1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 2007 - 2018 Intel Corporation. */
3
4/* e1000_82575
5 * e1000_82576
6 */
7
8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10#include <linux/types.h>
11#include <linux/if_ether.h>
12#include <linux/i2c.h>
13
14#include "e1000_mac.h"
15#include "e1000_82575.h"
16#include "e1000_i210.h"
17#include "igb.h"
18
19static s32  igb_get_invariants_82575(struct e1000_hw *);
20static s32  igb_acquire_phy_82575(struct e1000_hw *);
21static void igb_release_phy_82575(struct e1000_hw *);
22static s32  igb_acquire_nvm_82575(struct e1000_hw *);
23static void igb_release_nvm_82575(struct e1000_hw *);
24static s32  igb_check_for_link_82575(struct e1000_hw *);
25static s32  igb_get_cfg_done_82575(struct e1000_hw *);
26static s32  igb_init_hw_82575(struct e1000_hw *);
27static s32  igb_phy_hw_reset_sgmii_82575(struct e1000_hw *);
28static s32  igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *);
29static s32  igb_reset_hw_82575(struct e1000_hw *);
30static s32  igb_reset_hw_82580(struct e1000_hw *);
31static s32  igb_set_d0_lplu_state_82575(struct e1000_hw *, bool);
32static s32  igb_set_d0_lplu_state_82580(struct e1000_hw *, bool);
33static s32  igb_set_d3_lplu_state_82580(struct e1000_hw *, bool);
34static s32  igb_setup_copper_link_82575(struct e1000_hw *);
35static s32  igb_setup_serdes_link_82575(struct e1000_hw *);
36static s32  igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16);
37static void igb_clear_hw_cntrs_82575(struct e1000_hw *);
38static s32  igb_acquire_swfw_sync_82575(struct e1000_hw *, u16);
39static s32  igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *,
40						 u16 *);
41static s32  igb_get_phy_id_82575(struct e1000_hw *);
42static void igb_release_swfw_sync_82575(struct e1000_hw *, u16);
43static bool igb_sgmii_active_82575(struct e1000_hw *);
44static s32  igb_reset_init_script_82575(struct e1000_hw *);
45static s32  igb_read_mac_addr_82575(struct e1000_hw *);
46static s32  igb_set_pcie_completion_timeout(struct e1000_hw *hw);
47static s32  igb_reset_mdicnfg_82580(struct e1000_hw *hw);
48static s32  igb_validate_nvm_checksum_82580(struct e1000_hw *hw);
49static s32  igb_update_nvm_checksum_82580(struct e1000_hw *hw);
50static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw);
51static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw);
52static const u16 e1000_82580_rxpbs_table[] = {
53	36, 72, 144, 1, 2, 4, 8, 16, 35, 70, 140 };
54
55/* Due to a hw errata, if the host tries to  configure the VFTA register
56 * while performing queries from the BMC or DMA, then the VFTA in some
57 * cases won't be written.
58 */
59
60/**
61 *  igb_write_vfta_i350 - Write value to VLAN filter table
62 *  @hw: pointer to the HW structure
63 *  @offset: register offset in VLAN filter table
64 *  @value: register value written to VLAN filter table
65 *
66 *  Writes value at the given offset in the register array which stores
67 *  the VLAN filter table.
68 **/
69static void igb_write_vfta_i350(struct e1000_hw *hw, u32 offset, u32 value)
70{
71	struct igb_adapter *adapter = hw->back;
72	int i;
73
74	for (i = 10; i--;)
75		array_wr32(E1000_VFTA, offset, value);
76
77	wrfl();
78	adapter->shadow_vfta[offset] = value;
79}
80
81/**
82 *  igb_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
83 *  @hw: pointer to the HW structure
84 *
85 *  Called to determine if the I2C pins are being used for I2C or as an
86 *  external MDIO interface since the two options are mutually exclusive.
87 **/
88static bool igb_sgmii_uses_mdio_82575(struct e1000_hw *hw)
89{
90	u32 reg = 0;
91	bool ext_mdio = false;
92
93	switch (hw->mac.type) {
94	case e1000_82575:
95	case e1000_82576:
96		reg = rd32(E1000_MDIC);
97		ext_mdio = !!(reg & E1000_MDIC_DEST);
98		break;
99	case e1000_82580:
100	case e1000_i350:
101	case e1000_i354:
102	case e1000_i210:
103	case e1000_i211:
104		reg = rd32(E1000_MDICNFG);
105		ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO);
106		break;
107	default:
108		break;
109	}
110	return ext_mdio;
111}
112
113/**
114 *  igb_check_for_link_media_swap - Check which M88E1112 interface linked
115 *  @hw: pointer to the HW structure
116 *
117 *  Poll the M88E1112 interfaces to see which interface achieved link.
118 */
119static s32 igb_check_for_link_media_swap(struct e1000_hw *hw)
120{
121	struct e1000_phy_info *phy = &hw->phy;
122	s32 ret_val;
123	u16 data;
124	u8 port = 0;
125
126	/* Check the copper medium. */
127	ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
128	if (ret_val)
129		return ret_val;
130
131	ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
132	if (ret_val)
133		return ret_val;
134
135	if (data & E1000_M88E1112_STATUS_LINK)
136		port = E1000_MEDIA_PORT_COPPER;
137
138	/* Check the other medium. */
139	ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 1);
140	if (ret_val)
141		return ret_val;
142
143	ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
144	if (ret_val)
145		return ret_val;
146
147
148	if (data & E1000_M88E1112_STATUS_LINK)
149		port = E1000_MEDIA_PORT_OTHER;
150
151	/* Determine if a swap needs to happen. */
152	if (port && (hw->dev_spec._82575.media_port != port)) {
153		hw->dev_spec._82575.media_port = port;
154		hw->dev_spec._82575.media_changed = true;
155	}
156
157	if (port == E1000_MEDIA_PORT_COPPER) {
158		/* reset page to 0 */
159		ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
160		if (ret_val)
161			return ret_val;
162		igb_check_for_link_82575(hw);
163	} else {
164		igb_check_for_link_82575(hw);
165		/* reset page to 0 */
166		ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
167		if (ret_val)
168			return ret_val;
169	}
170
171	return 0;
172}
173
174/**
175 *  igb_init_phy_params_82575 - Init PHY func ptrs.
176 *  @hw: pointer to the HW structure
177 **/
178static s32 igb_init_phy_params_82575(struct e1000_hw *hw)
179{
180	struct e1000_phy_info *phy = &hw->phy;
181	s32 ret_val = 0;
182	u32 ctrl_ext;
183
184	if (hw->phy.media_type != e1000_media_type_copper) {
185		phy->type = e1000_phy_none;
186		goto out;
187	}
188
189	phy->autoneg_mask	= AUTONEG_ADVERTISE_SPEED_DEFAULT;
190	phy->reset_delay_us	= 100;
191
192	ctrl_ext = rd32(E1000_CTRL_EXT);
193
194	if (igb_sgmii_active_82575(hw)) {
195		phy->ops.reset = igb_phy_hw_reset_sgmii_82575;
196		ctrl_ext |= E1000_CTRL_I2C_ENA;
197	} else {
198		phy->ops.reset = igb_phy_hw_reset;
199		ctrl_ext &= ~E1000_CTRL_I2C_ENA;
200	}
201
202	wr32(E1000_CTRL_EXT, ctrl_ext);
203	igb_reset_mdicnfg_82580(hw);
204
205	if (igb_sgmii_active_82575(hw) && !igb_sgmii_uses_mdio_82575(hw)) {
206		phy->ops.read_reg = igb_read_phy_reg_sgmii_82575;
207		phy->ops.write_reg = igb_write_phy_reg_sgmii_82575;
208	} else {
209		switch (hw->mac.type) {
210		case e1000_82580:
211		case e1000_i350:
212		case e1000_i354:
213		case e1000_i210:
214		case e1000_i211:
215			phy->ops.read_reg = igb_read_phy_reg_82580;
216			phy->ops.write_reg = igb_write_phy_reg_82580;
217			break;
218		default:
219			phy->ops.read_reg = igb_read_phy_reg_igp;
220			phy->ops.write_reg = igb_write_phy_reg_igp;
221		}
222	}
223
224	/* set lan id */
225	hw->bus.func = (rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) >>
226			E1000_STATUS_FUNC_SHIFT;
227
228	/* Set phy->phy_addr and phy->id. */
229	ret_val = igb_get_phy_id_82575(hw);
230	if (ret_val)
231		return ret_val;
232
233	/* Verify phy id and set remaining function pointers */
234	switch (phy->id) {
235	case M88E1543_E_PHY_ID:
236	case M88E1512_E_PHY_ID:
237	case I347AT4_E_PHY_ID:
238	case M88E1112_E_PHY_ID:
239	case M88E1111_I_PHY_ID:
240		phy->type		= e1000_phy_m88;
241		phy->ops.check_polarity	= igb_check_polarity_m88;
242		phy->ops.get_phy_info	= igb_get_phy_info_m88;
243		if (phy->id != M88E1111_I_PHY_ID)
244			phy->ops.get_cable_length =
245					 igb_get_cable_length_m88_gen2;
246		else
247			phy->ops.get_cable_length = igb_get_cable_length_m88;
248		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
249		/* Check if this PHY is configured for media swap. */
250		if (phy->id == M88E1112_E_PHY_ID) {
251			u16 data;
252
253			ret_val = phy->ops.write_reg(hw,
254						     E1000_M88E1112_PAGE_ADDR,
255						     2);
256			if (ret_val)
257				goto out;
258
259			ret_val = phy->ops.read_reg(hw,
260						    E1000_M88E1112_MAC_CTRL_1,
261						    &data);
262			if (ret_val)
263				goto out;
264
265			data = (data & E1000_M88E1112_MAC_CTRL_1_MODE_MASK) >>
266			       E1000_M88E1112_MAC_CTRL_1_MODE_SHIFT;
267			if (data == E1000_M88E1112_AUTO_COPPER_SGMII ||
268			    data == E1000_M88E1112_AUTO_COPPER_BASEX)
269				hw->mac.ops.check_for_link =
270						igb_check_for_link_media_swap;
271		}
272		if (phy->id == M88E1512_E_PHY_ID) {
273			ret_val = igb_initialize_M88E1512_phy(hw);
274			if (ret_val)
275				goto out;
276		}
277		if (phy->id == M88E1543_E_PHY_ID) {
278			ret_val = igb_initialize_M88E1543_phy(hw);
279			if (ret_val)
280				goto out;
281		}
282		break;
283	case IGP03E1000_E_PHY_ID:
284		phy->type = e1000_phy_igp_3;
285		phy->ops.get_phy_info = igb_get_phy_info_igp;
286		phy->ops.get_cable_length = igb_get_cable_length_igp_2;
287		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp;
288		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82575;
289		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state;
290		break;
291	case I82580_I_PHY_ID:
292	case I350_I_PHY_ID:
293		phy->type = e1000_phy_82580;
294		phy->ops.force_speed_duplex =
295					 igb_phy_force_speed_duplex_82580;
296		phy->ops.get_cable_length = igb_get_cable_length_82580;
297		phy->ops.get_phy_info = igb_get_phy_info_82580;
298		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
299		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
300		break;
301	case I210_I_PHY_ID:
302		phy->type		= e1000_phy_i210;
303		phy->ops.check_polarity	= igb_check_polarity_m88;
304		phy->ops.get_cfg_done	= igb_get_cfg_done_i210;
305		phy->ops.get_phy_info	= igb_get_phy_info_m88;
306		phy->ops.get_cable_length = igb_get_cable_length_m88_gen2;
307		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
308		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
309		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
310		break;
311	case BCM54616_E_PHY_ID:
312		phy->type = e1000_phy_bcm54616;
313		break;
314	default:
315		ret_val = -E1000_ERR_PHY;
316		goto out;
317	}
318
319out:
320	return ret_val;
321}
322
323/**
324 *  igb_init_nvm_params_82575 - Init NVM func ptrs.
325 *  @hw: pointer to the HW structure
326 **/
327static s32 igb_init_nvm_params_82575(struct e1000_hw *hw)
328{
329	struct e1000_nvm_info *nvm = &hw->nvm;
330	u32 eecd = rd32(E1000_EECD);
331	u16 size;
332
333	size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
334		     E1000_EECD_SIZE_EX_SHIFT);
335
336	/* Added to a constant, "size" becomes the left-shift value
337	 * for setting word_size.
