162306a36Sopenharmony_ci// SPDX-License-Identifier: GPL-2.0
262306a36Sopenharmony_ci/* Copyright(c) 2007 - 2018 Intel Corporation. */
362306a36Sopenharmony_ci
462306a36Sopenharmony_ci/* e1000_i210
562306a36Sopenharmony_ci * e1000_i211
662306a36Sopenharmony_ci */
762306a36Sopenharmony_ci
862306a36Sopenharmony_ci#include <linux/types.h>
962306a36Sopenharmony_ci#include <linux/if_ether.h>
1062306a36Sopenharmony_ci
1162306a36Sopenharmony_ci#include "e1000_hw.h"
1262306a36Sopenharmony_ci#include "e1000_i210.h"
1362306a36Sopenharmony_ci
1462306a36Sopenharmony_cistatic s32 igb_update_flash_i210(struct e1000_hw *hw);
1562306a36Sopenharmony_ci
1662306a36Sopenharmony_ci/**
1762306a36Sopenharmony_ci * igb_get_hw_semaphore_i210 - Acquire hardware semaphore
1862306a36Sopenharmony_ci *  @hw: pointer to the HW structure
1962306a36Sopenharmony_ci *
2062306a36Sopenharmony_ci *  Acquire the HW semaphore to access the PHY or NVM
2162306a36Sopenharmony_ci */
2262306a36Sopenharmony_cistatic s32 igb_get_hw_semaphore_i210(struct e1000_hw *hw)
2362306a36Sopenharmony_ci{
2462306a36Sopenharmony_ci	u32 swsm;
2562306a36Sopenharmony_ci	s32 timeout = hw->nvm.word_size + 1;
2662306a36Sopenharmony_ci	s32 i = 0;
2762306a36Sopenharmony_ci
2862306a36Sopenharmony_ci	/* Get the SW semaphore */
2962306a36Sopenharmony_ci	while (i < timeout) {
3062306a36Sopenharmony_ci		swsm = rd32(E1000_SWSM);
3162306a36Sopenharmony_ci		if (!(swsm & E1000_SWSM_SMBI))
3262306a36Sopenharmony_ci			break;
3362306a36Sopenharmony_ci
3462306a36Sopenharmony_ci		udelay(50);
3562306a36Sopenharmony_ci		i++;
3662306a36Sopenharmony_ci	}
3762306a36Sopenharmony_ci
3862306a36Sopenharmony_ci	if (i == timeout) {
3962306a36Sopenharmony_ci		/* In rare circumstances, the SW semaphore may already be held
4062306a36Sopenharmony_ci		 * unintentionally. Clear the semaphore once before giving up.
4162306a36Sopenharmony_ci		 */
4262306a36Sopenharmony_ci		if (hw->dev_spec._82575.clear_semaphore_once) {
4362306a36Sopenharmony_ci			hw->dev_spec._82575.clear_semaphore_once = false;
4462306a36Sopenharmony_ci			igb_put_hw_semaphore(hw);
4562306a36Sopenharmony_ci			for (i = 0; i < timeout; i++) {
4662306a36Sopenharmony_ci				swsm = rd32(E1000_SWSM);
4762306a36Sopenharmony_ci				if (!(swsm & E1000_SWSM_SMBI))
4862306a36Sopenharmony_ci					break;
4962306a36Sopenharmony_ci
5062306a36Sopenharmony_ci				udelay(50);
5162306a36Sopenharmony_ci			}
5262306a36Sopenharmony_ci		}
5362306a36Sopenharmony_ci
5462306a36Sopenharmony_ci		/* If we do not have the semaphore here, we have to give up. */
5562306a36Sopenharmony_ci		if (i == timeout) {
5662306a36Sopenharmony_ci			hw_dbg("Driver can't access device - SMBI bit is set.\n");
5762306a36Sopenharmony_ci			return -E1000_ERR_NVM;
5862306a36Sopenharmony_ci		}
5962306a36Sopenharmony_ci	}
6062306a36Sopenharmony_ci
6162306a36Sopenharmony_ci	/* Get the FW semaphore. */
6262306a36Sopenharmony_ci	for (i = 0; i < timeout; i++) {
6362306a36Sopenharmony_ci		swsm = rd32(E1000_SWSM);
6462306a36Sopenharmony_ci		wr32(E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
6562306a36Sopenharmony_ci
6662306a36Sopenharmony_ci		/* Semaphore acquired if bit latched */
6762306a36Sopenharmony_ci		if (rd32(E1000_SWSM) & E1000_SWSM_SWESMBI)
6862306a36Sopenharmony_ci			break;
6962306a36Sopenharmony_ci
7062306a36Sopenharmony_ci		udelay(50);
7162306a36Sopenharmony_ci	}
7262306a36Sopenharmony_ci
7362306a36Sopenharmony_ci	if (i == timeout) {
7462306a36Sopenharmony_ci		/* Release semaphores */
7562306a36Sopenharmony_ci		igb_put_hw_semaphore(hw);
7662306a36Sopenharmony_ci		hw_dbg("Driver can't access the NVM\n");
7762306a36Sopenharmony_ci		return -E1000_ERR_NVM;
7862306a36Sopenharmony_ci	}
7962306a36Sopenharmony_ci
8062306a36Sopenharmony_ci	return 0;
8162306a36Sopenharmony_ci}
8262306a36Sopenharmony_ci
8362306a36Sopenharmony_ci/**
8462306a36Sopenharmony_ci *  igb_acquire_nvm_i210 - Request for access to EEPROM
8562306a36Sopenharmony_ci *  @hw: pointer to the HW structure
8662306a36Sopenharmony_ci *
8762306a36Sopenharmony_ci *  Acquire the necessary semaphores for exclusive access to the EEPROM.
8862306a36Sopenharmony_ci *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
8962306a36Sopenharmony_ci *  Return successful if access grant bit set, else clear the request for
9062306a36Sopenharmony_ci *  EEPROM access and return -E1000_ERR_NVM (-1).
9162306a36Sopenharmony_ci **/
9262306a36Sopenharmony_cistatic s32 igb_acquire_nvm_i210(struct e1000_hw *hw)
9362306a36Sopenharmony_ci{
9462306a36Sopenharmony_ci	return igb_acquire_swfw_sync_i210(hw, E1000_SWFW_EEP_SM);
9562306a36Sopenharmony_ci}
9662306a36Sopenharmony_ci
9762306a36Sopenharmony_ci/**
9862306a36Sopenharmony_ci *  igb_release_nvm_i210 - Release exclusive access to EEPROM
9962306a36Sopenharmony_ci *  @hw: pointer to the HW structure
10062306a36Sopenharmony_ci *
10162306a36Sopenharmony_ci *  Stop any current commands to the EEPROM and clear the EEPROM request bit,
10262306a36Sopenharmony_ci *  then release the semaphores acquired.
10362306a36Sopenharmony_ci **/
10462306a36Sopenharmony_cistatic void igb_release_nvm_i210(struct e1000_hw *hw)
10562306a36Sopenharmony_ci{
10662306a36Sopenharmony_ci	igb_release_swfw_sync_i210(hw, E1000_SWFW_EEP_SM);
10762306a36Sopenharmony_ci}
10862306a36Sopenharmony_ci
10962306a36Sopenharmony_ci/**
11062306a36Sopenharmony_ci *  igb_acquire_swfw_sync_i210 - Acquire SW/FW semaphore
11162306a36Sopenharmony_ci *  @hw: pointer to the HW structure
11262306a36Sopenharmony_ci *  @mask: specifies which semaphore to acquire
11362306a36Sopenharmony_ci *
11462306a36Sopenharmony_ci *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
11562306a36Sopenharmony_ci *  will also specify which port we're acquiring the lock for.
