1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (c) 2018, Intel Corporation. */
3
4/* The driver transmit and receive code */
5
6#include <linux/mm.h>
7#include <linux/netdevice.h>
8#include <linux/prefetch.h>
9#include <linux/bpf_trace.h>
10#include <net/dsfield.h>
11#include <net/mpls.h>
12#include <net/xdp.h>
13#include "ice_txrx_lib.h"
14#include "ice_lib.h"
15#include "ice.h"
16#include "ice_trace.h"
17#include "ice_dcb_lib.h"
18#include "ice_xsk.h"
19#include "ice_eswitch.h"
20
21#define ICE_RX_HDR_SIZE		256
22
23#define FDIR_DESC_RXDID 0x40
24#define ICE_FDIR_CLEAN_DELAY 10
25
26/**
27 * ice_prgm_fdir_fltr - Program a Flow Director filter
28 * @vsi: VSI to send dummy packet
29 * @fdir_desc: flow director descriptor
30 * @raw_packet: allocated buffer for flow director
31 */
32int
33ice_prgm_fdir_fltr(struct ice_vsi *vsi, struct ice_fltr_desc *fdir_desc,
34		   u8 *raw_packet)
35{
36	struct ice_tx_buf *tx_buf, *first;
37	struct ice_fltr_desc *f_desc;
38	struct ice_tx_desc *tx_desc;
39	struct ice_tx_ring *tx_ring;
40	struct device *dev;
41	dma_addr_t dma;
42	u32 td_cmd;
43	u16 i;
44
45	/* VSI and Tx ring */
46	if (!vsi)
47		return -ENOENT;
48	tx_ring = vsi->tx_rings[0];
49	if (!tx_ring || !tx_ring->desc)
50		return -ENOENT;
51	dev = tx_ring->dev;
52
53	/* we are using two descriptors to add/del a filter and we can wait */
54	for (i = ICE_FDIR_CLEAN_DELAY; ICE_DESC_UNUSED(tx_ring) < 2; i--) {
55		if (!i)
56			return -EAGAIN;
57		msleep_interruptible(1);
58	}
59
60	dma = dma_map_single(dev, raw_packet, ICE_FDIR_MAX_RAW_PKT_SIZE,
61			     DMA_TO_DEVICE);
62
63	if (dma_mapping_error(dev, dma))
64		return -EINVAL;
65
66	/* grab the next descriptor */
67	i = tx_ring->next_to_use;
68	first = &tx_ring->tx_buf[i];
69	f_desc = ICE_TX_FDIRDESC(tx_ring, i);
70	memcpy(f_desc, fdir_desc, sizeof(*f_desc));
71
72	i++;
73	i = (i < tx_ring->count) ? i : 0;
74	tx_desc = ICE_TX_DESC(tx_ring, i);
75	tx_buf = &tx_ring->tx_buf[i];
76
77	i++;
78	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
79
80	memset(tx_buf, 0, sizeof(*tx_buf));
81	dma_unmap_len_set(tx_buf, len, ICE_FDIR_MAX_RAW_PKT_SIZE);
82	dma_unmap_addr_set(tx_buf, dma, dma);
83
84	tx_desc->buf_addr = cpu_to_le64(dma);
85	td_cmd = ICE_TXD_LAST_DESC_CMD | ICE_TX_DESC_CMD_DUMMY |
86		 ICE_TX_DESC_CMD_RE;
87
88	tx_buf->type = ICE_TX_BUF_DUMMY;
89	tx_buf->raw_buf = raw_packet;
90
91	tx_desc->cmd_type_offset_bsz =
92		ice_build_ctob(td_cmd, 0, ICE_FDIR_MAX_RAW_PKT_SIZE, 0);
93
94	/* Force memory write to complete before letting h/w know
95	 * there are new descriptors to fetch.
96	 */
97	wmb();
98
99	/* mark the data descriptor to be watched */
100	first->next_to_watch = tx_desc;
101
102	writel(tx_ring->next_to_use, tx_ring->tail);
103
104	return 0;
105}
106
107/**
108 * ice_unmap_and_free_tx_buf - Release a Tx buffer
109 * @ring: the ring that owns the buffer
110 * @tx_buf: the buffer to free
111 */
112static void
113ice_unmap_and_free_tx_buf(struct ice_tx_ring *ring, struct ice_tx_buf *tx_buf)
114{
115	if (dma_unmap_len(tx_buf, len))
116		dma_unmap_page(ring->dev,
117			       dma_unmap_addr(tx_buf, dma),
118			       dma_unmap_len(tx_buf, len),
119			       DMA_TO_DEVICE);
120
121	switch (tx_buf->type) {
122	case ICE_TX_BUF_DUMMY:
123		devm_kfree(ring->dev, tx_buf->raw_buf);
124		break;
125	case ICE_TX_BUF_SKB:
126		dev_kfree_skb_any(tx_buf->skb);
127		break;
128	case ICE_TX_BUF_XDP_TX:
129		page_frag_free(tx_buf->raw_buf);
130		break;
131	case ICE_TX_BUF_XDP_XMIT:
132		xdp_return_frame(tx_buf->xdpf);
133		break;
134	}
135
136	tx_buf->next_to_watch = NULL;
137	tx_buf->type = ICE_TX_BUF_EMPTY;
138	dma_unmap_len_set(tx_buf, len, 0);
139	/* tx_buf must be completely set up in the transmit path */
140}
141
142static struct netdev_queue *txring_txq(const struct ice_tx_ring *ring)
143{
144	return netdev_get_tx_queue(ring->netdev, ring->q_index);
145}
146
147/**
148 * ice_clean_tx_ring - Free any empty Tx buffers
149 * @tx_ring: ring to be cleaned
150 */
151void ice_clean_tx_ring(struct ice_tx_ring *tx_ring)
152{
153	u32 size;
154	u16 i;
155
156	if (ice_ring_is_xdp(tx_ring) && tx_ring->xsk_pool) {
157		ice_xsk_clean_xdp_ring(tx_ring);
158		goto tx_skip_free;
159	}
160
161	/* ring already cleared, nothing to do */
162	if (!tx_ring->tx_buf)
163		return;
164
165	/* Free all the Tx ring sk_buffs */
166	for (i = 0; i < tx_ring->count; i++)
167		ice_unmap_and_free_tx_buf(tx_ring, &tx_ring->tx_buf[i]);
168
169tx_skip_free:
170	memset(tx_ring->tx_buf, 0, sizeof(*tx_ring->tx_buf) * tx_ring->count);
171
172	size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc),
173		     PAGE_SIZE);
174	/* Zero out the descriptor ring */
175	memset(tx_ring->desc, 0, size);
176
177	tx_ring->next_to_use = 0;
178	tx_ring->next_to_clean = 0;
179
180	if (!tx_ring->netdev)
181		return;
182
183	/* cleanup Tx queue statistics */
184	netdev_tx_reset_queue(txring_txq(tx_ring));
185}
186
187/**
188 * ice_free_tx_ring - Free Tx resources per queue
189 * @tx_ring: Tx descriptor ring for a specific queue
190 *
191 * Free all transmit software resources
192 */
193void ice_free_tx_ring(struct ice_tx_ring *tx_ring)
194{
195	u32 size;
196
197	ice_clean_tx_ring(tx_ring);
198	devm_kfree(tx_ring->dev, tx_ring->tx_buf);
199	tx_ring->tx_buf = NULL;
200
201	if (tx_ring->desc) {
202		size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc),
203			     PAGE_SIZE);
204		dmam_free_coherent(tx_ring->dev, size,
205				   tx_ring->desc, tx_ring->dma);
206		tx_ring->desc = NULL;
207	}
208}
209
210/**
211 * ice_clean_tx_irq - Reclaim resources after transmit completes
212 * @tx_ring: Tx ring to clean
213 * @napi_budget: Used to determine if we are in netpoll
214 *
215 * Returns true if there's any budget left (e.g. the clean is finished)
216 */
217static bool ice_clean_tx_irq(struct ice_tx_ring *tx_ring, int napi_budget)
218{
219	unsigned int total_bytes = 0, total_pkts = 0;
220	unsigned int budget = ICE_DFLT_IRQ_WORK;
221	struct ice_vsi *vsi = tx_ring->vsi;
222	s16 i = tx_ring->next_to_clean;
223	struct ice_tx_desc *tx_desc;
224	struct ice_tx_buf *tx_buf;
225
226	/* get the bql data ready */
227	netdev_txq_bql_complete_prefetchw(txring_txq(tx_ring));
228
229	tx_buf = &tx_ring->tx_buf[i];
230	tx_desc = ICE_TX_DESC(tx_ring, i);
231	i -= tx_ring->count;
232
233	prefetch(&vsi->state);
234
235	do {
236		struct ice_tx_desc *eop_desc = tx_buf->next_to_watch;
237
238		/* if next_to_watch is not set then there is no work pending */
239		if (!eop_desc)
240			break;
241
242		/* follow the guidelines of other drivers */
243		prefetchw(&tx_buf->skb->users);
244
245		smp_rmb();	/* prevent any other reads prior to eop_desc */
246
247		ice_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
248		/* if the descriptor isn't done, no work yet to do */
249		if (!(eop_desc->cmd_type_offset_bsz &
250		      cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)))
251			break;
252
253		/* clear next_to_watch to prevent false hangs */
254		tx_buf->next_to_watch = NULL;
255
256		/* update the statistics for this packet */
257		total_bytes += tx_buf->bytecount;
258		total_pkts += tx_buf->gso_segs;
259
260		/* free the skb */
261		napi_consume_skb(tx_buf->skb, napi_budget);
262
263		/* unmap skb header data */
264		dma_unmap_single(tx_ring->dev,
265				 dma_unmap_addr(tx_buf, dma),
266				 dma_unmap_len(tx_buf, len),
267				 DMA_TO_DEVICE);
268
269		/* clear tx_buf data */
270		tx_buf->type = ICE_TX_BUF_EMPTY;
271		dma_unmap_len_set(tx_buf, len, 0);
272
273		/* unmap remaining buffers */
274		while (tx_desc != eop_desc) {
275			ice_trace(clean_tx_irq_unmap, tx_ring, tx_desc, tx_buf);
276			tx_buf++;
277			tx_desc++;
278			i++;
279			if (unlikely(!i)) {
280				i -= tx_ring->count;
281				tx_buf = tx_ring->tx_buf;
282				tx_desc = ICE_TX_DESC(tx_ring, 0);
283			}
284
285			/* unmap any remaining paged data */
286			if (dma_unmap_len(tx_buf, len)) {
287				dma_unmap_page(tx_ring->dev,
288					       dma_unmap_addr(tx_buf, dma),
289					       dma_unmap_len(tx_buf, len),
290					       DMA_TO_DEVICE);
291				dma_unmap_len_set(tx_buf, len, 0);
292			}
293		}
294		ice_trace(clean_tx_irq_unmap_eop, tx_ring, tx_desc, tx_buf);
295
296		/* move us one more past the eop_desc for start of next pkt */
297		tx_buf++;
298		tx_desc++;
299		i++;
300		if (unlikely(!i)) {
301			i -= tx_ring->count;
302			tx_buf = tx_ring->tx_buf;
303			tx_desc = ICE_TX_DESC(tx_ring, 0);
304		}
305
306		prefetch(tx_desc);
307
308		/* update budget accounting */
309		budget--;
310	} while (likely(budget));
311
312	i += tx_ring->count;
313	tx_ring->next_to_clean = i;
314
315	ice_update_tx_ring_stats(tx_ring, total_pkts, total_bytes);
316	netdev_tx_completed_queue(txring_txq(tx_ring), total_pkts, total_bytes);
317
318#define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
319	if (unlikely(total_pkts && netif_carrier_ok(tx_ring->netdev) &&
320		     (ICE_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
321		/* Make sure that anybody stopping the queue after this
322		 * sees the new next_to_clean.
