162306a36Sopenharmony_ci// SPDX-License-Identifier: GPL-2.0
262306a36Sopenharmony_ci/* Copyright(c) 2007 - 2018 Intel Corporation. */
362306a36Sopenharmony_ci
462306a36Sopenharmony_ci#include <linux/if_ether.h>
562306a36Sopenharmony_ci#include <linux/delay.h>
662306a36Sopenharmony_ci#include <linux/pci.h>
762306a36Sopenharmony_ci#include <linux/netdevice.h>
862306a36Sopenharmony_ci#include <linux/etherdevice.h>
962306a36Sopenharmony_ci
1062306a36Sopenharmony_ci#include "e1000_mac.h"
1162306a36Sopenharmony_ci
1262306a36Sopenharmony_ci#include "igb.h"
1362306a36Sopenharmony_ci
1462306a36Sopenharmony_cistatic s32 igb_set_default_fc(struct e1000_hw *hw);
1562306a36Sopenharmony_cistatic void igb_set_fc_watermarks(struct e1000_hw *hw);
1662306a36Sopenharmony_ci
1762306a36Sopenharmony_ci/**
1862306a36Sopenharmony_ci *  igb_get_bus_info_pcie - Get PCIe bus information
1962306a36Sopenharmony_ci *  @hw: pointer to the HW structure
2062306a36Sopenharmony_ci *
2162306a36Sopenharmony_ci *  Determines and stores the system bus information for a particular
2262306a36Sopenharmony_ci *  network interface.  The following bus information is determined and stored:
2362306a36Sopenharmony_ci *  bus speed, bus width, type (PCIe), and PCIe function.
2462306a36Sopenharmony_ci **/
2562306a36Sopenharmony_cis32 igb_get_bus_info_pcie(struct e1000_hw *hw)
2662306a36Sopenharmony_ci{
2762306a36Sopenharmony_ci	struct e1000_bus_info *bus = &hw->bus;
2862306a36Sopenharmony_ci	s32 ret_val;
2962306a36Sopenharmony_ci	u32 reg;
3062306a36Sopenharmony_ci	u16 pcie_link_status;
3162306a36Sopenharmony_ci
3262306a36Sopenharmony_ci	bus->type = e1000_bus_type_pci_express;
3362306a36Sopenharmony_ci
3462306a36Sopenharmony_ci	ret_val = igb_read_pcie_cap_reg(hw,
3562306a36Sopenharmony_ci					PCI_EXP_LNKSTA,
3662306a36Sopenharmony_ci					&pcie_link_status);
3762306a36Sopenharmony_ci	if (ret_val) {
3862306a36Sopenharmony_ci		bus->width = e1000_bus_width_unknown;
3962306a36Sopenharmony_ci		bus->speed = e1000_bus_speed_unknown;
4062306a36Sopenharmony_ci	} else {
4162306a36Sopenharmony_ci		switch (pcie_link_status & PCI_EXP_LNKSTA_CLS) {
4262306a36Sopenharmony_ci		case PCI_EXP_LNKSTA_CLS_2_5GB:
4362306a36Sopenharmony_ci			bus->speed = e1000_bus_speed_2500;
4462306a36Sopenharmony_ci			break;
4562306a36Sopenharmony_ci		case PCI_EXP_LNKSTA_CLS_5_0GB:
4662306a36Sopenharmony_ci			bus->speed = e1000_bus_speed_5000;
4762306a36Sopenharmony_ci			break;
4862306a36Sopenharmony_ci		default:
4962306a36Sopenharmony_ci			bus->speed = e1000_bus_speed_unknown;
5062306a36Sopenharmony_ci			break;
5162306a36Sopenharmony_ci		}
5262306a36Sopenharmony_ci
5362306a36Sopenharmony_ci		bus->width = (enum e1000_bus_width)((pcie_link_status &
5462306a36Sopenharmony_ci						     PCI_EXP_LNKSTA_NLW) >>
5562306a36Sopenharmony_ci						     PCI_EXP_LNKSTA_NLW_SHIFT);
5662306a36Sopenharmony_ci	}
5762306a36Sopenharmony_ci
5862306a36Sopenharmony_ci	reg = rd32(E1000_STATUS);
5962306a36Sopenharmony_ci	bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT;
6062306a36Sopenharmony_ci
6162306a36Sopenharmony_ci	return 0;
6262306a36Sopenharmony_ci}
6362306a36Sopenharmony_ci
6462306a36Sopenharmony_ci/**
6562306a36Sopenharmony_ci *  igb_clear_vfta - Clear VLAN filter table
6662306a36Sopenharmony_ci *  @hw: pointer to the HW structure
6762306a36Sopenharmony_ci *
6862306a36Sopenharmony_ci *  Clears the register array which contains the VLAN filter table by
6962306a36Sopenharmony_ci *  setting all the values to 0.
7062306a36Sopenharmony_ci **/
7162306a36Sopenharmony_civoid igb_clear_vfta(struct e1000_hw *hw)
7262306a36Sopenharmony_ci{
7362306a36Sopenharmony_ci	u32 offset;
7462306a36Sopenharmony_ci
7562306a36Sopenharmony_ci	for (offset = E1000_VLAN_FILTER_TBL_SIZE; offset--;)
7662306a36Sopenharmony_ci		hw->mac.ops.write_vfta(hw, offset, 0);
7762306a36Sopenharmony_ci}
7862306a36Sopenharmony_ci
7962306a36Sopenharmony_ci/**
8062306a36Sopenharmony_ci *  igb_write_vfta - Write value to VLAN filter table
8162306a36Sopenharmony_ci *  @hw: pointer to the HW structure
8262306a36Sopenharmony_ci *  @offset: register offset in VLAN filter table
8362306a36Sopenharmony_ci *  @value: register value written to VLAN filter table
8462306a36Sopenharmony_ci *
8562306a36Sopenharmony_ci *  Writes value at the given offset in the register array which stores
8662306a36Sopenharmony_ci *  the VLAN filter table.
8762306a36Sopenharmony_ci **/
8862306a36Sopenharmony_civoid igb_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
8962306a36Sopenharmony_ci{
9062306a36Sopenharmony_ci	struct igb_adapter *adapter = hw->back;
9162306a36Sopenharmony_ci
9262306a36Sopenharmony_ci	array_wr32(E1000_VFTA, offset, value);
9362306a36Sopenharmony_ci	wrfl();
9462306a36Sopenharmony_ci
9562306a36Sopenharmony_ci	adapter->shadow_vfta[offset] = value;
9662306a36Sopenharmony_ci}
9762306a36Sopenharmony_ci
9862306a36Sopenharmony_ci/**
9962306a36Sopenharmony_ci *  igb_init_rx_addrs - Initialize receive address's
10062306a36Sopenharmony_ci *  @hw: pointer to the HW structure
10162306a36Sopenharmony_ci *  @rar_count: receive address registers
10262306a36Sopenharmony_ci *
10362306a36Sopenharmony_ci *  Setups the receive address registers by setting the base receive address
10462306a36Sopenharmony_ci *  register to the devices MAC address and clearing all the other receive
10562306a36Sopenharmony_ci *  address registers to 0.
10662306a36Sopenharmony_ci **/
10762306a36Sopenharmony_civoid igb_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
10862306a36Sopenharmony_ci{
10962306a36Sopenharmony_ci	u32 i;
11062306a36Sopenharmony_ci	u8 mac_addr[ETH_ALEN] = {0};
11162306a36Sopenharmony_ci
11262306a36Sopenharmony_ci	/* Setup the receive address */
11362306a36Sopenharmony_ci	hw_dbg("Programming MAC Address into RAR[0]\n");
11462306a36Sopenharmony_ci
11562306a36Sopenharmony_ci	hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
11662306a36Sopenharmony_ci
11762306a36Sopenharmony_ci	/* Zero out the other (rar_entry_count - 1) receive addresses */
11862306a36Sopenharmony_ci	hw_dbg("Clearing RAR[1-%u]\n", rar_count-1);
11962306a36Sopenharmony_ci	for (i = 1; i < rar_count; i++)
12062306a36Sopenharmony_ci		hw->mac.ops.rar_set(hw, mac_addr, i);
12162306a36Sopenharmony_ci}
12262306a36Sopenharmony_ci
12362306a36Sopenharmony_ci/**
12462306a36Sopenharmony_ci *  igb_find_vlvf_slot - find the VLAN id or the first empty slot
12562306a36Sopenharmony_ci *  @hw: pointer to hardware structure
12662306a36Sopenharmony_ci *  @vlan: VLAN id to write to VLAN filter
12762306a36Sopenharmony_ci *  @vlvf_bypass: skip VLVF if no match is found
12862306a36Sopenharmony_ci *
12962306a36Sopenharmony_ci *  return the VLVF index where this VLAN id should be placed
13062306a36Sopenharmony_ci *
13162306a36Sopenharmony_ci **/
13262306a36Sopenharmony_cistatic s32 igb_find_vlvf_slot(struct e1000_hw *hw, u32 vlan, bool vlvf_bypass)
13362306a36Sopenharmony_ci{
13462306a36Sopenharmony_ci	s32 regindex, first_empty_slot;
13562306a36Sopenharmony_ci	u32 bits;
13662306a36Sopenharmony_ci
13762306a36Sopenharmony_ci	/* short cut the special case */
13862306a36Sopenharmony_ci	if (vlan == 0)
13962306a36Sopenharmony_ci		return 0;
14062306a36Sopenharmony_ci
14162306a36Sopenharmony_ci	/* if vlvf_bypass is set we don't want to use an empty slot, we
14262306a36Sopenharmony_ci	 * will simply bypass the VLVF if there are no entries present in the
14362306a36Sopenharmony_ci	 * VLVF that contain our VLAN
14462306a36Sopenharmony_ci	 */
14562306a36Sopenharmony_ci	first_empty_slot = vlvf_bypass ? -E1000_ERR_NO_SPACE : 0;
14662306a36Sopenharmony_ci
14762306a36Sopenharmony_ci	/* Search for the VLAN id in the VLVF entries. Save off the first empty
14862306a36Sopenharmony_ci	 * slot found along the way.
14962306a36Sopenharmony_ci	 *
15062306a36Sopenharmony_ci	 * pre-decrement loop covering (IXGBE_VLVF_ENTRIES - 1) .. 1
15162306a36Sopenharmony_ci	 */
15262306a36Sopenharmony_ci	for (regindex = E1000_VLVF_ARRAY_SIZE; --regindex > 0;) {
15362306a36Sopenharmony_ci		bits = rd32(E1000_VLVF(regindex)) & E1000_VLVF_VLANID_MASK;
15462306a36Sopenharmony_ci		if (bits == vlan)
15562306a36Sopenharmony_ci			return regindex;
15662306a36Sopenharmony_ci		if (!first_empty_slot && !bits)
15762306a36Sopenharmony_ci			first_empty_slot = regindex;
15862306a36Sopenharmony_ci	}
15962306a36Sopenharmony_ci
16062306a36Sopenharmony_ci	return first_empty_slot ? : -E1000_ERR_NO_SPACE;
16162306a36Sopenharmony_ci}
16262306a36Sopenharmony_ci
16362306a36Sopenharmony_ci/**
16462306a36Sopenharmony_ci *  igb_vfta_set - enable or disable vlan in VLAN filter table
16562306a36Sopenharmony_ci *  @hw: pointer to the HW structure
16662306a36Sopenharmony_ci *  @vlan: VLAN id to add or remove
16762306a36Sopenharmony_ci *  @vind: VMDq output index that maps queue to VLAN id
16862306a36Sopenharmony_ci *  @vlan_on: if true add filter, if false remove
16962306a36Sopenharmony_ci *  @vlvf_bypass: skip VLVF if no match is found
17062306a36Sopenharmony_ci *
17162306a36Sopenharmony_ci *  Sets or clears a bit in the VLAN filter table array based on VLAN id
17262306a36Sopenharmony_ci *  and if we are adding or removing the filter
17362306a36Sopenharmony_ci **/
17462306a36Sopenharmony_cis32 igb_vfta_set(struct e1000_hw *hw, u32 vlan, u32 vind,
17562306a36Sopenharmony_ci		 bool vlan_on, bool vlvf_bypass)
17662306a36Sopenharmony_ci{
17762306a36Sopenharmony_ci	struct igb_adapter *adapter = hw->back;
17862306a36Sopenharmony_ci	u32 regidx, vfta_delta, vfta, bits;
17962306a36Sopenharmony_ci	s32 vlvf_index;
18062306a36Sopenharmony_ci
18162306a36Sopenharmony_ci	if ((vlan > 4095) || (vind > 7))
18262306a36Sopenharmony_ci		return -E1000_ERR_PARAM;
18362306a36Sopenharmony_ci
18462306a36Sopenharmony_ci	/* this is a 2 part operation - first the VFTA, then the
18562306a36Sopenharmony_ci	 * VLVF and VLVFB if VT Mode is set
18662306a36Sopenharmony_ci	 * We don't write the VFTA until we know the VLVF part succeeded.
18762306a36Sopenharmony_ci	 */
18862306a36Sopenharmony_ci
18962306a36Sopenharmony_ci	/* Part 1
19062306a36Sopenharmony_ci	 * The VFTA is a bitstring made up of 128 32-bit registers
19162306a36Sopenharmony_ci	 * that enable the particular VLAN id, much like the MTA:
19262306a36Sopenharmony_ci	 *    bits[11-5]: which register
19362306a36Sopenharmony_ci	 *    bits[4-0]:  which bit in the register
19462306a36Sopenharmony_ci	 */
19562306a36Sopenharmony_ci	regidx = vlan / 32;
19662306a36Sopenharmony_ci	vfta_delta = BIT(vlan % 32);
19762306a36Sopenharmony_ci	vfta = adapter->shadow_vfta[regidx];
19862306a36Sopenharmony_ci
19962306a36Sopenharmony_ci	/* vfta_delta represents the difference between the current value
20062306a36Sopenharmony_ci	 * of vfta and the value we want in the register.  Since the diff
20162306a36Sopenharmony_ci	 * is an XOR mask we can just update vfta using an XOR.
