1/* SPDX-License-Identifier: GPL-2.0 */
2/* Copyright (c) 2018, Intel Corporation. */
3
4#ifndef _ICE_TXRX_H_
5#define _ICE_TXRX_H_
6
7#include "ice_type.h"
8
9#define ICE_DFLT_IRQ_WORK	256
10#define ICE_RXBUF_3072		3072
11#define ICE_RXBUF_2048		2048
12#define ICE_RXBUF_1664		1664
13#define ICE_RXBUF_1536		1536
14#define ICE_MAX_CHAINED_RX_BUFS	5
15#define ICE_MAX_BUF_TXD		8
16#define ICE_MIN_TX_LEN		17
17#define ICE_MAX_FRAME_LEGACY_RX 8320
18
19/* The size limit for a transmit buffer in a descriptor is (16K - 1).
20 * In order to align with the read requests we will align the value to
21 * the nearest 4K which represents our maximum read request size.
22 */
23#define ICE_MAX_READ_REQ_SIZE	4096
24#define ICE_MAX_DATA_PER_TXD	(16 * 1024 - 1)
25#define ICE_MAX_DATA_PER_TXD_ALIGNED \
26	(~(ICE_MAX_READ_REQ_SIZE - 1) & ICE_MAX_DATA_PER_TXD)
27
28#define ICE_MAX_TXQ_PER_TXQG	128
29
30/* Attempt to maximize the headroom available for incoming frames. We use a 2K
31 * buffer for MTUs <= 1500 and need 1536/1534 to store the data for the frame.
32 * This leaves us with 512 bytes of room.  From that we need to deduct the
33 * space needed for the shared info and the padding needed to IP align the
34 * frame.
35 *
36 * Note: For cache line sizes 256 or larger this value is going to end
37 *	 up negative.  In these cases we should fall back to the legacy
38 *	 receive path.
39 */
40#if (PAGE_SIZE < 8192)
41#define ICE_2K_TOO_SMALL_WITH_PADDING \
42	((unsigned int)(NET_SKB_PAD + ICE_RXBUF_1536) > \
43			SKB_WITH_OVERHEAD(ICE_RXBUF_2048))
44
45/**
46 * ice_compute_pad - compute the padding
47 * @rx_buf_len: buffer length
48 *
49 * Figure out the size of half page based on given buffer length and
50 * then subtract the skb_shared_info followed by subtraction of the
51 * actual buffer length; this in turn results in the actual space that
52 * is left for padding usage
53 */
54static inline int ice_compute_pad(int rx_buf_len)
55{
56	int half_page_size;
57
58	half_page_size = ALIGN(rx_buf_len, PAGE_SIZE / 2);
59	return SKB_WITH_OVERHEAD(half_page_size) - rx_buf_len;
60}
61
62/**
63 * ice_skb_pad - determine the padding that we can supply
64 *
65 * Figure out the right Rx buffer size and based on that calculate the
66 * padding
67 */
68static inline int ice_skb_pad(void)
69{
70	int rx_buf_len;
71
72	/* If a 2K buffer cannot handle a standard Ethernet frame then
73	 * optimize padding for a 3K buffer instead of a 1.5K buffer.
74	 *
75	 * For a 3K buffer we need to add enough padding to allow for
76	 * tailroom due to NET_IP_ALIGN possibly shifting us out of
77	 * cache-line alignment.
78	 */
79	if (ICE_2K_TOO_SMALL_WITH_PADDING)
80		rx_buf_len = ICE_RXBUF_3072 + SKB_DATA_ALIGN(NET_IP_ALIGN);
81	else
82		rx_buf_len = ICE_RXBUF_1536;
83
84	/* if needed make room for NET_IP_ALIGN */
85	rx_buf_len -= NET_IP_ALIGN;
86
87	return ice_compute_pad(rx_buf_len);
88}
89
90#define ICE_SKB_PAD ice_skb_pad()
91#else
92#define ICE_2K_TOO_SMALL_WITH_PADDING false
93#define ICE_SKB_PAD (NET_SKB_PAD + NET_IP_ALIGN)
94#endif
95
96/* We are assuming that the cache line is always 64 Bytes here for ice.
97 * In order to make sure that is a correct assumption there is a check in probe
98 * to print a warning if the read from GLPCI_CNF2 tells us that the cache line
99 * size is 128 bytes. We do it this way because we do not want to read the
100 * GLPCI_CNF2 register or a variable containing the value on every pass through
101 * the Tx path.