11662306a36Sopenharmony_ci **/
11762306a36Sopenharmony_cis32 igb_acquire_swfw_sync_i210(struct e1000_hw *hw, u16 mask)
11862306a36Sopenharmony_ci{
11962306a36Sopenharmony_ci	u32 swfw_sync;
12062306a36Sopenharmony_ci	u32 swmask = mask;
12162306a36Sopenharmony_ci	u32 fwmask = mask << 16;
12262306a36Sopenharmony_ci	s32 ret_val = 0;
12362306a36Sopenharmony_ci	s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
12462306a36Sopenharmony_ci
12562306a36Sopenharmony_ci	while (i < timeout) {
12662306a36Sopenharmony_ci		if (igb_get_hw_semaphore_i210(hw)) {
12762306a36Sopenharmony_ci			ret_val = -E1000_ERR_SWFW_SYNC;
12862306a36Sopenharmony_ci			goto out;
12962306a36Sopenharmony_ci		}
13062306a36Sopenharmony_ci
13162306a36Sopenharmony_ci		swfw_sync = rd32(E1000_SW_FW_SYNC);
13262306a36Sopenharmony_ci		if (!(swfw_sync & (fwmask | swmask)))
13362306a36Sopenharmony_ci			break;
13462306a36Sopenharmony_ci
13562306a36Sopenharmony_ci		/* Firmware currently using resource (fwmask) */
13662306a36Sopenharmony_ci		igb_put_hw_semaphore(hw);
13762306a36Sopenharmony_ci		mdelay(5);
13862306a36Sopenharmony_ci		i++;
13962306a36Sopenharmony_ci	}
14062306a36Sopenharmony_ci
14162306a36Sopenharmony_ci	if (i == timeout) {
14262306a36Sopenharmony_ci		hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
14362306a36Sopenharmony_ci		ret_val = -E1000_ERR_SWFW_SYNC;
14462306a36Sopenharmony_ci		goto out;
14562306a36Sopenharmony_ci	}
14662306a36Sopenharmony_ci
14762306a36Sopenharmony_ci	swfw_sync |= swmask;
14862306a36Sopenharmony_ci	wr32(E1000_SW_FW_SYNC, swfw_sync);
14962306a36Sopenharmony_ci
15062306a36Sopenharmony_ci	igb_put_hw_semaphore(hw);
15162306a36Sopenharmony_ciout:
15262306a36Sopenharmony_ci	return ret_val;
15362306a36Sopenharmony_ci}
15462306a36Sopenharmony_ci
15562306a36Sopenharmony_ci/**
15662306a36Sopenharmony_ci *  igb_release_swfw_sync_i210 - Release SW/FW semaphore
15762306a36Sopenharmony_ci *  @hw: pointer to the HW structure
15862306a36Sopenharmony_ci *  @mask: specifies which semaphore to acquire
15962306a36Sopenharmony_ci *
16062306a36Sopenharmony_ci *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
16162306a36Sopenharmony_ci *  will also specify which port we're releasing the lock for.
16262306a36Sopenharmony_ci **/
16362306a36Sopenharmony_civoid igb_release_swfw_sync_i210(struct e1000_hw *hw, u16 mask)
16462306a36Sopenharmony_ci{
16562306a36Sopenharmony_ci	u32 swfw_sync;
16662306a36Sopenharmony_ci
16762306a36Sopenharmony_ci	while (igb_get_hw_semaphore_i210(hw))
16862306a36Sopenharmony_ci		; /* Empty */
16962306a36Sopenharmony_ci
17062306a36Sopenharmony_ci	swfw_sync = rd32(E1000_SW_FW_SYNC);
17162306a36Sopenharmony_ci	swfw_sync &= ~mask;
17262306a36Sopenharmony_ci	wr32(E1000_SW_FW_SYNC, swfw_sync);
17362306a36Sopenharmony_ci
17462306a36Sopenharmony_ci	igb_put_hw_semaphore(hw);
17562306a36Sopenharmony_ci}
17662306a36Sopenharmony_ci
17762306a36Sopenharmony_ci/**
17862306a36Sopenharmony_ci *  igb_read_nvm_srrd_i210 - Reads Shadow Ram using EERD register
17962306a36Sopenharmony_ci *  @hw: pointer to the HW structure
18062306a36Sopenharmony_ci *  @offset: offset of word in the Shadow Ram to read
18162306a36Sopenharmony_ci *  @words: number of words to read
18262306a36Sopenharmony_ci *  @data: word read from the Shadow Ram
18362306a36Sopenharmony_ci *
18462306a36Sopenharmony_ci *  Reads a 16 bit word from the Shadow Ram using the EERD register.
18562306a36Sopenharmony_ci *  Uses necessary synchronization semaphores.
18662306a36Sopenharmony_ci **/
18762306a36Sopenharmony_cistatic s32 igb_read_nvm_srrd_i210(struct e1000_hw *hw, u16 offset, u16 words,
18862306a36Sopenharmony_ci				  u16 *data)
18962306a36Sopenharmony_ci{
19062306a36Sopenharmony_ci	s32 status = 0;
19162306a36Sopenharmony_ci	u16 i, count;
19262306a36Sopenharmony_ci
19362306a36Sopenharmony_ci	/* We cannot hold synchronization semaphores for too long,
19462306a36Sopenharmony_ci	 * because of forceful takeover procedure. However it is more efficient
19562306a36Sopenharmony_ci	 * to read in bursts than synchronizing access for each word.
19662306a36Sopenharmony_ci	 */
19762306a36Sopenharmony_ci	for (i = 0; i < words; i += E1000_EERD_EEWR_MAX_COUNT) {
19862306a36Sopenharmony_ci		count = (words - i) / E1000_EERD_EEWR_MAX_COUNT > 0 ?
19962306a36Sopenharmony_ci			E1000_EERD_EEWR_MAX_COUNT : (words - i);
20062306a36Sopenharmony_ci		if (!(hw->nvm.ops.acquire(hw))) {
20162306a36Sopenharmony_ci			status = igb_read_nvm_eerd(hw, offset, count,
20262306a36Sopenharmony_ci						     data + i);
20362306a36Sopenharmony_ci			hw->nvm.ops.release(hw);
20462306a36Sopenharmony_ci		} else {
20562306a36Sopenharmony_ci			status = E1000_ERR_SWFW_SYNC;
20662306a36Sopenharmony_ci		}
20762306a36Sopenharmony_ci
20862306a36Sopenharmony_ci		if (status)
20962306a36Sopenharmony_ci			break;
21062306a36Sopenharmony_ci	}
21162306a36Sopenharmony_ci
21262306a36Sopenharmony_ci	return status;
21362306a36Sopenharmony_ci}
21462306a36Sopenharmony_ci
21562306a36Sopenharmony_ci/**
21662306a36Sopenharmony_ci *  igb_write_nvm_srwr - Write to Shadow Ram using EEWR
21762306a36Sopenharmony_ci *  @hw: pointer to the HW structure
21862306a36Sopenharmony_ci *  @offset: offset within the Shadow Ram to be written to
21962306a36Sopenharmony_ci *  @words: number of words to write
22062306a36Sopenharmony_ci *  @data: 16 bit word(s) to be written to the Shadow Ram
22162306a36Sopenharmony_ci *
22262306a36Sopenharmony_ci *  Writes data to Shadow Ram at offset using EEWR register.
22362306a36Sopenharmony_ci *
22462306a36Sopenharmony_ci *  If igb_update_nvm_checksum is not called after this function , the
22562306a36Sopenharmony_ci *  Shadow Ram will most likely contain an invalid checksum.
22662306a36Sopenharmony_ci **/
22762306a36Sopenharmony_cistatic s32 igb_write_nvm_srwr(struct e1000_hw *hw, u16 offset, u16 words,
22862306a36Sopenharmony_ci				u16 *data)
22962306a36Sopenharmony_ci{
23062306a36Sopenharmony_ci	struct e1000_nvm_info *nvm = &hw->nvm;
23162306a36Sopenharmony_ci	u32 i, k, eewr = 0;
23262306a36Sopenharmony_ci	u32 attempts = 100000;
23362306a36Sopenharmony_ci	s32 ret_val = 0;
23462306a36Sopenharmony_ci
23562306a36Sopenharmony_ci	/* A check for invalid values:  offset too large, too many words,
23662306a36Sopenharmony_ci	 * too many words for the offset, and not enough words.