20262306a36Sopenharmony_ci	 */
20362306a36Sopenharmony_ci	vfta_delta &= vlan_on ? ~vfta : vfta;
20462306a36Sopenharmony_ci	vfta ^= vfta_delta;
20562306a36Sopenharmony_ci
20662306a36Sopenharmony_ci	/* Part 2
20762306a36Sopenharmony_ci	 * If VT Mode is set
20862306a36Sopenharmony_ci	 *   Either vlan_on
20962306a36Sopenharmony_ci	 *     make sure the VLAN is in VLVF
21062306a36Sopenharmony_ci	 *     set the vind bit in the matching VLVFB
21162306a36Sopenharmony_ci	 *   Or !vlan_on
21262306a36Sopenharmony_ci	 *     clear the pool bit and possibly the vind
21362306a36Sopenharmony_ci	 */
21462306a36Sopenharmony_ci	if (!adapter->vfs_allocated_count)
21562306a36Sopenharmony_ci		goto vfta_update;
21662306a36Sopenharmony_ci
21762306a36Sopenharmony_ci	vlvf_index = igb_find_vlvf_slot(hw, vlan, vlvf_bypass);
21862306a36Sopenharmony_ci	if (vlvf_index < 0) {
21962306a36Sopenharmony_ci		if (vlvf_bypass)
22062306a36Sopenharmony_ci			goto vfta_update;
22162306a36Sopenharmony_ci		return vlvf_index;
22262306a36Sopenharmony_ci	}
22362306a36Sopenharmony_ci
22462306a36Sopenharmony_ci	bits = rd32(E1000_VLVF(vlvf_index));
22562306a36Sopenharmony_ci
22662306a36Sopenharmony_ci	/* set the pool bit */
22762306a36Sopenharmony_ci	bits |= BIT(E1000_VLVF_POOLSEL_SHIFT + vind);
22862306a36Sopenharmony_ci	if (vlan_on)
22962306a36Sopenharmony_ci		goto vlvf_update;
23062306a36Sopenharmony_ci
23162306a36Sopenharmony_ci	/* clear the pool bit */
23262306a36Sopenharmony_ci	bits ^= BIT(E1000_VLVF_POOLSEL_SHIFT + vind);
23362306a36Sopenharmony_ci
23462306a36Sopenharmony_ci	if (!(bits & E1000_VLVF_POOLSEL_MASK)) {
23562306a36Sopenharmony_ci		/* Clear VFTA first, then disable VLVF.  Otherwise
23662306a36Sopenharmony_ci		 * we run the risk of stray packets leaking into
23762306a36Sopenharmony_ci		 * the PF via the default pool
23862306a36Sopenharmony_ci		 */
23962306a36Sopenharmony_ci		if (vfta_delta)
24062306a36Sopenharmony_ci			hw->mac.ops.write_vfta(hw, regidx, vfta);
24162306a36Sopenharmony_ci
24262306a36Sopenharmony_ci		/* disable VLVF and clear remaining bit from pool */
24362306a36Sopenharmony_ci		wr32(E1000_VLVF(vlvf_index), 0);
24462306a36Sopenharmony_ci
24562306a36Sopenharmony_ci		return 0;
24662306a36Sopenharmony_ci	}
24762306a36Sopenharmony_ci
24862306a36Sopenharmony_ci	/* If there are still bits set in the VLVFB registers
24962306a36Sopenharmony_ci	 * for the VLAN ID indicated we need to see if the
25062306a36Sopenharmony_ci	 * caller is requesting that we clear the VFTA entry bit.
25162306a36Sopenharmony_ci	 * If the caller has requested that we clear the VFTA
25262306a36Sopenharmony_ci	 * entry bit but there are still pools/VFs using this VLAN
25362306a36Sopenharmony_ci	 * ID entry then ignore the request.  We're not worried
25462306a36Sopenharmony_ci	 * about the case where we're turning the VFTA VLAN ID
25562306a36Sopenharmony_ci	 * entry bit on, only when requested to turn it off as
25662306a36Sopenharmony_ci	 * there may be multiple pools and/or VFs using the
25762306a36Sopenharmony_ci	 * VLAN ID entry.  In that case we cannot clear the
25862306a36Sopenharmony_ci	 * VFTA bit until all pools/VFs using that VLAN ID have also
25962306a36Sopenharmony_ci	 * been cleared.  This will be indicated by "bits" being
26062306a36Sopenharmony_ci	 * zero.
26162306a36Sopenharmony_ci	 */
26262306a36Sopenharmony_ci	vfta_delta = 0;
26362306a36Sopenharmony_ci
26462306a36Sopenharmony_civlvf_update:
26562306a36Sopenharmony_ci	/* record pool change and enable VLAN ID if not already enabled */
26662306a36Sopenharmony_ci	wr32(E1000_VLVF(vlvf_index), bits | vlan | E1000_VLVF_VLANID_ENABLE);
26762306a36Sopenharmony_ci
26862306a36Sopenharmony_civfta_update:
26962306a36Sopenharmony_ci	/* bit was set/cleared before we started */
27062306a36Sopenharmony_ci	if (vfta_delta)
27162306a36Sopenharmony_ci		hw->mac.ops.write_vfta(hw, regidx, vfta);
27262306a36Sopenharmony_ci
27362306a36Sopenharmony_ci	return 0;
27462306a36Sopenharmony_ci}
27562306a36Sopenharmony_ci
27662306a36Sopenharmony_ci/**
27762306a36Sopenharmony_ci *  igb_check_alt_mac_addr - Check for alternate MAC addr
27862306a36Sopenharmony_ci *  @hw: pointer to the HW structure
27962306a36Sopenharmony_ci *
28062306a36Sopenharmony_ci *  Checks the nvm for an alternate MAC address.  An alternate MAC address
28162306a36Sopenharmony_ci *  can be setup by pre-boot software and must be treated like a permanent
28262306a36Sopenharmony_ci *  address and must override the actual permanent MAC address.  If an
28362306a36Sopenharmony_ci *  alternate MAC address is found it is saved in the hw struct and
28462306a36Sopenharmony_ci *  programmed into RAR0 and the function returns success, otherwise the
28562306a36Sopenharmony_ci *  function returns an error.
28662306a36Sopenharmony_ci **/
28762306a36Sopenharmony_cis32 igb_check_alt_mac_addr(struct e1000_hw *hw)
28862306a36Sopenharmony_ci{
28962306a36Sopenharmony_ci	u32 i;
29062306a36Sopenharmony_ci	s32 ret_val = 0;
29162306a36Sopenharmony_ci	u16 offset, nvm_alt_mac_addr_offset, nvm_data;
29262306a36Sopenharmony_ci	u8 alt_mac_addr[ETH_ALEN];
29362306a36Sopenharmony_ci
29462306a36Sopenharmony_ci	/* Alternate MAC address is handled by the option ROM for 82580
29562306a36Sopenharmony_ci	 * and newer. SW support not required.
29662306a36Sopenharmony_ci	 */
29762306a36Sopenharmony_ci	if (hw->mac.type >= e1000_82580)
29862306a36Sopenharmony_ci		goto out;
29962306a36Sopenharmony_ci
30062306a36Sopenharmony_ci	ret_val = hw->nvm.ops.read(hw, NVM_ALT_MAC_ADDR_PTR, 1,
30162306a36Sopenharmony_ci				 &nvm_alt_mac_addr_offset);
30262306a36Sopenharmony_ci	if (ret_val) {
30362306a36Sopenharmony_ci		hw_dbg("NVM Read Error\n");
30462306a36Sopenharmony_ci		goto out;
30562306a36Sopenharmony_ci	}
30662306a36Sopenharmony_ci
30762306a36Sopenharmony_ci	if ((nvm_alt_mac_addr_offset == 0xFFFF) ||
30862306a36Sopenharmony_ci	    (nvm_alt_mac_addr_offset == 0x0000))
30962306a36Sopenharmony_ci		/* There is no Alternate MAC Address */
31062306a36Sopenharmony_ci		goto out;
31162306a36Sopenharmony_ci
31262306a36Sopenharmony_ci	if (hw->bus.func == E1000_FUNC_1)
31362306a36Sopenharmony_ci		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1;
31462306a36Sopenharmony_ci	if (hw->bus.func == E1000_FUNC_2)
31562306a36Sopenharmony_ci		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN2;
31662306a36Sopenharmony_ci
31762306a36Sopenharmony_ci	if (hw->bus.func == E1000_FUNC_3)
31862306a36Sopenharmony_ci		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN3;
31962306a36Sopenharmony_ci	for (i = 0; i < ETH_ALEN; i += 2) {
32062306a36Sopenharmony_ci		offset = nvm_alt_mac_addr_offset + (i >> 1);
32162306a36Sopenharmony_ci		ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data);
32262306a36Sopenharmony_ci		if (ret_val) {
32362306a36Sopenharmony_ci			hw_dbg("NVM Read Error\n");
32462306a36Sopenharmony_ci			goto out;
32562306a36Sopenharmony_ci		}
32662306a36Sopenharmony_ci
32762306a36Sopenharmony_ci		alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
32862306a36Sopenharmony_ci		alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
32962306a36Sopenharmony_ci	}
33062306a36Sopenharmony_ci
33162306a36Sopenharmony_ci	/* if multicast bit is set, the alternate address will not be used */
33262306a36Sopenharmony_ci	if (is_multicast_ether_addr(alt_mac_addr)) {
33362306a36Sopenharmony_ci		hw_dbg("Ignoring Alternate Mac Address with MC bit set\n");
33462306a36Sopenharmony_ci		goto out;
33562306a36Sopenharmony_ci	}
33662306a36Sopenharmony_ci
33762306a36Sopenharmony_ci	/* We have a valid alternate MAC address, and we want to treat it the
33862306a36Sopenharmony_ci	 * same as the normal permanent MAC address stored by the HW into the
33962306a36Sopenharmony_ci	 * RAR. Do this by mapping this address into RAR0.
34062306a36Sopenharmony_ci	 */
34162306a36Sopenharmony_ci	hw->mac.ops.rar_set(hw, alt_mac_addr, 0);
34262306a36Sopenharmony_ci
34362306a36Sopenharmony_ciout:
34462306a36Sopenharmony_ci	return ret_val;
34562306a36Sopenharmony_ci}
34662306a36Sopenharmony_ci
34762306a36Sopenharmony_ci/**
34862306a36Sopenharmony_ci *  igb_rar_set - Set receive address register
34962306a36Sopenharmony_ci *  @hw: pointer to the HW structure
35062306a36Sopenharmony_ci *  @addr: pointer to the receive address
35162306a36Sopenharmony_ci *  @index: receive address array register
35262306a36Sopenharmony_ci *
35362306a36Sopenharmony_ci *  Sets the receive address array register at index to the address passed
35462306a36Sopenharmony_ci *  in by addr.
35562306a36Sopenharmony_ci **/
35662306a36Sopenharmony_civoid igb_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
35762306a36Sopenharmony_ci{
35862306a36Sopenharmony_ci	u32 rar_low, rar_high;
35962306a36Sopenharmony_ci
36062306a36Sopenharmony_ci	/* HW expects these in little endian so we reverse the byte order
36162306a36Sopenharmony_ci	 * from network order (big endian) to little endian
36262306a36Sopenharmony_ci	 */
36362306a36Sopenharmony_ci	rar_low = ((u32) addr[0] |
36462306a36Sopenharmony_ci		   ((u32) addr[1] << 8) |
36562306a36Sopenharmony_ci		    ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
36662306a36Sopenharmony_ci
36762306a36Sopenharmony_ci	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
36862306a36Sopenharmony_ci
36962306a36Sopenharmony_ci	/* If MAC address zero, no need to set the AV bit */
37062306a36Sopenharmony_ci	if (rar_low || rar_high)
37162306a36Sopenharmony_ci		rar_high |= E1000_RAH_AV;
37262306a36Sopenharmony_ci
37362306a36Sopenharmony_ci	/* Some bridges will combine consecutive 32-bit writes into
37462306a36Sopenharmony_ci	 * a single burst write, which will malfunction on some parts.
37562306a36Sopenharmony_ci	 * The flushes avoid this.
37662306a36Sopenharmony_ci	 */
37762306a36Sopenharmony_ci	wr32(E1000_RAL(index), rar_low);
37862306a36Sopenharmony_ci	wrfl();
37962306a36Sopenharmony_ci	wr32(E1000_RAH(index), rar_high);
38062306a36Sopenharmony_ci	wrfl();
38162306a36Sopenharmony_ci}
38262306a36Sopenharmony_ci
38362306a36Sopenharmony_ci/**
38462306a36Sopenharmony_ci *  igb_mta_set - Set multicast filter table address
38562306a36Sopenharmony_ci *  @hw: pointer to the HW structure
38662306a36Sopenharmony_ci *  @hash_value: determines the MTA register and bit to set
38762306a36Sopenharmony_ci *
38862306a36Sopenharmony_ci *  The multicast table address is a register array of 32-bit registers.
38962306a36Sopenharmony_ci *  The hash_value is used to determine what register the bit is in, the
39062306a36Sopenharmony_ci *  current value is read, the new bit is OR'd in and the new value is
39162306a36Sopenharmony_ci *  written back into the register.
39262306a36Sopenharmony_ci **/
39362306a36Sopenharmony_civoid igb_mta_set(struct e1000_hw *hw, u32 hash_value)
39462306a36Sopenharmony_ci{
39562306a36Sopenharmony_ci	u32 hash_bit, hash_reg, mta;
39662306a36Sopenharmony_ci
39762306a36Sopenharmony_ci	/* The MTA is a register array of 32-bit registers. It is
39862306a36Sopenharmony_ci	 * treated like an array of (32*mta_reg_count) bits.  We want to
39962306a36Sopenharmony_ci	 * set bit BitArray[hash_value]. So we figure out what register
40062306a36Sopenharmony_ci	 * the bit is in, read it, OR in the new bit, then write
40162306a36Sopenharmony_ci	 * back the new value.  The (hw->mac.mta_reg_count - 1) serves as a
40262306a36Sopenharmony_ci	 * mask to bits 31:5 of the hash value which gives us the
40362306a36Sopenharmony_ci	 * register we're modifying.  The hash bit within that register
40462306a36Sopenharmony_ci	 * is determined by the lower 5 bits of the hash value.