102 */
103#define ICE_CACHE_LINE_BYTES		64
104#define ICE_DESCS_PER_CACHE_LINE	(ICE_CACHE_LINE_BYTES / \
105					 sizeof(struct ice_tx_desc))
106#define ICE_DESCS_FOR_CTX_DESC		1
107#define ICE_DESCS_FOR_SKB_DATA_PTR	1
108/* Tx descriptors needed, worst case */
109#define DESC_NEEDED (MAX_SKB_FRAGS + ICE_DESCS_FOR_CTX_DESC + \
110		     ICE_DESCS_PER_CACHE_LINE + ICE_DESCS_FOR_SKB_DATA_PTR)
111#define ICE_DESC_UNUSED(R)	\
112	(u16)((((R)->next_to_clean > (R)->next_to_use) ? 0 : (R)->count) + \
113	      (R)->next_to_clean - (R)->next_to_use - 1)
114
115#define ICE_RX_DESC_UNUSED(R)	\
116	((((R)->first_desc > (R)->next_to_use) ? 0 : (R)->count) + \
117	      (R)->first_desc - (R)->next_to_use - 1)
118
119#define ICE_RING_QUARTER(R) ((R)->count >> 2)
120
121#define ICE_TX_FLAGS_TSO	BIT(0)
122#define ICE_TX_FLAGS_HW_VLAN	BIT(1)
123#define ICE_TX_FLAGS_SW_VLAN	BIT(2)
124/* Free, was ICE_TX_FLAGS_DUMMY_PKT */
125#define ICE_TX_FLAGS_TSYN	BIT(4)
126#define ICE_TX_FLAGS_IPV4	BIT(5)
127#define ICE_TX_FLAGS_IPV6	BIT(6)
128#define ICE_TX_FLAGS_TUNNEL	BIT(7)
129#define ICE_TX_FLAGS_HW_OUTER_SINGLE_VLAN	BIT(8)
130
131#define ICE_XDP_PASS		0
132#define ICE_XDP_CONSUMED	BIT(0)
133#define ICE_XDP_TX		BIT(1)
134#define ICE_XDP_REDIR		BIT(2)
135#define ICE_XDP_EXIT		BIT(3)
136#define ICE_SKB_CONSUMED	ICE_XDP_CONSUMED
137
138#define ICE_RX_DMA_ATTR \
139	(DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING)
140
141#define ICE_ETH_PKT_HDR_PAD	(ETH_HLEN + ETH_FCS_LEN + (VLAN_HLEN * 2))
142
143#define ICE_TXD_LAST_DESC_CMD (ICE_TX_DESC_CMD_EOP | ICE_TX_DESC_CMD_RS)
144
145/**
146 * enum ice_tx_buf_type - type of &ice_tx_buf to act on Tx completion
147 * @ICE_TX_BUF_EMPTY: unused OR XSk frame, no action required
148 * @ICE_TX_BUF_DUMMY: dummy Flow Director packet, unmap and kfree()
149 * @ICE_TX_BUF_FRAG: mapped skb OR &xdp_buff frag, only unmap DMA
150 * @ICE_TX_BUF_SKB: &sk_buff, unmap and consume_skb(), update stats
151 * @ICE_TX_BUF_XDP_TX: &xdp_buff, unmap and page_frag_free(), stats
152 * @ICE_TX_BUF_XDP_XMIT: &xdp_frame, unmap and xdp_return_frame(), stats
153 * @ICE_TX_BUF_XSK_TX: &xdp_buff on XSk queue, xsk_buff_free(), stats
154 */
155enum ice_tx_buf_type {
156	ICE_TX_BUF_EMPTY	= 0U,
157	ICE_TX_BUF_DUMMY,
158	ICE_TX_BUF_FRAG,
159	ICE_TX_BUF_SKB,
160	ICE_TX_BUF_XDP_TX,
161	ICE_TX_BUF_XDP_XMIT,
162	ICE_TX_BUF_XSK_TX,
163};
164
165struct ice_tx_buf {
166	union {
167		struct ice_tx_desc *next_to_watch;
168		u32 rs_idx;
169	};
170	union {
171		void *raw_buf;		/* used for XDP_TX and FDir rules */
172		struct sk_buff *skb;	/* used for .ndo_start_xmit() */
173		struct xdp_frame *xdpf;	/* used for .ndo_xdp_xmit() */
174		struct xdp_buff *xdp;	/* used for XDP_TX ZC */
175	};
176	unsigned int bytecount;
177	union {
178		unsigned int gso_segs;
179		unsigned int nr_frags;	/* used for mbuf XDP */
180	};
181	u32 tx_flags:12;