23762306a36Sopenharmony_ci	 */
23862306a36Sopenharmony_ci	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
23962306a36Sopenharmony_ci	    (words == 0)) {
24062306a36Sopenharmony_ci		hw_dbg("nvm parameter(s) out of bounds\n");
24162306a36Sopenharmony_ci		ret_val = -E1000_ERR_NVM;
24262306a36Sopenharmony_ci		goto out;
24362306a36Sopenharmony_ci	}
24462306a36Sopenharmony_ci
24562306a36Sopenharmony_ci	for (i = 0; i < words; i++) {
24662306a36Sopenharmony_ci		eewr = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
24762306a36Sopenharmony_ci			(data[i] << E1000_NVM_RW_REG_DATA) |
24862306a36Sopenharmony_ci			E1000_NVM_RW_REG_START;
24962306a36Sopenharmony_ci
25062306a36Sopenharmony_ci		wr32(E1000_SRWR, eewr);
25162306a36Sopenharmony_ci
25262306a36Sopenharmony_ci		for (k = 0; k < attempts; k++) {
25362306a36Sopenharmony_ci			if (E1000_NVM_RW_REG_DONE &
25462306a36Sopenharmony_ci			    rd32(E1000_SRWR)) {
25562306a36Sopenharmony_ci				ret_val = 0;
25662306a36Sopenharmony_ci				break;
25762306a36Sopenharmony_ci			}
25862306a36Sopenharmony_ci			udelay(5);
25962306a36Sopenharmony_ci	}
26062306a36Sopenharmony_ci
26162306a36Sopenharmony_ci		if (ret_val) {
26262306a36Sopenharmony_ci			hw_dbg("Shadow RAM write EEWR timed out\n");
26362306a36Sopenharmony_ci			break;
26462306a36Sopenharmony_ci		}
26562306a36Sopenharmony_ci	}
26662306a36Sopenharmony_ci
26762306a36Sopenharmony_ciout:
26862306a36Sopenharmony_ci	return ret_val;
26962306a36Sopenharmony_ci}
27062306a36Sopenharmony_ci
27162306a36Sopenharmony_ci/**
27262306a36Sopenharmony_ci *  igb_write_nvm_srwr_i210 - Write to Shadow RAM using EEWR
27362306a36Sopenharmony_ci *  @hw: pointer to the HW structure
27462306a36Sopenharmony_ci *  @offset: offset within the Shadow RAM to be written to
27562306a36Sopenharmony_ci *  @words: number of words to write
27662306a36Sopenharmony_ci *  @data: 16 bit word(s) to be written to the Shadow RAM
27762306a36Sopenharmony_ci *
27862306a36Sopenharmony_ci *  Writes data to Shadow RAM at offset using EEWR register.
27962306a36Sopenharmony_ci *
28062306a36Sopenharmony_ci *  If e1000_update_nvm_checksum is not called after this function , the
28162306a36Sopenharmony_ci *  data will not be committed to FLASH and also Shadow RAM will most likely
28262306a36Sopenharmony_ci *  contain an invalid checksum.
28362306a36Sopenharmony_ci *
28462306a36Sopenharmony_ci *  If error code is returned, data and Shadow RAM may be inconsistent - buffer
28562306a36Sopenharmony_ci *  partially written.
28662306a36Sopenharmony_ci **/
28762306a36Sopenharmony_cistatic s32 igb_write_nvm_srwr_i210(struct e1000_hw *hw, u16 offset, u16 words,
28862306a36Sopenharmony_ci				   u16 *data)
28962306a36Sopenharmony_ci{
29062306a36Sopenharmony_ci	s32 status = 0;
29162306a36Sopenharmony_ci	u16 i, count;
29262306a36Sopenharmony_ci
29362306a36Sopenharmony_ci	/* We cannot hold synchronization semaphores for too long,
29462306a36Sopenharmony_ci	 * because of forceful takeover procedure. However it is more efficient
29562306a36Sopenharmony_ci	 * to write in bursts than synchronizing access for each word.
29662306a36Sopenharmony_ci	 */
29762306a36Sopenharmony_ci	for (i = 0; i < words; i += E1000_EERD_EEWR_MAX_COUNT) {
29862306a36Sopenharmony_ci		count = (words - i) / E1000_EERD_EEWR_MAX_COUNT > 0 ?
29962306a36Sopenharmony_ci			E1000_EERD_EEWR_MAX_COUNT : (words - i);
30062306a36Sopenharmony_ci		if (!(hw->nvm.ops.acquire(hw))) {
30162306a36Sopenharmony_ci			status = igb_write_nvm_srwr(hw, offset, count,
30262306a36Sopenharmony_ci						      data + i);
30362306a36Sopenharmony_ci			hw->nvm.ops.release(hw);
30462306a36Sopenharmony_ci		} else {
30562306a36Sopenharmony_ci			status = E1000_ERR_SWFW_SYNC;
30662306a36Sopenharmony_ci		}
30762306a36Sopenharmony_ci
30862306a36Sopenharmony_ci		if (status)
30962306a36Sopenharmony_ci			break;
31062306a36Sopenharmony_ci	}
31162306a36Sopenharmony_ci
31262306a36Sopenharmony_ci	return status;
31362306a36Sopenharmony_ci}
31462306a36Sopenharmony_ci
31562306a36Sopenharmony_ci/**
31662306a36Sopenharmony_ci *  igb_read_invm_word_i210 - Reads OTP
31762306a36Sopenharmony_ci *  @hw: pointer to the HW structure
31862306a36Sopenharmony_ci *  @address: the word address (aka eeprom offset) to read
31962306a36Sopenharmony_ci *  @data: pointer to the data read
32062306a36Sopenharmony_ci *
32162306a36Sopenharmony_ci *  Reads 16-bit words from the OTP. Return error when the word is not
32262306a36Sopenharmony_ci *  stored in OTP.
32362306a36Sopenharmony_ci **/
32462306a36Sopenharmony_cistatic s32 igb_read_invm_word_i210(struct e1000_hw *hw, u8 address, u16 *data)
32562306a36Sopenharmony_ci{
32662306a36Sopenharmony_ci	s32 status = -E1000_ERR_INVM_VALUE_NOT_FOUND;
32762306a36Sopenharmony_ci	u32 invm_dword;
32862306a36Sopenharmony_ci	u16 i;
32962306a36Sopenharmony_ci	u8 record_type, word_address;
33062306a36Sopenharmony_ci
33162306a36Sopenharmony_ci	for (i = 0; i < E1000_INVM_SIZE; i++) {
33262306a36Sopenharmony_ci		invm_dword = rd32(E1000_INVM_DATA_REG(i));
33362306a36Sopenharmony_ci		/* Get record type */
33462306a36Sopenharmony_ci		record_type = INVM_DWORD_TO_RECORD_TYPE(invm_dword);
33562306a36Sopenharmony_ci		if (record_type == E1000_INVM_UNINITIALIZED_STRUCTURE)
33662306a36Sopenharmony_ci			break;
33762306a36Sopenharmony_ci		if (record_type == E1000_INVM_CSR_AUTOLOAD_STRUCTURE)
33862306a36Sopenharmony_ci			i += E1000_INVM_CSR_AUTOLOAD_DATA_SIZE_IN_DWORDS;
33962306a36Sopenharmony_ci		if (record_type == E1000_INVM_RSA_KEY_SHA256_STRUCTURE)
34062306a36Sopenharmony_ci			i += E1000_INVM_RSA_KEY_SHA256_DATA_SIZE_IN_DWORDS;
34162306a36Sopenharmony_ci		if (record_type == E1000_INVM_WORD_AUTOLOAD_STRUCTURE) {
34262306a36Sopenharmony_ci			word_address = INVM_DWORD_TO_WORD_ADDRESS(invm_dword);
34362306a36Sopenharmony_ci			if (word_address == address) {
34462306a36Sopenharmony_ci				*data = INVM_DWORD_TO_WORD_DATA(invm_dword);
34562306a36Sopenharmony_ci				hw_dbg("Read INVM Word 0x%02x = %x\n",
34662306a36Sopenharmony_ci					  address, *data);
34762306a36Sopenharmony_ci				status = 0;
34862306a36Sopenharmony_ci				break;
34962306a36Sopenharmony_ci			}
35062306a36Sopenharmony_ci		}
35162306a36Sopenharmony_ci	}
35262306a36Sopenharmony_ci	if (status)
35362306a36Sopenharmony_ci		hw_dbg("Requested word 0x%02x not found in OTP\n", address);
35462306a36Sopenharmony_ci	return status;
35562306a36Sopenharmony_ci}
35662306a36Sopenharmony_ci
35762306a36Sopenharmony_ci/**
35862306a36Sopenharmony_ci * igb_read_invm_i210 - Read invm wrapper function for I210/I211
35962306a36Sopenharmony_ci *  @hw: pointer to the HW structure
36062306a36Sopenharmony_ci *  @offset: offset to read from
36162306a36Sopenharmony_ci *  @words: number of words to read (unused)
36262306a36Sopenharmony_ci *  @data: pointer to the data read
36362306a36Sopenharmony_ci *
36462306a36Sopenharmony_ci *  Wrapper function to return data formerly found in the NVM.