323		 */
324		smp_mb();
325		if (netif_tx_queue_stopped(txring_txq(tx_ring)) &&
326		    !test_bit(ICE_VSI_DOWN, vsi->state)) {
327			netif_tx_wake_queue(txring_txq(tx_ring));
328			++tx_ring->ring_stats->tx_stats.restart_q;
329		}
330	}
331
332	return !!budget;
333}
334
335/**
336 * ice_setup_tx_ring - Allocate the Tx descriptors
337 * @tx_ring: the Tx ring to set up
338 *
339 * Return 0 on success, negative on error
340 */
341int ice_setup_tx_ring(struct ice_tx_ring *tx_ring)
342{
343	struct device *dev = tx_ring->dev;
344	u32 size;
345
346	if (!dev)
347		return -ENOMEM;
348
349	/* warn if we are about to overwrite the pointer */
350	WARN_ON(tx_ring->tx_buf);
351	tx_ring->tx_buf =
352		devm_kcalloc(dev, sizeof(*tx_ring->tx_buf), tx_ring->count,
353			     GFP_KERNEL);
354	if (!tx_ring->tx_buf)
355		return -ENOMEM;
356
357	/* round up to nearest page */
358	size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc),
359		     PAGE_SIZE);
360	tx_ring->desc = dmam_alloc_coherent(dev, size, &tx_ring->dma,
361					    GFP_KERNEL);
362	if (!tx_ring->desc) {
363		dev_err(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
364			size);
365		goto err;
366	}
367
368	tx_ring->next_to_use = 0;
369	tx_ring->next_to_clean = 0;
370	tx_ring->ring_stats->tx_stats.prev_pkt = -1;
371	return 0;
372
373err:
374	devm_kfree(dev, tx_ring->tx_buf);
375	tx_ring->tx_buf = NULL;
376	return -ENOMEM;
377}
378
379/**
380 * ice_clean_rx_ring - Free Rx buffers
381 * @rx_ring: ring to be cleaned
382 */
383void ice_clean_rx_ring(struct ice_rx_ring *rx_ring)
384{
385	struct xdp_buff *xdp = &rx_ring->xdp;
386	struct device *dev = rx_ring->dev;
387	u32 size;
388	u16 i;
389
390	/* ring already cleared, nothing to do */
391	if (!rx_ring->rx_buf)
392		return;
393
394	if (rx_ring->xsk_pool) {
395		ice_xsk_clean_rx_ring(rx_ring);
396		goto rx_skip_free;
397	}
398
399	if (xdp->data) {
400		xdp_return_buff(xdp);
401		xdp->data = NULL;
402	}
403
404	/* Free all the Rx ring sk_buffs */
405	for (i = 0; i < rx_ring->count; i++) {
406		struct ice_rx_buf *rx_buf = &rx_ring->rx_buf[i];
407
408		if (!rx_buf->page)
409			continue;
410
411		/* Invalidate cache lines that may have been written to by
412		 * device so that we avoid corrupting memory.
413		 */
414		dma_sync_single_range_for_cpu(dev, rx_buf->dma,
415					      rx_buf->page_offset,
416					      rx_ring->rx_buf_len,
417					      DMA_FROM_DEVICE);
418
419		/* free resources associated with mapping */
420		dma_unmap_page_attrs(dev, rx_buf->dma, ice_rx_pg_size(rx_ring),
421				     DMA_FROM_DEVICE, ICE_RX_DMA_ATTR);
422		__page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias);
423
424		rx_buf->page = NULL;
425		rx_buf->page_offset = 0;
426	}
427
428rx_skip_free:
429	if (rx_ring->xsk_pool)
430		memset(rx_ring->xdp_buf, 0, array_size(rx_ring->count, sizeof(*rx_ring->xdp_buf)));
431	else
432		memset(rx_ring->rx_buf, 0, array_size(rx_ring->count, sizeof(*rx_ring->rx_buf)));
433
434	/* Zero out the descriptor ring */
435	size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc),
436		     PAGE_SIZE);
437	memset(rx_ring->desc, 0, size);
438
439	rx_ring->next_to_alloc = 0;
440	rx_ring->next_to_clean = 0;
441	rx_ring->first_desc = 0;
442	rx_ring->next_to_use = 0;
443}
444
445/**
446 * ice_free_rx_ring - Free Rx resources
447 * @rx_ring: ring to clean the resources from
448 *
449 * Free all receive software resources
450 */
451void ice_free_rx_ring(struct ice_rx_ring *rx_ring)
452{
453	u32 size;
454
455	ice_clean_rx_ring(rx_ring);
456	if (rx_ring->vsi->type == ICE_VSI_PF)
457		if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
458			xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
459	rx_ring->xdp_prog = NULL;
460	if (rx_ring->xsk_pool) {
461		kfree(rx_ring->xdp_buf);
462		rx_ring->xdp_buf = NULL;
463	} else {
464		kfree(rx_ring->rx_buf);
465		rx_ring->rx_buf = NULL;
466	}
467
468	if (rx_ring->desc) {
469		size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc),
470			     PAGE_SIZE);
471		dmam_free_coherent(rx_ring->dev, size,
472				   rx_ring->desc, rx_ring->dma);
473		rx_ring->desc = NULL;
474	}
475}
476
477/**
478 * ice_setup_rx_ring - Allocate the Rx descriptors
479 * @rx_ring: the Rx ring to set up
480 *
481 * Return 0 on success, negative on error
482 */
483int ice_setup_rx_ring(struct ice_rx_ring *rx_ring)
484{
485	struct device *dev = rx_ring->dev;
486	u32 size;
487
488	if (!dev)
489		return -ENOMEM;
490
491	/* warn if we are about to overwrite the pointer */
492	WARN_ON(rx_ring->rx_buf);
493	rx_ring->rx_buf =
494		kcalloc(rx_ring->count, sizeof(*rx_ring->rx_buf), GFP_KERNEL);
495	if (!rx_ring->rx_buf)
496		return -ENOMEM;
497
498	/* round up to nearest page */
499	size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc),
500		     PAGE_SIZE);
501	rx_ring->desc = dmam_alloc_coherent(dev, size, &rx_ring->dma,
502					    GFP_KERNEL);
503	if (!rx_ring->desc) {
504		dev_err(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
505			size);
506		goto err;
507	}
508
509	rx_ring->next_to_use = 0;
510	rx_ring->next_to_clean = 0;
511	rx_ring->first_desc = 0;
512
513	if (ice_is_xdp_ena_vsi(rx_ring->vsi))
514		WRITE_ONCE(rx_ring->xdp_prog, rx_ring->vsi->xdp_prog);
515
516	return 0;
517
518err:
519	kfree(rx_ring->rx_buf);
520	rx_ring->rx_buf = NULL;
521	return -ENOMEM;
522}
523
524/**
525 * ice_rx_frame_truesize
526 * @rx_ring: ptr to Rx ring
527 * @size: size
528 *
529 * calculate the truesize with taking into the account PAGE_SIZE of
530 * underlying arch
531 */
532static unsigned int
533ice_rx_frame_truesize(struct ice_rx_ring *rx_ring, const unsigned int size)
534{
535	unsigned int truesize;
536
537#if (PAGE_SIZE < 8192)
538	truesize = ice_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
539#else
540	truesize = rx_ring->rx_offset ?
541		SKB_DATA_ALIGN(rx_ring->rx_offset + size) +
542		SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
543		SKB_DATA_ALIGN(size);
544#endif
545	return truesize;
546}
547
548/**
549 * ice_run_xdp - Executes an XDP program on initialized xdp_buff
550 * @rx_ring: Rx ring
551 * @xdp: xdp_buff used as input to the XDP program
552 * @xdp_prog: XDP program to run
553 * @xdp_ring: ring to be used for XDP_TX action
554 * @rx_buf: Rx buffer to store the XDP action
555 *
556 * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR}
557 */
558static void
559ice_run_xdp(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp,
560	    struct bpf_prog *xdp_prog, struct ice_tx_ring *xdp_ring,
561	    struct ice_rx_buf *rx_buf)
562{
563	unsigned int ret = ICE_XDP_PASS;
564	u32 act;
565
566	if (!xdp_prog)
567		goto exit;
568
569	act = bpf_prog_run_xdp(xdp_prog, xdp);
570	switch (act) {
571	case XDP_PASS:
572		break;
573	case XDP_TX:
574		if (static_branch_unlikely(&ice_xdp_locking_key))
575			spin_lock(&xdp_ring->tx_lock);
576		ret = __ice_xmit_xdp_ring(xdp, xdp_ring, false);
577		if (static_branch_unlikely(&ice_xdp_locking_key))
578			spin_unlock(&xdp_ring->tx_lock);
579		if (ret == ICE_XDP_CONSUMED)
580			goto out_failure;
581		break;
582	case XDP_REDIRECT:
583		if (xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog))
584			goto out_failure;
585		ret = ICE_XDP_REDIR;
586		break;
587	default:
588		bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act);
589		fallthrough;
590	case XDP_ABORTED:
591out_failure:
592		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
593		fallthrough;
594	case XDP_DROP:
595		ret = ICE_XDP_CONSUMED;
596	}
597exit:
598	ice_set_rx_bufs_act(xdp, rx_ring, ret);
599}
600
601/**
602 * ice_xmit_xdp_ring - submit frame to XDP ring for transmission
603 * @xdpf: XDP frame that will be converted to XDP buff
604 * @xdp_ring: XDP ring for transmission
605 */
606static int ice_xmit_xdp_ring(const struct xdp_frame *xdpf,
607			     struct ice_tx_ring *xdp_ring)
608{
609	struct xdp_buff xdp;
610
611	xdp.data_hard_start = (void *)xdpf;
612	xdp.data = xdpf->data;
613	xdp.data_end = xdp.data + xdpf->len;
614	xdp.frame_sz = xdpf->frame_sz;
615	xdp.flags = xdpf->flags;
616
617	return __ice_xmit_xdp_ring(&xdp, xdp_ring, true);
618}
619
620/**
621 * ice_xdp_xmit - submit packets to XDP ring for transmission
622 * @dev: netdev
623 * @n: number of XDP frames to be transmitted
624 * @frames: XDP frames to be transmitted
625 * @flags: transmit flags
626 *
627 * Returns number of frames successfully sent. Failed frames
628 * will be free'ed by XDP core.
629 * For error cases, a negative errno code is returned and no-frames
630 * are transmitted (caller must handle freeing frames).
631 */
632int
633ice_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
634	     u32 flags)
635{
636	struct ice_netdev_priv *np = netdev_priv(dev);
637	unsigned int queue_index = smp_processor_id();
638	struct ice_vsi *vsi = np->vsi;
639	struct ice_tx_ring *xdp_ring;
640	struct ice_tx_buf *tx_buf;
641	int nxmit = 0, i;
642
643	if (test_bit(ICE_VSI_DOWN, vsi->state))
644		return -ENETDOWN;
645
646	if (!ice_is_xdp_ena_vsi(vsi))
647		return -ENXIO;
648
649	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
650		return -EINVAL;
651
652	if (static_branch_unlikely(&ice_xdp_locking_key)) {
653		queue_index %= vsi->num_xdp_txq;
654		xdp_ring = vsi->xdp_rings[queue_index];
655		spin_lock(&xdp_ring->tx_lock);
656	} else {
657		/* Generally, should not happen */
658		if (unlikely(queue_index >= vsi->num_xdp_txq))
659			return -ENXIO;
660		xdp_ring = vsi->xdp_rings[queue_index];
661	}
662
663	tx_buf = &xdp_ring->tx_buf[xdp_ring->next_to_use];
664	for (i = 0; i < n; i++) {
665		const struct xdp_frame *xdpf = frames[i];
666		int err;
667
668		err = ice_xmit_xdp_ring(xdpf, xdp_ring);
669		if (err != ICE_XDP_TX)
670			break;
671		nxmit++;
672	}
673
674	tx_buf->rs_idx = ice_set_rs_bit(xdp_ring);
675	if (unlikely(flags & XDP_XMIT_FLUSH))
676		ice_xdp_ring_update_tail(xdp_ring);
677
678	if (static_branch_unlikely(&ice_xdp_locking_key))
679		spin_unlock(&xdp_ring->tx_lock);
680
681	return nxmit;
682}
683
684/**
685 * ice_alloc_mapped_page - recycle or make a new page
686 * @rx_ring: ring to use
687 * @bi: rx_buf struct to modify
688 *
689 * Returns true if the page was successfully allocated or
690 * reused.
