162306a36Sopenharmony_ci// SPDX-License-Identifier: GPL-2.0 262306a36Sopenharmony_ci/* Copyright(c) 2007 - 2018 Intel Corporation. */ 362306a36Sopenharmony_ci 462306a36Sopenharmony_ci#include <linux/if_ether.h> 562306a36Sopenharmony_ci#include <linux/delay.h> 662306a36Sopenharmony_ci 762306a36Sopenharmony_ci#include "e1000_mac.h" 862306a36Sopenharmony_ci#include "e1000_nvm.h" 962306a36Sopenharmony_ci 1062306a36Sopenharmony_ci/** 1162306a36Sopenharmony_ci * igb_raise_eec_clk - Raise EEPROM clock 1262306a36Sopenharmony_ci * @hw: pointer to the HW structure 1362306a36Sopenharmony_ci * @eecd: pointer to the EEPROM 1462306a36Sopenharmony_ci * 1562306a36Sopenharmony_ci * Enable/Raise the EEPROM clock bit. 1662306a36Sopenharmony_ci **/ 1762306a36Sopenharmony_cistatic void igb_raise_eec_clk(struct e1000_hw *hw, u32 *eecd) 1862306a36Sopenharmony_ci{ 1962306a36Sopenharmony_ci *eecd = *eecd | E1000_EECD_SK; 2062306a36Sopenharmony_ci wr32(E1000_EECD, *eecd); 2162306a36Sopenharmony_ci wrfl(); 2262306a36Sopenharmony_ci udelay(hw->nvm.delay_usec); 2362306a36Sopenharmony_ci} 2462306a36Sopenharmony_ci 2562306a36Sopenharmony_ci/** 2662306a36Sopenharmony_ci * igb_lower_eec_clk - Lower EEPROM clock 2762306a36Sopenharmony_ci * @hw: pointer to the HW structure 2862306a36Sopenharmony_ci * @eecd: pointer to the EEPROM 2962306a36Sopenharmony_ci * 3062306a36Sopenharmony_ci * Clear/Lower the EEPROM clock bit. 3162306a36Sopenharmony_ci **/ 3262306a36Sopenharmony_cistatic void igb_lower_eec_clk(struct e1000_hw *hw, u32 *eecd) 3362306a36Sopenharmony_ci{ 3462306a36Sopenharmony_ci *eecd = *eecd & ~E1000_EECD_SK; 3562306a36Sopenharmony_ci wr32(E1000_EECD, *eecd); 3662306a36Sopenharmony_ci wrfl(); 3762306a36Sopenharmony_ci udelay(hw->nvm.delay_usec); 3862306a36Sopenharmony_ci} 3962306a36Sopenharmony_ci 4062306a36Sopenharmony_ci/** 4162306a36Sopenharmony_ci * igb_shift_out_eec_bits - Shift data bits our to the EEPROM 4262306a36Sopenharmony_ci * @hw: pointer to the HW structure 4362306a36Sopenharmony_ci * @data: data to send to the EEPROM 4462306a36Sopenharmony_ci * @count: number of bits to shift out 4562306a36Sopenharmony_ci * 4662306a36Sopenharmony_ci * We need to shift 'count' bits out to the EEPROM. So, the value in the 4762306a36Sopenharmony_ci * "data" parameter will be shifted out to the EEPROM one bit at a time. 4862306a36Sopenharmony_ci * In order to do this, "data" must be broken down into bits. 4962306a36Sopenharmony_ci **/ 5062306a36Sopenharmony_cistatic void igb_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count) 5162306a36Sopenharmony_ci{ 5262306a36Sopenharmony_ci struct e1000_nvm_info *nvm = &hw->nvm; 5362306a36Sopenharmony_ci u32 eecd = rd32(E1000_EECD); 5462306a36Sopenharmony_ci u32 mask; 5562306a36Sopenharmony_ci 5662306a36Sopenharmony_ci mask = 1u << (count - 1); 5762306a36Sopenharmony_ci if (nvm->type == e1000_nvm_eeprom_spi) 5862306a36Sopenharmony_ci eecd |= E1000_EECD_DO; 5962306a36Sopenharmony_ci 6062306a36Sopenharmony_ci do { 6162306a36Sopenharmony_ci eecd &= ~E1000_EECD_DI; 6262306a36Sopenharmony_ci 6362306a36Sopenharmony_ci if (data & mask) 6462306a36Sopenharmony_ci eecd |= E1000_EECD_DI; 6562306a36Sopenharmony_ci 6662306a36Sopenharmony_ci wr32(E1000_EECD, eecd); 6762306a36Sopenharmony_ci wrfl(); 6862306a36Sopenharmony_ci 6962306a36Sopenharmony_ci udelay(nvm->delay_usec); 7062306a36Sopenharmony_ci 7162306a36Sopenharmony_ci igb_raise_eec_clk(hw, &eecd); 7262306a36Sopenharmony_ci igb_lower_eec_clk(hw, &eecd); 7362306a36Sopenharmony_ci 7462306a36Sopenharmony_ci mask >>= 1; 7562306a36Sopenharmony_ci } while (mask); 7662306a36Sopenharmony_ci 7762306a36Sopenharmony_ci eecd &= ~E1000_EECD_DI; 7862306a36Sopenharmony_ci wr32(E1000_EECD, eecd); 7962306a36Sopenharmony_ci} 8062306a36Sopenharmony_ci 8162306a36Sopenharmony_ci/** 8262306a36Sopenharmony_ci * igb_shift_in_eec_bits - Shift data bits in from the EEPROM 8362306a36Sopenharmony_ci * @hw: pointer to the HW structure 8462306a36Sopenharmony_ci * @count: number of bits to shift in 8562306a36Sopenharmony_ci * 8662306a36Sopenharmony_ci * In order to read a register from the EEPROM, we need to shift 'count' bits 8762306a36Sopenharmony_ci * in from the EEPROM. Bits are "shifted in" by raising the clock input to 8862306a36Sopenharmony_ci * the EEPROM (setting the SK bit), and then reading the value of the data out 8962306a36Sopenharmony_ci * "DO" bit. During this "shifting in" process the data in "DI" bit should 9062306a36Sopenharmony_ci * always be clear. 