182	u32 type:4;			/* &ice_tx_buf_type */
183	u32 vid:16;
184	DEFINE_DMA_UNMAP_LEN(len);
185	DEFINE_DMA_UNMAP_ADDR(dma);
186};
187
188struct ice_tx_offload_params {
189	u64 cd_qw1;
190	struct ice_tx_ring *tx_ring;
191	u32 td_cmd;
192	u32 td_offset;
193	u32 td_l2tag1;
194	u32 cd_tunnel_params;
195	u16 cd_l2tag2;
196	u8 header_len;
197};
198
199struct ice_rx_buf {
200	dma_addr_t dma;
201	struct page *page;
202	unsigned int page_offset;
203	unsigned int pgcnt;
204	unsigned int act;
205	unsigned int pagecnt_bias;
206};
207
208struct ice_q_stats {
209	u64 pkts;
210	u64 bytes;
211};
212
213struct ice_txq_stats {
214	u64 restart_q;
215	u64 tx_busy;
216	u64 tx_linearize;
217	int prev_pkt; /* negative if no pending Tx descriptors */
218};
219
220struct ice_rxq_stats {
221	u64 non_eop_descs;
222	u64 alloc_page_failed;
223	u64 alloc_buf_failed;
224};
225
226struct ice_ring_stats {
227	struct rcu_head rcu;	/* to avoid race on free */
228	struct ice_q_stats stats;
229	struct u64_stats_sync syncp;
230	union {
231		struct ice_txq_stats tx_stats;
232		struct ice_rxq_stats rx_stats;
233	};
234};
235
236enum ice_ring_state_t {
237	ICE_TX_XPS_INIT_DONE,
238	ICE_TX_NBITS,
239};
240
241/* this enum matches hardware bits and is meant to be used by DYN_CTLN
242 * registers and QINT registers or more generally anywhere in the manual
243 * mentioning ITR_INDX, ITR_NONE cannot be used as an index 'n' into any
244 * register but instead is a special value meaning "don't update" ITR0/1/2.
245 */
246enum ice_dyn_idx_t {
247	ICE_IDX_ITR0 = 0,
248	ICE_IDX_ITR1 = 1,
249	ICE_IDX_ITR2 = 2,
250	ICE_ITR_NONE = 3	/* ITR_NONE must not be used as an index */
251};
252
253/* Header split modes defined by DTYPE field of Rx RLAN context */
254enum ice_rx_dtype {
255	ICE_RX_DTYPE_NO_SPLIT		= 0,
256	ICE_RX_DTYPE_HEADER_SPLIT	= 1,
257	ICE_RX_DTYPE_SPLIT_ALWAYS	= 2,
258};
259
260/* indices into GLINT_ITR registers */
261#define ICE_RX_ITR	ICE_IDX_ITR0
262#define ICE_TX_ITR	ICE_IDX_ITR1
263#define ICE_ITR_8K	124
264#define ICE_ITR_20K	50
265#define ICE_ITR_MAX	8160 /* 0x1FE0 */
266#define ICE_DFLT_TX_ITR	ICE_ITR_20K
267#define ICE_DFLT_RX_ITR	ICE_ITR_20K
268enum ice_dynamic_itr {
269	ITR_STATIC = 0,
270	ITR_DYNAMIC = 1
271};
272
273#define ITR_IS_DYNAMIC(rc) ((rc)->itr_mode == ITR_DYNAMIC)
274#define ICE_ITR_GRAN_S		1	/* ITR granularity is always 2us */
275#define ICE_ITR_GRAN_US		BIT(ICE_ITR_GRAN_S)
276#define ICE_ITR_MASK		0x1FFE	/* ITR register value alignment mask */
277#define ITR_REG_ALIGN(setting)	((setting) & ICE_ITR_MASK)
278
279#define ICE_DFLT_INTRL	0
280#define ICE_MAX_INTRL	236
281
282#define ICE_IN_WB_ON_ITR_MODE	255
283/* Sets WB_ON_ITR and assumes INTENA bit is already cleared, which allows
284 * setting the MSK_M bit to tell hardware to ignore the INTENA_M bit. Also,
285 * set the write-back latency to the usecs passed in.
