1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (c) 2018, Intel Corporation. */
3
4#include <net/devlink.h>
5#include "ice_sched.h"
6
7/**
8 * ice_sched_add_root_node - Insert the Tx scheduler root node in SW DB
9 * @pi: port information structure
10 * @info: Scheduler element information from firmware
11 *
12 * This function inserts the root node of the scheduling tree topology
13 * to the SW DB.
14 */
15static int
16ice_sched_add_root_node(struct ice_port_info *pi,
17			struct ice_aqc_txsched_elem_data *info)
18{
19	struct ice_sched_node *root;
20	struct ice_hw *hw;
21
22	if (!pi)
23		return -EINVAL;
24
25	hw = pi->hw;
26
27	root = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*root), GFP_KERNEL);
28	if (!root)
29		return -ENOMEM;
30
31	/* coverity[suspicious_sizeof] */
32	root->children = devm_kcalloc(ice_hw_to_dev(hw), hw->max_children[0],
33				      sizeof(*root), GFP_KERNEL);
34	if (!root->children) {
35		devm_kfree(ice_hw_to_dev(hw), root);
36		return -ENOMEM;
37	}
38
39	memcpy(&root->info, info, sizeof(*info));
40	pi->root = root;
41	return 0;
42}
43
44/**
45 * ice_sched_find_node_by_teid - Find the Tx scheduler node in SW DB
46 * @start_node: pointer to the starting ice_sched_node struct in a sub-tree
47 * @teid: node TEID to search
48 *
49 * This function searches for a node matching the TEID in the scheduling tree
50 * from the SW DB. The search is recursive and is restricted by the number of
51 * layers it has searched through; stopping at the max supported layer.
52 *
53 * This function needs to be called when holding the port_info->sched_lock
54 */
55struct ice_sched_node *
56ice_sched_find_node_by_teid(struct ice_sched_node *start_node, u32 teid)
57{
58	u16 i;
59
60	/* The TEID is same as that of the start_node */
61	if (ICE_TXSCHED_GET_NODE_TEID(start_node) == teid)
62		return start_node;
63
64	/* The node has no children or is at the max layer */
65	if (!start_node->num_children ||
66	    start_node->tx_sched_layer >= ICE_AQC_TOPO_MAX_LEVEL_NUM ||
67	    start_node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF)
68		return NULL;
69
70	/* Check if TEID matches to any of the children nodes */
71	for (i = 0; i < start_node->num_children; i++)
72		if (ICE_TXSCHED_GET_NODE_TEID(start_node->children[i]) == teid)
73			return start_node->children[i];
74
75	/* Search within each child's sub-tree */
76	for (i = 0; i < start_node->num_children; i++) {
77		struct ice_sched_node *tmp;
78
79		tmp = ice_sched_find_node_by_teid(start_node->children[i],
80						  teid);
81		if (tmp)
82			return tmp;
83	}
84
85	return NULL;
86}
87
88/**
89 * ice_aqc_send_sched_elem_cmd - send scheduling elements cmd
90 * @hw: pointer to the HW struct
91 * @cmd_opc: cmd opcode
92 * @elems_req: number of elements to request
93 * @buf: pointer to buffer
94 * @buf_size: buffer size in bytes
95 * @elems_resp: returns total number of elements response
96 * @cd: pointer to command details structure or NULL
97 *
98 * This function sends a scheduling elements cmd (cmd_opc)
99 */
100static int
101ice_aqc_send_sched_elem_cmd(struct ice_hw *hw, enum ice_adminq_opc cmd_opc,
102			    u16 elems_req, void *buf, u16 buf_size,
103			    u16 *elems_resp, struct ice_sq_cd *cd)
104{
105	struct ice_aqc_sched_elem_cmd *cmd;
106	struct ice_aq_desc desc;
107	int status;
108
109	cmd = &desc.params.sched_elem_cmd;
110	ice_fill_dflt_direct_cmd_desc(&desc, cmd_opc);
111	cmd->num_elem_req = cpu_to_le16(elems_req);
112	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
113	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
114	if (!status && elems_resp)
115		*elems_resp = le16_to_cpu(cmd->num_elem_resp);
116
117	return status;
118}
119
120/**
121 * ice_aq_query_sched_elems - query scheduler elements
122 * @hw: pointer to the HW struct
123 * @elems_req: number of elements to query
124 * @buf: pointer to buffer
125 * @buf_size: buffer size in bytes
126 * @elems_ret: returns total number of elements returned
127 * @cd: pointer to command details structure or NULL
128 *
129 * Query scheduling elements (0x0404)
130 */
131int
132ice_aq_query_sched_elems(struct ice_hw *hw, u16 elems_req,
133			 struct ice_aqc_txsched_elem_data *buf, u16 buf_size,
134			 u16 *elems_ret, struct ice_sq_cd *cd)
135{
136	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_get_sched_elems,
137					   elems_req, (void *)buf, buf_size,
138					   elems_ret, cd);
139}
140
141/**
142 * ice_sched_add_node - Insert the Tx scheduler node in SW DB
143 * @pi: port information structure
144 * @layer: Scheduler layer of the node
145 * @info: Scheduler element information from firmware
146 * @prealloc_node: preallocated ice_sched_node struct for SW DB
147 *
148 * This function inserts a scheduler node to the SW DB.
149 */
150int
151ice_sched_add_node(struct ice_port_info *pi, u8 layer,
152		   struct ice_aqc_txsched_elem_data *info,
153		   struct ice_sched_node *prealloc_node)
154{
155	struct ice_aqc_txsched_elem_data elem;
156	struct ice_sched_node *parent;
157	struct ice_sched_node *node;
158	struct ice_hw *hw;
159	int status;
160
161	if (!pi)
162		return -EINVAL;
163
164	hw = pi->hw;
165
166	/* A valid parent node should be there */
167	parent = ice_sched_find_node_by_teid(pi->root,
168					     le32_to_cpu(info->parent_teid));
169	if (!parent) {
170		ice_debug(hw, ICE_DBG_SCHED, "Parent Node not found for parent_teid=0x%x\n",
171			  le32_to_cpu(info->parent_teid));
172		return -EINVAL;
173	}
174
175	/* query the current node information from FW before adding it
176	 * to the SW DB
177	 */
178	status = ice_sched_query_elem(hw, le32_to_cpu(info->node_teid), &elem);
179	if (status)
180		return status;
181
182	if (prealloc_node)
183		node = prealloc_node;
184	else
185		node = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*node), GFP_KERNEL);
186	if (!node)
187		return -ENOMEM;
188	if (hw->max_children[layer]) {
189		/* coverity[suspicious_sizeof] */
190		node->children = devm_kcalloc(ice_hw_to_dev(hw),
191					      hw->max_children[layer],
192					      sizeof(*node), GFP_KERNEL);
193		if (!node->children) {
194			devm_kfree(ice_hw_to_dev(hw), node);
195			return -ENOMEM;
196		}
197	}
198
199	node->in_use = true;
200	node->parent = parent;
201	node->tx_sched_layer = layer;
202	parent->children[parent->num_children++] = node;
203	node->info = elem;
204	return 0;
205}
206
207/**
208 * ice_aq_delete_sched_elems - delete scheduler elements
209 * @hw: pointer to the HW struct
210 * @grps_req: number of groups to delete
211 * @buf: pointer to buffer
212 * @buf_size: buffer size in bytes
213 * @grps_del: returns total number of elements deleted
214 * @cd: pointer to command details structure or NULL
215 *
216 * Delete scheduling elements (0x040F)
217 */
218static int
219ice_aq_delete_sched_elems(struct ice_hw *hw, u16 grps_req,
220			  struct ice_aqc_delete_elem *buf, u16 buf_size,
221			  u16 *grps_del, struct ice_sq_cd *cd)
222{
223	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_delete_sched_elems,
224					   grps_req, (void *)buf, buf_size,
225					   grps_del, cd);
226}
227
228/**
229 * ice_sched_remove_elems - remove nodes from HW
230 * @hw: pointer to the HW struct
231 * @parent: pointer to the parent node
232 * @num_nodes: number of nodes
233 * @node_teids: array of node teids to be deleted
234 *
235 * This function remove nodes from HW
236 */
237static int
238ice_sched_remove_elems(struct ice_hw *hw, struct ice_sched_node *parent,
239		       u16 num_nodes, u32 *node_teids)
240{
241	struct ice_aqc_delete_elem *buf;
242	u16 i, num_groups_removed = 0;
243	u16 buf_size;
244	int status;
245
246	buf_size = struct_size(buf, teid, num_nodes);
247	buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL);
248	if (!buf)
249		return -ENOMEM;
250
251	buf->hdr.parent_teid = parent->info.node_teid;
252	buf->hdr.num_elems = cpu_to_le16(num_nodes);
253	for (i = 0; i < num_nodes; i++)
254		buf->teid[i] = cpu_to_le32(node_teids[i]);
255
256	status = ice_aq_delete_sched_elems(hw, 1, buf, buf_size,
257					   &num_groups_removed, NULL);
258	if (status || num_groups_removed != 1)
259		ice_debug(hw, ICE_DBG_SCHED, "remove node failed FW error %d\n",
260			  hw->adminq.sq_last_status);
261
262	devm_kfree(ice_hw_to_dev(hw), buf);
263	return status;
264}
265
266/**
267 * ice_sched_get_first_node - get the first node of the given layer
268 * @pi: port information structure
269 * @parent: pointer the base node of the subtree
270 * @layer: layer number
271 *
272 * This function retrieves the first node of the given layer from the subtree
273 */
274static struct ice_sched_node *
275ice_sched_get_first_node(struct ice_port_info *pi,
276			 struct ice_sched_node *parent, u8 layer)
277{
278	return pi->sib_head[parent->tc_num][layer];
279}
280
281/**
282 * ice_sched_get_tc_node - get pointer to TC node
283 * @pi: port information structure
284 * @tc: TC number
285 *
286 * This function returns the TC node pointer
287 */
288struct ice_sched_node *ice_sched_get_tc_node(struct ice_port_info *pi, u8 tc)
289{
290	u8 i;
291
292	if (!pi || !pi->root)
293		return NULL;
294	for (i = 0; i < pi->root->num_children; i++)
295		if (pi->root->children[i]->tc_num == tc)
296			return pi->root->children[i];
297	return NULL;
298}
299
300/**
301 * ice_free_sched_node - Free a Tx scheduler node from SW DB
302 * @pi: port information structure
303 * @node: pointer to the ice_sched_node struct
304 *
305 * This function frees up a node from SW DB as well as from HW
306 *
307 * This function needs to be called with the port_info->sched_lock held
308 */
309void ice_free_sched_node(struct ice_port_info *pi, struct ice_sched_node *node)
310{
311	struct ice_sched_node *parent;
312	struct ice_hw *hw = pi->hw;
313	u8 i, j;
314
315	/* Free the children before freeing up the parent node
316	 * The parent array is updated below and that shifts the nodes
317	 * in the array. So always pick the first child if num children > 0
318	 */
319	while (node->num_children)
320		ice_free_sched_node(pi, node->children[0]);
321
322	/* Leaf, TC and root nodes can't be deleted by SW */
323	if (node->tx_sched_layer >= hw->sw_entry_point_layer &&
324	    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_TC &&
325	    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_ROOT_PORT &&
326	    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF) {
327		u32 teid = le32_to_cpu(node->info.node_teid);
328
329		ice_sched_remove_elems(hw, node->parent, 1, &teid);
330	}
331	parent = node->parent;
332	/* root has no parent */
333	if (parent) {
334		struct ice_sched_node *p;
335
336		/* update the parent */
337		for (i = 0; i < parent->num_children; i++)
338			if (parent->children[i] == node) {
339				for (j = i + 1; j < parent->num_children; j++)
340					parent->children[j - 1] =
341						parent->children[j];
342				parent->num_children--;
343				break;
344			}
345
346		p = ice_sched_get_first_node(pi, node, node->tx_sched_layer);
347		while (p) {
348			if (p->sibling == node) {
349				p->sibling = node->sibling;
350				break;
351			}
352			p = p->sibling;
353		}
354
355		/* update the sibling head if head is getting removed */
356		if (pi->sib_head[node->tc_num][node->tx_sched_layer] == node)
357			pi->sib_head[node->tc_num][node->tx_sched_layer] =
358				node->sibling;
359	}
360
361	devm_kfree(ice_hw_to_dev(hw), node->children);
362	kfree(node->name);
363	xa_erase(&pi->sched_node_ids, node->id);
364	devm_kfree(ice_hw_to_dev(hw), node);
365}
366
367/**
368 * ice_aq_get_dflt_topo - gets default scheduler topology
369 * @hw: pointer to the HW struct
370 * @lport: logical port number
371 * @buf: pointer to buffer
372 * @buf_size: buffer size in bytes
373 * @num_branches: returns total number of queue to port branches
374 * @cd: pointer to command details structure or NULL
375 *
376 * Get default scheduler topology (0x400)
377 */
378static int
379ice_aq_get_dflt_topo(struct ice_hw *hw, u8 lport,
380		     struct ice_aqc_get_topo_elem *buf, u16 buf_size,
381		     u8 *num_branches, struct ice_sq_cd *cd)
382{
383	struct ice_aqc_get_topo *cmd;
384	struct ice_aq_desc desc;
385	int status;
386
387	cmd = &desc.params.get_topo;
388	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_dflt_topo);
389	cmd->port_num = lport;
390	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
391	if (!status && num_branches)
392		*num_branches = cmd->num_branches;
393
394	return status;
395}
396
397/**
398 * ice_aq_add_sched_elems - adds scheduling element
399 * @hw: pointer to the HW struct
400 * @grps_req: the number of groups that are requested to be added
401 * @buf: pointer to buffer
402 * @buf_size: buffer size in bytes
403 * @grps_added: returns total number of groups added
404 * @cd: pointer to command details structure or NULL
405 *
406 * Add scheduling elements (0x0401)
407 */
408static int
409ice_aq_add_sched_elems(struct ice_hw *hw, u16 grps_req,
410		       struct ice_aqc_add_elem *buf, u16 buf_size,
411		       u16 *grps_added, struct ice_sq_cd *cd)
412{
413	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_add_sched_elems,
414					   grps_req, (void *)buf, buf_size,
415					   grps_added, cd);
416}
417
418/**
419 * ice_aq_cfg_sched_elems - configures scheduler elements
420 * @hw: pointer to the HW struct
421 * @elems_req: number of elements to configure
422 * @buf: pointer to buffer
423 * @buf_size: buffer size in bytes
424 * @elems_cfgd: returns total number of elements configured
425 * @cd: pointer to command details structure or NULL
426 *
427 * Configure scheduling elements (0x0403)
428 */
429static int
430ice_aq_cfg_sched_elems(struct ice_hw *hw, u16 elems_req,
431		       struct ice_aqc_txsched_elem_data *buf, u16 buf_size,
432		       u16 *elems_cfgd, struct ice_sq_cd *cd)
433{
434	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_cfg_sched_elems,
435					   elems_req, (void *)buf, buf_size,
436					   elems_cfgd, cd);
437}
438
439/**
440 * ice_aq_move_sched_elems - move scheduler elements
441 * @hw: pointer to the HW struct
442 * @grps_req: number of groups to move
443 * @buf: pointer to buffer
444 * @buf_size: buffer size in bytes
445 * @grps_movd: returns total number of groups moved
446 * @cd: pointer to command details structure or NULL
447 *
448 * Move scheduling elements (0x0408)
449 */
450int
451ice_aq_move_sched_elems(struct ice_hw *hw, u16 grps_req,
452			struct ice_aqc_move_elem *buf, u16 buf_size,
453			u16 *grps_movd, struct ice_sq_cd *cd)
454{
455	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_move_sched_elems,
456					   grps_req, (void *)buf, buf_size,
457					   grps_movd, cd);
458}
459
460/**
461 * ice_aq_suspend_sched_elems - suspend scheduler elements
462 * @hw: pointer to the HW struct
463 * @elems_req: number of elements to suspend
464 * @buf: pointer to buffer
465 * @buf_size: buffer size in bytes
466 * @elems_ret: returns total number of elements suspended
467 * @cd: pointer to command details structure or NULL
468 *
469 * Suspend scheduling elements (0x0409)
470 */
471static int
472ice_aq_suspend_sched_elems(struct ice_hw *hw, u16 elems_req, __le32 *buf,
473			   u16 buf_size, u16 *elems_ret, struct ice_sq_cd *cd)
474{
475	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_suspend_sched_elems,
476					   elems_req, (void *)buf, buf_size,
477					   elems_ret, cd);
478}
479
480/**
481 * ice_aq_resume_sched_elems - resume scheduler elements
482 * @hw: pointer to the HW struct
483 * @elems_req: number of elements to resume
484 * @buf: pointer to buffer
485 * @buf_size: buffer size in bytes
486 * @elems_ret: returns total number of elements resumed
487 * @cd: pointer to command details structure or NULL
488 *
489 * resume scheduling elements (0x040A)
490 */
491static int
492ice_aq_resume_sched_elems(struct ice_hw *hw, u16 elems_req, __le32 *buf,
493			  u16 buf_size, u16 *elems_ret, struct ice_sq_cd *cd)
494{
495	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_resume_sched_elems,
496					   elems_req, (void *)buf, buf_size,
497					   elems_ret, cd);
498}
499
500/**
501 * ice_aq_query_sched_res - query scheduler resource
502 * @hw: pointer to the HW struct
503 * @buf_size: buffer size in bytes
504 * @buf: pointer to buffer
505 * @cd: pointer to command details structure or NULL
506 *
507 * Query scheduler resource allocation (0x0412)
508 */
509static int
510ice_aq_query_sched_res(struct ice_hw *hw, u16 buf_size,
511		       struct ice_aqc_query_txsched_res_resp *buf,
512		       struct ice_sq_cd *cd)
513{
514	struct ice_aq_desc desc;
515
516	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_query_sched_res);
517	return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
518}
519
520/**
521 * ice_sched_suspend_resume_elems - suspend or resume HW nodes
522 * @hw: pointer to the HW struct
523 * @num_nodes: number of nodes
524 * @node_teids: array of node teids to be suspended or resumed
525 * @suspend: true means suspend / false means resume
526 *
527 * This function suspends or resumes HW nodes
528 */
529int
530ice_sched_suspend_resume_elems(struct ice_hw *hw, u8 num_nodes, u32 *node_teids,
531			       bool suspend)
532{
533	u16 i, buf_size, num_elem_ret = 0;
534	__le32 *buf;
535	int status;
536
537	buf_size = sizeof(*buf) * num_nodes;
538	buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL);
539	if (!buf)
540		return -ENOMEM;
541
542	for (i = 0; i < num_nodes; i++)
543		buf[i] = cpu_to_le32(node_teids[i]);
544
545	if (suspend)
546		status = ice_aq_suspend_sched_elems(hw, num_nodes, buf,
547						    buf_size, &num_elem_ret,
548						    NULL);
549	else
550		status = ice_aq_resume_sched_elems(hw, num_nodes, buf,
551						   buf_size, &num_elem_ret,
552						   NULL);
553	if (status || num_elem_ret != num_nodes)
554		ice_debug(hw, ICE_DBG_SCHED, "suspend/resume failed\n");
555
556	devm_kfree(ice_hw_to_dev(hw), buf);
557	return status;
558}
559
560/**