36562306a36Sopenharmony_ci **/
36662306a36Sopenharmony_cistatic s32 igb_read_invm_i210(struct e1000_hw *hw, u16 offset,
36762306a36Sopenharmony_ci				u16 __always_unused words, u16 *data)
36862306a36Sopenharmony_ci{
36962306a36Sopenharmony_ci	s32 ret_val = 0;
37062306a36Sopenharmony_ci
37162306a36Sopenharmony_ci	/* Only the MAC addr is required to be present in the iNVM */
37262306a36Sopenharmony_ci	switch (offset) {
37362306a36Sopenharmony_ci	case NVM_MAC_ADDR:
37462306a36Sopenharmony_ci		ret_val = igb_read_invm_word_i210(hw, (u8)offset, &data[0]);
37562306a36Sopenharmony_ci		ret_val |= igb_read_invm_word_i210(hw, (u8)offset+1,
37662306a36Sopenharmony_ci						     &data[1]);
37762306a36Sopenharmony_ci		ret_val |= igb_read_invm_word_i210(hw, (u8)offset+2,
37862306a36Sopenharmony_ci						     &data[2]);
37962306a36Sopenharmony_ci		if (ret_val)
38062306a36Sopenharmony_ci			hw_dbg("MAC Addr not found in iNVM\n");
38162306a36Sopenharmony_ci		break;
38262306a36Sopenharmony_ci	case NVM_INIT_CTRL_2:
38362306a36Sopenharmony_ci		ret_val = igb_read_invm_word_i210(hw, (u8)offset, data);
38462306a36Sopenharmony_ci		if (ret_val) {
38562306a36Sopenharmony_ci			*data = NVM_INIT_CTRL_2_DEFAULT_I211;
38662306a36Sopenharmony_ci			ret_val = 0;
38762306a36Sopenharmony_ci		}
38862306a36Sopenharmony_ci		break;
38962306a36Sopenharmony_ci	case NVM_INIT_CTRL_4:
39062306a36Sopenharmony_ci		ret_val = igb_read_invm_word_i210(hw, (u8)offset, data);
39162306a36Sopenharmony_ci		if (ret_val) {
39262306a36Sopenharmony_ci			*data = NVM_INIT_CTRL_4_DEFAULT_I211;
39362306a36Sopenharmony_ci			ret_val = 0;
39462306a36Sopenharmony_ci		}
39562306a36Sopenharmony_ci		break;
39662306a36Sopenharmony_ci	case NVM_LED_1_CFG:
39762306a36Sopenharmony_ci		ret_val = igb_read_invm_word_i210(hw, (u8)offset, data);
39862306a36Sopenharmony_ci		if (ret_val) {
39962306a36Sopenharmony_ci			*data = NVM_LED_1_CFG_DEFAULT_I211;
40062306a36Sopenharmony_ci			ret_val = 0;
40162306a36Sopenharmony_ci		}
40262306a36Sopenharmony_ci		break;
40362306a36Sopenharmony_ci	case NVM_LED_0_2_CFG:
40462306a36Sopenharmony_ci		ret_val = igb_read_invm_word_i210(hw, (u8)offset, data);
40562306a36Sopenharmony_ci		if (ret_val) {
40662306a36Sopenharmony_ci			*data = NVM_LED_0_2_CFG_DEFAULT_I211;
40762306a36Sopenharmony_ci			ret_val = 0;
40862306a36Sopenharmony_ci		}
40962306a36Sopenharmony_ci		break;
41062306a36Sopenharmony_ci	case NVM_ID_LED_SETTINGS:
41162306a36Sopenharmony_ci		ret_val = igb_read_invm_word_i210(hw, (u8)offset, data);
41262306a36Sopenharmony_ci		if (ret_val) {
41362306a36Sopenharmony_ci			*data = ID_LED_RESERVED_FFFF;
41462306a36Sopenharmony_ci			ret_val = 0;
41562306a36Sopenharmony_ci		}
41662306a36Sopenharmony_ci		break;
41762306a36Sopenharmony_ci	case NVM_SUB_DEV_ID:
41862306a36Sopenharmony_ci		*data = hw->subsystem_device_id;
41962306a36Sopenharmony_ci		break;
42062306a36Sopenharmony_ci	case NVM_SUB_VEN_ID:
42162306a36Sopenharmony_ci		*data = hw->subsystem_vendor_id;
42262306a36Sopenharmony_ci		break;
42362306a36Sopenharmony_ci	case NVM_DEV_ID:
42462306a36Sopenharmony_ci		*data = hw->device_id;
42562306a36Sopenharmony_ci		break;
42662306a36Sopenharmony_ci	case NVM_VEN_ID:
42762306a36Sopenharmony_ci		*data = hw->vendor_id;
42862306a36Sopenharmony_ci		break;
42962306a36Sopenharmony_ci	default:
43062306a36Sopenharmony_ci		hw_dbg("NVM word 0x%02x is not mapped.\n", offset);
43162306a36Sopenharmony_ci		*data = NVM_RESERVED_WORD;
43262306a36Sopenharmony_ci		break;
43362306a36Sopenharmony_ci	}
43462306a36Sopenharmony_ci	return ret_val;
43562306a36Sopenharmony_ci}
43662306a36Sopenharmony_ci
43762306a36Sopenharmony_ci/**
43862306a36Sopenharmony_ci *  igb_read_invm_version - Reads iNVM version and image type
43962306a36Sopenharmony_ci *  @hw: pointer to the HW structure
44062306a36Sopenharmony_ci *  @invm_ver: version structure for the version read
44162306a36Sopenharmony_ci *
44262306a36Sopenharmony_ci *  Reads iNVM version and image type.
