162306a36Sopenharmony_ci// SPDX-License-Identifier: GPL-2.0
262306a36Sopenharmony_ci/* Copyright(c) 2007 - 2018 Intel Corporation. */
362306a36Sopenharmony_ci
462306a36Sopenharmony_ci#include <linux/if_ether.h>
562306a36Sopenharmony_ci#include <linux/delay.h>
662306a36Sopenharmony_ci
762306a36Sopenharmony_ci#include "e1000_mac.h"
862306a36Sopenharmony_ci#include "e1000_nvm.h"
962306a36Sopenharmony_ci
1062306a36Sopenharmony_ci/**
1162306a36Sopenharmony_ci *  igb_raise_eec_clk - Raise EEPROM clock
1262306a36Sopenharmony_ci *  @hw: pointer to the HW structure
1362306a36Sopenharmony_ci *  @eecd: pointer to the EEPROM
1462306a36Sopenharmony_ci *
1562306a36Sopenharmony_ci *  Enable/Raise the EEPROM clock bit.
1662306a36Sopenharmony_ci **/
1762306a36Sopenharmony_cistatic void igb_raise_eec_clk(struct e1000_hw *hw, u32 *eecd)
1862306a36Sopenharmony_ci{
1962306a36Sopenharmony_ci	*eecd = *eecd | E1000_EECD_SK;
2062306a36Sopenharmony_ci	wr32(E1000_EECD, *eecd);
2162306a36Sopenharmony_ci	wrfl();
2262306a36Sopenharmony_ci	udelay(hw->nvm.delay_usec);
2362306a36Sopenharmony_ci}
2462306a36Sopenharmony_ci
2562306a36Sopenharmony_ci/**
2662306a36Sopenharmony_ci *  igb_lower_eec_clk - Lower EEPROM clock
2762306a36Sopenharmony_ci *  @hw: pointer to the HW structure
2862306a36Sopenharmony_ci *  @eecd: pointer to the EEPROM
2962306a36Sopenharmony_ci *
3062306a36Sopenharmony_ci *  Clear/Lower the EEPROM clock bit.
3162306a36Sopenharmony_ci **/
3262306a36Sopenharmony_cistatic void igb_lower_eec_clk(struct e1000_hw *hw, u32 *eecd)
3362306a36Sopenharmony_ci{
3462306a36Sopenharmony_ci	*eecd = *eecd & ~E1000_EECD_SK;
3562306a36Sopenharmony_ci	wr32(E1000_EECD, *eecd);
3662306a36Sopenharmony_ci	wrfl();
3762306a36Sopenharmony_ci	udelay(hw->nvm.delay_usec);
3862306a36Sopenharmony_ci}
3962306a36Sopenharmony_ci
4062306a36Sopenharmony_ci/**
4162306a36Sopenharmony_ci *  igb_shift_out_eec_bits - Shift data bits our to the EEPROM
4262306a36Sopenharmony_ci *  @hw: pointer to the HW structure
4362306a36Sopenharmony_ci *  @data: data to send to the EEPROM
4462306a36Sopenharmony_ci *  @count: number of bits to shift out
4562306a36Sopenharmony_ci *
4662306a36Sopenharmony_ci *  We need to shift 'count' bits out to the EEPROM.  So, the value in the
4762306a36Sopenharmony_ci *  "data" parameter will be shifted out to the EEPROM one bit at a time.
4862306a36Sopenharmony_ci *  In order to do this, "data" must be broken down into bits.
4962306a36Sopenharmony_ci **/
5062306a36Sopenharmony_cistatic void igb_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count)
5162306a36Sopenharmony_ci{
5262306a36Sopenharmony_ci	struct e1000_nvm_info *nvm = &hw->nvm;
5362306a36Sopenharmony_ci	u32 eecd = rd32(E1000_EECD);
5462306a36Sopenharmony_ci	u32 mask;
5562306a36Sopenharmony_ci
5662306a36Sopenharmony_ci	mask = 1u << (count - 1);
5762306a36Sopenharmony_ci	if (nvm->type == e1000_nvm_eeprom_spi)
5862306a36Sopenharmony_ci		eecd |= E1000_EECD_DO;
5962306a36Sopenharmony_ci
6062306a36Sopenharmony_ci	do {
6162306a36Sopenharmony_ci		eecd &= ~E1000_EECD_DI;
6262306a36Sopenharmony_ci
6362306a36Sopenharmony_ci		if (data & mask)
6462306a36Sopenharmony_ci			eecd |= E1000_EECD_DI;
6562306a36Sopenharmony_ci
6662306a36Sopenharmony_ci		wr32(E1000_EECD, eecd);
6762306a36Sopenharmony_ci		wrfl();
6862306a36Sopenharmony_ci
6962306a36Sopenharmony_ci		udelay(nvm->delay_usec);
7062306a36Sopenharmony_ci
7162306a36Sopenharmony_ci		igb_raise_eec_clk(hw, &eecd);
7262306a36Sopenharmony_ci		igb_lower_eec_clk(hw, &eecd);
7362306a36Sopenharmony_ci
7462306a36Sopenharmony_ci		mask >>= 1;
7562306a36Sopenharmony_ci	} while (mask);
7662306a36Sopenharmony_ci
7762306a36Sopenharmony_ci	eecd &= ~E1000_EECD_DI;
7862306a36Sopenharmony_ci	wr32(E1000_EECD, eecd);
7962306a36Sopenharmony_ci}
8062306a36Sopenharmony_ci
8162306a36Sopenharmony_ci/**
8262306a36Sopenharmony_ci *  igb_shift_in_eec_bits - Shift data bits in from the EEPROM
8362306a36Sopenharmony_ci *  @hw: pointer to the HW structure
8462306a36Sopenharmony_ci *  @count: number of bits to shift in
8562306a36Sopenharmony_ci *
8662306a36Sopenharmony_ci *  In order to read a register from the EEPROM, we need to shift 'count' bits
8762306a36Sopenharmony_ci *  in from the EEPROM.  Bits are "shifted in" by raising the clock input to
8862306a36Sopenharmony_ci *  the EEPROM (setting the SK bit), and then reading the value of the data out
8962306a36Sopenharmony_ci *  "DO" bit.  During this "shifting in" process the data in "DI" bit should
9062306a36Sopenharmony_ci *  always be clear.