691 */
692static bool
693ice_alloc_mapped_page(struct ice_rx_ring *rx_ring, struct ice_rx_buf *bi)
694{
695	struct page *page = bi->page;
696	dma_addr_t dma;
697
698	/* since we are recycling buffers we should seldom need to alloc */
699	if (likely(page))
700		return true;
701
702	/* alloc new page for storage */
703	page = dev_alloc_pages(ice_rx_pg_order(rx_ring));
704	if (unlikely(!page)) {
705		rx_ring->ring_stats->rx_stats.alloc_page_failed++;
706		return false;
707	}
708
709	/* map page for use */
710	dma = dma_map_page_attrs(rx_ring->dev, page, 0, ice_rx_pg_size(rx_ring),
711				 DMA_FROM_DEVICE, ICE_RX_DMA_ATTR);
712
713	/* if mapping failed free memory back to system since
714	 * there isn't much point in holding memory we can't use
715	 */
716	if (dma_mapping_error(rx_ring->dev, dma)) {
717		__free_pages(page, ice_rx_pg_order(rx_ring));
718		rx_ring->ring_stats->rx_stats.alloc_page_failed++;
719		return false;
720	}
721
722	bi->dma = dma;
723	bi->page = page;
724	bi->page_offset = rx_ring->rx_offset;
725	page_ref_add(page, USHRT_MAX - 1);
726	bi->pagecnt_bias = USHRT_MAX;
727
728	return true;
729}
730
731/**
732 * ice_alloc_rx_bufs - Replace used receive buffers
733 * @rx_ring: ring to place buffers on
734 * @cleaned_count: number of buffers to replace
735 *
736 * Returns false if all allocations were successful, true if any fail. Returning
737 * true signals to the caller that we didn't replace cleaned_count buffers and
738 * there is more work to do.
739 *
740 * First, try to clean "cleaned_count" Rx buffers. Then refill the cleaned Rx
741 * buffers. Then bump tail at most one time. Grouping like this lets us avoid
742 * multiple tail writes per call.
743 */
744bool ice_alloc_rx_bufs(struct ice_rx_ring *rx_ring, unsigned int cleaned_count)
745{
746	union ice_32b_rx_flex_desc *rx_desc;
747	u16 ntu = rx_ring->next_to_use;
748	struct ice_rx_buf *bi;
749
750	/* do nothing if no valid netdev defined */
751	if ((!rx_ring->netdev && rx_ring->vsi->type != ICE_VSI_CTRL) ||
752	    !cleaned_count)
753		return false;
754
755	/* get the Rx descriptor and buffer based on next_to_use */
756	rx_desc = ICE_RX_DESC(rx_ring, ntu);
757	bi = &rx_ring->rx_buf[ntu];
758
759	do {
760		/* if we fail here, we have work remaining */
761		if (!ice_alloc_mapped_page(rx_ring, bi))
762			break;
763
764		/* sync the buffer for use by the device */
765		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
766						 bi->page_offset,
767						 rx_ring->rx_buf_len,
768						 DMA_FROM_DEVICE);
769
770		/* Refresh the desc even if buffer_addrs didn't change
771		 * because each write-back erases this info.
772		 */
773		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
774
775		rx_desc++;
776		bi++;
777		ntu++;
778		if (unlikely(ntu == rx_ring->count)) {
779			rx_desc = ICE_RX_DESC(rx_ring, 0);
780			bi = rx_ring->rx_buf;
781			ntu = 0;
782		}
783
784		/* clear the status bits for the next_to_use descriptor */
785		rx_desc->wb.status_error0 = 0;
786
787		cleaned_count--;
788	} while (cleaned_count);
789
790	if (rx_ring->next_to_use != ntu)
791		ice_release_rx_desc(rx_ring, ntu);
792
793	return !!cleaned_count;
794}
795
796/**
797 * ice_rx_buf_adjust_pg_offset - Prepare Rx buffer for reuse
798 * @rx_buf: Rx buffer to adjust
799 * @size: Size of adjustment
800 *
801 * Update the offset within page so that Rx buf will be ready to be reused.
802 * For systems with PAGE_SIZE < 8192 this function will flip the page offset
803 * so the second half of page assigned to Rx buffer will be used, otherwise
804 * the offset is moved by "size" bytes
805 */
806static void
807ice_rx_buf_adjust_pg_offset(struct ice_rx_buf *rx_buf, unsigned int size)
808{
809#if (PAGE_SIZE < 8192)
810	/* flip page offset to other buffer */
811	rx_buf->page_offset ^= size;
812#else
813	/* move offset up to the next cache line */
814	rx_buf->page_offset += size;
815#endif
816}
817
818/**
819 * ice_can_reuse_rx_page - Determine if page can be reused for another Rx
820 * @rx_buf: buffer containing the page
821 *
822 * If page is reusable, we have a green light for calling ice_reuse_rx_page,
823 * which will assign the current buffer to the buffer that next_to_alloc is
824 * pointing to; otherwise, the DMA mapping needs to be destroyed and
825 * page freed
826 */
827static bool
828ice_can_reuse_rx_page(struct ice_rx_buf *rx_buf)
829{
830	unsigned int pagecnt_bias = rx_buf->pagecnt_bias;
831	struct page *page = rx_buf->page;
832
833	/* avoid re-using remote and pfmemalloc pages */
834	if (!dev_page_is_reusable(page))
835		return false;
836
837#if (PAGE_SIZE < 8192)
838	/* if we are only owner of page we can reuse it */
839	if (unlikely(rx_buf->pgcnt - pagecnt_bias > 1))
840		return false;
841#else
842#define ICE_LAST_OFFSET \
843	(SKB_WITH_OVERHEAD(PAGE_SIZE) - ICE_RXBUF_2048)
844	if (rx_buf->page_offset > ICE_LAST_OFFSET)
845		return false;
846#endif /* PAGE_SIZE < 8192) */
847
848	/* If we have drained the page fragment pool we need to update
849	 * the pagecnt_bias and page count so that we fully restock the
850	 * number of references the driver holds.
851	 */
852	if (unlikely(pagecnt_bias == 1)) {
853		page_ref_add(page, USHRT_MAX - 1);
854		rx_buf->pagecnt_bias = USHRT_MAX;
855	}
856
857	return true;
858}
859
860/**
861 * ice_add_xdp_frag - Add contents of Rx buffer to xdp buf as a frag
862 * @rx_ring: Rx descriptor ring to transact packets on
863 * @xdp: xdp buff to place the data into
864 * @rx_buf: buffer containing page to add
865 * @size: packet length from rx_desc
866 *
867 * This function will add the data contained in rx_buf->page to the xdp buf.
868 * It will just attach the page as a frag.
869 */
870static int
871ice_add_xdp_frag(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp,
872		 struct ice_rx_buf *rx_buf, const unsigned int size)
873{
874	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
875
876	if (!size)
877		return 0;
878
879	if (!xdp_buff_has_frags(xdp)) {
880		sinfo->nr_frags = 0;
881		sinfo->xdp_frags_size = 0;
882		xdp_buff_set_frags_flag(xdp);
883	}
884
885	if (unlikely(sinfo->nr_frags == MAX_SKB_FRAGS)) {
886		ice_set_rx_bufs_act(xdp, rx_ring, ICE_XDP_CONSUMED);
887		return -ENOMEM;
888	}
889
890	__skb_fill_page_desc_noacc(sinfo, sinfo->nr_frags++, rx_buf->page,
891				   rx_buf->page_offset, size);
892	sinfo->xdp_frags_size += size;
893	/* remember frag count before XDP prog execution; bpf_xdp_adjust_tail()
894	 * can pop off frags but driver has to handle it on its own
895	 */
896	rx_ring->nr_frags = sinfo->nr_frags;
897
898	if (page_is_pfmemalloc(rx_buf->page))
899		xdp_buff_set_frag_pfmemalloc(xdp);
900
901	return 0;
902}
903
904/**
905 * ice_reuse_rx_page - page flip buffer and store it back on the ring
906 * @rx_ring: Rx descriptor ring to store buffers on
907 * @old_buf: donor buffer to have page reused
908 *
909 * Synchronizes page for reuse by the adapter
910 */
911static void
912ice_reuse_rx_page(struct ice_rx_ring *rx_ring, struct ice_rx_buf *old_buf)
913{
914	u16 nta = rx_ring->next_to_alloc;
915	struct ice_rx_buf *new_buf;
916
917	new_buf = &rx_ring->rx_buf[nta];
918
919	/* update, and store next to alloc */
920	nta++;
921	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
922
923	/* Transfer page from old buffer to new buffer.
924	 * Move each member individually to avoid possible store
925	 * forwarding stalls and unnecessary copy of skb.
926	 */
927	new_buf->dma = old_buf->dma;
928	new_buf->page = old_buf->page;
929	new_buf->page_offset = old_buf->page_offset;
930	new_buf->pagecnt_bias = old_buf->pagecnt_bias;
931}
932
933/**
934 * ice_get_rx_buf - Fetch Rx buffer and synchronize data for use
935 * @rx_ring: Rx descriptor ring to transact packets on
936 * @size: size of buffer to add to skb
937 * @ntc: index of next to clean element
938 *
939 * This function will pull an Rx buffer from the ring and synchronize it
940 * for use by the CPU.
941 */
942static struct ice_rx_buf *
943ice_get_rx_buf(struct ice_rx_ring *rx_ring, const unsigned int size,
944	       const unsigned int ntc)
945{
946	struct ice_rx_buf *rx_buf;
947
948	rx_buf = &rx_ring->rx_buf[ntc];
949	rx_buf->pgcnt =
950#if (PAGE_SIZE < 8192)
951		page_count(rx_buf->page);
952#else
953		0;
954#endif
955	prefetchw(rx_buf->page);
956
957	if (!size)
958		return rx_buf;
959	/* we are reusing so sync this buffer for CPU use */
960	dma_sync_single_range_for_cpu(rx_ring->dev, rx_buf->dma,
961				      rx_buf->page_offset, size,
962				      DMA_FROM_DEVICE);
963
964	/* We have pulled a buffer for use, so decrement pagecnt_bias */
965	rx_buf->pagecnt_bias--;
966
967	return rx_buf;
968}
969
970/**
971 * ice_build_skb - Build skb around an existing buffer
972 * @rx_ring: Rx descriptor ring to transact packets on
973 * @xdp: xdp_buff pointing to the data
974 *
975 * This function builds an skb around an existing XDP buffer, taking care
976 * to set up the skb correctly and avoid any memcpy overhead. Driver has
977 * already combined frags (if any) to skb_shared_info.
978 */
979static struct sk_buff *
980ice_build_skb(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp)
981{
982	u8 metasize = xdp->data - xdp->data_meta;
983	struct skb_shared_info *sinfo = NULL;
984	unsigned int nr_frags;
985	struct sk_buff *skb;
986
987	if (unlikely(xdp_buff_has_frags(xdp))) {
988		sinfo = xdp_get_shared_info_from_buff(xdp);
989		nr_frags = sinfo->nr_frags;
990	}
991
992	/* Prefetch first cache line of first page. If xdp->data_meta
993	 * is unused, this points exactly as xdp->data, otherwise we
994	 * likely have a consumer accessing first few bytes of meta
995	 * data, and then actual data.
996	 */
997	net_prefetch(xdp->data_meta);
998	/* build an skb around the page buffer */
999	skb = napi_build_skb(xdp->data_hard_start, xdp->frame_sz);
1000	if (unlikely(!skb))
1001		return NULL;
1002
1003	/* must to record Rx queue, otherwise OS features such as
1004	 * symmetric queue won't work
1005	 */
1006	skb_record_rx_queue(skb, rx_ring->q_index);
1007
1008	/* update pointers within the skb to store the data */
1009	skb_reserve(skb, xdp->data - xdp->data_hard_start);
1010	__skb_put(skb, xdp->data_end - xdp->data);
1011	if (metasize)
1012		skb_metadata_set(skb, metasize);
1013
1014	if (unlikely(xdp_buff_has_frags(xdp)))
1015		xdp_update_skb_shared_info(skb, nr_frags,
1016					   sinfo->xdp_frags_size,
1017					   nr_frags * xdp->frame_sz,
1018					   xdp_buff_is_frag_pfmemalloc(xdp));
1019
1020	return skb;
1021}
1022
1023/**
1024 * ice_construct_skb - Allocate skb and populate it
1025 * @rx_ring: Rx descriptor ring to transact packets on
1026 * @xdp: xdp_buff pointing to the data
1027 *
1028 * This function allocates an skb. It then populates it with the page
1029 * data from the current receive descriptor, taking care to set up the
1030 * skb correctly.
