, reg, value);
6579}
6580
6581void igc_write_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
6582{
6583	struct igc_adapter *adapter = hw->back;
6584
6585	pci_write_config_word(adapter->pdev, reg, *value);
6586}
6587
6588s32 igc_read_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
6589{
6590	struct igc_adapter *adapter = hw->back;
6591
6592	if (!pci_is_pcie(adapter->pdev))
6593		return -IGC_ERR_CONFIG;
6594
6595	pcie_capability_read_word(adapter->pdev, reg, value);
6596
6597	return IGC_SUCCESS;
6598}
6599
6600s32 igc_write_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
6601{
6602	struct igc_adapter *adapter = hw->back;
6603
6604	if (!pci_is_pcie(adapter->pdev))
6605		return -IGC_ERR_CONFIG;
6606
6607	pcie_capability_write_word(adapter->pdev, reg, *value);
6608
6609	return IGC_SUCCESS;
6610}
6611
6612u32 igc_rd32(struct igc_hw *hw, u32 reg)
6613{
6614	struct igc_adapter *igc = container_of(hw, struct igc_adapter, hw);
6615	u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
6616	u32 value = 0;
6617
6618	if (IGC_REMOVED(hw_addr))
6619		return ~value;
6620
6621	value = readl(&hw_addr[reg]);
6622
6623	/* reads should not return all F's */
6624	if (!(~value) && (!reg || !(~readl(hw_addr)))) {
6625		struct net_device *netdev = igc->netdev;
6626
6627		hw->hw_addr = NULL;
6628		netif_device_detach(netdev);
6629		netdev_err(netdev, "PCIe link lost, device now detached\n");
6630		WARN(pci_device_is_present(igc->pdev),
6631		     "igc: Failed to read reg 0x%x!\n", reg);
6632	}
6633
6634	return value;
6635}
6636
6637/* Mapping HW RSS Type to enum xdp_rss_hash_type */
6638static enum xdp_rss_hash_type igc_xdp_rss_type[IGC_RSS_TYPE_MAX_TABLE] = {
6639	[IGC_RSS_TYPE_NO_HASH]		= XDP_RSS_TYPE_L2,
6640	[IGC_RSS_TYPE_HASH_TCP_IPV4]	= XDP_RSS_TYPE_L4_IPV4_TCP,
6641	[IGC_RSS_TYPE_HASH_IPV4]	= XDP_RSS_TYPE_L3_IPV4,
6642	[IGC_RSS_TYPE_HASH_TCP_IPV6]	= XDP_RSS_TYPE_L4_IPV6_TCP,
6643	[IGC_RSS_TYPE_HASH_IPV6_EX]	= XDP_RSS_TYPE_L3_IPV6_EX,
6644	[IGC_RSS_TYPE_HASH_IPV6]	= XDP_RSS_TYPE_L3_IPV6,
6645	[IGC_RSS_TYPE_HASH_TCP_IPV6_EX] = XDP_RSS_TYPE_L4_IPV6_TCP_EX,
6646	[IGC_RSS_TYPE_HASH_UDP_IPV4]	= XDP_RSS_TYPE_L4_IPV4_UDP,
6647	[IGC_RSS_TYPE_HASH_UDP_IPV6]	= XDP_RSS_TYPE_L4_IPV6_UDP,
6648	[IGC_RSS_TYPE_HASH_UDP_IPV6_EX] = XDP_RSS_TYPE_L4_IPV6_UDP_EX,
6649	[10] = XDP_RSS_TYPE_NONE, /* RSS Type above 9 "Reserved" by HW  */
6650	[11] = XDP_RSS_TYPE_NONE, /* keep array sized for SW bit-mask   */
6651	[12] = XDP_RSS_TYPE_NONE, /* to handle future HW revisons       */
6652	[13] = XDP_RSS_TYPE_NONE,
6653	[14] = XDP_RSS_TYPE_NONE,
6654	[15] = XDP_RSS_TYPE_NONE,
6655};
6656
6657static int igc_xdp_rx_hash(const struct xdp_md *_ctx, u32 *hash,
6658			   enum xdp_rss_hash_type *rss_type)
6659{
6660	const struct igc_xdp_buff *ctx = (void *)_ctx;
6661
6662	if (!(ctx->xdp.rxq->dev->features & NETIF_F_RXHASH))
6663		return -ENODATA;
6664
6665	*hash = le32_to_cpu(ctx->rx_desc->wb.lower.hi_dword.rss);
6666	*rss_type = igc_xdp_rss_type[igc_rss_type(ctx->rx_desc)];
6667
6668	return 0;
6669}
6670
6671static int igc_xdp_rx_timestamp(const struct xdp_md *_ctx, u64 *timestamp)
6672{
6673	const struct igc_xdp_buff *ctx = (void *)_ctx;