561 * ice_alloc_lan_q_ctx - allocate LAN queue contexts for the given VSI and TC
562 * @hw: pointer to the HW struct
563 * @vsi_handle: VSI handle
564 * @tc: TC number
565 * @new_numqs: number of queues
566 */
567static int
568ice_alloc_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 new_numqs)
569{
570	struct ice_vsi_ctx *vsi_ctx;
571	struct ice_q_ctx *q_ctx;
572	u16 idx;
573
574	vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
575	if (!vsi_ctx)
576		return -EINVAL;
577	/* allocate LAN queue contexts */
578	if (!vsi_ctx->lan_q_ctx[tc]) {
579		q_ctx = devm_kcalloc(ice_hw_to_dev(hw), new_numqs,
580				     sizeof(*q_ctx), GFP_KERNEL);
581		if (!q_ctx)
582			return -ENOMEM;
583
584		for (idx = 0; idx < new_numqs; idx++) {
585			q_ctx[idx].q_handle = ICE_INVAL_Q_HANDLE;
586			q_ctx[idx].q_teid = ICE_INVAL_TEID;
587		}
588
589		vsi_ctx->lan_q_ctx[tc] = q_ctx;
590		vsi_ctx->num_lan_q_entries[tc] = new_numqs;
591		return 0;
592	}
593	/* num queues are increased, update the queue contexts */
594	if (new_numqs > vsi_ctx->num_lan_q_entries[tc]) {
595		u16 prev_num = vsi_ctx->num_lan_q_entries[tc];
596
597		q_ctx = devm_kcalloc(ice_hw_to_dev(hw), new_numqs,
598				     sizeof(*q_ctx), GFP_KERNEL);
599		if (!q_ctx)
600			return -ENOMEM;
601
602		memcpy(q_ctx, vsi_ctx->lan_q_ctx[tc],
603		       prev_num * sizeof(*q_ctx));
604		devm_kfree(ice_hw_to_dev(hw), vsi_ctx->lan_q_ctx[tc]);
605
606		for (idx = prev_num; idx < new_numqs; idx++) {
607			q_ctx[idx].q_handle = ICE_INVAL_Q_HANDLE;
608			q_ctx[idx].q_teid = ICE_INVAL_TEID;
609		}
610
611		vsi_ctx->lan_q_ctx[tc] = q_ctx;
612		vsi_ctx->num_lan_q_entries[tc] = new_numqs;
613	}
614	return 0;
615}
616
617/**
618 * ice_alloc_rdma_q_ctx - allocate RDMA queue contexts for the given VSI and TC
619 * @hw: pointer to the HW struct
620 * @vsi_handle: VSI handle
621 * @tc: TC number
622 * @new_numqs: number of queues
623 */
624static int
625ice_alloc_rdma_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 new_numqs)
626{
627	struct ice_vsi_ctx *vsi_ctx;
628	struct ice_q_ctx *q_ctx;
629
630	vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
631	if (!vsi_ctx)
632		return -EINVAL;
633	/* allocate RDMA queue contexts */
634	if (!vsi_ctx->rdma_q_ctx[tc]) {
635		vsi_ctx->rdma_q_ctx[tc] = devm_kcalloc(ice_hw_to_dev(hw),
636						       new_numqs,
637						       sizeof(*q_ctx),
638						       GFP_KERNEL);
639		if (!vsi_ctx->rdma_q_ctx[tc])
640			return -ENOMEM;
641		vsi_ctx->num_rdma_q_entries[tc] = new_numqs;
642		return 0;
643	}
644	/* num queues are increased, update the queue contexts */
645	if (new_numqs > vsi_ctx->num_rdma_q_entries[tc]) {
646		u16 prev_num = vsi_ctx->num_rdma_q_entries[tc];
647
648		q_ctx = devm_kcalloc(ice_hw_to_dev(hw), new_numqs,
649				     sizeof(*q_ctx), GFP_KERNEL);
650		if (!q_ctx)
651			return -ENOMEM;
652		memcpy(q_ctx, vsi_ctx->rdma_q_ctx[tc],
653		       prev_num * sizeof(*q_ctx));
654		devm_kfree(ice_hw_to_dev(hw), vsi_ctx->rdma_q_ctx[tc]);
655		vsi_ctx->rdma_q_ctx[tc] = q_ctx;
656		vsi_ctx->num_rdma_q_entries[tc] = new_numqs;
657	}
658	return 0;
659}
660
661/**
662 * ice_aq_rl_profile - performs a rate limiting task
663 * @hw: pointer to the HW struct
664 * @opcode: opcode for add, query, or remove profile(s)
665 * @num_profiles: the number of profiles
666 * @buf: pointer to buffer
667 * @buf_size: buffer size in bytes
668 * @num_processed: number of processed add or remove profile(s) to return
669 * @cd: pointer to command details structure
670 *
671 * RL profile function to add, query, or remove profile(s)
672 */
673static int
674ice_aq_rl_profile(struct ice_hw *hw, enum ice_adminq_opc opcode,
675		  u16 num_profiles, struct ice_aqc_rl_profile_elem *buf,
676		  u16 buf_size, u16 *num_processed, struct ice_sq_cd *cd)
677{
678	struct ice_aqc_rl_profile *cmd;
679	struct ice_aq_desc desc;
680	int status;
681
682	cmd = &desc.params.rl_profile;
683
684	ice_fill_dflt_direct_cmd_desc(&desc, opcode);
685	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
686	cmd->num_profiles = cpu_to_le16(num_profiles);
687	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
688	if (!status && num_processed)
689		*num_processed = le16_to_cpu(cmd->num_processed);
690	return status;
691}
692
693/**
694 * ice_aq_add_rl_profile - adds rate limiting profile(s)
695 * @hw: pointer to the HW struct
696 * @num_profiles: the number of profile(s) to be add
697 * @buf: pointer to buffer
698 * @buf_size: buffer size in bytes
699 * @num_profiles_added: total number of profiles added to return
700 * @cd: pointer to command details structure
701 *
702 * Add RL profile (0x0410)
703 */
704static int
705ice_aq_add_rl_profile(struct ice_hw *hw, u16 num_profiles,
706		      struct ice_aqc_rl_profile_elem *buf, u16 buf_size,
707		      u16 *num_profiles_added, struct ice_sq_cd *cd)
708{
709	return ice_aq_rl_profile(hw, ice_aqc_opc_add_rl_profiles, num_profiles,
710				 buf, buf_size, num_profiles_added, cd);
711}
712
713/**
714 * ice_aq_remove_rl_profile - removes RL profile(s)
715 * @hw: pointer to the HW struct
716 * @num_profiles: the number of profile(s) to remove
717 * @buf: pointer to buffer
718 * @buf_size: buffer size in bytes
719 * @num_profiles_removed: total number of profiles removed to return
720 * @cd: pointer to command details structure or NULL
721 *
722 * Remove RL profile (0x0415)
723 */
724static int
725ice_aq_remove_rl_profile(struct ice_hw *hw, u16 num_profiles,
726			 struct ice_aqc_rl_profile_elem *buf, u16 buf_size,
727			 u16 *num_profiles_removed, struct ice_sq_cd *cd)
728{
729	return ice_aq_rl_profile(hw, ice_aqc_opc_remove_rl_profiles,
730				 num_profiles, buf, buf_size,
731				 num_profiles_removed, cd);
732}
733
734/**
735 * ice_sched_del_rl_profile - remove RL profile
736 * @hw: pointer to the HW struct
737 * @rl_info: rate limit profile information
738 *
739 * If the profile ID is not referenced anymore, it removes profile ID with
740 * its associated parameters from HW DB,and locally. The caller needs to
741 * hold scheduler lock.
742 */
743static int
744ice_sched_del_rl_profile(struct ice_hw *hw,
745			 struct ice_aqc_rl_profile_info *rl_info)
746{
747	struct ice_aqc_rl_profile_elem *buf;
748	u16 num_profiles_removed;
749	u16 num_profiles = 1;
750	int status;
751
752	if (rl_info->prof_id_ref != 0)
753		return -EBUSY;
754
755	/* Safe to remove profile ID */
756	buf = &rl_info->profile;
757	status = ice_aq_remove_rl_profile(hw, num_profiles, buf, sizeof(*buf),
758					  &num_profiles_removed, NULL);
759	if (status || num_profiles_removed != num_profiles)
760		return -EIO;
761
762	/* Delete stale entry now */
763	list_del(&rl_info->list_entry);
764	devm_kfree(ice_hw_to_dev(hw), rl_info);
765	return status;
766}
767
768/**
769 * ice_sched_clear_rl_prof - clears RL prof entries
770 * @pi: port information structure
771 *
772 * This function removes all RL profile from HW as well as from SW DB.
773 */
774static void ice_sched_clear_rl_prof(struct ice_port_info *pi)
775{
776	u16 ln;
777
778	for (ln = 0; ln < pi->hw->num_tx_sched_layers; ln++) {
779		struct ice_aqc_rl_profile_info *rl_prof_elem;
780		struct ice_aqc_rl_profile_info *rl_prof_tmp;
781
782		list_for_each_entry_safe(rl_prof_elem, rl_prof_tmp,
783					 &pi->rl_prof_list[ln], list_entry) {
784			struct ice_hw *hw = pi->hw;
785			int status;
786
787			rl_prof_elem->prof_id_ref = 0;
788			status = ice_sched_del_rl_profile(hw, rl_prof_elem);
789			if (status) {
790				ice_debug(hw, ICE_DBG_SCHED, "Remove rl profile failed\n");
791				/* On error, free mem required */
792				list_del(&rl_prof_elem->list_entry);
793				devm_kfree(ice_hw_to_dev(hw), rl_prof_elem);
794			}
795		}
796	}
797}
798
799/**
800 * ice_sched_clear_agg - clears the aggregator related information
801 * @hw: pointer to the hardware structure
802 *
803 * This function removes aggregator list and free up aggregator related memory
804 * previously allocated.
805 */
806void ice_sched_clear_agg(struct ice_hw *hw)
807{
808	struct ice_sched_agg_info *agg_info;
809	struct ice_sched_agg_info *atmp;
810
811	list_for_each_entry_safe(agg_info, atmp, &hw->agg_list, list_entry) {
812		struct ice_sched_agg_vsi_info *agg_vsi_info;
813		struct ice_sched_agg_vsi_info *vtmp;
814
815		list_for_each_entry_safe(agg_vsi_info, vtmp,
816					 &agg_info->agg_vsi_list, list_entry) {
817			list_del(&agg_vsi_info->list_entry);
818			devm_kfree(ice_hw_to_dev(hw), agg_vsi_info);
819		}
820		list_del(&agg_info->list_entry);
821		devm_kfree(ice_hw_to_dev(hw), agg_info);
822	}
823}
824
825/**
826 * ice_sched_clear_tx_topo - clears the scheduler tree nodes
827 * @pi: port information structure
828 *
829 * This function removes all the nodes from HW as well as from SW DB.
830 */
831static void ice_sched_clear_tx_topo(struct ice_port_info *pi)
832{
833	if (!pi)
834		return;
835	/* remove RL profiles related lists */
836	ice_sched_clear_rl_prof(pi);
837	if (pi->root) {
838		ice_free_sched_node(pi, pi->root);
839		pi->root = NULL;
840	}
841}
842
843/**
844 * ice_sched_clear_port - clear the scheduler elements from SW DB for a port
845 * @pi: port information structure
846 *
847 * Cleanup scheduling elements from SW DB
848 */
849void ice_sched_clear_port(struct ice_port_info *pi)
850{
851	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
852		return;
853
854	pi->port_state = ICE_SCHED_PORT_STATE_INIT;
855	mutex_lock(&pi->sched_lock);
856	ice_sched_clear_tx_topo(pi);
857	mutex_unlock(&pi->sched_lock);
858	mutex_destroy(&pi->sched_lock);
859}
860
861/**
862 * ice_sched_cleanup_all - cleanup scheduler elements from SW DB for all ports
863 * @hw: pointer to the HW struct
864 *
865 * Cleanup scheduling elements from SW DB for all the ports
866 */
867void ice_sched_cleanup_all(struct ice_hw *hw)
868{
869	if (!hw)
870		return;
871
872	devm_kfree(ice_hw_to_dev(hw), hw->layer_info);
873	hw->layer_info = NULL;
874
875	ice_sched_clear_port(hw->port_info);
876
877	hw->num_tx_sched_layers = 0;
878	hw->num_tx_sched_phys_layers = 0;
879	hw->flattened_layers = 0;
880	hw->max_cgds = 0;
881}
882
883/**
884 * ice_sched_add_elems - add nodes to HW and SW DB
885 * @pi: port information structure
886 * @tc_node: pointer to the branch node
887 * @parent: pointer to the parent node
888 * @layer: layer number to add nodes
889 * @num_nodes: number of nodes
890 * @num_nodes_added: pointer to num nodes added
891 * @first_node_teid: if new nodes are added then return the TEID of first node
892 * @prealloc_nodes: preallocated nodes struct for software DB
893 *
894 * This function add nodes to HW as well as to SW DB for a given layer
895 */
896int
897ice_sched_add_elems(struct ice_port_info *pi, struct ice_sched_node *tc_node,
898		    struct ice_sched_node *parent, u8 layer, u16 num_nodes,
899		    u16 *num_nodes_added, u32 *first_node_teid,
900		    struct ice_sched_node **prealloc_nodes)
901{
902	struct ice_sched_node *prev, *new_node;
903	struct ice_aqc_add_elem *buf;
904	u16 i, num_groups_added = 0;
905	struct ice_hw *hw = pi->hw;
906	size_t buf_size;
907	int status = 0;
908	u32 teid;
909
910	buf_size = struct_size(buf, generic, num_nodes);
911	buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL);
912	if (!buf)
913		return -ENOMEM;
914
915	buf->hdr.parent_teid = parent->info.node_teid;
916	buf->hdr.num_elems = cpu_to_le16(num_nodes);
917	for (i = 0; i < num_nodes; i++) {
918		buf->generic[i].parent_teid = parent->info.node_teid;
919		buf->generic[i].data.elem_type = ICE_AQC_ELEM_TYPE_SE_GENERIC;
920		buf->generic[i].data.valid_sections =
921			ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
922			ICE_AQC_ELEM_VALID_EIR;
923		buf->generic[i].data.generic = 0;
924		buf->generic[i].data.cir_bw.bw_profile_idx =
925			cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
926		buf->generic[i].data.cir_bw.bw_alloc =
927			cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
928		buf->generic[i].data.eir_bw.bw_profile_idx =
929			cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
930		buf->generic[i].data.eir_bw.bw_alloc =
931			cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
932	}
933
934	status = ice_aq_add_sched_elems(hw, 1, buf, buf_size,
935					&num_groups_added, NULL);
936	if (status || num_groups_added != 1) {
937		ice_debug(hw, ICE_DBG_SCHED, "add node failed FW Error %d\n",
938			  hw->adminq.sq_last_status);
939		devm_kfree(ice_hw_to_dev(hw), buf);
940		return -EIO;
941	}
942
943	*num_nodes_added = num_nodes;
944	/* add nodes to the SW DB */
945	for (i = 0; i < num_nodes; i++) {
946		if (prealloc_nodes)
947			status = ice_sched_add_node(pi, layer, &buf->generic[i], prealloc_nodes[i]);
948		else
949			status = ice_sched_add_node(pi, layer, &buf->generic[i], NULL);
950
951		if (status) {
952			ice_debug(hw, ICE_DBG_SCHED, "add nodes in SW DB failed status =%d\n",
953				  status);
954			break;
955		}
956
957		teid = le32_to_cpu(buf->generic[i].node_teid);
958		new_node = ice_sched_find_node_by_teid(parent, teid);
959		if (!new_node) {
960			ice_debug(hw, ICE_DBG_SCHED, "Node is missing for teid =%d\n", teid);
961			break;
962		}
963
964		new_node->sibling = NULL;
965		new_node->tc_num = tc_node->tc_num;
966		new_node->tx_weight = ICE_SCHED_DFLT_BW_WT;
967		new_node->tx_share = ICE_SCHED_DFLT_BW;
968		new_node->tx_max = ICE_SCHED_DFLT_BW;
969		new_node->name = kzalloc(SCHED_NODE_NAME_MAX_LEN, GFP_KERNEL);
970		if (!new_node->name)
971			return -ENOMEM;
972
973		status = xa_alloc(&pi->sched_node_ids, &new_node->id, NULL, XA_LIMIT(0, UINT_MAX),
974				  GFP_KERNEL);
975		if (status) {
976			ice_debug(hw, ICE_DBG_SCHED, "xa_alloc failed for sched node status =%d\n",
977				  status);
978			break;
979		}
980
981		snprintf(new_node->name, SCHED_NODE_NAME_MAX_LEN, "node_%u", new_node->id);
982
983		/* add it to previous node sibling pointer */
984		/* Note: siblings are not linked across branches */
985		prev = ice_sched_get_first_node(pi, tc_node, layer);
986		if (prev && prev != new_node) {
987			while (prev->sibling)
988				prev = prev->sibling;
989			prev->sibling = new_node;
990		}
991
992		/* initialize the sibling head */
993		if (!pi->sib_head[tc_node->tc_num][layer])
994			pi->sib_head[tc_node->tc_num][layer] = new_node;
995
996		if (i == 0)
997			*first_node_teid = teid;
998	}
999
1000	devm_kfree(ice_hw_to_dev(hw), buf);
1001	return status;
1002}
1003
1004/**
1005 * ice_sched_add_nodes_to_hw_layer - Add nodes to HW layer
1006 * @pi: port information structure
1007 * @tc_node: pointer to TC node
1008 * @parent: pointer to parent node
1009 * @layer: layer number to add nodes
1010 * @num_nodes: number of nodes to be added
1011 * @first_node_teid: pointer to the first node TEID
1012 * @num_nodes_added: pointer to number of nodes added
1013 *
1014 * Add nodes into specific HW layer.
1015 */
1016static int
1017ice_sched_add_nodes_to_hw_layer(struct ice_port_info *pi,
1018				struct ice_sched_node *tc_node,
1019				struct ice_sched_node *parent, u8 layer,
1020				u16 num_nodes, u32 *first_node_teid,
1021				u16 *num_nodes_added)
1022{
1023	u16 max_child_nodes;
1024
1025	*num_nodes_added = 0;
1026
1027	if (!num_nodes)
1028		return 0;
1029
1030	if (!parent || layer < pi->hw->sw_entry_point_layer)
1031		return -EINVAL;
1032
1033	/* max children per node per layer */
1034	max_child_nodes = pi->hw->max_children[parent->tx_sched_layer];
1035
1036	/* current number of children + required nodes exceed max children */
1037	if ((parent->num_children + num_nodes) > max_child_nodes) {
1038		/* Fail if the parent is a TC node */
1039		if (parent == tc_node)
1040			return -EIO;
1041		return -ENOSPC;
1042	}
1043
1044	return ice_sched_add_elems(pi, tc_node, parent, layer, num_nodes,
1045				   num_nodes_added, first_node_teid, NULL);
1046}
1047
1048/**
1049 * ice_sched_add_nodes_to_layer - Add nodes to a given layer
1050 * @pi: port information structure
1051 * @tc_node: pointer to TC node
1052 * @parent: pointer to parent node
1053 * @layer: layer number to add nodes
1054 * @num_nodes: number of nodes to be added
1055 * @first_node_teid: pointer to the first node TEID
1056 * @num_nodes_added: pointer to number of nodes added
1057 *
1058 * This function add nodes to a given layer.
1059 */
1060int
1061ice_sched_add_nodes_to_layer(struct ice_port_info *pi,
1062			     struct ice_sched_node *tc_node,
1063			     struct ice_sched_node *parent, u8 layer,
1064			     u16 num_nodes, u32 *first_node_teid,
1065			     u16 *num_nodes_added)
1066{
1067	u32 *first_teid_ptr = first_node_teid;
1068	u16 new_num_nodes = num_nodes;
1069	int status = 0;
1070
1071	*num_nodes_added = 0;
1072	while (*num_nodes_added < num_nodes) {
1073		u16 max_child_nodes, num_added = 0;
1074		u32 temp;
1075
1076		status = ice_sched_add_nodes_to_hw_layer(pi, tc_node, parent,
1077							 layer,	new_num_nodes,
1078							 first_teid_ptr,
1079							 &num_added);
1080		if (!status)
1081			*num_nodes_added += num_added;
1082		/* added more nodes than requested ? */
1083		if (*num_nodes_added > num_nodes) {
1084			ice_debug(pi->hw, ICE_DBG_SCHED, "added extra nodes %d %d\n", num_nodes,
1085				  *num_nodes_added);
1086			status = -EIO;
1087			break;
1088		}
1089		/* break if all the nodes are added successfully */
1090		if (!status && (*num_nodes_added == num_nodes))
1091			break;
1092		/* break if the error is not max limit */
1093		if (status && status != -ENOSPC)
1094			break;
1095		/* Exceeded the max children */
1096		max_child_nodes = pi->hw->max_children[parent->tx_sched_layer];
1097		/* utilize all the spaces if the parent is not full */
1098		if (parent->num_children < max_child_nodes) {
1099			new_num_nodes = max_child_nodes - parent->num_children;
1100		} else {
1101			/* This parent is full, try the next sibling */
1102			parent = parent->sibling;
1103			/* Don't modify the first node TEID memory if the
1104			 * first node was added already in the above call.
1105			 * Instead send some temp memory for all other
1106			 * recursive calls.