40562306a36Sopenharmony_ci	 */
40662306a36Sopenharmony_ci	hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
40762306a36Sopenharmony_ci	hash_bit = hash_value & 0x1F;
40862306a36Sopenharmony_ci
40962306a36Sopenharmony_ci	mta = array_rd32(E1000_MTA, hash_reg);
41062306a36Sopenharmony_ci
41162306a36Sopenharmony_ci	mta |= BIT(hash_bit);
41262306a36Sopenharmony_ci
41362306a36Sopenharmony_ci	array_wr32(E1000_MTA, hash_reg, mta);
41462306a36Sopenharmony_ci	wrfl();
41562306a36Sopenharmony_ci}
41662306a36Sopenharmony_ci
41762306a36Sopenharmony_ci/**
41862306a36Sopenharmony_ci *  igb_hash_mc_addr - Generate a multicast hash value
41962306a36Sopenharmony_ci *  @hw: pointer to the HW structure
42062306a36Sopenharmony_ci *  @mc_addr: pointer to a multicast address
42162306a36Sopenharmony_ci *
42262306a36Sopenharmony_ci *  Generates a multicast address hash value which is used to determine
42362306a36Sopenharmony_ci *  the multicast filter table array address and new table value.  See
42462306a36Sopenharmony_ci *  igb_mta_set()
42562306a36Sopenharmony_ci **/
42662306a36Sopenharmony_cistatic u32 igb_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
42762306a36Sopenharmony_ci{
42862306a36Sopenharmony_ci	u32 hash_value, hash_mask;
42962306a36Sopenharmony_ci	u8 bit_shift = 1;
43062306a36Sopenharmony_ci
43162306a36Sopenharmony_ci	/* Register count multiplied by bits per register */
43262306a36Sopenharmony_ci	hash_mask = (hw->mac.mta_reg_count * 32) - 1;
43362306a36Sopenharmony_ci
43462306a36Sopenharmony_ci	/* For a mc_filter_type of 0, bit_shift is the number of left-shifts
43562306a36Sopenharmony_ci	 * where 0xFF would still fall within the hash mask.
43662306a36Sopenharmony_ci	 */
43762306a36Sopenharmony_ci	while (hash_mask >> bit_shift != 0xFF && bit_shift < 4)
43862306a36Sopenharmony_ci		bit_shift++;
43962306a36Sopenharmony_ci
44062306a36Sopenharmony_ci	/* The portion of the address that is used for the hash table
44162306a36Sopenharmony_ci	 * is determined by the mc_filter_type setting.
44262306a36Sopenharmony_ci	 * The algorithm is such that there is a total of 8 bits of shifting.
44362306a36Sopenharmony_ci	 * The bit_shift for a mc_filter_type of 0 represents the number of
44462306a36Sopenharmony_ci	 * left-shifts where the MSB of mc_addr[5] would still fall within
44562306a36Sopenharmony_ci	 * the hash_mask.  Case 0 does this exactly.  Since there are a total
44662306a36Sopenharmony_ci	 * of 8 bits of shifting, then mc_addr[4] will shift right the
44762306a36Sopenharmony_ci	 * remaining number of bits. Thus 8 - bit_shift.  The rest of the
44862306a36Sopenharmony_ci	 * cases are a variation of this algorithm...essentially raising the
44962306a36Sopenharmony_ci	 * number of bits to shift mc_addr[5] left, while still keeping the
45062306a36Sopenharmony_ci	 * 8-bit shifting total.
45162306a36Sopenharmony_ci	 *
45262306a36Sopenharmony_ci	 * For example, given the following Destination MAC Address and an
45362306a36Sopenharmony_ci	 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
45462306a36Sopenharmony_ci	 * we can see that the bit_shift for case 0 is 4.  These are the hash
45562306a36Sopenharmony_ci	 * values resulting from each mc_filter_type...
45662306a36Sopenharmony_ci	 * [0] [1] [2] [3] [4] [5]
45762306a36Sopenharmony_ci	 * 01  AA  00  12  34  56
45862306a36Sopenharmony_ci	 * LSB                 MSB
45962306a36Sopenharmony_ci	 *
46062306a36Sopenharmony_ci	 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
46162306a36Sopenharmony_ci	 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
46262306a36Sopenharmony_ci	 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
46362306a36Sopenharmony_ci	 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
46462306a36Sopenharmony_ci	 */
46562306a36Sopenharmony_ci	switch (hw->mac.mc_filter_type) {
46662306a36Sopenharmony_ci	default:
46762306a36Sopenharmony_ci	case 0:
46862306a36Sopenharmony_ci		break;
46962306a36Sopenharmony_ci	case 1:
47062306a36Sopenharmony_ci		bit_shift += 1;
47162306a36Sopenharmony_ci		break;
47262306a36Sopenharmony_ci	case 2:
47362306a36Sopenharmony_ci		bit_shift += 2;
47462306a36Sopenharmony_ci		break;
47562306a36Sopenharmony_ci	case 3:
47662306a36Sopenharmony_ci		bit_shift += 4;
47762306a36Sopenharmony_ci		break;
47862306a36Sopenharmony_ci	}
47962306a36Sopenharmony_ci
48062306a36Sopenharmony_ci	hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
48162306a36Sopenharmony_ci				  (((u16) mc_addr[5]) << bit_shift)));
48262306a36Sopenharmony_ci
48362306a36Sopenharmony_ci	return hash_value;
48462306a36Sopenharmony_ci}
48562306a36Sopenharmony_ci
48662306a36Sopenharmony_ci/**
48762306a36Sopenharmony_ci * igb_i21x_hw_doublecheck - double checks potential HW issue in i21X
48862306a36Sopenharmony_ci * @hw: pointer to the HW structure
48962306a36Sopenharmony_ci *
49062306a36Sopenharmony_ci * Checks if multicast array is wrote correctly
49162306a36Sopenharmony_ci * If not then rewrites again to register
49262306a36Sopenharmony_ci **/
49362306a36Sopenharmony_cistatic void igb_i21x_hw_doublecheck(struct e1000_hw *hw)
49462306a36Sopenharmony_ci{
49562306a36Sopenharmony_ci	int failed_cnt = 3;
49662306a36Sopenharmony_ci	bool is_failed;
49762306a36Sopenharmony_ci	int i;
49862306a36Sopenharmony_ci
49962306a36Sopenharmony_ci	do {
50062306a36Sopenharmony_ci		is_failed = false;
50162306a36Sopenharmony_ci		for (i = hw->mac.mta_reg_count - 1; i >= 0; i--) {
50262306a36Sopenharmony_ci			if (array_rd32(E1000_MTA, i) != hw->mac.mta_shadow[i]) {
50362306a36Sopenharmony_ci				is_failed = true;
50462306a36Sopenharmony_ci				array_wr32(E1000_MTA, i, hw->mac.mta_shadow[i]);
50562306a36Sopenharmony_ci				wrfl();
50662306a36Sopenharmony_ci			}
50762306a36Sopenharmony_ci		}
50862306a36Sopenharmony_ci		if (is_failed && --failed_cnt <= 0) {
50962306a36Sopenharmony_ci			hw_dbg("Failed to update MTA_REGISTER, too many retries");
51062306a36Sopenharmony_ci			break;
51162306a36Sopenharmony_ci		}
51262306a36Sopenharmony_ci	} while (is_failed);
51362306a36Sopenharmony_ci}
51462306a36Sopenharmony_ci
51562306a36Sopenharmony_ci/**
51662306a36Sopenharmony_ci *  igb_update_mc_addr_list - Update Multicast addresses
51762306a36Sopenharmony_ci *  @hw: pointer to the HW structure
51862306a36Sopenharmony_ci *  @mc_addr_list: array of multicast addresses to program
51962306a36Sopenharmony_ci *  @mc_addr_count: number of multicast addresses to program
52062306a36Sopenharmony_ci *
52162306a36Sopenharmony_ci *  Updates entire Multicast Table Array.
52262306a36Sopenharmony_ci *  The caller must have a packed mc_addr_list of multicast addresses.
52362306a36Sopenharmony_ci **/
52462306a36Sopenharmony_civoid igb_update_mc_addr_list(struct e1000_hw *hw,
52562306a36Sopenharmony_ci			     u8 *mc_addr_list, u32 mc_addr_count)
52662306a36Sopenharmony_ci{
52762306a36Sopenharmony_ci	u32 hash_value, hash_bit, hash_reg;
52862306a36Sopenharmony_ci	int i;
52962306a36Sopenharmony_ci
53062306a36Sopenharmony_ci	/* clear mta_shadow */
53162306a36Sopenharmony_ci	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
53262306a36Sopenharmony_ci
53362306a36Sopenharmony_ci	/* update mta_shadow from mc_addr_list */
53462306a36Sopenharmony_ci	for (i = 0; (u32) i < mc_addr_count; i++) {
53562306a36Sopenharmony_ci		hash_value = igb_hash_mc_addr(hw, mc_addr_list);
53662306a36Sopenharmony_ci
53762306a36Sopenharmony_ci		hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
53862306a36Sopenharmony_ci		hash_bit = hash_value & 0x1F;
53962306a36Sopenharmony_ci
54062306a36Sopenharmony_ci		hw->mac.mta_shadow[hash_reg] |= BIT(hash_bit);
54162306a36Sopenharmony_ci		mc_addr_list += (ETH_ALEN);
54262306a36Sopenharmony_ci	}
54362306a36Sopenharmony_ci
54462306a36Sopenharmony_ci	/* replace the entire MTA table */
54562306a36Sopenharmony_ci	for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
54662306a36Sopenharmony_ci		array_wr32(E1000_MTA, i, hw->mac.mta_shadow[i]);
54762306a36Sopenharmony_ci	wrfl();
54862306a36Sopenharmony_ci	if (hw->mac.type == e1000_i210 || hw->mac.type == e1000_i211)
54962306a36Sopenharmony_ci		igb_i21x_hw_doublecheck(hw);
55062306a36Sopenharmony_ci}
55162306a36Sopenharmony_ci
55262306a36Sopenharmony_ci/**
55362306a36Sopenharmony_ci *  igb_clear_hw_cntrs_base - Clear base hardware counters
55462306a36Sopenharmony_ci *  @hw: pointer to the HW structure
55562306a36Sopenharmony_ci *
55662306a36Sopenharmony_ci *  Clears the base hardware counters by reading the counter registers.
55762306a36Sopenharmony_ci **/
55862306a36Sopenharmony_civoid igb_clear_hw_cntrs_base(struct e1000_hw *hw)
55962306a36Sopenharmony_ci{
56062306a36Sopenharmony_ci	rd32(E1000_CRCERRS);
56162306a36Sopenharmony_ci	rd32(E1000_SYMERRS);
56262306a36Sopenharmony_ci	rd32(E1000_MPC);
56362306a36Sopenharmony_ci	rd32(E1000_SCC);
56462306a36Sopenharmony_ci	rd32(E1000_ECOL);
56562306a36Sopenharmony_ci	rd32(E1000_MCC);
56662306a36Sopenharmony_ci	rd32(E1000_LATECOL);
56762306a36Sopenharmony_ci	rd32(E1000_COLC);
56862306a36Sopenharmony_ci	rd32(E1000_DC);
56962306a36Sopenharmony_ci	rd32(E1000_SEC);
57062306a36Sopenharmony_ci	rd32(E1000_RLEC);
57162306a36Sopenharmony_ci	rd32(E1000_XONRXC);
57262306a36Sopenharmony_ci	rd32(E1000_XONTXC);
57362306a36Sopenharmony_ci	rd32(E1000_XOFFRXC);
57462306a36Sopenharmony_ci	rd32(E1000_XOFFTXC);
57562306a36Sopenharmony_ci	rd32(E1000_FCRUC);
57662306a36Sopenharmony_ci	rd32(E1000_GPRC);
57762306a36Sopenharmony_ci	rd32(E1000_BPRC);
57862306a36Sopenharmony_ci	rd32(E1000_MPRC);
57962306a36Sopenharmony_ci	rd32(E1000_GPTC);
58062306a36Sopenharmony_ci	rd32(E1000_GORCL);
58162306a36Sopenharmony_ci	rd32(E1000_GORCH);
58262306a36Sopenharmony_ci	rd32(E1000_GOTCL);
58362306a36Sopenharmony_ci	rd32(E1000_GOTCH);
58462306a36Sopenharmony_ci	rd32(E1000_RNBC);
58562306a36Sopenharmony_ci	rd32(E1000_RUC);
58662306a36Sopenharmony_ci	rd32(E1000_RFC);
58762306a36Sopenharmony_ci	rd32(E1000_ROC);
58862306a36Sopenharmony_ci	rd32(E1000_RJC);
58962306a36Sopenharmony_ci	rd32(E1000_TORL);
59062306a36Sopenharmony_ci	rd32(E1000_TORH);
59162306a36Sopenharmony_ci	rd32(E1000_TOTL);
59262306a36Sopenharmony_ci	rd32(E1000_TOTH);
59362306a36Sopenharmony_ci	rd32(E1000_TPR);
59462306a36Sopenharmony_ci	rd32(E1000_TPT);
59562306a36Sopenharmony_ci	rd32(E1000_MPTC);
59662306a36Sopenharmony_ci	rd32(E1000_BPTC);
59762306a36Sopenharmony_ci}
59862306a36Sopenharmony_ci
59962306a36Sopenharmony_ci/**
60062306a36Sopenharmony_ci *  igb_check_for_copper_link - Check for link (Copper)
60162306a36Sopenharmony_ci *  @hw: pointer to the HW structure
60262306a36Sopenharmony_ci *
60362306a36Sopenharmony_ci *  Checks to see of the link status of the hardware has changed.  If a
60462306a36Sopenharmony_ci *  change in link status has been detected, then we read the PHY registers
60562306a36Sopenharmony_ci *  to get the current speed/duplex if link exists.
60662306a36Sopenharmony_ci **/
60762306a36Sopenharmony_cis32 igb_check_for_copper_link(struct e1000_hw *hw)
60862306a36Sopenharmony_ci{
60962306a36Sopenharmony_ci	struct e1000_mac_info *mac = &hw->mac;
61062306a36Sopenharmony_ci	s32 ret_val;
61162306a36Sopenharmony_ci	bool link;
61262306a36Sopenharmony_ci
61362306a36Sopenharmony_ci	/* We only want to go out to the PHY registers to see if Auto-Neg
61462306a36Sopenharmony_ci	 * has completed and/or if our link status has changed.  The
61562306a36Sopenharmony_ci	 * get_link_status flag is set upon receiving a Link Status
61662306a36Sopenharmony_ci	 * Change or Rx Sequence Error interrupt.
61762306a36Sopenharmony_ci	 */
61862306a36Sopenharmony_ci	if (!mac->get_link_status) {
61962306a36Sopenharmony_ci		ret_val = 0;
62062306a36Sopenharmony_ci		goto out;
62162306a36Sopenharmony_ci	}
62262306a36Sopenharmony_ci
62362306a36Sopenharmony_ci	/* First we want to see if the MII Status Register reports
62462306a36Sopenharmony_ci	 * link.  If so, then we want to get the current speed/duplex
62562306a36Sopenharmony_ci	 * of the PHY.