9162306a36Sopenharmony_ci **/ 9262306a36Sopenharmony_cistatic u16 igb_shift_in_eec_bits(struct e1000_hw *hw, u16 count) 9362306a36Sopenharmony_ci{ 9462306a36Sopenharmony_ci u32 eecd; 9562306a36Sopenharmony_ci u32 i; 9662306a36Sopenharmony_ci u16 data; 9762306a36Sopenharmony_ci 9862306a36Sopenharmony_ci eecd = rd32(E1000_EECD); 9962306a36Sopenharmony_ci 10062306a36Sopenharmony_ci eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); 10162306a36Sopenharmony_ci data = 0; 10262306a36Sopenharmony_ci 10362306a36Sopenharmony_ci for (i = 0; i < count; i++) { 10462306a36Sopenharmony_ci data <<= 1; 10562306a36Sopenharmony_ci igb_raise_eec_clk(hw, &eecd); 10662306a36Sopenharmony_ci 10762306a36Sopenharmony_ci eecd = rd32(E1000_EECD); 10862306a36Sopenharmony_ci 10962306a36Sopenharmony_ci eecd &= ~E1000_EECD_DI; 11062306a36Sopenharmony_ci if (eecd & E1000_EECD_DO) 11162306a36Sopenharmony_ci data |= 1; 11262306a36Sopenharmony_ci 11362306a36Sopenharmony_ci igb_lower_eec_clk(hw, &eecd); 11462306a36Sopenharmony_ci } 11562306a36Sopenharmony_ci 11662306a36Sopenharmony_ci return data; 11762306a36Sopenharmony_ci} 11862306a36Sopenharmony_ci 11962306a36Sopenharmony_ci/** 12062306a36Sopenharmony_ci * igb_poll_eerd_eewr_done - Poll for EEPROM read/write completion 12162306a36Sopenharmony_ci * @hw: pointer to the HW structure 12262306a36Sopenharmony_ci * @ee_reg: EEPROM flag for polling 12362306a36Sopenharmony_ci * 12462306a36Sopenharmony_ci * Polls the EEPROM status bit for either read or write completion based 12562306a36Sopenharmony_ci * upon the value of 'ee_reg'. 12662306a36Sopenharmony_ci **/ 12762306a36Sopenharmony_cistatic s32 igb_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg) 12862306a36Sopenharmony_ci{ 12962306a36Sopenharmony_ci u32 attempts = 100000; 13062306a36Sopenharmony_ci u32 i, reg = 0; 13162306a36Sopenharmony_ci s32 ret_val = -E1000_ERR_NVM; 13262306a36Sopenharmony_ci 13362306a36Sopenharmony_ci for (i = 0; i < attempts; i++) { 13462306a36Sopenharmony_ci if (ee_reg == E1000_NVM_POLL_READ) 13562306a36Sopenharmony_ci reg = rd32(E1000_EERD); 13662306a36Sopenharmony_ci else 13762306a36Sopenharmony_ci reg = rd32(E1000_EEWR); 13862306a36Sopenharmony_ci 13962306a36Sopenharmony_ci if (reg & E1000_NVM_RW_REG_DONE) { 14062306a36Sopenharmony_ci ret_val = 0; 14162306a36Sopenharmony_ci break; 14262306a36Sopenharmony_ci } 14362306a36Sopenharmony_ci 14462306a36Sopenharmony_ci udelay(5); 14562306a36Sopenharmony_ci } 14662306a36Sopenharmony_ci 14762306a36Sopenharmony_ci return ret_val; 14862306a36Sopenharmony_ci} 14962306a36Sopenharmony_ci 15062306a36Sopenharmony_ci/** 15162306a36Sopenharmony_ci * igb_acquire_nvm - Generic request for access to EEPROM 15262306a36Sopenharmony_ci * @hw: pointer to the HW structure 15362306a36Sopenharmony_ci * 15462306a36Sopenharmony_ci * Set the EEPROM access request bit and wait for EEPROM access grant bit. 15562306a36Sopenharmony_ci * Return successful if access grant bit set, else clear the request for 15662306a36Sopenharmony_ci * EEPROM access and return -E1000_ERR_NVM (-1). 15762306a36Sopenharmony_ci **/ 15862306a36Sopenharmony_cis32 igb_acquire_nvm(struct e1000_hw *hw) 15962306a36Sopenharmony_ci{ 16062306a36Sopenharmony_ci u32 eecd = rd32(E1000_EECD); 16162306a36Sopenharmony_ci s32 timeout = E1000_NVM_GRANT_ATTEMPTS; 16262306a36Sopenharmony_ci s32 ret_val = 0; 16362306a36Sopenharmony_ci 16462306a36Sopenharmony_ci 16562306a36Sopenharmony_ci wr32(E1000_EECD, eecd | E1000_EECD_REQ); 16662306a36Sopenharmony_ci eecd = rd32(E1000_EECD); 16762306a36Sopenharmony_ci 16862306a36Sopenharmony_ci while (timeout) { 16962306a36Sopenharmony_ci if (eecd & E1000_EECD_GNT) 17062306a36Sopenharmony_ci break; 17162306a36Sopenharmony_ci udelay(5); 17262306a36Sopenharmony_ci eecd = rd32(E1000_EECD); 17362306a36Sopenharmony_ci timeout--; 17462306a36Sopenharmony_ci } 17562306a36Sopenharmony_ci 17662306a36Sopenharmony_ci if (!timeout) { 17762306a36Sopenharmony_ci eecd &= ~E1000_EECD_REQ; 17862306a36Sopenharmony_ci wr32(E1000_EECD, eecd); 17962306a36Sopenharmony_ci hw_dbg("Could not acquire NVM grant\n"); 18062306a36Sopenharmony_ci ret_val = -E1000_ERR_NVM; 18162306a36Sopenharmony_ci } 18262306a36Sopenharmony_ci 18362306a36Sopenharmony_ci return ret_val; 18462306a36Sopenharmony_ci} 18562306a36Sopenharmony_ci 18662306a36Sopenharmony_ci/** 18762306a36Sopenharmony_ci * igb_standby_nvm - Return EEPROM to standby state 18862306a36Sopenharmony_ci * @hw: pointer to the HW structure 18962306a36Sopenharmony_ci * 19062306a36Sopenharmony_ci * Return the EEPROM to a standby state. 19162306a36Sopenharmony_ci **/ 19262306a36Sopenharmony_cistatic void igb_standby_nvm(struct e1000_hw *hw) 19362306a36Sopenharmony_ci{ 19462306a36Sopenharmony_ci struct e1000_nvm_info *nvm = &hw->nvm; 19562306a36Sopenharmony_ci u32 eecd = rd32(E1000_EECD); 19662306a36Sopenharmony_ci 19762306a36Sopenharmony_ci if (nvm->type == e1000_nvm_eeprom_spi) { 19862306a36Sopenharmony_ci /* Toggle CS to flush commands */ 19962306a36Sopenharmony_ci eecd |= E1000_EECD_CS; 20062306a36Sopenharmony_ci wr32(E1000_EECD, eecd); 20162306a36Sopenharmony_ci wrfl(); 20262306a36Sopenharmony_ci udelay(nvm->delay_usec); 20362306a36Sopenharmony_ci eecd &= ~E1000_EECD_CS; 20462306a36Sopenharmony_ci wr32(E1000_EECD, eecd); 20562306a36Sopenharmony_ci wrfl(); 20662306a36Sopenharmony_ci