1107			 */
1108			if (num_added)
1109				first_teid_ptr = &temp;
1110
1111			new_num_nodes = num_nodes - *num_nodes_added;
1112		}
1113	}
1114	return status;
1115}
1116
1117/**
1118 * ice_sched_get_qgrp_layer - get the current queue group layer number
1119 * @hw: pointer to the HW struct
1120 *
1121 * This function returns the current queue group layer number
1122 */
1123static u8 ice_sched_get_qgrp_layer(struct ice_hw *hw)
1124{
1125	/* It's always total layers - 1, the array is 0 relative so -2 */
1126	return hw->num_tx_sched_layers - ICE_QGRP_LAYER_OFFSET;
1127}
1128
1129/**
1130 * ice_sched_get_vsi_layer - get the current VSI layer number
1131 * @hw: pointer to the HW struct
1132 *
1133 * This function returns the current VSI layer number
1134 */
1135u8 ice_sched_get_vsi_layer(struct ice_hw *hw)
1136{
1137	/* Num Layers       VSI layer
1138	 *     9               6
1139	 *     7               4
1140	 *     5 or less       sw_entry_point_layer
1141	 */
1142	/* calculate the VSI layer based on number of layers. */
1143	if (hw->num_tx_sched_layers > ICE_VSI_LAYER_OFFSET + 1) {
1144		u8 layer = hw->num_tx_sched_layers - ICE_VSI_LAYER_OFFSET;
1145
1146		if (layer > hw->sw_entry_point_layer)
1147			return layer;
1148	}
1149	return hw->sw_entry_point_layer;
1150}
1151
1152/**
1153 * ice_sched_get_agg_layer - get the current aggregator layer number
1154 * @hw: pointer to the HW struct
1155 *
1156 * This function returns the current aggregator layer number
1157 */
1158u8 ice_sched_get_agg_layer(struct ice_hw *hw)
1159{
1160	/* Num Layers       aggregator layer
1161	 *     9               4
1162	 *     7 or less       sw_entry_point_layer
1163	 */
1164	/* calculate the aggregator layer based on number of layers. */
1165	if (hw->num_tx_sched_layers > ICE_AGG_LAYER_OFFSET + 1) {
1166		u8 layer = hw->num_tx_sched_layers - ICE_AGG_LAYER_OFFSET;
1167
1168		if (layer > hw->sw_entry_point_layer)
1169			return layer;
1170	}
1171	return hw->sw_entry_point_layer;
1172}
1173
1174/**
1175 * ice_rm_dflt_leaf_node - remove the default leaf node in the tree
1176 * @pi: port information structure
1177 *
1178 * This function removes the leaf node that was created by the FW
1179 * during initialization
1180 */
1181static void ice_rm_dflt_leaf_node(struct ice_port_info *pi)
1182{
1183	struct ice_sched_node *node;
1184
1185	node = pi->root;
1186	while (node) {
1187		if (!node->num_children)
1188			break;
1189		node = node->children[0];
1190	}
1191	if (node && node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF) {
1192		u32 teid = le32_to_cpu(node->info.node_teid);
1193		int status;
1194
1195		/* remove the default leaf node */
1196		status = ice_sched_remove_elems(pi->hw, node->parent, 1, &teid);
1197		if (!status)
1198			ice_free_sched_node(pi, node);
1199	}
1200}
1201
1202/**
1203 * ice_sched_rm_dflt_nodes - free the default nodes in the tree
1204 * @pi: port information structure
1205 *
1206 * This function frees all the nodes except root and TC that were created by
1207 * the FW during initialization
1208 */
1209static void ice_sched_rm_dflt_nodes(struct ice_port_info *pi)
1210{
1211	struct ice_sched_node *node;
1212
1213	ice_rm_dflt_leaf_node(pi);
1214
1215	/* remove the default nodes except TC and root nodes */
1216	node = pi->root;
1217	while (node) {
1218		if (node->tx_sched_layer >= pi->hw->sw_entry_point_layer &&
1219		    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_TC &&
1220		    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_ROOT_PORT) {
1221			ice_free_sched_node(pi, node);
1222			break;
1223		}
1224
1225		if (!node->num_children)
1226			break;
1227		node = node->children[0];
1228	}
1229}
1230
1231/**
1232 * ice_sched_init_port - Initialize scheduler by querying information from FW
1233 * @pi: port info structure for the tree to cleanup
1234 *
1235 * This function is the initial call to find the total number of Tx scheduler
1236 * resources, default topology created by firmware and storing the information
1237 * in SW DB.
1238 */
1239int ice_sched_init_port(struct ice_port_info *pi)
1240{
1241	struct ice_aqc_get_topo_elem *buf;
1242	struct ice_hw *hw;
1243	u8 num_branches;
1244	u16 num_elems;
1245	int status;
1246	u8 i, j;
1247
1248	if (!pi)
1249		return -EINVAL;
1250	hw = pi->hw;
1251
1252	/* Query the Default Topology from FW */
1253	buf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
1254	if (!buf)
1255		return -ENOMEM;
1256
1257	/* Query default scheduling tree topology */
1258	status = ice_aq_get_dflt_topo(hw, pi->lport, buf, ICE_AQ_MAX_BUF_LEN,
1259				      &num_branches, NULL);
1260	if (status)
1261		goto err_init_port;
1262
1263	/* num_branches should be between 1-8 */
1264	if (num_branches < 1 || num_branches > ICE_TXSCHED_MAX_BRANCHES) {
1265		ice_debug(hw, ICE_DBG_SCHED, "num_branches unexpected %d\n",
1266			  num_branches);
1267		status = -EINVAL;
1268		goto err_init_port;
1269	}
1270
1271	/* get the number of elements on the default/first branch */
1272	num_elems = le16_to_cpu(buf[0].hdr.num_elems);
1273
1274	/* num_elems should always be between 1-9 */
1275	if (num_elems < 1 || num_elems > ICE_AQC_TOPO_MAX_LEVEL_NUM) {
1276		ice_debug(hw, ICE_DBG_SCHED, "num_elems unexpected %d\n",
1277			  num_elems);
1278		status = -EINVAL;
1279		goto err_init_port;
1280	}
1281
1282	/* If the last node is a leaf node then the index of the queue group
1283	 * layer is two less than the number of elements.
1284	 */
1285	if (num_elems > 2 && buf[0].generic[num_elems - 1].data.elem_type ==
1286	    ICE_AQC_ELEM_TYPE_LEAF)
1287		pi->last_node_teid =
1288			le32_to_cpu(buf[0].generic[num_elems - 2].node_teid);
1289	else
1290		pi->last_node_teid =
1291			le32_to_cpu(buf[0].generic[num_elems - 1].node_teid);
1292
1293	/* Insert the Tx Sched root node */
1294	status = ice_sched_add_root_node(pi, &buf[0].generic[0]);
1295	if (status)
1296		goto err_init_port;
1297
1298	/* Parse the default tree and cache the information */
1299	for (i = 0; i < num_branches; i++) {
1300		num_elems = le16_to_cpu(buf[i].hdr.num_elems);
1301
1302		/* Skip root element as already inserted */
1303		for (j = 1; j < num_elems; j++) {
1304			/* update the sw entry point */
1305			if (buf[0].generic[j].data.elem_type ==
1306			    ICE_AQC_ELEM_TYPE_ENTRY_POINT)
1307				hw->sw_entry_point_layer = j;
1308
1309			status = ice_sched_add_node(pi, j, &buf[i].generic[j], NULL);
1310			if (status)
1311				goto err_init_port;
1312		}
1313	}
1314
1315	/* Remove the default nodes. */
1316	if (pi->root)
1317		ice_sched_rm_dflt_nodes(pi);
1318
1319	/* initialize the port for handling the scheduler tree */
1320	pi->port_state = ICE_SCHED_PORT_STATE_READY;
1321	mutex_init(&pi->sched_lock);
1322	for (i = 0; i < ICE_AQC_TOPO_MAX_LEVEL_NUM; i++)
1323		INIT_LIST_HEAD(&pi->rl_prof_list[i]);
1324
1325err_init_port:
1326	if (status && pi->root) {
1327		ice_free_sched_node(pi, pi->root);
1328		pi->root = NULL;
1329	}
1330
1331	kfree(buf);
1332	return status;
1333}
1334
1335/**
1336 * ice_sched_query_res_alloc - query the FW for num of logical sched layers
1337 * @hw: pointer to the HW struct
1338 *
1339 * query FW for allocated scheduler resources and store in HW struct
1340 */
1341int ice_sched_query_res_alloc(struct ice_hw *hw)
1342{
1343	struct ice_aqc_query_txsched_res_resp *buf;
1344	__le16 max_sibl;
1345	int status = 0;
1346	u16 i;
1347
1348	if (hw->layer_info)
1349		return status;
1350
1351	buf = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*buf), GFP_KERNEL);
1352	if (!buf)
1353		return -ENOMEM;
1354
1355	status = ice_aq_query_sched_res(hw, sizeof(*buf), buf, NULL);
1356	if (status)
1357		goto sched_query_out;
1358
1359	hw->num_tx_sched_layers = le16_to_cpu(buf->sched_props.logical_levels);
1360	hw->num_tx_sched_phys_layers =
1361		le16_to_cpu(buf->sched_props.phys_levels);
1362	hw->flattened_layers = buf->sched_props.flattening_bitmap;
1363	hw->max_cgds = buf->sched_props.max_pf_cgds;
1364
1365	/* max sibling group size of current layer refers to the max children
1366	 * of the below layer node.
1367	 * layer 1 node max children will be layer 2 max sibling group size
1368	 * layer 2 node max children will be layer 3 max sibling group size
1369	 * and so on. This array will be populated from root (index 0) to
1370	 * qgroup layer 7. Leaf node has no children.
1371	 */
1372	for (i = 0; i < hw->num_tx_sched_layers - 1; i++) {
1373		max_sibl = buf->layer_props[i + 1].max_sibl_grp_sz;
1374		hw->max_children[i] = le16_to_cpu(max_sibl);
1375	}
1376
1377	hw->layer_info = devm_kmemdup(ice_hw_to_dev(hw), buf->layer_props,
1378				      (hw->num_tx_sched_layers *
1379				       sizeof(*hw->layer_info)),
1380				      GFP_KERNEL);
1381	if (!hw->layer_info) {
1382		status = -ENOMEM;
1383		goto sched_query_out;
1384	}
1385
1386sched_query_out:
1387	devm_kfree(ice_hw_to_dev(hw), buf);
1388	return status;
1389}
1390
1391/**
1392 * ice_sched_get_psm_clk_freq - determine the PSM clock frequency
1393 * @hw: pointer to the HW struct
1394 *
1395 * Determine the PSM clock frequency and store in HW struct
1396 */
1397void ice_sched_get_psm_clk_freq(struct ice_hw *hw)
1398{
1399	u32 val, clk_src;
1400
1401	val = rd32(hw, GLGEN_CLKSTAT_SRC);
1402	clk_src = (val & GLGEN_CLKSTAT_SRC_PSM_CLK_SRC_M) >>
1403		GLGEN_CLKSTAT_SRC_PSM_CLK_SRC_S;
1404
1405#define PSM_CLK_SRC_367_MHZ 0x0
1406#define PSM_CLK_SRC_416_MHZ 0x1
1407#define PSM_CLK_SRC_446_MHZ 0x2
1408#define PSM_CLK_SRC_390_MHZ 0x3
1409
1410	switch (clk_src) {
1411	case PSM_CLK_SRC_367_MHZ:
1412		hw->psm_clk_freq = ICE_PSM_CLK_367MHZ_IN_HZ;
1413		break;
1414	case PSM_CLK_SRC_416_MHZ:
1415		hw->psm_clk_freq = ICE_PSM_CLK_416MHZ_IN_HZ;
1416		break;
1417	case PSM_CLK_SRC_446_MHZ:
1418		hw->psm_clk_freq = ICE_PSM_CLK_446MHZ_IN_HZ;
1419		break;
1420	case PSM_CLK_SRC_390_MHZ:
1421		hw->psm_clk_freq = ICE_PSM_CLK_390MHZ_IN_HZ;
1422		break;
1423	default:
1424		ice_debug(hw, ICE_DBG_SCHED, "PSM clk_src unexpected %u\n",
1425			  clk_src);
1426		/* fall back to a safe default */
1427		hw->psm_clk_freq = ICE_PSM_CLK_446MHZ_IN_HZ;
1428	}
1429}
1430
1431/**
1432 * ice_sched_find_node_in_subtree - Find node in part of base node subtree
1433 * @hw: pointer to the HW struct
1434 * @base: pointer to the base node
1435 * @node: pointer to the node to search
1436 *
1437 * This function checks whether a given node is part of the base node
1438 * subtree or not
1439 */
1440static bool
1441ice_sched_find_node_in_subtree(struct ice_hw *hw, struct ice_sched_node *base,
1442			       struct ice_sched_node *node)
1443{
1444	u8 i;
1445
1446	for (i = 0; i < base->num_children; i++) {
1447		struct ice_sched_node *child = base->children[i];
1448
1449		if (node == child)
1450			return true;
1451
1452		if (child->tx_sched_layer > node->tx_sched_layer)
1453			return false;
1454
1455		/* this recursion is intentional, and wouldn't
1456		 * go more than 8 calls
1457		 */
1458		if (ice_sched_find_node_in_subtree(hw, child, node))
1459			return true;
1460	}
1461	return false;
1462}
1463
1464/**
1465 * ice_sched_get_free_qgrp - Scan all queue group siblings and find a free node
1466 * @pi: port information structure
1467 * @vsi_node: software VSI handle
1468 * @qgrp_node: first queue group node identified for scanning
1469 * @owner: LAN or RDMA
1470 *
1471 * This function retrieves a free LAN or RDMA queue group node by scanning
1472 * qgrp_node and its siblings for the queue group with the fewest number
1473 * of queues currently assigned.
1474 */
1475static struct ice_sched_node *
1476ice_sched_get_free_qgrp(struct ice_port_info *pi,
1477			struct ice_sched_node *vsi_node,
1478			struct ice_sched_node *qgrp_node, u8 owner)
1479{
1480	struct ice_sched_node *min_qgrp;
1481	u8 min_children;
1482
1483	if (!qgrp_node)
1484		return qgrp_node;
1485	min_children = qgrp_node->num_children;
1486	if (!min_children)
1487		return qgrp_node;
1488	min_qgrp = qgrp_node;
1489	/* scan all queue groups until find a node which has less than the
1490	 * minimum number of children. This way all queue group nodes get
1491	 * equal number of shares and active. The bandwidth will be equally
1492	 * distributed across all queues.
1493	 */
1494	while (qgrp_node) {
1495		/* make sure the qgroup node is part of the VSI subtree */
1496		if (ice_sched_find_node_in_subtree(pi->hw, vsi_node, qgrp_node))
1497			if (qgrp_node->num_children < min_children &&
1498			    qgrp_node->owner == owner) {
1499				/* replace the new min queue group node */
1500				min_qgrp = qgrp_node;
1501				min_children = min_qgrp->num_children;
1502				/* break if it has no children, */
1503				if (!min_children)
1504					break;
1505			}
1506		qgrp_node = qgrp_node->sibling;
1507	}
1508	return min_qgrp;
1509}
1510
1511/**
1512 * ice_sched_get_free_qparent - Get a free LAN or RDMA queue group node
1513 * @pi: port information structure
1514 * @vsi_handle: software VSI handle
1515 * @tc: branch number
1516 * @owner: LAN or RDMA
1517 *
1518 * This function retrieves a free LAN or RDMA queue group node
1519 */
1520struct ice_sched_node *
1521ice_sched_get_free_qparent(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
1522			   u8 owner)
1523{
1524	struct ice_sched_node *vsi_node, *qgrp_node;
1525	struct ice_vsi_ctx *vsi_ctx;
1526	u16 max_children;
1527	u8 qgrp_layer;
1528
1529	qgrp_layer = ice_sched_get_qgrp_layer(pi->hw);
1530	max_children = pi->hw->max_children[qgrp_layer];
1531
1532	vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
1533	if (!vsi_ctx)
1534		return NULL;
1535	vsi_node = vsi_ctx->sched.vsi_node[tc];
1536	/* validate invalid VSI ID */
1537	if (!vsi_node)
1538		return NULL;
1539
1540	/* get the first queue group node from VSI sub-tree */
1541	qgrp_node = ice_sched_get_first_node(pi, vsi_node, qgrp_layer);
1542	while (qgrp_node) {
1543		/* make sure the qgroup node is part of the VSI subtree */
1544		if (ice_sched_find_node_in_subtree(pi->hw, vsi_node, qgrp_node))
1545			if (qgrp_node->num_children < max_children &&
1546			    qgrp_node->owner == owner)
1547				break;
1548		qgrp_node = qgrp_node->sibling;
1549	}
1550
1551	/* Select the best queue group */
1552	return ice_sched_get_free_qgrp(pi, vsi_node, qgrp_node, owner);
1553}
1554
1555/**
1556 * ice_sched_get_vsi_node - Get a VSI node based on VSI ID
1557 * @pi: pointer to the port information structure
1558 * @tc_node: pointer to the TC node
1559 * @vsi_handle: software VSI handle
1560 *
1561 * This function retrieves a VSI node for a given VSI ID from a given
1562 * TC branch
1563 */
1564static struct ice_sched_node *
1565ice_sched_get_vsi_node(struct ice_port_info *pi, struct ice_sched_node *tc_node,
1566		       u16 vsi_handle)
1567{
1568	struct ice_sched_node *node;
1569	u8 vsi_layer;
1570
1571	vsi_layer = ice_sched_get_vsi_layer(pi->hw);
1572	node = ice_sched_get_first_node(pi, tc_node, vsi_layer);
1573
1574	/* Check whether it already exists */
1575	while (node) {
1576		if (node->vsi_handle == vsi_handle)
1577			return node;
1578		node = node->sibling;
1579	}
1580
1581	return node;
1582}
1583
1584/**
1585 * ice_sched_get_agg_node - Get an aggregator node based on aggregator ID
1586 * @pi: pointer to the port information structure
1587 * @tc_node: pointer to the TC node
1588 * @agg_id: aggregator ID
1589 *
1590 * This function retrieves an aggregator node for a given aggregator ID from
1591 * a given TC branch
1592 */
1593struct ice_sched_node *
1594ice_sched_get_agg_node(struct ice_port_info *pi, struct ice_sched_node *tc_node,
1595		       u32 agg_id)
1596{
1597	struct ice_sched_node *node;
1598	struct ice_hw *hw = pi->hw;
1599	u8 agg_layer;
1600
1601	if (!hw)
1602		return NULL;
1603	agg_layer = ice_sched_get_agg_layer(hw);
1604	node = ice_sched_get_first_node(pi, tc_node, agg_layer);
1605
1606	/* Check whether it already exists */
1607	while (node) {
1608		if (node->agg_id == agg_id)
1609			return node;
1610		node = node->sibling;
1611	}
1612
1613	return node;
1614}
1615
1616/**
1617 * ice_sched_calc_vsi_child_nodes - calculate number of VSI child nodes
1618 * @hw: pointer to the HW struct
1619 * @num_qs: number of queues
1620 * @num_nodes: num nodes array
1621 *
1622 * This function calculates the number of VSI child nodes based on the
1623 * number of queues.
1624 */
1625static void
1626ice_sched_calc_vsi_child_nodes(struct ice_hw *hw, u16 num_qs, u16 *num_nodes)
1627{
1628	u16 num = num_qs;
1629	u8 i, qgl, vsil;
1630
1631	qgl = ice_sched_get_qgrp_layer(hw);
1632	vsil = ice_sched_get_vsi_layer(hw);
1633
1634	/* calculate num nodes from queue group to VSI layer */
1635	for (i = qgl; i > vsil; i--) {
1636		/* round to the next integer if there is a remainder */
1637		num = DIV_ROUND_UP(num, hw->max_children[i]);
1638
1639		/* need at least one node */
1640		num_nodes[i] = num ? num : 1;
1641	}
1642}
1643
1644/**
1645 * ice_sched_add_vsi_child_nodes - add VSI child nodes to tree
1646 * @pi: port information structure
1647 * @vsi_handle: software VSI handle
1648 * @tc_node: pointer to the TC node
1649 * @num_nodes: pointer to the num nodes that needs to be added per layer
1650 * @owner: node owner (LAN or RDMA)
1651 *
1652 * This function adds the VSI child nodes to tree. It gets called for
1653 * LAN and RDMA separately.