1031 */
1032static struct sk_buff *
1033ice_construct_skb(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp)
1034{
1035	unsigned int size = xdp->data_end - xdp->data;
1036	struct skb_shared_info *sinfo = NULL;
1037	struct ice_rx_buf *rx_buf;
1038	unsigned int nr_frags = 0;
1039	unsigned int headlen;
1040	struct sk_buff *skb;
1041
1042	/* prefetch first cache line of first page */
1043	net_prefetch(xdp->data);
1044
1045	if (unlikely(xdp_buff_has_frags(xdp))) {
1046		sinfo = xdp_get_shared_info_from_buff(xdp);
1047		nr_frags = sinfo->nr_frags;
1048	}
1049
1050	/* allocate a skb to store the frags */
1051	skb = __napi_alloc_skb(&rx_ring->q_vector->napi, ICE_RX_HDR_SIZE,
1052			       GFP_ATOMIC | __GFP_NOWARN);
1053	if (unlikely(!skb))
1054		return NULL;
1055
1056	rx_buf = &rx_ring->rx_buf[rx_ring->first_desc];
1057	skb_record_rx_queue(skb, rx_ring->q_index);
1058	/* Determine available headroom for copy */
1059	headlen = size;
1060	if (headlen > ICE_RX_HDR_SIZE)
1061		headlen = eth_get_headlen(skb->dev, xdp->data, ICE_RX_HDR_SIZE);
1062
1063	/* align pull length to size of long to optimize memcpy performance */
1064	memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen,
1065							 sizeof(long)));
1066
1067	/* if we exhaust the linear part then add what is left as a frag */
1068	size -= headlen;
1069	if (size) {
1070		/* besides adding here a partial frag, we are going to add
1071		 * frags from xdp_buff, make sure there is enough space for
1072		 * them
1073		 */
1074		if (unlikely(nr_frags >= MAX_SKB_FRAGS - 1)) {
1075			dev_kfree_skb(skb);
1076			return NULL;
1077		}
1078		skb_add_rx_frag(skb, 0, rx_buf->page,
1079				rx_buf->page_offset + headlen, size,
1080				xdp->frame_sz);
1081	} else {
1082		/* buffer is unused, change the act that should be taken later
1083		 * on; data was copied onto skb's linear part so there's no
1084		 * need for adjusting page offset and we can reuse this buffer
1085		 * as-is
1086		 */
1087		rx_buf->act = ICE_SKB_CONSUMED;
1088	}
1089
1090	if (unlikely(xdp_buff_has_frags(xdp))) {
1091		struct skb_shared_info *skinfo = skb_shinfo(skb);
1092
1093		memcpy(&skinfo->frags[skinfo->nr_frags], &sinfo->frags[0],
1094		       sizeof(skb_frag_t) * nr_frags);
1095
1096		xdp_update_skb_shared_info(skb, skinfo->nr_frags + nr_frags,
1097					   sinfo->xdp_frags_size,
1098					   nr_frags * xdp->frame_sz,
1099					   xdp_buff_is_frag_pfmemalloc(xdp));
1100	}
1101
1102	return skb;
1103}
1104
1105/**
1106 * ice_put_rx_buf - Clean up used buffer and either recycle or free
1107 * @rx_ring: Rx descriptor ring to transact packets on
1108 * @rx_buf: Rx buffer to pull data from
1109 *
1110 * This function will clean up the contents of the rx_buf. It will either
1111 * recycle the buffer or unmap it and free the associated resources.
1112 */
1113static void
1114ice_put_rx_buf(struct ice_rx_ring *rx_ring, struct ice_rx_buf *rx_buf)
1115{
1116	if (!rx_buf)
1117		return;
1118
1119	if (ice_can_reuse_rx_page(rx_buf)) {
1120		/* hand second half of page back to the ring */
1121		ice_reuse_rx_page(rx_ring, rx_buf);
1122	} else {
1123		/* we are not reusing the buffer so unmap it */
1124		dma_unmap_page_attrs(rx_ring->dev, rx_buf->dma,
1125				     ice_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
1126				     ICE_RX_DMA_ATTR);
1127		__page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias);
1128	}
1129
1130	/* clear contents of buffer_info */
1131	rx_buf->page = NULL;
1132}
1133
1134/**
1135 * ice_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
1136 * @rx_ring: Rx descriptor ring to transact packets on
1137 * @budget: Total limit on number of packets to process
1138 *
1139 * This function provides a "bounce buffer" approach to Rx interrupt
1140 * processing. The advantage to this is that on systems that have
1141 * expensive overhead for IOMMU access this provides a means of avoiding
1142 * it by maintaining the mapping of the page to the system.
1143 *
1144 * Returns amount of work completed
1145 */
1146int ice_clean_rx_irq(struct ice_rx_ring *rx_ring, int budget)
1147{
1148	unsigned int total_rx_bytes = 0, total_rx_pkts = 0;
1149	unsigned int offset = rx_ring->rx_offset;
1150	struct xdp_buff *xdp = &rx_ring->xdp;
1151	u32 cached_ntc = rx_ring->first_desc;
1152	struct ice_tx_ring *xdp_ring = NULL;
1153	struct bpf_prog *xdp_prog = NULL;
1154	u32 ntc = rx_ring->next_to_clean;
1155	u32 cnt = rx_ring->count;
1156	u32 xdp_xmit = 0;
1157	u32 cached_ntu;
1158	bool failure;
1159	u32 first;
1160
1161	/* Frame size depend on rx_ring setup when PAGE_SIZE=4K */
1162#if (PAGE_SIZE < 8192)
1163	xdp->frame_sz = ice_rx_frame_truesize(rx_ring, 0);
1164#endif
1165
1166	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
1167	if (xdp_prog) {
1168		xdp_ring = rx_ring->xdp_ring;
1169		cached_ntu = xdp_ring->next_to_use;
1170	}
1171
1172	/* start the loop to process Rx packets bounded by 'budget' */
1173	while (likely(total_rx_pkts < (unsigned int)budget)) {
1174		union ice_32b_rx_flex_desc *rx_desc;
1175		struct ice_rx_buf *rx_buf;
1176		struct sk_buff *skb;
1177		unsigned int size;
1178		u16 stat_err_bits;
1179		u16 vlan_tag = 0;
1180		u16 rx_ptype;
1181
1182		/* get the Rx desc from Rx ring based on 'next_to_clean' */
1183		rx_desc = ICE_RX_DESC(rx_ring, ntc);
1184
1185		/* status_error_len will always be zero for unused descriptors
1186		 * because it's cleared in cleanup, and overlaps with hdr_addr
1187		 * which is always zero because packet split isn't used, if the
1188		 * hardware wrote DD then it will be non-zero
1189		 */
1190		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S);
1191		if (!ice_test_staterr(rx_desc->wb.status_error0, stat_err_bits))
1192			break;
1193
1194		/* This memory barrier is needed to keep us from reading
1195		 * any other fields out of the rx_desc until we know the
1196		 * DD bit is set.
1197		 */
1198		dma_rmb();
1199
1200		ice_trace(clean_rx_irq, rx_ring, rx_desc);
1201		if (rx_desc->wb.rxdid == FDIR_DESC_RXDID || !rx_ring->netdev) {
1202			struct ice_vsi *ctrl_vsi = rx_ring->vsi;
1203
1204			if (rx_desc->wb.rxdid == FDIR_DESC_RXDID &&
1205			    ctrl_vsi->vf)
1206				ice_vc_fdir_irq_handler(ctrl_vsi, rx_desc);
1207			if (++ntc == cnt)
1208				ntc = 0;
1209			rx_ring->first_desc = ntc;
1210			continue;
1211		}
1212
1213		size = le16_to_cpu(rx_desc->wb.pkt_len) &
1214			ICE_RX_FLX_DESC_PKT_LEN_M;
1215
1216		/* retrieve a buffer from the ring */
1217		rx_buf = ice_get_rx_buf(rx_ring, size, ntc);
1218
1219		if (!xdp->data) {
1220			void *hard_start;
1221
1222			hard_start = page_address(rx_buf->page) + rx_buf->page_offset -
1223				     offset;
1224			xdp_prepare_buff(xdp, hard_start, offset, size, !!offset);
1225#if (PAGE_SIZE > 4096)
1226			/* At larger PAGE_SIZE, frame_sz depend on len size */
1227			xdp->frame_sz = ice_rx_frame_truesize(rx_ring, size);
1228#endif
1229			xdp_buff_clear_frags_flag(xdp);
1230		} else if (ice_add_xdp_frag(rx_ring, xdp, rx_buf, size)) {
1231			break;
1232		}
1233		if (++ntc == cnt)
1234			ntc = 0;
1235
1236		/* skip if it is NOP desc */
1237		if (ice_is_non_eop(rx_ring, rx_desc))
1238			continue;
1239
1240		ice_run_xdp(rx_ring, xdp, xdp_prog, xdp_ring, rx_buf);
1241		if (rx_buf->act == ICE_XDP_PASS)
1242			goto construct_skb;
1243		total_rx_bytes += xdp_get_buff_len(xdp);
1244		total_rx_pkts++;
1245
1246		xdp->data = NULL;
1247		rx_ring->first_desc = ntc;
1248		rx_ring->nr_frags = 0;
1249		continue;
1250construct_skb:
1251		if (likely(ice_ring_uses_build_skb(rx_ring)))
1252			skb = ice_build_skb(rx_ring, xdp);
1253		else
1254			skb = ice_construct_skb(rx_ring, xdp);
1255		/* exit if we failed to retrieve a buffer */
1256		if (!skb) {
1257			rx_ring->ring_stats->rx_stats.alloc_page_failed++;
1258			rx_buf->act = ICE_XDP_CONSUMED;
1259			if (unlikely(xdp_buff_has_frags(xdp)))
1260				ice_set_rx_bufs_act(xdp, rx_ring,
1261						    ICE_XDP_CONSUMED);
1262			xdp->data = NULL;
1263			rx_ring->first_desc = ntc;
1264			rx_ring->nr_frags = 0;
1265			break;
1266		}
1267		xdp->data = NULL;
1268		rx_ring->first_desc = ntc;
1269		rx_ring->nr_frags = 0;
1270
1271		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_RXE_S);
1272		if (unlikely(ice_test_staterr(rx_desc->wb.status_error0,
1273					      stat_err_bits))) {
1274			dev_kfree_skb_any(skb);
1275			continue;
1276		}
1277
1278		vlan_tag = ice_get_vlan_tag_from_rx_desc(rx_desc);
1279
1280		/* pad the skb if needed, to make a valid ethernet frame */
1281		if (eth_skb_pad(skb))
1282			continue;
1283
1284		/* probably a little skewed due to removing CRC */
1285		total_rx_bytes += skb->len;
1286
1287		/* populate checksum, VLAN, and protocol */
1288		rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) &
1289			ICE_RX_FLEX_DESC_PTYPE_M;
1290
1291		ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
1292
1293		ice_trace(clean_rx_irq_indicate, rx_ring, rx_desc, skb);
1294		/* send completed skb up the stack */
1295		ice_receive_skb(rx_ring, skb, vlan_tag);
1296
1297		/* update budget accounting */
1298		total_rx_pkts++;
1299	}
1300
1301	first = rx_ring->first_desc;
1302	while (cached_ntc != first) {
1303		struct ice_rx_buf *buf = &rx_ring->rx_buf[cached_ntc];
1304
1305		if (buf->act & (ICE_XDP_TX | ICE_XDP_REDIR)) {
1306			ice_rx_buf_adjust_pg_offset(buf, xdp->frame_sz);
1307			xdp_xmit |= buf->act;
1308		} else if (buf->act & ICE_XDP_CONSUMED) {
1309			buf->pagecnt_bias++;
1310		} else if (buf->act == ICE_XDP_PASS) {
1311			ice_rx_buf_adjust_pg_offset(buf, xdp->frame_sz);
1312		}
1313
1314		ice_put_rx_buf(rx_ring, buf);
1315		if (++cached_ntc >= cnt)
1316			cached_ntc = 0;
1317	}
1318	rx_ring->next_to_clean = ntc;
1319	/* return up to cleaned_count buffers to hardware */
1320	failure = ice_alloc_rx_bufs(rx_ring, ICE_RX_DESC_UNUSED(rx_ring));
1321
1322	if (xdp_xmit)
1323		ice_finalize_xdp_rx(xdp_ring, xdp_xmit, cached_ntu);
1324
1325	if (rx_ring->ring_stats)
1326		ice_update_rx_ring_stats(rx_ring, total_rx_pkts,
1327					 total_rx_bytes);
1328
1329	/* guarantee a trip back through this routine if there was a failure */
1330	return failure ? budget : (int)total_rx_pkts;
1331}
1332
1333static void __ice_update_sample(struct ice_q_vector *q_vector,
1334				struct ice_ring_container *rc,
1335				struct dim_sample *sample,
1336				bool is_tx)
1337{
1338	u64 packets = 0, bytes = 0;
1339
1340	if (is_tx) {
1341		struct ice_tx_ring *tx_ring;
1342
1343		ice_for_each_tx_ring(tx_ring, *rc) {
1344			struct ice_ring_stats *ring_stats;
1345
1346			ring_stats = tx_ring->ring_stats;
1347			if (!ring_stats)
1348				continue;
1349			packets += ring_stats->stats.pkts;
1350			bytes += ring_stats->stats.bytes;
1351		}
1352	} else {
1353		struct ice_rx_ring *rx_ring;
1354
1355		ice_for_each_rx_ring(rx_ring, *rc) {
1356			struct ice_ring_stats *ring_stats;
1357
1358			ring_stats = rx_ring->ring_stats;
1359			if (!ring_stats)
1360				continue;
1361			packets += ring_stats->stats.pkts;
1362			bytes += ring_stats->stats.bytes;
1363		}
1364	}
1365
1366	dim_update_sample(q_vector->total_events, packets, bytes, sample);
1367	sample->comp_ctr = 0;
1368
1369	/* if dim settings get stale, like when not updated for 1
1370	 * second or longer, force it to start again. This addresses the
1371	 * frequent case of an idle queue being switched to by the
1372	 * scheduler. The 1,000 here means 1,000 milliseconds.