338	 */
339	size += NVM_WORD_SIZE_BASE_SHIFT;
340
341	/* Just in case size is out of range, cap it to the largest
342	 * EEPROM size supported
343	 */
344	if (size > 15)
345		size = 15;
346
347	nvm->word_size = BIT(size);
348	nvm->opcode_bits = 8;
349	nvm->delay_usec = 1;
350
351	switch (nvm->override) {
352	case e1000_nvm_override_spi_large:
353		nvm->page_size = 32;
354		nvm->address_bits = 16;
355		break;
356	case e1000_nvm_override_spi_small:
357		nvm->page_size = 8;
358		nvm->address_bits = 8;
359		break;
360	default:
361		nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
362		nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ?
363				    16 : 8;
364		break;
365	}
366	if (nvm->word_size == BIT(15))
367		nvm->page_size = 128;
368
369	nvm->type = e1000_nvm_eeprom_spi;
370
371	/* NVM Function Pointers */
372	nvm->ops.acquire = igb_acquire_nvm_82575;
373	nvm->ops.release = igb_release_nvm_82575;
374	nvm->ops.write = igb_write_nvm_spi;
375	nvm->ops.validate = igb_validate_nvm_checksum;
376	nvm->ops.update = igb_update_nvm_checksum;
377	if (nvm->word_size < BIT(15))
378		nvm->ops.read = igb_read_nvm_eerd;
379	else
380		nvm->ops.read = igb_read_nvm_spi;
381
382	/* override generic family function pointers for specific descendants */
383	switch (hw->mac.type) {
384	case e1000_82580:
385		nvm->ops.validate = igb_validate_nvm_checksum_82580;
386		nvm->ops.update = igb_update_nvm_checksum_82580;
387		break;
388	case e1000_i354:
389	case e1000_i350:
390		nvm->ops.validate = igb_validate_nvm_checksum_i350;
391		nvm->ops.update = igb_update_nvm_checksum_i350;
392		break;
393	default:
394		break;
395	}
396
397	return 0;
398}
399
400/**
401 *  igb_init_mac_params_82575 - Init MAC func ptrs.
402 *  @hw: pointer to the HW structure
403 **/
404static s32 igb_init_mac_params_82575(struct e1000_hw *hw)
405{
406	struct e1000_mac_info *mac = &hw->mac;
407	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
408
409	/* Set mta register count */
410	mac->mta_reg_count = 128;
411	/* Set uta register count */
412	mac->uta_reg_count = (hw->mac.type == e1000_82575) ? 0 : 128;
413	/* Set rar entry count */
414	switch (mac->type) {
415	case e1000_82576:
416		mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
417		break;
418	case e1000_82580:
419		mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
420		break;
421	case e1000_i350:
422	case e1000_i354:
423		mac->rar_entry_count = E1000_RAR_ENTRIES_I350;
424		break;
425	default:
426		mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
427		break;
428	}
429	/* reset */
430	if (mac->type >= e1000_82580)
431		mac->ops.reset_hw = igb_reset_hw_82580;
432	else
433		mac->ops.reset_hw = igb_reset_hw_82575;
434
435	if (mac->type >= e1000_i210) {
436		mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_i210;
437		mac->ops.release_swfw_sync = igb_release_swfw_sync_i210;
438
439	} else {
440		mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_82575;
441		mac->ops.release_swfw_sync = igb_release_swfw_sync_82575;
442	}
443
444	if ((hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i354))
445		mac->ops.write_vfta = igb_write_vfta_i350;
446	else
447		mac->ops.write_vfta = igb_write_vfta;
448
449	/* Set if part includes ASF firmware */
450	mac->asf_firmware_present = true;
451	/* Set if manageability features are enabled. */
452	mac->arc_subsystem_valid =
453		(rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK)
454			? true : false;
455	/* enable EEE on i350 parts and later parts */
456	if (mac->type >= e1000_i350)
457		dev_spec->eee_disable = false;
458	else
459		dev_spec->eee_disable = true;
460	/* Allow a single clear of the SW semaphore on I210 and newer */
461	if (mac->type >= e1000_i210)
462		dev_spec->clear_semaphore_once = true;
463	/* physical interface link setup */
464	mac->ops.setup_physical_interface =
465		(hw->phy.media_type == e1000_media_type_copper)
466			? igb_setup_copper_link_82575
467			: igb_setup_serdes_link_82575;
468
469	if (mac->type == e1000_82580 || mac->type == e1000_i350) {
470		switch (hw->device_id) {
471		/* feature not supported on these id's */
472		case E1000_DEV_ID_DH89XXCC_SGMII:
473		case E1000_DEV_ID_DH89XXCC_SERDES:
474		case E1000_DEV_ID_DH89XXCC_BACKPLANE:
475		case E1000_DEV_ID_DH89XXCC_SFP:
476			break;
477		default:
478			hw->dev_spec._82575.mas_capable = true;
479			break;
480		}
481	}
482	return 0;
483}
484
485/**
486 *  igb_set_sfp_media_type_82575 - derives SFP module media type.
487 *  @hw: pointer to the HW structure
488 *
489 *  The media type is chosen based on SFP module.
490 *  compatibility flags retrieved from SFP ID EEPROM.
491 **/
492static s32 igb_set_sfp_media_type_82575(struct e1000_hw *hw)
493{
494	s32 ret_val = E1000_ERR_CONFIG;
495	u32 ctrl_ext = 0;
496	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
497	struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
498	u8 tranceiver_type = 0;
499	s32 timeout = 3;
500
501	/* Turn I2C interface ON and power on sfp cage */
502	ctrl_ext = rd32(E1000_CTRL_EXT);
503	ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
504	wr32(E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_I2C_ENA);
505
506	wrfl();
507
508	/* Read SFP module data */
509	while (timeout) {
510		ret_val = igb_read_sfp_data_byte(hw,
511			E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_IDENTIFIER_OFFSET),
512			&tranceiver_type);
513		if (ret_val == 0)
514			break;
515		msleep(100);
516		timeout--;
517	}
518	if (ret_val != 0)
519		goto out;
520
521	ret_val = igb_read_sfp_data_byte(hw,
522			E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_ETH_FLAGS_OFFSET),
523			(u8 *)eth_flags);
524	if (ret_val != 0)
525		goto out;
526
527	/* Check if there is some SFP module plugged and powered */
528	if ((tranceiver_type == E1000_SFF_IDENTIFIER_SFP) ||
529	    (tranceiver_type == E1000_SFF_IDENTIFIER_SFF)) {
530		dev_spec->module_plugged = true;
531		if (eth_flags->e1000_base_lx || eth_flags->e1000_base_sx) {
532			hw->phy.media_type = e1000_media_type_internal_serdes;
533		} else if (eth_flags->e100_base_fx || eth_flags->e100_base_lx) {
534			dev_spec->sgmii_active = true;
535			hw->phy.media_type = e1000_media_type_internal_serdes;
536		} else if (eth_flags->e1000_base_t) {
537			dev_spec->sgmii_active = true;
538			hw->phy.media_type = e1000_media_type_copper;
539		} else {
540			hw->phy.media_type = e1000_media_type_unknown;
541			hw_dbg("PHY module has not been recognized\n");
542			goto out;
543		}
544	} else {
545		hw->phy.media_type = e1000_media_type_unknown;
546	}
547	ret_val = 0;
548out:
549	/* Restore I2C interface setting */
550	wr32(E1000_CTRL_EXT, ctrl_ext);
551	return ret_val;
552}
553
554static s32 igb_get_invariants_82575(struct e1000_hw *hw)
555{
556	struct e1000_mac_info *mac = &hw->mac;
557	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
558	s32 ret_val;
559	u32 ctrl_ext = 0;
560	u32 link_mode = 0;
561
562	switch (hw->device_id) {
563	case E1000_DEV_ID_82575EB_COPPER:
564	case E1000_DEV_ID_82575EB_FIBER_SERDES:
565	case E1000_DEV_ID_82575GB_QUAD_COPPER:
566		mac->type = e1000_82575;
567		break;
568	case E1000_DEV_ID_82576:
569	case E1000_DEV_ID_82576_NS:
570	case E1000_DEV_ID_82576_NS_SERDES:
571	case E1000_DEV_ID_82576_FIBER:
572	case E1000_DEV_ID_82576_SERDES:
573	case E1000_DEV_ID_82576_QUAD_COPPER:
574	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
575	case E1000_DEV_ID_82576_SERDES_QUAD:
576		mac->type = e1000_82576;
577		break;
578	case E1000_DEV_ID_82580_COPPER:
579	case E1000_DEV_ID_82580_FIBER:
580	case E1000_DEV_ID_82580_QUAD_FIBER:
581	case E1000_DEV_ID_82580_SERDES:
582	case E1000_DEV_ID_82580_SGMII:
583	case E1000_DEV_ID_82580_COPPER_DUAL:
584	case E1000_DEV_ID_DH89XXCC_SGMII:
585	case E1000_DEV_ID_DH89XXCC_SERDES:
586	case E1000_DEV_ID_DH89XXCC_BACKPLANE:
587	case E1000_DEV_ID_DH89XXCC_SFP:
588		mac->type = e1000_82580;
589		break;
590	case E1000_DEV_ID_I350_COPPER:
591	case E1000_DEV_ID_I350_FIBER:
592	case E1000_DEV_ID_I350_SERDES:
593	case E1000_DEV_ID_I350_SGMII:
594		mac->type = e1000_i350;
595		break;
596	case E1000_DEV_ID_I210_COPPER:
597	case E1000_DEV_ID_I210_FIBER:
598	case E1000_DEV_ID_I210_SERDES:
599	case E1000_DEV_ID_I210_SGMII:
600	case E1000_DEV_ID_I210_COPPER_FLASHLESS:
601	case E1000_DEV_ID_I210_SERDES_FLASHLESS:
602		mac->type = e1000_i210;
603		break;
604	case E1000_DEV_ID_I211_COPPER:
605		mac->type = e1000_i211;
606		break;
607	case E1000_DEV_ID_I354_BACKPLANE_1GBPS:
608	case E1000_DEV_ID_I354_SGMII:
609	case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS:
610		mac->type = e1000_i354;
611		break;
612	default:
613		return -E1000_ERR_MAC_INIT;
614	}
615
616	/* Set media type */
617	/* The 82575 uses bits 22:23 for link mode. The mode can be changed
618	 * based on the EEPROM. We cannot rely upon device ID. There
619	 * is no distinguishable difference between fiber and internal
620	 * SerDes mode on the 82575. There can be an external PHY attached
621	 * on the SGMII interface. For this, we'll set sgmii_active to true.
622	 */
623	hw->phy.media_type = e1000_media_type_copper;
624	dev_spec->sgmii_active = false;
625	dev_spec->module_plugged = false;
626
627	ctrl_ext = rd32(E1000_CTRL_EXT);
628
629	link_mode = ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK;
630	switch (link_mode) {
631	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
632		hw->phy.media_type = e1000_media_type_internal_serdes;
633		break;
634	case E1000_CTRL_EXT_LINK_MODE_SGMII:
635		/* Get phy control interface type set (MDIO vs. I2C)*/
636		if (igb_sgmii_uses_mdio_82575(hw)) {
637			hw->phy.media_type = e1000_media_type_copper;
638			dev_spec->sgmii_active = true;
639			break;
640		}
641		fallthrough; /* for I2C based SGMII */
642	case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
643		/* read media type from SFP EEPROM */
644		ret_val = igb_set_sfp_media_type_82575(hw);
645		if ((ret_val != 0) ||
646		    (hw->phy.media_type == e1000_media_type_unknown)) {
647			/* If media type was not identified then return media
648			 * type defined by the CTRL_EXT settings.
649			 */
650			hw->phy.media_type = e1000_media_type_internal_serdes;
651
652			if (link_mode == E1000_CTRL_EXT_LINK_MODE_SGMII) {
653				hw->phy.media_type = e1000_media_type_copper;
654				dev_spec->sgmii_active = true;
655			}
656
657			break;
658		}
659
660		/* change current link mode setting */
661		ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
662
663		if (dev_spec->sgmii_active)
664			ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_SGMII;
665		else
666			ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
667
668		wr32(E1000_CTRL_EXT, ctrl_ext);
669
670		break;
671	default:
672		break;
673	}
674
675	/* mac initialization and operations */
676	ret_val = igb_init_mac_params_82575(hw);
677	if (ret_val)
678		goto out;
679
680	/* NVM initialization */
681	ret_val = igb_init_nvm_params_82575(hw);
682	switch (hw->mac.type) {
683	case e1000_i210:
684	case e1000_i211:
685		ret_val = igb_init_nvm_params_i210(hw);
686		break;
687	default:
688		break;
689	}
690
691	if (ret_val)
692		goto out;
693
694	/* if part supports SR-IOV then initialize mailbox parameters */
695	switch (mac->type) {
696	case e1000_82576:
697	case e1000_i350:
698		igb_init_mbx_params_pf(hw);
699		break;
700	default:
701		break;
702	}
703
704	/* setup PHY parameters */
705	ret_val = igb_init_phy_params_82575(hw);
706
707out:
708	return ret_val;
709}
710
711/**
712 *  igb_acquire_phy_82575 - Acquire rights to access PHY
713 *  @hw: pointer to the HW structure
714 *
715 *  Acquire access rights to the correct PHY.  This is a
716 *  function pointer entry point called by the api module.