6674
6675	if (igc_test_staterr(ctx->rx_desc, IGC_RXDADV_STAT_TSIP)) {
6676		*timestamp = ctx->rx_ts;
6677
6678		return 0;
6679	}
6680
6681	return -ENODATA;
6682}
6683
6684static const struct xdp_metadata_ops igc_xdp_metadata_ops = {
6685	.xmo_rx_hash			= igc_xdp_rx_hash,
6686	.xmo_rx_timestamp		= igc_xdp_rx_timestamp,
6687};
6688
6689static enum hrtimer_restart igc_qbv_scheduling_timer(struct hrtimer *timer)
6690{
6691	struct igc_adapter *adapter = container_of(timer, struct igc_adapter,
6692						   hrtimer);
6693	unsigned long flags;
6694	unsigned int i;
6695
6696	spin_lock_irqsave(&adapter->qbv_tx_lock, flags);
6697
6698	adapter->qbv_transition = true;
6699	for (i = 0; i < adapter->num_tx_queues; i++) {
6700		struct igc_ring *tx_ring = adapter->tx_ring[i];
6701
6702		if (tx_ring->admin_gate_closed) {
6703			tx_ring->admin_gate_closed = false;
6704			tx_ring->oper_gate_closed = true;
6705		} else {
6706			tx_ring->oper_gate_closed = false;
6707		}
6708	}
6709	adapter->qbv_transition = false;
6710
6711	spin_unlock_irqrestore(&adapter->qbv_tx_lock, flags);
6712
6713	return HRTIMER_NORESTART;
6714}
6715
6716/**
6717 * igc_probe - Device Initialization Routine
6718 * @pdev: PCI device information struct
6719 * @ent: entry in igc_pci_tbl
6720 *
6721 * Returns 0 on success, negative on failure
6722 *
6723 * igc_probe initializes an adapter identified by a pci_dev structure.
6724 * The OS initialization, configuring the adapter private structure,
6725 * and a hardware reset occur.
6726 */
6727static int igc_probe(struct pci_dev *pdev,
6728		     const struct pci_device_id *ent)
6729{
6730	struct igc_adapter *adapter;
6731	struct net_device *netdev;
6732	struct igc_hw *hw;
6733	const struct igc_info *ei = igc_info_tbl[ent->driver_data];
6734	int err;
6735
6736	err = pci_enable_device_mem(pdev);
6737	if (err)
6738		return err;
6739
6740	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
6741	if (err) {
6742		dev_err(&pdev->dev,
6743			"No usable DMA configuration, aborting\n");
6744		goto err_dma;
6745	}
6746
6747	err = pci_request_mem_regions(pdev, igc_driver_name);
6748	if (err)
6749		goto err_pci_reg;
6750
6751	err = pci_enable_ptm(pdev, NULL);
6752	if (err < 0)
6753		dev_info(&pdev->dev, "PCIe PTM not supported by PCIe bus/controller\n");
6754
6755	pci_set_master(pdev);
6756
6757	err = -ENOMEM;
6758	netdev = alloc_etherdev_mq(sizeof(struct igc_adapter),
6759				   IGC_MAX_TX_QUEUES);
6760
6761	if (!netdev)
6762		goto err_alloc_etherdev;
6763
6764	SET_NETDEV_DEV(netdev, &pdev->dev);
6765
6766	pci_set_drvdata(pdev, netdev);
6767	adapter = netdev_priv(netdev);
6768	adapter->netdev = netdev;
6769	adapter->pdev = pdev;
6770	hw = &adapter->hw;
6771	hw->back = adapter;
6772	adapter->port_num = hw->bus.func;
6773	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
6774
6775	err = pci_save_state(pdev);
6776	if (err)
6777		goto err_ioremap;
6778
6779	err = -EIO;
6780	adapter->io_addr = ioremap(pci_resource_start(pdev, 0),
6781				   pci_resource_len(pdev, 0));
6782	if (!adapter->io_addr)
6783		goto err_ioremap;
6784
6785	/* hw->hw_addr can be zeroed, so use adapter->io_addr for unmap */