1373	 */
1374	if (ktime_ms_delta(sample->time, rc->dim.start_sample.time) >= 1000)
1375		rc->dim.state = DIM_START_MEASURE;
1376}
1377
1378/**
1379 * ice_net_dim - Update net DIM algorithm
1380 * @q_vector: the vector associated with the interrupt
1381 *
1382 * Create a DIM sample and notify net_dim() so that it can possibly decide
1383 * a new ITR value based on incoming packets, bytes, and interrupts.
1384 *
1385 * This function is a no-op if the ring is not configured to dynamic ITR.
1386 */
1387static void ice_net_dim(struct ice_q_vector *q_vector)
1388{
1389	struct ice_ring_container *tx = &q_vector->tx;
1390	struct ice_ring_container *rx = &q_vector->rx;
1391
1392	if (ITR_IS_DYNAMIC(tx)) {
1393		struct dim_sample dim_sample;
1394
1395		__ice_update_sample(q_vector, tx, &dim_sample, true);
1396		net_dim(&tx->dim, dim_sample);
1397	}
1398
1399	if (ITR_IS_DYNAMIC(rx)) {
1400		struct dim_sample dim_sample;
1401
1402		__ice_update_sample(q_vector, rx, &dim_sample, false);
1403		net_dim(&rx->dim, dim_sample);
1404	}
1405}
1406
1407/**
1408 * ice_buildreg_itr - build value for writing to the GLINT_DYN_CTL register
1409 * @itr_idx: interrupt throttling index
1410 * @itr: interrupt throttling value in usecs
1411 */
1412static u32 ice_buildreg_itr(u16 itr_idx, u16 itr)
1413{
1414	/* The ITR value is reported in microseconds, and the register value is
1415	 * recorded in 2 microsecond units. For this reason we only need to
1416	 * shift by the GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S to apply this
1417	 * granularity as a shift instead of division. The mask makes sure the
1418	 * ITR value is never odd so we don't accidentally write into the field
1419	 * prior to the ITR field.
1420	 */
1421	itr &= ICE_ITR_MASK;
1422
1423	return GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M |
1424		(itr_idx << GLINT_DYN_CTL_ITR_INDX_S) |
1425		(itr << (GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S));
1426}
1427
1428/**
1429 * ice_enable_interrupt - re-enable MSI-X interrupt
1430 * @q_vector: the vector associated with the interrupt to enable
1431 *
1432 * If the VSI is down, the interrupt will not be re-enabled. Also,
1433 * when enabling the interrupt always reset the wb_on_itr to false
1434 * and trigger a software interrupt to clean out internal state.
1435 */
1436static void ice_enable_interrupt(struct ice_q_vector *q_vector)
1437{
1438	struct ice_vsi *vsi = q_vector->vsi;
1439	bool wb_en = q_vector->wb_on_itr;
1440	u32 itr_val;
1441
1442	if (test_bit(ICE_DOWN, vsi->state))
1443		return;
1444
1445	/* trigger an ITR delayed software interrupt when exiting busy poll, to
1446	 * make sure to catch any pending cleanups that might have been missed
1447	 * due to interrupt state transition. If busy poll or poll isn't
1448	 * enabled, then don't update ITR, and just enable the interrupt.
1449	 */
1450	if (!wb_en) {
1451		itr_val = ice_buildreg_itr(ICE_ITR_NONE, 0);
1452	} else {
1453		q_vector->wb_on_itr = false;
1454
1455		/* do two things here with a single write. Set up the third ITR
1456		 * index to be used for software interrupt moderation, and then
1457		 * trigger a software interrupt with a rate limit of 20K on
1458		 * software interrupts, this will help avoid high interrupt
1459		 * loads due to frequently polling and exiting polling.
1460		 */
1461		itr_val = ice_buildreg_itr(ICE_IDX_ITR2, ICE_ITR_20K);
1462		itr_val |= GLINT_DYN_CTL_SWINT_TRIG_M |
1463			   ICE_IDX_ITR2 << GLINT_DYN_CTL_SW_ITR_INDX_S |
1464			   GLINT_DYN_CTL_SW_ITR_INDX_ENA_M;
1465	}
1466	wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx), itr_val);
1467}
1468
1469/**
1470 * ice_set_wb_on_itr - set WB_ON_ITR for this q_vector
1471 * @q_vector: q_vector to set WB_ON_ITR on
1472 *
1473 * We need to tell hardware to write-back completed descriptors even when
1474 * interrupts are disabled. Descriptors will be written back on cache line
1475 * boundaries without WB_ON_ITR enabled, but if we don't enable WB_ON_ITR
1476 * descriptors may not be written back if they don't fill a cache line until
1477 * the next interrupt.
1478 *
1479 * This sets the write-back frequency to whatever was set previously for the
1480 * ITR indices. Also, set the INTENA_MSK bit to make sure hardware knows we
1481 * aren't meddling with the INTENA_M bit.
1482 */
1483static void ice_set_wb_on_itr(struct ice_q_vector *q_vector)
1484{
1485	struct ice_vsi *vsi = q_vector->vsi;
1486
1487	/* already in wb_on_itr mode no need to change it */
1488	if (q_vector->wb_on_itr)
1489		return;
1490
1491	/* use previously set ITR values for all of the ITR indices by
1492	 * specifying ICE_ITR_NONE, which will vary in adaptive (AIM) mode and
1493	 * be static in non-adaptive mode (user configured)
1494	 */
1495	wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx),
1496	     ((ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S) &
1497	      GLINT_DYN_CTL_ITR_INDX_M) | GLINT_DYN_CTL_INTENA_MSK_M |
1498	     GLINT_DYN_CTL_WB_ON_ITR_M);
1499
1500	q_vector->wb_on_itr = true;
1501}
1502
1503/**
1504 * ice_napi_poll - NAPI polling Rx/Tx cleanup routine
1505 * @napi: napi struct with our devices info in it
1506 * @budget: amount of work driver is allowed to do this pass, in packets
1507 *
1508 * This function will clean all queues associated with a q_vector.
1509 *
1510 * Returns the amount of work done
1511 */
1512int ice_napi_poll(struct napi_struct *napi, int budget)
1513{
1514	struct ice_q_vector *q_vector =
1515				container_of(napi, struct ice_q_vector, napi);
1516	struct ice_tx_ring *tx_ring;
1517	struct ice_rx_ring *rx_ring;
1518	bool clean_complete = true;
1519	int budget_per_ring;
1520	int work_done = 0;
1521
1522	/* Since the actual Tx work is minimal, we can give the Tx a larger
1523	 * budget and be more aggressive about cleaning up the Tx descriptors.
1524	 */
1525	ice_for_each_tx_ring(tx_ring, q_vector->tx) {
1526		bool wd;
1527
1528		if (tx_ring->xsk_pool)
1529			wd = ice_xmit_zc(tx_ring);
1530		else if (ice_ring_is_xdp(tx_ring))
1531			wd = true;
1532		else
1533			wd = ice_clean_tx_irq(tx_ring, budget);
1534
1535		if (!wd)
1536			clean_complete = false;
1537	}
1538
1539	/* Handle case where we are called by netpoll with a budget of 0 */
1540	if (unlikely(budget <= 0))
1541		return budget;
1542
1543	/* normally we have 1 Rx ring per q_vector */
1544	if (unlikely(q_vector->num_ring_rx > 1))
1545		/* We attempt to distribute budget to each Rx queue fairly, but
1546		 * don't allow the budget to go below 1 because that would exit
1547		 * polling early.
1548		 */
1549		budget_per_ring = max_t(int, budget / q_vector->num_ring_rx, 1);
1550	else
1551		/* Max of 1 Rx ring in this q_vector so give it the budget */
1552		budget_per_ring = budget;
1553
1554	ice_for_each_rx_ring(rx_ring, q_vector->rx) {
1555		int cleaned;
1556
1557		/* A dedicated path for zero-copy allows making a single
1558		 * comparison in the irq context instead of many inside the
1559		 * ice_clean_rx_irq function and makes the codebase cleaner.
1560		 */
1561		cleaned = rx_ring->xsk_pool ?
1562			  ice_clean_rx_irq_zc(rx_ring, budget_per_ring) :
1563			  ice_clean_rx_irq(rx_ring, budget_per_ring);
1564		work_done += cleaned;
1565		/* if we clean as many as budgeted, we must not be done */
1566		if (cleaned >= budget_per_ring)
1567			clean_complete = false;
1568	}
1569
1570	/* If work not completed, return budget and polling will return */
1571	if (!clean_complete) {
1572		/* Set the writeback on ITR so partial completions of
1573		 * cache-lines will still continue even if we're polling.
1574		 */
1575		ice_set_wb_on_itr(q_vector);
1576		return budget;
1577	}
1578
1579	/* Exit the polling mode, but don't re-enable interrupts if stack might
1580	 * poll us due to busy-polling
1581	 */
1582	if (napi_complete_done(napi, work_done)) {
1583		ice_net_dim(q_vector);
1584		ice_enable_interrupt(q_vector);
1585	} else {
1586		ice_set_wb_on_itr(q_vector);
1587	}
1588
1589	return min_t(int, work_done, budget - 1);
1590}
1591
1592/**
1593 * __ice_maybe_stop_tx - 2nd level check for Tx stop conditions
1594 * @tx_ring: the ring to be checked
1595 * @size: the size buffer we want to assure is available
1596 *
1597 * Returns -EBUSY if a stop is needed, else 0
1598 */
1599static int __ice_maybe_stop_tx(struct ice_tx_ring *tx_ring, unsigned int size)
1600{
1601	netif_tx_stop_queue(txring_txq(tx_ring));
1602	/* Memory barrier before checking head and tail */
1603	smp_mb();
1604
1605	/* Check again in a case another CPU has just made room available. */
1606	if (likely(ICE_DESC_UNUSED(tx_ring) < size))
1607		return -EBUSY;
1608
1609	/* A reprieve! - use start_queue because it doesn't call schedule */
1610	netif_tx_start_queue(txring_txq(tx_ring));
1611	++tx_ring->ring_stats->tx_stats.restart_q;
1612	return 0;
1613}
1614
1615/**
1616 * ice_maybe_stop_tx - 1st level check for Tx stop conditions
1617 * @tx_ring: the ring to be checked
1618 * @size:    the size buffer we want to assure is available
1619 *
1620 * Returns 0 if stop is not needed
1621 */
1622static int ice_maybe_stop_tx(struct ice_tx_ring *tx_ring, unsigned int size)
1623{
1624	if (likely(ICE_DESC_UNUSED(tx_ring) >= size))
1625		return 0;
1626
1627	return __ice_maybe_stop_tx(tx_ring, size);
1628}
1629
1630/**
1631 * ice_tx_map - Build the Tx descriptor
1632 * @tx_ring: ring to send buffer on
1633 * @first: first buffer info buffer to use
1634 * @off: pointer to struct that holds offload parameters
1635 *
1636 * This function loops over the skb data pointed to by *first
1637 * and gets a physical address for each memory location and programs
1638 * it and the length into the transmit descriptor.