udelay(nvm->delay_usec); 20762306a36Sopenharmony_ci } 20862306a36Sopenharmony_ci} 20962306a36Sopenharmony_ci 21062306a36Sopenharmony_ci/** 21162306a36Sopenharmony_ci * e1000_stop_nvm - Terminate EEPROM command 21262306a36Sopenharmony_ci * @hw: pointer to the HW structure 21362306a36Sopenharmony_ci * 21462306a36Sopenharmony_ci * Terminates the current command by inverting the EEPROM's chip select pin. 21562306a36Sopenharmony_ci **/ 21662306a36Sopenharmony_cistatic void e1000_stop_nvm(struct e1000_hw *hw) 21762306a36Sopenharmony_ci{ 21862306a36Sopenharmony_ci u32 eecd; 21962306a36Sopenharmony_ci 22062306a36Sopenharmony_ci eecd = rd32(E1000_EECD); 22162306a36Sopenharmony_ci if (hw->nvm.type == e1000_nvm_eeprom_spi) { 22262306a36Sopenharmony_ci /* Pull CS high */ 22362306a36Sopenharmony_ci eecd |= E1000_EECD_CS; 22462306a36Sopenharmony_ci igb_lower_eec_clk(hw, &eecd); 22562306a36Sopenharmony_ci } 22662306a36Sopenharmony_ci} 22762306a36Sopenharmony_ci 22862306a36Sopenharmony_ci/** 22962306a36Sopenharmony_ci * igb_release_nvm - Release exclusive access to EEPROM 23062306a36Sopenharmony_ci * @hw: pointer to the HW structure 23162306a36Sopenharmony_ci * 23262306a36Sopenharmony_ci * Stop any current commands to the EEPROM and clear the EEPROM request bit. 23362306a36Sopenharmony_ci **/ 23462306a36Sopenharmony_civoid igb_release_nvm(struct e1000_hw *hw) 23562306a36Sopenharmony_ci{ 23662306a36Sopenharmony_ci u32 eecd; 23762306a36Sopenharmony_ci 23862306a36Sopenharmony_ci e1000_stop_nvm(hw); 23962306a36Sopenharmony_ci 24062306a36Sopenharmony_ci eecd = rd32(E1000_EECD); 24162306a36Sopenharmony_ci eecd &= ~E1000_EECD_REQ; 24262306a36Sopenharmony_ci wr32(E1000_EECD, eecd); 24362306a36Sopenharmony_ci} 24462306a36Sopenharmony_ci 24562306a36Sopenharmony_ci/** 24662306a36Sopenharmony_ci * igb_ready_nvm_eeprom - Prepares EEPROM for read/write 24762306a36Sopenharmony_ci * @hw: pointer to the HW structure 24862306a36Sopenharmony_ci * 24962306a36Sopenharmony_ci * Setups the EEPROM for reading and writing. 25062306a36Sopenharmony_ci **/ 25162306a36Sopenharmony_cistatic s32 igb_ready_nvm_eeprom(struct e1000_hw *hw) 25262306a36Sopenharmony_ci{ 25362306a36Sopenharmony_ci struct e1000_nvm_info *nvm = &hw->nvm; 25462306a36Sopenharmony_ci u32 eecd = rd32(E1000_EECD); 25562306a36Sopenharmony_ci s32 ret_val = 0; 25662306a36Sopenharmony_ci u16 timeout = 0; 25762306a36Sopenharmony_ci u8 spi_stat_reg; 25862306a36Sopenharmony_ci 25962306a36Sopenharmony_ci 26062306a36Sopenharmony_ci if (nvm->type == e1000_nvm_eeprom_spi) { 26162306a36Sopenharmony_ci /* Clear SK and CS */ 26262306a36Sopenharmony_ci eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); 26362306a36Sopenharmony_ci wr32(E1000_EECD, eecd); 26462306a36Sopenharmony_ci wrfl(); 26562306a36Sopenharmony_ci udelay(1); 26662306a36Sopenharmony_ci timeout = NVM_MAX_RETRY_SPI; 26762306a36Sopenharmony_ci 26862306a36Sopenharmony_ci /* Read "Status Register" repeatedly until the LSB is cleared. 26962306a36Sopenharmony_ci * The EEPROM will signal that the command has been completed 27062306a36Sopenharmony_ci * by clearing bit 0 of the internal status register. If it's 27162306a36Sopenharmony_ci * not cleared within 'timeout', then error out. 27262306a36Sopenharmony_ci */ 27362306a36Sopenharmony_ci while (timeout) { 27462306a36Sopenharmony_ci igb_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI, 27562306a36Sopenharmony_ci hw->nvm.opcode_bits); 27662306a36Sopenharmony_ci spi_stat_reg = (u8)igb_shift_in_eec_bits(hw, 8); 27762306a36Sopenharmony_ci if (!(spi_stat_reg & NVM_STATUS_RDY_SPI)) 27862306a36Sopenharmony_ci break; 27962306a36Sopenharmony_ci 28062306a36Sopenharmony_ci udelay(5); 28162306a36Sopenharmony_ci igb_standby_nvm(hw); 28262306a36Sopenharmony_ci timeout--; 28362306a36Sopenharmony_ci } 28462306a36Sopenharmony_ci 28562306a36Sopenharmony_ci if (!timeout) { 28662306a36Sopenharmony_ci hw_dbg("SPI NVM Status error\n"); 28762306a36Sopenharmony_ci ret_val = -E1000_ERR_NVM; 28862306a36Sopenharmony_ci goto out; 28962306a36Sopenharmony_ci } 29062306a36Sopenharmony_ci } 29162306a36Sopenharmony_ci 29262306a36Sopenharmony_ciout: 29362306a36Sopenharmony_ci return ret_val; 29462306a36Sopenharmony_ci} 29562306a36Sopenharmony_ci 29662306a36Sopenharmony_ci/** 29762306a36Sopenharmony_ci * igb_read_nvm_spi - Read EEPROM's using SPI 29862306a36Sopenharmony_ci * @hw: pointer to the HW structure 29962306a36Sopenharmony_ci * @offset: offset of word in the EEPROM to read 30062306a36Sopenharmony_ci * @words: number of words to read 30162306a36Sopenharmony_ci * @data: word read from the EEPROM 30262306a36Sopenharmony_ci * 30362306a36Sopenharmony_ci * Reads a 16 bit word from the EEPROM. 