1654 */
1655static int
1656ice_sched_add_vsi_child_nodes(struct ice_port_info *pi, u16 vsi_handle,
1657			      struct ice_sched_node *tc_node, u16 *num_nodes,
1658			      u8 owner)
1659{
1660	struct ice_sched_node *parent, *node;
1661	struct ice_hw *hw = pi->hw;
1662	u32 first_node_teid;
1663	u16 num_added = 0;
1664	u8 i, qgl, vsil;
1665
1666	qgl = ice_sched_get_qgrp_layer(hw);
1667	vsil = ice_sched_get_vsi_layer(hw);
1668	parent = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
1669	for (i = vsil + 1; i <= qgl; i++) {
1670		int status;
1671
1672		if (!parent)
1673			return -EIO;
1674
1675		status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i,
1676						      num_nodes[i],
1677						      &first_node_teid,
1678						      &num_added);
1679		if (status || num_nodes[i] != num_added)
1680			return -EIO;
1681
1682		/* The newly added node can be a new parent for the next
1683		 * layer nodes
1684		 */
1685		if (num_added) {
1686			parent = ice_sched_find_node_by_teid(tc_node,
1687							     first_node_teid);
1688			node = parent;
1689			while (node) {
1690				node->owner = owner;
1691				node = node->sibling;
1692			}
1693		} else {
1694			parent = parent->children[0];
1695		}
1696	}
1697
1698	return 0;
1699}
1700
1701/**
1702 * ice_sched_calc_vsi_support_nodes - calculate number of VSI support nodes
1703 * @pi: pointer to the port info structure
1704 * @tc_node: pointer to TC node
1705 * @num_nodes: pointer to num nodes array
1706 *
1707 * This function calculates the number of supported nodes needed to add this
1708 * VSI into Tx tree including the VSI, parent and intermediate nodes in below
1709 * layers
1710 */
1711static void
1712ice_sched_calc_vsi_support_nodes(struct ice_port_info *pi,
1713				 struct ice_sched_node *tc_node, u16 *num_nodes)
1714{
1715	struct ice_sched_node *node;
1716	u8 vsil;
1717	int i;
1718
1719	vsil = ice_sched_get_vsi_layer(pi->hw);
1720	for (i = vsil; i >= pi->hw->sw_entry_point_layer; i--)
1721		/* Add intermediate nodes if TC has no children and
1722		 * need at least one node for VSI
1723		 */
1724		if (!tc_node->num_children || i == vsil) {
1725			num_nodes[i]++;
1726		} else {
1727			/* If intermediate nodes are reached max children
1728			 * then add a new one.
1729			 */
1730			node = ice_sched_get_first_node(pi, tc_node, (u8)i);
1731			/* scan all the siblings */
1732			while (node) {
1733				if (node->num_children < pi->hw->max_children[i])
1734					break;
1735				node = node->sibling;
1736			}
1737
1738			/* tree has one intermediate node to add this new VSI.
1739			 * So no need to calculate supported nodes for below
1740			 * layers.
1741			 */
1742			if (node)
1743				break;
1744			/* all the nodes are full, allocate a new one */
1745			num_nodes[i]++;
1746		}
1747}
1748
1749/**
1750 * ice_sched_add_vsi_support_nodes - add VSI supported nodes into Tx tree
1751 * @pi: port information structure
1752 * @vsi_handle: software VSI handle
1753 * @tc_node: pointer to TC node
1754 * @num_nodes: pointer to num nodes array
1755 *
1756 * This function adds the VSI supported nodes into Tx tree including the
1757 * VSI, its parent and intermediate nodes in below layers
1758 */
1759static int
1760ice_sched_add_vsi_support_nodes(struct ice_port_info *pi, u16 vsi_handle,
1761				struct ice_sched_node *tc_node, u16 *num_nodes)
1762{
1763	struct ice_sched_node *parent = tc_node;
1764	u32 first_node_teid;
1765	u16 num_added = 0;
1766	u8 i, vsil;
1767
1768	if (!pi)
1769		return -EINVAL;
1770
1771	vsil = ice_sched_get_vsi_layer(pi->hw);
1772	for (i = pi->hw->sw_entry_point_layer; i <= vsil; i++) {
1773		int status;
1774
1775		status = ice_sched_add_nodes_to_layer(pi, tc_node, parent,
1776						      i, num_nodes[i],
1777						      &first_node_teid,
1778						      &num_added);
1779		if (status || num_nodes[i] != num_added)
1780			return -EIO;
1781
1782		/* The newly added node can be a new parent for the next
1783		 * layer nodes
1784		 */
1785		if (num_added)
1786			parent = ice_sched_find_node_by_teid(tc_node,
1787							     first_node_teid);
1788		else
1789			parent = parent->children[0];
1790
1791		if (!parent)
1792			return -EIO;
1793
1794		if (i == vsil)
1795			parent->vsi_handle = vsi_handle;
1796	}
1797
1798	return 0;
1799}
1800
1801/**
1802 * ice_sched_add_vsi_to_topo - add a new VSI into tree
1803 * @pi: port information structure
1804 * @vsi_handle: software VSI handle
1805 * @tc: TC number
1806 *
1807 * This function adds a new VSI into scheduler tree
1808 */
1809static int
1810ice_sched_add_vsi_to_topo(struct ice_port_info *pi, u16 vsi_handle, u8 tc)
1811{
1812	u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
1813	struct ice_sched_node *tc_node;
1814
1815	tc_node = ice_sched_get_tc_node(pi, tc);
1816	if (!tc_node)
1817		return -EINVAL;
1818
1819	/* calculate number of supported nodes needed for this VSI */
1820	ice_sched_calc_vsi_support_nodes(pi, tc_node, num_nodes);
1821
1822	/* add VSI supported nodes to TC subtree */
1823	return ice_sched_add_vsi_support_nodes(pi, vsi_handle, tc_node,
1824					       num_nodes);
1825}
1826
1827/**
1828 * ice_sched_update_vsi_child_nodes - update VSI child nodes
1829 * @pi: port information structure
1830 * @vsi_handle: software VSI handle
1831 * @tc: TC number
1832 * @new_numqs: new number of max queues
1833 * @owner: owner of this subtree
1834 *
1835 * This function updates the VSI child nodes based on the number of queues
1836 */
1837static int
1838ice_sched_update_vsi_child_nodes(struct ice_port_info *pi, u16 vsi_handle,
1839				 u8 tc, u16 new_numqs, u8 owner)
1840{
1841	u16 new_num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
1842	struct ice_sched_node *vsi_node;
1843	struct ice_sched_node *tc_node;
1844	struct ice_vsi_ctx *vsi_ctx;
1845	struct ice_hw *hw = pi->hw;
1846	u16 prev_numqs;
1847	int status = 0;
1848
1849	tc_node = ice_sched_get_tc_node(pi, tc);
1850	if (!tc_node)
1851		return -EIO;
1852
1853	vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
1854	if (!vsi_node)
1855		return -EIO;
1856
1857	vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
1858	if (!vsi_ctx)
1859		return -EINVAL;
1860
1861	if (owner == ICE_SCHED_NODE_OWNER_LAN)
1862		prev_numqs = vsi_ctx->sched.max_lanq[tc];
1863	else
1864		prev_numqs = vsi_ctx->sched.max_rdmaq[tc];
1865	/* num queues are not changed or less than the previous number */
1866	if (new_numqs <= prev_numqs)
1867		return status;
1868	if (owner == ICE_SCHED_NODE_OWNER_LAN) {
1869		status = ice_alloc_lan_q_ctx(hw, vsi_handle, tc, new_numqs);
1870		if (status)
1871			return status;
1872	} else {
1873		status = ice_alloc_rdma_q_ctx(hw, vsi_handle, tc, new_numqs);
1874		if (status)
1875			return status;
1876	}
1877
1878	if (new_numqs)
1879		ice_sched_calc_vsi_child_nodes(hw, new_numqs, new_num_nodes);
1880	/* Keep the max number of queue configuration all the time. Update the
1881	 * tree only if number of queues > previous number of queues. This may
1882	 * leave some extra nodes in the tree if number of queues < previous
1883	 * number but that wouldn't harm anything. Removing those extra nodes
1884	 * may complicate the code if those nodes are part of SRL or
1885	 * individually rate limited.
1886	 */
1887	status = ice_sched_add_vsi_child_nodes(pi, vsi_handle, tc_node,
1888					       new_num_nodes, owner);
1889	if (status)
1890		return status;
1891	if (owner == ICE_SCHED_NODE_OWNER_LAN)
1892		vsi_ctx->sched.max_lanq[tc] = new_numqs;
1893	else
1894		vsi_ctx->sched.max_rdmaq[tc] = new_numqs;
1895
1896	return 0;
1897}
1898
1899/**
1900 * ice_sched_cfg_vsi - configure the new/existing VSI
1901 * @pi: port information structure
1902 * @vsi_handle: software VSI handle
1903 * @tc: TC number
1904 * @maxqs: max number of queues
1905 * @owner: LAN or RDMA
1906 * @enable: TC enabled or disabled
1907 *
1908 * This function adds/updates VSI nodes based on the number of queues. If TC is
1909 * enabled and VSI is in suspended state then resume the VSI back. If TC is
1910 * disabled then suspend the VSI if it is not already.
1911 */
1912int
1913ice_sched_cfg_vsi(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 maxqs,
1914		  u8 owner, bool enable)
1915{
1916	struct ice_sched_node *vsi_node, *tc_node;
1917	struct ice_vsi_ctx *vsi_ctx;
1918	struct ice_hw *hw = pi->hw;
1919	int status = 0;
1920
1921	ice_debug(pi->hw, ICE_DBG_SCHED, "add/config VSI %d\n", vsi_handle);
1922	tc_node = ice_sched_get_tc_node(pi, tc);
1923	if (!tc_node)
1924		return -EINVAL;
1925	vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
1926	if (!vsi_ctx)
1927		return -EINVAL;
1928	vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
1929
1930	/* suspend the VSI if TC is not enabled */
1931	if (!enable) {
1932		if (vsi_node && vsi_node->in_use) {
1933			u32 teid = le32_to_cpu(vsi_node->info.node_teid);
1934
1935			status = ice_sched_suspend_resume_elems(hw, 1, &teid,
1936								true);
1937			if (!status)
1938				vsi_node->in_use = false;
1939		}
1940		return status;
1941	}
1942
1943	/* TC is enabled, if it is a new VSI then add it to the tree */
1944	if (!vsi_node) {
1945		status = ice_sched_add_vsi_to_topo(pi, vsi_handle, tc);
1946		if (status)
1947			return status;
1948
1949		vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
1950		if (!vsi_node)
1951			return -EIO;
1952
1953		vsi_ctx->sched.vsi_node[tc] = vsi_node;
1954		vsi_node->in_use = true;
1955		/* invalidate the max queues whenever VSI gets added first time
1956		 * into the scheduler tree (boot or after reset). We need to
1957		 * recreate the child nodes all the time in these cases.
1958		 */
1959		vsi_ctx->sched.max_lanq[tc] = 0;
1960		vsi_ctx->sched.max_rdmaq[tc] = 0;
1961	}
1962
1963	/* update the VSI child nodes */
1964	status = ice_sched_update_vsi_child_nodes(pi, vsi_handle, tc, maxqs,
1965						  owner);
1966	if (status)
1967		return status;
1968
1969	/* TC is enabled, resume the VSI if it is in the suspend state */
1970	if (!vsi_node->in_use) {
1971		u32 teid = le32_to_cpu(vsi_node->info.node_teid);
1972
1973		status = ice_sched_suspend_resume_elems(hw, 1, &teid, false);
1974		if (!status)
1975			vsi_node->in_use = true;
1976	}
1977
1978	return status;
1979}
1980
1981/**
1982 * ice_sched_rm_agg_vsi_info - remove aggregator related VSI info entry
1983 * @pi: port information structure
1984 * @vsi_handle: software VSI handle
1985 *
1986 * This function removes single aggregator VSI info entry from
1987 * aggregator list.
1988 */
1989static void ice_sched_rm_agg_vsi_info(struct ice_port_info *pi, u16 vsi_handle)
1990{
1991	struct ice_sched_agg_info *agg_info;
1992	struct ice_sched_agg_info *atmp;
1993
1994	list_for_each_entry_safe(agg_info, atmp, &pi->hw->agg_list,
1995				 list_entry) {
1996		struct ice_sched_agg_vsi_info *agg_vsi_info;
1997		struct ice_sched_agg_vsi_info *vtmp;
1998
1999		list_for_each_entry_safe(agg_vsi_info, vtmp,
2000					 &agg_info->agg_vsi_list, list_entry)
2001			if (agg_vsi_info->vsi_handle == vsi_handle) {
2002				list_del(&agg_vsi_info->list_entry);
2003				devm_kfree(ice_hw_to_dev(pi->hw),
2004					   agg_vsi_info);
2005				return;
2006			}
2007	}
2008}
2009
2010/**
2011 * ice_sched_is_leaf_node_present - check for a leaf node in the sub-tree
2012 * @node: pointer to the sub-tree node
2013 *
2014 * This function checks for a leaf node presence in a given sub-tree node.
2015 */
2016static bool ice_sched_is_leaf_node_present(struct ice_sched_node *node)
2017{
2018	u8 i;
2019
2020	for (i = 0; i < node->num_children; i++)
2021		if (ice_sched_is_leaf_node_present(node->children[i]))
2022			return true;
2023	/* check for a leaf node */
2024	return (node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF);
2025}
2026
2027/**
2028 * ice_sched_rm_vsi_cfg - remove the VSI and its children nodes
2029 * @pi: port information structure
2030 * @vsi_handle: software VSI handle
2031 * @owner: LAN or RDMA
2032 *
2033 * This function removes the VSI and its LAN or RDMA children nodes from the
2034 * scheduler tree.
2035 */
2036static int
2037ice_sched_rm_vsi_cfg(struct ice_port_info *pi, u16 vsi_handle, u8 owner)
2038{
2039	struct ice_vsi_ctx *vsi_ctx;
2040	int status = -EINVAL;
2041	u8 i;
2042
2043	ice_debug(pi->hw, ICE_DBG_SCHED, "removing VSI %d\n", vsi_handle);
2044	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
2045		return status;
2046	mutex_lock(&pi->sched_lock);
2047	vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
2048	if (!vsi_ctx)
2049		goto exit_sched_rm_vsi_cfg;
2050
2051	ice_for_each_traffic_class(i) {
2052		struct ice_sched_node *vsi_node, *tc_node;
2053		u8 j = 0;
2054
2055		tc_node = ice_sched_get_tc_node(pi, i);
2056		if (!tc_node)
2057			continue;
2058
2059		vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
2060		if (!vsi_node)
2061			continue;
2062
2063		if (ice_sched_is_leaf_node_present(vsi_node)) {
2064			ice_debug(pi->hw, ICE_DBG_SCHED, "VSI has leaf nodes in TC %d\n", i);
2065			status = -EBUSY;
2066			goto exit_sched_rm_vsi_cfg;
2067		}
2068		while (j < vsi_node->num_children) {
2069			if (vsi_node->children[j]->owner == owner) {
2070				ice_free_sched_node(pi, vsi_node->children[j]);
2071
2072				/* reset the counter again since the num
2073				 * children will be updated after node removal
2074				 */
2075				j = 0;
2076			} else {
2077				j++;
2078			}
2079		}
2080		/* remove the VSI if it has no children */
2081		if (!vsi_node->num_children) {
2082			ice_free_sched_node(pi, vsi_node);
2083			vsi_ctx->sched.vsi_node[i] = NULL;
2084
2085			/* clean up aggregator related VSI info if any */
2086			ice_sched_rm_agg_vsi_info(pi, vsi_handle);
2087		}
2088		if (owner == ICE_SCHED_NODE_OWNER_LAN)
2089			vsi_ctx->sched.max_lanq[i] = 0;
2090		else
2091			vsi_ctx->sched.max_rdmaq[i] = 0;
2092	}
2093	status = 0;
2094
2095exit_sched_rm_vsi_cfg:
2096	mutex_unlock(&pi->sched_lock);
2097	return status;
2098}
2099
2100/**
2101 * ice_rm_vsi_lan_cfg - remove VSI and its LAN children nodes
2102 * @pi: port information structure
2103 * @vsi_handle: software VSI handle
2104 *
2105 * This function clears the VSI and its LAN children nodes from scheduler tree
2106 * for all TCs.
2107 */
2108int ice_rm_vsi_lan_cfg(struct ice_port_info *pi, u16 vsi_handle)
2109{
2110	return ice_sched_rm_vsi_cfg(pi, vsi_handle, ICE_SCHED_NODE_OWNER_LAN);
2111}
2112
2113/**
2114 * ice_rm_vsi_rdma_cfg - remove VSI and its RDMA children nodes
2115 * @pi: port information structure
2116 * @vsi_handle: software VSI handle
2117 *
2118 * This function clears the VSI and its RDMA children nodes from scheduler tree
2119 * for all TCs.
2120 */
2121int ice_rm_vsi_rdma_cfg(struct ice_port_info *pi, u16 vsi_handle)
2122{
2123	return ice_sched_rm_vsi_cfg(pi, vsi_handle, ICE_SCHED_NODE_OWNER_RDMA);
2124}
2125
2126/**
2127 * ice_get_agg_info - get the aggregator ID
2128 * @hw: pointer to the hardware structure
2129 * @agg_id: aggregator ID
2130 *
2131 * This function validates aggregator ID. The function returns info if
2132 * aggregator ID is present in list otherwise it returns null.
2133 */
2134static struct ice_sched_agg_info *
2135ice_get_agg_info(struct ice_hw *hw, u32 agg_id)
2136{
2137	struct ice_sched_agg_info *agg_info;
2138
2139	list_for_each_entry(agg_info, &hw->agg_list, list_entry)
2140		if (agg_info->agg_id == agg_id)
2141			return agg_info;
2142
2143	return NULL;
2144}
2145
2146/**
2147 * ice_sched_get_free_vsi_parent - Find a free parent node in aggregator subtree
2148 * @hw: pointer to the HW struct
2149 * @node: pointer to a child node
2150 * @num_nodes: num nodes count array
2151 *
2152 * This function walks through the aggregator subtree to find a free parent
2153 * node
2154 */
2155struct ice_sched_node *
2156ice_sched_get_free_vsi_parent(struct ice_hw *hw, struct ice_sched_node *node,
2157			      u16 *num_nodes)
2158{
2159	u8 l = node->tx_sched_layer;
2160	u8 vsil, i;
2161
2162	vsil = ice_sched_get_vsi_layer(hw);
2163
2164	/* Is it VSI parent layer ? */
2165	if (l == vsil - 1)
2166		return (node->num_children < hw->max_children[l]) ? node : NULL;
2167
2168	/* We have intermediate nodes. Let's walk through the subtree. If the
2169	 * intermediate node has space to add a new node then clear the count
2170	 */
2171	if (node->num_children < hw->max_children[l])
2172		num_nodes[l] = 0;
2173	/* The below recursive call is intentional and wouldn't go more than
2174	 * 2 or 3 iterations.
2175	 */
2176
2177	for (i = 0; i < node->num_children; i++) {
2178		struct ice_sched_node *parent;
2179
2180		parent = ice_sched_get_free_vsi_parent(hw, node->children[i],
2181						       num_nodes);
2182		if (parent)
2183			return parent;
2184	}
2185
2186	return NULL;
2187}
2188
2189/**
2190 * ice_sched_update_parent - update the new parent in SW DB
2191 * @new_parent: pointer to a new parent node
2192 * @node: pointer to a child node
2193 *
2194 * This function removes the child from the old parent and adds it to a new
2195 * parent
2196 */
2197void
2198ice_sched_update_parent(struct ice_sched_node *new_parent,
2199			struct ice_sched_node *node)
2200{
2201	struct ice_sched_node *old_parent;
2202	u8 i, j;
2203
2204	old_parent = node->parent;
2205
2206	/* update the old parent children */
2207	for (i = 0; i < old_parent->num_children; i++)
2208		if (old_parent->children[i] == node) {
2209			for (j = i + 1; j < old_parent->num_children; j++)
2210				old_parent->children[j - 1] =
2211					old_parent->children[j];
2212			old_parent->num_children--;
2213			break;
2214		}
2215
2216	/* now move the node to a new parent */
2217	new_parent->children[new_parent->num_children++] = node;
2218	node->parent = new_parent;
2219	node->info.parent_teid = new_parent->info.node_teid;
2220}
2221
2222/**
2223 * ice_sched_move_nodes - move child nodes to a given parent
2224 * @pi: port information structure
2225 * @parent: pointer to parent node
2226 * @num_items: number of child nodes to be moved
2227 * @list: pointer to child node teids
2228 *
2229 * This function move the child nodes to a given parent.