1639 */
1640static void
1641ice_tx_map(struct ice_tx_ring *tx_ring, struct ice_tx_buf *first,
1642	   struct ice_tx_offload_params *off)
1643{
1644	u64 td_offset, td_tag, td_cmd;
1645	u16 i = tx_ring->next_to_use;
1646	unsigned int data_len, size;
1647	struct ice_tx_desc *tx_desc;
1648	struct ice_tx_buf *tx_buf;
1649	struct sk_buff *skb;
1650	skb_frag_t *frag;
1651	dma_addr_t dma;
1652	bool kick;
1653
1654	td_tag = off->td_l2tag1;
1655	td_cmd = off->td_cmd;
1656	td_offset = off->td_offset;
1657	skb = first->skb;
1658
1659	data_len = skb->data_len;
1660	size = skb_headlen(skb);
1661
1662	tx_desc = ICE_TX_DESC(tx_ring, i);
1663
1664	if (first->tx_flags & ICE_TX_FLAGS_HW_VLAN) {
1665		td_cmd |= (u64)ICE_TX_DESC_CMD_IL2TAG1;
1666		td_tag = first->vid;
1667	}
1668
1669	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1670
1671	tx_buf = first;
1672
1673	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1674		unsigned int max_data = ICE_MAX_DATA_PER_TXD_ALIGNED;
1675
1676		if (dma_mapping_error(tx_ring->dev, dma))
1677			goto dma_error;
1678
1679		/* record length, and DMA address */
1680		dma_unmap_len_set(tx_buf, len, size);
1681		dma_unmap_addr_set(tx_buf, dma, dma);
1682
1683		/* align size to end of page */
1684		max_data += -dma & (ICE_MAX_READ_REQ_SIZE - 1);
1685		tx_desc->buf_addr = cpu_to_le64(dma);
1686
1687		/* account for data chunks larger than the hardware
1688		 * can handle
1689		 */
1690		while (unlikely(size > ICE_MAX_DATA_PER_TXD)) {
1691			tx_desc->cmd_type_offset_bsz =
1692				ice_build_ctob(td_cmd, td_offset, max_data,
1693					       td_tag);
1694
1695			tx_desc++;
1696			i++;
1697
1698			if (i == tx_ring->count) {
1699				tx_desc = ICE_TX_DESC(tx_ring, 0);
1700				i = 0;
1701			}
1702
1703			dma += max_data;
1704			size -= max_data;
1705
1706			max_data = ICE_MAX_DATA_PER_TXD_ALIGNED;
1707			tx_desc->buf_addr = cpu_to_le64(dma);
1708		}
1709
1710		if (likely(!data_len))
1711			break;
1712
1713		tx_desc->cmd_type_offset_bsz = ice_build_ctob(td_cmd, td_offset,
1714							      size, td_tag);
1715
1716		tx_desc++;
1717		i++;
1718
1719		if (i == tx_ring->count) {
1720			tx_desc = ICE_TX_DESC(tx_ring, 0);
1721			i = 0;
1722		}
1723
1724		size = skb_frag_size(frag);
1725		data_len -= size;
1726
1727		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1728				       DMA_TO_DEVICE);
1729
1730		tx_buf = &tx_ring->tx_buf[i];
1731		tx_buf->type = ICE_TX_BUF_FRAG;
1732	}
1733
1734	/* record SW timestamp if HW timestamp is not available */
1735	skb_tx_timestamp(first->skb);
1736
1737	i++;
1738	if (i == tx_ring->count)
1739		i = 0;
1740
1741	/* write last descriptor with RS and EOP bits */
1742	td_cmd |= (u64)ICE_TXD_LAST_DESC_CMD;
1743	tx_desc->cmd_type_offset_bsz =
1744			ice_build_ctob(td_cmd, td_offset, size, td_tag);
1745
1746	/* Force memory writes to complete before letting h/w know there
1747	 * are new descriptors to fetch.
1748	 *
1749	 * We also use this memory barrier to make certain all of the
1750	 * status bits have been updated before next_to_watch is written.
1751	 */
1752	wmb();
1753
1754	/* set next_to_watch value indicating a packet is present */
1755	first->next_to_watch = tx_desc;
1756
1757	tx_ring->next_to_use = i;
1758
1759	ice_maybe_stop_tx(tx_ring, DESC_NEEDED);
1760
1761	/* notify HW of packet */
1762	kick = __netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount,
1763				      netdev_xmit_more());
1764	if (kick)
1765		/* notify HW of packet */
1766		writel(i, tx_ring->tail);
1767
1768	return;
1769
1770dma_error:
1771	/* clear DMA mappings for failed tx_buf map */
1772	for (;;) {
1773		tx_buf = &tx_ring->tx_buf[i];
1774		ice_unmap_and_free_tx_buf(tx_ring, tx_buf);
1775		if (tx_buf == first)
1776			break;
1777		if (i == 0)
1778			i = tx_ring->count;
1779		i--;
1780	}
1781
1782	tx_ring->next_to_use = i;
1783}
1784
1785/**
1786 * ice_tx_csum - Enable Tx checksum offloads
1787 * @first: pointer to the first descriptor
1788 * @off: pointer to struct that holds offload parameters
1789 *
1790 * Returns 0 or error (negative) if checksum offload can't happen, 1 otherwise.
1791 */
1792static
1793int ice_tx_csum(struct ice_tx_buf *first, struct ice_tx_offload_params *off)
1794{
1795	u32 l4_len = 0, l3_len = 0, l2_len = 0;
1796	struct sk_buff *skb = first->skb;
1797	union {
1798		struct iphdr *v4;
1799		struct ipv6hdr *v6;
1800		unsigned char *hdr;
1801	} ip;
1802	union {
1803		struct tcphdr *tcp;
1804		unsigned char *hdr;
1805	} l4;
1806	__be16 frag_off, protocol;
1807	unsigned char *exthdr;
1808	u32 offset, cmd = 0;
1809	u8 l4_proto = 0;
1810
1811	if (skb->ip_summed != CHECKSUM_PARTIAL)
1812		return 0;
1813
1814	protocol = vlan_get_protocol(skb);
1815
1816	if (eth_p_mpls(protocol)) {
1817		ip.hdr = skb_inner_network_header(skb);
1818		l4.hdr = skb_checksum_start(skb);
1819	} else {
1820		ip.hdr = skb_network_header(skb);
1821		l4.hdr = skb_transport_header(skb);
1822	}
1823
1824	/* compute outer L2 header size */
1825	l2_len = ip.hdr - skb->data;
1826	offset = (l2_len / 2) << ICE_TX_DESC_LEN_MACLEN_S;
1827
1828	/* set the tx_flags to indicate the IP protocol type. this is
1829	 * required so that checksum header computation below is accurate.
1830	 */
1831	if (ip.v4->version == 4)
1832		first->tx_flags |= ICE_TX_FLAGS_IPV4;
1833	else if (ip.v6->version == 6)
1834		first->tx_flags |= ICE_TX_FLAGS_IPV6;
1835
1836	if (skb->encapsulation) {
1837		bool gso_ena = false;
1838		u32 tunnel = 0;
1839
1840		/* define outer network header type */
1841		if (first->tx_flags & ICE_TX_FLAGS_IPV4) {
1842			tunnel |= (first->tx_flags & ICE_TX_FLAGS_TSO) ?
1843				  ICE_TX_CTX_EIPT_IPV4 :
1844				  ICE_TX_CTX_EIPT_IPV4_NO_CSUM;
1845			l4_proto = ip.v4->protocol;
1846		} else if (first->tx_flags & ICE_TX_FLAGS_IPV6) {
1847			int ret;
1848
1849			tunnel |= ICE_TX_CTX_EIPT_IPV6;
1850			exthdr = ip.hdr + sizeof(*ip.v6);
1851			l4_proto = ip.v6->nexthdr;
1852			ret = ipv6_skip_exthdr(skb, exthdr - skb->data,
1853					       &l4_proto, &frag_off);
1854			if (ret < 0)
1855				return -1;
1856		}
1857
1858		/* define outer transport */
1859		switch (l4_proto) {
1860		case IPPROTO_UDP:
1861			tunnel |= ICE_TXD_CTX_UDP_TUNNELING;
1862			first->tx_flags |= ICE_TX_FLAGS_TUNNEL;
1863			break;
1864		case IPPROTO_GRE:
1865			tunnel |= ICE_TXD_CTX_GRE_TUNNELING;
1866			first->tx_flags |= ICE_TX_FLAGS_TUNNEL;
1867			break;
1868		case IPPROTO_IPIP:
1869		case IPPROTO_IPV6:
1870			first->tx_flags |= ICE_TX_FLAGS_TUNNEL;
1871			l4.hdr = skb_inner_network_header(skb);
1872			break;
1873		default:
1874			if (first->tx_flags & ICE_TX_FLAGS_TSO)
1875				return -1;
1876
1877			skb_checksum_help(skb);
1878			return 0;
1879		}
1880
1881		/* compute outer L3 header size */
1882		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
1883			  ICE_TXD_CTX_QW0_EIPLEN_S;
1884
1885		/* switch IP header pointer from outer to inner header */
1886		ip.hdr = skb_inner_network_header(skb);
1887
1888		/* compute tunnel header size */
1889		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
1890			   ICE_TXD_CTX_QW0_NATLEN_S;
1891
1892		gso_ena = skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL;
1893		/* indicate if we need to offload outer UDP header */
1894		if ((first->tx_flags & ICE_TX_FLAGS_TSO) && !gso_ena &&
1895		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
1896			tunnel |= ICE_TXD_CTX_QW0_L4T_CS_M;
1897
1898		/* record tunnel offload values */
1899		off->cd_tunnel_params |= tunnel;
1900
1901		/* set DTYP=1 to indicate that it's an Tx context descriptor
1902		 * in IPsec tunnel mode with Tx offloads in Quad word 1
1903		 */
1904		off->cd_qw1 |= (u64)ICE_TX_DESC_DTYPE_CTX;
1905
1906		/* switch L4 header pointer from outer to inner */
1907		l4.hdr = skb_inner_transport_header(skb);
1908		l4_proto = 0;
1909
1910		/* reset type as we transition from outer to inner headers */
1911		first->tx_flags &= ~(ICE_TX_FLAGS_IPV4 | ICE_TX_FLAGS_IPV6);
1912		if (ip.v4->version == 4)
1913			first->tx_flags |= ICE_TX_FLAGS_IPV4;
1914		if (ip.v6->version == 6)
1915			first->tx_flags |= ICE_TX_FLAGS_IPV6;
1916	}
1917
1918	/* Enable IP checksum offloads */
1919	if (first->tx_flags & ICE_TX_FLAGS_IPV4) {
1920		l4_proto = ip.v4->protocol;
1921		/* the stack computes the IP header already, the only time we
1922		 * need the hardware to recompute it is in the case of TSO.