30462306a36Sopenharmony_ci **/ 30562306a36Sopenharmony_cis32 igb_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) 30662306a36Sopenharmony_ci{ 30762306a36Sopenharmony_ci struct e1000_nvm_info *nvm = &hw->nvm; 30862306a36Sopenharmony_ci u32 i = 0; 30962306a36Sopenharmony_ci s32 ret_val; 31062306a36Sopenharmony_ci u16 word_in; 31162306a36Sopenharmony_ci u8 read_opcode = NVM_READ_OPCODE_SPI; 31262306a36Sopenharmony_ci 31362306a36Sopenharmony_ci /* A check for invalid values: offset too large, too many words, 31462306a36Sopenharmony_ci * and not enough words. 31562306a36Sopenharmony_ci */ 31662306a36Sopenharmony_ci if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || 31762306a36Sopenharmony_ci (words == 0)) { 31862306a36Sopenharmony_ci hw_dbg("nvm parameter(s) out of bounds\n"); 31962306a36Sopenharmony_ci ret_val = -E1000_ERR_NVM; 32062306a36Sopenharmony_ci goto out; 32162306a36Sopenharmony_ci } 32262306a36Sopenharmony_ci 32362306a36Sopenharmony_ci ret_val = nvm->ops.acquire(hw); 32462306a36Sopenharmony_ci if (ret_val) 32562306a36Sopenharmony_ci goto out; 32662306a36Sopenharmony_ci 32762306a36Sopenharmony_ci ret_val = igb_ready_nvm_eeprom(hw); 32862306a36Sopenharmony_ci if (ret_val) 32962306a36Sopenharmony_ci goto release; 33062306a36Sopenharmony_ci 33162306a36Sopenharmony_ci igb_standby_nvm(hw); 33262306a36Sopenharmony_ci 33362306a36Sopenharmony_ci if ((nvm->address_bits == 8) && (offset >= 128)) 33462306a36Sopenharmony_ci read_opcode |= NVM_A8_OPCODE_SPI; 33562306a36Sopenharmony_ci 33662306a36Sopenharmony_ci /* Send the READ command (opcode + addr) */ 33762306a36Sopenharmony_ci igb_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits); 33862306a36Sopenharmony_ci igb_shift_out_eec_bits(hw, (u16)(offset*2), nvm->address_bits); 33962306a36Sopenharmony_ci 34062306a36Sopenharmony_ci /* Read the data. SPI NVMs increment the address with each byte 34162306a36Sopenharmony_ci * read and will roll over if reading beyond the end. This allows 34262306a36Sopenharmony_ci * us to read the whole NVM from any offset 34362306a36Sopenharmony_ci */ 34462306a36Sopenharmony_ci for (i = 0; i < words; i++) { 34562306a36Sopenharmony_ci word_in = igb_shift_in_eec_bits(hw, 16); 34662306a36Sopenharmony_ci data[i] = (word_in >> 8) | (word_in << 8); 34762306a36Sopenharmony_ci } 34862306a36Sopenharmony_ci 34962306a36Sopenharmony_cirelease: 35062306a36Sopenharmony_ci nvm->ops.release(hw); 35162306a36Sopenharmony_ci 35262306a36Sopenharmony_ciout: 35362306a36Sopenharmony_ci return ret_val; 35462306a36Sopenharmony_ci} 35562306a36Sopenharmony_ci 35662306a36Sopenharmony_ci/** 35762306a36Sopenharmony_ci * igb_read_nvm_eerd - Reads EEPROM using EERD register 35862306a36Sopenharmony_ci * @hw: pointer to the HW structure 35962306a36Sopenharmony_ci * @offset: offset of word in the EEPROM to read 36062306a36Sopenharmony_ci * @words: number of words to read 36162306a36Sopenharmony_ci * @data: word read from the EEPROM 36262306a36Sopenharmony_ci * 36362306a36Sopenharmony_ci * Reads a 16 bit word from the EEPROM using the EERD register. 36462306a36Sopenharmony_ci **/ 36562306a36Sopenharmony_cis32 igb_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) 36662306a36Sopenharmony_ci{ 36762306a36Sopenharmony_ci struct e1000_nvm_info *nvm = &hw->nvm; 36862306a36Sopenharmony_ci u32 i, eerd = 0; 36962306a36Sopenharmony_ci s32 ret_val = 0; 37062306a36Sopenharmony_ci 37162306a36Sopenharmony_ci /* A check for invalid values: offset too large, too many words, 37262306a36Sopenharmony_ci * and not enough words. 37362306a36Sopenharmony_ci */ 37462306a36Sopenharmony_ci if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || 37562306a36Sopenharmony_ci (words == 0)) { 37662306a36Sopenharmony_ci hw_dbg("nvm parameter(s) out of bounds\n"); 37762306a36Sopenharmony_ci ret_val = -E1000_ERR_NVM; 37862306a36Sopenharmony_ci goto out; 37962306a36Sopenharmony_ci } 38062306a36Sopenharmony_ci 38162306a36Sopenharmony_ci for (i = 0; i < words; i++) { 38262306a36Sopenharmony_ci eerd = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) + 38362306a36Sopenharmony_ci E1000_NVM_RW_REG_START; 38462306a36Sopenharmony_ci 38562306a36Sopenharmony_ci wr32(E1000_EERD, eerd); 38662306a36Sopenharmony_ci ret_val = igb_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ); 38762306a36Sopenharmony_ci if (ret_val) 38862306a36Sopenharmony_ci break; 38962306a36Sopenharmony_ci 39062306a36Sopenharmony_ci data[i] = (rd32(E1000_EERD) >> 39162306a36Sopenharmony_ci E1000_NVM_RW_REG_DATA); 39262306a36Sopenharmony_ci } 39362306a36Sopenharmony_ci 39462306a36Sopenharmony_ciout: 39562306a36Sopenharmony_ci return ret_val; 39662306a36Sopenharmony_ci} 39762306a36Sopenharmony_ci 39862306a36Sopenharmony_ci/** 39962306a36Sopenharmony_ci * igb_write_nvm_spi - Write to EEPROM using SPI 40062306a36Sopenharmony_ci * @hw: pointer to the HW structure 40162306a36Sopenharmony_ci * @offset: offset within the EEPROM to be written to 40262306a36Sopenharmony_ci * @words: number of words to write 40362306a36Sopenharmony_ci * @data: 16 bit word(s) to be written to the EEPROM 40462306a36Sopenharmony_ci * 40562306a36Sopenharmony_ci * Writes data to EEPROM at offset using SPI interface. 