2230 */
2231int
2232ice_sched_move_nodes(struct ice_port_info *pi, struct ice_sched_node *parent,
2233		     u16 num_items, u32 *list)
2234{
2235	struct ice_aqc_move_elem *buf;
2236	struct ice_sched_node *node;
2237	u16 i, grps_movd = 0;
2238	struct ice_hw *hw;
2239	int status = 0;
2240	u16 buf_len;
2241
2242	hw = pi->hw;
2243
2244	if (!parent || !num_items)
2245		return -EINVAL;
2246
2247	/* Does parent have enough space */
2248	if (parent->num_children + num_items >
2249	    hw->max_children[parent->tx_sched_layer])
2250		return -ENOSPC;
2251
2252	buf_len = struct_size(buf, teid, 1);
2253	buf = kzalloc(buf_len, GFP_KERNEL);
2254	if (!buf)
2255		return -ENOMEM;
2256
2257	for (i = 0; i < num_items; i++) {
2258		node = ice_sched_find_node_by_teid(pi->root, list[i]);
2259		if (!node) {
2260			status = -EINVAL;
2261			goto move_err_exit;
2262		}
2263
2264		buf->hdr.src_parent_teid = node->info.parent_teid;
2265		buf->hdr.dest_parent_teid = parent->info.node_teid;
2266		buf->teid[0] = node->info.node_teid;
2267		buf->hdr.num_elems = cpu_to_le16(1);
2268		status = ice_aq_move_sched_elems(hw, 1, buf, buf_len,
2269						 &grps_movd, NULL);
2270		if (status && grps_movd != 1) {
2271			status = -EIO;
2272			goto move_err_exit;
2273		}
2274
2275		/* update the SW DB */
2276		ice_sched_update_parent(parent, node);
2277	}
2278
2279move_err_exit:
2280	kfree(buf);
2281	return status;
2282}
2283
2284/**
2285 * ice_sched_move_vsi_to_agg - move VSI to aggregator node
2286 * @pi: port information structure
2287 * @vsi_handle: software VSI handle
2288 * @agg_id: aggregator ID
2289 * @tc: TC number
2290 *
2291 * This function moves a VSI to an aggregator node or its subtree.
2292 * Intermediate nodes may be created if required.
2293 */
2294static int
2295ice_sched_move_vsi_to_agg(struct ice_port_info *pi, u16 vsi_handle, u32 agg_id,
2296			  u8 tc)
2297{
2298	struct ice_sched_node *vsi_node, *agg_node, *tc_node, *parent;
2299	u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
2300	u32 first_node_teid, vsi_teid;
2301	u16 num_nodes_added;
2302	u8 aggl, vsil, i;
2303	int status;
2304
2305	tc_node = ice_sched_get_tc_node(pi, tc);
2306	if (!tc_node)
2307		return -EIO;
2308
2309	agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
2310	if (!agg_node)
2311		return -ENOENT;
2312
2313	vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
2314	if (!vsi_node)
2315		return -ENOENT;
2316
2317	/* Is this VSI already part of given aggregator? */
2318	if (ice_sched_find_node_in_subtree(pi->hw, agg_node, vsi_node))
2319		return 0;
2320
2321	aggl = ice_sched_get_agg_layer(pi->hw);
2322	vsil = ice_sched_get_vsi_layer(pi->hw);
2323
2324	/* set intermediate node count to 1 between aggregator and VSI layers */
2325	for (i = aggl + 1; i < vsil; i++)
2326		num_nodes[i] = 1;
2327
2328	/* Check if the aggregator subtree has any free node to add the VSI */
2329	for (i = 0; i < agg_node->num_children; i++) {
2330		parent = ice_sched_get_free_vsi_parent(pi->hw,
2331						       agg_node->children[i],
2332						       num_nodes);
2333		if (parent)
2334			goto move_nodes;
2335	}
2336
2337	/* add new nodes */
2338	parent = agg_node;
2339	for (i = aggl + 1; i < vsil; i++) {
2340		status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i,
2341						      num_nodes[i],
2342						      &first_node_teid,
2343						      &num_nodes_added);
2344		if (status || num_nodes[i] != num_nodes_added)
2345			return -EIO;
2346
2347		/* The newly added node can be a new parent for the next
2348		 * layer nodes
2349		 */
2350		if (num_nodes_added)
2351			parent = ice_sched_find_node_by_teid(tc_node,
2352							     first_node_teid);
2353		else
2354			parent = parent->children[0];
2355
2356		if (!parent)
2357			return -EIO;
2358	}
2359
2360move_nodes:
2361	vsi_teid = le32_to_cpu(vsi_node->info.node_teid);
2362	return ice_sched_move_nodes(pi, parent, 1, &vsi_teid);
2363}
2364
2365/**
2366 * ice_move_all_vsi_to_dflt_agg - move all VSI(s) to default aggregator
2367 * @pi: port information structure
2368 * @agg_info: aggregator info
2369 * @tc: traffic class number
2370 * @rm_vsi_info: true or false
2371 *
2372 * This function move all the VSI(s) to the default aggregator and delete
2373 * aggregator VSI info based on passed in boolean parameter rm_vsi_info. The
2374 * caller holds the scheduler lock.
2375 */
2376static int
2377ice_move_all_vsi_to_dflt_agg(struct ice_port_info *pi,
2378			     struct ice_sched_agg_info *agg_info, u8 tc,
2379			     bool rm_vsi_info)
2380{
2381	struct ice_sched_agg_vsi_info *agg_vsi_info;
2382	struct ice_sched_agg_vsi_info *tmp;
2383	int status = 0;
2384
2385	list_for_each_entry_safe(agg_vsi_info, tmp, &agg_info->agg_vsi_list,
2386				 list_entry) {
2387		u16 vsi_handle = agg_vsi_info->vsi_handle;
2388
2389		/* Move VSI to default aggregator */
2390		if (!ice_is_tc_ena(agg_vsi_info->tc_bitmap[0], tc))
2391			continue;
2392
2393		status = ice_sched_move_vsi_to_agg(pi, vsi_handle,
2394						   ICE_DFLT_AGG_ID, tc);
2395		if (status)
2396			break;
2397
2398		clear_bit(tc, agg_vsi_info->tc_bitmap);
2399		if (rm_vsi_info && !agg_vsi_info->tc_bitmap[0]) {
2400			list_del(&agg_vsi_info->list_entry);
2401			devm_kfree(ice_hw_to_dev(pi->hw), agg_vsi_info);
2402		}
2403	}
2404
2405	return status;
2406}
2407
2408/**
2409 * ice_sched_is_agg_inuse - check whether the aggregator is in use or not
2410 * @pi: port information structure
2411 * @node: node pointer
2412 *
2413 * This function checks whether the aggregator is attached with any VSI or not.
2414 */
2415static bool
2416ice_sched_is_agg_inuse(struct ice_port_info *pi, struct ice_sched_node *node)
2417{
2418	u8 vsil, i;
2419
2420	vsil = ice_sched_get_vsi_layer(pi->hw);
2421	if (node->tx_sched_layer < vsil - 1) {
2422		for (i = 0; i < node->num_children; i++)
2423			if (ice_sched_is_agg_inuse(pi, node->children[i]))
2424				return true;
2425		return false;
2426	} else {
2427		return node->num_children ? true : false;
2428	}
2429}
2430
2431/**
2432 * ice_sched_rm_agg_cfg - remove the aggregator node
2433 * @pi: port information structure
2434 * @agg_id: aggregator ID
2435 * @tc: TC number
2436 *
2437 * This function removes the aggregator node and intermediate nodes if any
2438 * from the given TC
2439 */
2440static int
2441ice_sched_rm_agg_cfg(struct ice_port_info *pi, u32 agg_id, u8 tc)
2442{
2443	struct ice_sched_node *tc_node, *agg_node;
2444	struct ice_hw *hw = pi->hw;
2445
2446	tc_node = ice_sched_get_tc_node(pi, tc);
2447	if (!tc_node)
2448		return -EIO;
2449
2450	agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
2451	if (!agg_node)
2452		return -ENOENT;
2453
2454	/* Can't remove the aggregator node if it has children */
2455	if (ice_sched_is_agg_inuse(pi, agg_node))
2456		return -EBUSY;
2457
2458	/* need to remove the whole subtree if aggregator node is the
2459	 * only child.
2460	 */
2461	while (agg_node->tx_sched_layer > hw->sw_entry_point_layer) {
2462		struct ice_sched_node *parent = agg_node->parent;
2463
2464		if (!parent)
2465			return -EIO;
2466
2467		if (parent->num_children > 1)
2468			break;
2469
2470		agg_node = parent;
2471	}
2472
2473	ice_free_sched_node(pi, agg_node);
2474	return 0;
2475}
2476
2477/**
2478 * ice_rm_agg_cfg_tc - remove aggregator configuration for TC
2479 * @pi: port information structure
2480 * @agg_info: aggregator ID
2481 * @tc: TC number
2482 * @rm_vsi_info: bool value true or false
2483 *
2484 * This function removes aggregator reference to VSI of given TC. It removes
2485 * the aggregator configuration completely for requested TC. The caller needs
2486 * to hold the scheduler lock.
2487 */
2488static int
2489ice_rm_agg_cfg_tc(struct ice_port_info *pi, struct ice_sched_agg_info *agg_info,
2490		  u8 tc, bool rm_vsi_info)
2491{
2492	int status = 0;
2493
2494	/* If nothing to remove - return success */
2495	if (!ice_is_tc_ena(agg_info->tc_bitmap[0], tc))
2496		goto exit_rm_agg_cfg_tc;
2497
2498	status = ice_move_all_vsi_to_dflt_agg(pi, agg_info, tc, rm_vsi_info);
2499	if (status)
2500		goto exit_rm_agg_cfg_tc;
2501
2502	/* Delete aggregator node(s) */
2503	status = ice_sched_rm_agg_cfg(pi, agg_info->agg_id, tc);
2504	if (status)
2505		goto exit_rm_agg_cfg_tc;
2506
2507	clear_bit(tc, agg_info->tc_bitmap);
2508exit_rm_agg_cfg_tc:
2509	return status;
2510}
2511
2512/**
2513 * ice_save_agg_tc_bitmap - save aggregator TC bitmap
2514 * @pi: port information structure
2515 * @agg_id: aggregator ID
2516 * @tc_bitmap: 8 bits TC bitmap
2517 *
2518 * Save aggregator TC bitmap. This function needs to be called with scheduler
2519 * lock held.
2520 */
2521static int
2522ice_save_agg_tc_bitmap(struct ice_port_info *pi, u32 agg_id,
2523		       unsigned long *tc_bitmap)
2524{
2525	struct ice_sched_agg_info *agg_info;
2526
2527	agg_info = ice_get_agg_info(pi->hw, agg_id);
2528	if (!agg_info)
2529		return -EINVAL;
2530	bitmap_copy(agg_info->replay_tc_bitmap, tc_bitmap,
2531		    ICE_MAX_TRAFFIC_CLASS);
2532	return 0;
2533}
2534
2535/**
2536 * ice_sched_add_agg_cfg - create an aggregator node
2537 * @pi: port information structure
2538 * @agg_id: aggregator ID
2539 * @tc: TC number
2540 *
2541 * This function creates an aggregator node and intermediate nodes if required
2542 * for the given TC
2543 */
2544static int
2545ice_sched_add_agg_cfg(struct ice_port_info *pi, u32 agg_id, u8 tc)
2546{
2547	struct ice_sched_node *parent, *agg_node, *tc_node;
2548	u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
2549	struct ice_hw *hw = pi->hw;
2550	u32 first_node_teid;
2551	u16 num_nodes_added;
2552	int status = 0;
2553	u8 i, aggl;
2554
2555	tc_node = ice_sched_get_tc_node(pi, tc);
2556	if (!tc_node)
2557		return -EIO;
2558
2559	agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
2560	/* Does Agg node already exist ? */
2561	if (agg_node)
2562		return status;
2563
2564	aggl = ice_sched_get_agg_layer(hw);
2565
2566	/* need one node in Agg layer */
2567	num_nodes[aggl] = 1;
2568
2569	/* Check whether the intermediate nodes have space to add the
2570	 * new aggregator. If they are full, then SW needs to allocate a new
2571	 * intermediate node on those layers
2572	 */
2573	for (i = hw->sw_entry_point_layer; i < aggl; i++) {
2574		parent = ice_sched_get_first_node(pi, tc_node, i);
2575
2576		/* scan all the siblings */
2577		while (parent) {
2578			if (parent->num_children < hw->max_children[i])
2579				break;
2580			parent = parent->sibling;
2581		}
2582
2583		/* all the nodes are full, reserve one for this layer */
2584		if (!parent)
2585			num_nodes[i]++;
2586	}
2587
2588	/* add the aggregator node */
2589	parent = tc_node;
2590	for (i = hw->sw_entry_point_layer; i <= aggl; i++) {
2591		if (!parent)
2592			return -EIO;
2593
2594		status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i,
2595						      num_nodes[i],
2596						      &first_node_teid,
2597						      &num_nodes_added);
2598		if (status || num_nodes[i] != num_nodes_added)
2599			return -EIO;
2600
2601		/* The newly added node can be a new parent for the next
2602		 * layer nodes
2603		 */
2604		if (num_nodes_added) {
2605			parent = ice_sched_find_node_by_teid(tc_node,
2606							     first_node_teid);
2607			/* register aggregator ID with the aggregator node */
2608			if (parent && i == aggl)
2609				parent->agg_id = agg_id;
2610		} else {
2611			parent = parent->children[0];
2612		}
2613	}
2614
2615	return 0;
2616}
2617
2618/**
2619 * ice_sched_cfg_agg - configure aggregator node
2620 * @pi: port information structure
2621 * @agg_id: aggregator ID
2622 * @agg_type: aggregator type queue, VSI, or aggregator group
2623 * @tc_bitmap: bits TC bitmap
2624 *
2625 * It registers a unique aggregator node into scheduler services. It
2626 * allows a user to register with a unique ID to track it's resources.
2627 * The aggregator type determines if this is a queue group, VSI group
2628 * or aggregator group. It then creates the aggregator node(s) for requested
2629 * TC(s) or removes an existing aggregator node including its configuration
2630 * if indicated via tc_bitmap. Call ice_rm_agg_cfg to release aggregator
2631 * resources and remove aggregator ID.
2632 * This function needs to be called with scheduler lock held.
2633 */
2634static int
2635ice_sched_cfg_agg(struct ice_port_info *pi, u32 agg_id,
2636		  enum ice_agg_type agg_type, unsigned long *tc_bitmap)
2637{
2638	struct ice_sched_agg_info *agg_info;
2639	struct ice_hw *hw = pi->hw;
2640	int status = 0;
2641	u8 tc;
2642
2643	agg_info = ice_get_agg_info(hw, agg_id);
2644	if (!agg_info) {
2645		/* Create new entry for new aggregator ID */
2646		agg_info = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*agg_info),
2647					GFP_KERNEL);
2648		if (!agg_info)
2649			return -ENOMEM;
2650
2651		agg_info->agg_id = agg_id;
2652		agg_info->agg_type = agg_type;
2653		agg_info->tc_bitmap[0] = 0;
2654
2655		/* Initialize the aggregator VSI list head */
2656		INIT_LIST_HEAD(&agg_info->agg_vsi_list);
2657
2658		/* Add new entry in aggregator list */
2659		list_add(&agg_info->list_entry, &hw->agg_list);
2660	}
2661	/* Create aggregator node(s) for requested TC(s) */
2662	ice_for_each_traffic_class(tc) {
2663		if (!ice_is_tc_ena(*tc_bitmap, tc)) {
2664			/* Delete aggregator cfg TC if it exists previously */
2665			status = ice_rm_agg_cfg_tc(pi, agg_info, tc, false);
2666			if (status)
2667				break;
2668			continue;
2669		}
2670
2671		/* Check if aggregator node for TC already exists */
2672		if (ice_is_tc_ena(agg_info->tc_bitmap[0], tc))
2673			continue;
2674
2675		/* Create new aggregator node for TC */
2676		status = ice_sched_add_agg_cfg(pi, agg_id, tc);
2677		if (status)
2678			break;
2679
2680		/* Save aggregator node's TC information */
2681		set_bit(tc, agg_info->tc_bitmap);
2682	}
2683
2684	return status;
2685}
2686
2687/**
2688 * ice_cfg_agg - config aggregator node
2689 * @pi: port information structure
2690 * @agg_id: aggregator ID
2691 * @agg_type: aggregator type queue, VSI, or aggregator group
2692 * @tc_bitmap: bits TC bitmap
2693 *
2694 * This function configures aggregator node(s).
2695 */
2696int
2697ice_cfg_agg(struct ice_port_info *pi, u32 agg_id, enum ice_agg_type agg_type,
2698	    u8 tc_bitmap)
2699{
2700	unsigned long bitmap = tc_bitmap;
2701	int status;
2702
2703	mutex_lock(&pi->sched_lock);
2704	status = ice_sched_cfg_agg(pi, agg_id, agg_type, &bitmap);
2705	if (!status)
2706		status = ice_save_agg_tc_bitmap(pi, agg_id, &bitmap);
2707	mutex_unlock(&pi->sched_lock);
2708	return status;
2709}
2710
2711/**
2712 * ice_get_agg_vsi_info - get the aggregator ID
2713 * @agg_info: aggregator info
2714 * @vsi_handle: software VSI handle
2715 *
2716 * The function returns aggregator VSI info based on VSI handle. This function
2717 * needs to be called with scheduler lock held.
2718 */
2719static struct ice_sched_agg_vsi_info *
2720ice_get_agg_vsi_info(struct ice_sched_agg_info *agg_info, u16 vsi_handle)
2721{
2722	struct ice_sched_agg_vsi_info *agg_vsi_info;
2723
2724	list_for_each_entry(agg_vsi_info, &agg_info->agg_vsi_list, list_entry)
2725		if (agg_vsi_info->vsi_handle == vsi_handle)
2726			return agg_vsi_info;
2727
2728	return NULL;
2729}
2730
2731/**
2732 * ice_get_vsi_agg_info - get the aggregator info of VSI
2733 * @hw: pointer to the hardware structure
2734 * @vsi_handle: Sw VSI handle
2735 *
2736 * The function returns aggregator info of VSI represented via vsi_handle. The
2737 * VSI has in this case a different aggregator than the default one. This
2738 * function needs to be called with scheduler lock held.
2739 */
2740static struct ice_sched_agg_info *
2741ice_get_vsi_agg_info(struct ice_hw *hw, u16 vsi_handle)
2742{
2743	struct ice_sched_agg_info *agg_info;
2744
2745	list_for_each_entry(agg_info, &hw->agg_list, list_entry) {
2746		struct ice_sched_agg_vsi_info *agg_vsi_info;
2747
2748		agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle);
2749		if (agg_vsi_info)
2750			return agg_info;
2751	}
2752	return NULL;
2753}
2754
2755/**
2756 * ice_save_agg_vsi_tc_bitmap - save aggregator VSI TC bitmap
2757 * @pi: port information structure
2758 * @agg_id: aggregator ID
2759 * @vsi_handle: software VSI handle
2760 * @tc_bitmap: TC bitmap of enabled TC(s)
2761 *
2762 * Save VSI to aggregator TC bitmap. This function needs to call with scheduler
2763 * lock held.
2764 */
2765static int
2766ice_save_agg_vsi_tc_bitmap(struct ice_port_info *pi, u32 agg_id, u16 vsi_handle,
2767			   unsigned long *tc_bitmap)
2768{
2769	struct ice_sched_agg_vsi_info *agg_vsi_info;
2770	struct ice_sched_agg_info *agg_info;
2771
2772	agg_info = ice_get_agg_info(pi->hw, agg_id);
2773	if (!agg_info)
2774		return -EINVAL;
2775	/* check if entry already exist */
2776	agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle);
2777	if (!agg_vsi_info)
2778		return -EINVAL;
2779	bitmap_copy(agg_vsi_info->replay_tc_bitmap, tc_bitmap,
2780		    ICE_MAX_TRAFFIC_CLASS);
2781	return 0;
2782}
2783
2784/**
2785 * ice_sched_assoc_vsi_to_agg - associate/move VSI to new/default aggregator
2786 * @pi: port information structure
2787 * @agg_id: aggregator ID
2788 * @vsi_handle: software VSI handle
2789 * @tc_bitmap: TC bitmap of enabled TC(s)
2790 *
2791 * This function moves VSI to a new or default aggregator node. If VSI is
2792 * already associated to the aggregator node then no operation is performed on
2793 * the tree. This function needs to be called with scheduler lock held.