717 **/
718static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
719{
720	u16 mask = E1000_SWFW_PHY0_SM;
721
722	if (hw->bus.func == E1000_FUNC_1)
723		mask = E1000_SWFW_PHY1_SM;
724	else if (hw->bus.func == E1000_FUNC_2)
725		mask = E1000_SWFW_PHY2_SM;
726	else if (hw->bus.func == E1000_FUNC_3)
727		mask = E1000_SWFW_PHY3_SM;
728
729	return hw->mac.ops.acquire_swfw_sync(hw, mask);
730}
731
732/**
733 *  igb_release_phy_82575 - Release rights to access PHY
734 *  @hw: pointer to the HW structure
735 *
736 *  A wrapper to release access rights to the correct PHY.  This is a
737 *  function pointer entry point called by the api module.
738 **/
739static void igb_release_phy_82575(struct e1000_hw *hw)
740{
741	u16 mask = E1000_SWFW_PHY0_SM;
742
743	if (hw->bus.func == E1000_FUNC_1)
744		mask = E1000_SWFW_PHY1_SM;
745	else if (hw->bus.func == E1000_FUNC_2)
746		mask = E1000_SWFW_PHY2_SM;
747	else if (hw->bus.func == E1000_FUNC_3)
748		mask = E1000_SWFW_PHY3_SM;
749
750	hw->mac.ops.release_swfw_sync(hw, mask);
751}
752
753/**
754 *  igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
755 *  @hw: pointer to the HW structure
756 *  @offset: register offset to be read
757 *  @data: pointer to the read data
758 *
759 *  Reads the PHY register at offset using the serial gigabit media independent
760 *  interface and stores the retrieved information in data.
761 **/
762static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
763					  u16 *data)
764{
765	s32 ret_val = -E1000_ERR_PARAM;
766
767	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
768		hw_dbg("PHY Address %u is out of range\n", offset);
769		goto out;
770	}
771
772	ret_val = hw->phy.ops.acquire(hw);
773	if (ret_val)
774		goto out;
775
776	ret_val = igb_read_phy_reg_i2c(hw, offset, data);
777
778	hw->phy.ops.release(hw);
779
780out:
781	return ret_val;
782}
783
784/**
785 *  igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
786 *  @hw: pointer to the HW structure
787 *  @offset: register offset to write to
788 *  @data: data to write at register offset
789 *
790 *  Writes the data to PHY register at the offset using the serial gigabit
791 *  media independent interface.
792 **/
793static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
794					   u16 data)
795{
796	s32 ret_val = -E1000_ERR_PARAM;
797
798
799	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
800		hw_dbg("PHY Address %d is out of range\n", offset);
801		goto out;
802	}
803
804	ret_val = hw->phy.ops.acquire(hw);
805	if (ret_val)
806		goto out;
807
808	ret_val = igb_write_phy_reg_i2c(hw, offset, data);
809
810	hw->phy.ops.release(hw);
811
812out:
813	return ret_val;
814}
815
816/**
817 *  igb_get_phy_id_82575 - Retrieve PHY addr and id
818 *  @hw: pointer to the HW structure
819 *
820 *  Retrieves the PHY address and ID for both PHY's which do and do not use
821 *  sgmi interface.
822 **/
823static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
824{
825	struct e1000_phy_info *phy = &hw->phy;
826	s32  ret_val = 0;
827	u16 phy_id;
828	u32 ctrl_ext;
829	u32 mdic;
830
831	/* Extra read required for some PHY's on i354 */
832	if (hw->mac.type == e1000_i354)
833		igb_get_phy_id(hw);
834
835	/* For SGMII PHYs, we try the list of possible addresses until
836	 * we find one that works.  For non-SGMII PHYs
837	 * (e.g. integrated copper PHYs), an address of 1 should
838	 * work.  The result of this function should mean phy->phy_addr
839	 * and phy->id are set correctly.
840	 */
841	if (!(igb_sgmii_active_82575(hw))) {
842		phy->addr = 1;
843		ret_val = igb_get_phy_id(hw);
844		goto out;
845	}
846
847	if (igb_sgmii_uses_mdio_82575(hw)) {
848		switch (hw->mac.type) {
849		case e1000_82575:
850		case e1000_82576:
851			mdic = rd32(E1000_MDIC);
852			mdic &= E1000_MDIC_PHY_MASK;
853			phy->addr = mdic >> E1000_MDIC_PHY_SHIFT;
854			break;
855		case e1000_82580:
856		case e1000_i350:
857		case e1000_i354:
858		case e1000_i210:
859		case e1000_i211:
860			mdic = rd32(E1000_MDICNFG);
861			mdic &= E1000_MDICNFG_PHY_MASK;
862			phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT;
863			break;
864		default:
865			ret_val = -E1000_ERR_PHY;
866			goto out;
867		}
868		ret_val = igb_get_phy_id(hw);
869		goto out;
870	}
871
872	/* Power on sgmii phy if it is disabled */
873	ctrl_ext = rd32(E1000_CTRL_EXT);
874	wr32(E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
875	wrfl();
876	msleep(300);
877
878	/* The address field in the I2CCMD register is 3 bits and 0 is invalid.
879	 * Therefore, we need to test 1-7
880	 */
881	for (phy->addr = 1; phy->addr < 8; phy->addr++) {
882		ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
883		if (ret_val == 0) {
884			hw_dbg("Vendor ID 0x%08X read at address %u\n",
885			       phy_id, phy->addr);
886			/* At the time of this writing, The M88 part is
887			 * the only supported SGMII PHY product.
888			 */
889			if (phy_id == M88_VENDOR)
890				break;
891		} else {
892			hw_dbg("PHY address %u was unreadable\n", phy->addr);
893		}
894	}
895
896	/* A valid PHY type couldn't be found. */
897	if (phy->addr == 8) {
898		phy->addr = 0;
899		ret_val = -E1000_ERR_PHY;
900		goto out;
901	} else {
902		ret_val = igb_get_phy_id(hw);
903	}
904
905	/* restore previous sfp cage power state */
906	wr32(E1000_CTRL_EXT, ctrl_ext);
907
908out:
909	return ret_val;
910}
911
912/**
913 *  igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
914 *  @hw: pointer to the HW structure
915 *
916 *  Resets the PHY using the serial gigabit media independent interface.
917 **/
918static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
919{
920	struct e1000_phy_info *phy = &hw->phy;
921	s32 ret_val;
922
923	/* This isn't a true "hard" reset, but is the only reset
924	 * available to us at this time.
925	 */
926
927	hw_dbg("Soft resetting SGMII attached PHY...\n");
928
929	/* SFP documentation requires the following to configure the SPF module
930	 * to work on SGMII.  No further documentation is given.
931	 */
932	ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
933	if (ret_val)
934		goto out;
935
936	ret_val = igb_phy_sw_reset(hw);
937	if (ret_val)
938		goto out;
939
940	if (phy->id == M88E1512_E_PHY_ID)
941		ret_val = igb_initialize_M88E1512_phy(hw);
942	if (phy->id == M88E1543_E_PHY_ID)
943		ret_val = igb_initialize_M88E1543_phy(hw);
944out:
945	return ret_val;
946}
947
948/**
949 *  igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
950 *  @hw: pointer to the HW structure
951 *  @active: true to enable LPLU, false to disable
952 *
953 *  Sets the LPLU D0 state according to the active flag.  When
954 *  activating LPLU this function also disables smart speed
955 *  and vice versa.  LPLU will not be activated unless the
956 *  device autonegotiation advertisement meets standards of
957 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
958 *  This is a function pointer entry point only called by
959 *  PHY setup routines.
960 **/
961static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
962{
963	struct e1000_phy_info *phy = &hw->phy;
964	s32 ret_val;
965	u16 data;
966
967	ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
968	if (ret_val)
969		goto out;
970
971	if (active) {
972		data |= IGP02E1000_PM_D0_LPLU;
973		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
974						 data);
975		if (ret_val)
976			goto out;
977
978		/* When LPLU is enabled, we should disable SmartSpeed */
979		ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
980						&data);
981		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
982		ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
983						 data);
984		if (ret_val)
985			goto out;
986	} else {
987		data &= ~IGP02E1000_PM_D0_LPLU;
988		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
989						 data);
990		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
991		 * during Dx states where the power conservation is most
992		 * important.  During driver activity we should enable
993		 * SmartSpeed, so performance is maintained.
994		 */
995		if (phy->smart_speed == e1000_smart_speed_on) {
996			ret_val = phy->ops.read_reg(hw,
997					IGP01E1000_PHY_PORT_CONFIG, &data);
998			if (ret_val)
999				goto out;
1000
1001			data |= IGP01E1000_PSCFR_SMART_SPEED;
1002			ret_val = phy->ops.write_reg(hw,
1003					IGP01E1000_PHY_PORT_CONFIG, data);
1004			if (ret_val)
1005				goto out;
1006		} else if (phy->smart_speed == e1000_smart_speed_off) {
1007			ret_val = phy->ops.read_reg(hw,
1008					IGP01E1000_PHY_PORT_CONFIG, &data);
1009			if (ret_val)
1010				goto out;
1011
1012			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1013			ret_val = phy->ops.write_reg(hw,
1014					IGP01E1000_PHY_PORT_CONFIG, data);
1015			if (ret_val)
1016				goto out;
1017		}
1018	}
1019
1020out:
1021	return ret_val;
1022}
1023
1024/**
1025 *  igb_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state
1026 *  @hw: pointer to the HW structure
1027 *  @active: true to enable LPLU, false to disable
1028 *
1029 *  Sets the LPLU D0 state according to the active flag.  When
1030 *  activating LPLU this function also disables smart speed
1031 *  and vice versa.  LPLU will not be activated unless the
1032 *  device autonegotiation advertisement meets standards of
1033 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
1034 *  This is a function pointer entry point only called by
1035 *  PHY setup routines.
1036 **/
1037static s32 igb_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active)
1038{
1039	struct e1000_phy_info *phy = &hw->phy;
1040	u16 data;
1041
1042	data = rd32(E1000_82580_PHY_POWER_MGMT);
1043
1044	if (active) {
1045		data |= E1000_82580_PM_D0_LPLU;
1046
1047		/* When LPLU is enabled, we should disable SmartSpeed */
1048		data &= ~E1000_82580_PM_SPD;
1049	} else {
1050		data &= ~E1000_82580_PM_D0_LPLU;
1051
1052		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1053		 * during Dx states where the power conservation is most
1054		 * important.  During driver activity we should enable
1055		 * SmartSpeed, so performance is maintained.
1056		 */
1057		if (phy->smart_speed == e1000_smart_speed_on)
1058			data |= E1000_82580_PM_SPD;
1059		else if (phy->smart_speed == e1000_smart_speed_off)
1060			data &= ~E1000_82580_PM_SPD; }
1061
1062	wr32(E1000_82580_PHY_POWER_MGMT, data);
1063	return 0;
1064}
1065
1066/**
1067 *  igb_set_d3_lplu_state_82580 - Sets low power link up state for D3
1068 *  @hw: pointer to the HW structure
1069 *  @active: boolean used to enable/disable lplu
1070 *
1071 *  Success returns 0, Failure returns 1
1072 *
1073 *  The low power link up (lplu) state is set to the power management level D3
1074 *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1075 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1076 *  is used during Dx states where the power conservation is most important.
1077 *  During driver activity, SmartSpeed should be enabled so performance is
1078 *  maintained.
1079 **/
1080static s32 igb_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active)
1081{
1082	struct e1000_phy_info *phy = &hw->phy;
1083	u16 data;
1084
1085	data = rd32(E1000_82580_PHY_POWER_MGMT);
1086
1087	if (!active) {
1088		data &= ~E1000_82580_PM_D3_LPLU;
1089		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1090		 * during Dx states where the power conservation is most
1091		 * important.  During driver activity we should enable
1092		 * SmartSpeed, so performance is maintained.