40662306a36Sopenharmony_ci * 40762306a36Sopenharmony_ci * If e1000_update_nvm_checksum is not called after this function , the 40862306a36Sopenharmony_ci * EEPROM will most likley contain an invalid checksum. 40962306a36Sopenharmony_ci **/ 41062306a36Sopenharmony_cis32 igb_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) 41162306a36Sopenharmony_ci{ 41262306a36Sopenharmony_ci struct e1000_nvm_info *nvm = &hw->nvm; 41362306a36Sopenharmony_ci s32 ret_val = -E1000_ERR_NVM; 41462306a36Sopenharmony_ci u16 widx = 0; 41562306a36Sopenharmony_ci 41662306a36Sopenharmony_ci /* A check for invalid values: offset too large, too many words, 41762306a36Sopenharmony_ci * and not enough words. 41862306a36Sopenharmony_ci */ 41962306a36Sopenharmony_ci if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || 42062306a36Sopenharmony_ci (words == 0)) { 42162306a36Sopenharmony_ci hw_dbg("nvm parameter(s) out of bounds\n"); 42262306a36Sopenharmony_ci return ret_val; 42362306a36Sopenharmony_ci } 42462306a36Sopenharmony_ci 42562306a36Sopenharmony_ci while (widx < words) { 42662306a36Sopenharmony_ci u8 write_opcode = NVM_WRITE_OPCODE_SPI; 42762306a36Sopenharmony_ci 42862306a36Sopenharmony_ci ret_val = nvm->ops.acquire(hw); 42962306a36Sopenharmony_ci if (ret_val) 43062306a36Sopenharmony_ci return ret_val; 43162306a36Sopenharmony_ci 43262306a36Sopenharmony_ci ret_val = igb_ready_nvm_eeprom(hw); 43362306a36Sopenharmony_ci if (ret_val) { 43462306a36Sopenharmony_ci nvm->ops.release(hw); 43562306a36Sopenharmony_ci return ret_val; 43662306a36Sopenharmony_ci } 43762306a36Sopenharmony_ci 43862306a36Sopenharmony_ci igb_standby_nvm(hw); 43962306a36Sopenharmony_ci 44062306a36Sopenharmony_ci /* Send the WRITE ENABLE command (8 bit opcode) */ 44162306a36Sopenharmony_ci igb_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI, 44262306a36Sopenharmony_ci nvm->opcode_bits); 44362306a36Sopenharmony_ci 44462306a36Sopenharmony_ci igb_standby_nvm(hw); 44562306a36Sopenharmony_ci 44662306a36Sopenharmony_ci /* Some SPI eeproms use the 8th address bit embedded in the 44762306a36Sopenharmony_ci * opcode 44862306a36Sopenharmony_ci */ 44962306a36Sopenharmony_ci if ((nvm->address_bits == 8) && (offset >= 128)) 45062306a36Sopenharmony_ci write_opcode |= NVM_A8_OPCODE_SPI; 45162306a36Sopenharmony_ci 45262306a36Sopenharmony_ci /* Send the Write command (8-bit opcode + addr) */ 45362306a36Sopenharmony_ci igb_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits); 45462306a36Sopenharmony_ci igb_shift_out_eec_bits(hw, (u16)((offset + widx) * 2), 45562306a36Sopenharmony_ci nvm->address_bits); 45662306a36Sopenharmony_ci 45762306a36Sopenharmony_ci /* Loop to allow for up to whole page write of eeprom */ 45862306a36Sopenharmony_ci while (widx < words) { 45962306a36Sopenharmony_ci u16 word_out = data[widx]; 46062306a36Sopenharmony_ci 46162306a36Sopenharmony_ci word_out = (word_out >> 8) | (word_out << 8); 46262306a36Sopenharmony_ci igb_shift_out_eec_bits(hw, word_out, 16); 46362306a36Sopenharmony_ci widx++; 46462306a36Sopenharmony_ci 46562306a36Sopenharmony_ci if ((((offset + widx) * 2) % nvm->page_size) == 0) { 46662306a36Sopenharmony_ci igb_standby_nvm(hw); 46762306a36Sopenharmony_ci break; 46862306a36Sopenharmony_ci } 46962306a36Sopenharmony_ci } 47062306a36Sopenharmony_ci usleep_range(1000, 2000); 47162306a36Sopenharmony_ci nvm->ops.release(hw); 47262306a36Sopenharmony_ci } 47362306a36Sopenharmony_ci 47462306a36Sopenharmony_ci return ret_val; 47562306a36Sopenharmony_ci} 47662306a36Sopenharmony_ci 47762306a36Sopenharmony_ci/** 47862306a36Sopenharmony_ci * igb_read_part_string - Read device part number 47962306a36Sopenharmony_ci * @hw: pointer to the HW structure 48062306a36Sopenharmony_ci * @part_num: pointer to device part number 48162306a36Sopenharmony_ci * @part_num_size: size of part number buffer 48262306a36Sopenharmony_ci * 48362306a36Sopenharmony_ci * Reads the product board assembly (PBA) number from the EEPROM and stores 48462306a36Sopenharmony_ci * the value in part_num. 48562306a36Sopenharmony_ci **/ 48662306a36Sopenharmony_cis32 igb_read_part_string(struct e1000_hw *hw, u8 *part_num, u32 part_num_size) 48762306a36Sopenharmony_ci{ 48862306a36Sopenharmony_ci s32 ret_val; 48962306a36Sopenharmony_ci u16 nvm_data; 49062306a36Sopenharmony_ci u16 pointer; 49162306a36Sopenharmony_ci u16 offset; 49262306a36Sopenharmony_ci u16 length; 49362306a36Sopenharmony_ci 49462306a36Sopenharmony_ci if (part_num == NULL) { 49562306a36Sopenharmony_ci hw_dbg("PBA string buffer was null\n"); 49662306a36Sopenharmony_ci ret_val = E1000_ERR_INVALID_ARGUMENT; 49762306a36Sopenharmony_ci goto out; 49862306a36Sopenharmony_ci } 49962306a36Sopenharmony_ci 50062306a36Sopenharmony_ci ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data); 50162306a36Sopenharmony_ci if (ret_val) { 50262306a36Sopenharmony_ci