62662306a36Sopenharmony_ci	 */
62762306a36Sopenharmony_ci	ret_val = igb_phy_has_link(hw, 1, 0, &link);
62862306a36Sopenharmony_ci	if (ret_val)
62962306a36Sopenharmony_ci		goto out;
63062306a36Sopenharmony_ci
63162306a36Sopenharmony_ci	if (!link)
63262306a36Sopenharmony_ci		goto out; /* No link detected */
63362306a36Sopenharmony_ci
63462306a36Sopenharmony_ci	mac->get_link_status = false;
63562306a36Sopenharmony_ci
63662306a36Sopenharmony_ci	/* Check if there was DownShift, must be checked
63762306a36Sopenharmony_ci	 * immediately after link-up
63862306a36Sopenharmony_ci	 */
63962306a36Sopenharmony_ci	igb_check_downshift(hw);
64062306a36Sopenharmony_ci
64162306a36Sopenharmony_ci	/* If we are forcing speed/duplex, then we simply return since
64262306a36Sopenharmony_ci	 * we have already determined whether we have link or not.
64362306a36Sopenharmony_ci	 */
64462306a36Sopenharmony_ci	if (!mac->autoneg) {
64562306a36Sopenharmony_ci		ret_val = -E1000_ERR_CONFIG;
64662306a36Sopenharmony_ci		goto out;
64762306a36Sopenharmony_ci	}
64862306a36Sopenharmony_ci
64962306a36Sopenharmony_ci	/* Auto-Neg is enabled.  Auto Speed Detection takes care
65062306a36Sopenharmony_ci	 * of MAC speed/duplex configuration.  So we only need to
65162306a36Sopenharmony_ci	 * configure Collision Distance in the MAC.
65262306a36Sopenharmony_ci	 */
65362306a36Sopenharmony_ci	igb_config_collision_dist(hw);
65462306a36Sopenharmony_ci
65562306a36Sopenharmony_ci	/* Configure Flow Control now that Auto-Neg has completed.
65662306a36Sopenharmony_ci	 * First, we need to restore the desired flow control
65762306a36Sopenharmony_ci	 * settings because we may have had to re-autoneg with a
65862306a36Sopenharmony_ci	 * different link partner.
65962306a36Sopenharmony_ci	 */
66062306a36Sopenharmony_ci	ret_val = igb_config_fc_after_link_up(hw);
66162306a36Sopenharmony_ci	if (ret_val)
66262306a36Sopenharmony_ci		hw_dbg("Error configuring flow control\n");
66362306a36Sopenharmony_ci
66462306a36Sopenharmony_ciout:
66562306a36Sopenharmony_ci	return ret_val;
66662306a36Sopenharmony_ci}
66762306a36Sopenharmony_ci
66862306a36Sopenharmony_ci/**
66962306a36Sopenharmony_ci *  igb_setup_link - Setup flow control and link settings
67062306a36Sopenharmony_ci *  @hw: pointer to the HW structure
67162306a36Sopenharmony_ci *
67262306a36Sopenharmony_ci *  Determines which flow control settings to use, then configures flow
67362306a36Sopenharmony_ci *  control.  Calls the appropriate media-specific link configuration
67462306a36Sopenharmony_ci *  function.  Assuming the adapter has a valid link partner, a valid link
67562306a36Sopenharmony_ci *  should be established.  Assumes the hardware has previously been reset
67662306a36Sopenharmony_ci *  and the transmitter and receiver are not enabled.
67762306a36Sopenharmony_ci **/
67862306a36Sopenharmony_cis32 igb_setup_link(struct e1000_hw *hw)
67962306a36Sopenharmony_ci{
68062306a36Sopenharmony_ci	s32 ret_val = 0;
68162306a36Sopenharmony_ci
68262306a36Sopenharmony_ci	/* In the case of the phy reset being blocked, we already have a link.
68362306a36Sopenharmony_ci	 * We do not need to set it up again.
68462306a36Sopenharmony_ci	 */
68562306a36Sopenharmony_ci	if (igb_check_reset_block(hw))
68662306a36Sopenharmony_ci		goto out;
68762306a36Sopenharmony_ci
68862306a36Sopenharmony_ci	/* If requested flow control is set to default, set flow control
68962306a36Sopenharmony_ci	 * based on the EEPROM flow control settings.
69062306a36Sopenharmony_ci	 */
69162306a36Sopenharmony_ci	if (hw->fc.requested_mode == e1000_fc_default) {
69262306a36Sopenharmony_ci		ret_val = igb_set_default_fc(hw);
69362306a36Sopenharmony_ci		if (ret_val)
69462306a36Sopenharmony_ci			goto out;
69562306a36Sopenharmony_ci	}
69662306a36Sopenharmony_ci
69762306a36Sopenharmony_ci	/* We want to save off the original Flow Control configuration just
69862306a36Sopenharmony_ci	 * in case we get disconnected and then reconnected into a different
69962306a36Sopenharmony_ci	 * hub or switch with different Flow Control capabilities.
70062306a36Sopenharmony_ci	 */
70162306a36Sopenharmony_ci	hw->fc.current_mode = hw->fc.requested_mode;
70262306a36Sopenharmony_ci
70362306a36Sopenharmony_ci	hw_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
70462306a36Sopenharmony_ci
70562306a36Sopenharmony_ci	/* Call the necessary media_type subroutine to configure the link. */
70662306a36Sopenharmony_ci	ret_val = hw->mac.ops.setup_physical_interface(hw);
70762306a36Sopenharmony_ci	if (ret_val)
70862306a36Sopenharmony_ci		goto out;
70962306a36Sopenharmony_ci
71062306a36Sopenharmony_ci	/* Initialize the flow control address, type, and PAUSE timer
71162306a36Sopenharmony_ci	 * registers to their default values.  This is done even if flow
71262306a36Sopenharmony_ci	 * control is disabled, because it does not hurt anything to
71362306a36Sopenharmony_ci	 * initialize these registers.
71462306a36Sopenharmony_ci	 */
71562306a36Sopenharmony_ci	hw_dbg("Initializing the Flow Control address, type and timer regs\n");
71662306a36Sopenharmony_ci	wr32(E1000_FCT, FLOW_CONTROL_TYPE);
71762306a36Sopenharmony_ci	wr32(E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH);
71862306a36Sopenharmony_ci	wr32(E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW);
71962306a36Sopenharmony_ci
72062306a36Sopenharmony_ci	wr32(E1000_FCTTV, hw->fc.pause_time);
72162306a36Sopenharmony_ci
72262306a36Sopenharmony_ci	igb_set_fc_watermarks(hw);
72362306a36Sopenharmony_ci
72462306a36Sopenharmony_ciout:
72562306a36Sopenharmony_ci
72662306a36Sopenharmony_ci	return ret_val;
72762306a36Sopenharmony_ci}
72862306a36Sopenharmony_ci
72962306a36Sopenharmony_ci/**
73062306a36Sopenharmony_ci *  igb_config_collision_dist - Configure collision distance
73162306a36Sopenharmony_ci *  @hw: pointer to the HW structure
73262306a36Sopenharmony_ci *
73362306a36Sopenharmony_ci *  Configures the collision distance to the default value and is used
73462306a36Sopenharmony_ci *  during link setup. Currently no func pointer exists and all
73562306a36Sopenharmony_ci *  implementations are handled in the generic version of this function.
73662306a36Sopenharmony_ci **/
73762306a36Sopenharmony_civoid igb_config_collision_dist(struct e1000_hw *hw)
73862306a36Sopenharmony_ci{
73962306a36Sopenharmony_ci	u32 tctl;
74062306a36Sopenharmony_ci
74162306a36Sopenharmony_ci	tctl = rd32(E1000_TCTL);
74262306a36Sopenharmony_ci
74362306a36Sopenharmony_ci	tctl &= ~E1000_TCTL_COLD;
74462306a36Sopenharmony_ci	tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
74562306a36Sopenharmony_ci
74662306a36Sopenharmony_ci	wr32(E1000_TCTL, tctl);
74762306a36Sopenharmony_ci	wrfl();
74862306a36Sopenharmony_ci}
74962306a36Sopenharmony_ci
75062306a36Sopenharmony_ci/**
75162306a36Sopenharmony_ci *  igb_set_fc_watermarks - Set flow control high/low watermarks
75262306a36Sopenharmony_ci *  @hw: pointer to the HW structure
75362306a36Sopenharmony_ci *
75462306a36Sopenharmony_ci *  Sets the flow control high/low threshold (watermark) registers.  If
75562306a36Sopenharmony_ci *  flow control XON frame transmission is enabled, then set XON frame
75662306a36Sopenharmony_ci *  tansmission as well.
75762306a36Sopenharmony_ci **/
75862306a36Sopenharmony_cistatic void igb_set_fc_watermarks(struct e1000_hw *hw)
75962306a36Sopenharmony_ci{
76062306a36Sopenharmony_ci	u32 fcrtl = 0, fcrth = 0;
76162306a36Sopenharmony_ci
76262306a36Sopenharmony_ci	/* Set the flow control receive threshold registers.  Normally,
76362306a36Sopenharmony_ci	 * these registers will be set to a default threshold that may be
76462306a36Sopenharmony_ci	 * adjusted later by the driver's runtime code.  However, if the
76562306a36Sopenharmony_ci	 * ability to transmit pause frames is not enabled, then these
76662306a36Sopenharmony_ci	 * registers will be set to 0.
76762306a36Sopenharmony_ci	 */
76862306a36Sopenharmony_ci	if (hw->fc.current_mode & e1000_fc_tx_pause) {
76962306a36Sopenharmony_ci		/* We need to set up the Receive Threshold high and low water
77062306a36Sopenharmony_ci		 * marks as well as (optionally) enabling the transmission of
77162306a36Sopenharmony_ci		 * XON frames.
77262306a36Sopenharmony_ci		 */
77362306a36Sopenharmony_ci		fcrtl = hw->fc.low_water;
77462306a36Sopenharmony_ci		if (hw->fc.send_xon)
77562306a36Sopenharmony_ci			fcrtl |= E1000_FCRTL_XONE;
77662306a36Sopenharmony_ci
77762306a36Sopenharmony_ci		fcrth = hw->fc.high_water;
77862306a36Sopenharmony_ci	}
77962306a36Sopenharmony_ci	wr32(E1000_FCRTL, fcrtl);
78062306a36Sopenharmony_ci	wr32(E1000_FCRTH, fcrth);
78162306a36Sopenharmony_ci}
78262306a36Sopenharmony_ci
78362306a36Sopenharmony_ci/**
78462306a36Sopenharmony_ci *  igb_set_default_fc - Set flow control default values
78562306a36Sopenharmony_ci *  @hw: pointer to the HW structure
78662306a36Sopenharmony_ci *
78762306a36Sopenharmony_ci *  Read the EEPROM for the default values for flow control and store the
78862306a36Sopenharmony_ci *  values.
78962306a36Sopenharmony_ci **/
79062306a36Sopenharmony_cistatic s32 igb_set_default_fc(struct e1000_hw *hw)
79162306a36Sopenharmony_ci{
79262306a36Sopenharmony_ci	s32 ret_val = 0;
79362306a36Sopenharmony_ci	u16 lan_offset;
79462306a36Sopenharmony_ci	u16 nvm_data;
79562306a36Sopenharmony_ci
79662306a36Sopenharmony_ci	/* Read and store word 0x0F of the EEPROM. This word contains bits
79762306a36Sopenharmony_ci	 * that determine the hardware's default PAUSE (flow control) mode,
79862306a36Sopenharmony_ci	 * a bit that determines whether the HW defaults to enabling or
79962306a36Sopenharmony_ci	 * disabling auto-negotiation, and the direction of the
80062306a36Sopenharmony_ci	 * SW defined pins. If there is no SW over-ride of the flow
80162306a36Sopenharmony_ci	 * control setting, then the variable hw->fc will
80262306a36Sopenharmony_ci	 * be initialized based on a value in the EEPROM.
80362306a36Sopenharmony_ci	 */
80462306a36Sopenharmony_ci	if (hw->mac.type == e1000_i350)
80562306a36Sopenharmony_ci		lan_offset = NVM_82580_LAN_FUNC_OFFSET(hw->bus.func);
80662306a36Sopenharmony_ci	else
80762306a36Sopenharmony_ci		lan_offset = 0;
80862306a36Sopenharmony_ci
80962306a36Sopenharmony_ci	ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG + lan_offset,
81062306a36Sopenharmony_ci				   1, &nvm_data);
81162306a36Sopenharmony_ci	if (ret_val) {
81262306a36Sopenharmony_ci		hw_dbg("NVM Read Error\n");
81362306a36Sopenharmony_ci		goto out;
81462306a36Sopenharmony_ci	}
81562306a36Sopenharmony_ci
81662306a36Sopenharmony_ci	if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0)
81762306a36Sopenharmony_ci		hw->fc.requested_mode = e1000_fc_none;
81862306a36Sopenharmony_ci	else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == NVM_WORD0F_ASM_DIR)
81962306a36Sopenharmony_ci		hw->fc.requested_mode = e1000_fc_tx_pause;
82062306a36Sopenharmony_ci	else
82162306a36Sopenharmony_ci		hw->fc.requested_mode = e1000_fc_full;
82262306a36Sopenharmony_ci
82362306a36Sopenharmony_ciout:
82462306a36Sopenharmony_ci	return ret_val;
82562306a36Sopenharmony_ci}
82662306a36Sopenharmony_ci
82762306a36Sopenharmony_ci/**
82862306a36Sopenharmony_ci *  igb_force_mac_fc - Force the MAC's flow control settings
82962306a36Sopenharmony_ci *  @hw: pointer to the HW structure
83062306a36Sopenharmony_ci *
83162306a36Sopenharmony_ci *  Force the MAC's flow control settings.  Sets the TFCE and RFCE bits in the
83262306a36Sopenharmony_ci *  device control register to reflect the adapter settings.  TFCE and RFCE
83362306a36Sopenharmony_ci *  need to be explicitly set by software when a copper PHY is used because
83462306a36Sopenharmony_ci *  autonegotiation is managed by the PHY rather than the MAC.  Software must
83562306a36Sopenharmony_ci *  also configure these bits when link is forced on a fiber connection.