6786	hw->hw_addr = adapter->io_addr;
6787
6788	netdev->netdev_ops = &igc_netdev_ops;
6789	netdev->xdp_metadata_ops = &igc_xdp_metadata_ops;
6790	igc_ethtool_set_ops(netdev);
6791	netdev->watchdog_timeo = 5 * HZ;
6792
6793	netdev->mem_start = pci_resource_start(pdev, 0);
6794	netdev->mem_end = pci_resource_end(pdev, 0);
6795
6796	/* PCI config space info */
6797	hw->vendor_id = pdev->vendor;
6798	hw->device_id = pdev->device;
6799	hw->revision_id = pdev->revision;
6800	hw->subsystem_vendor_id = pdev->subsystem_vendor;
6801	hw->subsystem_device_id = pdev->subsystem_device;
6802
6803	/* Copy the default MAC and PHY function pointers */
6804	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
6805	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
6806
6807	/* Initialize skew-specific constants */
6808	err = ei->get_invariants(hw);
6809	if (err)
6810		goto err_sw_init;
6811
6812	/* Add supported features to the features list*/
6813	netdev->features |= NETIF_F_SG;
6814	netdev->features |= NETIF_F_TSO;
6815	netdev->features |= NETIF_F_TSO6;
6816	netdev->features |= NETIF_F_TSO_ECN;
6817	netdev->features |= NETIF_F_RXHASH;
6818	netdev->features |= NETIF_F_RXCSUM;
6819	netdev->features |= NETIF_F_HW_CSUM;
6820	netdev->features |= NETIF_F_SCTP_CRC;
6821	netdev->features |= NETIF_F_HW_TC;
6822
6823#define IGC_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
6824				  NETIF_F_GSO_GRE_CSUM | \
6825				  NETIF_F_GSO_IPXIP4 | \
6826				  NETIF_F_GSO_IPXIP6 | \
6827				  NETIF_F_GSO_UDP_TUNNEL | \
6828				  NETIF_F_GSO_UDP_TUNNEL_CSUM)
6829
6830	netdev->gso_partial_features = IGC_GSO_PARTIAL_FEATURES;
6831	netdev->features |= NETIF_F_GSO_PARTIAL | IGC_GSO_PARTIAL_FEATURES;
6832
6833	/* setup the private structure */
6834	err = igc_sw_init(adapter);
6835	if (err)
6836		goto err_sw_init;
6837
6838	/* copy netdev features into list of user selectable features */
6839	netdev->hw_features |= NETIF_F_NTUPLE;
6840	netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
6841	netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
6842	netdev->hw_features |= netdev->features;
6843
6844	netdev->features |= NETIF_F_HIGHDMA;
6845
6846	netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
6847	netdev->mpls_features |= NETIF_F_HW_CSUM;
6848	netdev->hw_enc_features |= netdev->vlan_features;
6849
6850	netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
6851			       NETDEV_XDP_ACT_XSK_ZEROCOPY;
6852
6853	/* MTU range: 68 - 9216 */
6854	netdev->min_mtu = ETH_MIN_MTU;
6855	netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
6856
6857	/* before reading the NVM, reset the controller to put the device in a
6858	 * known good starting state
6859	 */
6860	hw->mac.ops.reset_hw(hw);
6861
6862	if (igc_get_flash_presence_i225(hw)) {
6863		if (hw->nvm.ops.validate(hw) < 0) {
6864			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
6865			err = -EIO;
6866			goto err_eeprom;
6867		}
6868	}
6869
6870	if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
6871		/* copy the MAC address out of the NVM */
6872		if (hw->mac.ops.read_mac_addr(hw))
6873			dev_err(&pdev->dev, "NVM Read Error\n");
6874	}
6875
6876	eth_hw_addr_set(netdev, hw->mac.addr);