286 */
287#define ICE_GLINT_DYN_CTL_WB_ON_ITR(usecs, itr_idx)	\
288	((((usecs) << (GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S)) & \
289	  GLINT_DYN_CTL_INTERVAL_M) | \
290	 (((itr_idx) << GLINT_DYN_CTL_ITR_INDX_S) & \
291	  GLINT_DYN_CTL_ITR_INDX_M) | GLINT_DYN_CTL_INTENA_MSK_M | \
292	 GLINT_DYN_CTL_WB_ON_ITR_M)
293
294/* Legacy or Advanced Mode Queue */
295#define ICE_TX_ADVANCED	0
296#define ICE_TX_LEGACY	1
297
298/* descriptor ring, associated with a VSI */
299struct ice_rx_ring {
300	/* CL1 - 1st cacheline starts here */
301	struct ice_rx_ring *next;	/* pointer to next ring in q_vector */
302	void *desc;			/* Descriptor ring memory */
303	struct device *dev;		/* Used for DMA mapping */
304	struct net_device *netdev;	/* netdev ring maps to */
305	struct ice_vsi *vsi;		/* Backreference to associated VSI */
306	struct ice_q_vector *q_vector;	/* Backreference to associated vector */
307	u8 __iomem *tail;
308	u16 q_index;			/* Queue number of ring */
309
310	u16 count;			/* Number of descriptors */
311	u16 reg_idx;			/* HW register index of the ring */
312	u16 next_to_alloc;
313	/* CL2 - 2nd cacheline starts here */
314	union {
315		struct ice_rx_buf *rx_buf;
316		struct xdp_buff **xdp_buf;
317	};
318	struct xdp_buff xdp;
319	/* CL3 - 3rd cacheline starts here */
320	struct bpf_prog *xdp_prog;
321	u16 rx_offset;
322
323	/* used in interrupt processing */
324	u16 next_to_use;
325	u16 next_to_clean;
326	u16 first_desc;
327
328	/* stats structs */
329	struct ice_ring_stats *ring_stats;
330
331	struct rcu_head rcu;		/* to avoid race on free */
332	/* CL4 - 4th cacheline starts here */
333	struct ice_channel *ch;
334	struct ice_tx_ring *xdp_ring;
335	struct xsk_buff_pool *xsk_pool;
336	u32 nr_frags;
337	dma_addr_t dma;			/* physical address of ring */
338	u64 cached_phctime;
339	u16 rx_buf_len;
340	u8 dcb_tc;			/* Traffic class of ring */
341	u8 ptp_rx;
342#define ICE_RX_FLAGS_RING_BUILD_SKB	BIT(1)
343#define ICE_RX_FLAGS_CRC_STRIP_DIS	BIT(2)
344	u8 flags;
345	/* CL5 - 5th cacheline starts here */
346	struct xdp_rxq_info xdp_rxq;
347} ____cacheline_internodealigned_in_smp;
348
349struct ice_tx_ring {
350	/* CL1 - 1st cacheline starts here */
351	struct ice_tx_ring *next;	/* pointer to next ring in q_vector */
352	void *desc;			/* Descriptor ring memory */
353	struct device *dev;		/* Used for DMA mapping */
354	u8 __iomem *tail;
355	struct ice_tx_buf *tx_buf;
356	struct ice_q_vector *q_vector;	/* Backreference to associated vector */
357	struct net_device *netdev;	/* netdev ring maps to */
358	struct ice_vsi *vsi;		/* Backreference to associated VSI */
359	/* CL2 - 2nd cacheline starts here */
360	dma_addr_t dma;			/* physical address of ring */
361	struct xsk_buff_pool *xsk_pool;
362	u16 next_to_use;
363	u16 next_to_clean;
364	u16 q_handle;			/* Queue handle per TC */
365	u16 reg_idx;			/* HW register index of the ring */
366	u16 count;			/* Number of descriptors */
367	u16 q_index;			/* Queue number of ring */
368	u16 xdp_tx_active;
369	/* stats structs */
370	struct ice_ring_stats *ring_stats;
371	/* CL3 - 3rd cacheline starts here */
372	struct rcu_head rcu;		/* to avoid race on free */
373	DECLARE_BITMAP(xps_state, ICE_TX_NBITS);	/* XPS Config State */
374	struct ice_channel *ch;
375	struct ice_ptp_tx *tx_tstamps;