1093		 */
1094		if (phy->smart_speed == e1000_smart_speed_on)
1095			data |= E1000_82580_PM_SPD;
1096		else if (phy->smart_speed == e1000_smart_speed_off)
1097			data &= ~E1000_82580_PM_SPD;
1098	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1099		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1100		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1101		data |= E1000_82580_PM_D3_LPLU;
1102		/* When LPLU is enabled, we should disable SmartSpeed */
1103		data &= ~E1000_82580_PM_SPD;
1104	}
1105
1106	wr32(E1000_82580_PHY_POWER_MGMT, data);
1107	return 0;
1108}
1109
1110/**
1111 *  igb_acquire_nvm_82575 - Request for access to EEPROM
1112 *  @hw: pointer to the HW structure
1113 *
1114 *  Acquire the necessary semaphores for exclusive access to the EEPROM.
1115 *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
1116 *  Return successful if access grant bit set, else clear the request for
1117 *  EEPROM access and return -E1000_ERR_NVM (-1).
1118 **/
1119static s32 igb_acquire_nvm_82575(struct e1000_hw *hw)
1120{
1121	s32 ret_val;
1122
1123	ret_val = hw->mac.ops.acquire_swfw_sync(hw, E1000_SWFW_EEP_SM);
1124	if (ret_val)
1125		goto out;
1126
1127	ret_val = igb_acquire_nvm(hw);
1128
1129	if (ret_val)
1130		hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
1131
1132out:
1133	return ret_val;
1134}
1135
1136/**
1137 *  igb_release_nvm_82575 - Release exclusive access to EEPROM
1138 *  @hw: pointer to the HW structure
1139 *
1140 *  Stop any current commands to the EEPROM and clear the EEPROM request bit,
1141 *  then release the semaphores acquired.
1142 **/
1143static void igb_release_nvm_82575(struct e1000_hw *hw)
1144{
1145	igb_release_nvm(hw);
1146	hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
1147}
1148
1149/**
1150 *  igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
1151 *  @hw: pointer to the HW structure
1152 *  @mask: specifies which semaphore to acquire
1153 *
1154 *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
1155 *  will also specify which port we're acquiring the lock for.
1156 **/
1157static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1158{
1159	u32 swfw_sync;
1160	u32 swmask = mask;
1161	u32 fwmask = mask << 16;
1162	s32 ret_val = 0;
1163	s32 i = 0, timeout = 200;
1164
1165	while (i < timeout) {
1166		if (igb_get_hw_semaphore(hw)) {
1167			ret_val = -E1000_ERR_SWFW_SYNC;
1168			goto out;
1169		}
1170
1171		swfw_sync = rd32(E1000_SW_FW_SYNC);
1172		if (!(swfw_sync & (fwmask | swmask)))
1173			break;
1174
1175		/* Firmware currently using resource (fwmask)
1176		 * or other software thread using resource (swmask)
1177		 */
1178		igb_put_hw_semaphore(hw);
1179		mdelay(5);
1180		i++;
1181	}
1182
1183	if (i == timeout) {
1184		hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
1185		ret_val = -E1000_ERR_SWFW_SYNC;
1186		goto out;
1187	}
1188
1189	swfw_sync |= swmask;
1190	wr32(E1000_SW_FW_SYNC, swfw_sync);
1191
1192	igb_put_hw_semaphore(hw);
1193
1194out:
1195	return ret_val;
1196}
1197
1198/**
1199 *  igb_release_swfw_sync_82575 - Release SW/FW semaphore
1200 *  @hw: pointer to the HW structure
1201 *  @mask: specifies which semaphore to acquire
1202 *
1203 *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
1204 *  will also specify which port we're releasing the lock for.
1205 **/
1206static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1207{
1208	u32 swfw_sync;
1209
1210	while (igb_get_hw_semaphore(hw) != 0)
1211		; /* Empty */
1212
1213	swfw_sync = rd32(E1000_SW_FW_SYNC);
1214	swfw_sync &= ~mask;
1215	wr32(E1000_SW_FW_SYNC, swfw_sync);
1216
1217	igb_put_hw_semaphore(hw);
1218}
1219
1220/**
1221 *  igb_get_cfg_done_82575 - Read config done bit
1222 *  @hw: pointer to the HW structure
1223 *
1224 *  Read the management control register for the config done bit for
1225 *  completion status.  NOTE: silicon which is EEPROM-less will fail trying
1226 *  to read the config done bit, so an error is *ONLY* logged and returns
1227 *  0.  If we were to return with error, EEPROM-less silicon
1228 *  would not be able to be reset or change link.
1229 **/
1230static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
1231{
1232	s32 timeout = PHY_CFG_TIMEOUT;
1233	u32 mask = E1000_NVM_CFG_DONE_PORT_0;
1234
1235	if (hw->bus.func == 1)
1236		mask = E1000_NVM_CFG_DONE_PORT_1;
1237	else if (hw->bus.func == E1000_FUNC_2)
1238		mask = E1000_NVM_CFG_DONE_PORT_2;
1239	else if (hw->bus.func == E1000_FUNC_3)
1240		mask = E1000_NVM_CFG_DONE_PORT_3;
1241
1242	while (timeout) {
1243		if (rd32(E1000_EEMNGCTL) & mask)
1244			break;
1245		usleep_range(1000, 2000);
1246		timeout--;
1247	}
1248	if (!timeout)
1249		hw_dbg("MNG configuration cycle has not completed.\n");
1250
1251	/* If EEPROM is not marked present, init the PHY manually */
1252	if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
1253	    (hw->phy.type == e1000_phy_igp_3))
1254		igb_phy_init_script_igp3(hw);
1255
1256	return 0;
1257}
1258
1259/**
1260 *  igb_get_link_up_info_82575 - Get link speed/duplex info
1261 *  @hw: pointer to the HW structure
1262 *  @speed: stores the current speed
1263 *  @duplex: stores the current duplex
1264 *
1265 *  This is a wrapper function, if using the serial gigabit media independent
1266 *  interface, use PCS to retrieve the link speed and duplex information.
1267 *  Otherwise, use the generic function to get the link speed and duplex info.
1268 **/
1269static s32 igb_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed,
1270					u16 *duplex)
1271{
1272	s32 ret_val;
1273
1274	if (hw->phy.media_type != e1000_media_type_copper)
1275		ret_val = igb_get_pcs_speed_and_duplex_82575(hw, speed,
1276							       duplex);
1277	else
1278		ret_val = igb_get_speed_and_duplex_copper(hw, speed,
1279								    duplex);
1280
1281	return ret_val;
1282}
1283
1284/**
1285 *  igb_check_for_link_82575 - Check for link
1286 *  @hw: pointer to the HW structure
1287 *
1288 *  If sgmii is enabled, then use the pcs register to determine link, otherwise
1289 *  use the generic interface for determining link.
1290 **/
1291static s32 igb_check_for_link_82575(struct e1000_hw *hw)
1292{
1293	s32 ret_val;
1294	u16 speed, duplex;
1295
1296	if (hw->phy.media_type != e1000_media_type_copper) {
1297		ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed,
1298							     &duplex);
1299		/* Use this flag to determine if link needs to be checked or
1300		 * not.  If  we have link clear the flag so that we do not
1301		 * continue to check for link.
1302		 */
1303		hw->mac.get_link_status = !hw->mac.serdes_has_link;
1304
1305		/* Configure Flow Control now that Auto-Neg has completed.
1306		 * First, we need to restore the desired flow control
1307		 * settings because we may have had to re-autoneg with a
1308		 * different link partner.
1309		 */
1310		ret_val = igb_config_fc_after_link_up(hw);
1311		if (ret_val)
1312			hw_dbg("Error configuring flow control\n");
1313	} else {
1314		ret_val = igb_check_for_copper_link(hw);
1315	}
1316
1317	return ret_val;
1318}
1319
1320/**
1321 *  igb_power_up_serdes_link_82575 - Power up the serdes link after shutdown
1322 *  @hw: pointer to the HW structure
1323 **/
1324void igb_power_up_serdes_link_82575(struct e1000_hw *hw)
1325{
1326	u32 reg;
1327
1328
1329	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1330	    !igb_sgmii_active_82575(hw))
1331		return;
1332
1333	/* Enable PCS to turn on link */
1334	reg = rd32(E1000_PCS_CFG0);
1335	reg |= E1000_PCS_CFG_PCS_EN;
1336	wr32(E1000_PCS_CFG0, reg);
1337
1338	/* Power up the laser */
1339	reg = rd32(E1000_CTRL_EXT);
1340	reg &= ~E1000_CTRL_EXT_SDP3_DATA;
1341	wr32(E1000_CTRL_EXT, reg);
1342
1343	/* flush the write to verify completion */
1344	wrfl();
1345	usleep_range(1000, 2000);
1346}
1347
1348/**
1349 *  igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
1350 *  @hw: pointer to the HW structure
1351 *  @speed: stores the current speed
1352 *  @duplex: stores the current duplex
1353 *
1354 *  Using the physical coding sub-layer (PCS), retrieve the current speed and
1355 *  duplex, then store the values in the pointers provided.
1356 **/
1357static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
1358						u16 *duplex)
1359{
1360	struct e1000_mac_info *mac = &hw->mac;
1361	u32 pcs, status;
1362
1363	/* Set up defaults for the return values of this function */
1364	mac->serdes_has_link = false;
1365	*speed = 0;
1366	*duplex = 0;
1367
1368	/* Read the PCS Status register for link state. For non-copper mode,
1369	 * the status register is not accurate. The PCS status register is
1370	 * used instead.
1371	 */
1372	pcs = rd32(E1000_PCS_LSTAT);
1373
1374	/* The link up bit determines when link is up on autoneg. The sync ok
1375	 * gets set once both sides sync up and agree upon link. Stable link
1376	 * can be determined by checking for both link up and link sync ok
1377	 */
1378	if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
1379		mac->serdes_has_link = true;
1380
1381		/* Detect and store PCS speed */
1382		if (pcs & E1000_PCS_LSTS_SPEED_1000)
1383			*speed = SPEED_1000;
1384		else if (pcs & E1000_PCS_LSTS_SPEED_100)
1385			*speed = SPEED_100;
1386		else
1387			*speed = SPEED_10;
1388
1389		/* Detect and store PCS duplex */
1390		if (pcs & E1000_PCS_LSTS_DUPLEX_FULL)
1391			*duplex = FULL_DUPLEX;
1392		else
1393			*duplex = HALF_DUPLEX;
1394
1395	/* Check if it is an I354 2.5Gb backplane connection. */
1396		if (mac->type == e1000_i354) {
1397			status = rd32(E1000_STATUS);
1398			if ((status & E1000_STATUS_2P5_SKU) &&
1399			    !(status & E1000_STATUS_2P5_SKU_OVER)) {
1400				*speed = SPEED_2500;
1401				*duplex = FULL_DUPLEX;
1402				hw_dbg("2500 Mbs, ");
1403				hw_dbg("Full Duplex\n");
1404			}
1405		}
1406
1407	}
1408
1409	return 0;
1410}
1411
1412/**
1413 *  igb_shutdown_serdes_link_82575 - Remove link during power down
1414 *  @hw: pointer to the HW structure
1415 *
1416 *  In the case of fiber serdes, shut down optics and PCS on driver unload
1417 *  when management pass thru is not enabled.
1418 **/
1419void igb_shutdown_serdes_link_82575(struct e1000_hw *hw)
1420{
1421	u32 reg;
1422
1423	if (hw->phy.media_type != e1000_media_type_internal_serdes &&
1424	    igb_sgmii_active_82575(hw))
1425		return;
1426
1427	if (!igb_enable_mng_pass_thru(hw)) {
1428		/* Disable PCS to turn off link */
1429		reg = rd32(E1000_PCS_CFG0);
1430		reg &= ~E1000_PCS_CFG_PCS_EN;
1431		wr32(E1000_PCS_CFG0, reg);
1432
1433		/* shutdown the laser */
1434		reg = rd32(E1000_CTRL_EXT);
1435		reg |= E1000_CTRL_EXT_SDP3_DATA;
1436		wr32(E1000_CTRL_EXT, reg);
1437
1438		/* flush the write to verify completion */
1439		wrfl();
1440		usleep_range(1000, 2000);
1441	}
1442}
1443
1444/**
1445 *  igb_reset_hw_82575 - Reset hardware
1446 *  @hw: pointer to the HW structure
1447 *
1448 *  This resets the hardware into a known state.  This is a
1449 *  function pointer entry point called by the api module.
1450 **/
1451static s32 igb_reset_hw_82575(struct e1000_hw *hw)
1452{
1453	u32 ctrl;
1454	s32 ret_val;
1455
1456	/* Prevent the PCI-E bus from sticking if there is no TLP connection
1457	 * on the last TLP read/write transaction when MAC is reset.