1923		 */
1924		if (first->tx_flags & ICE_TX_FLAGS_TSO)
1925			cmd |= ICE_TX_DESC_CMD_IIPT_IPV4_CSUM;
1926		else
1927			cmd |= ICE_TX_DESC_CMD_IIPT_IPV4;
1928
1929	} else if (first->tx_flags & ICE_TX_FLAGS_IPV6) {
1930		cmd |= ICE_TX_DESC_CMD_IIPT_IPV6;
1931		exthdr = ip.hdr + sizeof(*ip.v6);
1932		l4_proto = ip.v6->nexthdr;
1933		if (l4.hdr != exthdr)
1934			ipv6_skip_exthdr(skb, exthdr - skb->data, &l4_proto,
1935					 &frag_off);
1936	} else {
1937		return -1;
1938	}
1939
1940	/* compute inner L3 header size */
1941	l3_len = l4.hdr - ip.hdr;
1942	offset |= (l3_len / 4) << ICE_TX_DESC_LEN_IPLEN_S;
1943
1944	/* Enable L4 checksum offloads */
1945	switch (l4_proto) {
1946	case IPPROTO_TCP:
1947		/* enable checksum offloads */
1948		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP;
1949		l4_len = l4.tcp->doff;
1950		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
1951		break;
1952	case IPPROTO_UDP:
1953		/* enable UDP checksum offload */
1954		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_UDP;
1955		l4_len = (sizeof(struct udphdr) >> 2);
1956		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
1957		break;
1958	case IPPROTO_SCTP:
1959		/* enable SCTP checksum offload */
1960		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_SCTP;
1961		l4_len = sizeof(struct sctphdr) >> 2;
1962		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
1963		break;
1964
1965	default:
1966		if (first->tx_flags & ICE_TX_FLAGS_TSO)
1967			return -1;
1968		skb_checksum_help(skb);
1969		return 0;
1970	}
1971
1972	off->td_cmd |= cmd;
1973	off->td_offset |= offset;
1974	return 1;
1975}
1976
1977/**
1978 * ice_tx_prepare_vlan_flags - prepare generic Tx VLAN tagging flags for HW
1979 * @tx_ring: ring to send buffer on
1980 * @first: pointer to struct ice_tx_buf
1981 *
1982 * Checks the skb and set up correspondingly several generic transmit flags
1983 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
1984 */
1985static void
1986ice_tx_prepare_vlan_flags(struct ice_tx_ring *tx_ring, struct ice_tx_buf *first)
1987{
1988	struct sk_buff *skb = first->skb;
1989
1990	/* nothing left to do, software offloaded VLAN */
1991	if (!skb_vlan_tag_present(skb) && eth_type_vlan(skb->protocol))
1992		return;
1993
1994	/* the VLAN ethertype/tpid is determined by VSI configuration and netdev
1995	 * feature flags, which the driver only allows either 802.1Q or 802.1ad
1996	 * VLAN offloads exclusively so we only care about the VLAN ID here
1997	 */
1998	if (skb_vlan_tag_present(skb)) {
1999		first->vid = skb_vlan_tag_get(skb);
2000		if (tx_ring->flags & ICE_TX_FLAGS_RING_VLAN_L2TAG2)
2001			first->tx_flags |= ICE_TX_FLAGS_HW_OUTER_SINGLE_VLAN;
2002		else
2003			first->tx_flags |= ICE_TX_FLAGS_HW_VLAN;
2004	}
2005
2006	ice_tx_prepare_vlan_flags_dcb(tx_ring, first);
2007}
2008
2009/**
2010 * ice_tso - computes mss and TSO length to prepare for TSO
2011 * @first: pointer to struct ice_tx_buf
2012 * @off: pointer to struct that holds offload parameters
2013 *
2014 * Returns 0 or error (negative) if TSO can't happen, 1 otherwise.
2015 */
2016static
2017int ice_tso(struct ice_tx_buf *first, struct ice_tx_offload_params *off)
2018{
2019	struct sk_buff *skb = first->skb;
2020	union {
2021		struct iphdr *v4;
2022		struct ipv6hdr *v6;
2023		unsigned char *hdr;
2024	} ip;
2025	union {
2026		struct tcphdr *tcp;
2027		struct udphdr *udp;
2028		unsigned char *hdr;
2029	} l4;
2030	u64 cd_mss, cd_tso_len;
2031	__be16 protocol;
2032	u32 paylen;
2033	u8 l4_start;
2034	int err;
2035
2036	if (skb->ip_summed != CHECKSUM_PARTIAL)
2037		return 0;
2038
2039	if (!skb_is_gso(skb))
2040		return 0;
2041
2042	err = skb_cow_head(skb, 0);
2043	if (err < 0)
2044		return err;
2045
2046	protocol = vlan_get_protocol(skb);
2047
2048	if (eth_p_mpls(protocol))
2049		ip.hdr = skb_inner_network_header(skb);
2050	else
2051		ip.hdr = skb_network_header(skb);
2052	l4.hdr = skb_checksum_start(skb);
2053
2054	/* initialize outer IP header fields */
2055	if (ip.v4->version == 4) {
2056		ip.v4->tot_len = 0;
2057		ip.v4->check = 0;
2058	} else {
2059		ip.v6->payload_len = 0;
2060	}
2061
2062	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
2063					 SKB_GSO_GRE_CSUM |
2064					 SKB_GSO_IPXIP4 |
2065					 SKB_GSO_IPXIP6 |
2066					 SKB_GSO_UDP_TUNNEL |
2067					 SKB_GSO_UDP_TUNNEL_CSUM)) {
2068		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
2069		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
2070			l4.udp->len = 0;
2071
2072			/* determine offset of outer transport header */
2073			l4_start = (u8)(l4.hdr - skb->data);
2074
2075			/* remove payload length from outer checksum */
2076			paylen = skb->len - l4_start;
2077			csum_replace_by_diff(&l4.udp->check,
2078					     (__force __wsum)htonl(paylen));
2079		}
2080
2081		/* reset pointers to inner headers */
2082		ip.hdr = skb_inner_network_header(skb);
2083		l4.hdr = skb_inner_transport_header(skb);
2084
2085		/* initialize inner IP header fields */
2086		if (ip.v4->version == 4) {
2087			ip.v4->tot_len = 0;
2088			ip.v4->check = 0;
2089		} else {
2090			ip.v6->payload_len = 0;
2091		}
2092	}
2093
2094	/* determine offset of transport header */
2095	l4_start = (u8)(l4.hdr - skb->data);
2096
2097	/* remove payload length from checksum */
2098	paylen = skb->len - l4_start;
2099
2100	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
2101		csum_replace_by_diff(&l4.udp->check,
2102				     (__force __wsum)htonl(paylen));
2103		/* compute length of UDP segmentation header */
2104		off->header_len = (u8)sizeof(l4.udp) + l4_start;
2105	} else {
2106		csum_replace_by_diff(&l4.tcp->check,
2107				     (__force __wsum)htonl(paylen));
2108		/* compute length of TCP segmentation header */
2109		off->header_len = (u8)((l4.tcp->doff * 4) + l4_start);
2110	}
2111
2112	/* update gso_segs and bytecount */
2113	first->gso_segs = skb_shinfo(skb)->gso_segs;
2114	first->bytecount += (first->gso_segs - 1) * off->header_len;
2115
2116	cd_tso_len = skb->len - off->header_len;
2117	cd_mss = skb_shinfo(skb)->gso_size;
2118
2119	/* record cdesc_qw1 with TSO parameters */
2120	off->cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
2121			     (ICE_TX_CTX_DESC_TSO << ICE_TXD_CTX_QW1_CMD_S) |
2122			     (cd_tso_len << ICE_TXD_CTX_QW1_TSO_LEN_S) |
2123			     (cd_mss << ICE_TXD_CTX_QW1_MSS_S));
2124	first->tx_flags |= ICE_TX_FLAGS_TSO;
2125	return 1;
2126}
2127
2128/**
2129 * ice_txd_use_count  - estimate the number of descriptors needed for Tx
2130 * @size: transmit request size in bytes
2131 *
2132 * Due to hardware alignment restrictions (4K alignment), we need to
2133 * assume that we can have no more than 12K of data per descriptor, even
2134 * though each descriptor can take up to 16K - 1 bytes of aligned memory.
2135 * Thus, we need to divide by 12K. But division is slow! Instead,
2136 * we decompose the operation into shifts and one relatively cheap
2137 * multiply operation.
2138 *
2139 * To divide by 12K, we first divide by 4K, then divide by 3:
2140 *     To divide by 4K, shift right by 12 bits
2141 *     To divide by 3, multiply by 85, then divide by 256
2142 *     (Divide by 256 is done by shifting right by 8 bits)
2143 * Finally, we add one to round up. Because 256 isn't an exact multiple of
2144 * 3, we'll underestimate near each multiple of 12K. This is actually more
2145 * accurate as we have 4K - 1 of wiggle room that we can fit into the last
2146 * segment. For our purposes this is accurate out to 1M which is orders of
2147 * magnitude greater than our largest possible GSO size.
2148 *
2149 * This would then be implemented as:
2150 *     return (((size >> 12) * 85) >> 8) + ICE_DESCS_FOR_SKB_DATA_PTR;
2151 *
2152 * Since multiplication and division are commutative, we can reorder
2153 * operations into:
2154 *     return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR;
2155 */
2156static unsigned int ice_txd_use_count(unsigned int size)
2157{
2158	return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR;
2159}
2160
2161/**
2162 * ice_xmit_desc_count - calculate number of Tx descriptors needed
2163 * @skb: send buffer
2164 *
2165 * Returns number of data descriptors needed for this skb.
2166 */
2167static unsigned int ice_xmit_desc_count(struct sk_buff *skb)
2168{
2169	const skb_frag_t *frag = &skb_shinfo(skb)->frags[0];
2170	unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
2171	unsigned int count = 0, size = skb_headlen(skb);
2172
2173	for (;;) {
2174		count += ice_txd_use_count(size);
2175
2176		if (!nr_frags--)
2177			break;
2178
2179		size = skb_frag_size(frag++);
2180	}
2181
2182	return count;
2183}
2184
2185/**
2186 * __ice_chk_linearize - Check if there are more than 8 buffers per packet
2187 * @skb: send buffer
2188 *
2189 * Note: This HW can't DMA more than 8 buffers to build a packet on the wire
2190 * and so we need to figure out the cases where we need to linearize the skb.
2191 *
2192 * For TSO we need to count the TSO header and segment payload separately.
2193 * As such we need to check cases where we have 7 fragments or more as we
2194 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
2195 * the segment payload in the first descriptor, and another 7 for the
2196 * fragments.
2197 */
2198static bool __ice_chk_linearize(struct sk_buff *skb)
2199{
2200	const skb_frag_t *frag, *stale;
2201	int nr_frags, sum;
2202
2203	/* no need to check if number of frags is less than 7 */
2204	nr_frags = skb_shinfo(skb)->nr_frags;
2205	if (nr_frags < (ICE_MAX_BUF_TXD - 1))
2206		return false;
2207
2208	/* We need to walk through the list and validate that each group
2209	 * of 6 fragments totals at least gso_size.
2210	 */
2211	nr_frags -= ICE_MAX_BUF_TXD - 2;
2212	frag = &skb_shinfo(skb)->frags[0];
2213
2214	/* Initialize size to the negative value of gso_size minus 1. We
2215	 * use this as the worst case scenario in which the frag ahead
2216	 * of us only provides one byte which is why we are limited to 6
2217	 * descriptors for a single transmit as the header and previous
2218	 * fragment are already consuming 2 descriptors.
2219	 */
2220	sum = 1 - skb_shinfo(skb)->gso_size;
2221
2222	/* Add size of frags 0 through 4 to create our initial sum */
2223	sum += skb_frag_size(frag++);
2224	sum += skb_frag_size(frag++);
2225	sum += skb_frag_size(frag++);
2226	sum += skb_frag_size(frag++);
2227	sum += skb_frag_size(frag++);
2228
2229	/* Walk through fragments adding latest fragment, testing it, and
2230	 * then removing stale fragments from the sum.
2231	 */
2232	for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
2233		int stale_size = skb_frag_size(stale);
2234
2235		sum += skb_frag_size(frag++);
2236
2237		/* The stale fragment may present us with a smaller
2238		 * descriptor than the actual fragment size. To account
2239		 * for that we need to remove all the data on the front and
2240		 * figure out what the remainder would be in the last
2241		 * descriptor associated with the fragment.
2242		 */
2243		if (stale_size > ICE_MAX_DATA_PER_TXD) {
2244			int align_pad = -(skb_frag_off(stale)) &
2245					(ICE_MAX_READ_REQ_SIZE - 1);
2246
2247			sum -= align_pad;
2248			stale_size -= align_pad;
2249
2250			do {
2251				sum -= ICE_MAX_DATA_PER_TXD_ALIGNED;
2252				stale_size -= ICE_MAX_DATA_PER_TXD_ALIGNED;
2253			} while (stale_size > ICE_MAX_DATA_PER_TXD);
2254		}
2255
2256		/* if sum is negative we failed to make sufficient progress */
2257		if (sum < 0)
2258			return true;
2259
2260		if (!nr_frags--)
2261			break;
2262
2263		sum -= stale_size;
2264	}
2265
2266	return false;
2267}
2268
2269/**
2270 * ice_chk_linearize - Check if there are more than 8 fragments per packet
2271 * @skb:      send buffer
2272 * @count:    number of buffers used
2273 *
2274 * Note: Our HW can't scatter-gather more than 8 fragments to build
2275 * a packet on the wire and so we need to figure out the cases where we
2276 * need to linearize the skb.