83662306a36Sopenharmony_ci **/
83762306a36Sopenharmony_cis32 igb_force_mac_fc(struct e1000_hw *hw)
83862306a36Sopenharmony_ci{
83962306a36Sopenharmony_ci	u32 ctrl;
84062306a36Sopenharmony_ci	s32 ret_val = 0;
84162306a36Sopenharmony_ci
84262306a36Sopenharmony_ci	ctrl = rd32(E1000_CTRL);
84362306a36Sopenharmony_ci
84462306a36Sopenharmony_ci	/* Because we didn't get link via the internal auto-negotiation
84562306a36Sopenharmony_ci	 * mechanism (we either forced link or we got link via PHY
84662306a36Sopenharmony_ci	 * auto-neg), we have to manually enable/disable transmit an
84762306a36Sopenharmony_ci	 * receive flow control.
84862306a36Sopenharmony_ci	 *
84962306a36Sopenharmony_ci	 * The "Case" statement below enables/disable flow control
85062306a36Sopenharmony_ci	 * according to the "hw->fc.current_mode" parameter.
85162306a36Sopenharmony_ci	 *
85262306a36Sopenharmony_ci	 * The possible values of the "fc" parameter are:
85362306a36Sopenharmony_ci	 *      0:  Flow control is completely disabled
85462306a36Sopenharmony_ci	 *      1:  Rx flow control is enabled (we can receive pause
85562306a36Sopenharmony_ci	 *          frames but not send pause frames).
85662306a36Sopenharmony_ci	 *      2:  Tx flow control is enabled (we can send pause frames
85762306a36Sopenharmony_ci	 *          but we do not receive pause frames).
85862306a36Sopenharmony_ci	 *      3:  Both Rx and TX flow control (symmetric) is enabled.
85962306a36Sopenharmony_ci	 *  other:  No other values should be possible at this point.
86062306a36Sopenharmony_ci	 */
86162306a36Sopenharmony_ci	hw_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode);
86262306a36Sopenharmony_ci
86362306a36Sopenharmony_ci	switch (hw->fc.current_mode) {
86462306a36Sopenharmony_ci	case e1000_fc_none:
86562306a36Sopenharmony_ci		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
86662306a36Sopenharmony_ci		break;
86762306a36Sopenharmony_ci	case e1000_fc_rx_pause:
86862306a36Sopenharmony_ci		ctrl &= (~E1000_CTRL_TFCE);
86962306a36Sopenharmony_ci		ctrl |= E1000_CTRL_RFCE;
87062306a36Sopenharmony_ci		break;
87162306a36Sopenharmony_ci	case e1000_fc_tx_pause:
87262306a36Sopenharmony_ci		ctrl &= (~E1000_CTRL_RFCE);
87362306a36Sopenharmony_ci		ctrl |= E1000_CTRL_TFCE;
87462306a36Sopenharmony_ci		break;
87562306a36Sopenharmony_ci	case e1000_fc_full:
87662306a36Sopenharmony_ci		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
87762306a36Sopenharmony_ci		break;
87862306a36Sopenharmony_ci	default:
87962306a36Sopenharmony_ci		hw_dbg("Flow control param set incorrectly\n");
88062306a36Sopenharmony_ci		ret_val = -E1000_ERR_CONFIG;
88162306a36Sopenharmony_ci		goto out;
88262306a36Sopenharmony_ci	}
88362306a36Sopenharmony_ci
88462306a36Sopenharmony_ci	wr32(E1000_CTRL, ctrl);
88562306a36Sopenharmony_ci
88662306a36Sopenharmony_ciout:
88762306a36Sopenharmony_ci	return ret_val;
88862306a36Sopenharmony_ci}
88962306a36Sopenharmony_ci
89062306a36Sopenharmony_ci/**
89162306a36Sopenharmony_ci *  igb_config_fc_after_link_up - Configures flow control after link
89262306a36Sopenharmony_ci *  @hw: pointer to the HW structure
89362306a36Sopenharmony_ci *
89462306a36Sopenharmony_ci *  Checks the status of auto-negotiation after link up to ensure that the
89562306a36Sopenharmony_ci *  speed and duplex were not forced.  If the link needed to be forced, then
89662306a36Sopenharmony_ci *  flow control needs to be forced also.  If auto-negotiation is enabled
89762306a36Sopenharmony_ci *  and did not fail, then we configure flow control based on our link
89862306a36Sopenharmony_ci *  partner.
89962306a36Sopenharmony_ci **/
90062306a36Sopenharmony_cis32 igb_config_fc_after_link_up(struct e1000_hw *hw)
90162306a36Sopenharmony_ci{
90262306a36Sopenharmony_ci	struct e1000_mac_info *mac = &hw->mac;
90362306a36Sopenharmony_ci	s32 ret_val = 0;
90462306a36Sopenharmony_ci	u32 pcs_status_reg, pcs_adv_reg, pcs_lp_ability_reg, pcs_ctrl_reg;
90562306a36Sopenharmony_ci	u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
90662306a36Sopenharmony_ci	u16 speed, duplex;
90762306a36Sopenharmony_ci
90862306a36Sopenharmony_ci	/* Check for the case where we have fiber media and auto-neg failed
90962306a36Sopenharmony_ci	 * so we had to force link.  In this case, we need to force the
91062306a36Sopenharmony_ci	 * configuration of the MAC to match the "fc" parameter.
91162306a36Sopenharmony_ci	 */
91262306a36Sopenharmony_ci	if (mac->autoneg_failed) {
91362306a36Sopenharmony_ci		if (hw->phy.media_type == e1000_media_type_internal_serdes)
91462306a36Sopenharmony_ci			ret_val = igb_force_mac_fc(hw);
91562306a36Sopenharmony_ci	} else {
91662306a36Sopenharmony_ci		if (hw->phy.media_type == e1000_media_type_copper)
91762306a36Sopenharmony_ci			ret_val = igb_force_mac_fc(hw);
91862306a36Sopenharmony_ci	}
91962306a36Sopenharmony_ci
92062306a36Sopenharmony_ci	if (ret_val) {
92162306a36Sopenharmony_ci		hw_dbg("Error forcing flow control settings\n");
92262306a36Sopenharmony_ci		goto out;
92362306a36Sopenharmony_ci	}
92462306a36Sopenharmony_ci
92562306a36Sopenharmony_ci	/* Check for the case where we have copper media and auto-neg is
92662306a36Sopenharmony_ci	 * enabled.  In this case, we need to check and see if Auto-Neg
92762306a36Sopenharmony_ci	 * has completed, and if so, how the PHY and link partner has
92862306a36Sopenharmony_ci	 * flow control configured.
92962306a36Sopenharmony_ci	 */
93062306a36Sopenharmony_ci	if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
93162306a36Sopenharmony_ci		/* Read the MII Status Register and check to see if AutoNeg
93262306a36Sopenharmony_ci		 * has completed.  We read this twice because this reg has
93362306a36Sopenharmony_ci		 * some "sticky" (latched) bits.
93462306a36Sopenharmony_ci		 */
93562306a36Sopenharmony_ci		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS,
93662306a36Sopenharmony_ci						   &mii_status_reg);
93762306a36Sopenharmony_ci		if (ret_val)
93862306a36Sopenharmony_ci			goto out;
93962306a36Sopenharmony_ci		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS,
94062306a36Sopenharmony_ci						   &mii_status_reg);
94162306a36Sopenharmony_ci		if (ret_val)
94262306a36Sopenharmony_ci			goto out;
94362306a36Sopenharmony_ci
94462306a36Sopenharmony_ci		if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
94562306a36Sopenharmony_ci			hw_dbg("Copper PHY and Auto Neg has not completed.\n");
94662306a36Sopenharmony_ci			goto out;
94762306a36Sopenharmony_ci		}
94862306a36Sopenharmony_ci
94962306a36Sopenharmony_ci		/* The AutoNeg process has completed, so we now need to
95062306a36Sopenharmony_ci		 * read both the Auto Negotiation Advertisement
95162306a36Sopenharmony_ci		 * Register (Address 4) and the Auto_Negotiation Base
95262306a36Sopenharmony_ci		 * Page Ability Register (Address 5) to determine how
95362306a36Sopenharmony_ci		 * flow control was negotiated.
95462306a36Sopenharmony_ci		 */
95562306a36Sopenharmony_ci		ret_val = hw->phy.ops.read_reg(hw, PHY_AUTONEG_ADV,
95662306a36Sopenharmony_ci					    &mii_nway_adv_reg);
95762306a36Sopenharmony_ci		if (ret_val)
95862306a36Sopenharmony_ci			goto out;
95962306a36Sopenharmony_ci		ret_val = hw->phy.ops.read_reg(hw, PHY_LP_ABILITY,
96062306a36Sopenharmony_ci					    &mii_nway_lp_ability_reg);
96162306a36Sopenharmony_ci		if (ret_val)
96262306a36Sopenharmony_ci			goto out;
96362306a36Sopenharmony_ci
96462306a36Sopenharmony_ci		/* Two bits in the Auto Negotiation Advertisement Register
96562306a36Sopenharmony_ci		 * (Address 4) and two bits in the Auto Negotiation Base
96662306a36Sopenharmony_ci		 * Page Ability Register (Address 5) determine flow control
96762306a36Sopenharmony_ci		 * for both the PHY and the link partner.  The following
96862306a36Sopenharmony_ci		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
96962306a36Sopenharmony_ci		 * 1999, describes these PAUSE resolution bits and how flow
97062306a36Sopenharmony_ci		 * control is determined based upon these settings.
97162306a36Sopenharmony_ci		 * NOTE:  DC = Don't Care
97262306a36Sopenharmony_ci		 *
97362306a36Sopenharmony_ci		 *   LOCAL DEVICE  |   LINK PARTNER
97462306a36Sopenharmony_ci		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
97562306a36Sopenharmony_ci		 *-------|---------|-------|---------|--------------------
97662306a36Sopenharmony_ci		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
97762306a36Sopenharmony_ci		 *   0   |    1    |   0   |   DC    | e1000_fc_none
97862306a36Sopenharmony_ci		 *   0   |    1    |   1   |    0    | e1000_fc_none
97962306a36Sopenharmony_ci		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
98062306a36Sopenharmony_ci		 *   1   |    0    |   0   |   DC    | e1000_fc_none
98162306a36Sopenharmony_ci		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
98262306a36Sopenharmony_ci		 *   1   |    1    |   0   |    0    | e1000_fc_none
98362306a36Sopenharmony_ci		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
98462306a36Sopenharmony_ci		 *
98562306a36Sopenharmony_ci		 * Are both PAUSE bits set to 1?  If so, this implies
98662306a36Sopenharmony_ci		 * Symmetric Flow Control is enabled at both ends.  The
98762306a36Sopenharmony_ci		 * ASM_DIR bits are irrelevant per the spec.
98862306a36Sopenharmony_ci		 *
98962306a36Sopenharmony_ci		 * For Symmetric Flow Control:
99062306a36Sopenharmony_ci		 *
99162306a36Sopenharmony_ci		 *   LOCAL DEVICE  |   LINK PARTNER
99262306a36Sopenharmony_ci		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
99362306a36Sopenharmony_ci		 *-------|---------|-------|---------|--------------------
99462306a36Sopenharmony_ci		 *   1   |   DC    |   1   |   DC    | E1000_fc_full
99562306a36Sopenharmony_ci		 *
99662306a36Sopenharmony_ci		 */
99762306a36Sopenharmony_ci		if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
99862306a36Sopenharmony_ci		    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
99962306a36Sopenharmony_ci			/* Now we need to check if the user selected RX ONLY
100062306a36Sopenharmony_ci			 * of pause frames.  In this case, we had to advertise
100162306a36Sopenharmony_ci			 * FULL flow control because we could not advertise RX
100262306a36Sopenharmony_ci			 * ONLY. Hence, we must now check to see if we need to
100362306a36Sopenharmony_ci			 * turn OFF  the TRANSMISSION of PAUSE frames.
100462306a36Sopenharmony_ci			 */
100562306a36Sopenharmony_ci			if (hw->fc.requested_mode == e1000_fc_full) {
100662306a36Sopenharmony_ci				hw->fc.current_mode = e1000_fc_full;
100762306a36Sopenharmony_ci				hw_dbg("Flow Control = FULL.\n");
100862306a36Sopenharmony_ci			} else {
100962306a36Sopenharmony_ci				hw->fc.current_mode = e1000_fc_rx_pause;
101062306a36Sopenharmony_ci				hw_dbg("Flow Control = RX PAUSE frames only.\n");
101162306a36Sopenharmony_ci			}
101262306a36Sopenharmony_ci		}
101362306a36Sopenharmony_ci		/* For receiving PAUSE frames ONLY.
101462306a36Sopenharmony_ci		 *
101562306a36Sopenharmony_ci		 *   LOCAL DEVICE  |   LINK PARTNER
101662306a36Sopenharmony_ci		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
101762306a36Sopenharmony_ci		 *-------|---------|-------|---------|--------------------
101862306a36Sopenharmony_ci		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
101962306a36Sopenharmony_ci		 */
102062306a36Sopenharmony_ci		else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
102162306a36Sopenharmony_ci			  (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
102262306a36Sopenharmony_ci			  (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
102362306a36Sopenharmony_ci			  (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
102462306a36Sopenharmony_ci			hw->fc.current_mode = e1000_fc_tx_pause;
102562306a36Sopenharmony_ci			hw_dbg("Flow Control = TX PAUSE frames only.\n");
102662306a36Sopenharmony_ci		}
102762306a36Sopenharmony_ci		/* For transmitting PAUSE frames ONLY.
102862306a36Sopenharmony_ci		 *
102962306a36Sopenharmony_ci		 *   LOCAL DEVICE  |   LINK PARTNER
103062306a36Sopenharmony_ci		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
103162306a36Sopenharmony_ci		 *-------|---------|-------|---------|--------------------
103262306a36Sopenharmony_ci		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
103362306a36Sopenharmony_ci		 */
103462306a36Sopenharmony_ci		else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
103562306a36Sopenharmony_ci			 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
103662306a36Sopenharmony_ci			 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
103762306a36Sopenharmony_ci			 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
103862306a36Sopenharmony_ci			hw->fc.current_mode = e1000_fc_rx_pause;
103962306a36Sopenharmony_ci			hw_dbg("Flow Control = RX PAUSE frames only.\n");
104062306a36Sopenharmony_ci		}
104162306a36Sopenharmony_ci		/* Per the IEEE spec, at this point flow control should be
104262306a36Sopenharmony_ci		 * disabled.  However, we want to consider that we could
104362306a36Sopenharmony_ci		 * be connected to a legacy switch that doesn't advertise
104462306a36Sopenharmony_ci		 * desired flow control, but can be forced on the link
104562306a36Sopenharmony_ci		 * partner.  So if we advertised no flow control, that is
104662306a36Sopenharmony_ci		 * what we will resolve to.  If we advertised some kind of
104762306a36Sopenharmony_ci		 * receive capability (Rx Pause Only or Full Flow Control)
104862306a36Sopenharmony_ci		 * and the link partner advertised none, we will configure
104962306a36Sopenharmony_ci		 * ourselves to enable Rx Flow Control only.  We can do
105062306a36Sopenharmony_ci		 * this safely for two reasons:  If the link partner really
105162306a36Sopenharmony_ci		 * didn't want flow control enabled, and we enable Rx, no
105262306a36Sopenharmony_ci		 * harm done since we won't be receiving any PAUSE frames
105362306a36Sopenharmony_ci		 * anyway.  If the intent on the link partner was to have
105462306a36Sopenharmony_ci		 * flow control enabled, then by us enabling RX only, we
105562306a36Sopenharmony_ci		 * can at least receive pause frames and process them.