9162306a36Sopenharmony_ci **/
9262306a36Sopenharmony_cistatic u16 igb_shift_in_eec_bits(struct e1000_hw *hw, u16 count)
9362306a36Sopenharmony_ci{
9462306a36Sopenharmony_ci	u32 eecd;
9562306a36Sopenharmony_ci	u32 i;
9662306a36Sopenharmony_ci	u16 data;
9762306a36Sopenharmony_ci
9862306a36Sopenharmony_ci	eecd = rd32(E1000_EECD);
9962306a36Sopenharmony_ci
10062306a36Sopenharmony_ci	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
10162306a36Sopenharmony_ci	data = 0;
10262306a36Sopenharmony_ci
10362306a36Sopenharmony_ci	for (i = 0; i < count; i++) {
10462306a36Sopenharmony_ci		data <<= 1;
10562306a36Sopenharmony_ci		igb_raise_eec_clk(hw, &eecd);
10662306a36Sopenharmony_ci
10762306a36Sopenharmony_ci		eecd = rd32(E1000_EECD);
10862306a36Sopenharmony_ci
10962306a36Sopenharmony_ci		eecd &= ~E1000_EECD_DI;
11062306a36Sopenharmony_ci		if (eecd & E1000_EECD_DO)
11162306a36Sopenharmony_ci			data |= 1;
11262306a36Sopenharmony_ci
11362306a36Sopenharmony_ci		igb_lower_eec_clk(hw, &eecd);
11462306a36Sopenharmony_ci	}
11562306a36Sopenharmony_ci
11662306a36Sopenharmony_ci	return data;
11762306a36Sopenharmony_ci}
11862306a36Sopenharmony_ci
11962306a36Sopenharmony_ci/**
12062306a36Sopenharmony_ci *  igb_poll_eerd_eewr_done - Poll for EEPROM read/write completion
12162306a36Sopenharmony_ci *  @hw: pointer to the HW structure
12262306a36Sopenharmony_ci *  @ee_reg: EEPROM flag for polling
12362306a36Sopenharmony_ci *
12462306a36Sopenharmony_ci *  Polls the EEPROM status bit for either read or write completion based
12562306a36Sopenharmony_ci *  upon the value of 'ee_reg'.
12662306a36Sopenharmony_ci **/
12762306a36Sopenharmony_cistatic s32 igb_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg)
12862306a36Sopenharmony_ci{
12962306a36Sopenharmony_ci	u32 attempts = 100000;
13062306a36Sopenharmony_ci	u32 i, reg = 0;
13162306a36Sopenharmony_ci	s32 ret_val = -E1000_ERR_NVM;
13262306a36Sopenharmony_ci
13362306a36Sopenharmony_ci	for (i = 0; i < attempts; i++) {
13462306a36Sopenharmony_ci		if (ee_reg == E1000_NVM_POLL_READ)
13562306a36Sopenharmony_ci			reg = rd32(E1000_EERD);
13662306a36Sopenharmony_ci		else
13762306a36Sopenharmony_ci			reg = rd32(E1000_EEWR);
13862306a36Sopenharmony_ci
13962306a36Sopenharmony_ci		if (reg & E1000_NVM_RW_REG_DONE) {
14062306a36Sopenharmony_ci			ret_val = 0;
14162306a36Sopenharmony_ci			break;
14262306a36Sopenharmony_ci		}
14362306a36Sopenharmony_ci
14462306a36Sopenharmony_ci		udelay(5);
14562306a36Sopenharmony_ci	}
14662306a36Sopenharmony_ci
14762306a36Sopenharmony_ci	return ret_val;
14862306a36Sopenharmony_ci}
14962306a36Sopenharmony_ci
15062306a36Sopenharmony_ci/**
15162306a36Sopenharmony_ci *  igb_acquire_nvm - Generic request for access to EEPROM
15262306a36Sopenharmony_ci *  @hw: pointer to the HW structure
15362306a36Sopenharmony_ci *
15462306a36Sopenharmony_ci *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
15562306a36Sopenharmony_ci *  Return successful if access grant bit set, else clear the request for
15662306a36Sopenharmony_ci *  EEPROM access and return -E1000_ERR_NVM (-1).
15762306a36Sopenharmony_ci **/
15862306a36Sopenharmony_cis32 igb_acquire_nvm(struct e1000_hw *hw)
15962306a36Sopenharmony_ci{
16062306a36Sopenharmony_ci	u32 eecd = rd32(E1000_EECD);
16162306a36Sopenharmony_ci	s32 timeout = E1000_NVM_GRANT_ATTEMPTS;
16262306a36Sopenharmony_ci	s32 ret_val = 0;
16362306a36Sopenharmony_ci
16462306a36Sopenharmony_ci
16562306a36Sopenharmony_ci	wr32(E1000_EECD, eecd | E1000_EECD_REQ);
16662306a36Sopenharmony_ci	eecd = rd32(E1000_EECD);
16762306a36Sopenharmony_ci
16862306a36Sopenharmony_ci	while (timeout) {
16962306a36Sopenharmony_ci		if (eecd & E1000_EECD_GNT)
17062306a36Sopenharmony_ci			break;
17162306a36Sopenharmony_ci		udelay(5);
17262306a36Sopenharmony_ci		eecd = rd32(E1000_EECD);
17362306a36Sopenharmony_ci		timeout--;
17462306a36Sopenharmony_ci	}
17562306a36Sopenharmony_ci
17662306a36Sopenharmony_ci	if (!timeout) {
17762306a36Sopenharmony_ci		eecd &= ~E1000_EECD_REQ;
17862306a36Sopenharmony_ci		wr32(E1000_EECD, eecd);
17962306a36Sopenharmony_ci		hw_dbg("Could not acquire NVM grant\n");
18062306a36Sopenharmony_ci		ret_val = -E1000_ERR_NVM;
18162306a36Sopenharmony_ci	}
18262306a36Sopenharmony_ci
18362306a36Sopenharmony_ci	return ret_val;
18462306a36Sopenharmony_ci}
18562306a36Sopenharmony_ci
18662306a36Sopenharmony_ci/**
18762306a36Sopenharmony_ci *  igb_standby_nvm - Return EEPROM to standby state
18862306a36Sopenharmony_ci *  @hw: pointer to the HW structure
18962306a36Sopenharmony_ci *
19062306a36Sopenharmony_ci *  Return the EEPROM to a standby state.