2794 */
2795static int
2796ice_sched_assoc_vsi_to_agg(struct ice_port_info *pi, u32 agg_id,
2797			   u16 vsi_handle, unsigned long *tc_bitmap)
2798{
2799	struct ice_sched_agg_vsi_info *agg_vsi_info, *iter, *old_agg_vsi_info = NULL;
2800	struct ice_sched_agg_info *agg_info, *old_agg_info;
2801	struct ice_hw *hw = pi->hw;
2802	int status = 0;
2803	u8 tc;
2804
2805	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
2806		return -EINVAL;
2807	agg_info = ice_get_agg_info(hw, agg_id);
2808	if (!agg_info)
2809		return -EINVAL;
2810	/* If the VSI is already part of another aggregator then update
2811	 * its VSI info list
2812	 */
2813	old_agg_info = ice_get_vsi_agg_info(hw, vsi_handle);
2814	if (old_agg_info && old_agg_info != agg_info) {
2815		struct ice_sched_agg_vsi_info *vtmp;
2816
2817		list_for_each_entry_safe(iter, vtmp,
2818					 &old_agg_info->agg_vsi_list,
2819					 list_entry)
2820			if (iter->vsi_handle == vsi_handle) {
2821				old_agg_vsi_info = iter;
2822				break;
2823			}
2824	}
2825
2826	/* check if entry already exist */
2827	agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle);
2828	if (!agg_vsi_info) {
2829		/* Create new entry for VSI under aggregator list */
2830		agg_vsi_info = devm_kzalloc(ice_hw_to_dev(hw),
2831					    sizeof(*agg_vsi_info), GFP_KERNEL);
2832		if (!agg_vsi_info)
2833			return -EINVAL;
2834
2835		/* add VSI ID into the aggregator list */
2836		agg_vsi_info->vsi_handle = vsi_handle;
2837		list_add(&agg_vsi_info->list_entry, &agg_info->agg_vsi_list);
2838	}
2839	/* Move VSI node to new aggregator node for requested TC(s) */
2840	ice_for_each_traffic_class(tc) {
2841		if (!ice_is_tc_ena(*tc_bitmap, tc))
2842			continue;
2843
2844		/* Move VSI to new aggregator */
2845		status = ice_sched_move_vsi_to_agg(pi, vsi_handle, agg_id, tc);
2846		if (status)
2847			break;
2848
2849		set_bit(tc, agg_vsi_info->tc_bitmap);
2850		if (old_agg_vsi_info)
2851			clear_bit(tc, old_agg_vsi_info->tc_bitmap);
2852	}
2853	if (old_agg_vsi_info && !old_agg_vsi_info->tc_bitmap[0]) {
2854		list_del(&old_agg_vsi_info->list_entry);
2855		devm_kfree(ice_hw_to_dev(pi->hw), old_agg_vsi_info);
2856	}
2857	return status;
2858}
2859
2860/**
2861 * ice_sched_rm_unused_rl_prof - remove unused RL profile
2862 * @pi: port information structure
2863 *
2864 * This function removes unused rate limit profiles from the HW and
2865 * SW DB. The caller needs to hold scheduler lock.
2866 */
2867static void ice_sched_rm_unused_rl_prof(struct ice_port_info *pi)
2868{
2869	u16 ln;
2870
2871	for (ln = 0; ln < pi->hw->num_tx_sched_layers; ln++) {
2872		struct ice_aqc_rl_profile_info *rl_prof_elem;
2873		struct ice_aqc_rl_profile_info *rl_prof_tmp;
2874
2875		list_for_each_entry_safe(rl_prof_elem, rl_prof_tmp,
2876					 &pi->rl_prof_list[ln], list_entry) {
2877			if (!ice_sched_del_rl_profile(pi->hw, rl_prof_elem))
2878				ice_debug(pi->hw, ICE_DBG_SCHED, "Removed rl profile\n");
2879		}
2880	}
2881}
2882
2883/**
2884 * ice_sched_update_elem - update element
2885 * @hw: pointer to the HW struct
2886 * @node: pointer to node
2887 * @info: node info to update
2888 *
2889 * Update the HW DB, and local SW DB of node. Update the scheduling
2890 * parameters of node from argument info data buffer (Info->data buf) and
2891 * returns success or error on config sched element failure. The caller
2892 * needs to hold scheduler lock.
2893 */
2894static int
2895ice_sched_update_elem(struct ice_hw *hw, struct ice_sched_node *node,
2896		      struct ice_aqc_txsched_elem_data *info)
2897{
2898	struct ice_aqc_txsched_elem_data buf;
2899	u16 elem_cfgd = 0;
2900	u16 num_elems = 1;
2901	int status;
2902
2903	buf = *info;
2904	/* Parent TEID is reserved field in this aq call */
2905	buf.parent_teid = 0;
2906	/* Element type is reserved field in this aq call */
2907	buf.data.elem_type = 0;
2908	/* Flags is reserved field in this aq call */
2909	buf.data.flags = 0;
2910
2911	/* Update HW DB */
2912	/* Configure element node */
2913	status = ice_aq_cfg_sched_elems(hw, num_elems, &buf, sizeof(buf),
2914					&elem_cfgd, NULL);
2915	if (status || elem_cfgd != num_elems) {
2916		ice_debug(hw, ICE_DBG_SCHED, "Config sched elem error\n");
2917		return -EIO;
2918	}
2919
2920	/* Config success case */
2921	/* Now update local SW DB */
2922	/* Only copy the data portion of info buffer */
2923	node->info.data = info->data;
2924	return status;
2925}
2926
2927/**
2928 * ice_sched_cfg_node_bw_alloc - configure node BW weight/alloc params
2929 * @hw: pointer to the HW struct
2930 * @node: sched node to configure
2931 * @rl_type: rate limit type CIR, EIR, or shared
2932 * @bw_alloc: BW weight/allocation
2933 *
2934 * This function configures node element's BW allocation.
2935 */
2936static int
2937ice_sched_cfg_node_bw_alloc(struct ice_hw *hw, struct ice_sched_node *node,
2938			    enum ice_rl_type rl_type, u16 bw_alloc)
2939{
2940	struct ice_aqc_txsched_elem_data buf;
2941	struct ice_aqc_txsched_elem *data;
2942
2943	buf = node->info;
2944	data = &buf.data;
2945	if (rl_type == ICE_MIN_BW) {
2946		data->valid_sections |= ICE_AQC_ELEM_VALID_CIR;
2947		data->cir_bw.bw_alloc = cpu_to_le16(bw_alloc);
2948	} else if (rl_type == ICE_MAX_BW) {
2949		data->valid_sections |= ICE_AQC_ELEM_VALID_EIR;
2950		data->eir_bw.bw_alloc = cpu_to_le16(bw_alloc);
2951	} else {
2952		return -EINVAL;
2953	}
2954
2955	/* Configure element */
2956	return ice_sched_update_elem(hw, node, &buf);
2957}
2958
2959/**
2960 * ice_move_vsi_to_agg - moves VSI to new or default aggregator
2961 * @pi: port information structure
2962 * @agg_id: aggregator ID
2963 * @vsi_handle: software VSI handle
2964 * @tc_bitmap: TC bitmap of enabled TC(s)
2965 *
2966 * Move or associate VSI to a new or default aggregator node.
2967 */
2968int
2969ice_move_vsi_to_agg(struct ice_port_info *pi, u32 agg_id, u16 vsi_handle,
2970		    u8 tc_bitmap)
2971{
2972	unsigned long bitmap = tc_bitmap;
2973	int status;
2974
2975	mutex_lock(&pi->sched_lock);
2976	status = ice_sched_assoc_vsi_to_agg(pi, agg_id, vsi_handle,
2977					    (unsigned long *)&bitmap);
2978	if (!status)
2979		status = ice_save_agg_vsi_tc_bitmap(pi, agg_id, vsi_handle,
2980						    (unsigned long *)&bitmap);
2981	mutex_unlock(&pi->sched_lock);
2982	return status;
2983}
2984
2985/**
2986 * ice_set_clear_cir_bw - set or clear CIR BW
2987 * @bw_t_info: bandwidth type information structure
2988 * @bw: bandwidth in Kbps - Kilo bits per sec
2989 *
2990 * Save or clear CIR bandwidth (BW) in the passed param bw_t_info.
2991 */
2992static void ice_set_clear_cir_bw(struct ice_bw_type_info *bw_t_info, u32 bw)
2993{
2994	if (bw == ICE_SCHED_DFLT_BW) {
2995		clear_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap);
2996		bw_t_info->cir_bw.bw = 0;
2997	} else {
2998		/* Save type of BW information */
2999		set_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap);
3000		bw_t_info->cir_bw.bw = bw;
3001	}
3002}
3003
3004/**
3005 * ice_set_clear_eir_bw - set or clear EIR BW
3006 * @bw_t_info: bandwidth type information structure
3007 * @bw: bandwidth in Kbps - Kilo bits per sec
3008 *
3009 * Save or clear EIR bandwidth (BW) in the passed param bw_t_info.
3010 */
3011static void ice_set_clear_eir_bw(struct ice_bw_type_info *bw_t_info, u32 bw)
3012{
3013	if (bw == ICE_SCHED_DFLT_BW) {
3014		clear_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap);
3015		bw_t_info->eir_bw.bw = 0;
3016	} else {
3017		/* EIR BW and Shared BW profiles are mutually exclusive and
3018		 * hence only one of them may be set for any given element.
3019		 * First clear earlier saved shared BW information.
3020		 */
3021		clear_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap);
3022		bw_t_info->shared_bw = 0;
3023		/* save EIR BW information */
3024		set_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap);
3025		bw_t_info->eir_bw.bw = bw;
3026	}
3027}
3028
3029/**
3030 * ice_set_clear_shared_bw - set or clear shared BW
3031 * @bw_t_info: bandwidth type information structure
3032 * @bw: bandwidth in Kbps - Kilo bits per sec
3033 *
3034 * Save or clear shared bandwidth (BW) in the passed param bw_t_info.
3035 */
3036static void ice_set_clear_shared_bw(struct ice_bw_type_info *bw_t_info, u32 bw)
3037{
3038	if (bw == ICE_SCHED_DFLT_BW) {
3039		clear_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap);
3040		bw_t_info->shared_bw = 0;
3041	} else {
3042		/* EIR BW and Shared BW profiles are mutually exclusive and
3043		 * hence only one of them may be set for any given element.
3044		 * First clear earlier saved EIR BW information.
3045		 */
3046		clear_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap);
3047		bw_t_info->eir_bw.bw = 0;
3048		/* save shared BW information */
3049		set_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap);
3050		bw_t_info->shared_bw = bw;
3051	}
3052}
3053
3054/**
3055 * ice_sched_save_vsi_bw - save VSI node's BW information
3056 * @pi: port information structure
3057 * @vsi_handle: sw VSI handle
3058 * @tc: traffic class
3059 * @rl_type: rate limit type min, max, or shared
3060 * @bw: bandwidth in Kbps - Kilo bits per sec
3061 *
3062 * Save BW information of VSI type node for post replay use.
3063 */
3064static int
3065ice_sched_save_vsi_bw(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3066		      enum ice_rl_type rl_type, u32 bw)
3067{
3068	struct ice_vsi_ctx *vsi_ctx;
3069
3070	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
3071		return -EINVAL;
3072	vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
3073	if (!vsi_ctx)
3074		return -EINVAL;
3075	switch (rl_type) {
3076	case ICE_MIN_BW:
3077		ice_set_clear_cir_bw(&vsi_ctx->sched.bw_t_info[tc], bw);
3078		break;
3079	case ICE_MAX_BW:
3080		ice_set_clear_eir_bw(&vsi_ctx->sched.bw_t_info[tc], bw);
3081		break;
3082	case ICE_SHARED_BW:
3083		ice_set_clear_shared_bw(&vsi_ctx->sched.bw_t_info[tc], bw);
3084		break;
3085	default:
3086		return -EINVAL;
3087	}
3088	return 0;
3089}
3090
3091/**
3092 * ice_sched_calc_wakeup - calculate RL profile wakeup parameter
3093 * @hw: pointer to the HW struct
3094 * @bw: bandwidth in Kbps
3095 *
3096 * This function calculates the wakeup parameter of RL profile.
3097 */
3098static u16 ice_sched_calc_wakeup(struct ice_hw *hw, s32 bw)
3099{
3100	s64 bytes_per_sec, wakeup_int, wakeup_a, wakeup_b, wakeup_f;
3101	s32 wakeup_f_int;
3102	u16 wakeup = 0;
3103
3104	/* Get the wakeup integer value */
3105	bytes_per_sec = div64_long(((s64)bw * 1000), BITS_PER_BYTE);
3106	wakeup_int = div64_long(hw->psm_clk_freq, bytes_per_sec);
3107	if (wakeup_int > 63) {
3108		wakeup = (u16)((1 << 15) | wakeup_int);
3109	} else {
3110		/* Calculate fraction value up to 4 decimals
3111		 * Convert Integer value to a constant multiplier
3112		 */
3113		wakeup_b = (s64)ICE_RL_PROF_MULTIPLIER * wakeup_int;
3114		wakeup_a = div64_long((s64)ICE_RL_PROF_MULTIPLIER *
3115					   hw->psm_clk_freq, bytes_per_sec);
3116
3117		/* Get Fraction value */
3118		wakeup_f = wakeup_a - wakeup_b;
3119
3120		/* Round up the Fractional value via Ceil(Fractional value) */
3121		if (wakeup_f > div64_long(ICE_RL_PROF_MULTIPLIER, 2))
3122			wakeup_f += 1;
3123
3124		wakeup_f_int = (s32)div64_long(wakeup_f * ICE_RL_PROF_FRACTION,
3125					       ICE_RL_PROF_MULTIPLIER);
3126		wakeup |= (u16)(wakeup_int << 9);
3127		wakeup |= (u16)(0x1ff & wakeup_f_int);
3128	}
3129
3130	return wakeup;
3131}
3132
3133/**
3134 * ice_sched_bw_to_rl_profile - convert BW to profile parameters
3135 * @hw: pointer to the HW struct
3136 * @bw: bandwidth in Kbps
3137 * @profile: profile parameters to return
3138 *
3139 * This function converts the BW to profile structure format.
3140 */
3141static int
3142ice_sched_bw_to_rl_profile(struct ice_hw *hw, u32 bw,
3143			   struct ice_aqc_rl_profile_elem *profile)
3144{
3145	s64 bytes_per_sec, ts_rate, mv_tmp;
3146	int status = -EINVAL;
3147	bool found = false;
3148	s32 encode = 0;
3149	s64 mv = 0;
3150	s32 i;
3151
3152	/* Bw settings range is from 0.5Mb/sec to 100Gb/sec */
3153	if (bw < ICE_SCHED_MIN_BW || bw > ICE_SCHED_MAX_BW)
3154		return status;
3155
3156	/* Bytes per second from Kbps */
3157	bytes_per_sec = div64_long(((s64)bw * 1000), BITS_PER_BYTE);
3158
3159	/* encode is 6 bits but really useful are 5 bits */
3160	for (i = 0; i < 64; i++) {
3161		u64 pow_result = BIT_ULL(i);
3162
3163		ts_rate = div64_long((s64)hw->psm_clk_freq,
3164				     pow_result * ICE_RL_PROF_TS_MULTIPLIER);
3165		if (ts_rate <= 0)
3166			continue;
3167
3168		/* Multiplier value */
3169		mv_tmp = div64_long(bytes_per_sec * ICE_RL_PROF_MULTIPLIER,
3170				    ts_rate);
3171
3172		/* Round to the nearest ICE_RL_PROF_MULTIPLIER */
3173		mv = round_up_64bit(mv_tmp, ICE_RL_PROF_MULTIPLIER);
3174
3175		/* First multiplier value greater than the given
3176		 * accuracy bytes
3177		 */
3178		if (mv > ICE_RL_PROF_ACCURACY_BYTES) {
3179			encode = i;
3180			found = true;
3181			break;
3182		}
3183	}
3184	if (found) {
3185		u16 wm;
3186
3187		wm = ice_sched_calc_wakeup(hw, bw);
3188		profile->rl_multiply = cpu_to_le16(mv);
3189		profile->wake_up_calc = cpu_to_le16(wm);
3190		profile->rl_encode = cpu_to_le16(encode);
3191		status = 0;
3192	} else {
3193		status = -ENOENT;
3194	}
3195
3196	return status;
3197}
3198
3199/**
3200 * ice_sched_add_rl_profile - add RL profile
3201 * @pi: port information structure
3202 * @rl_type: type of rate limit BW - min, max, or shared
3203 * @bw: bandwidth in Kbps - Kilo bits per sec
3204 * @layer_num: specifies in which layer to create profile
3205 *
3206 * This function first checks the existing list for corresponding BW
3207 * parameter. If it exists, it returns the associated profile otherwise
3208 * it creates a new rate limit profile for requested BW, and adds it to
3209 * the HW DB and local list. It returns the new profile or null on error.
3210 * The caller needs to hold the scheduler lock.
3211 */
3212static struct ice_aqc_rl_profile_info *
3213ice_sched_add_rl_profile(struct ice_port_info *pi,
3214			 enum ice_rl_type rl_type, u32 bw, u8 layer_num)
3215{
3216	struct ice_aqc_rl_profile_info *rl_prof_elem;
3217	u16 profiles_added = 0, num_profiles = 1;
3218	struct ice_aqc_rl_profile_elem *buf;
3219	struct ice_hw *hw;
3220	u8 profile_type;
3221	int status;
3222
3223	if (layer_num >= ICE_AQC_TOPO_MAX_LEVEL_NUM)
3224		return NULL;
3225	switch (rl_type) {
3226	case ICE_MIN_BW:
3227		profile_type = ICE_AQC_RL_PROFILE_TYPE_CIR;
3228		break;
3229	case ICE_MAX_BW:
3230		profile_type = ICE_AQC_RL_PROFILE_TYPE_EIR;
3231		break;
3232	case ICE_SHARED_BW:
3233		profile_type = ICE_AQC_RL_PROFILE_TYPE_SRL;
3234		break;
3235	default:
3236		return NULL;
3237	}
3238
3239	if (!pi)
3240		return NULL;
3241	hw = pi->hw;
3242	list_for_each_entry(rl_prof_elem, &pi->rl_prof_list[layer_num],
3243			    list_entry)
3244		if ((rl_prof_elem->profile.flags & ICE_AQC_RL_PROFILE_TYPE_M) ==
3245		    profile_type && rl_prof_elem->bw == bw)
3246			/* Return existing profile ID info */
3247			return rl_prof_elem;
3248
3249	/* Create new profile ID */
3250	rl_prof_elem = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*rl_prof_elem),
3251				    GFP_KERNEL);
3252
3253	if (!rl_prof_elem)
3254		return NULL;
3255
3256	status = ice_sched_bw_to_rl_profile(hw, bw, &rl_prof_elem->profile);
3257	if (status)
3258		goto exit_add_rl_prof;
3259
3260	rl_prof_elem->bw = bw;
3261	/* layer_num is zero relative, and fw expects level from 1 to 9 */
3262	rl_prof_elem->profile.level = layer_num + 1;
3263	rl_prof_elem->profile.flags = profile_type;
3264	rl_prof_elem->profile.max_burst_size = cpu_to_le16(hw->max_burst_size);
3265
3266	/* Create new entry in HW DB */
3267	buf = &rl_prof_elem->profile;
3268	status = ice_aq_add_rl_profile(hw, num_profiles, buf, sizeof(*buf),
3269				       &profiles_added, NULL);
3270	if (status || profiles_added != num_profiles)
3271		goto exit_add_rl_prof;
3272
3273	/* Good entry - add in the list */
3274	rl_prof_elem->prof_id_ref = 0;
3275	list_add(&rl_prof_elem->list_entry, &pi->rl_prof_list[layer_num]);
3276	return rl_prof_elem;
3277
3278exit_add_rl_prof:
3279	devm_kfree(ice_hw_to_dev(hw), rl_prof_elem);
3280	return NULL;
3281}
3282
3283/**
3284 * ice_sched_cfg_node_bw_lmt - configure node sched params
3285 * @hw: pointer to the HW struct
3286 * @node: sched node to configure
3287 * @rl_type: rate limit type CIR, EIR, or shared
3288 * @rl_prof_id: rate limit profile ID
3289 *
3290 * This function configures node element's BW limit.