6877
6878	if (!is_valid_ether_addr(netdev->dev_addr)) {
6879		dev_err(&pdev->dev, "Invalid MAC Address\n");
6880		err = -EIO;
6881		goto err_eeprom;
6882	}
6883
6884	/* configure RXPBSIZE and TXPBSIZE */
6885	wr32(IGC_RXPBS, I225_RXPBSIZE_DEFAULT);
6886	wr32(IGC_TXPBS, I225_TXPBSIZE_DEFAULT);
6887
6888	timer_setup(&adapter->watchdog_timer, igc_watchdog, 0);
6889	timer_setup(&adapter->phy_info_timer, igc_update_phy_info, 0);
6890
6891	INIT_WORK(&adapter->reset_task, igc_reset_task);
6892	INIT_WORK(&adapter->watchdog_task, igc_watchdog_task);
6893
6894	hrtimer_init(&adapter->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6895	adapter->hrtimer.function = &igc_qbv_scheduling_timer;
6896
6897	/* Initialize link properties that are user-changeable */
6898	adapter->fc_autoneg = true;
6899	hw->mac.autoneg = true;
6900	hw->phy.autoneg_advertised = 0xaf;
6901
6902	hw->fc.requested_mode = igc_fc_default;
6903	hw->fc.current_mode = igc_fc_default;
6904
6905	/* By default, support wake on port A */
6906	adapter->flags |= IGC_FLAG_WOL_SUPPORTED;
6907
6908	/* initialize the wol settings based on the eeprom settings */
6909	if (adapter->flags & IGC_FLAG_WOL_SUPPORTED)
6910		adapter->wol |= IGC_WUFC_MAG;
6911
6912	device_set_wakeup_enable(&adapter->pdev->dev,
6913				 adapter->flags & IGC_FLAG_WOL_SUPPORTED);
6914
6915	igc_ptp_init(adapter);
6916
6917	igc_tsn_clear_schedule(adapter);
6918
6919	/* reset the hardware with the new settings */
6920	igc_reset(adapter);
6921
6922	/* let the f/w know that the h/w is now under the control of the
6923	 * driver.
6924	 */
6925	igc_get_hw_control(adapter);
6926
6927	strncpy(netdev->name, "eth%d", IFNAMSIZ);
6928	err = register_netdev(netdev);
6929	if (err)
6930		goto err_register;
6931
6932	 /* carrier off reporting is important to ethtool even BEFORE open */
6933	netif_carrier_off(netdev);
6934
6935	/* Check if Media Autosense is enabled */
6936	adapter->ei = *ei;
6937
6938	/* print pcie link status and MAC address */
6939	pcie_print_link_status(pdev);
6940	netdev_info(netdev, "MAC: %pM\n", netdev->dev_addr);
6941
6942	dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
6943	/* Disable EEE for internal PHY devices */
6944	hw->dev_spec._base.eee_enable = false;
6945	adapter->flags &= ~IGC_FLAG_EEE;
6946	igc_set_eee_i225(hw, false, false, false);
6947
6948	pm_runtime_put_noidle(&pdev->dev);
6949
6950	return 0;
6951
6952err_register:
6953	igc_release_hw_control(adapter);
6954err_eeprom:
6955	if (!igc_check_reset_block(hw))
6956		igc_reset_phy(hw);
6957err_sw_init:
6958	igc_clear_interrupt_scheme(adapter);
6959	iounmap(adapter->io_addr);
6960err_ioremap:
6961	free_netdev(netdev);
6962err_alloc_etherdev:
6963	pci_release_mem_regions(pdev);
6964err_pci_reg:
6965err_dma:
6966	pci_disable_device(pdev);
6967	return err;
6968}
6969
6970/**
6971 * igc_remove - Device Removal Routine
6972 * @pdev: PCI device information struct
6973 *
6974 * igc_remove is called by the PCI subsystem to alert the driver
6975 * that it should release a PCI device.  This could be caused by a
6976 * Hot-Plug event, or because the driver is going to be removed from
6977 * memory.