hw_dbg("NVM Read Error\n"); 50362306a36Sopenharmony_ci goto out; 50462306a36Sopenharmony_ci } 50562306a36Sopenharmony_ci 50662306a36Sopenharmony_ci ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &pointer); 50762306a36Sopenharmony_ci if (ret_val) { 50862306a36Sopenharmony_ci hw_dbg("NVM Read Error\n"); 50962306a36Sopenharmony_ci goto out; 51062306a36Sopenharmony_ci } 51162306a36Sopenharmony_ci 51262306a36Sopenharmony_ci /* if nvm_data is not ptr guard the PBA must be in legacy format which 51362306a36Sopenharmony_ci * means pointer is actually our second data word for the PBA number 51462306a36Sopenharmony_ci * and we can decode it into an ascii string 51562306a36Sopenharmony_ci */ 51662306a36Sopenharmony_ci if (nvm_data != NVM_PBA_PTR_GUARD) { 51762306a36Sopenharmony_ci hw_dbg("NVM PBA number is not stored as string\n"); 51862306a36Sopenharmony_ci 51962306a36Sopenharmony_ci /* we will need 11 characters to store the PBA */ 52062306a36Sopenharmony_ci if (part_num_size < 11) { 52162306a36Sopenharmony_ci hw_dbg("PBA string buffer too small\n"); 52262306a36Sopenharmony_ci return E1000_ERR_NO_SPACE; 52362306a36Sopenharmony_ci } 52462306a36Sopenharmony_ci 52562306a36Sopenharmony_ci /* extract hex string from data and pointer */ 52662306a36Sopenharmony_ci part_num[0] = (nvm_data >> 12) & 0xF; 52762306a36Sopenharmony_ci part_num[1] = (nvm_data >> 8) & 0xF; 52862306a36Sopenharmony_ci part_num[2] = (nvm_data >> 4) & 0xF; 52962306a36Sopenharmony_ci part_num[3] = nvm_data & 0xF; 53062306a36Sopenharmony_ci part_num[4] = (pointer >> 12) & 0xF; 53162306a36Sopenharmony_ci part_num[5] = (pointer >> 8) & 0xF; 53262306a36Sopenharmony_ci part_num[6] = '-'; 53362306a36Sopenharmony_ci part_num[7] = 0; 53462306a36Sopenharmony_ci part_num[8] = (pointer >> 4) & 0xF; 53562306a36Sopenharmony_ci part_num[9] = pointer & 0xF; 53662306a36Sopenharmony_ci 53762306a36Sopenharmony_ci /* put a null character on the end of our string */ 53862306a36Sopenharmony_ci part_num[10] = '\0'; 53962306a36Sopenharmony_ci 54062306a36Sopenharmony_ci /* switch all the data but the '-' to hex char */ 54162306a36Sopenharmony_ci for (offset = 0; offset < 10; offset++) { 54262306a36Sopenharmony_ci if (part_num[offset] < 0xA) 54362306a36Sopenharmony_ci part_num[offset] += '0'; 54462306a36Sopenharmony_ci else if (part_num[offset] < 0x10) 54562306a36Sopenharmony_ci part_num[offset] += 'A' - 0xA; 54662306a36Sopenharmony_ci } 54762306a36Sopenharmony_ci 54862306a36Sopenharmony_ci goto out; 54962306a36Sopenharmony_ci } 55062306a36Sopenharmony_ci 55162306a36Sopenharmony_ci ret_val = hw->nvm.ops.read(hw, pointer, 1, &length); 55262306a36Sopenharmony_ci if (ret_val) { 55362306a36Sopenharmony_ci hw_dbg("NVM Read Error\n"); 55462306a36Sopenharmony_ci goto out; 55562306a36Sopenharmony_ci } 55662306a36Sopenharmony_ci 55762306a36Sopenharmony_ci if (length == 0xFFFF || length == 0) { 55862306a36Sopenharmony_ci hw_dbg("NVM PBA number section invalid length\n"); 55962306a36Sopenharmony_ci ret_val = E1000_ERR_NVM_PBA_SECTION; 56062306a36Sopenharmony_ci goto out; 56162306a36Sopenharmony_ci } 56262306a36Sopenharmony_ci /* check if part_num buffer is big enough */ 56362306a36Sopenharmony_ci if (part_num_size < (((u32)length * 2) - 1)) { 56462306a36Sopenharmony_ci hw_dbg("PBA string buffer too small\n"); 56562306a36Sopenharmony_ci ret_val = E1000_ERR_NO_SPACE; 56662306a36Sopenharmony_ci goto out; 56762306a36Sopenharmony_ci } 56862306a36Sopenharmony_ci 56962306a36Sopenharmony_ci /* trim pba length from start of string */ 57062306a36Sopenharmony_ci pointer++; 57162306a36Sopenharmony_ci length--; 57262306a36Sopenharmony_ci 57362306a36Sopenharmony_ci for (offset = 0; offset < length; offset++) { 57462306a36Sopenharmony_ci ret_val = hw->nvm.ops.read(hw, pointer + offset, 1, &nvm_data); 57562306a36Sopenharmony_ci if (ret_val) { 57662306a36Sopenharmony_ci hw_dbg("NVM Read Error\n"); 57762306a36Sopenharmony_ci goto out; 57862306a36Sopenharmony_ci } 57962306a36Sopenharmony_ci part_num[offset * 2] = (u8)(nvm_data >> 8); 58062306a36Sopenharmony_ci part_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF); 58162306a36Sopenharmony_ci } 58262306a36Sopenharmony_ci part_num[offset * 2] = '\0'; 58362306a36Sopenharmony_ci 58462306a36Sopenharmony_ciout: 58562306a36Sopenharmony_ci return ret_val; 58662306a36Sopenharmony_ci} 58762306a36Sopenharmony_ci 58862306a36Sopenharmony_ci/** 58962306a36Sopenharmony_ci * igb_read_mac_addr - Read device MAC address 59062306a36Sopenharmony_ci * @hw: pointer to the HW structure 59162306a36Sopenharmony_ci * 59262306a36Sopenharmony_ci * Reads the device MAC address from the EEPROM and stores the value. 