44362306a36Sopenharmony_ci **/
44462306a36Sopenharmony_cis32 igb_read_invm_version(struct e1000_hw *hw,
44562306a36Sopenharmony_ci			  struct e1000_fw_version *invm_ver) {
44662306a36Sopenharmony_ci	u32 *record = NULL;
44762306a36Sopenharmony_ci	u32 *next_record = NULL;
44862306a36Sopenharmony_ci	u32 i = 0;
44962306a36Sopenharmony_ci	u32 invm_dword = 0;
45062306a36Sopenharmony_ci	u32 invm_blocks = E1000_INVM_SIZE - (E1000_INVM_ULT_BYTES_SIZE /
45162306a36Sopenharmony_ci					     E1000_INVM_RECORD_SIZE_IN_BYTES);
45262306a36Sopenharmony_ci	u32 buffer[E1000_INVM_SIZE];
45362306a36Sopenharmony_ci	s32 status = -E1000_ERR_INVM_VALUE_NOT_FOUND;
45462306a36Sopenharmony_ci	u16 version = 0;
45562306a36Sopenharmony_ci
45662306a36Sopenharmony_ci	/* Read iNVM memory */
45762306a36Sopenharmony_ci	for (i = 0; i < E1000_INVM_SIZE; i++) {
45862306a36Sopenharmony_ci		invm_dword = rd32(E1000_INVM_DATA_REG(i));
45962306a36Sopenharmony_ci		buffer[i] = invm_dword;
46062306a36Sopenharmony_ci	}
46162306a36Sopenharmony_ci
46262306a36Sopenharmony_ci	/* Read version number */
46362306a36Sopenharmony_ci	for (i = 1; i < invm_blocks; i++) {
46462306a36Sopenharmony_ci		record = &buffer[invm_blocks - i];
46562306a36Sopenharmony_ci		next_record = &buffer[invm_blocks - i + 1];
46662306a36Sopenharmony_ci
46762306a36Sopenharmony_ci		/* Check if we have first version location used */
46862306a36Sopenharmony_ci		if ((i == 1) && ((*record & E1000_INVM_VER_FIELD_ONE) == 0)) {
46962306a36Sopenharmony_ci			version = 0;
47062306a36Sopenharmony_ci			status = 0;
47162306a36Sopenharmony_ci			break;
47262306a36Sopenharmony_ci		}
47362306a36Sopenharmony_ci		/* Check if we have second version location used */
47462306a36Sopenharmony_ci		else if ((i == 1) &&
47562306a36Sopenharmony_ci			 ((*record & E1000_INVM_VER_FIELD_TWO) == 0)) {
47662306a36Sopenharmony_ci			version = (*record & E1000_INVM_VER_FIELD_ONE) >> 3;
47762306a36Sopenharmony_ci			status = 0;
47862306a36Sopenharmony_ci			break;
47962306a36Sopenharmony_ci		}
48062306a36Sopenharmony_ci		/* Check if we have odd version location
48162306a36Sopenharmony_ci		 * used and it is the last one used
48262306a36Sopenharmony_ci		 */
48362306a36Sopenharmony_ci		else if ((((*record & E1000_INVM_VER_FIELD_ONE) == 0) &&
48462306a36Sopenharmony_ci			 ((*record & 0x3) == 0)) || (((*record & 0x3) != 0) &&
48562306a36Sopenharmony_ci			 (i != 1))) {
48662306a36Sopenharmony_ci			version = (*next_record & E1000_INVM_VER_FIELD_TWO)
48762306a36Sopenharmony_ci				  >> 13;
48862306a36Sopenharmony_ci			status = 0;
48962306a36Sopenharmony_ci			break;
49062306a36Sopenharmony_ci		}
49162306a36Sopenharmony_ci		/* Check if we have even version location
49262306a36Sopenharmony_ci		 * used and it is the last one used
49362306a36Sopenharmony_ci		 */
49462306a36Sopenharmony_ci		else if (((*record & E1000_INVM_VER_FIELD_TWO) == 0) &&
49562306a36Sopenharmony_ci			 ((*record & 0x3) == 0)) {
49662306a36Sopenharmony_ci			version = (*record & E1000_INVM_VER_FIELD_ONE) >> 3;
49762306a36Sopenharmony_ci			status = 0;
49862306a36Sopenharmony_ci			break;
49962306a36Sopenharmony_ci		}
50062306a36Sopenharmony_ci	}
50162306a36Sopenharmony_ci
50262306a36Sopenharmony_ci	if (!status) {
50362306a36Sopenharmony_ci		invm_ver->invm_major = (version & E1000_INVM_MAJOR_MASK)
50462306a36Sopenharmony_ci					>> E1000_INVM_MAJOR_SHIFT;
50562306a36Sopenharmony_ci		invm_ver->invm_minor = version & E1000_INVM_MINOR_MASK;
50662306a36Sopenharmony_ci	}
50762306a36Sopenharmony_ci	/* Read Image Type */
50862306a36Sopenharmony_ci	for (i = 1; i < invm_blocks; i++) {
50962306a36Sopenharmony_ci		record = &buffer[invm_blocks - i];
51062306a36Sopenharmony_ci		next_record = &buffer[invm_blocks - i + 1];
51162306a36Sopenharmony_ci
51262306a36Sopenharmony_ci		/* Check if we have image type in first location used */
51362306a36Sopenharmony_ci		if ((i == 1) && ((*record & E1000_INVM_IMGTYPE_FIELD) == 0)) {
51462306a36Sopenharmony_ci			invm_ver->invm_img_type = 0;
51562306a36Sopenharmony_ci			status = 0;
51662306a36Sopenharmony_ci			break;
51762306a36Sopenharmony_ci		}
51862306a36Sopenharmony_ci		/* Check if we have image type in first location used */
51962306a36Sopenharmony_ci		else if ((((*record & 0x3) == 0) &&
52062306a36Sopenharmony_ci			 ((*record & E1000_INVM_IMGTYPE_FIELD) == 0)) ||
52162306a36Sopenharmony_ci			 ((((*record & 0x3) != 0) && (i != 1)))) {
52262306a36Sopenharmony_ci			invm_ver->invm_img_type =
52362306a36Sopenharmony_ci				(*next_record & E1000_INVM_IMGTYPE_FIELD) >> 23;
52462306a36Sopenharmony_ci			status = 0;
52562306a36Sopenharmony_ci			break;
52662306a36Sopenharmony_ci		}
52762306a36Sopenharmony_ci	}
52862306a36Sopenharmony_ci	return status;
52962306a36Sopenharmony_ci}
53062306a36Sopenharmony_ci
53162306a36Sopenharmony_ci/**
53262306a36Sopenharmony_ci *  igb_validate_nvm_checksum_i210 - Validate EEPROM checksum
53362306a36Sopenharmony_ci *  @hw: pointer to the HW structure
53462306a36Sopenharmony_ci *
53562306a36Sopenharmony_ci *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
53662306a36Sopenharmony_ci *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
53762306a36Sopenharmony_ci **/
53862306a36Sopenharmony_cistatic s32 igb_validate_nvm_checksum_i210(struct e1000_hw *hw)
53962306a36Sopenharmony_ci{
54062306a36Sopenharmony_ci	s32 status = 0;
54162306a36Sopenharmony_ci	s32 (*read_op_ptr)(struct e1000_hw *, u16, u16, u16 *);
54262306a36Sopenharmony_ci
54362306a36Sopenharmony_ci	if (!(hw->nvm.ops.acquire(hw))) {
54462306a36Sopenharmony_ci
54562306a36Sopenharmony_ci		/* Replace the read function with semaphore grabbing with
54662306a36Sopenharmony_ci		 * the one that skips this for a while.
54762306a36Sopenharmony_ci		 * We have semaphore taken already here.
54862306a36Sopenharmony_ci		 */
54962306a36Sopenharmony_ci		read_op_ptr = hw->nvm.ops.read;
55062306a36Sopenharmony_ci		hw->nvm.ops.read = igb_read_nvm_eerd;
55162306a36Sopenharmony_ci
55262306a36Sopenharmony_ci		status = igb_validate_nvm_checksum(hw);
55362306a36Sopenharmony_ci
55462306a36Sopenharmony_ci		/* Revert original read operation. */
55562306a36Sopenharmony_ci		hw->nvm.ops.read = read_op_ptr;
55662306a36Sopenharmony_ci
55762306a36Sopenharmony_ci		hw->nvm.ops.release(hw);
55862306a36Sopenharmony_ci	} else {
55962306a36Sopenharmony_ci		status = E1000_ERR_SWFW_SYNC;
56062306a36Sopenharmony_ci	}
56162306a36Sopenharmony_ci
56262306a36Sopenharmony_ci	return status;
56362306a36Sopenharmony_ci}
56462306a36Sopenharmony_ci
56562306a36Sopenharmony_ci/**
56662306a36Sopenharmony_ci *  igb_update_nvm_checksum_i210 - Update EEPROM checksum
56762306a36Sopenharmony_ci *  @hw: pointer to the HW structure
56862306a36Sopenharmony_ci *
56962306a36Sopenharmony_ci *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
57062306a36Sopenharmony_ci *  up to the checksum.  Then calculates the EEPROM checksum and writes the
57162306a36Sopenharmony_ci *  value to the EEPROM. Next commit EEPROM data onto the Flash.