6978 */
6979static void igc_remove(struct pci_dev *pdev)
6980{
6981	struct net_device *netdev = pci_get_drvdata(pdev);
6982	struct igc_adapter *adapter = netdev_priv(netdev);
6983
6984	pm_runtime_get_noresume(&pdev->dev);
6985
6986	igc_flush_nfc_rules(adapter);
6987
6988	igc_ptp_stop(adapter);
6989
6990	pci_disable_ptm(pdev);
6991	pci_clear_master(pdev);
6992
6993	set_bit(__IGC_DOWN, &adapter->state);
6994
6995	del_timer_sync(&adapter->watchdog_timer);
6996	del_timer_sync(&adapter->phy_info_timer);
6997
6998	cancel_work_sync(&adapter->reset_task);
6999	cancel_work_sync(&adapter->watchdog_task);
7000	hrtimer_cancel(&adapter->hrtimer);
7001
7002	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
7003	 * would have already happened in close and is redundant.
7004	 */
7005	igc_release_hw_control(adapter);
7006	unregister_netdev(netdev);
7007
7008	igc_clear_interrupt_scheme(adapter);
7009	pci_iounmap(pdev, adapter->io_addr);
7010	pci_release_mem_regions(pdev);
7011
7012	free_netdev(netdev);
7013
7014	pci_disable_device(pdev);
7015}
7016
7017static int __igc_shutdown(struct pci_dev *pdev, bool *enable_wake,
7018			  bool runtime)
7019{
7020	struct net_device *netdev = pci_get_drvdata(pdev);
7021	struct igc_adapter *adapter = netdev_priv(netdev);
7022	u32 wufc = runtime ? IGC_WUFC_LNKC : adapter->wol;
7023	struct igc_hw *hw = &adapter->hw;
7024	u32 ctrl, rctl, status;
7025	bool wake;
7026
7027	rtnl_lock();
7028	netif_device_detach(netdev);
7029
7030	if (netif_running(netdev))
7031		__igc_close(netdev, true);
7032
7033	igc_ptp_suspend(adapter);
7034
7035	igc_clear_interrupt_scheme(adapter);
7036	rtnl_unlock();
7037
7038	status = rd32(IGC_STATUS);
7039	if (status & IGC_STATUS_LU)
7040		wufc &= ~IGC_WUFC_LNKC;
7041
7042	if (wufc) {
7043		igc_setup_rctl(adapter);
7044		igc_set_rx_mode(netdev);
7045
7046		/* turn on all-multi mode if wake on multicast is enabled */
7047		if (wufc & IGC_WUFC_MC) {
7048			rctl = rd32(IGC_RCTL);
7049			rctl |= IGC_RCTL_MPE;
7050			wr32(IGC_RCTL, rctl);
7051		}
7052
7053		ctrl = rd32(IGC_CTRL);
7054		ctrl |= IGC_CTRL_ADVD3WUC;
7055		wr32(IGC_CTRL, ctrl);
7056
7057		/* Allow time for pending master requests to run */
7058		igc_disable_pcie_master(hw);
7059
7060		wr32(IGC_WUC, IGC_WUC_PME_EN);
7061		wr32(IGC_WUFC, wufc);
7062	} else {
7063		wr32(IGC_WUC, 0);
7064		wr32(IGC_WUFC, 0);
7065	}
7066
7067	wake = wufc || adapter->en_mng_pt;
7068	if (!wake)
7069		igc_power_down_phy_copper_base(&adapter->hw);
7070	else
7071		igc_power_up_link(adapter);
7072
7073	if (enable_wake)
7074		*enable_wake = wake;
7075
7076	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
7077	 * would have already happened in close and is redundant.