19162306a36Sopenharmony_ci **/
19262306a36Sopenharmony_cistatic void igb_standby_nvm(struct e1000_hw *hw)
19362306a36Sopenharmony_ci{
19462306a36Sopenharmony_ci	struct e1000_nvm_info *nvm = &hw->nvm;
19562306a36Sopenharmony_ci	u32 eecd = rd32(E1000_EECD);
19662306a36Sopenharmony_ci
19762306a36Sopenharmony_ci	if (nvm->type == e1000_nvm_eeprom_spi) {
19862306a36Sopenharmony_ci		/* Toggle CS to flush commands */
19962306a36Sopenharmony_ci		eecd |= E1000_EECD_CS;
20062306a36Sopenharmony_ci		wr32(E1000_EECD, eecd);
20162306a36Sopenharmony_ci		wrfl();
20262306a36Sopenharmony_ci		udelay(nvm->delay_usec);
20362306a36Sopenharmony_ci		eecd &= ~E1000_EECD_CS;
20462306a36Sopenharmony_ci		wr32(E1000_EECD, eecd);
20562306a36Sopenharmony_ci		wrfl();
20662306a36Sopenharmony_ci		udelay(nvm->delay_usec);
20762306a36Sopenharmony_ci	}
20862306a36Sopenharmony_ci}
20962306a36Sopenharmony_ci
21062306a36Sopenharmony_ci/**
21162306a36Sopenharmony_ci *  e1000_stop_nvm - Terminate EEPROM command
21262306a36Sopenharmony_ci *  @hw: pointer to the HW structure
21362306a36Sopenharmony_ci *
21462306a36Sopenharmony_ci *  Terminates the current command by inverting the EEPROM's chip select pin.
21562306a36Sopenharmony_ci **/
21662306a36Sopenharmony_cistatic void e1000_stop_nvm(struct e1000_hw *hw)
21762306a36Sopenharmony_ci{
21862306a36Sopenharmony_ci	u32 eecd;
21962306a36Sopenharmony_ci
22062306a36Sopenharmony_ci	eecd = rd32(E1000_EECD);
22162306a36Sopenharmony_ci	if (hw->nvm.type == e1000_nvm_eeprom_spi) {
22262306a36Sopenharmony_ci		/* Pull CS high */
22362306a36Sopenharmony_ci		eecd |= E1000_EECD_CS;
22462306a36Sopenharmony_ci		igb_lower_eec_clk(hw, &eecd);
22562306a36Sopenharmony_ci	}
22662306a36Sopenharmony_ci}
22762306a36Sopenharmony_ci
22862306a36Sopenharmony_ci/**
22962306a36Sopenharmony_ci *  igb_release_nvm - Release exclusive access to EEPROM
23062306a36Sopenharmony_ci *  @hw: pointer to the HW structure
23162306a36Sopenharmony_ci *
23262306a36Sopenharmony_ci *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
23362306a36Sopenharmony_ci **/
23462306a36Sopenharmony_civoid igb_release_nvm(struct e1000_hw *hw)
23562306a36Sopenharmony_ci{
23662306a36Sopenharmony_ci	u32 eecd;
23762306a36Sopenharmony_ci
23862306a36Sopenharmony_ci	e1000_stop_nvm(hw);
23962306a36Sopenharmony_ci
24062306a36Sopenharmony_ci	eecd = rd32(E1000_EECD);
24162306a36Sopenharmony_ci	eecd &= ~E1000_EECD_REQ;
24262306a36Sopenharmony_ci	wr32(E1000_EECD, eecd);
24362306a36Sopenharmony_ci}
24462306a36Sopenharmony_ci
24562306a36Sopenharmony_ci/**
24662306a36Sopenharmony_ci *  igb_ready_nvm_eeprom - Prepares EEPROM for read/write
24762306a36Sopenharmony_ci *  @hw: pointer to the HW structure
24862306a36Sopenharmony_ci *
24962306a36Sopenharmony_ci *  Setups the EEPROM for reading and writing.
25062306a36Sopenharmony_ci **/
25162306a36Sopenharmony_cistatic s32 igb_ready_nvm_eeprom(struct e1000_hw *hw)
25262306a36Sopenharmony_ci{
25362306a36Sopenharmony_ci	struct e1000_nvm_info *nvm = &hw->nvm;
25462306a36Sopenharmony_ci	u32 eecd = rd32(E1000_EECD);
25562306a36Sopenharmony_ci	s32 ret_val = 0;
25662306a36Sopenharmony_ci	u16 timeout = 0;
25762306a36Sopenharmony_ci	u8 spi_stat_reg;
25862306a36Sopenharmony_ci
25962306a36Sopenharmony_ci
26062306a36Sopenharmony_ci	if (nvm->type == e1000_nvm_eeprom_spi) {
26162306a36Sopenharmony_ci		/* Clear SK and CS */
26262306a36Sopenharmony_ci		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
26362306a36Sopenharmony_ci		wr32(E1000_EECD, eecd);
26462306a36Sopenharmony_ci		wrfl();
26562306a36Sopenharmony_ci		udelay(1);
26662306a36Sopenharmony_ci		timeout = NVM_MAX_RETRY_SPI;
26762306a36Sopenharmony_ci
26862306a36Sopenharmony_ci		/* Read "Status Register" repeatedly until the LSB is cleared.
26962306a36Sopenharmony_ci		 * The EEPROM will signal that the command has been completed
27062306a36Sopenharmony_ci		 * by clearing bit 0 of the internal status register.  If it's
27162306a36Sopenharmony_ci		 * not cleared within 'timeout', then error out.
27262306a36Sopenharmony_ci		 */
27362306a36Sopenharmony_ci		while (timeout) {
27462306a36Sopenharmony_ci			igb_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI,
27562306a36Sopenharmony_ci					       hw->nvm.opcode_bits);
27662306a36Sopenharmony_ci			spi_stat_reg = (u8)igb_shift_in_eec_bits(hw, 8);
27762306a36Sopenharmony_ci			if (!(spi_stat_reg & NVM_STATUS_RDY_SPI))
27862306a36Sopenharmony_ci				break;
27962306a36Sopenharmony_ci
28062306a36Sopenharmony_ci			udelay(5);
28162306a36Sopenharmony_ci			igb_standby_nvm(hw);
28262306a36Sopenharmony_ci			timeout--;
28362306a36Sopenharmony_ci		}
28462306a36Sopenharmony_ci
28562306a36Sopenharmony_ci		if (!timeout) {
28662306a36Sopenharmony_ci			hw_dbg("SPI NVM Status error\n");
28762306a36Sopenharmony_ci			ret_val = -E1000_ERR_NVM;
28862306a36Sopenharmony_ci			goto out;
28962306a36Sopenharmony_ci		}
29062306a36Sopenharmony_ci	}
29162306a36Sopenharmony_ci
29262306a36Sopenharmony_ciout:
29362306a36Sopenharmony_ci	return ret_val;
29462306a36Sopenharmony_ci}
29562306a36Sopenharmony_ci
29662306a36Sopenharmony_ci/**
29762306a36Sopenharmony_ci *  igb_read_nvm_spi - Read EEPROM's using SPI
29862306a36Sopenharmony_ci *  @hw: pointer to the HW structure
29962306a36Sopenharmony_ci *  @offset: offset of word in the EEPROM to read
30062306a36Sopenharmony_ci *  @words: number of words to read
30162306a36Sopenharmony_ci *  @data: word read from the EEPROM
30262306a36Sopenharmony_ci *
30362306a36Sopenharmony_ci *  Reads a 16 bit word from the EEPROM.