57262306a36Sopenharmony_ci **/
57362306a36Sopenharmony_cistatic s32 igb_update_nvm_checksum_i210(struct e1000_hw *hw)
57462306a36Sopenharmony_ci{
57562306a36Sopenharmony_ci	s32 ret_val = 0;
57662306a36Sopenharmony_ci	u16 checksum = 0;
57762306a36Sopenharmony_ci	u16 i, nvm_data;
57862306a36Sopenharmony_ci
57962306a36Sopenharmony_ci	/* Read the first word from the EEPROM. If this times out or fails, do
58062306a36Sopenharmony_ci	 * not continue or we could be in for a very long wait while every
58162306a36Sopenharmony_ci	 * EEPROM read fails
58262306a36Sopenharmony_ci	 */
58362306a36Sopenharmony_ci	ret_val = igb_read_nvm_eerd(hw, 0, 1, &nvm_data);
58462306a36Sopenharmony_ci	if (ret_val) {
58562306a36Sopenharmony_ci		hw_dbg("EEPROM read failed\n");
58662306a36Sopenharmony_ci		goto out;
58762306a36Sopenharmony_ci	}
58862306a36Sopenharmony_ci
58962306a36Sopenharmony_ci	if (!(hw->nvm.ops.acquire(hw))) {
59062306a36Sopenharmony_ci		/* Do not use hw->nvm.ops.write, hw->nvm.ops.read
59162306a36Sopenharmony_ci		 * because we do not want to take the synchronization
59262306a36Sopenharmony_ci		 * semaphores twice here.
59362306a36Sopenharmony_ci		 */
59462306a36Sopenharmony_ci
59562306a36Sopenharmony_ci		for (i = 0; i < NVM_CHECKSUM_REG; i++) {
59662306a36Sopenharmony_ci			ret_val = igb_read_nvm_eerd(hw, i, 1, &nvm_data);
59762306a36Sopenharmony_ci			if (ret_val) {
59862306a36Sopenharmony_ci				hw->nvm.ops.release(hw);
59962306a36Sopenharmony_ci				hw_dbg("NVM Read Error while updating checksum.\n");
60062306a36Sopenharmony_ci				goto out;
60162306a36Sopenharmony_ci			}
60262306a36Sopenharmony_ci			checksum += nvm_data;
60362306a36Sopenharmony_ci		}
60462306a36Sopenharmony_ci		checksum = (u16) NVM_SUM - checksum;
60562306a36Sopenharmony_ci		ret_val = igb_write_nvm_srwr(hw, NVM_CHECKSUM_REG, 1,
60662306a36Sopenharmony_ci						&checksum);
60762306a36Sopenharmony_ci		if (ret_val) {
60862306a36Sopenharmony_ci			hw->nvm.ops.release(hw);
60962306a36Sopenharmony_ci			hw_dbg("NVM Write Error while updating checksum.\n");
61062306a36Sopenharmony_ci			goto out;
61162306a36Sopenharmony_ci		}
61262306a36Sopenharmony_ci
61362306a36Sopenharmony_ci		hw->nvm.ops.release(hw);
61462306a36Sopenharmony_ci
61562306a36Sopenharmony_ci		ret_val = igb_update_flash_i210(hw);
61662306a36Sopenharmony_ci	} else {
61762306a36Sopenharmony_ci		ret_val = -E1000_ERR_SWFW_SYNC;
61862306a36Sopenharmony_ci	}
61962306a36Sopenharmony_ciout:
62062306a36Sopenharmony_ci	return ret_val;
62162306a36Sopenharmony_ci}
62262306a36Sopenharmony_ci
62362306a36Sopenharmony_ci/**
62462306a36Sopenharmony_ci *  igb_pool_flash_update_done_i210 - Pool FLUDONE status.
62562306a36Sopenharmony_ci *  @hw: pointer to the HW structure
62662306a36Sopenharmony_ci *
62762306a36Sopenharmony_ci **/
62862306a36Sopenharmony_cistatic s32 igb_pool_flash_update_done_i210(struct e1000_hw *hw)
62962306a36Sopenharmony_ci{
63062306a36Sopenharmony_ci	s32 ret_val = -E1000_ERR_NVM;
63162306a36Sopenharmony_ci	u32 i, reg;
63262306a36Sopenharmony_ci
63362306a36Sopenharmony_ci	for (i = 0; i < E1000_FLUDONE_ATTEMPTS; i++) {
63462306a36Sopenharmony_ci		reg = rd32(E1000_EECD);
63562306a36Sopenharmony_ci		if (reg & E1000_EECD_FLUDONE_I210) {
63662306a36Sopenharmony_ci			ret_val = 0;
63762306a36Sopenharmony_ci			break;
63862306a36Sopenharmony_ci		}
63962306a36Sopenharmony_ci		udelay(5);
64062306a36Sopenharmony_ci	}
64162306a36Sopenharmony_ci
64262306a36Sopenharmony_ci	return ret_val;
64362306a36Sopenharmony_ci}
64462306a36Sopenharmony_ci
64562306a36Sopenharmony_ci/**
64662306a36Sopenharmony_ci *  igb_get_flash_presence_i210 - Check if flash device is detected.
64762306a36Sopenharmony_ci *  @hw: pointer to the HW structure
64862306a36Sopenharmony_ci *
64962306a36Sopenharmony_ci **/
65062306a36Sopenharmony_cibool igb_get_flash_presence_i210(struct e1000_hw *hw)
65162306a36Sopenharmony_ci{
65262306a36Sopenharmony_ci	u32 eec = 0;
65362306a36Sopenharmony_ci	bool ret_val = false;
65462306a36Sopenharmony_ci
65562306a36Sopenharmony_ci	eec = rd32(E1000_EECD);
65662306a36Sopenharmony_ci	if (eec & E1000_EECD_FLASH_DETECTED_I210)
65762306a36Sopenharmony_ci		ret_val = true;
65862306a36Sopenharmony_ci
65962306a36Sopenharmony_ci	return ret_val;
66062306a36Sopenharmony_ci}
66162306a36Sopenharmony_ci
66262306a36Sopenharmony_ci/**
66362306a36Sopenharmony_ci *  igb_update_flash_i210 - Commit EEPROM to the flash
66462306a36Sopenharmony_ci *  @hw: pointer to the HW structure
66562306a36Sopenharmony_ci *
66662306a36Sopenharmony_ci **/
66762306a36Sopenharmony_cistatic s32 igb_update_flash_i210(struct e1000_hw *hw)
66862306a36Sopenharmony_ci{
66962306a36Sopenharmony_ci	s32 ret_val = 0;
67062306a36Sopenharmony_ci	u32 flup;
67162306a36Sopenharmony_ci
67262306a36Sopenharmony_ci	ret_val = igb_pool_flash_update_done_i210(hw);
67362306a36Sopenharmony_ci	if (ret_val == -E1000_ERR_NVM) {
67462306a36Sopenharmony_ci		hw_dbg("Flash update time out\n");
67562306a36Sopenharmony_ci		goto out;
67662306a36Sopenharmony_ci	}
67762306a36Sopenharmony_ci
67862306a36Sopenharmony_ci	flup = rd32(E1000_EECD) | E1000_EECD_FLUPD_I210;
67962306a36Sopenharmony_ci	wr32(E1000_EECD, flup);
68062306a36Sopenharmony_ci
68162306a36Sopenharmony_ci	ret_val = igb_pool_flash_update_done_i210(hw);
68262306a36Sopenharmony_ci	if (ret_val)
68362306a36Sopenharmony_ci		hw_dbg("Flash update time out\n");
68462306a36Sopenharmony_ci	else
68562306a36Sopenharmony_ci		hw_dbg("Flash update complete\n");
68662306a36Sopenharmony_ci
68762306a36Sopenharmony_ciout:
68862306a36Sopenharmony_ci	return ret_val;
68962306a36Sopenharmony_ci}
69062306a36Sopenharmony_ci
69162306a36Sopenharmony_ci/**
69262306a36Sopenharmony_ci *  igb_valid_led_default_i210 - Verify a valid default LED config
69362306a36Sopenharmony_ci *  @hw: pointer to the HW structure
69462306a36Sopenharmony_ci *  @data: pointer to the NVM (EEPROM)
69562306a36Sopenharmony_ci *
69662306a36Sopenharmony_ci *  Read the EEPROM for the current default LED configuration.  If the
69762306a36Sopenharmony_ci *  LED configuration is not valid, set to a valid LED configuration.