1458	 */
1459	ret_val = igb_disable_pcie_master(hw);
1460	if (ret_val)
1461		hw_dbg("PCI-E Master disable polling has failed.\n");
1462
1463	/* set the completion timeout for interface */
1464	ret_val = igb_set_pcie_completion_timeout(hw);
1465	if (ret_val)
1466		hw_dbg("PCI-E Set completion timeout has failed.\n");
1467
1468	hw_dbg("Masking off all interrupts\n");
1469	wr32(E1000_IMC, 0xffffffff);
1470
1471	wr32(E1000_RCTL, 0);
1472	wr32(E1000_TCTL, E1000_TCTL_PSP);
1473	wrfl();
1474
1475	usleep_range(10000, 20000);
1476
1477	ctrl = rd32(E1000_CTRL);
1478
1479	hw_dbg("Issuing a global reset to MAC\n");
1480	wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);
1481
1482	ret_val = igb_get_auto_rd_done(hw);
1483	if (ret_val) {
1484		/* When auto config read does not complete, do not
1485		 * return with an error. This can happen in situations
1486		 * where there is no eeprom and prevents getting link.
1487		 */
1488		hw_dbg("Auto Read Done did not complete\n");
1489	}
1490
1491	/* If EEPROM is not present, run manual init scripts */
1492	if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
1493		igb_reset_init_script_82575(hw);
1494
1495	/* Clear any pending interrupt events. */
1496	wr32(E1000_IMC, 0xffffffff);
1497	rd32(E1000_ICR);
1498
1499	/* Install any alternate MAC address into RAR0 */
1500	ret_val = igb_check_alt_mac_addr(hw);
1501
1502	return ret_val;
1503}
1504
1505/**
1506 *  igb_init_hw_82575 - Initialize hardware
1507 *  @hw: pointer to the HW structure
1508 *
1509 *  This inits the hardware readying it for operation.
1510 **/
1511static s32 igb_init_hw_82575(struct e1000_hw *hw)
1512{
1513	struct e1000_mac_info *mac = &hw->mac;
1514	s32 ret_val;
1515	u16 i, rar_count = mac->rar_entry_count;
1516
1517	if ((hw->mac.type >= e1000_i210) &&
1518	    !(igb_get_flash_presence_i210(hw))) {
1519		ret_val = igb_pll_workaround_i210(hw);
1520		if (ret_val)
1521			return ret_val;
1522	}
1523
1524	/* Initialize identification LED */
1525	ret_val = igb_id_led_init(hw);
1526	if (ret_val) {
1527		hw_dbg("Error initializing identification LED\n");
1528		/* This is not fatal and we should not stop init due to this */
1529	}
1530
1531	/* Disabling VLAN filtering */
1532	hw_dbg("Initializing the IEEE VLAN\n");
1533	igb_clear_vfta(hw);
1534
1535	/* Setup the receive address */
1536	igb_init_rx_addrs(hw, rar_count);
1537
1538	/* Zero out the Multicast HASH table */
1539	hw_dbg("Zeroing the MTA\n");
1540	for (i = 0; i < mac->mta_reg_count; i++)
1541		array_wr32(E1000_MTA, i, 0);
1542
1543	/* Zero out the Unicast HASH table */
1544	hw_dbg("Zeroing the UTA\n");
1545	for (i = 0; i < mac->uta_reg_count; i++)
1546		array_wr32(E1000_UTA, i, 0);
1547
1548	/* Setup link and flow control */
1549	ret_val = igb_setup_link(hw);
1550
1551	/* Clear all of the statistics registers (clear on read).  It is
1552	 * important that we do this after we have tried to establish link
1553	 * because the symbol error count will increment wildly if there
1554	 * is no link.
1555	 */
1556	igb_clear_hw_cntrs_82575(hw);
1557	return ret_val;
1558}
1559
1560/**
1561 *  igb_setup_copper_link_82575 - Configure copper link settings
1562 *  @hw: pointer to the HW structure
1563 *
1564 *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1565 *  for link, once link is established calls to configure collision distance
1566 *  and flow control are called.
1567 **/
1568static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
1569{
1570	u32 ctrl;
1571	s32  ret_val;
1572	u32 phpm_reg;
1573
1574	ctrl = rd32(E1000_CTRL);
1575	ctrl |= E1000_CTRL_SLU;
1576	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1577	wr32(E1000_CTRL, ctrl);
1578
1579	/* Clear Go Link Disconnect bit on supported devices */
1580	switch (hw->mac.type) {
1581	case e1000_82580:
1582	case e1000_i350:
1583	case e1000_i210:
1584	case e1000_i211:
1585		phpm_reg = rd32(E1000_82580_PHY_POWER_MGMT);
1586		phpm_reg &= ~E1000_82580_PM_GO_LINKD;
1587		wr32(E1000_82580_PHY_POWER_MGMT, phpm_reg);
1588		break;
1589	default:
1590		break;
1591	}
1592
1593	ret_val = igb_setup_serdes_link_82575(hw);
1594	if (ret_val)
1595		goto out;
1596
1597	if (igb_sgmii_active_82575(hw) && !hw->phy.reset_disable) {
1598		/* allow time for SFP cage time to power up phy */
1599		msleep(300);
1600
1601		ret_val = hw->phy.ops.reset(hw);
1602		if (ret_val) {
1603			hw_dbg("Error resetting the PHY.\n");
1604			goto out;
1605		}
1606	}
1607	switch (hw->phy.type) {
1608	case e1000_phy_i210:
1609	case e1000_phy_m88:
1610		switch (hw->phy.id) {
1611		case I347AT4_E_PHY_ID:
1612		case M88E1112_E_PHY_ID:
1613		case M88E1543_E_PHY_ID:
1614		case M88E1512_E_PHY_ID:
1615		case I210_I_PHY_ID:
1616			ret_val = igb_copper_link_setup_m88_gen2(hw);
1617			break;
1618		default:
1619			ret_val = igb_copper_link_setup_m88(hw);
1620			break;
1621		}
1622		break;
1623	case e1000_phy_igp_3:
1624		ret_val = igb_copper_link_setup_igp(hw);
1625		break;
1626	case e1000_phy_82580:
1627		ret_val = igb_copper_link_setup_82580(hw);
1628		break;
1629	case e1000_phy_bcm54616:
1630		ret_val = 0;
1631		break;
1632	default:
1633		ret_val = -E1000_ERR_PHY;
1634		break;
1635	}
1636
1637	if (ret_val)
1638		goto out;
1639
1640	ret_val = igb_setup_copper_link(hw);
1641out:
1642	return ret_val;
1643}
1644
1645/**
1646 *  igb_setup_serdes_link_82575 - Setup link for serdes
1647 *  @hw: pointer to the HW structure
1648 *
1649 *  Configure the physical coding sub-layer (PCS) link.  The PCS link is
1650 *  used on copper connections where the serialized gigabit media independent
1651 *  interface (sgmii), or serdes fiber is being used.  Configures the link
1652 *  for auto-negotiation or forces speed/duplex.
1653 **/
1654static s32 igb_setup_serdes_link_82575(struct e1000_hw *hw)
1655{
1656	u32 ctrl_ext, ctrl_reg, reg, anadv_reg;
1657	bool pcs_autoneg;
1658	s32 ret_val = 0;
1659	u16 data;
1660
1661	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1662	    !igb_sgmii_active_82575(hw))
1663		return ret_val;
1664
1665
1666	/* On the 82575, SerDes loopback mode persists until it is
1667	 * explicitly turned off or a power cycle is performed.  A read to
1668	 * the register does not indicate its status.  Therefore, we ensure
1669	 * loopback mode is disabled during initialization.
1670	 */
1671	wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1672
1673	/* power on the sfp cage if present and turn on I2C */
1674	ctrl_ext = rd32(E1000_CTRL_EXT);
1675	ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
1676	ctrl_ext |= E1000_CTRL_I2C_ENA;
1677	wr32(E1000_CTRL_EXT, ctrl_ext);
1678
1679	ctrl_reg = rd32(E1000_CTRL);
1680	ctrl_reg |= E1000_CTRL_SLU;
1681
1682	if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) {
1683		/* set both sw defined pins */
1684		ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;
1685
1686		/* Set switch control to serdes energy detect */
1687		reg = rd32(E1000_CONNSW);
1688		reg |= E1000_CONNSW_ENRGSRC;
1689		wr32(E1000_CONNSW, reg);
1690	}
1691
1692	reg = rd32(E1000_PCS_LCTL);
1693
1694	/* default pcs_autoneg to the same setting as mac autoneg */
1695	pcs_autoneg = hw->mac.autoneg;
1696
1697	switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
1698	case E1000_CTRL_EXT_LINK_MODE_SGMII:
1699		/* sgmii mode lets the phy handle forcing speed/duplex */
1700		pcs_autoneg = true;
1701		/* autoneg time out should be disabled for SGMII mode */
1702		reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
1703		break;
1704	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
1705		/* disable PCS autoneg and support parallel detect only */
1706		pcs_autoneg = false;
1707		fallthrough;
1708	default:
1709		if (hw->mac.type == e1000_82575 ||
1710		    hw->mac.type == e1000_82576) {
1711			ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data);
1712			if (ret_val) {
1713				hw_dbg(KERN_DEBUG "NVM Read Error\n\n");
1714				return ret_val;
1715			}
1716
1717			if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT)
1718				pcs_autoneg = false;
1719		}
1720
1721		/* non-SGMII modes only supports a speed of 1000/Full for the
1722		 * link so it is best to just force the MAC and let the pcs
1723		 * link either autoneg or be forced to 1000/Full
1724		 */
1725		ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
1726				E1000_CTRL_FD | E1000_CTRL_FRCDPX;
1727
1728		/* set speed of 1000/Full if speed/duplex is forced */
1729		reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
1730		break;
1731	}
1732
1733	wr32(E1000_CTRL, ctrl_reg);
1734
1735	/* New SerDes mode allows for forcing speed or autonegotiating speed
1736	 * at 1gb. Autoneg should be default set by most drivers. This is the
1737	 * mode that will be compatible with older link partners and switches.
1738	 * However, both are supported by the hardware and some drivers/tools.
1739	 */
1740	reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
1741		E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1742
1743	if (pcs_autoneg) {
1744		/* Set PCS register for autoneg */
1745		reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
1746		       E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
1747
1748		/* Disable force flow control for autoneg */
1749		reg &= ~E1000_PCS_LCTL_FORCE_FCTRL;
1750
1751		/* Configure flow control advertisement for autoneg */
1752		anadv_reg = rd32(E1000_PCS_ANADV);
1753		anadv_reg &= ~(E1000_TXCW_ASM_DIR | E1000_TXCW_PAUSE);
1754		switch (hw->fc.requested_mode) {
1755		case e1000_fc_full:
1756		case e1000_fc_rx_pause:
1757			anadv_reg |= E1000_TXCW_ASM_DIR;
1758			anadv_reg |= E1000_TXCW_PAUSE;
1759			break;
1760		case e1000_fc_tx_pause:
1761			anadv_reg |= E1000_TXCW_ASM_DIR;
1762			break;
1763		default:
1764			break;
1765		}
1766		wr32(E1000_PCS_ANADV, anadv_reg);
1767
1768		hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
1769	} else {
1770		/* Set PCS register for forced link */
1771		reg |= E1000_PCS_LCTL_FSD;        /* Force Speed */
1772
1773		/* Force flow control for forced link */
1774		reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1775
1776		hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
1777	}
1778
1779	wr32(E1000_PCS_LCTL, reg);
1780
1781	if (!pcs_autoneg && !igb_sgmii_active_82575(hw))
1782		igb_force_mac_fc(hw);
1783
1784	return ret_val;
1785}
1786
1787/**
1788 *  igb_sgmii_active_82575 - Return sgmii state
1789 *  @hw: pointer to the HW structure
1790 *
1791 *  82575 silicon has a serialized gigabit media independent interface (sgmii)
1792 *  which can be enabled for use in the embedded applications.  Simply
1793 *  return the current state of the sgmii interface.
1794 **/
1795static bool igb_sgmii_active_82575(struct e1000_hw *hw)
1796{
1797	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
1798	return dev_spec->sgmii_active;
1799}
1800
1801/**
1802 *  igb_reset_init_script_82575 - Inits HW defaults after reset
1803 *  @hw: pointer to the HW structure
1804 *
1805 *  Inits recommended HW defaults after a reset when there is no EEPROM
1806 *  detected. This is only for the 82575.