30462306a36Sopenharmony_ci **/
30562306a36Sopenharmony_cis32 igb_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
30662306a36Sopenharmony_ci{
30762306a36Sopenharmony_ci	struct e1000_nvm_info *nvm = &hw->nvm;
30862306a36Sopenharmony_ci	u32 i = 0;
30962306a36Sopenharmony_ci	s32 ret_val;
31062306a36Sopenharmony_ci	u16 word_in;
31162306a36Sopenharmony_ci	u8 read_opcode = NVM_READ_OPCODE_SPI;
31262306a36Sopenharmony_ci
31362306a36Sopenharmony_ci	/* A check for invalid values:  offset too large, too many words,
31462306a36Sopenharmony_ci	 * and not enough words.
31562306a36Sopenharmony_ci	 */
31662306a36Sopenharmony_ci	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
31762306a36Sopenharmony_ci	    (words == 0)) {
31862306a36Sopenharmony_ci		hw_dbg("nvm parameter(s) out of bounds\n");
31962306a36Sopenharmony_ci		ret_val = -E1000_ERR_NVM;
32062306a36Sopenharmony_ci		goto out;
32162306a36Sopenharmony_ci	}
32262306a36Sopenharmony_ci
32362306a36Sopenharmony_ci	ret_val = nvm->ops.acquire(hw);
32462306a36Sopenharmony_ci	if (ret_val)
32562306a36Sopenharmony_ci		goto out;
32662306a36Sopenharmony_ci
32762306a36Sopenharmony_ci	ret_val = igb_ready_nvm_eeprom(hw);
32862306a36Sopenharmony_ci	if (ret_val)
32962306a36Sopenharmony_ci		goto release;
33062306a36Sopenharmony_ci
33162306a36Sopenharmony_ci	igb_standby_nvm(hw);
33262306a36Sopenharmony_ci
33362306a36Sopenharmony_ci	if ((nvm->address_bits == 8) && (offset >= 128))
33462306a36Sopenharmony_ci		read_opcode |= NVM_A8_OPCODE_SPI;
33562306a36Sopenharmony_ci
33662306a36Sopenharmony_ci	/* Send the READ command (opcode + addr) */
33762306a36Sopenharmony_ci	igb_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits);
33862306a36Sopenharmony_ci	igb_shift_out_eec_bits(hw, (u16)(offset*2), nvm->address_bits);
33962306a36Sopenharmony_ci
34062306a36Sopenharmony_ci	/* Read the data.  SPI NVMs increment the address with each byte
34162306a36Sopenharmony_ci	 * read and will roll over if reading beyond the end.  This allows
34262306a36Sopenharmony_ci	 * us to read the whole NVM from any offset
34362306a36Sopenharmony_ci	 */
34462306a36Sopenharmony_ci	for (i = 0; i < words; i++) {
34562306a36Sopenharmony_ci		word_in = igb_shift_in_eec_bits(hw, 16);
34662306a36Sopenharmony_ci		data[i] = (word_in >> 8) | (word_in << 8);
34762306a36Sopenharmony_ci	}
34862306a36Sopenharmony_ci
34962306a36Sopenharmony_cirelease:
35062306a36Sopenharmony_ci	nvm->ops.release(hw);
35162306a36Sopenharmony_ci
35262306a36Sopenharmony_ciout:
35362306a36Sopenharmony_ci	return ret_val;
35462306a36Sopenharmony_ci}
35562306a36Sopenharmony_ci
35662306a36Sopenharmony_ci/**
35762306a36Sopenharmony_ci *  igb_read_nvm_eerd - Reads EEPROM using EERD register
35862306a36Sopenharmony_ci *  @hw: pointer to the HW structure
35962306a36Sopenharmony_ci *  @offset: offset of word in the EEPROM to read
36062306a36Sopenharmony_ci *  @words: number of words to read
36162306a36Sopenharmony_ci *  @data: word read from the EEPROM
36262306a36Sopenharmony_ci *
36362306a36Sopenharmony_ci *  Reads a 16 bit word from the EEPROM using the EERD register.
36462306a36Sopenharmony_ci **/
36562306a36Sopenharmony_cis32 igb_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
36662306a36Sopenharmony_ci{
36762306a36Sopenharmony_ci	struct e1000_nvm_info *nvm = &hw->nvm;
36862306a36Sopenharmony_ci	u32 i, eerd = 0;
36962306a36Sopenharmony_ci	s32 ret_val = 0;
37062306a36Sopenharmony_ci
37162306a36Sopenharmony_ci	/* A check for invalid values:  offset too large, too many words,
37262306a36Sopenharmony_ci	 * and not enough words.
37362306a36Sopenharmony_ci	 */
37462306a36Sopenharmony_ci	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
37562306a36Sopenharmony_ci	    (words == 0)) {
37662306a36Sopenharmony_ci		hw_dbg("nvm parameter(s) out of bounds\n");
37762306a36Sopenharmony_ci		ret_val = -E1000_ERR_NVM;
37862306a36Sopenharmony_ci		goto out;
37962306a36Sopenharmony_ci	}
38062306a36Sopenharmony_ci
38162306a36Sopenharmony_ci	for (i = 0; i < words; i++) {
38262306a36Sopenharmony_ci		eerd = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) +
38362306a36Sopenharmony_ci			E1000_NVM_RW_REG_START;
38462306a36Sopenharmony_ci
38562306a36Sopenharmony_ci		wr32(E1000_EERD, eerd);
38662306a36Sopenharmony_ci		ret_val = igb_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ);
38762306a36Sopenharmony_ci		if (ret_val)
38862306a36Sopenharmony_ci			break;
38962306a36Sopenharmony_ci
39062306a36Sopenharmony_ci		data[i] = (rd32(E1000_EERD) >>
39162306a36Sopenharmony_ci			E1000_NVM_RW_REG_DATA);
39262306a36Sopenharmony_ci	}
39362306a36Sopenharmony_ci
39462306a36Sopenharmony_ciout:
39562306a36Sopenharmony_ci	return ret_val;
39662306a36Sopenharmony_ci}
39762306a36Sopenharmony_ci
39862306a36Sopenharmony_ci/**
39962306a36Sopenharmony_ci *  igb_write_nvm_spi - Write to EEPROM using SPI
40062306a36Sopenharmony_ci *  @hw: pointer to the HW structure
40162306a36Sopenharmony_ci *  @offset: offset within the EEPROM to be written to
40262306a36Sopenharmony_ci *  @words: number of words to write
40362306a36Sopenharmony_ci *  @data: 16 bit word(s) to be written to the EEPROM
40462306a36Sopenharmony_ci *
40562306a36Sopenharmony_ci *  Writes data to EEPROM at offset using SPI interface.