3291 */
3292static int
3293ice_sched_cfg_node_bw_lmt(struct ice_hw *hw, struct ice_sched_node *node,
3294			  enum ice_rl_type rl_type, u16 rl_prof_id)
3295{
3296	struct ice_aqc_txsched_elem_data buf;
3297	struct ice_aqc_txsched_elem *data;
3298
3299	buf = node->info;
3300	data = &buf.data;
3301	switch (rl_type) {
3302	case ICE_MIN_BW:
3303		data->valid_sections |= ICE_AQC_ELEM_VALID_CIR;
3304		data->cir_bw.bw_profile_idx = cpu_to_le16(rl_prof_id);
3305		break;
3306	case ICE_MAX_BW:
3307		/* EIR BW and Shared BW profiles are mutually exclusive and
3308		 * hence only one of them may be set for any given element
3309		 */
3310		if (data->valid_sections & ICE_AQC_ELEM_VALID_SHARED)
3311			return -EIO;
3312		data->valid_sections |= ICE_AQC_ELEM_VALID_EIR;
3313		data->eir_bw.bw_profile_idx = cpu_to_le16(rl_prof_id);
3314		break;
3315	case ICE_SHARED_BW:
3316		/* Check for removing shared BW */
3317		if (rl_prof_id == ICE_SCHED_NO_SHARED_RL_PROF_ID) {
3318			/* remove shared profile */
3319			data->valid_sections &= ~ICE_AQC_ELEM_VALID_SHARED;
3320			data->srl_id = 0; /* clear SRL field */
3321
3322			/* enable back EIR to default profile */
3323			data->valid_sections |= ICE_AQC_ELEM_VALID_EIR;
3324			data->eir_bw.bw_profile_idx =
3325				cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
3326			break;
3327		}
3328		/* EIR BW and Shared BW profiles are mutually exclusive and
3329		 * hence only one of them may be set for any given element
3330		 */
3331		if ((data->valid_sections & ICE_AQC_ELEM_VALID_EIR) &&
3332		    (le16_to_cpu(data->eir_bw.bw_profile_idx) !=
3333			    ICE_SCHED_DFLT_RL_PROF_ID))
3334			return -EIO;
3335		/* EIR BW is set to default, disable it */
3336		data->valid_sections &= ~ICE_AQC_ELEM_VALID_EIR;
3337		/* Okay to enable shared BW now */
3338		data->valid_sections |= ICE_AQC_ELEM_VALID_SHARED;
3339		data->srl_id = cpu_to_le16(rl_prof_id);
3340		break;
3341	default:
3342		/* Unknown rate limit type */
3343		return -EINVAL;
3344	}
3345
3346	/* Configure element */
3347	return ice_sched_update_elem(hw, node, &buf);
3348}
3349
3350/**
3351 * ice_sched_get_node_rl_prof_id - get node's rate limit profile ID
3352 * @node: sched node
3353 * @rl_type: rate limit type
3354 *
3355 * If existing profile matches, it returns the corresponding rate
3356 * limit profile ID, otherwise it returns an invalid ID as error.
3357 */
3358static u16
3359ice_sched_get_node_rl_prof_id(struct ice_sched_node *node,
3360			      enum ice_rl_type rl_type)
3361{
3362	u16 rl_prof_id = ICE_SCHED_INVAL_PROF_ID;
3363	struct ice_aqc_txsched_elem *data;
3364
3365	data = &node->info.data;
3366	switch (rl_type) {
3367	case ICE_MIN_BW:
3368		if (data->valid_sections & ICE_AQC_ELEM_VALID_CIR)
3369			rl_prof_id = le16_to_cpu(data->cir_bw.bw_profile_idx);
3370		break;
3371	case ICE_MAX_BW:
3372		if (data->valid_sections & ICE_AQC_ELEM_VALID_EIR)
3373			rl_prof_id = le16_to_cpu(data->eir_bw.bw_profile_idx);
3374		break;
3375	case ICE_SHARED_BW:
3376		if (data->valid_sections & ICE_AQC_ELEM_VALID_SHARED)
3377			rl_prof_id = le16_to_cpu(data->srl_id);
3378		break;
3379	default:
3380		break;
3381	}
3382
3383	return rl_prof_id;
3384}
3385
3386/**
3387 * ice_sched_get_rl_prof_layer - selects rate limit profile creation layer
3388 * @pi: port information structure
3389 * @rl_type: type of rate limit BW - min, max, or shared
3390 * @layer_index: layer index
3391 *
3392 * This function returns requested profile creation layer.
3393 */
3394static u8
3395ice_sched_get_rl_prof_layer(struct ice_port_info *pi, enum ice_rl_type rl_type,
3396			    u8 layer_index)
3397{
3398	struct ice_hw *hw = pi->hw;
3399
3400	if (layer_index >= hw->num_tx_sched_layers)
3401		return ICE_SCHED_INVAL_LAYER_NUM;
3402	switch (rl_type) {
3403	case ICE_MIN_BW:
3404		if (hw->layer_info[layer_index].max_cir_rl_profiles)
3405			return layer_index;
3406		break;
3407	case ICE_MAX_BW:
3408		if (hw->layer_info[layer_index].max_eir_rl_profiles)
3409			return layer_index;
3410		break;
3411	case ICE_SHARED_BW:
3412		/* if current layer doesn't support SRL profile creation
3413		 * then try a layer up or down.
3414		 */
3415		if (hw->layer_info[layer_index].max_srl_profiles)
3416			return layer_index;
3417		else if (layer_index < hw->num_tx_sched_layers - 1 &&
3418			 hw->layer_info[layer_index + 1].max_srl_profiles)
3419			return layer_index + 1;
3420		else if (layer_index > 0 &&
3421			 hw->layer_info[layer_index - 1].max_srl_profiles)
3422			return layer_index - 1;
3423		break;
3424	default:
3425		break;
3426	}
3427	return ICE_SCHED_INVAL_LAYER_NUM;
3428}
3429
3430/**
3431 * ice_sched_get_srl_node - get shared rate limit node
3432 * @node: tree node
3433 * @srl_layer: shared rate limit layer
3434 *
3435 * This function returns SRL node to be used for shared rate limit purpose.
3436 * The caller needs to hold scheduler lock.
3437 */
3438static struct ice_sched_node *
3439ice_sched_get_srl_node(struct ice_sched_node *node, u8 srl_layer)
3440{
3441	if (srl_layer > node->tx_sched_layer)
3442		return node->children[0];
3443	else if (srl_layer < node->tx_sched_layer)
3444		/* Node can't be created without a parent. It will always
3445		 * have a valid parent except root node.
3446		 */
3447		return node->parent;
3448	else
3449		return node;
3450}
3451
3452/**
3453 * ice_sched_rm_rl_profile - remove RL profile ID
3454 * @pi: port information structure
3455 * @layer_num: layer number where profiles are saved
3456 * @profile_type: profile type like EIR, CIR, or SRL
3457 * @profile_id: profile ID to remove
3458 *
3459 * This function removes rate limit profile from layer 'layer_num' of type
3460 * 'profile_type' and profile ID as 'profile_id'. The caller needs to hold
3461 * scheduler lock.
3462 */
3463static int
3464ice_sched_rm_rl_profile(struct ice_port_info *pi, u8 layer_num, u8 profile_type,
3465			u16 profile_id)
3466{
3467	struct ice_aqc_rl_profile_info *rl_prof_elem;
3468	int status = 0;
3469
3470	if (layer_num >= ICE_AQC_TOPO_MAX_LEVEL_NUM)
3471		return -EINVAL;
3472	/* Check the existing list for RL profile */
3473	list_for_each_entry(rl_prof_elem, &pi->rl_prof_list[layer_num],
3474			    list_entry)
3475		if ((rl_prof_elem->profile.flags & ICE_AQC_RL_PROFILE_TYPE_M) ==
3476		    profile_type &&
3477		    le16_to_cpu(rl_prof_elem->profile.profile_id) ==
3478		    profile_id) {
3479			if (rl_prof_elem->prof_id_ref)
3480				rl_prof_elem->prof_id_ref--;
3481
3482			/* Remove old profile ID from database */
3483			status = ice_sched_del_rl_profile(pi->hw, rl_prof_elem);
3484			if (status && status != -EBUSY)
3485				ice_debug(pi->hw, ICE_DBG_SCHED, "Remove rl profile failed\n");
3486			break;
3487		}
3488	if (status == -EBUSY)
3489		status = 0;
3490	return status;
3491}
3492
3493/**
3494 * ice_sched_set_node_bw_dflt - set node's bandwidth limit to default
3495 * @pi: port information structure
3496 * @node: pointer to node structure
3497 * @rl_type: rate limit type min, max, or shared
3498 * @layer_num: layer number where RL profiles are saved
3499 *
3500 * This function configures node element's BW rate limit profile ID of
3501 * type CIR, EIR, or SRL to default. This function needs to be called
3502 * with the scheduler lock held.
3503 */
3504static int
3505ice_sched_set_node_bw_dflt(struct ice_port_info *pi,
3506			   struct ice_sched_node *node,
3507			   enum ice_rl_type rl_type, u8 layer_num)
3508{
3509	struct ice_hw *hw;
3510	u8 profile_type;
3511	u16 rl_prof_id;
3512	u16 old_id;
3513	int status;
3514
3515	hw = pi->hw;
3516	switch (rl_type) {
3517	case ICE_MIN_BW:
3518		profile_type = ICE_AQC_RL_PROFILE_TYPE_CIR;
3519		rl_prof_id = ICE_SCHED_DFLT_RL_PROF_ID;
3520		break;
3521	case ICE_MAX_BW:
3522		profile_type = ICE_AQC_RL_PROFILE_TYPE_EIR;
3523		rl_prof_id = ICE_SCHED_DFLT_RL_PROF_ID;
3524		break;
3525	case ICE_SHARED_BW:
3526		profile_type = ICE_AQC_RL_PROFILE_TYPE_SRL;
3527		/* No SRL is configured for default case */
3528		rl_prof_id = ICE_SCHED_NO_SHARED_RL_PROF_ID;
3529		break;
3530	default:
3531		return -EINVAL;
3532	}
3533	/* Save existing RL prof ID for later clean up */
3534	old_id = ice_sched_get_node_rl_prof_id(node, rl_type);
3535	/* Configure BW scheduling parameters */
3536	status = ice_sched_cfg_node_bw_lmt(hw, node, rl_type, rl_prof_id);
3537	if (status)
3538		return status;
3539
3540	/* Remove stale RL profile ID */
3541	if (old_id == ICE_SCHED_DFLT_RL_PROF_ID ||
3542	    old_id == ICE_SCHED_INVAL_PROF_ID)
3543		return 0;
3544
3545	return ice_sched_rm_rl_profile(pi, layer_num, profile_type, old_id);
3546}
3547
3548/**
3549 * ice_sched_set_eir_srl_excl - set EIR/SRL exclusiveness
3550 * @pi: port information structure
3551 * @node: pointer to node structure
3552 * @layer_num: layer number where rate limit profiles are saved
3553 * @rl_type: rate limit type min, max, or shared
3554 * @bw: bandwidth value
3555 *
3556 * This function prepares node element's bandwidth to SRL or EIR exclusively.
3557 * EIR BW and Shared BW profiles are mutually exclusive and hence only one of
3558 * them may be set for any given element. This function needs to be called
3559 * with the scheduler lock held.
3560 */
3561static int
3562ice_sched_set_eir_srl_excl(struct ice_port_info *pi,
3563			   struct ice_sched_node *node,
3564			   u8 layer_num, enum ice_rl_type rl_type, u32 bw)
3565{
3566	if (rl_type == ICE_SHARED_BW) {
3567		/* SRL node passed in this case, it may be different node */
3568		if (bw == ICE_SCHED_DFLT_BW)
3569			/* SRL being removed, ice_sched_cfg_node_bw_lmt()
3570			 * enables EIR to default. EIR is not set in this
3571			 * case, so no additional action is required.
3572			 */
3573			return 0;
3574
3575		/* SRL being configured, set EIR to default here.
3576		 * ice_sched_cfg_node_bw_lmt() disables EIR when it
3577		 * configures SRL
3578		 */
3579		return ice_sched_set_node_bw_dflt(pi, node, ICE_MAX_BW,
3580						  layer_num);
3581	} else if (rl_type == ICE_MAX_BW &&
3582		   node->info.data.valid_sections & ICE_AQC_ELEM_VALID_SHARED) {
3583		/* Remove Shared profile. Set default shared BW call
3584		 * removes shared profile for a node.
3585		 */
3586		return ice_sched_set_node_bw_dflt(pi, node,
3587						  ICE_SHARED_BW,
3588						  layer_num);
3589	}
3590	return 0;
3591}
3592
3593/**
3594 * ice_sched_set_node_bw - set node's bandwidth
3595 * @pi: port information structure
3596 * @node: tree node
3597 * @rl_type: rate limit type min, max, or shared
3598 * @bw: bandwidth in Kbps - Kilo bits per sec
3599 * @layer_num: layer number
3600 *
3601 * This function adds new profile corresponding to requested BW, configures
3602 * node's RL profile ID of type CIR, EIR, or SRL, and removes old profile
3603 * ID from local database. The caller needs to hold scheduler lock.
3604 */
3605int
3606ice_sched_set_node_bw(struct ice_port_info *pi, struct ice_sched_node *node,
3607		      enum ice_rl_type rl_type, u32 bw, u8 layer_num)
3608{
3609	struct ice_aqc_rl_profile_info *rl_prof_info;
3610	struct ice_hw *hw = pi->hw;
3611	u16 old_id, rl_prof_id;
3612	int status = -EINVAL;
3613
3614	rl_prof_info = ice_sched_add_rl_profile(pi, rl_type, bw, layer_num);
3615	if (!rl_prof_info)
3616		return status;
3617
3618	rl_prof_id = le16_to_cpu(rl_prof_info->profile.profile_id);
3619
3620	/* Save existing RL prof ID for later clean up */
3621	old_id = ice_sched_get_node_rl_prof_id(node, rl_type);
3622	/* Configure BW scheduling parameters */
3623	status = ice_sched_cfg_node_bw_lmt(hw, node, rl_type, rl_prof_id);
3624	if (status)
3625		return status;
3626
3627	/* New changes has been applied */
3628	/* Increment the profile ID reference count */
3629	rl_prof_info->prof_id_ref++;
3630
3631	/* Check for old ID removal */
3632	if ((old_id == ICE_SCHED_DFLT_RL_PROF_ID && rl_type != ICE_SHARED_BW) ||
3633	    old_id == ICE_SCHED_INVAL_PROF_ID || old_id == rl_prof_id)
3634		return 0;
3635
3636	return ice_sched_rm_rl_profile(pi, layer_num,
3637				       rl_prof_info->profile.flags &
3638				       ICE_AQC_RL_PROFILE_TYPE_M, old_id);
3639}
3640
3641/**
3642 * ice_sched_set_node_priority - set node's priority
3643 * @pi: port information structure
3644 * @node: tree node
3645 * @priority: number 0-7 representing priority among siblings
3646 *
3647 * This function sets priority of a node among it's siblings.
3648 */
3649int
3650ice_sched_set_node_priority(struct ice_port_info *pi, struct ice_sched_node *node,
3651			    u16 priority)
3652{
3653	struct ice_aqc_txsched_elem_data buf;
3654	struct ice_aqc_txsched_elem *data;
3655
3656	buf = node->info;
3657	data = &buf.data;
3658
3659	data->valid_sections |= ICE_AQC_ELEM_VALID_GENERIC;
3660	data->generic |= FIELD_PREP(ICE_AQC_ELEM_GENERIC_PRIO_M, priority);
3661
3662	return ice_sched_update_elem(pi->hw, node, &buf);
3663}
3664
3665/**
3666 * ice_sched_set_node_weight - set node's weight
3667 * @pi: port information structure
3668 * @node: tree node
3669 * @weight: number 1-200 representing weight for WFQ
3670 *
3671 * This function sets weight of the node for WFQ algorithm.
3672 */
3673int
3674ice_sched_set_node_weight(struct ice_port_info *pi, struct ice_sched_node *node, u16 weight)
3675{
3676	struct ice_aqc_txsched_elem_data buf;
3677	struct ice_aqc_txsched_elem *data;
3678
3679	buf = node->info;
3680	data = &buf.data;
3681
3682	data->valid_sections = ICE_AQC_ELEM_VALID_CIR | ICE_AQC_ELEM_VALID_EIR |
3683			       ICE_AQC_ELEM_VALID_GENERIC;
3684	data->cir_bw.bw_alloc = cpu_to_le16(weight);
3685	data->eir_bw.bw_alloc = cpu_to_le16(weight);
3686
3687	data->generic |= FIELD_PREP(ICE_AQC_ELEM_GENERIC_SP_M, 0x0);
3688
3689	return ice_sched_update_elem(pi->hw, node, &buf);
3690}
3691
3692/**
3693 * ice_sched_set_node_bw_lmt - set node's BW limit
3694 * @pi: port information structure
3695 * @node: tree node
3696 * @rl_type: rate limit type min, max, or shared
3697 * @bw: bandwidth in Kbps - Kilo bits per sec
3698 *
3699 * It updates node's BW limit parameters like BW RL profile ID of type CIR,
3700 * EIR, or SRL. The caller needs to hold scheduler lock.
3701 */
3702int
3703ice_sched_set_node_bw_lmt(struct ice_port_info *pi, struct ice_sched_node *node,
3704			  enum ice_rl_type rl_type, u32 bw)
3705{
3706	struct ice_sched_node *cfg_node = node;
3707	int status;
3708
3709	struct ice_hw *hw;
3710	u8 layer_num;
3711
3712	if (!pi)
3713		return -EINVAL;
3714	hw = pi->hw;
3715	/* Remove unused RL profile IDs from HW and SW DB */
3716	ice_sched_rm_unused_rl_prof(pi);
3717	layer_num = ice_sched_get_rl_prof_layer(pi, rl_type,
3718						node->tx_sched_layer);
3719	if (layer_num >= hw->num_tx_sched_layers)
3720		return -EINVAL;
3721
3722	if (rl_type == ICE_SHARED_BW) {
3723		/* SRL node may be different */
3724		cfg_node = ice_sched_get_srl_node(node, layer_num);
3725		if (!cfg_node)
3726			return -EIO;
3727	}
3728	/* EIR BW and Shared BW profiles are mutually exclusive and
3729	 * hence only one of them may be set for any given element
3730	 */
3731	status = ice_sched_set_eir_srl_excl(pi, cfg_node, layer_num, rl_type,
3732					    bw);
3733	if (status)
3734		return status;
3735	if (bw == ICE_SCHED_DFLT_BW)
3736		return ice_sched_set_node_bw_dflt(pi, cfg_node, rl_type,
3737						  layer_num);
3738	return ice_sched_set_node_bw(pi, cfg_node, rl_type, bw, layer_num);
3739}
3740
3741/**
3742 * ice_sched_set_node_bw_dflt_lmt - set node's BW limit to default
3743 * @pi: port information structure
3744 * @node: pointer to node structure
3745 * @rl_type: rate limit type min, max, or shared
3746 *
3747 * This function configures node element's BW rate limit profile ID of
3748 * type CIR, EIR, or SRL to default. This function needs to be called
3749 * with the scheduler lock held.
3750 */
3751static int
3752ice_sched_set_node_bw_dflt_lmt(struct ice_port_info *pi,
3753			       struct ice_sched_node *node,
3754			       enum ice_rl_type rl_type)
3755{
3756	return ice_sched_set_node_bw_lmt(pi, node, rl_type,
3757					 ICE_SCHED_DFLT_BW);
3758}
3759
3760/**
3761 * ice_sched_validate_srl_node - Check node for SRL applicability
3762 * @node: sched node to configure
3763 * @sel_layer: selected SRL layer
3764 *
3765 * This function checks if the SRL can be applied to a selected layer node on
3766 * behalf of the requested node (first argument). This function needs to be
3767 * called with scheduler lock held.
3768 */
3769static int
3770ice_sched_validate_srl_node(struct ice_sched_node *node, u8 sel_layer)
3771{
3772	/* SRL profiles are not available on all layers. Check if the
3773	 * SRL profile can be applied to a node above or below the
3774	 * requested node. SRL configuration is possible only if the
3775	 * selected layer's node has single child.
3776	 */
3777	if (sel_layer == node->tx_sched_layer ||
3778	    ((sel_layer == node->tx_sched_layer + 1) &&
3779	    node->num_children == 1) ||
3780	    ((sel_layer == node->tx_sched_layer - 1) &&
3781	    (node->parent && node->parent->num_children == 1)))
3782		return 0;
3783
3784	return -EIO;
3785}
3786
3787/**
3788 * ice_sched_save_q_bw - save queue node's BW information
3789 * @q_ctx: queue context structure
3790 * @rl_type: rate limit type min, max, or shared
3791 * @bw: bandwidth in Kbps - Kilo bits per sec
3792 *
3793 * Save BW information of queue type node for post replay use.