1807 **/
1808static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
1809{
1810	if (hw->mac.type == e1000_82575) {
1811		hw_dbg("Running reset init script for 82575\n");
1812		/* SerDes configuration via SERDESCTRL */
1813		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
1814		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
1815		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
1816		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);
1817
1818		/* CCM configuration via CCMCTL register */
1819		igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
1820		igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);
1821
1822		/* PCIe lanes configuration */
1823		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
1824		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
1825		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
1826		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);
1827
1828		/* PCIe PLL Configuration */
1829		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
1830		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
1831		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
1832	}
1833
1834	return 0;
1835}
1836
1837/**
1838 *  igb_read_mac_addr_82575 - Read device MAC address
1839 *  @hw: pointer to the HW structure
1840 **/
1841static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
1842{
1843	s32 ret_val = 0;
1844
1845	/* If there's an alternate MAC address place it in RAR0
1846	 * so that it will override the Si installed default perm
1847	 * address.
1848	 */
1849	ret_val = igb_check_alt_mac_addr(hw);
1850	if (ret_val)
1851		goto out;
1852
1853	ret_val = igb_read_mac_addr(hw);
1854
1855out:
1856	return ret_val;
1857}
1858
1859/**
1860 * igb_power_down_phy_copper_82575 - Remove link during PHY power down
1861 * @hw: pointer to the HW structure
1862 *
1863 * In the case of a PHY power down to save power, or to turn off link during a
1864 * driver unload, or wake on lan is not enabled, remove the link.
1865 **/
1866void igb_power_down_phy_copper_82575(struct e1000_hw *hw)
1867{
1868	/* If the management interface is not enabled, then power down */
1869	if (!(igb_enable_mng_pass_thru(hw) || igb_check_reset_block(hw)))
1870		igb_power_down_phy_copper(hw);
1871}
1872
1873/**
1874 *  igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
1875 *  @hw: pointer to the HW structure
1876 *
1877 *  Clears the hardware counters by reading the counter registers.
1878 **/
1879static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
1880{
1881	igb_clear_hw_cntrs_base(hw);
1882
1883	rd32(E1000_PRC64);
1884	rd32(E1000_PRC127);
1885	rd32(E1000_PRC255);
1886	rd32(E1000_PRC511);
1887	rd32(E1000_PRC1023);
1888	rd32(E1000_PRC1522);
1889	rd32(E1000_PTC64);
1890	rd32(E1000_PTC127);
1891	rd32(E1000_PTC255);
1892	rd32(E1000_PTC511);
1893	rd32(E1000_PTC1023);
1894	rd32(E1000_PTC1522);
1895
1896	rd32(E1000_ALGNERRC);
1897	rd32(E1000_RXERRC);
1898	rd32(E1000_TNCRS);
1899	rd32(E1000_CEXTERR);
1900	rd32(E1000_TSCTC);
1901	rd32(E1000_TSCTFC);
1902
1903	rd32(E1000_MGTPRC);
1904	rd32(E1000_MGTPDC);
1905	rd32(E1000_MGTPTC);
1906
1907	rd32(E1000_IAC);
1908	rd32(E1000_ICRXOC);
1909
1910	rd32(E1000_ICRXPTC);
1911	rd32(E1000_ICRXATC);
1912	rd32(E1000_ICTXPTC);
1913	rd32(E1000_ICTXATC);
1914	rd32(E1000_ICTXQEC);
1915	rd32(E1000_ICTXQMTC);
1916	rd32(E1000_ICRXDMTC);
1917
1918	rd32(E1000_CBTMPC);
1919	rd32(E1000_HTDPMC);
1920	rd32(E1000_CBRMPC);
1921	rd32(E1000_RPTHC);
1922	rd32(E1000_HGPTC);
1923	rd32(E1000_HTCBDPC);
1924	rd32(E1000_HGORCL);
1925	rd32(E1000_HGORCH);
1926	rd32(E1000_HGOTCL);
1927	rd32(E1000_HGOTCH);
1928	rd32(E1000_LENERRS);
1929
1930	/* This register should not be read in copper configurations */
1931	if (hw->phy.media_type == e1000_media_type_internal_serdes ||
1932	    igb_sgmii_active_82575(hw))
1933		rd32(E1000_SCVPC);
1934}
1935
1936/**
1937 *  igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
1938 *  @hw: pointer to the HW structure
1939 *
1940 *  After rx enable if manageability is enabled then there is likely some
1941 *  bad data at the start of the fifo and possibly in the DMA fifo. This
1942 *  function clears the fifos and flushes any packets that came in as rx was
1943 *  being enabled.
1944 **/
1945void igb_rx_fifo_flush_82575(struct e1000_hw *hw)
1946{
1947	u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
1948	int i, ms_wait;
1949
1950	/* disable IPv6 options as per hardware errata */
1951	rfctl = rd32(E1000_RFCTL);
1952	rfctl |= E1000_RFCTL_IPV6_EX_DIS;
1953	wr32(E1000_RFCTL, rfctl);
1954
1955	if (hw->mac.type != e1000_82575 ||
1956	    !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN))
1957		return;
1958
1959	/* Disable all RX queues */
1960	for (i = 0; i < 4; i++) {
1961		rxdctl[i] = rd32(E1000_RXDCTL(i));
1962		wr32(E1000_RXDCTL(i),
1963		     rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
1964	}
1965	/* Poll all queues to verify they have shut down */
1966	for (ms_wait = 0; ms_wait < 10; ms_wait++) {
1967		usleep_range(1000, 2000);
1968		rx_enabled = 0;
1969		for (i = 0; i < 4; i++)
1970			rx_enabled |= rd32(E1000_RXDCTL(i));
1971		if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
1972			break;
1973	}
1974
1975	if (ms_wait == 10)
1976		hw_dbg("Queue disable timed out after 10ms\n");
1977
1978	/* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
1979	 * incoming packets are rejected.  Set enable and wait 2ms so that
1980	 * any packet that was coming in as RCTL.EN was set is flushed
1981	 */
1982	wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
1983
1984	rlpml = rd32(E1000_RLPML);
1985	wr32(E1000_RLPML, 0);
1986
1987	rctl = rd32(E1000_RCTL);
1988	temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
1989	temp_rctl |= E1000_RCTL_LPE;
1990
1991	wr32(E1000_RCTL, temp_rctl);
1992	wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN);
1993	wrfl();
1994	usleep_range(2000, 3000);
1995
1996	/* Enable RX queues that were previously enabled and restore our
1997	 * previous state
1998	 */
1999	for (i = 0; i < 4; i++)
2000		wr32(E1000_RXDCTL(i), rxdctl[i]);
2001	wr32(E1000_RCTL, rctl);
2002	wrfl();
2003
2004	wr32(E1000_RLPML, rlpml);
2005	wr32(E1000_RFCTL, rfctl);
2006
2007	/* Flush receive errors generated by workaround */
2008	rd32(E1000_ROC);
2009	rd32(E1000_RNBC);
2010	rd32(E1000_MPC);
2011}
2012
2013/**
2014 *  igb_set_pcie_completion_timeout - set pci-e completion timeout
2015 *  @hw: pointer to the HW structure
2016 *
2017 *  The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
2018 *  however the hardware default for these parts is 500us to 1ms which is less
2019 *  than the 10ms recommended by the pci-e spec.  To address this we need to
2020 *  increase the value to either 10ms to 200ms for capability version 1 config,
2021 *  or 16ms to 55ms for version 2.
2022 **/
2023static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw)
2024{
2025	u32 gcr = rd32(E1000_GCR);
2026	s32 ret_val = 0;
2027	u16 pcie_devctl2;
2028
2029	/* only take action if timeout value is defaulted to 0 */
2030	if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
2031		goto out;
2032
2033	/* if capabilities version is type 1 we can write the
2034	 * timeout of 10ms to 200ms through the GCR register
2035	 */
2036	if (!(gcr & E1000_GCR_CAP_VER2)) {
2037		gcr |= E1000_GCR_CMPL_TMOUT_10ms;
2038		goto out;
2039	}
2040
2041	/* for version 2 capabilities we need to write the config space
2042	 * directly in order to set the completion timeout value for
2043	 * 16ms to 55ms
2044	 */
2045	ret_val = igb_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
2046					&pcie_devctl2);
2047	if (ret_val)
2048		goto out;
2049
2050	pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
2051
2052	ret_val = igb_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
2053					 &pcie_devctl2);
2054out:
2055	/* disable completion timeout resend */
2056	gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
2057
2058	wr32(E1000_GCR, gcr);
2059	return ret_val;
2060}
2061
2062/**
2063 *  igb_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
2064 *  @hw: pointer to the hardware struct
2065 *  @enable: state to enter, either enabled or disabled
2066 *  @pf: Physical Function pool - do not set anti-spoofing for the PF
2067 *
2068 *  enables/disables L2 switch anti-spoofing functionality.
2069 **/
2070void igb_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf)
2071{
2072	u32 reg_val, reg_offset;
2073
2074	switch (hw->mac.type) {
2075	case e1000_82576:
2076		reg_offset = E1000_DTXSWC;
2077		break;
2078	case e1000_i350:
2079	case e1000_i354:
2080		reg_offset = E1000_TXSWC;
2081		break;
2082	default:
2083		return;
2084	}
2085
2086	reg_val = rd32(reg_offset);
2087	if (enable) {
2088		reg_val |= (E1000_DTXSWC_MAC_SPOOF_MASK |
2089			     E1000_DTXSWC_VLAN_SPOOF_MASK);
2090		/* The PF can spoof - it has to in order to
2091		 * support emulation mode NICs
2092		 */
2093		reg_val ^= (BIT(pf) | BIT(pf + MAX_NUM_VFS));
2094	} else {
2095		reg_val &= ~(E1000_DTXSWC_MAC_SPOOF_MASK |
2096			     E1000_DTXSWC_VLAN_SPOOF_MASK);
2097	}
2098	wr32(reg_offset, reg_val);
2099}
2100
2101/**
2102 *  igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
2103 *  @hw: pointer to the hardware struct
2104 *  @enable: state to enter, either enabled or disabled
2105 *
2106 *  enables/disables L2 switch loopback functionality.
2107 **/
2108void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
2109{
2110	u32 dtxswc;
2111
2112	switch (hw->mac.type) {
2113	case e1000_82576:
2114		dtxswc = rd32(E1000_DTXSWC);
2115		if (enable)
2116			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2117		else
2118			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2119		wr32(E1000_DTXSWC, dtxswc);
2120		break;
2121	case e1000_i354:
2122	case e1000_i350:
2123		dtxswc = rd32(E1000_TXSWC);
2124		if (enable)
2125			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2126		else
2127			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2128		wr32(E1000_TXSWC, dtxswc);
2129		break;
2130	default:
2131		/* Currently no other hardware supports loopback */
2132		break;
2133	}
2134
2135}
2136
2137/**
2138 *  igb_vmdq_set_replication_pf - enable or disable vmdq replication
2139 *  @hw: pointer to the hardware struct
2140 *  @enable: state to enter, either enabled or disabled
2141 *
2142 *  enables/disables replication of packets across multiple pools.
2143 **/
2144void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
2145{
2146	u32 vt_ctl = rd32(E1000_VT_CTL);
2147
2148	if (enable)
2149		vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
2150	else
2151		vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
2152
2153	wr32(E1000_VT_CTL, vt_ctl);
2154}
2155
2156/**
2157 *  igb_read_phy_reg_82580 - Read 82580 MDI control register
2158 *  @hw: pointer to the HW structure
2159 *  @offset: register offset to be read
2160 *  @data: pointer to the read data
2161 *
2162 *  Reads the MDI control register in the PHY at offset and stores the
2163 *  information read to data.
2164 **/
2165s32 igb_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
2166{
2167	s32 ret_val;
2168
2169	ret_val = hw->phy.ops.acquire(hw);
2170	if (ret_val)
2171		goto out;
2172
2173	ret_val = igb_read_phy_reg_mdic(hw, offset, data);
2174
2175	hw->phy.ops.release(hw);
2176
2177out:
2178	return ret_val;
2179}
2180
2181/**
2182 *  igb_write_phy_reg_82580 - Write 82580 MDI control register
2183 *  @hw: pointer to the HW structure
2184 *  @offset: register offset to write to
2185 *  @data: data to write to register at offset
2186 *
2187 *  Writes data to MDI control register in the PHY at offset.
2188 **/
2189s32 igb_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
2190{
2191	s32 ret_val;
2192
2193
2194	ret_val = hw->phy.ops.acquire(hw);
2195	if (ret_val)
2196		goto out;
2197
2198	ret_val = igb_write_phy_reg_mdic(hw, offset, data);
2199
2200	hw->phy.ops.release(hw);
2201
2202out:
2203	return ret_val;
2204}
2205
2206/**
2207 *  igb_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
2208 *  @hw: pointer to the HW structure
2209 *
2210 *  This resets the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
2211 *  the values found in the EEPROM.  This addresses an issue in which these
2212 *  bits are not restored from EEPROM after reset.