7078	 */
7079	igc_release_hw_control(adapter);
7080
7081	pci_disable_device(pdev);
7082
7083	return 0;
7084}
7085
7086#ifdef CONFIG_PM
7087static int __maybe_unused igc_runtime_suspend(struct device *dev)
7088{
7089	return __igc_shutdown(to_pci_dev(dev), NULL, 1);
7090}
7091
7092static void igc_deliver_wake_packet(struct net_device *netdev)
7093{
7094	struct igc_adapter *adapter = netdev_priv(netdev);
7095	struct igc_hw *hw = &adapter->hw;
7096	struct sk_buff *skb;
7097	u32 wupl;
7098
7099	wupl = rd32(IGC_WUPL) & IGC_WUPL_MASK;
7100
7101	/* WUPM stores only the first 128 bytes of the wake packet.
7102	 * Read the packet only if we have the whole thing.
7103	 */
7104	if (wupl == 0 || wupl > IGC_WUPM_BYTES)
7105		return;
7106
7107	skb = netdev_alloc_skb_ip_align(netdev, IGC_WUPM_BYTES);
7108	if (!skb)
7109		return;
7110
7111	skb_put(skb, wupl);
7112
7113	/* Ensure reads are 32-bit aligned */
7114	wupl = roundup(wupl, 4);
7115
7116	memcpy_fromio(skb->data, hw->hw_addr + IGC_WUPM_REG(0), wupl);
7117
7118	skb->protocol = eth_type_trans(skb, netdev);
7119	netif_rx(skb);
7120}
7121
7122static int __maybe_unused igc_resume(struct device *dev)
7123{
7124	struct pci_dev *pdev = to_pci_dev(dev);
7125	struct net_device *netdev = pci_get_drvdata(pdev);
7126	struct igc_adapter *adapter = netdev_priv(netdev);
7127	struct igc_hw *hw = &adapter->hw;
7128	u32 err, val;
7129
7130	pci_set_power_state(pdev, PCI_D0);
7131	pci_restore_state(pdev);
7132	pci_save_state(pdev);
7133
7134	if (!pci_device_is_present(pdev))
7135		return -ENODEV;
7136	err = pci_enable_device_mem(pdev);
7137	if (err) {
7138		netdev_err(netdev, "Cannot enable PCI device from suspend\n");
7139		return err;
7140	}
7141	pci_set_master(pdev);
7142
7143	pci_enable_wake(pdev, PCI_D3hot, 0);
7144	pci_enable_wake(pdev, PCI_D3cold, 0);
7145
7146	if (igc_init_interrupt_scheme(adapter, true)) {
7147		netdev_err(netdev, "Unable to allocate memory for queues\n");
7148		return -ENOMEM;
7149	}
7150
7151	igc_reset(adapter);
7152
7153	/* let the f/w know that the h/w is now under the control of the
7154	 * driver.
7155	 */
7156	igc_get_hw_control(adapter);
7157
7158	val = rd32(IGC_WUS);
7159	if (val & WAKE_PKT_WUS)
7160		igc_deliver_wake_packet(netdev);
7161
7162	wr32(IGC_WUS, ~0);
7163
7164	rtnl_lock();
7165	if (!err && netif_running(netdev))
7166		err = __igc_open(netdev, true);
7167
7168	if (!err)
7169		netif_device_attach(netdev);
7170	rtnl_unlock();
7171
7172	return err;
7173}
7174
7175static int __maybe_unused igc_runtime_resume(struct device *dev)
7176{
7177	return igc_resume(dev);
7178}
7179
7180static int __maybe_unused igc_suspend(struct device *dev)
7181{
7182	return __igc_shutdown(to_pci_dev(dev), NULL, 0);
7183}
7184
7185static int __maybe_unused igc_runtime_idle(struct device *dev)
7186{
7187	struct net_device *netdev = dev_get_drvdata(dev);
7188	struct igc_adapter *adapter = netdev_priv(netdev);
7189
7190	if (!igc_has_link(adapter))
7191		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7192
7193	return -EBUSY;
7194}
7195#endif /* CONFIG_PM */
7196
7197static void igc_shutdown(struct pci_dev *pdev)
7198{
7199	bool wake;
7200
7201	__igc_shutdown(pdev, &wake, 0);
7202
7203	if (system_state == SYSTEM_POWER_OFF) {
7204		pci_wake_from_d3(pdev, wake);
7205		pci_set_power_state(pdev, PCI_D3hot);
7206	}
7207}
7208
7209/**
7210 *  igc_io_error_detected - called when PCI error is detected
7211 *  @pdev: Pointer to PCI device
7212 *  @state: The current PCI connection state
7213 *
7214 *  This function is called after a PCI bus error affecting
7215 *  this device has been detected.