59362306a36Sopenharmony_ci * Since devices with two ports use the same EEPROM, we increment the 59462306a36Sopenharmony_ci * last bit in the MAC address for the second port. 59562306a36Sopenharmony_ci **/ 59662306a36Sopenharmony_cis32 igb_read_mac_addr(struct e1000_hw *hw) 59762306a36Sopenharmony_ci{ 59862306a36Sopenharmony_ci u32 rar_high; 59962306a36Sopenharmony_ci u32 rar_low; 60062306a36Sopenharmony_ci u16 i; 60162306a36Sopenharmony_ci 60262306a36Sopenharmony_ci rar_high = rd32(E1000_RAH(0)); 60362306a36Sopenharmony_ci rar_low = rd32(E1000_RAL(0)); 60462306a36Sopenharmony_ci 60562306a36Sopenharmony_ci for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++) 60662306a36Sopenharmony_ci hw->mac.perm_addr[i] = (u8)(rar_low >> (i*8)); 60762306a36Sopenharmony_ci 60862306a36Sopenharmony_ci for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++) 60962306a36Sopenharmony_ci hw->mac.perm_addr[i+4] = (u8)(rar_high >> (i*8)); 61062306a36Sopenharmony_ci 61162306a36Sopenharmony_ci for (i = 0; i < ETH_ALEN; i++) 61262306a36Sopenharmony_ci hw->mac.addr[i] = hw->mac.perm_addr[i]; 61362306a36Sopenharmony_ci 61462306a36Sopenharmony_ci return 0; 61562306a36Sopenharmony_ci} 61662306a36Sopenharmony_ci 61762306a36Sopenharmony_ci/** 61862306a36Sopenharmony_ci * igb_validate_nvm_checksum - Validate EEPROM checksum 61962306a36Sopenharmony_ci * @hw: pointer to the HW structure 62062306a36Sopenharmony_ci * 62162306a36Sopenharmony_ci * Calculates the EEPROM checksum by reading/adding each word of the EEPROM 62262306a36Sopenharmony_ci * and then verifies that the sum of the EEPROM is equal to 0xBABA. 62362306a36Sopenharmony_ci **/ 62462306a36Sopenharmony_cis32 igb_validate_nvm_checksum(struct e1000_hw *hw) 62562306a36Sopenharmony_ci{ 62662306a36Sopenharmony_ci s32 ret_val = 0; 62762306a36Sopenharmony_ci u16 checksum = 0; 62862306a36Sopenharmony_ci u16 i, nvm_data; 62962306a36Sopenharmony_ci 63062306a36Sopenharmony_ci for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) { 63162306a36Sopenharmony_ci ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data); 63262306a36Sopenharmony_ci if (ret_val) { 63362306a36Sopenharmony_ci hw_dbg("NVM Read Error\n"); 63462306a36Sopenharmony_ci goto out; 63562306a36Sopenharmony_ci } 63662306a36Sopenharmony_ci checksum += nvm_data; 63762306a36Sopenharmony_ci } 63862306a36Sopenharmony_ci 63962306a36Sopenharmony_ci if (checksum != (u16) NVM_SUM) { 64062306a36Sopenharmony_ci hw_dbg("NVM Checksum Invalid\n"); 64162306a36Sopenharmony_ci ret_val = -E1000_ERR_NVM; 64262306a36Sopenharmony_ci goto out; 64362306a36Sopenharmony_ci } 64462306a36Sopenharmony_ci 64562306a36Sopenharmony_ciout: 64662306a36Sopenharmony_ci return ret_val; 64762306a36Sopenharmony_ci} 64862306a36Sopenharmony_ci 64962306a36Sopenharmony_ci/** 65062306a36Sopenharmony_ci * igb_update_nvm_checksum - Update EEPROM checksum 65162306a36Sopenharmony_ci * @hw: pointer to the HW structure 65262306a36Sopenharmony_ci * 65362306a36Sopenharmony_ci * Updates the EEPROM checksum by reading/adding each word of the EEPROM 65462306a36Sopenharmony_ci * up to the checksum. Then calculates the EEPROM checksum and writes the 65562306a36Sopenharmony_ci * value to the EEPROM. 65662306a36Sopenharmony_ci **/ 65762306a36Sopenharmony_cis32 igb_update_nvm_checksum(struct e1000_hw *hw) 65862306a36Sopenharmony_ci{ 65962306a36Sopenharmony_ci s32 ret_val; 66062306a36Sopenharmony_ci u16 checksum = 0; 66162306a36Sopenharmony_ci u16 i, nvm_data; 66262306a36Sopenharmony_ci 66362306a36Sopenharmony_ci for (i = 0; i < NVM_CHECKSUM_REG; i++) { 66462306a36Sopenharmony_ci ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data); 66562306a36Sopenharmony_ci if (ret_val) { 66662306a36Sopenharmony_ci hw_dbg("NVM Read Error while updating checksum.\n"); 66762306a36Sopenharmony_ci goto out; 66862306a36Sopenharmony_ci } 66962306a36Sopenharmony_ci checksum += nvm_data; 67062306a36Sopenharmony_ci } 67162306a36Sopenharmony_ci checksum = (u16) NVM_SUM - checksum; 67262306a36Sopenharmony_ci ret_val = hw->nvm.ops.write(hw, NVM_CHECKSUM_REG, 1, &checksum); 67362306a36Sopenharmony_ci if (ret_val) 67462306a36Sopenharmony_ci hw_dbg("NVM Write Error while updating checksum.\n"); 67562306a36Sopenharmony_ci 67662306a36Sopenharmony_ciout: 67762306a36Sopenharmony_ci return ret_val; 67862306a36Sopenharmony_ci} 67962306a36Sopenharmony_ci 68062306a36Sopenharmony_ci/** 68162306a36Sopenharmony_ci * igb_get_fw_version - Get firmware version information 68262306a36Sopenharmony_ci * @hw: pointer to the HW structure 68362306a36Sopenharmony_ci * @fw_vers: pointer to output structure 68462306a36Sopenharmony_ci * 68562306a36Sopenharmony_ci * unsupported MAC types will return all 0 version structure 68662306a36Sopenharmony_ci **/ 68762306a36Sopenharmony_civoid igb_get_fw_version(struct e1000_hw *hw, struct e1000_fw_version *fw_vers) 68862306a36Sopenharmony_ci{ 68962306a36Sopenharmony_ci u16 eeprom_verh, eeprom_verl, etrack_test, fw_version; 69062306a36Sopenharmony_ci u8 q, hval, rem, result; 69162306a36Sopenharmony_ci u16 comb_verh, comb_verl, comb_offset; 69262306a36Sopenharmony_ci 69362306a36Sopenharmony_ci memset(fw_vers, 0, sizeof(struct