2277 */
2278static bool ice_chk_linearize(struct sk_buff *skb, unsigned int count)
2279{
2280	/* Both TSO and single send will work if count is less than 8 */
2281	if (likely(count < ICE_MAX_BUF_TXD))
2282		return false;
2283
2284	if (skb_is_gso(skb))
2285		return __ice_chk_linearize(skb);
2286
2287	/* we can support up to 8 data buffers for a single send */
2288	return count != ICE_MAX_BUF_TXD;
2289}
2290
2291/**
2292 * ice_tstamp - set up context descriptor for hardware timestamp
2293 * @tx_ring: pointer to the Tx ring to send buffer on
2294 * @skb: pointer to the SKB we're sending
2295 * @first: Tx buffer
2296 * @off: Tx offload parameters
2297 */
2298static void
2299ice_tstamp(struct ice_tx_ring *tx_ring, struct sk_buff *skb,
2300	   struct ice_tx_buf *first, struct ice_tx_offload_params *off)
2301{
2302	s8 idx;
2303
2304	/* only timestamp the outbound packet if the user has requested it */
2305	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
2306		return;
2307
2308	if (!tx_ring->ptp_tx)
2309		return;
2310
2311	/* Tx timestamps cannot be sampled when doing TSO */
2312	if (first->tx_flags & ICE_TX_FLAGS_TSO)
2313		return;
2314
2315	/* Grab an open timestamp slot */
2316	idx = ice_ptp_request_ts(tx_ring->tx_tstamps, skb);
2317	if (idx < 0) {
2318		tx_ring->vsi->back->ptp.tx_hwtstamp_skipped++;
2319		return;
2320	}
2321
2322	off->cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
2323			     (ICE_TX_CTX_DESC_TSYN << ICE_TXD_CTX_QW1_CMD_S) |
2324			     ((u64)idx << ICE_TXD_CTX_QW1_TSO_LEN_S));
2325	first->tx_flags |= ICE_TX_FLAGS_TSYN;
2326}
2327
2328/**
2329 * ice_xmit_frame_ring - Sends buffer on Tx ring
2330 * @skb: send buffer
2331 * @tx_ring: ring to send buffer on
2332 *
2333 * Returns NETDEV_TX_OK if sent, else an error code
2334 */
2335static netdev_tx_t
2336ice_xmit_frame_ring(struct sk_buff *skb, struct ice_tx_ring *tx_ring)
2337{
2338	struct ice_tx_offload_params offload = { 0 };
2339	struct ice_vsi *vsi = tx_ring->vsi;
2340	struct ice_tx_buf *first;
2341	struct ethhdr *eth;
2342	unsigned int count;
2343	int tso, csum;
2344
2345	ice_trace(xmit_frame_ring, tx_ring, skb);
2346
2347	if (unlikely(ipv6_hopopt_jumbo_remove(skb)))
2348		goto out_drop;
2349
2350	count = ice_xmit_desc_count(skb);
2351	if (ice_chk_linearize(skb, count)) {
2352		if (__skb_linearize(skb))
2353			goto out_drop;
2354		count = ice_txd_use_count(skb->len);
2355		tx_ring->ring_stats->tx_stats.tx_linearize++;
2356	}
2357
2358	/* need: 1 descriptor per page * PAGE_SIZE/ICE_MAX_DATA_PER_TXD,
2359	 *       + 1 desc for skb_head_len/ICE_MAX_DATA_PER_TXD,
2360	 *       + 4 desc gap to avoid the cache line where head is,
2361	 *       + 1 desc for context descriptor,
2362	 * otherwise try next time
2363	 */
2364	if (ice_maybe_stop_tx(tx_ring, count + ICE_DESCS_PER_CACHE_LINE +
2365			      ICE_DESCS_FOR_CTX_DESC)) {
2366		tx_ring->ring_stats->tx_stats.tx_busy++;
2367		return NETDEV_TX_BUSY;
2368	}
2369
2370	/* prefetch for bql data which is infrequently used */
2371	netdev_txq_bql_enqueue_prefetchw(txring_txq(tx_ring));
2372
2373	offload.tx_ring = tx_ring;
2374
2375	/* record the location of the first descriptor for this packet */
2376	first = &tx_ring->tx_buf[tx_ring->next_to_use];
2377	first->skb = skb;
2378	first->type = ICE_TX_BUF_SKB;
2379	first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
2380	first->gso_segs = 1;
2381	first->tx_flags = 0;
2382
2383	/* prepare the VLAN tagging flags for Tx */
2384	ice_tx_prepare_vlan_flags(tx_ring, first);
2385	if (first->tx_flags & ICE_TX_FLAGS_HW_OUTER_SINGLE_VLAN) {
2386		offload.cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
2387					(ICE_TX_CTX_DESC_IL2TAG2 <<
2388					ICE_TXD_CTX_QW1_CMD_S));
2389		offload.cd_l2tag2 = first->vid;
2390	}
2391
2392	/* set up TSO offload */
2393	tso = ice_tso(first, &offload);
2394	if (tso < 0)
2395		goto out_drop;
2396
2397	/* always set up Tx checksum offload */
2398	csum = ice_tx_csum(first, &offload);
2399	if (csum < 0)
2400		goto out_drop;
2401
2402	/* allow CONTROL frames egress from main VSI if FW LLDP disabled */
2403	eth = (struct ethhdr *)skb_mac_header(skb);
2404	if (unlikely((skb->priority == TC_PRIO_CONTROL ||
2405		      eth->h_proto == htons(ETH_P_LLDP)) &&
2406		     vsi->type == ICE_VSI_PF &&
2407		     vsi->port_info->qos_cfg.is_sw_lldp))
2408		offload.cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
2409					ICE_TX_CTX_DESC_SWTCH_UPLINK <<
2410					ICE_TXD_CTX_QW1_CMD_S);
2411
2412	ice_tstamp(tx_ring, skb, first, &offload);
2413	if (ice_is_switchdev_running(vsi->back))
2414		ice_eswitch_set_target_vsi(skb, &offload);
2415
2416	if (offload.cd_qw1 & ICE_TX_DESC_DTYPE_CTX) {
2417		struct ice_tx_ctx_desc *cdesc;
2418		u16 i = tx_ring->next_to_use;
2419
2420		/* grab the next descriptor */
2421		cdesc = ICE_TX_CTX_DESC(tx_ring, i);
2422		i++;
2423		tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2424
2425		/* setup context descriptor */
2426		cdesc->tunneling_params = cpu_to_le32(offload.cd_tunnel_params);
2427		cdesc->l2tag2 = cpu_to_le16(offload.cd_l2tag2);
2428		cdesc->rsvd = cpu_to_le16(0);
2429		cdesc->qw1 = cpu_to_le64(offload.cd_qw1);
2430	}
2431
2432	ice_tx_map(tx_ring, first, &offload);
2433	return NETDEV_TX_OK;
2434
2435out_drop:
2436	ice_trace(xmit_frame_ring_drop, tx_ring, skb);
2437	dev_kfree_skb_any(skb);
2438	return NETDEV_TX_OK;
2439}
2440
2441/**
2442 * ice_start_xmit - Selects the correct VSI and Tx queue to send buffer
2443 * @skb: send buffer
2444 * @netdev: network interface device structure
2445 *
2446 * Returns NETDEV_TX_OK if sent, else an error code
2447 */
2448netdev_tx_t ice_start_xmit(struct sk_buff *skb, struct net_device *netdev)
2449{
2450	struct ice_netdev_priv *np = netdev_priv(netdev);
2451	struct ice_vsi *vsi = np->vsi;
2452	struct ice_tx_ring *tx_ring;
2453
2454	tx_ring = vsi->tx_rings[skb->queue_mapping];
2455
2456	/* hardware can't handle really short frames, hardware padding works
2457	 * beyond this point
2458	 */
2459	if (skb_put_padto(skb, ICE_MIN_TX_LEN))
2460		return NETDEV_TX_OK;
2461
2462	return ice_xmit_frame_ring(skb, tx_ring);
2463}
2464
2465/**
2466 * ice_get_dscp_up - return the UP/TC value for a SKB
2467 * @dcbcfg: DCB config that contains DSCP to UP/TC mapping
2468 * @skb: SKB to query for info to determine UP/TC
2469 *
2470 * This function is to only be called when the PF is in L3 DSCP PFC mode
2471 */
2472static u8 ice_get_dscp_up(struct ice_dcbx_cfg *dcbcfg, struct sk_buff *skb)
2473{
2474	u8 dscp = 0;
2475
2476	if (skb->protocol == htons(ETH_P_IP))
2477		dscp = ipv4_get_dsfield(ip_hdr(skb)) >> 2;
2478	else if (skb->protocol == htons(ETH_P_IPV6))
2479		dscp = ipv6_get_dsfield(ipv6_hdr(skb)) >> 2;
2480
2481	return dcbcfg->dscp_map[dscp];
2482}
2483
2484u16
2485ice_select_queue(struct net_device *netdev, struct sk_buff *skb,
2486		 struct net_device *sb_dev)
2487{
2488	struct ice_pf *pf = ice_netdev_to_pf(netdev);
2489	struct ice_dcbx_cfg *dcbcfg;
2490
2491	dcbcfg = &pf->hw.port_info->qos_cfg.local_dcbx_cfg;
2492	if (dcbcfg->pfc_mode == ICE_QOS_MODE_DSCP)
2493		skb->priority = ice_get_dscp_up(dcbcfg, skb);
2494
2495	return netdev_pick_tx(netdev, skb, sb_dev);
2496}
2497
2498/**
2499 * ice_clean_ctrl_tx_irq - interrupt handler for flow director Tx queue
2500 * @tx_ring: tx_ring to clean
2501 */
2502void ice_clean_ctrl_tx_irq(struct ice_tx_ring *tx_ring)
2503{
2504	struct ice_vsi *vsi = tx_ring->vsi;
2505	s16 i = tx_ring->next_to_clean;
2506	int budget = ICE_DFLT_IRQ_WORK;
2507	struct ice_tx_desc *tx_desc;
2508	struct ice_tx_buf *tx_buf;
2509
2510	tx_buf = &tx_ring->tx_buf[i];
2511	tx_desc = ICE_TX_DESC(tx_ring, i);
2512	i -= tx_ring->count;
2513
2514	do {
2515		struct ice_tx_desc *eop_desc = tx_buf->next_to_watch;
2516
2517		/* if next_to_watch is not set then there is no pending work */
2518		if (!eop_desc)
2519			break;
2520
2521		/* prevent any other reads prior to eop_desc */
2522		smp_rmb();
2523
2524		/* if the descriptor isn't done, no work to do */
2525		if (!(eop_desc->cmd_type_offset_bsz &
2526		      cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)))
2527			break;
2528
2529		/* clear next_to_watch to prevent false hangs */
2530		tx_buf->next_to_watch = NULL;
2531		tx_desc->buf_addr = 0;
2532		tx_desc->cmd_type_offset_bsz = 0;
2533
2534		/* move past filter desc */
2535		tx_buf++;
2536		tx_desc++;
2537		i++;
2538		if (unlikely(!i)) {
2539			i -= tx_ring->count;
2540			tx_buf = tx_ring->tx_buf;
2541			tx_desc = ICE_TX_DESC(tx_ring, 0);
2542		}
2543
2544		/* unmap the data header */
2545		if (dma_unmap_len(tx_buf, len))
2546			dma_unmap_single(tx_ring->dev,
2547					 dma_unmap_addr(tx_buf, dma),
2548					 dma_unmap_len(tx_buf, len),
2549					 DMA_TO_DEVICE);
2550		if (tx_buf->type == ICE_TX_BUF_DUMMY)
2551			devm_kfree(tx_ring->dev, tx_buf->raw_buf);
2552
2553		/* clear next_to_watch to prevent false hangs */
2554		tx_buf->type = ICE_TX_BUF_EMPTY;
2555		tx_buf->tx_flags = 0;
2556		tx_buf->next_to_watch = NULL;
2557		dma_unmap_len_set(tx_buf, len, 0);
2558		tx_desc->buf_addr = 0;
2559		tx_desc->cmd_type_offset_bsz = 0;
2560
2561		/* move past eop_desc for start of next FD desc */
2562		tx_buf++;
2563		tx_desc++;
2564		i++;
2565		if (unlikely(!i)) {
2566			i -= tx_ring->count;
2567			tx_buf = tx_ring->tx_buf;
2568			tx_desc = ICE_TX_DESC(tx_ring, 0);
2569		}
2570
2571		budget--;
2572	} while (likely(budget));
2573
2574	i += tx_ring->count;
2575	tx_ring->next_to_clean = i;
2576
2577	/* re-enable interrupt if needed */
2578	ice_irq_dynamic_ena(&vsi->back->hw, vsi, vsi->q_vectors[0]);
2579}
2580