69862306a36Sopenharmony_ci **/
69962306a36Sopenharmony_cis32 igb_valid_led_default_i210(struct e1000_hw *hw, u16 *data)
70062306a36Sopenharmony_ci{
70162306a36Sopenharmony_ci	s32 ret_val;
70262306a36Sopenharmony_ci
70362306a36Sopenharmony_ci	ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
70462306a36Sopenharmony_ci	if (ret_val) {
70562306a36Sopenharmony_ci		hw_dbg("NVM Read Error\n");
70662306a36Sopenharmony_ci		goto out;
70762306a36Sopenharmony_ci	}
70862306a36Sopenharmony_ci
70962306a36Sopenharmony_ci	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) {
71062306a36Sopenharmony_ci		switch (hw->phy.media_type) {
71162306a36Sopenharmony_ci		case e1000_media_type_internal_serdes:
71262306a36Sopenharmony_ci			*data = ID_LED_DEFAULT_I210_SERDES;
71362306a36Sopenharmony_ci			break;
71462306a36Sopenharmony_ci		case e1000_media_type_copper:
71562306a36Sopenharmony_ci		default:
71662306a36Sopenharmony_ci			*data = ID_LED_DEFAULT_I210;
71762306a36Sopenharmony_ci			break;
71862306a36Sopenharmony_ci		}
71962306a36Sopenharmony_ci	}
72062306a36Sopenharmony_ciout:
72162306a36Sopenharmony_ci	return ret_val;
72262306a36Sopenharmony_ci}
72362306a36Sopenharmony_ci
72462306a36Sopenharmony_ci/**
72562306a36Sopenharmony_ci *  __igb_access_xmdio_reg - Read/write XMDIO register
72662306a36Sopenharmony_ci *  @hw: pointer to the HW structure
72762306a36Sopenharmony_ci *  @address: XMDIO address to program
72862306a36Sopenharmony_ci *  @dev_addr: device address to program
72962306a36Sopenharmony_ci *  @data: pointer to value to read/write from/to the XMDIO address
73062306a36Sopenharmony_ci *  @read: boolean flag to indicate read or write
73162306a36Sopenharmony_ci **/
73262306a36Sopenharmony_cistatic s32 __igb_access_xmdio_reg(struct e1000_hw *hw, u16 address,
73362306a36Sopenharmony_ci				  u8 dev_addr, u16 *data, bool read)
73462306a36Sopenharmony_ci{
73562306a36Sopenharmony_ci	s32 ret_val = 0;
73662306a36Sopenharmony_ci
73762306a36Sopenharmony_ci	ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, dev_addr);
73862306a36Sopenharmony_ci	if (ret_val)
73962306a36Sopenharmony_ci		return ret_val;
74062306a36Sopenharmony_ci
74162306a36Sopenharmony_ci	ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAAD, address);
74262306a36Sopenharmony_ci	if (ret_val)
74362306a36Sopenharmony_ci		return ret_val;
74462306a36Sopenharmony_ci
74562306a36Sopenharmony_ci	ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, E1000_MMDAC_FUNC_DATA |
74662306a36Sopenharmony_ci							 dev_addr);
74762306a36Sopenharmony_ci	if (ret_val)
74862306a36Sopenharmony_ci		return ret_val;
74962306a36Sopenharmony_ci
75062306a36Sopenharmony_ci	if (read)
75162306a36Sopenharmony_ci		ret_val = hw->phy.ops.read_reg(hw, E1000_MMDAAD, data);
75262306a36Sopenharmony_ci	else
75362306a36Sopenharmony_ci		ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAAD, *data);
75462306a36Sopenharmony_ci	if (ret_val)
75562306a36Sopenharmony_ci		return ret_val;
75662306a36Sopenharmony_ci
75762306a36Sopenharmony_ci	/* Recalibrate the device back to 0 */
75862306a36Sopenharmony_ci	ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, 0);
75962306a36Sopenharmony_ci	if (ret_val)
76062306a36Sopenharmony_ci		return ret_val;
76162306a36Sopenharmony_ci
76262306a36Sopenharmony_ci	return ret_val;
76362306a36Sopenharmony_ci}
76462306a36Sopenharmony_ci
76562306a36Sopenharmony_ci/**
76662306a36Sopenharmony_ci *  igb_read_xmdio_reg - Read XMDIO register
76762306a36Sopenharmony_ci *  @hw: pointer to the HW structure
76862306a36Sopenharmony_ci *  @addr: XMDIO address to program
76962306a36Sopenharmony_ci *  @dev_addr: device address to program
77062306a36Sopenharmony_ci *  @data: value to be read from the EMI address
77162306a36Sopenharmony_ci **/
77262306a36Sopenharmony_cis32 igb_read_xmdio_reg(struct e1000_hw *hw, u16 addr, u8 dev_addr, u16 *data)
77362306a36Sopenharmony_ci{
77462306a36Sopenharmony_ci	return __igb_access_xmdio_reg(hw, addr, dev_addr, data, true);
77562306a36Sopenharmony_ci}
77662306a36Sopenharmony_ci
77762306a36Sopenharmony_ci/**
77862306a36Sopenharmony_ci *  igb_write_xmdio_reg - Write XMDIO register
77962306a36Sopenharmony_ci *  @hw: pointer to the HW structure
78062306a36Sopenharmony_ci *  @addr: XMDIO address to program
78162306a36Sopenharmony_ci *  @dev_addr: device address to program
78262306a36Sopenharmony_ci *  @data: value to be written to the XMDIO address
78362306a36Sopenharmony_ci **/
78462306a36Sopenharmony_cis32 igb_write_xmdio_reg(struct e1000_hw *hw, u16 addr, u8 dev_addr, u16 data)
78562306a36Sopenharmony_ci{
78662306a36Sopenharmony_ci	return __igb_access_xmdio_reg(hw, addr, dev_addr, &data, false);
78762306a36Sopenharmony_ci}
78862306a36Sopenharmony_ci
78962306a36Sopenharmony_ci/**
79062306a36Sopenharmony_ci *  igb_init_nvm_params_i210 - Init NVM func ptrs.
79162306a36Sopenharmony_ci *  @hw: pointer to the HW structure
79262306a36Sopenharmony_ci **/
79362306a36Sopenharmony_cis32 igb_init_nvm_params_i210(struct e1000_hw *hw)
79462306a36Sopenharmony_ci{
79562306a36Sopenharmony_ci	struct e1000_nvm_info *nvm = &hw->nvm;
79662306a36Sopenharmony_ci
79762306a36Sopenharmony_ci	nvm->ops.acquire = igb_acquire_nvm_i210;
79862306a36Sopenharmony_ci	nvm->ops.release = igb_release_nvm_i210;
79962306a36Sopenharmony_ci	nvm->ops.valid_led_default = igb_valid_led_default_i210;
80062306a36Sopenharmony_ci
80162306a36Sopenharmony_ci	/* NVM Function Pointers */
80262306a36Sopenharmony_ci	if (igb_get_flash_presence_i210(hw)) {
80362306a36Sopenharmony_ci		hw->nvm.type = e1000_nvm_flash_hw;
80462306a36Sopenharmony_ci		nvm->ops.read    = igb_read_nvm_srrd_i210;
80562306a36Sopenharmony_ci		nvm->ops.write   = igb_write_nvm_srwr_i210;
80662306a36Sopenharmony_ci		nvm->ops.validate = igb_validate_nvm_checksum_i210;
80762306a36Sopenharmony_ci		nvm->ops.update   = igb_update_nvm_checksum_i210;
80862306a36Sopenharmony_ci	} else {
80962306a36Sopenharmony_ci		hw->nvm.type = e1000_nvm_invm;
81062306a36Sopenharmony_ci		nvm->ops.read     = igb_read_invm_i210;
81162306a36Sopenharmony_ci		nvm->ops.write    = NULL;
81262306a36Sopenharmony_ci		nvm->ops.validate = NULL;
81362306a36Sopenharmony_ci		nvm->ops.update   = NULL;
81462306a36Sopenharmony_ci	}
81562306a36Sopenharmony_ci	return 0;
81662306a36Sopenharmony_ci}
81762306a36Sopenharmony_ci
81862306a36Sopenharmony_ci/**
81962306a36Sopenharmony_ci * igb_pll_workaround_i210
82062306a36Sopenharmony_ci * @hw: pointer to the HW structure
82162306a36Sopenharmony_ci *
82262306a36Sopenharmony_ci * Works around an errata in the PLL circuit where it occasionally
82362306a36Sopenharmony_ci * provides the wrong clock frequency after power up.