e1000_fw_version)); 69462306a36Sopenharmony_ci 69562306a36Sopenharmony_ci /* basic eeprom version numbers and bits used vary by part and by tool 69662306a36Sopenharmony_ci * used to create the nvm images. Check which data format we have. 69762306a36Sopenharmony_ci */ 69862306a36Sopenharmony_ci hw->nvm.ops.read(hw, NVM_ETRACK_HIWORD, 1, &etrack_test); 69962306a36Sopenharmony_ci switch (hw->mac.type) { 70062306a36Sopenharmony_ci case e1000_i211: 70162306a36Sopenharmony_ci igb_read_invm_version(hw, fw_vers); 70262306a36Sopenharmony_ci return; 70362306a36Sopenharmony_ci case e1000_82575: 70462306a36Sopenharmony_ci case e1000_82576: 70562306a36Sopenharmony_ci case e1000_82580: 70662306a36Sopenharmony_ci /* Use this format, unless EETRACK ID exists, 70762306a36Sopenharmony_ci * then use alternate format 70862306a36Sopenharmony_ci */ 70962306a36Sopenharmony_ci if ((etrack_test & NVM_MAJOR_MASK) != NVM_ETRACK_VALID) { 71062306a36Sopenharmony_ci hw->nvm.ops.read(hw, NVM_VERSION, 1, &fw_version); 71162306a36Sopenharmony_ci fw_vers->eep_major = (fw_version & NVM_MAJOR_MASK) 71262306a36Sopenharmony_ci >> NVM_MAJOR_SHIFT; 71362306a36Sopenharmony_ci fw_vers->eep_minor = (fw_version & NVM_MINOR_MASK) 71462306a36Sopenharmony_ci >> NVM_MINOR_SHIFT; 71562306a36Sopenharmony_ci fw_vers->eep_build = (fw_version & NVM_IMAGE_ID_MASK); 71662306a36Sopenharmony_ci goto etrack_id; 71762306a36Sopenharmony_ci } 71862306a36Sopenharmony_ci break; 71962306a36Sopenharmony_ci case e1000_i210: 72062306a36Sopenharmony_ci if (!(igb_get_flash_presence_i210(hw))) { 72162306a36Sopenharmony_ci igb_read_invm_version(hw, fw_vers); 72262306a36Sopenharmony_ci return; 72362306a36Sopenharmony_ci } 72462306a36Sopenharmony_ci fallthrough; 72562306a36Sopenharmony_ci case e1000_i350: 72662306a36Sopenharmony_ci /* find combo image version */ 72762306a36Sopenharmony_ci hw->nvm.ops.read(hw, NVM_COMB_VER_PTR, 1, &comb_offset); 72862306a36Sopenharmony_ci if ((comb_offset != 0x0) && 72962306a36Sopenharmony_ci (comb_offset != NVM_VER_INVALID)) { 73062306a36Sopenharmony_ci 73162306a36Sopenharmony_ci hw->nvm.ops.read(hw, (NVM_COMB_VER_OFF + comb_offset 73262306a36Sopenharmony_ci + 1), 1, &comb_verh); 73362306a36Sopenharmony_ci hw->nvm.ops.read(hw, (NVM_COMB_VER_OFF + comb_offset), 73462306a36Sopenharmony_ci 1, &comb_verl); 73562306a36Sopenharmony_ci 73662306a36Sopenharmony_ci /* get Option Rom version if it exists and is valid */ 73762306a36Sopenharmony_ci if ((comb_verh && comb_verl) && 73862306a36Sopenharmony_ci ((comb_verh != NVM_VER_INVALID) && 73962306a36Sopenharmony_ci (comb_verl != NVM_VER_INVALID))) { 74062306a36Sopenharmony_ci 74162306a36Sopenharmony_ci fw_vers->or_valid = true; 74262306a36Sopenharmony_ci fw_vers->or_major = 74362306a36Sopenharmony_ci comb_verl >> NVM_COMB_VER_SHFT; 74462306a36Sopenharmony_ci fw_vers->or_build = 74562306a36Sopenharmony_ci (comb_verl << NVM_COMB_VER_SHFT) 74662306a36Sopenharmony_ci | (comb_verh >> NVM_COMB_VER_SHFT); 74762306a36Sopenharmony_ci fw_vers->or_patch = 74862306a36Sopenharmony_ci comb_verh & NVM_COMB_VER_MASK; 74962306a36Sopenharmony_ci } 75062306a36Sopenharmony_ci } 75162306a36Sopenharmony_ci break; 75262306a36Sopenharmony_ci default: 75362306a36Sopenharmony_ci return; 75462306a36Sopenharmony_ci } 75562306a36Sopenharmony_ci hw->nvm.ops.read(hw, NVM_VERSION, 1, &fw_version); 75662306a36Sopenharmony_ci fw_vers->eep_major = (fw_version & NVM_MAJOR_MASK) 75762306a36Sopenharmony_ci >> NVM_MAJOR_SHIFT; 75862306a36Sopenharmony_ci 75962306a36Sopenharmony_ci /* check for old style version format in newer images*/ 76062306a36Sopenharmony_ci if ((fw_version & NVM_NEW_DEC_MASK) == 0x0) { 76162306a36Sopenharmony_ci eeprom_verl = (fw_version & NVM_COMB_VER_MASK); 76262306a36Sopenharmony_ci } else { 76362306a36Sopenharmony_ci eeprom_verl = (fw_version & NVM_MINOR_MASK) 76462306a36Sopenharmony_ci >> NVM_MINOR_SHIFT; 76562306a36Sopenharmony_ci } 76662306a36Sopenharmony_ci /* Convert minor value to hex before assigning to output struct 76762306a36Sopenharmony_ci * Val to be converted will not be higher than 99, per tool output 76862306a36Sopenharmony_ci */ 76962306a36Sopenharmony_ci q = eeprom_verl / NVM_HEX_CONV; 77062306a36Sopenharmony_ci hval = q * NVM_HEX_TENS; 77162306a36Sopenharmony_ci rem = eeprom_verl % NVM_HEX_CONV; 77262306a36Sopenharmony_ci result = hval + rem; 77362306a36Sopenharmony_ci fw_vers->eep_minor = result; 77462306a36Sopenharmony_ci 77562306a36Sopenharmony_cietrack_id: 77662306a36Sopenharmony_ci if ((etrack_test & NVM_MAJOR_MASK) == NVM_ETRACK_VALID) { 77762306a36Sopenharmony_ci hw->nvm.ops.read(hw, NVM_ETRACK_WORD, 1, &eeprom_verl); 77862306a36Sopenharmony_ci hw->nvm.ops.read(hw, (NVM_ETRACK_WORD + 1), 1, &eeprom_verh); 77962306a36Sopenharmony_ci fw_vers->etrack_id = (eeprom_verh << NVM_ETRACK_SHIFT) 78062306a36Sopenharmony_ci | eeprom_verl; 78162306a36Sopenharmony_ci } 78262306a36Sopenharmony_ci} 783