2213 **/
2214static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw)
2215{
2216	s32 ret_val = 0;
2217	u32 mdicnfg;
2218	u16 nvm_data = 0;
2219
2220	if (hw->mac.type != e1000_82580)
2221		goto out;
2222	if (!igb_sgmii_active_82575(hw))
2223		goto out;
2224
2225	ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2226				   NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2227				   &nvm_data);
2228	if (ret_val) {
2229		hw_dbg("NVM Read Error\n");
2230		goto out;
2231	}
2232
2233	mdicnfg = rd32(E1000_MDICNFG);
2234	if (nvm_data & NVM_WORD24_EXT_MDIO)
2235		mdicnfg |= E1000_MDICNFG_EXT_MDIO;
2236	if (nvm_data & NVM_WORD24_COM_MDIO)
2237		mdicnfg |= E1000_MDICNFG_COM_MDIO;
2238	wr32(E1000_MDICNFG, mdicnfg);
2239out:
2240	return ret_val;
2241}
2242
2243/**
2244 *  igb_reset_hw_82580 - Reset hardware
2245 *  @hw: pointer to the HW structure
2246 *
2247 *  This resets function or entire device (all ports, etc.)
2248 *  to a known state.
2249 **/
2250static s32 igb_reset_hw_82580(struct e1000_hw *hw)
2251{
2252	s32 ret_val = 0;
2253	/* BH SW mailbox bit in SW_FW_SYNC */
2254	u16 swmbsw_mask = E1000_SW_SYNCH_MB;
2255	u32 ctrl;
2256	bool global_device_reset = hw->dev_spec._82575.global_device_reset;
2257
2258	hw->dev_spec._82575.global_device_reset = false;
2259
2260	/* due to hw errata, global device reset doesn't always
2261	 * work on 82580
2262	 */
2263	if (hw->mac.type == e1000_82580)
2264		global_device_reset = false;
2265
2266	/* Get current control state. */
2267	ctrl = rd32(E1000_CTRL);
2268
2269	/* Prevent the PCI-E bus from sticking if there is no TLP connection
2270	 * on the last TLP read/write transaction when MAC is reset.
2271	 */
2272	ret_val = igb_disable_pcie_master(hw);
2273	if (ret_val)
2274		hw_dbg("PCI-E Master disable polling has failed.\n");
2275
2276	hw_dbg("Masking off all interrupts\n");
2277	wr32(E1000_IMC, 0xffffffff);
2278	wr32(E1000_RCTL, 0);
2279	wr32(E1000_TCTL, E1000_TCTL_PSP);
2280	wrfl();
2281
2282	usleep_range(10000, 11000);
2283
2284	/* Determine whether or not a global dev reset is requested */
2285	if (global_device_reset &&
2286		hw->mac.ops.acquire_swfw_sync(hw, swmbsw_mask))
2287			global_device_reset = false;
2288
2289	if (global_device_reset &&
2290		!(rd32(E1000_STATUS) & E1000_STAT_DEV_RST_SET))
2291		ctrl |= E1000_CTRL_DEV_RST;
2292	else
2293		ctrl |= E1000_CTRL_RST;
2294
2295	wr32(E1000_CTRL, ctrl);
2296	wrfl();
2297
2298	/* Add delay to insure DEV_RST has time to complete */
2299	if (global_device_reset)
2300		usleep_range(5000, 6000);
2301
2302	ret_val = igb_get_auto_rd_done(hw);
2303	if (ret_val) {
2304		/* When auto config read does not complete, do not
2305		 * return with an error. This can happen in situations
2306		 * where there is no eeprom and prevents getting link.
2307		 */
2308		hw_dbg("Auto Read Done did not complete\n");
2309	}
2310
2311	/* clear global device reset status bit */
2312	wr32(E1000_STATUS, E1000_STAT_DEV_RST_SET);
2313
2314	/* Clear any pending interrupt events. */
2315	wr32(E1000_IMC, 0xffffffff);
2316	rd32(E1000_ICR);
2317
2318	ret_val = igb_reset_mdicnfg_82580(hw);
2319	if (ret_val)
2320		hw_dbg("Could not reset MDICNFG based on EEPROM\n");
2321
2322	/* Install any alternate MAC address into RAR0 */
2323	ret_val = igb_check_alt_mac_addr(hw);
2324
2325	/* Release semaphore */
2326	if (global_device_reset)
2327		hw->mac.ops.release_swfw_sync(hw, swmbsw_mask);
2328
2329	return ret_val;
2330}
2331
2332/**
2333 *  igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size
2334 *  @data: data received by reading RXPBS register
2335 *
2336 *  The 82580 uses a table based approach for packet buffer allocation sizes.
2337 *  This function converts the retrieved value into the correct table value
2338 *     0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
2339 *  0x0 36  72 144   1   2   4   8  16
2340 *  0x8 35  70 140 rsv rsv rsv rsv rsv
2341 */
2342u16 igb_rxpbs_adjust_82580(u32 data)
2343{
2344	u16 ret_val = 0;
2345
2346	if (data < ARRAY_SIZE(e1000_82580_rxpbs_table))
2347		ret_val = e1000_82580_rxpbs_table[data];
2348
2349	return ret_val;
2350}
2351
2352/**
2353 *  igb_validate_nvm_checksum_with_offset - Validate EEPROM
2354 *  checksum
2355 *  @hw: pointer to the HW structure
2356 *  @offset: offset in words of the checksum protected region
2357 *
2358 *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
2359 *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
2360 **/
2361static s32 igb_validate_nvm_checksum_with_offset(struct e1000_hw *hw,
2362						 u16 offset)
2363{
2364	s32 ret_val = 0;
2365	u16 checksum = 0;
2366	u16 i, nvm_data;
2367
2368	for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) {
2369		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2370		if (ret_val) {
2371			hw_dbg("NVM Read Error\n");
2372			goto out;
2373		}
2374		checksum += nvm_data;
2375	}
2376
2377	if (checksum != (u16) NVM_SUM) {
2378		hw_dbg("NVM Checksum Invalid\n");
2379		ret_val = -E1000_ERR_NVM;
2380		goto out;
2381	}
2382
2383out:
2384	return ret_val;
2385}
2386
2387/**
2388 *  igb_update_nvm_checksum_with_offset - Update EEPROM
2389 *  checksum
2390 *  @hw: pointer to the HW structure
2391 *  @offset: offset in words of the checksum protected region
2392 *
2393 *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
2394 *  up to the checksum.  Then calculates the EEPROM checksum and writes the
2395 *  value to the EEPROM.
2396 **/
2397static s32 igb_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
2398{
2399	s32 ret_val;
2400	u16 checksum = 0;
2401	u16 i, nvm_data;
2402
2403	for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) {
2404		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2405		if (ret_val) {
2406			hw_dbg("NVM Read Error while updating checksum.\n");
2407			goto out;
2408		}
2409		checksum += nvm_data;
2410	}
2411	checksum = (u16) NVM_SUM - checksum;
2412	ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1,
2413				&checksum);
2414	if (ret_val)
2415		hw_dbg("NVM Write Error while updating checksum.\n");
2416
2417out:
2418	return ret_val;
2419}
2420
2421/**
2422 *  igb_validate_nvm_checksum_82580 - Validate EEPROM checksum
2423 *  @hw: pointer to the HW structure
2424 *
2425 *  Calculates the EEPROM section checksum by reading/adding each word of
2426 *  the EEPROM and then verifies that the sum of the EEPROM is
2427 *  equal to 0xBABA.
2428 **/
2429static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw)
2430{
2431	s32 ret_val = 0;
2432	u16 eeprom_regions_count = 1;
2433	u16 j, nvm_data;
2434	u16 nvm_offset;
2435
2436	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2437	if (ret_val) {
2438		hw_dbg("NVM Read Error\n");
2439		goto out;
2440	}
2441
2442	if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) {
2443		/* if checksums compatibility bit is set validate checksums
2444		 * for all 4 ports.
2445		 */
2446		eeprom_regions_count = 4;
2447	}
2448
2449	for (j = 0; j < eeprom_regions_count; j++) {
2450		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2451		ret_val = igb_validate_nvm_checksum_with_offset(hw,
2452								nvm_offset);
2453		if (ret_val != 0)
2454			goto out;
2455	}
2456
2457out:
2458	return ret_val;
2459}
2460
2461/**
2462 *  igb_update_nvm_checksum_82580 - Update EEPROM checksum
2463 *  @hw: pointer to the HW structure
2464 *
2465 *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2466 *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2467 *  checksum and writes the value to the EEPROM.
2468 **/
2469static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw)
2470{
2471	s32 ret_val;
2472	u16 j, nvm_data;
2473	u16 nvm_offset;
2474
2475	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2476	if (ret_val) {
2477		hw_dbg("NVM Read Error while updating checksum compatibility bit.\n");
2478		goto out;
2479	}
2480
2481	if ((nvm_data & NVM_COMPATIBILITY_BIT_MASK) == 0) {
2482		/* set compatibility bit to validate checksums appropriately */
2483		nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK;
2484		ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1,
2485					&nvm_data);
2486		if (ret_val) {
2487			hw_dbg("NVM Write Error while updating checksum compatibility bit.\n");
2488			goto out;
2489		}
2490	}
2491
2492	for (j = 0; j < 4; j++) {
2493		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2494		ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2495		if (ret_val)
2496			goto out;
2497	}
2498
2499out:
2500	return ret_val;
2501}
2502
2503/**
2504 *  igb_validate_nvm_checksum_i350 - Validate EEPROM checksum
2505 *  @hw: pointer to the HW structure
2506 *
2507 *  Calculates the EEPROM section checksum by reading/adding each word of
2508 *  the EEPROM and then verifies that the sum of the EEPROM is
2509 *  equal to 0xBABA.
2510 **/
2511static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw)
2512{
2513	s32 ret_val = 0;
2514	u16 j;
2515	u16 nvm_offset;
2516
2517	for (j = 0; j < 4; j++) {
2518		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2519		ret_val = igb_validate_nvm_checksum_with_offset(hw,
2520								nvm_offset);
2521		if (ret_val != 0)
2522			goto out;
2523	}
2524
2525out:
2526	return ret_val;
2527}
2528
2529/**
2530 *  igb_update_nvm_checksum_i350 - Update EEPROM checksum
2531 *  @hw: pointer to the HW structure
2532 *
2533 *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2534 *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2535 *  checksum and writes the value to the EEPROM.
2536 **/
2537static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw)
2538{
2539	s32 ret_val = 0;
2540	u16 j;
2541	u16 nvm_offset;
2542
2543	for (j = 0; j < 4; j++) {
2544		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2545		ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2546		if (ret_val != 0)
2547			goto out;
2548	}
2549
2550out:
2551	return ret_val;
2552}
2553
2554/**
2555 *  __igb_access_emi_reg - Read/write EMI register
2556 *  @hw: pointer to the HW structure
2557 *  @address: EMI address to program
2558 *  @data: pointer to value to read/write from/to the EMI address
2559 *  @read: boolean flag to indicate read or write
2560 **/
2561static s32 __igb_access_emi_reg(struct e1000_hw *hw, u16 address,
2562				  u16 *data, bool read)
2563{
2564	s32 ret_val = 0;
2565
2566	ret_val = hw->phy.ops.write_reg(hw, E1000_EMIADD, address);
2567	if (ret_val)
2568		return ret_val;
2569
2570	if (read)
2571		ret_val = hw->phy.ops.read_reg(hw, E1000_EMIDATA, data);
2572	else
2573		ret_val = hw->phy.ops.write_reg(hw, E1000_EMIDATA, *data);
2574
2575	return ret_val;
2576}
2577
2578/**
2579 *  igb_read_emi_reg - Read Extended Management Interface register
2580 *  @hw: pointer to the HW structure
2581 *  @addr: EMI address to program
2582 *  @data: value to be read from the EMI address
2583 **/
2584s32 igb_read_emi_reg(struct e1000_hw *hw, u16 addr, u16 *data)
2585{
2586	return __igb_access_emi_reg(hw, addr, data, true);
2587}
2588
2589/**
2590 *  igb_set_eee_i350 - Enable/disable EEE support
2591 *  @hw: pointer to the HW structure
2592 *  @adv1G: boolean flag enabling 1G EEE advertisement
2593 *  @adv100M: boolean flag enabling 100M EEE advertisement
2594 *
2595 *  Enable/disable EEE based on setting in dev_spec structure.