7216 **/
7217static pci_ers_result_t igc_io_error_detected(struct pci_dev *pdev,
7218					      pci_channel_state_t state)
7219{
7220	struct net_device *netdev = pci_get_drvdata(pdev);
7221	struct igc_adapter *adapter = netdev_priv(netdev);
7222
7223	netif_device_detach(netdev);
7224
7225	if (state == pci_channel_io_perm_failure)
7226		return PCI_ERS_RESULT_DISCONNECT;
7227
7228	if (netif_running(netdev))
7229		igc_down(adapter);
7230	pci_disable_device(pdev);
7231
7232	/* Request a slot reset. */
7233	return PCI_ERS_RESULT_NEED_RESET;
7234}
7235
7236/**
7237 *  igc_io_slot_reset - called after the PCI bus has been reset.
7238 *  @pdev: Pointer to PCI device
7239 *
7240 *  Restart the card from scratch, as if from a cold-boot. Implementation
7241 *  resembles the first-half of the igc_resume routine.
7242 **/
7243static pci_ers_result_t igc_io_slot_reset(struct pci_dev *pdev)
7244{
7245	struct net_device *netdev = pci_get_drvdata(pdev);
7246	struct igc_adapter *adapter = netdev_priv(netdev);
7247	struct igc_hw *hw = &adapter->hw;
7248	pci_ers_result_t result;
7249
7250	if (pci_enable_device_mem(pdev)) {
7251		netdev_err(netdev, "Could not re-enable PCI device after reset\n");
7252		result = PCI_ERS_RESULT_DISCONNECT;
7253	} else {
7254		pci_set_master(pdev);
7255		pci_restore_state(pdev);
7256		pci_save_state(pdev);
7257
7258		pci_enable_wake(pdev, PCI_D3hot, 0);
7259		pci_enable_wake(pdev, PCI_D3cold, 0);
7260
7261		/* In case of PCI error, adapter loses its HW address
7262		 * so we should re-assign it here.
7263		 */
7264		hw->hw_addr = adapter->io_addr;
7265
7266		igc_reset(adapter);
7267		wr32(IGC_WUS, ~0);
7268		result = PCI_ERS_RESULT_RECOVERED;
7269	}
7270
7271	return result;
7272}
7273
7274/**
7275 *  igc_io_resume - called when traffic can start to flow again.
7276 *  @pdev: Pointer to PCI device
7277 *
7278 *  This callback is called when the error recovery driver tells us that
7279 *  its OK to resume normal operation. Implementation resembles the
7280 *  second-half of the igc_resume routine.
7281 */
7282static void igc_io_resume(struct pci_dev *pdev)
7283{
7284	struct net_device *netdev = pci_get_drvdata(pdev);
7285	struct igc_adapter *adapter = netdev_priv(netdev);
7286
7287	rtnl_lock();
7288	if (netif_running(netdev)) {
7289		if (igc_open(netdev)) {
7290			netdev_err(netdev, "igc_open failed after reset\n");
7291			return;
7292		}
7293	}
7294
7295	netif_device_attach(netdev);
7296
7297	/* let the f/w know that the h/w is now under the control of the
7298	 * driver.