40662306a36Sopenharmony_ci *
40762306a36Sopenharmony_ci *  If e1000_update_nvm_checksum is not called after this function , the
40862306a36Sopenharmony_ci *  EEPROM will most likley contain an invalid checksum.
40962306a36Sopenharmony_ci **/
41062306a36Sopenharmony_cis32 igb_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
41162306a36Sopenharmony_ci{
41262306a36Sopenharmony_ci	struct e1000_nvm_info *nvm = &hw->nvm;
41362306a36Sopenharmony_ci	s32 ret_val = -E1000_ERR_NVM;
41462306a36Sopenharmony_ci	u16 widx = 0;
41562306a36Sopenharmony_ci
41662306a36Sopenharmony_ci	/* A check for invalid values:  offset too large, too many words,
41762306a36Sopenharmony_ci	 * and not enough words.
41862306a36Sopenharmony_ci	 */
41962306a36Sopenharmony_ci	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
42062306a36Sopenharmony_ci	    (words == 0)) {
42162306a36Sopenharmony_ci		hw_dbg("nvm parameter(s) out of bounds\n");
42262306a36Sopenharmony_ci		return ret_val;
42362306a36Sopenharmony_ci	}
42462306a36Sopenharmony_ci
42562306a36Sopenharmony_ci	while (widx < words) {
42662306a36Sopenharmony_ci		u8 write_opcode = NVM_WRITE_OPCODE_SPI;
42762306a36Sopenharmony_ci
42862306a36Sopenharmony_ci		ret_val = nvm->ops.acquire(hw);
42962306a36Sopenharmony_ci		if (ret_val)
43062306a36Sopenharmony_ci			return ret_val;
43162306a36Sopenharmony_ci
43262306a36Sopenharmony_ci		ret_val = igb_ready_nvm_eeprom(hw);
43362306a36Sopenharmony_ci		if (ret_val) {
43462306a36Sopenharmony_ci			nvm->ops.release(hw);
43562306a36Sopenharmony_ci			return ret_val;
43662306a36Sopenharmony_ci		}
43762306a36Sopenharmony_ci
43862306a36Sopenharmony_ci		igb_standby_nvm(hw);
43962306a36Sopenharmony_ci
44062306a36Sopenharmony_ci		/* Send the WRITE ENABLE command (8 bit opcode) */
44162306a36Sopenharmony_ci		igb_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI,
44262306a36Sopenharmony_ci					 nvm->opcode_bits);
44362306a36Sopenharmony_ci
44462306a36Sopenharmony_ci		igb_standby_nvm(hw);
44562306a36Sopenharmony_ci
44662306a36Sopenharmony_ci		/* Some SPI eeproms use the 8th address bit embedded in the
44762306a36Sopenharmony_ci		 * opcode
44862306a36Sopenharmony_ci		 */
44962306a36Sopenharmony_ci		if ((nvm->address_bits == 8) && (offset >= 128))
45062306a36Sopenharmony_ci			write_opcode |= NVM_A8_OPCODE_SPI;
45162306a36Sopenharmony_ci
45262306a36Sopenharmony_ci		/* Send the Write command (8-bit opcode + addr) */
45362306a36Sopenharmony_ci		igb_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits);
45462306a36Sopenharmony_ci		igb_shift_out_eec_bits(hw, (u16)((offset + widx) * 2),
45562306a36Sopenharmony_ci					 nvm->address_bits);
45662306a36Sopenharmony_ci
45762306a36Sopenharmony_ci		/* Loop to allow for up to whole page write of eeprom */
45862306a36Sopenharmony_ci		while (widx < words) {
45962306a36Sopenharmony_ci			u16 word_out = data[widx];
46062306a36Sopenharmony_ci
46162306a36Sopenharmony_ci			word_out = (word_out >> 8) | (word_out << 8);
46262306a36Sopenharmony_ci			igb_shift_out_eec_bits(hw, word_out, 16);
46362306a36Sopenharmony_ci			widx++;
46462306a36Sopenharmony_ci
46562306a36Sopenharmony_ci			if ((((offset + widx) * 2) % nvm->page_size) == 0) {
46662306a36Sopenharmony_ci				igb_standby_nvm(hw);
46762306a36Sopenharmony_ci				break;
46862306a36Sopenharmony_ci			}
46962306a36Sopenharmony_ci		}
47062306a36Sopenharmony_ci		usleep_range(1000, 2000);
47162306a36Sopenharmony_ci		nvm->ops.release(hw);
47262306a36Sopenharmony_ci	}
47362306a36Sopenharmony_ci
47462306a36Sopenharmony_ci	return ret_val;
47562306a36Sopenharmony_ci}
47662306a36Sopenharmony_ci
47762306a36Sopenharmony_ci/**
47862306a36Sopenharmony_ci *  igb_read_part_string - Read device part number
47962306a36Sopenharmony_ci *  @hw: pointer to the HW structure
48062306a36Sopenharmony_ci *  @part_num: pointer to device part number
48162306a36Sopenharmony_ci *  @part_num_size: size of part number buffer
48262306a36Sopenharmony_ci *
48362306a36Sopenharmony_ci *  Reads the product board assembly (PBA) number from the EEPROM and stores
48462306a36Sopenharmony_ci *  the value in part_num.