105662306a36Sopenharmony_ci		 * This is a good idea because in most cases, since we are
105762306a36Sopenharmony_ci		 * predominantly a server NIC, more times than not we will
105862306a36Sopenharmony_ci		 * be asked to delay transmission of packets than asking
105962306a36Sopenharmony_ci		 * our link partner to pause transmission of frames.
106062306a36Sopenharmony_ci		 */
106162306a36Sopenharmony_ci		else if ((hw->fc.requested_mode == e1000_fc_none) ||
106262306a36Sopenharmony_ci			 (hw->fc.requested_mode == e1000_fc_tx_pause) ||
106362306a36Sopenharmony_ci			 (hw->fc.strict_ieee)) {
106462306a36Sopenharmony_ci			hw->fc.current_mode = e1000_fc_none;
106562306a36Sopenharmony_ci			hw_dbg("Flow Control = NONE.\n");
106662306a36Sopenharmony_ci		} else {
106762306a36Sopenharmony_ci			hw->fc.current_mode = e1000_fc_rx_pause;
106862306a36Sopenharmony_ci			hw_dbg("Flow Control = RX PAUSE frames only.\n");
106962306a36Sopenharmony_ci		}
107062306a36Sopenharmony_ci
107162306a36Sopenharmony_ci		/* Now we need to do one last check...  If we auto-
107262306a36Sopenharmony_ci		 * negotiated to HALF DUPLEX, flow control should not be
107362306a36Sopenharmony_ci		 * enabled per IEEE 802.3 spec.
107462306a36Sopenharmony_ci		 */
107562306a36Sopenharmony_ci		ret_val = hw->mac.ops.get_speed_and_duplex(hw, &speed, &duplex);
107662306a36Sopenharmony_ci		if (ret_val) {
107762306a36Sopenharmony_ci			hw_dbg("Error getting link speed and duplex\n");
107862306a36Sopenharmony_ci			goto out;
107962306a36Sopenharmony_ci		}
108062306a36Sopenharmony_ci
108162306a36Sopenharmony_ci		if (duplex == HALF_DUPLEX)
108262306a36Sopenharmony_ci			hw->fc.current_mode = e1000_fc_none;
108362306a36Sopenharmony_ci
108462306a36Sopenharmony_ci		/* Now we call a subroutine to actually force the MAC
108562306a36Sopenharmony_ci		 * controller to use the correct flow control settings.
108662306a36Sopenharmony_ci		 */
108762306a36Sopenharmony_ci		ret_val = igb_force_mac_fc(hw);
108862306a36Sopenharmony_ci		if (ret_val) {
108962306a36Sopenharmony_ci			hw_dbg("Error forcing flow control settings\n");
109062306a36Sopenharmony_ci			goto out;
109162306a36Sopenharmony_ci		}
109262306a36Sopenharmony_ci	}
109362306a36Sopenharmony_ci	/* Check for the case where we have SerDes media and auto-neg is
109462306a36Sopenharmony_ci	 * enabled.  In this case, we need to check and see if Auto-Neg
109562306a36Sopenharmony_ci	 * has completed, and if so, how the PHY and link partner has
109662306a36Sopenharmony_ci	 * flow control configured.
109762306a36Sopenharmony_ci	 */
109862306a36Sopenharmony_ci	if ((hw->phy.media_type == e1000_media_type_internal_serdes)
109962306a36Sopenharmony_ci		&& mac->autoneg) {
110062306a36Sopenharmony_ci		/* Read the PCS_LSTS and check to see if AutoNeg
110162306a36Sopenharmony_ci		 * has completed.
110262306a36Sopenharmony_ci		 */
110362306a36Sopenharmony_ci		pcs_status_reg = rd32(E1000_PCS_LSTAT);
110462306a36Sopenharmony_ci
110562306a36Sopenharmony_ci		if (!(pcs_status_reg & E1000_PCS_LSTS_AN_COMPLETE)) {
110662306a36Sopenharmony_ci			hw_dbg("PCS Auto Neg has not completed.\n");
110762306a36Sopenharmony_ci			return ret_val;
110862306a36Sopenharmony_ci		}
110962306a36Sopenharmony_ci
111062306a36Sopenharmony_ci		/* The AutoNeg process has completed, so we now need to
111162306a36Sopenharmony_ci		 * read both the Auto Negotiation Advertisement
111262306a36Sopenharmony_ci		 * Register (PCS_ANADV) and the Auto_Negotiation Base
111362306a36Sopenharmony_ci		 * Page Ability Register (PCS_LPAB) to determine how
111462306a36Sopenharmony_ci		 * flow control was negotiated.
111562306a36Sopenharmony_ci		 */
111662306a36Sopenharmony_ci		pcs_adv_reg = rd32(E1000_PCS_ANADV);
111762306a36Sopenharmony_ci		pcs_lp_ability_reg = rd32(E1000_PCS_LPAB);
111862306a36Sopenharmony_ci
111962306a36Sopenharmony_ci		/* Two bits in the Auto Negotiation Advertisement Register
112062306a36Sopenharmony_ci		 * (PCS_ANADV) and two bits in the Auto Negotiation Base
112162306a36Sopenharmony_ci		 * Page Ability Register (PCS_LPAB) determine flow control
112262306a36Sopenharmony_ci		 * for both the PHY and the link partner.  The following
112362306a36Sopenharmony_ci		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
112462306a36Sopenharmony_ci		 * 1999, describes these PAUSE resolution bits and how flow
112562306a36Sopenharmony_ci		 * control is determined based upon these settings.
112662306a36Sopenharmony_ci		 * NOTE:  DC = Don't Care
112762306a36Sopenharmony_ci		 *
112862306a36Sopenharmony_ci		 *   LOCAL DEVICE  |   LINK PARTNER
112962306a36Sopenharmony_ci		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
113062306a36Sopenharmony_ci		 *-------|---------|-------|---------|--------------------
113162306a36Sopenharmony_ci		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
113262306a36Sopenharmony_ci		 *   0   |    1    |   0   |   DC    | e1000_fc_none
113362306a36Sopenharmony_ci		 *   0   |    1    |   1   |    0    | e1000_fc_none
113462306a36Sopenharmony_ci		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
113562306a36Sopenharmony_ci		 *   1   |    0    |   0   |   DC    | e1000_fc_none
113662306a36Sopenharmony_ci		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
113762306a36Sopenharmony_ci		 *   1   |    1    |   0   |    0    | e1000_fc_none
113862306a36Sopenharmony_ci		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
113962306a36Sopenharmony_ci		 *
114062306a36Sopenharmony_ci		 * Are both PAUSE bits set to 1?  If so, this implies
114162306a36Sopenharmony_ci		 * Symmetric Flow Control is enabled at both ends.  The
114262306a36Sopenharmony_ci		 * ASM_DIR bits are irrelevant per the spec.
114362306a36Sopenharmony_ci		 *
114462306a36Sopenharmony_ci		 * For Symmetric Flow Control:
114562306a36Sopenharmony_ci		 *
114662306a36Sopenharmony_ci		 *   LOCAL DEVICE  |   LINK PARTNER
114762306a36Sopenharmony_ci		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
114862306a36Sopenharmony_ci		 *-------|---------|-------|---------|--------------------
114962306a36Sopenharmony_ci		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
115062306a36Sopenharmony_ci		 *
115162306a36Sopenharmony_ci		 */
115262306a36Sopenharmony_ci		if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
115362306a36Sopenharmony_ci		    (pcs_lp_ability_reg & E1000_TXCW_PAUSE)) {
115462306a36Sopenharmony_ci			/* Now we need to check if the user selected Rx ONLY
115562306a36Sopenharmony_ci			 * of pause frames.  In this case, we had to advertise
115662306a36Sopenharmony_ci			 * FULL flow control because we could not advertise Rx
115762306a36Sopenharmony_ci			 * ONLY. Hence, we must now check to see if we need to
115862306a36Sopenharmony_ci			 * turn OFF the TRANSMISSION of PAUSE frames.
115962306a36Sopenharmony_ci			 */
116062306a36Sopenharmony_ci			if (hw->fc.requested_mode == e1000_fc_full) {
116162306a36Sopenharmony_ci				hw->fc.current_mode = e1000_fc_full;
116262306a36Sopenharmony_ci				hw_dbg("Flow Control = FULL.\n");
116362306a36Sopenharmony_ci			} else {
116462306a36Sopenharmony_ci				hw->fc.current_mode = e1000_fc_rx_pause;
116562306a36Sopenharmony_ci				hw_dbg("Flow Control = Rx PAUSE frames only.\n");
116662306a36Sopenharmony_ci			}
116762306a36Sopenharmony_ci		}
116862306a36Sopenharmony_ci		/* For receiving PAUSE frames ONLY.
116962306a36Sopenharmony_ci		 *
117062306a36Sopenharmony_ci		 *   LOCAL DEVICE  |   LINK PARTNER
117162306a36Sopenharmony_ci		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
117262306a36Sopenharmony_ci		 *-------|---------|-------|---------|--------------------
117362306a36Sopenharmony_ci		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
117462306a36Sopenharmony_ci		 */
117562306a36Sopenharmony_ci		else if (!(pcs_adv_reg & E1000_TXCW_PAUSE) &&
117662306a36Sopenharmony_ci			  (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
117762306a36Sopenharmony_ci			  (pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
117862306a36Sopenharmony_ci			  (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
117962306a36Sopenharmony_ci			hw->fc.current_mode = e1000_fc_tx_pause;
118062306a36Sopenharmony_ci			hw_dbg("Flow Control = Tx PAUSE frames only.\n");
118162306a36Sopenharmony_ci		}
118262306a36Sopenharmony_ci		/* For transmitting PAUSE frames ONLY.
118362306a36Sopenharmony_ci		 *
118462306a36Sopenharmony_ci		 *   LOCAL DEVICE  |   LINK PARTNER
118562306a36Sopenharmony_ci		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
118662306a36Sopenharmony_ci		 *-------|---------|-------|---------|--------------------
118762306a36Sopenharmony_ci		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
118862306a36Sopenharmony_ci		 */
118962306a36Sopenharmony_ci		else if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
119062306a36Sopenharmony_ci			 (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
119162306a36Sopenharmony_ci			 !(pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
119262306a36Sopenharmony_ci			 (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
119362306a36Sopenharmony_ci			hw->fc.current_mode = e1000_fc_rx_pause;
119462306a36Sopenharmony_ci			hw_dbg("Flow Control = Rx PAUSE frames only.\n");
119562306a36Sopenharmony_ci		} else {
119662306a36Sopenharmony_ci			/* Per the IEEE spec, at this point flow control
119762306a36Sopenharmony_ci			 * should be disabled.
119862306a36Sopenharmony_ci			 */
119962306a36Sopenharmony_ci			hw->fc.current_mode = e1000_fc_none;
120062306a36Sopenharmony_ci			hw_dbg("Flow Control = NONE.\n");
120162306a36Sopenharmony_ci		}
120262306a36Sopenharmony_ci
120362306a36Sopenharmony_ci		/* Now we call a subroutine to actually force the MAC
120462306a36Sopenharmony_ci		 * controller to use the correct flow control settings.
120562306a36Sopenharmony_ci		 */
120662306a36Sopenharmony_ci		pcs_ctrl_reg = rd32(E1000_PCS_LCTL);
120762306a36Sopenharmony_ci		pcs_ctrl_reg |= E1000_PCS_LCTL_FORCE_FCTRL;
120862306a36Sopenharmony_ci		wr32(E1000_PCS_LCTL, pcs_ctrl_reg);
120962306a36Sopenharmony_ci
121062306a36Sopenharmony_ci		ret_val = igb_force_mac_fc(hw);
121162306a36Sopenharmony_ci		if (ret_val) {
121262306a36Sopenharmony_ci			hw_dbg("Error forcing flow control settings\n");
121362306a36Sopenharmony_ci			return ret_val;
121462306a36Sopenharmony_ci		}
121562306a36Sopenharmony_ci	}
121662306a36Sopenharmony_ci
121762306a36Sopenharmony_ciout:
121862306a36Sopenharmony_ci	return ret_val;
121962306a36Sopenharmony_ci}
122062306a36Sopenharmony_ci
122162306a36Sopenharmony_ci/**
122262306a36Sopenharmony_ci *  igb_get_speed_and_duplex_copper - Retrieve current speed/duplex
122362306a36Sopenharmony_ci *  @hw: pointer to the HW structure
122462306a36Sopenharmony_ci *  @speed: stores the current speed
122562306a36Sopenharmony_ci *  @duplex: stores the current duplex
122662306a36Sopenharmony_ci *
122762306a36Sopenharmony_ci *  Read the status register for the current speed/duplex and store the current
122862306a36Sopenharmony_ci *  speed and duplex for copper connections.