7299	 */
7300	igc_get_hw_control(adapter);
7301	rtnl_unlock();
7302}
7303
7304static const struct pci_error_handlers igc_err_handler = {
7305	.error_detected = igc_io_error_detected,
7306	.slot_reset = igc_io_slot_reset,
7307	.resume = igc_io_resume,
7308};
7309
7310#ifdef CONFIG_PM
7311static const struct dev_pm_ops igc_pm_ops = {
7312	SET_SYSTEM_SLEEP_PM_OPS(igc_suspend, igc_resume)
7313	SET_RUNTIME_PM_OPS(igc_runtime_suspend, igc_runtime_resume,
7314			   igc_runtime_idle)
7315};
7316#endif
7317
7318static struct pci_driver igc_driver = {
7319	.name     = igc_driver_name,
7320	.id_table = igc_pci_tbl,
7321	.probe    = igc_probe,
7322	.remove   = igc_remove,
7323#ifdef CONFIG_PM
7324	.driver.pm = &igc_pm_ops,
7325#endif
7326	.shutdown = igc_shutdown,
7327	.err_handler = &igc_err_handler,
7328};
7329
7330/**
7331 * igc_reinit_queues - return error
7332 * @adapter: pointer to adapter structure
7333 */
7334int igc_reinit_queues(struct igc_adapter *adapter)
7335{
7336	struct net_device *netdev = adapter->netdev;
7337	int err = 0;
7338
7339	if (netif_running(netdev))
7340		igc_close(netdev);
7341
7342	igc_reset_interrupt_capability(adapter);
7343
7344	if (igc_init_interrupt_scheme(adapter, true)) {
7345		netdev_err(netdev, "Unable to allocate memory for queues\n");
7346		return -ENOMEM;
7347	}
7348
7349	if (netif_running(netdev))
7350		err = igc_open(netdev);
7351
7352	return err;
7353}
7354
7355/**
7356 * igc_get_hw_dev - return device
7357 * @hw: pointer to hardware structure
7358 *
7359 * used by hardware layer to print debugging information
7360 */
7361struct net_device *igc_get_hw_dev(struct igc_hw *hw)
7362{
7363	struct igc_adapter *adapter = hw->back;
7364
7365	return adapter->netdev;
7366}
7367
7368static void igc_disable_rx_ring_hw(struct igc_ring *ring)
7369{
7370	struct igc_hw *hw = &ring->q_vector->adapter->hw;
7371	u8 idx = ring->reg_idx;
7372	u32 rxdctl;
7373
7374	rxdctl = rd32(IGC_RXDCTL(idx));
7375	rxdctl &= ~IGC_RXDCTL_QUEUE_ENABLE;
7376	rxdctl |= IGC_RXDCTL_SWFLUSH;
7377	wr32(IGC_RXDCTL(idx), rxdctl);
7378}
7379
7380void igc_disable_rx_ring(struct igc_ring *ring)
7381{
7382	igc_disable_rx_ring_hw(ring);
7383	igc_clean_rx_ring(ring);
7384}
7385
7386void igc_enable_rx_ring(struct igc_ring *ring)
7387{
7388	struct igc_adapter *adapter = ring->q_vector->adapter;
7389
7390	igc_configure_rx_ring(adapter, ring);
7391
7392	if (ring->xsk_pool)
7393		igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring));
7394	else
7395		igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
7396}
7397
7398void igc_disable_tx_ring(struct igc_ring *ring)
7399{
7400	igc_disable_tx_ring_hw(ring);
7401	igc_clean_tx_ring(ring);
7402}
7403
7404void igc_enable_tx_ring(struct igc_ring *ring)
7405{
7406	struct igc_adapter *adapter = ring->q_vector->adapter;
7407
7408	igc_configure_tx_ring(adapter, ring);
7409}
7410
7411/**
7412 * igc_init_module - Driver Registration Routine
7413 *
7414 * igc_init_module is the first routine called when the driver is
7415 * loaded. All it does is register with the PCI subsystem.
7416 */
7417static int __init igc_init_module(void)
7418{
7419	int ret;
7420
7421	pr_info("%s\n", igc_driver_string);
7422	pr_info("%s\n", igc_copyright);
7423
7424	ret = pci_register_driver(&igc_driver);
7425	return ret;
7426}
7427
7428module_init(igc_init_module);
7429
7430/**
7431 * igc_exit_module - Driver Exit Cleanup Routine
7432 *
7433 * igc_exit_module is called just before the driver is removed
7434 * from memory.
7435 */
7436static void __exit igc_exit_module(void)
7437{
7438	pci_unregister_driver(&igc_driver);
7439}
7440
7441module_exit(igc_exit_module);
7442/* igc_main.c */
7443