82462306a36Sopenharmony_ci **/
82562306a36Sopenharmony_cis32 igb_pll_workaround_i210(struct e1000_hw *hw)
82662306a36Sopenharmony_ci{
82762306a36Sopenharmony_ci	s32 ret_val;
82862306a36Sopenharmony_ci	u32 wuc, mdicnfg, ctrl, ctrl_ext, reg_val;
82962306a36Sopenharmony_ci	u16 nvm_word, phy_word, pci_word, tmp_nvm;
83062306a36Sopenharmony_ci	int i;
83162306a36Sopenharmony_ci
83262306a36Sopenharmony_ci	/* Get and set needed register values */
83362306a36Sopenharmony_ci	wuc = rd32(E1000_WUC);
83462306a36Sopenharmony_ci	mdicnfg = rd32(E1000_MDICNFG);
83562306a36Sopenharmony_ci	reg_val = mdicnfg & ~E1000_MDICNFG_EXT_MDIO;
83662306a36Sopenharmony_ci	wr32(E1000_MDICNFG, reg_val);
83762306a36Sopenharmony_ci
83862306a36Sopenharmony_ci	/* Get data from NVM, or set default */
83962306a36Sopenharmony_ci	ret_val = igb_read_invm_word_i210(hw, E1000_INVM_AUTOLOAD,
84062306a36Sopenharmony_ci					  &nvm_word);
84162306a36Sopenharmony_ci	if (ret_val)
84262306a36Sopenharmony_ci		nvm_word = E1000_INVM_DEFAULT_AL;
84362306a36Sopenharmony_ci	tmp_nvm = nvm_word | E1000_INVM_PLL_WO_VAL;
84462306a36Sopenharmony_ci	igb_write_phy_reg_82580(hw, I347AT4_PAGE_SELECT, E1000_PHY_PLL_FREQ_PAGE);
84562306a36Sopenharmony_ci	phy_word = E1000_PHY_PLL_UNCONF;
84662306a36Sopenharmony_ci	for (i = 0; i < E1000_MAX_PLL_TRIES; i++) {
84762306a36Sopenharmony_ci		/* check current state directly from internal PHY */
84862306a36Sopenharmony_ci		igb_read_phy_reg_82580(hw, E1000_PHY_PLL_FREQ_REG, &phy_word);
84962306a36Sopenharmony_ci		if ((phy_word & E1000_PHY_PLL_UNCONF)
85062306a36Sopenharmony_ci		    != E1000_PHY_PLL_UNCONF) {
85162306a36Sopenharmony_ci			ret_val = 0;
85262306a36Sopenharmony_ci			break;
85362306a36Sopenharmony_ci		} else {
85462306a36Sopenharmony_ci			ret_val = -E1000_ERR_PHY;
85562306a36Sopenharmony_ci		}
85662306a36Sopenharmony_ci		/* directly reset the internal PHY */
85762306a36Sopenharmony_ci		ctrl = rd32(E1000_CTRL);
85862306a36Sopenharmony_ci		wr32(E1000_CTRL, ctrl|E1000_CTRL_PHY_RST);
85962306a36Sopenharmony_ci
86062306a36Sopenharmony_ci		ctrl_ext = rd32(E1000_CTRL_EXT);
86162306a36Sopenharmony_ci		ctrl_ext |= (E1000_CTRL_EXT_PHYPDEN | E1000_CTRL_EXT_SDLPE);
86262306a36Sopenharmony_ci		wr32(E1000_CTRL_EXT, ctrl_ext);
86362306a36Sopenharmony_ci
86462306a36Sopenharmony_ci		wr32(E1000_WUC, 0);
86562306a36Sopenharmony_ci		reg_val = (E1000_INVM_AUTOLOAD << 4) | (tmp_nvm << 16);
86662306a36Sopenharmony_ci		wr32(E1000_EEARBC_I210, reg_val);
86762306a36Sopenharmony_ci
86862306a36Sopenharmony_ci		igb_read_pci_cfg(hw, E1000_PCI_PMCSR, &pci_word);
86962306a36Sopenharmony_ci		pci_word |= E1000_PCI_PMCSR_D3;
87062306a36Sopenharmony_ci		igb_write_pci_cfg(hw, E1000_PCI_PMCSR, &pci_word);
87162306a36Sopenharmony_ci		usleep_range(1000, 2000);
87262306a36Sopenharmony_ci		pci_word &= ~E1000_PCI_PMCSR_D3;
87362306a36Sopenharmony_ci		igb_write_pci_cfg(hw, E1000_PCI_PMCSR, &pci_word);
87462306a36Sopenharmony_ci		reg_val = (E1000_INVM_AUTOLOAD << 4) | (nvm_word << 16);
87562306a36Sopenharmony_ci		wr32(E1000_EEARBC_I210, reg_val);
87662306a36Sopenharmony_ci
87762306a36Sopenharmony_ci		/* restore WUC register */
87862306a36Sopenharmony_ci		wr32(E1000_WUC, wuc);
87962306a36Sopenharmony_ci	}
88062306a36Sopenharmony_ci	igb_write_phy_reg_82580(hw, I347AT4_PAGE_SELECT, 0);
88162306a36Sopenharmony_ci	/* restore MDICNFG setting */
88262306a36Sopenharmony_ci	wr32(E1000_MDICNFG, mdicnfg);
88362306a36Sopenharmony_ci	return ret_val;
88462306a36Sopenharmony_ci}
88562306a36Sopenharmony_ci
88662306a36Sopenharmony_ci/**
88762306a36Sopenharmony_ci *  igb_get_cfg_done_i210 - Read config done bit
88862306a36Sopenharmony_ci *  @hw: pointer to the HW structure
88962306a36Sopenharmony_ci *
89062306a36Sopenharmony_ci *  Read the management control register for the config done bit for
89162306a36Sopenharmony_ci *  completion status.  NOTE: silicon which is EEPROM-less will fail trying
89262306a36Sopenharmony_ci *  to read the config done bit, so an error is *ONLY* logged and returns
89362306a36Sopenharmony_ci *  0.  If we were to return with error, EEPROM-less silicon
89462306a36Sopenharmony_ci *  would not be able to be reset or change link.
89562306a36Sopenharmony_ci **/
89662306a36Sopenharmony_cis32 igb_get_cfg_done_i210(struct e1000_hw *hw)
89762306a36Sopenharmony_ci{
89862306a36Sopenharmony_ci	s32 timeout = PHY_CFG_TIMEOUT;
89962306a36Sopenharmony_ci	u32 mask = E1000_NVM_CFG_DONE_PORT_0;
90062306a36Sopenharmony_ci
90162306a36Sopenharmony_ci	while (timeout) {
90262306a36Sopenharmony_ci		if (rd32(E1000_EEMNGCTL_I210) & mask)
90362306a36Sopenharmony_ci			break;
90462306a36Sopenharmony_ci		usleep_range(1000, 2000);
90562306a36Sopenharmony_ci		timeout--;
90662306a36Sopenharmony_ci	}
90762306a36Sopenharmony_ci	if (!timeout)
90862306a36Sopenharmony_ci		hw_dbg("MNG configuration cycle has not completed.\n");
90962306a36Sopenharmony_ci
91062306a36Sopenharmony_ci	return 0;
91162306a36Sopenharmony_ci}
912