48562306a36Sopenharmony_ci **/
48662306a36Sopenharmony_cis32 igb_read_part_string(struct e1000_hw *hw, u8 *part_num, u32 part_num_size)
48762306a36Sopenharmony_ci{
48862306a36Sopenharmony_ci	s32 ret_val;
48962306a36Sopenharmony_ci	u16 nvm_data;
49062306a36Sopenharmony_ci	u16 pointer;
49162306a36Sopenharmony_ci	u16 offset;
49262306a36Sopenharmony_ci	u16 length;
49362306a36Sopenharmony_ci
49462306a36Sopenharmony_ci	if (part_num == NULL) {
49562306a36Sopenharmony_ci		hw_dbg("PBA string buffer was null\n");
49662306a36Sopenharmony_ci		ret_val = E1000_ERR_INVALID_ARGUMENT;
49762306a36Sopenharmony_ci		goto out;
49862306a36Sopenharmony_ci	}
49962306a36Sopenharmony_ci
50062306a36Sopenharmony_ci	ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
50162306a36Sopenharmony_ci	if (ret_val) {
50262306a36Sopenharmony_ci		hw_dbg("NVM Read Error\n");
50362306a36Sopenharmony_ci		goto out;
50462306a36Sopenharmony_ci	}
50562306a36Sopenharmony_ci
50662306a36Sopenharmony_ci	ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &pointer);
50762306a36Sopenharmony_ci	if (ret_val) {
50862306a36Sopenharmony_ci		hw_dbg("NVM Read Error\n");
50962306a36Sopenharmony_ci		goto out;
51062306a36Sopenharmony_ci	}
51162306a36Sopenharmony_ci
51262306a36Sopenharmony_ci	/* if nvm_data is not ptr guard the PBA must be in legacy format which
51362306a36Sopenharmony_ci	 * means pointer is actually our second data word for the PBA number
51462306a36Sopenharmony_ci	 * and we can decode it into an ascii string
51562306a36Sopenharmony_ci	 */
51662306a36Sopenharmony_ci	if (nvm_data != NVM_PBA_PTR_GUARD) {
51762306a36Sopenharmony_ci		hw_dbg("NVM PBA number is not stored as string\n");
51862306a36Sopenharmony_ci
51962306a36Sopenharmony_ci		/* we will need 11 characters to store the PBA */
52062306a36Sopenharmony_ci		if (part_num_size < 11) {
52162306a36Sopenharmony_ci			hw_dbg("PBA string buffer too small\n");
52262306a36Sopenharmony_ci			return E1000_ERR_NO_SPACE;
52362306a36Sopenharmony_ci		}
52462306a36Sopenharmony_ci
52562306a36Sopenharmony_ci		/* extract hex string from data and pointer */
52662306a36Sopenharmony_ci		part_num[0] = (nvm_data >> 12) & 0xF;
52762306a36Sopenharmony_ci		part_num[1] = (nvm_data >> 8) & 0xF;
52862306a36Sopenharmony_ci		part_num[2] = (nvm_data >> 4) & 0xF;
52962306a36Sopenharmony_ci		part_num[3] = nvm_data & 0xF;
53062306a36Sopenharmony_ci		part_num[4] = (pointer >> 12) & 0xF;
53162306a36Sopenharmony_ci		part_num[5] = (pointer >> 8) & 0xF;
53262306a36Sopenharmony_ci		part_num[6] = '-';
53362306a36Sopenharmony_ci		part_num[7] = 0;
53462306a36Sopenharmony_ci		part_num[8] = (pointer >> 4) & 0xF;
53562306a36Sopenharmony_ci		part_num[9] = pointer & 0xF;
53662306a36Sopenharmony_ci
53762306a36Sopenharmony_ci		/* put a null character on the end of our string */
53862306a36Sopenharmony_ci		part_num[10] = '\0';
53962306a36Sopenharmony_ci
54062306a36Sopenharmony_ci		/* switch all the data but the '-' to hex char */
54162306a36Sopenharmony_ci		for (offset = 0; offset < 10; offset++) {
54262306a36Sopenharmony_ci			if (part_num[offset] < 0xA)
54362306a36Sopenharmony_ci				part_num[offset] += '0';
54462306a36Sopenharmony_ci			else if (part_num[offset] < 0x10)
54562306a36Sopenharmony_ci				part_num[offset] += 'A' - 0xA;
54662306a36Sopenharmony_ci		}
54762306a36Sopenharmony_ci
54862306a36Sopenharmony_ci		goto out;
54962306a36Sopenharmony_ci	}
55062306a36Sopenharmony_ci
55162306a36Sopenharmony_ci	ret_val = hw->nvm.ops.read(hw, pointer, 1, &length);
55262306a36Sopenharmony_ci	if (ret_val) {
55362306a36Sopenharmony_ci		hw_dbg("NVM Read Error\n");
55462306a36Sopenharmony_ci		goto out;
55562306a36Sopenharmony_ci	}
55662306a36Sopenharmony_ci
55762306a36Sopenharmony_ci	if (length == 0xFFFF || length == 0) {
55862306a36Sopenharmony_ci		hw_dbg("NVM PBA number section invalid length\n");
55962306a36Sopenharmony_ci		ret_val = E1000_ERR_NVM_PBA_SECTION;
56062306a36Sopenharmony_ci		goto out;
56162306a36Sopenharmony_ci	}
56262306a36Sopenharmony_ci	/* check if part_num buffer is big enough */
56362306a36Sopenharmony_ci	if (part_num_size < (((u32)length * 2) - 1)) {
56462306a36Sopenharmony_ci		hw_dbg("PBA string buffer too small\n");
56562306a36Sopenharmony_ci		ret_val = E1000_ERR_NO_SPACE;
56662306a36Sopenharmony_ci		goto out;
56762306a36Sopenharmony_ci	}
56862306a36Sopenharmony_ci
56962306a36Sopenharmony_ci	/* trim pba length from start of string */
57062306a36Sopenharmony_ci	pointer++;
57162306a36Sopenharmony_ci	length--;
57262306a36Sopenharmony_ci
57362306a36Sopenharmony_ci	for (offset = 0; offset < length; offset++) {
57462306a36Sopenharmony_ci		ret_val = hw->nvm.ops.read(hw, pointer + offset, 1, &nvm_data);
57562306a36Sopenharmony_ci		if (ret_val) {
57662306a36Sopenharmony_ci			hw_dbg("NVM Read Error\n");
57762306a36Sopenharmony_ci			goto out;
57862306a36Sopenharmony_ci		}
57962306a36Sopenharmony_ci		part_num[offset * 2] = (u8)(nvm_data >> 8);
58062306a36Sopenharmony_ci		part_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF);
58162306a36Sopenharmony_ci	}
58262306a36Sopenharmony_ci	part_num[offset * 2] = '\0';
58362306a36Sopenharmony_ci
58462306a36Sopenharmony_ciout:
58562306a36Sopenharmony_ci	return ret_val;
58662306a36Sopenharmony_ci}
58762306a36Sopenharmony_ci
58862306a36Sopenharmony_ci/**
58962306a36Sopenharmony_ci *  igb_read_mac_addr - Read device MAC address
59062306a36Sopenharmony_ci *  @hw: pointer to the HW structure
59162306a36Sopenharmony_ci *
59262306a36Sopenharmony_ci *  Reads the device MAC address from the EEPROM and stores the value.
59362306a36Sopenharmony_ci *  Since devices with two ports use the same EEPROM, we increment the
59462306a36Sopenharmony_ci *  last bit in the MAC address for the second port.