122962306a36Sopenharmony_ci **/
123062306a36Sopenharmony_cis32 igb_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed,
123162306a36Sopenharmony_ci				      u16 *duplex)
123262306a36Sopenharmony_ci{
123362306a36Sopenharmony_ci	u32 status;
123462306a36Sopenharmony_ci
123562306a36Sopenharmony_ci	status = rd32(E1000_STATUS);
123662306a36Sopenharmony_ci	if (status & E1000_STATUS_SPEED_1000) {
123762306a36Sopenharmony_ci		*speed = SPEED_1000;
123862306a36Sopenharmony_ci		hw_dbg("1000 Mbs, ");
123962306a36Sopenharmony_ci	} else if (status & E1000_STATUS_SPEED_100) {
124062306a36Sopenharmony_ci		*speed = SPEED_100;
124162306a36Sopenharmony_ci		hw_dbg("100 Mbs, ");
124262306a36Sopenharmony_ci	} else {
124362306a36Sopenharmony_ci		*speed = SPEED_10;
124462306a36Sopenharmony_ci		hw_dbg("10 Mbs, ");
124562306a36Sopenharmony_ci	}
124662306a36Sopenharmony_ci
124762306a36Sopenharmony_ci	if (status & E1000_STATUS_FD) {
124862306a36Sopenharmony_ci		*duplex = FULL_DUPLEX;
124962306a36Sopenharmony_ci		hw_dbg("Full Duplex\n");
125062306a36Sopenharmony_ci	} else {
125162306a36Sopenharmony_ci		*duplex = HALF_DUPLEX;
125262306a36Sopenharmony_ci		hw_dbg("Half Duplex\n");
125362306a36Sopenharmony_ci	}
125462306a36Sopenharmony_ci
125562306a36Sopenharmony_ci	return 0;
125662306a36Sopenharmony_ci}
125762306a36Sopenharmony_ci
125862306a36Sopenharmony_ci/**
125962306a36Sopenharmony_ci *  igb_get_hw_semaphore - Acquire hardware semaphore
126062306a36Sopenharmony_ci *  @hw: pointer to the HW structure
126162306a36Sopenharmony_ci *
126262306a36Sopenharmony_ci *  Acquire the HW semaphore to access the PHY or NVM
126362306a36Sopenharmony_ci **/
126462306a36Sopenharmony_cis32 igb_get_hw_semaphore(struct e1000_hw *hw)
126562306a36Sopenharmony_ci{
126662306a36Sopenharmony_ci	u32 swsm;
126762306a36Sopenharmony_ci	s32 ret_val = 0;
126862306a36Sopenharmony_ci	s32 timeout = hw->nvm.word_size + 1;
126962306a36Sopenharmony_ci	s32 i = 0;
127062306a36Sopenharmony_ci
127162306a36Sopenharmony_ci	/* Get the SW semaphore */
127262306a36Sopenharmony_ci	while (i < timeout) {
127362306a36Sopenharmony_ci		swsm = rd32(E1000_SWSM);
127462306a36Sopenharmony_ci		if (!(swsm & E1000_SWSM_SMBI))
127562306a36Sopenharmony_ci			break;
127662306a36Sopenharmony_ci
127762306a36Sopenharmony_ci		udelay(50);
127862306a36Sopenharmony_ci		i++;
127962306a36Sopenharmony_ci	}
128062306a36Sopenharmony_ci
128162306a36Sopenharmony_ci	if (i == timeout) {
128262306a36Sopenharmony_ci		hw_dbg("Driver can't access device - SMBI bit is set.\n");
128362306a36Sopenharmony_ci		ret_val = -E1000_ERR_NVM;
128462306a36Sopenharmony_ci		goto out;
128562306a36Sopenharmony_ci	}
128662306a36Sopenharmony_ci
128762306a36Sopenharmony_ci	/* Get the FW semaphore. */
128862306a36Sopenharmony_ci	for (i = 0; i < timeout; i++) {
128962306a36Sopenharmony_ci		swsm = rd32(E1000_SWSM);
129062306a36Sopenharmony_ci		wr32(E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
129162306a36Sopenharmony_ci
129262306a36Sopenharmony_ci		/* Semaphore acquired if bit latched */
129362306a36Sopenharmony_ci		if (rd32(E1000_SWSM) & E1000_SWSM_SWESMBI)
129462306a36Sopenharmony_ci			break;
129562306a36Sopenharmony_ci
129662306a36Sopenharmony_ci		udelay(50);
129762306a36Sopenharmony_ci	}
129862306a36Sopenharmony_ci
129962306a36Sopenharmony_ci	if (i == timeout) {
130062306a36Sopenharmony_ci		/* Release semaphores */
130162306a36Sopenharmony_ci		igb_put_hw_semaphore(hw);
130262306a36Sopenharmony_ci		hw_dbg("Driver can't access the NVM\n");
130362306a36Sopenharmony_ci		ret_val = -E1000_ERR_NVM;
130462306a36Sopenharmony_ci		goto out;
130562306a36Sopenharmony_ci	}
130662306a36Sopenharmony_ci
130762306a36Sopenharmony_ciout:
130862306a36Sopenharmony_ci	return ret_val;
130962306a36Sopenharmony_ci}
131062306a36Sopenharmony_ci
131162306a36Sopenharmony_ci/**
131262306a36Sopenharmony_ci *  igb_put_hw_semaphore - Release hardware semaphore
131362306a36Sopenharmony_ci *  @hw: pointer to the HW structure
131462306a36Sopenharmony_ci *
131562306a36Sopenharmony_ci *  Release hardware semaphore used to access the PHY or NVM
131662306a36Sopenharmony_ci **/
131762306a36Sopenharmony_civoid igb_put_hw_semaphore(struct e1000_hw *hw)
131862306a36Sopenharmony_ci{
131962306a36Sopenharmony_ci	u32 swsm;
132062306a36Sopenharmony_ci
132162306a36Sopenharmony_ci	swsm = rd32(E1000_SWSM);
132262306a36Sopenharmony_ci
132362306a36Sopenharmony_ci	swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
132462306a36Sopenharmony_ci
132562306a36Sopenharmony_ci	wr32(E1000_SWSM, swsm);
132662306a36Sopenharmony_ci}
132762306a36Sopenharmony_ci
132862306a36Sopenharmony_ci/**
132962306a36Sopenharmony_ci *  igb_get_auto_rd_done - Check for auto read completion
133062306a36Sopenharmony_ci *  @hw: pointer to the HW structure
133162306a36Sopenharmony_ci *
133262306a36Sopenharmony_ci *  Check EEPROM for Auto Read done bit.
133362306a36Sopenharmony_ci **/
133462306a36Sopenharmony_cis32 igb_get_auto_rd_done(struct e1000_hw *hw)
133562306a36Sopenharmony_ci{
133662306a36Sopenharmony_ci	s32 i = 0;
133762306a36Sopenharmony_ci	s32 ret_val = 0;
133862306a36Sopenharmony_ci
133962306a36Sopenharmony_ci
134062306a36Sopenharmony_ci	while (i < AUTO_READ_DONE_TIMEOUT) {
134162306a36Sopenharmony_ci		if (rd32(E1000_EECD) & E1000_EECD_AUTO_RD)
134262306a36Sopenharmony_ci			break;
134362306a36Sopenharmony_ci		usleep_range(1000, 2000);
134462306a36Sopenharmony_ci		i++;
134562306a36Sopenharmony_ci	}
134662306a36Sopenharmony_ci
134762306a36Sopenharmony_ci	if (i == AUTO_READ_DONE_TIMEOUT) {
134862306a36Sopenharmony_ci		hw_dbg("Auto read by HW from NVM has not completed.\n");
134962306a36Sopenharmony_ci		ret_val = -E1000_ERR_RESET;
135062306a36Sopenharmony_ci		goto out;
135162306a36Sopenharmony_ci	}
135262306a36Sopenharmony_ci
135362306a36Sopenharmony_ciout:
135462306a36Sopenharmony_ci	return ret_val;
135562306a36Sopenharmony_ci}
135662306a36Sopenharmony_ci
135762306a36Sopenharmony_ci/**
135862306a36Sopenharmony_ci *  igb_valid_led_default - Verify a valid default LED config
135962306a36Sopenharmony_ci *  @hw: pointer to the HW structure
136062306a36Sopenharmony_ci *  @data: pointer to the NVM (EEPROM)
136162306a36Sopenharmony_ci *
136262306a36Sopenharmony_ci *  Read the EEPROM for the current default LED configuration.  If the
136362306a36Sopenharmony_ci *  LED configuration is not valid, set to a valid LED configuration.
136462306a36Sopenharmony_ci **/
136562306a36Sopenharmony_cistatic s32 igb_valid_led_default(struct e1000_hw *hw, u16 *data)
136662306a36Sopenharmony_ci{
136762306a36Sopenharmony_ci	s32 ret_val;
136862306a36Sopenharmony_ci
136962306a36Sopenharmony_ci	ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
137062306a36Sopenharmony_ci	if (ret_val) {
137162306a36Sopenharmony_ci		hw_dbg("NVM Read Error\n");
137262306a36Sopenharmony_ci		goto out;
137362306a36Sopenharmony_ci	}
137462306a36Sopenharmony_ci
137562306a36Sopenharmony_ci	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) {
137662306a36Sopenharmony_ci		switch (hw->phy.media_type) {
137762306a36Sopenharmony_ci		case e1000_media_type_internal_serdes:
137862306a36Sopenharmony_ci			*data = ID_LED_DEFAULT_82575_SERDES;
137962306a36Sopenharmony_ci			break;
138062306a36Sopenharmony_ci		case e1000_media_type_copper:
138162306a36Sopenharmony_ci		default:
138262306a36Sopenharmony_ci			*data = ID_LED_DEFAULT;
138362306a36Sopenharmony_ci			break;
138462306a36Sopenharmony_ci		}
138562306a36Sopenharmony_ci	}
138662306a36Sopenharmony_ciout:
138762306a36Sopenharmony_ci	return ret_val;
138862306a36Sopenharmony_ci}
138962306a36Sopenharmony_ci
139062306a36Sopenharmony_ci/**
139162306a36Sopenharmony_ci *  igb_id_led_init -
139262306a36Sopenharmony_ci *  @hw: pointer to the HW structure
139362306a36Sopenharmony_ci *
139462306a36Sopenharmony_ci **/
139562306a36Sopenharmony_cis32 igb_id_led_init(struct e1000_hw *hw)
139662306a36Sopenharmony_ci{
139762306a36Sopenharmony_ci	struct e1000_mac_info *mac = &hw->mac;
139862306a36Sopenharmony_ci	s32 ret_val;
139962306a36Sopenharmony_ci	const u32 ledctl_mask = 0x000000FF;
140062306a36Sopenharmony_ci	const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
140162306a36Sopenharmony_ci	const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
140262306a36Sopenharmony_ci	u16 data, i, temp;
140362306a36Sopenharmony_ci	const u16 led_mask = 0x0F;
140462306a36Sopenharmony_ci
140562306a36Sopenharmony_ci	/* i210 and i211 devices have different LED mechanism */
140662306a36Sopenharmony_ci	if ((hw->mac.type == e1000_i210) ||
140762306a36Sopenharmony_ci	    (hw->mac.type == e1000_i211))
140862306a36Sopenharmony_ci		ret_val = igb_valid_led_default_i210(hw, &data);
140962306a36Sopenharmony_ci	else
141062306a36Sopenharmony_ci		ret_val = igb_valid_led_default(hw, &data);
141162306a36Sopenharmony_ci
141262306a36Sopenharmony_ci	if (ret_val)
141362306a36Sopenharmony_ci		goto out;
141462306a36Sopenharmony_ci
141562306a36Sopenharmony_ci	mac->ledctl_default = rd32(E1000_LEDCTL);
141662306a36Sopenharmony_ci	mac->ledctl_mode1 = mac->ledctl_default;
141762306a36Sopenharmony_ci	mac->ledctl_mode2 = mac->ledctl_default;
141862306a36Sopenharmony_ci
141962306a36Sopenharmony_ci	for (i = 0; i < 4; i++) {
142062306a36Sopenharmony_ci		temp = (data >> (i << 2)) & led_mask;
142162306a36Sopenharmony_ci		switch (temp) {
142262306a36Sopenharmony_ci		case ID_LED_ON1_DEF2:
142362306a36Sopenharmony_ci		case ID_LED_ON1_ON2:
142462306a36Sopenharmony_ci		case ID_LED_ON1_OFF2:
142562306a36Sopenharmony_ci			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
142662306a36Sopenharmony_ci			mac->ledctl_mode1 |= ledctl_on << (i << 3);
142762306a36Sopenharmony_ci			break;
142862306a36Sopenharmony_ci		case ID_LED_OFF1_DEF2:
142962306a36Sopenharmony_ci		case ID_LED_OFF1_ON2:
143062306a36Sopenharmony_ci		case ID_LED_OFF1_OFF2:
143162306a36Sopenharmony_ci			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
143262306a36Sopenharmony_ci			mac->ledctl_mode1 |= ledctl_off << (i << 3);
143362306a36Sopenharmony_ci			break;
143462306a36Sopenharmony_ci		default:
143562306a36Sopenharmony_ci			/* Do nothing */
143662306a36Sopenharmony_ci			break;
143762306a36Sopenharmony_ci		}
143862306a36Sopenharmony_ci		switch (temp) {
143962306a36Sopenharmony_ci		case ID_LED_DEF1_ON2:
144062306a36Sopenharmony_ci		case ID_LED_ON1_ON2:
144162306a36Sopenharmony_ci		case ID_LED_OFF1_ON2:
144262306a36Sopenharmony_ci			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
144362306a36Sopenharmony_ci			mac->ledctl_mode2 |= ledctl_on << (i << 3);
144462306a36Sopenharmony_ci			break;
144562306a36Sopenharmony_ci		case ID_LED_DEF1_OFF2:
144662306a36Sopenharmony_ci		case ID_LED_ON1_OFF2:
144762306a36Sopenharmony_ci		case ID_LED_OFF1_OFF2:
144862306a36Sopenharmony_ci			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
144962306a36Sopenharmony_ci			mac->ledctl_mode2 |= ledctl_off << (i << 3);
145062306a36Sopenharmony_ci			break;
145162306a36Sopenharmony_ci		default:
145262306a36Sopenharmony_ci			/* Do nothing */
145362306a36Sopenharmony_ci			break;
145462306a36Sopenharmony_ci		}
145562306a36Sopenharmony_ci	}
145662306a36Sopenharmony_ci
145762306a36Sopenharmony_ciout:
145862306a36Sopenharmony_ci	return ret_val;
145962306a36Sopenharmony_ci}
146062306a36Sopenharmony_ci
146162306a36Sopenharmony_ci/**
146262306a36Sopenharmony_ci *  igb_cleanup_led - Set LED config to default operation
146362306a36Sopenharmony_ci *  @hw: pointer to the HW structure
146462306a36Sopenharmony_ci *
146562306a36Sopenharmony_ci *  Remove the current LED configuration and set the LED configuration
146662306a36Sopenharmony_ci *  to the default value, saved from the EEPROM.