2596 *
2597 **/
2598s32 igb_set_eee_i350(struct e1000_hw *hw, bool adv1G, bool adv100M)
2599{
2600	u32 ipcnfg, eeer;
2601
2602	if ((hw->mac.type < e1000_i350) ||
2603	    (hw->phy.media_type != e1000_media_type_copper))
2604		goto out;
2605	ipcnfg = rd32(E1000_IPCNFG);
2606	eeer = rd32(E1000_EEER);
2607
2608	/* enable or disable per user setting */
2609	if (!(hw->dev_spec._82575.eee_disable)) {
2610		u32 eee_su = rd32(E1000_EEE_SU);
2611
2612		if (adv100M)
2613			ipcnfg |= E1000_IPCNFG_EEE_100M_AN;
2614		else
2615			ipcnfg &= ~E1000_IPCNFG_EEE_100M_AN;
2616
2617		if (adv1G)
2618			ipcnfg |= E1000_IPCNFG_EEE_1G_AN;
2619		else
2620			ipcnfg &= ~E1000_IPCNFG_EEE_1G_AN;
2621
2622		eeer |= (E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN |
2623			E1000_EEER_LPI_FC);
2624
2625		/* This bit should not be set in normal operation. */
2626		if (eee_su & E1000_EEE_SU_LPI_CLK_STP)
2627			hw_dbg("LPI Clock Stop Bit should not be set!\n");
2628
2629	} else {
2630		ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN |
2631			E1000_IPCNFG_EEE_100M_AN);
2632		eeer &= ~(E1000_EEER_TX_LPI_EN |
2633			E1000_EEER_RX_LPI_EN |
2634			E1000_EEER_LPI_FC);
2635	}
2636	wr32(E1000_IPCNFG, ipcnfg);
2637	wr32(E1000_EEER, eeer);
2638	rd32(E1000_IPCNFG);
2639	rd32(E1000_EEER);
2640out:
2641
2642	return 0;
2643}
2644
2645/**
2646 *  igb_set_eee_i354 - Enable/disable EEE support
2647 *  @hw: pointer to the HW structure
2648 *  @adv1G: boolean flag enabling 1G EEE advertisement
2649 *  @adv100M: boolean flag enabling 100M EEE advertisement
2650 *
2651 *  Enable/disable EEE legacy mode based on setting in dev_spec structure.
2652 *
2653 **/
2654s32 igb_set_eee_i354(struct e1000_hw *hw, bool adv1G, bool adv100M)
2655{
2656	struct e1000_phy_info *phy = &hw->phy;
2657	s32 ret_val = 0;
2658	u16 phy_data;
2659
2660	if ((hw->phy.media_type != e1000_media_type_copper) ||
2661	    ((phy->id != M88E1543_E_PHY_ID) &&
2662	     (phy->id != M88E1512_E_PHY_ID)))
2663		goto out;
2664
2665	if (!hw->dev_spec._82575.eee_disable) {
2666		/* Switch to PHY page 18. */
2667		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 18);
2668		if (ret_val)
2669			goto out;
2670
2671		ret_val = phy->ops.read_reg(hw, E1000_M88E1543_EEE_CTRL_1,
2672					    &phy_data);
2673		if (ret_val)
2674			goto out;
2675
2676		phy_data |= E1000_M88E1543_EEE_CTRL_1_MS;
2677		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_EEE_CTRL_1,
2678					     phy_data);
2679		if (ret_val)
2680			goto out;
2681
2682		/* Return the PHY to page 0. */
2683		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0);
2684		if (ret_val)
2685			goto out;
2686
2687		/* Turn on EEE advertisement. */
2688		ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2689					     E1000_EEE_ADV_DEV_I354,
2690					     &phy_data);
2691		if (ret_val)
2692			goto out;
2693
2694		if (adv100M)
2695			phy_data |= E1000_EEE_ADV_100_SUPPORTED;
2696		else
2697			phy_data &= ~E1000_EEE_ADV_100_SUPPORTED;
2698
2699		if (adv1G)
2700			phy_data |= E1000_EEE_ADV_1000_SUPPORTED;
2701		else
2702			phy_data &= ~E1000_EEE_ADV_1000_SUPPORTED;
2703
2704		ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2705						E1000_EEE_ADV_DEV_I354,
2706						phy_data);
2707	} else {
2708		/* Turn off EEE advertisement. */
2709		ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2710					     E1000_EEE_ADV_DEV_I354,
2711					     &phy_data);
2712		if (ret_val)
2713			goto out;
2714
2715		phy_data &= ~(E1000_EEE_ADV_100_SUPPORTED |
2716			      E1000_EEE_ADV_1000_SUPPORTED);
2717		ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2718					      E1000_EEE_ADV_DEV_I354,
2719					      phy_data);
2720	}
2721
2722out:
2723	return ret_val;
2724}
2725
2726/**
2727 *  igb_get_eee_status_i354 - Get EEE status
2728 *  @hw: pointer to the HW structure
2729 *  @status: EEE status
2730 *
2731 *  Get EEE status by guessing based on whether Tx or Rx LPI indications have
2732 *  been received.
2733 **/
2734s32 igb_get_eee_status_i354(struct e1000_hw *hw, bool *status)
2735{
2736	struct e1000_phy_info *phy = &hw->phy;
2737	s32 ret_val = 0;
2738	u16 phy_data;
2739
2740	/* Check if EEE is supported on this device. */
2741	if ((hw->phy.media_type != e1000_media_type_copper) ||
2742	    ((phy->id != M88E1543_E_PHY_ID) &&
2743	     (phy->id != M88E1512_E_PHY_ID)))
2744		goto out;
2745
2746	ret_val = igb_read_xmdio_reg(hw, E1000_PCS_STATUS_ADDR_I354,
2747				     E1000_PCS_STATUS_DEV_I354,
2748				     &phy_data);
2749	if (ret_val)
2750		goto out;
2751
2752	*status = phy_data & (E1000_PCS_STATUS_TX_LPI_RCVD |
2753			      E1000_PCS_STATUS_RX_LPI_RCVD) ? true : false;
2754
2755out:
2756	return ret_val;
2757}
2758
2759#ifdef CONFIG_IGB_HWMON
2760static const u8 e1000_emc_temp_data[4] = {
2761	E1000_EMC_INTERNAL_DATA,
2762	E1000_EMC_DIODE1_DATA,
2763	E1000_EMC_DIODE2_DATA,
2764	E1000_EMC_DIODE3_DATA
2765};
2766static const u8 e1000_emc_therm_limit[4] = {
2767	E1000_EMC_INTERNAL_THERM_LIMIT,
2768	E1000_EMC_DIODE1_THERM_LIMIT,
2769	E1000_EMC_DIODE2_THERM_LIMIT,
2770	E1000_EMC_DIODE3_THERM_LIMIT
2771};
2772
2773/**
2774 *  igb_get_thermal_sensor_data_generic - Gathers thermal sensor data
2775 *  @hw: pointer to hardware structure
2776 *
2777 *  Updates the temperatures in mac.thermal_sensor_data
2778 **/
2779static s32 igb_get_thermal_sensor_data_generic(struct e1000_hw *hw)
2780{
2781	u16 ets_offset;
2782	u16 ets_cfg;
2783	u16 ets_sensor;
2784	u8  num_sensors;
2785	u8  sensor_index;
2786	u8  sensor_location;
2787	u8  i;
2788	struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2789
2790	if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2791		return E1000_NOT_IMPLEMENTED;
2792
2793	data->sensor[0].temp = (rd32(E1000_THMJT) & 0xFF);
2794
2795	/* Return the internal sensor only if ETS is unsupported */
2796	hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2797	if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2798		return 0;
2799
2800	hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2801	if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
2802	    != NVM_ETS_TYPE_EMC)
2803		return E1000_NOT_IMPLEMENTED;
2804
2805	num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2806	if (num_sensors > E1000_MAX_SENSORS)
2807		num_sensors = E1000_MAX_SENSORS;
2808
2809	for (i = 1; i < num_sensors; i++) {
2810		hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2811		sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
2812				NVM_ETS_DATA_INDEX_SHIFT);
2813		sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
2814				   NVM_ETS_DATA_LOC_SHIFT);
2815
2816		if (sensor_location != 0)
2817			hw->phy.ops.read_i2c_byte(hw,
2818					e1000_emc_temp_data[sensor_index],
2819					E1000_I2C_THERMAL_SENSOR_ADDR,
2820					&data->sensor[i].temp);
2821	}
2822	return 0;
2823}
2824
2825/**
2826 *  igb_init_thermal_sensor_thresh_generic - Sets thermal sensor thresholds
2827 *  @hw: pointer to hardware structure
2828 *
2829 *  Sets the thermal sensor thresholds according to the NVM map
2830 *  and save off the threshold and location values into mac.thermal_sensor_data
2831 **/
2832static s32 igb_init_thermal_sensor_thresh_generic(struct e1000_hw *hw)
2833{
2834	u16 ets_offset;
2835	u16 ets_cfg;
2836	u16 ets_sensor;
2837	u8  low_thresh_delta;
2838	u8  num_sensors;
2839	u8  sensor_index;
2840	u8  sensor_location;
2841	u8  therm_limit;
2842	u8  i;
2843	struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2844
2845	if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2846		return E1000_NOT_IMPLEMENTED;
2847
2848	memset(data, 0, sizeof(struct e1000_thermal_sensor_data));
2849
2850	data->sensor[0].location = 0x1;
2851	data->sensor[0].caution_thresh =
2852		(rd32(E1000_THHIGHTC) & 0xFF);
2853	data->sensor[0].max_op_thresh =
2854		(rd32(E1000_THLOWTC) & 0xFF);
2855
2856	/* Return the internal sensor only if ETS is unsupported */
2857	hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2858	if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2859		return 0;
2860
2861	hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2862	if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
2863	    != NVM_ETS_TYPE_EMC)
2864		return E1000_NOT_IMPLEMENTED;
2865
2866	low_thresh_delta = ((ets_cfg & NVM_ETS_LTHRES_DELTA_MASK) >>
2867			    NVM_ETS_LTHRES_DELTA_SHIFT);
2868	num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2869
2870	for (i = 1; i <= num_sensors; i++) {
2871		hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2872		sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
2873				NVM_ETS_DATA_INDEX_SHIFT);
2874		sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
2875				   NVM_ETS_DATA_LOC_SHIFT);
2876		therm_limit = ets_sensor & NVM_ETS_DATA_HTHRESH_MASK;
2877
2878		hw->phy.ops.write_i2c_byte(hw,
2879			e1000_emc_therm_limit[sensor_index],
2880			E1000_I2C_THERMAL_SENSOR_ADDR,
2881			therm_limit);
2882
2883		if ((i < E1000_MAX_SENSORS) && (sensor_location != 0)) {
2884			data->sensor[i].location = sensor_location;
2885			data->sensor[i].caution_thresh = therm_limit;
2886			data->sensor[i].max_op_thresh = therm_limit -
2887							low_thresh_delta;
2888		}
2889	}
2890	return 0;
2891}
2892
2893#endif
2894static struct e1000_mac_operations e1000_mac_ops_82575 = {
2895	.init_hw              = igb_init_hw_82575,
2896	.check_for_link       = igb_check_for_link_82575,
2897	.rar_set              = igb_rar_set,
2898	.read_mac_addr        = igb_read_mac_addr_82575,
2899	.get_speed_and_duplex = igb_get_link_up_info_82575,
2900#ifdef CONFIG_IGB_HWMON
2901	.get_thermal_sensor_data = igb_get_thermal_sensor_data_generic,
2902	.init_thermal_sensor_thresh = igb_init_thermal_sensor_thresh_generic,
2903#endif
2904};
2905
2906static const struct e1000_phy_operations e1000_phy_ops_82575 = {
2907	.acquire              = igb_acquire_phy_82575,
2908	.get_cfg_done         = igb_get_cfg_done_82575,
2909	.release              = igb_release_phy_82575,
2910	.write_i2c_byte       = igb_write_i2c_byte,
2911	.read_i2c_byte        = igb_read_i2c_byte,
2912};
2913
2914static struct e1000_nvm_operations e1000_nvm_ops_82575 = {
2915	.acquire              = igb_acquire_nvm_82575,
2916	.read                 = igb_read_nvm_eerd,
2917	.release              = igb_release_nvm_82575,
2918	.write                = igb_write_nvm_spi,
2919};
2920
2921const struct e1000_info e1000_82575_info = {
2922	.get_invariants = igb_get_invariants_82575,
2923	.mac_ops = &e1000_mac_ops_82575,
2924	.phy_ops = &e1000_phy_ops_82575,
2925	.nvm_ops = &e1000_nvm_ops_82575,
2926};
2927
2928