376	spinlock_t tx_lock;
377	u32 txq_teid;			/* Added Tx queue TEID */
378	/* CL4 - 4th cacheline starts here */
379#define ICE_TX_FLAGS_RING_XDP		BIT(0)
380#define ICE_TX_FLAGS_RING_VLAN_L2TAG1	BIT(1)
381#define ICE_TX_FLAGS_RING_VLAN_L2TAG2	BIT(2)
382	u8 flags;
383	u8 dcb_tc;			/* Traffic class of ring */
384	u8 ptp_tx;
385} ____cacheline_internodealigned_in_smp;
386
387static inline bool ice_ring_uses_build_skb(struct ice_rx_ring *ring)
388{
389	return !!(ring->flags & ICE_RX_FLAGS_RING_BUILD_SKB);
390}
391
392static inline void ice_set_ring_build_skb_ena(struct ice_rx_ring *ring)
393{
394	ring->flags |= ICE_RX_FLAGS_RING_BUILD_SKB;
395}
396
397static inline void ice_clear_ring_build_skb_ena(struct ice_rx_ring *ring)
398{
399	ring->flags &= ~ICE_RX_FLAGS_RING_BUILD_SKB;
400}
401
402static inline bool ice_ring_ch_enabled(struct ice_tx_ring *ring)
403{
404	return !!ring->ch;
405}
406
407static inline bool ice_ring_is_xdp(struct ice_tx_ring *ring)
408{
409	return !!(ring->flags & ICE_TX_FLAGS_RING_XDP);
410}
411
412enum ice_container_type {
413	ICE_RX_CONTAINER,
414	ICE_TX_CONTAINER,
415};
416
417struct ice_ring_container {
418	/* head of linked-list of rings */
419	union {
420		struct ice_rx_ring *rx_ring;
421		struct ice_tx_ring *tx_ring;
422	};
423	struct dim dim;		/* data for net_dim algorithm */
424	u16 itr_idx;		/* index in the interrupt vector */
425	/* this matches the maximum number of ITR bits, but in usec
426	 * values, so it is shifted left one bit (bit zero is ignored)
427	 */
428	union {
429		struct {
430			u16 itr_setting:13;
431			u16 itr_reserved:2;
432			u16 itr_mode:1;
433		};
434		u16 itr_settings;
435	};
436	enum ice_container_type type;
437};
438
439struct ice_coalesce_stored {
440	u16 itr_tx;
441	u16 itr_rx;
442	u8 intrl;
443	u8 tx_valid;
444	u8 rx_valid;
445};
446
447/* iterator for handling rings in ring container */
448#define ice_for_each_rx_ring(pos, head) \
449	for (pos = (head).rx_ring; pos; pos = pos->next)
450
451#define ice_for_each_tx_ring(pos, head) \
452	for (pos = (head).tx_ring; pos; pos = pos->next)
453
454static inline unsigned int ice_rx_pg_order(struct ice_rx_ring *ring)
455{
456#if (PAGE_SIZE < 8192)
457	if (ring->rx_buf_len > (PAGE_SIZE / 2))
458		return 1;
459#endif
460	return 0;
461}
462
463#define ice_rx_pg_size(_ring) (PAGE_SIZE << ice_rx_pg_order(_ring))
464
465union ice_32b_rx_flex_desc;
466
467bool ice_alloc_rx_bufs(struct ice_rx_ring *rxr, unsigned int cleaned_count);
468netdev_tx_t ice_start_xmit(struct sk_buff *skb, struct net_device *netdev);
469u16
470ice_select_queue(struct net_device *dev, struct sk_buff *skb,
471		 struct net_device *sb_dev);
472void ice_clean_tx_ring(struct ice_tx_ring *tx_ring);
473void ice_clean_rx_ring(struct ice_rx_ring *rx_ring);
474int ice_setup_tx_ring(struct ice_tx_ring *tx_ring);
475int ice_setup_rx_ring(struct ice_rx_ring *rx_ring);
476void ice_free_tx_ring(struct ice_tx_ring *tx_ring);
477void ice_free_rx_ring(struct ice_rx_ring *rx_ring);
478int ice_napi_poll(struct napi_struct *napi, int budget);
479int
480ice_prgm_fdir_fltr(struct ice_vsi *vsi, struct ice_fltr_desc *fdir_desc,
481		   u8 *raw_packet);
482int ice_clean_rx_irq(struct ice_rx_ring *rx_ring, int budget);
483void ice_clean_ctrl_tx_irq(struct ice_tx_ring *tx_ring);
484#endif /* _ICE_TXRX_H_ */
485