146762306a36Sopenharmony_ci **/
146862306a36Sopenharmony_cis32 igb_cleanup_led(struct e1000_hw *hw)
146962306a36Sopenharmony_ci{
147062306a36Sopenharmony_ci	wr32(E1000_LEDCTL, hw->mac.ledctl_default);
147162306a36Sopenharmony_ci	return 0;
147262306a36Sopenharmony_ci}
147362306a36Sopenharmony_ci
147462306a36Sopenharmony_ci/**
147562306a36Sopenharmony_ci *  igb_blink_led - Blink LED
147662306a36Sopenharmony_ci *  @hw: pointer to the HW structure
147762306a36Sopenharmony_ci *
147862306a36Sopenharmony_ci *  Blink the led's which are set to be on.
147962306a36Sopenharmony_ci **/
148062306a36Sopenharmony_cis32 igb_blink_led(struct e1000_hw *hw)
148162306a36Sopenharmony_ci{
148262306a36Sopenharmony_ci	u32 ledctl_blink = 0;
148362306a36Sopenharmony_ci	u32 i;
148462306a36Sopenharmony_ci
148562306a36Sopenharmony_ci	if (hw->phy.media_type == e1000_media_type_fiber) {
148662306a36Sopenharmony_ci		/* always blink LED0 for PCI-E fiber */
148762306a36Sopenharmony_ci		ledctl_blink = E1000_LEDCTL_LED0_BLINK |
148862306a36Sopenharmony_ci		     (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
148962306a36Sopenharmony_ci	} else {
149062306a36Sopenharmony_ci		/* Set the blink bit for each LED that's "on" (0x0E)
149162306a36Sopenharmony_ci		 * (or "off" if inverted) in ledctl_mode2.  The blink
149262306a36Sopenharmony_ci		 * logic in hardware only works when mode is set to "on"
149362306a36Sopenharmony_ci		 * so it must be changed accordingly when the mode is
149462306a36Sopenharmony_ci		 * "off" and inverted.
149562306a36Sopenharmony_ci		 */
149662306a36Sopenharmony_ci		ledctl_blink = hw->mac.ledctl_mode2;
149762306a36Sopenharmony_ci		for (i = 0; i < 32; i += 8) {
149862306a36Sopenharmony_ci			u32 mode = (hw->mac.ledctl_mode2 >> i) &
149962306a36Sopenharmony_ci			    E1000_LEDCTL_LED0_MODE_MASK;
150062306a36Sopenharmony_ci			u32 led_default = hw->mac.ledctl_default >> i;
150162306a36Sopenharmony_ci
150262306a36Sopenharmony_ci			if ((!(led_default & E1000_LEDCTL_LED0_IVRT) &&
150362306a36Sopenharmony_ci			     (mode == E1000_LEDCTL_MODE_LED_ON)) ||
150462306a36Sopenharmony_ci			    ((led_default & E1000_LEDCTL_LED0_IVRT) &&
150562306a36Sopenharmony_ci			     (mode == E1000_LEDCTL_MODE_LED_OFF))) {
150662306a36Sopenharmony_ci				ledctl_blink &=
150762306a36Sopenharmony_ci				    ~(E1000_LEDCTL_LED0_MODE_MASK << i);
150862306a36Sopenharmony_ci				ledctl_blink |= (E1000_LEDCTL_LED0_BLINK |
150962306a36Sopenharmony_ci						 E1000_LEDCTL_MODE_LED_ON) << i;
151062306a36Sopenharmony_ci			}
151162306a36Sopenharmony_ci		}
151262306a36Sopenharmony_ci	}
151362306a36Sopenharmony_ci
151462306a36Sopenharmony_ci	wr32(E1000_LEDCTL, ledctl_blink);
151562306a36Sopenharmony_ci
151662306a36Sopenharmony_ci	return 0;
151762306a36Sopenharmony_ci}
151862306a36Sopenharmony_ci
151962306a36Sopenharmony_ci/**
152062306a36Sopenharmony_ci *  igb_led_off - Turn LED off
152162306a36Sopenharmony_ci *  @hw: pointer to the HW structure
152262306a36Sopenharmony_ci *
152362306a36Sopenharmony_ci *  Turn LED off.
152462306a36Sopenharmony_ci **/
152562306a36Sopenharmony_cis32 igb_led_off(struct e1000_hw *hw)
152662306a36Sopenharmony_ci{
152762306a36Sopenharmony_ci	switch (hw->phy.media_type) {
152862306a36Sopenharmony_ci	case e1000_media_type_copper:
152962306a36Sopenharmony_ci		wr32(E1000_LEDCTL, hw->mac.ledctl_mode1);
153062306a36Sopenharmony_ci		break;
153162306a36Sopenharmony_ci	default:
153262306a36Sopenharmony_ci		break;
153362306a36Sopenharmony_ci	}
153462306a36Sopenharmony_ci
153562306a36Sopenharmony_ci	return 0;
153662306a36Sopenharmony_ci}
153762306a36Sopenharmony_ci
153862306a36Sopenharmony_ci/**
153962306a36Sopenharmony_ci *  igb_disable_pcie_master - Disables PCI-express master access
154062306a36Sopenharmony_ci *  @hw: pointer to the HW structure
154162306a36Sopenharmony_ci *
154262306a36Sopenharmony_ci *  Returns 0 (0) if successful, else returns -10
154362306a36Sopenharmony_ci *  (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
154462306a36Sopenharmony_ci *  the master requests to be disabled.
154562306a36Sopenharmony_ci *
154662306a36Sopenharmony_ci *  Disables PCI-Express master access and verifies there are no pending
154762306a36Sopenharmony_ci *  requests.
154862306a36Sopenharmony_ci **/
154962306a36Sopenharmony_cis32 igb_disable_pcie_master(struct e1000_hw *hw)
155062306a36Sopenharmony_ci{
155162306a36Sopenharmony_ci	u32 ctrl;
155262306a36Sopenharmony_ci	s32 timeout = MASTER_DISABLE_TIMEOUT;
155362306a36Sopenharmony_ci	s32 ret_val = 0;
155462306a36Sopenharmony_ci
155562306a36Sopenharmony_ci	if (hw->bus.type != e1000_bus_type_pci_express)
155662306a36Sopenharmony_ci		goto out;
155762306a36Sopenharmony_ci
155862306a36Sopenharmony_ci	ctrl = rd32(E1000_CTRL);
155962306a36Sopenharmony_ci	ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
156062306a36Sopenharmony_ci	wr32(E1000_CTRL, ctrl);
156162306a36Sopenharmony_ci
156262306a36Sopenharmony_ci	while (timeout) {
156362306a36Sopenharmony_ci		if (!(rd32(E1000_STATUS) &
156462306a36Sopenharmony_ci		      E1000_STATUS_GIO_MASTER_ENABLE))
156562306a36Sopenharmony_ci			break;
156662306a36Sopenharmony_ci		udelay(100);
156762306a36Sopenharmony_ci		timeout--;
156862306a36Sopenharmony_ci	}
156962306a36Sopenharmony_ci
157062306a36Sopenharmony_ci	if (!timeout) {
157162306a36Sopenharmony_ci		hw_dbg("Master requests are pending.\n");
157262306a36Sopenharmony_ci		ret_val = -E1000_ERR_MASTER_REQUESTS_PENDING;
157362306a36Sopenharmony_ci		goto out;
157462306a36Sopenharmony_ci	}
157562306a36Sopenharmony_ci
157662306a36Sopenharmony_ciout:
157762306a36Sopenharmony_ci	return ret_val;
157862306a36Sopenharmony_ci}
157962306a36Sopenharmony_ci
158062306a36Sopenharmony_ci/**
158162306a36Sopenharmony_ci *  igb_validate_mdi_setting - Verify MDI/MDIx settings
158262306a36Sopenharmony_ci *  @hw: pointer to the HW structure
158362306a36Sopenharmony_ci *
158462306a36Sopenharmony_ci *  Verify that when not using auto-negotitation that MDI/MDIx is correctly
158562306a36Sopenharmony_ci *  set, which is forced to MDI mode only.
158662306a36Sopenharmony_ci **/
158762306a36Sopenharmony_cis32 igb_validate_mdi_setting(struct e1000_hw *hw)
158862306a36Sopenharmony_ci{
158962306a36Sopenharmony_ci	s32 ret_val = 0;
159062306a36Sopenharmony_ci
159162306a36Sopenharmony_ci	/* All MDI settings are supported on 82580 and newer. */
159262306a36Sopenharmony_ci	if (hw->mac.type >= e1000_82580)
159362306a36Sopenharmony_ci		goto out;
159462306a36Sopenharmony_ci
159562306a36Sopenharmony_ci	if (!hw->mac.autoneg && (hw->phy.mdix == 0 || hw->phy.mdix == 3)) {
159662306a36Sopenharmony_ci		hw_dbg("Invalid MDI setting detected\n");
159762306a36Sopenharmony_ci		hw->phy.mdix = 1;
159862306a36Sopenharmony_ci		ret_val = -E1000_ERR_CONFIG;
159962306a36Sopenharmony_ci		goto out;
160062306a36Sopenharmony_ci	}
160162306a36Sopenharmony_ci
160262306a36Sopenharmony_ciout:
160362306a36Sopenharmony_ci	return ret_val;
160462306a36Sopenharmony_ci}
160562306a36Sopenharmony_ci
160662306a36Sopenharmony_ci/**
160762306a36Sopenharmony_ci *  igb_write_8bit_ctrl_reg - Write a 8bit CTRL register
160862306a36Sopenharmony_ci *  @hw: pointer to the HW structure
160962306a36Sopenharmony_ci *  @reg: 32bit register offset such as E1000_SCTL
161062306a36Sopenharmony_ci *  @offset: register offset to write to
161162306a36Sopenharmony_ci *  @data: data to write at register offset
161262306a36Sopenharmony_ci *
161362306a36Sopenharmony_ci *  Writes an address/data control type register.  There are several of these
161462306a36Sopenharmony_ci *  and they all have the format address << 8 | data and bit 31 is polled for
161562306a36Sopenharmony_ci *  completion.
161662306a36Sopenharmony_ci **/
161762306a36Sopenharmony_cis32 igb_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg,
161862306a36Sopenharmony_ci			      u32 offset, u8 data)
161962306a36Sopenharmony_ci{
162062306a36Sopenharmony_ci	u32 i, regvalue = 0;
162162306a36Sopenharmony_ci	s32 ret_val = 0;
162262306a36Sopenharmony_ci
162362306a36Sopenharmony_ci	/* Set up the address and data */
162462306a36Sopenharmony_ci	regvalue = ((u32)data) | (offset << E1000_GEN_CTL_ADDRESS_SHIFT);
162562306a36Sopenharmony_ci	wr32(reg, regvalue);
162662306a36Sopenharmony_ci
162762306a36Sopenharmony_ci	/* Poll the ready bit to see if the MDI read completed */
162862306a36Sopenharmony_ci	for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) {
162962306a36Sopenharmony_ci		udelay(5);
163062306a36Sopenharmony_ci		regvalue = rd32(reg);
163162306a36Sopenharmony_ci		if (regvalue & E1000_GEN_CTL_READY)
163262306a36Sopenharmony_ci			break;
163362306a36Sopenharmony_ci	}
163462306a36Sopenharmony_ci	if (!(regvalue & E1000_GEN_CTL_READY)) {
163562306a36Sopenharmony_ci		hw_dbg("Reg %08x did not indicate ready\n", reg);
163662306a36Sopenharmony_ci		ret_val = -E1000_ERR_PHY;
163762306a36Sopenharmony_ci		goto out;
163862306a36Sopenharmony_ci	}
163962306a36Sopenharmony_ci
164062306a36Sopenharmony_ciout:
164162306a36Sopenharmony_ci	return ret_val;
164262306a36Sopenharmony_ci}
164362306a36Sopenharmony_ci
164462306a36Sopenharmony_ci/**
164562306a36Sopenharmony_ci *  igb_enable_mng_pass_thru - Enable processing of ARP's
164662306a36Sopenharmony_ci *  @hw: pointer to the HW structure
164762306a36Sopenharmony_ci *
164862306a36Sopenharmony_ci *  Verifies the hardware needs to leave interface enabled so that frames can
164962306a36Sopenharmony_ci *  be directed to and from the management interface.
165062306a36Sopenharmony_ci **/
165162306a36Sopenharmony_cibool igb_enable_mng_pass_thru(struct e1000_hw *hw)
165262306a36Sopenharmony_ci{
165362306a36Sopenharmony_ci	u32 manc;
165462306a36Sopenharmony_ci	u32 fwsm, factps;
165562306a36Sopenharmony_ci	bool ret_val = false;
165662306a36Sopenharmony_ci
165762306a36Sopenharmony_ci	if (!hw->mac.asf_firmware_present)
165862306a36Sopenharmony_ci		goto out;
165962306a36Sopenharmony_ci
166062306a36Sopenharmony_ci	manc = rd32(E1000_MANC);
166162306a36Sopenharmony_ci
166262306a36Sopenharmony_ci	if (!(manc & E1000_MANC_RCV_TCO_EN))
166362306a36Sopenharmony_ci		goto out;
166462306a36Sopenharmony_ci
166562306a36Sopenharmony_ci	if (hw->mac.arc_subsystem_valid) {
166662306a36Sopenharmony_ci		fwsm = rd32(E1000_FWSM);
166762306a36Sopenharmony_ci		factps = rd32(E1000_FACTPS);
166862306a36Sopenharmony_ci
166962306a36Sopenharmony_ci		if (!(factps & E1000_FACTPS_MNGCG) &&
167062306a36Sopenharmony_ci		    ((fwsm & E1000_FWSM_MODE_MASK) ==
167162306a36Sopenharmony_ci		     (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) {
167262306a36Sopenharmony_ci			ret_val = true;
167362306a36Sopenharmony_ci			goto out;
167462306a36Sopenharmony_ci		}
167562306a36Sopenharmony_ci	} else {
167662306a36Sopenharmony_ci		if ((manc & E1000_MANC_SMBUS_EN) &&
167762306a36Sopenharmony_ci		    !(manc & E1000_MANC_ASF_EN)) {
167862306a36Sopenharmony_ci			ret_val = true;
167962306a36Sopenharmony_ci			goto out;
168062306a36Sopenharmony_ci		}
168162306a36Sopenharmony_ci	}
168262306a36Sopenharmony_ci
168362306a36Sopenharmony_ciout:
168462306a36Sopenharmony_ci	return ret_val;
168562306a36Sopenharmony_ci}
1686