59562306a36Sopenharmony_ci **/
59662306a36Sopenharmony_cis32 igb_read_mac_addr(struct e1000_hw *hw)
59762306a36Sopenharmony_ci{
59862306a36Sopenharmony_ci	u32 rar_high;
59962306a36Sopenharmony_ci	u32 rar_low;
60062306a36Sopenharmony_ci	u16 i;
60162306a36Sopenharmony_ci
60262306a36Sopenharmony_ci	rar_high = rd32(E1000_RAH(0));
60362306a36Sopenharmony_ci	rar_low = rd32(E1000_RAL(0));
60462306a36Sopenharmony_ci
60562306a36Sopenharmony_ci	for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++)
60662306a36Sopenharmony_ci		hw->mac.perm_addr[i] = (u8)(rar_low >> (i*8));
60762306a36Sopenharmony_ci
60862306a36Sopenharmony_ci	for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++)
60962306a36Sopenharmony_ci		hw->mac.perm_addr[i+4] = (u8)(rar_high >> (i*8));
61062306a36Sopenharmony_ci
61162306a36Sopenharmony_ci	for (i = 0; i < ETH_ALEN; i++)
61262306a36Sopenharmony_ci		hw->mac.addr[i] = hw->mac.perm_addr[i];
61362306a36Sopenharmony_ci
61462306a36Sopenharmony_ci	return 0;
61562306a36Sopenharmony_ci}
61662306a36Sopenharmony_ci
61762306a36Sopenharmony_ci/**
61862306a36Sopenharmony_ci *  igb_validate_nvm_checksum - Validate EEPROM checksum
61962306a36Sopenharmony_ci *  @hw: pointer to the HW structure
62062306a36Sopenharmony_ci *
62162306a36Sopenharmony_ci *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
62262306a36Sopenharmony_ci *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
62362306a36Sopenharmony_ci **/
62462306a36Sopenharmony_cis32 igb_validate_nvm_checksum(struct e1000_hw *hw)
62562306a36Sopenharmony_ci{
62662306a36Sopenharmony_ci	s32 ret_val = 0;
62762306a36Sopenharmony_ci	u16 checksum = 0;
62862306a36Sopenharmony_ci	u16 i, nvm_data;
62962306a36Sopenharmony_ci
63062306a36Sopenharmony_ci	for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
63162306a36Sopenharmony_ci		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
63262306a36Sopenharmony_ci		if (ret_val) {
63362306a36Sopenharmony_ci			hw_dbg("NVM Read Error\n");
63462306a36Sopenharmony_ci			goto out;
63562306a36Sopenharmony_ci		}
63662306a36Sopenharmony_ci		checksum += nvm_data;
63762306a36Sopenharmony_ci	}
63862306a36Sopenharmony_ci
63962306a36Sopenharmony_ci	if (checksum != (u16) NVM_SUM) {
64062306a36Sopenharmony_ci		hw_dbg("NVM Checksum Invalid\n");
64162306a36Sopenharmony_ci		ret_val = -E1000_ERR_NVM;
64262306a36Sopenharmony_ci		goto out;
64362306a36Sopenharmony_ci	}
64462306a36Sopenharmony_ci
64562306a36Sopenharmony_ciout:
64662306a36Sopenharmony_ci	return ret_val;
64762306a36Sopenharmony_ci}
64862306a36Sopenharmony_ci
64962306a36Sopenharmony_ci/**
65062306a36Sopenharmony_ci *  igb_update_nvm_checksum - Update EEPROM checksum
65162306a36Sopenharmony_ci *  @hw: pointer to the HW structure
65262306a36Sopenharmony_ci *
65362306a36Sopenharmony_ci *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
65462306a36Sopenharmony_ci *  up to the checksum.  Then calculates the EEPROM checksum and writes the
65562306a36Sopenharmony_ci *  value to the EEPROM.
65662306a36Sopenharmony_ci **/
65762306a36Sopenharmony_cis32 igb_update_nvm_checksum(struct e1000_hw *hw)
65862306a36Sopenharmony_ci{
65962306a36Sopenharmony_ci	s32  ret_val;
66062306a36Sopenharmony_ci	u16 checksum = 0;
66162306a36Sopenharmony_ci	u16 i, nvm_data;
66262306a36Sopenharmony_ci
66362306a36Sopenharmony_ci	for (i = 0; i < NVM_CHECKSUM_REG; i++) {
66462306a36Sopenharmony_ci		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
66562306a36Sopenharmony_ci		if (ret_val) {
66662306a36Sopenharmony_ci			hw_dbg("NVM Read Error while updating checksum.\n");
66762306a36Sopenharmony_ci			goto out;
66862306a36Sopenharmony_ci		}
66962306a36Sopenharmony_ci		checksum += nvm_data;
67062306a36Sopenharmony_ci	}
67162306a36Sopenharmony_ci	checksum = (u16) NVM_SUM - checksum;
67262306a36Sopenharmony_ci	ret_val = hw->nvm.ops.write(hw, NVM_CHECKSUM_REG, 1, &checksum);
67362306a36Sopenharmony_ci	if (ret_val)
67462306a36Sopenharmony_ci		hw_dbg("NVM Write Error while updating checksum.\n");
67562306a36Sopenharmony_ci
67662306a36Sopenharmony_ciout:
67762306a36Sopenharmony_ci	return ret_val;
67862306a36Sopenharmony_ci}
67962306a36Sopenharmony_ci
68062306a36Sopenharmony_ci/**
68162306a36Sopenharmony_ci *  igb_get_fw_version - Get firmware version information
68262306a36Sopenharmony_ci *  @hw: pointer to the HW structure
68362306a36Sopenharmony_ci *  @fw_vers: pointer to output structure
68462306a36Sopenharmony_ci *
68562306a36Sopenharmony_ci *  unsupported MAC types will return all 0 version structure
68662306a36Sopenharmony_ci **/
68762306a36Sopenharmony_civoid igb_get_fw_version(struct e1000_hw *hw, struct e1000_fw_version *fw_vers)
68862306a36Sopenharmony_ci{
68962306a36Sopenharmony_ci	u16 eeprom_verh, eeprom_verl, etrack_test, fw_version;
69062306a36Sopenharmony_ci	u8 q, hval, rem, result;
69162306a36Sopenharmony_ci	u16 comb_verh, comb_verl, comb_offset;
69262306a36Sopenharmony_ci
69362306a36Sopenharmony_ci	memset(fw_vers, 0, sizeof(struct e1000_fw_version));
69462306a36Sopenharmony_ci
69562306a36Sopenharmony_ci	/* basic eeprom version numbers and bits used vary by part and by tool
69662306a36Sopenharmony_ci	 * used to create the nvm images. Check which data format we have.
69762306a36Sopenharmony_ci	 */
69862306a36Sopenharmony_ci	hw->nvm.ops.read(hw, NVM_ETRACK_HIWORD, 1, &etrack_test);
69962306a36Sopenharmony_ci	switch (hw->mac.type) {
70062306a36Sopenharmony_ci	case e1000_i211:
70162306a36Sopenharmony_ci		igb_read_invm_version(hw, fw_vers);
70262306a36Sopenharmony_ci		return;
70362306a36Sopenharmony_ci	case e1000_82575:
70462306a36Sopenharmony_ci	case e1000_82576:
70562306a36Sopenharmony_ci	case e1000_82580:
70662306a36Sopenharmony_ci		/* Use this format, unless EETRACK ID exists,
70762306a36Sopenharmony_ci		 * then use alternate format
70862306a36Sopenharmony_ci		 */
70962306a36Sopenharmony_ci		if ((etrack_test &  NVM_MAJOR_MASK) != NVM_ETRACK_VALID) {
71062306a36Sopenharmony_ci			hw->nvm.ops.read(hw, NVM_VERSION, 1, &fw_version);
71162306a36Sopenharmony_ci			fw_vers->eep_major = (fw_version & NVM_MAJOR_MASK)
71262306a36Sopenharmony_ci					      >> NVM_MAJOR_SHIFT;
71362306a36Sopenharmony_ci			fw_vers->eep_minor = (fw_version & NVM_MINOR_MASK)
71462306a36Sopenharmony_ci					      >> NVM_MINOR_SHIFT;
71562306a36Sopenharmony_ci			fw_vers->eep_build = (fw_version & NVM_IMAGE_ID_MASK);
71662306a36Sopenharmony_ci			goto etrack_id;
71762306a36Sopenharmony_ci		}
71862306a36Sopenharmony_ci		break;
71962306a36Sopenharmony_ci	case e1000_i210:
72062306a36Sopenharmony_ci		if (!(igb_get_flash_presence_i210(hw))) {
72162306a36Sopenharmony_ci			igb_read_invm_version(hw, fw_vers);
72262306a36Sopenharmony_ci			return;
72362306a36Sopenharmony_ci		}
72462306a36Sopenharmony_ci		fallthrough;
72562306a36Sopenharmony_ci	case e1000_i350:
72662306a36Sopenharmony_ci		/* find combo image version */
72762306a36Sopenharmony_ci		hw->nvm.ops.read(hw, NVM_COMB_VER_PTR, 1, &comb_offset);
72862306a36Sopenharmony_ci		if ((comb_offset != 0x0) &&
72962306a36Sopenharmony_ci		    (comb_offset != NVM_VER_INVALID)) {
73062306a36Sopenharmony_ci
73162306a36Sopenharmony_ci			hw->nvm.ops.read(hw, (NVM_COMB_VER_OFF + comb_offset
73262306a36Sopenharmony_ci					 + 1), 1, &comb_verh);
73362306a36Sopenharmony_ci			hw->nvm.ops.read(hw, (NVM_COMB_VER_OFF + comb_offset),
73462306a36Sopenharmony_ci					 1, &comb_verl);
73562306a36Sopenharmony_ci
73662306a36Sopenharmony_ci			/* get Option Rom version if it exists and is valid */
73762306a36Sopenharmony_ci			if ((comb_verh && comb_verl) &&
73862306a36Sopenharmony_ci			    ((comb_verh != NVM_VER_INVALID) &&
73962306a36Sopenharmony_ci			     (comb_verl != NVM_VER_INVALID))) {
74062306a36Sopenharmony_ci
74162306a36Sopenharmony_ci				fw_vers->or_valid = true;
74262306a36Sopenharmony_ci				fw_vers->or_major =
74362306a36Sopenharmony_ci					comb_verl >> NVM_COMB_VER_SHFT;
74462306a36Sopenharmony_ci				fw_vers->or_build =
74562306a36Sopenharmony_ci					(comb_verl << NVM_COMB_VER_SHFT)
74662306a36Sopenharmony_ci					| (comb_verh >> NVM_COMB_VER_SHFT);
74762306a36Sopenharmony_ci				fw_vers->or_patch =
74862306a36Sopenharmony_ci					comb_verh & NVM_COMB_VER_MASK;
74962306a36Sopenharmony_ci			}
75062306a36Sopenharmony_ci		}
75162306a36Sopenharmony_ci		break;
75262306a36Sopenharmony_ci	default:
75362306a36Sopenharmony_ci		return;
75462306a36Sopenharmony_ci	}
75562306a36Sopenharmony_ci	hw->nvm.ops.read(hw, NVM_VERSION, 1, &fw_version);
75662306a36Sopenharmony_ci	fw_vers->eep_major = (fw_version & NVM_MAJOR_MASK)
75762306a36Sopenharmony_ci			      >> NVM_MAJOR_SHIFT;
75862306a36Sopenharmony_ci
75962306a36Sopenharmony_ci	/* check for old style version format in newer images*/
76062306a36Sopenharmony_ci	if ((fw_version & NVM_NEW_DEC_MASK) == 0x0) {
76162306a36Sopenharmony_ci		eeprom_verl = (fw_version & NVM_COMB_VER_MASK);
76262306a36Sopenharmony_ci	} else {
76362306a36Sopenharmony_ci		eeprom_verl = (fw_version & NVM_MINOR_MASK)
76462306a36Sopenharmony_ci				>> NVM_MINOR_SHIFT;
76562306a36Sopenharmony_ci	}
76662306a36Sopenharmony_ci	/* Convert minor value to hex before assigning to output struct
76762306a36Sopenharmony_ci	 * Val to be converted will not be higher than 99, per tool output
76862306a36Sopenharmony_ci	 */
76962306a36Sopenharmony_ci	q = eeprom_verl / NVM_HEX_CONV;
77062306a36Sopenharmony_ci	hval = q * NVM_HEX_TENS;
77162306a36Sopenharmony_ci	rem = eeprom_verl % NVM_HEX_CONV;
77262306a36Sopenharmony_ci	result = hval + rem;
77362306a36Sopenharmony_ci	fw_vers->eep_minor = result;
77462306a36Sopenharmony_ci
77562306a36Sopenharmony_cietrack_id:
77662306a36Sopenharmony_ci	if ((etrack_test &  NVM_MAJOR_MASK) == NVM_ETRACK_VALID) {
77762306a36Sopenharmony_ci		hw->nvm.ops.read(hw, NVM_ETRACK_WORD, 1, &eeprom_verl);
77862306a36Sopenharmony_ci		hw->nvm.ops.read(hw, (NVM_ETRACK_WORD + 1), 1, &eeprom_verh);
77962306a36Sopenharmony_ci		fw_vers->etrack_id = (eeprom_verh << NVM_ETRACK_SHIFT)
78062306a36Sopenharmony_ci			| eeprom_verl;
78162306a36Sopenharmony_ci	}
78262306a36Sopenharmony_ci}
783