3794 */
3795static int
3796ice_sched_save_q_bw(struct ice_q_ctx *q_ctx, enum ice_rl_type rl_type, u32 bw)
3797{
3798	switch (rl_type) {
3799	case ICE_MIN_BW:
3800		ice_set_clear_cir_bw(&q_ctx->bw_t_info, bw);
3801		break;
3802	case ICE_MAX_BW:
3803		ice_set_clear_eir_bw(&q_ctx->bw_t_info, bw);
3804		break;
3805	case ICE_SHARED_BW:
3806		ice_set_clear_shared_bw(&q_ctx->bw_t_info, bw);
3807		break;
3808	default:
3809		return -EINVAL;
3810	}
3811	return 0;
3812}
3813
3814/**
3815 * ice_sched_set_q_bw_lmt - sets queue BW limit
3816 * @pi: port information structure
3817 * @vsi_handle: sw VSI handle
3818 * @tc: traffic class
3819 * @q_handle: software queue handle
3820 * @rl_type: min, max, or shared
3821 * @bw: bandwidth in Kbps
3822 *
3823 * This function sets BW limit of queue scheduling node.
3824 */
3825static int
3826ice_sched_set_q_bw_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3827		       u16 q_handle, enum ice_rl_type rl_type, u32 bw)
3828{
3829	struct ice_sched_node *node;
3830	struct ice_q_ctx *q_ctx;
3831	int status = -EINVAL;
3832
3833	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
3834		return -EINVAL;
3835	mutex_lock(&pi->sched_lock);
3836	q_ctx = ice_get_lan_q_ctx(pi->hw, vsi_handle, tc, q_handle);
3837	if (!q_ctx)
3838		goto exit_q_bw_lmt;
3839	node = ice_sched_find_node_by_teid(pi->root, q_ctx->q_teid);
3840	if (!node) {
3841		ice_debug(pi->hw, ICE_DBG_SCHED, "Wrong q_teid\n");
3842		goto exit_q_bw_lmt;
3843	}
3844
3845	/* Return error if it is not a leaf node */
3846	if (node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF)
3847		goto exit_q_bw_lmt;
3848
3849	/* SRL bandwidth layer selection */
3850	if (rl_type == ICE_SHARED_BW) {
3851		u8 sel_layer; /* selected layer */
3852
3853		sel_layer = ice_sched_get_rl_prof_layer(pi, rl_type,
3854							node->tx_sched_layer);
3855		if (sel_layer >= pi->hw->num_tx_sched_layers) {
3856			status = -EINVAL;
3857			goto exit_q_bw_lmt;
3858		}
3859		status = ice_sched_validate_srl_node(node, sel_layer);
3860		if (status)
3861			goto exit_q_bw_lmt;
3862	}
3863
3864	if (bw == ICE_SCHED_DFLT_BW)
3865		status = ice_sched_set_node_bw_dflt_lmt(pi, node, rl_type);
3866	else
3867		status = ice_sched_set_node_bw_lmt(pi, node, rl_type, bw);
3868
3869	if (!status)
3870		status = ice_sched_save_q_bw(q_ctx, rl_type, bw);
3871
3872exit_q_bw_lmt:
3873	mutex_unlock(&pi->sched_lock);
3874	return status;
3875}
3876
3877/**
3878 * ice_cfg_q_bw_lmt - configure queue BW limit
3879 * @pi: port information structure
3880 * @vsi_handle: sw VSI handle
3881 * @tc: traffic class
3882 * @q_handle: software queue handle
3883 * @rl_type: min, max, or shared
3884 * @bw: bandwidth in Kbps
3885 *
3886 * This function configures BW limit of queue scheduling node.
3887 */
3888int
3889ice_cfg_q_bw_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3890		 u16 q_handle, enum ice_rl_type rl_type, u32 bw)
3891{
3892	return ice_sched_set_q_bw_lmt(pi, vsi_handle, tc, q_handle, rl_type,
3893				      bw);
3894}
3895
3896/**
3897 * ice_cfg_q_bw_dflt_lmt - configure queue BW default limit
3898 * @pi: port information structure
3899 * @vsi_handle: sw VSI handle
3900 * @tc: traffic class
3901 * @q_handle: software queue handle
3902 * @rl_type: min, max, or shared
3903 *
3904 * This function configures BW default limit of queue scheduling node.
3905 */
3906int
3907ice_cfg_q_bw_dflt_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3908		      u16 q_handle, enum ice_rl_type rl_type)
3909{
3910	return ice_sched_set_q_bw_lmt(pi, vsi_handle, tc, q_handle, rl_type,
3911				      ICE_SCHED_DFLT_BW);
3912}
3913
3914/**
3915 * ice_sched_get_node_by_id_type - get node from ID type
3916 * @pi: port information structure
3917 * @id: identifier
3918 * @agg_type: type of aggregator
3919 * @tc: traffic class
3920 *
3921 * This function returns node identified by ID of type aggregator, and
3922 * based on traffic class (TC). This function needs to be called with
3923 * the scheduler lock held.
3924 */
3925static struct ice_sched_node *
3926ice_sched_get_node_by_id_type(struct ice_port_info *pi, u32 id,
3927			      enum ice_agg_type agg_type, u8 tc)
3928{
3929	struct ice_sched_node *node = NULL;
3930
3931	switch (agg_type) {
3932	case ICE_AGG_TYPE_VSI: {
3933		struct ice_vsi_ctx *vsi_ctx;
3934		u16 vsi_handle = (u16)id;
3935
3936		if (!ice_is_vsi_valid(pi->hw, vsi_handle))
3937			break;
3938		/* Get sched_vsi_info */
3939		vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
3940		if (!vsi_ctx)
3941			break;
3942		node = vsi_ctx->sched.vsi_node[tc];
3943		break;
3944	}
3945
3946	case ICE_AGG_TYPE_AGG: {
3947		struct ice_sched_node *tc_node;
3948
3949		tc_node = ice_sched_get_tc_node(pi, tc);
3950		if (tc_node)
3951			node = ice_sched_get_agg_node(pi, tc_node, id);
3952		break;
3953	}
3954
3955	default:
3956		break;
3957	}
3958
3959	return node;
3960}
3961
3962/**
3963 * ice_sched_set_node_bw_lmt_per_tc - set node BW limit per TC
3964 * @pi: port information structure
3965 * @id: ID (software VSI handle or AGG ID)
3966 * @agg_type: aggregator type (VSI or AGG type node)
3967 * @tc: traffic class
3968 * @rl_type: min or max
3969 * @bw: bandwidth in Kbps
3970 *
3971 * This function sets BW limit of VSI or Aggregator scheduling node
3972 * based on TC information from passed in argument BW.
3973 */
3974static int
3975ice_sched_set_node_bw_lmt_per_tc(struct ice_port_info *pi, u32 id,
3976				 enum ice_agg_type agg_type, u8 tc,
3977				 enum ice_rl_type rl_type, u32 bw)
3978{
3979	struct ice_sched_node *node;
3980	int status = -EINVAL;
3981
3982	if (!pi)
3983		return status;
3984
3985	if (rl_type == ICE_UNKNOWN_BW)
3986		return status;
3987
3988	mutex_lock(&pi->sched_lock);
3989	node = ice_sched_get_node_by_id_type(pi, id, agg_type, tc);
3990	if (!node) {
3991		ice_debug(pi->hw, ICE_DBG_SCHED, "Wrong id, agg type, or tc\n");
3992		goto exit_set_node_bw_lmt_per_tc;
3993	}
3994	if (bw == ICE_SCHED_DFLT_BW)
3995		status = ice_sched_set_node_bw_dflt_lmt(pi, node, rl_type);
3996	else
3997		status = ice_sched_set_node_bw_lmt(pi, node, rl_type, bw);
3998
3999exit_set_node_bw_lmt_per_tc:
4000	mutex_unlock(&pi->sched_lock);
4001	return status;
4002}
4003
4004/**
4005 * ice_cfg_vsi_bw_lmt_per_tc - configure VSI BW limit per TC
4006 * @pi: port information structure
4007 * @vsi_handle: software VSI handle
4008 * @tc: traffic class
4009 * @rl_type: min or max
4010 * @bw: bandwidth in Kbps
4011 *
4012 * This function configures BW limit of VSI scheduling node based on TC
4013 * information.
4014 */
4015int
4016ice_cfg_vsi_bw_lmt_per_tc(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
4017			  enum ice_rl_type rl_type, u32 bw)
4018{
4019	int status;
4020
4021	status = ice_sched_set_node_bw_lmt_per_tc(pi, vsi_handle,
4022						  ICE_AGG_TYPE_VSI,
4023						  tc, rl_type, bw);
4024	if (!status) {
4025		mutex_lock(&pi->sched_lock);
4026		status = ice_sched_save_vsi_bw(pi, vsi_handle, tc, rl_type, bw);
4027		mutex_unlock(&pi->sched_lock);
4028	}
4029	return status;
4030}
4031
4032/**
4033 * ice_cfg_vsi_bw_dflt_lmt_per_tc - configure default VSI BW limit per TC
4034 * @pi: port information structure
4035 * @vsi_handle: software VSI handle
4036 * @tc: traffic class
4037 * @rl_type: min or max
4038 *
4039 * This function configures default BW limit of VSI scheduling node based on TC
4040 * information.
4041 */
4042int
4043ice_cfg_vsi_bw_dflt_lmt_per_tc(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
4044			       enum ice_rl_type rl_type)
4045{
4046	int status;
4047
4048	status = ice_sched_set_node_bw_lmt_per_tc(pi, vsi_handle,
4049						  ICE_AGG_TYPE_VSI,
4050						  tc, rl_type,
4051						  ICE_SCHED_DFLT_BW);
4052	if (!status) {
4053		mutex_lock(&pi->sched_lock);
4054		status = ice_sched_save_vsi_bw(pi, vsi_handle, tc, rl_type,
4055					       ICE_SCHED_DFLT_BW);
4056		mutex_unlock(&pi->sched_lock);
4057	}
4058	return status;
4059}
4060
4061/**
4062 * ice_cfg_rl_burst_size - Set burst size value
4063 * @hw: pointer to the HW struct
4064 * @bytes: burst size in bytes
4065 *
4066 * This function configures/set the burst size to requested new value. The new
4067 * burst size value is used for future rate limit calls. It doesn't change the
4068 * existing or previously created RL profiles.
4069 */
4070int ice_cfg_rl_burst_size(struct ice_hw *hw, u32 bytes)
4071{
4072	u16 burst_size_to_prog;
4073
4074	if (bytes < ICE_MIN_BURST_SIZE_ALLOWED ||
4075	    bytes > ICE_MAX_BURST_SIZE_ALLOWED)
4076		return -EINVAL;
4077	if (ice_round_to_num(bytes, 64) <=
4078	    ICE_MAX_BURST_SIZE_64_BYTE_GRANULARITY) {
4079		/* 64 byte granularity case */
4080		/* Disable MSB granularity bit */
4081		burst_size_to_prog = ICE_64_BYTE_GRANULARITY;
4082		/* round number to nearest 64 byte granularity */
4083		bytes = ice_round_to_num(bytes, 64);
4084		/* The value is in 64 byte chunks */
4085		burst_size_to_prog |= (u16)(bytes / 64);
4086	} else {
4087		/* k bytes granularity case */
4088		/* Enable MSB granularity bit */
4089		burst_size_to_prog = ICE_KBYTE_GRANULARITY;
4090		/* round number to nearest 1024 granularity */
4091		bytes = ice_round_to_num(bytes, 1024);
4092		/* check rounding doesn't go beyond allowed */
4093		if (bytes > ICE_MAX_BURST_SIZE_KBYTE_GRANULARITY)
4094			bytes = ICE_MAX_BURST_SIZE_KBYTE_GRANULARITY;
4095		/* The value is in k bytes */
4096		burst_size_to_prog |= (u16)(bytes / 1024);
4097	}
4098	hw->max_burst_size = burst_size_to_prog;
4099	return 0;
4100}
4101
4102/**
4103 * ice_sched_replay_node_prio - re-configure node priority
4104 * @hw: pointer to the HW struct
4105 * @node: sched node to configure
4106 * @priority: priority value
4107 *
4108 * This function configures node element's priority value. It
4109 * needs to be called with scheduler lock held.
4110 */
4111static int
4112ice_sched_replay_node_prio(struct ice_hw *hw, struct ice_sched_node *node,
4113			   u8 priority)
4114{
4115	struct ice_aqc_txsched_elem_data buf;
4116	struct ice_aqc_txsched_elem *data;
4117	int status;
4118
4119	buf = node->info;
4120	data = &buf.data;
4121	data->valid_sections |= ICE_AQC_ELEM_VALID_GENERIC;
4122	data->generic = priority;
4123
4124	/* Configure element */
4125	status = ice_sched_update_elem(hw, node, &buf);
4126	return status;
4127}
4128
4129/**
4130 * ice_sched_replay_node_bw - replay node(s) BW
4131 * @hw: pointer to the HW struct
4132 * @node: sched node to configure
4133 * @bw_t_info: BW type information
4134 *
4135 * This function restores node's BW from bw_t_info. The caller needs
4136 * to hold the scheduler lock.
4137 */
4138static int
4139ice_sched_replay_node_bw(struct ice_hw *hw, struct ice_sched_node *node,
4140			 struct ice_bw_type_info *bw_t_info)
4141{
4142	struct ice_port_info *pi = hw->port_info;
4143	int status = -EINVAL;
4144	u16 bw_alloc;
4145
4146	if (!node)
4147		return status;
4148	if (bitmap_empty(bw_t_info->bw_t_bitmap, ICE_BW_TYPE_CNT))
4149		return 0;
4150	if (test_bit(ICE_BW_TYPE_PRIO, bw_t_info->bw_t_bitmap)) {
4151		status = ice_sched_replay_node_prio(hw, node,
4152						    bw_t_info->generic);
4153		if (status)
4154			return status;
4155	}
4156	if (test_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap)) {
4157		status = ice_sched_set_node_bw_lmt(pi, node, ICE_MIN_BW,
4158						   bw_t_info->cir_bw.bw);
4159		if (status)
4160			return status;
4161	}
4162	if (test_bit(ICE_BW_TYPE_CIR_WT, bw_t_info->bw_t_bitmap)) {
4163		bw_alloc = bw_t_info->cir_bw.bw_alloc;
4164		status = ice_sched_cfg_node_bw_alloc(hw, node, ICE_MIN_BW,
4165						     bw_alloc);
4166		if (status)
4167			return status;
4168	}
4169	if (test_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap)) {
4170		status = ice_sched_set_node_bw_lmt(pi, node, ICE_MAX_BW,
4171						   bw_t_info->eir_bw.bw);
4172		if (status)
4173			return status;
4174	}
4175	if (test_bit(ICE_BW_TYPE_EIR_WT, bw_t_info->bw_t_bitmap)) {
4176		bw_alloc = bw_t_info->eir_bw.bw_alloc;
4177		status = ice_sched_cfg_node_bw_alloc(hw, node, ICE_MAX_BW,
4178						     bw_alloc);
4179		if (status)
4180			return status;
4181	}
4182	if (test_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap))
4183		status = ice_sched_set_node_bw_lmt(pi, node, ICE_SHARED_BW,
4184						   bw_t_info->shared_bw);
4185	return status;
4186}
4187
4188/**
4189 * ice_sched_get_ena_tc_bitmap - get enabled TC bitmap
4190 * @pi: port info struct
4191 * @tc_bitmap: 8 bits TC bitmap to check
4192 * @ena_tc_bitmap: 8 bits enabled TC bitmap to return
4193 *
4194 * This function returns enabled TC bitmap in variable ena_tc_bitmap. Some TCs
4195 * may be missing, it returns enabled TCs. This function needs to be called with
4196 * scheduler lock held.
4197 */
4198static void
4199ice_sched_get_ena_tc_bitmap(struct ice_port_info *pi,
4200			    unsigned long *tc_bitmap,
4201			    unsigned long *ena_tc_bitmap)
4202{
4203	u8 tc;
4204
4205	/* Some TC(s) may be missing after reset, adjust for replay */
4206	ice_for_each_traffic_class(tc)
4207		if (ice_is_tc_ena(*tc_bitmap, tc) &&
4208		    (ice_sched_get_tc_node(pi, tc)))
4209			set_bit(tc, ena_tc_bitmap);
4210}
4211
4212/**
4213 * ice_sched_replay_agg - recreate aggregator node(s)
4214 * @hw: pointer to the HW struct
4215 *
4216 * This function recreate aggregator type nodes which are not replayed earlier.
4217 * It also replay aggregator BW information. These aggregator nodes are not
4218 * associated with VSI type node yet.
4219 */
4220void ice_sched_replay_agg(struct ice_hw *hw)
4221{
4222	struct ice_port_info *pi = hw->port_info;
4223	struct ice_sched_agg_info *agg_info;
4224
4225	mutex_lock(&pi->sched_lock);
4226	list_for_each_entry(agg_info, &hw->agg_list, list_entry)
4227		/* replay aggregator (re-create aggregator node) */
4228		if (!bitmap_equal(agg_info->tc_bitmap, agg_info->replay_tc_bitmap,
4229				  ICE_MAX_TRAFFIC_CLASS)) {
4230			DECLARE_BITMAP(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
4231			int status;
4232
4233			bitmap_zero(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
4234			ice_sched_get_ena_tc_bitmap(pi,
4235						    agg_info->replay_tc_bitmap,
4236						    replay_bitmap);
4237			status = ice_sched_cfg_agg(hw->port_info,
4238						   agg_info->agg_id,
4239						   ICE_AGG_TYPE_AGG,
4240						   replay_bitmap);
4241			if (status) {
4242				dev_info(ice_hw_to_dev(hw),
4243					 "Replay agg id[%d] failed\n",
4244					 agg_info->agg_id);
4245				/* Move on to next one */
4246				continue;
4247			}
4248		}
4249	mutex_unlock(&pi->sched_lock);
4250}
4251
4252/**
4253 * ice_sched_replay_agg_vsi_preinit - Agg/VSI replay pre initialization
4254 * @hw: pointer to the HW struct
4255 *
4256 * This function initialize aggregator(s) TC bitmap to zero. A required
4257 * preinit step for replaying aggregators.
4258 */
4259void ice_sched_replay_agg_vsi_preinit(struct ice_hw *hw)
4260{
4261	struct ice_port_info *pi = hw->port_info;
4262	struct ice_sched_agg_info *agg_info;
4263
4264	mutex_lock(&pi->sched_lock);
4265	list_for_each_entry(agg_info, &hw->agg_list, list_entry) {
4266		struct ice_sched_agg_vsi_info *agg_vsi_info;
4267
4268		agg_info->tc_bitmap[0] = 0;
4269		list_for_each_entry(agg_vsi_info, &agg_info->agg_vsi_list,
4270				    list_entry)
4271			agg_vsi_info->tc_bitmap[0] = 0;
4272	}
4273	mutex_unlock(&pi->sched_lock);
4274}
4275
4276/**
4277 * ice_sched_replay_vsi_agg - replay aggregator & VSI to aggregator node(s)
4278 * @hw: pointer to the HW struct
4279 * @vsi_handle: software VSI handle
4280 *
4281 * This function replays aggregator node, VSI to aggregator type nodes, and
4282 * their node bandwidth information. This function needs to be called with
4283 * scheduler lock held.
4284 */
4285static int ice_sched_replay_vsi_agg(struct ice_hw *hw, u16 vsi_handle)
4286{
4287	DECLARE_BITMAP(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
4288	struct ice_sched_agg_vsi_info *agg_vsi_info;
4289	struct ice_port_info *pi = hw->port_info;
4290	struct ice_sched_agg_info *agg_info;
4291	int status;
4292
4293	bitmap_zero(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
4294	if (!ice_is_vsi_valid(hw, vsi_handle))
4295		return -EINVAL;
4296	agg_info = ice_get_vsi_agg_info(hw, vsi_handle);
4297	if (!agg_info)
4298		return 0; /* Not present in list - default Agg case */
4299	agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle);
4300	if (!agg_vsi_info)
4301		return 0; /* Not present in list - default Agg case */
4302	ice_sched_get_ena_tc_bitmap(pi, agg_info->replay_tc_bitmap,
4303				    replay_bitmap);
4304	/* Replay aggregator node associated to vsi_handle */
4305	status = ice_sched_cfg_agg(hw->port_info, agg_info->agg_id,
4306				   ICE_AGG_TYPE_AGG, replay_bitmap);
4307	if (status)
4308		return status;
4309
4310	bitmap_zero(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
4311	ice_sched_get_ena_tc_bitmap(pi, agg_vsi_info->replay_tc_bitmap,
4312				    replay_bitmap);
4313	/* Move this VSI (vsi_handle) to above aggregator */
4314	return ice_sched_assoc_vsi_to_agg(pi, agg_info->agg_id, vsi_handle,
4315					  replay_bitmap);
4316}
4317
4318/**
4319 * ice_replay_vsi_agg - replay VSI to aggregator node
4320 * @hw: pointer to the HW struct
4321 * @vsi_handle: software VSI handle
4322 *
4323 * This function replays association of VSI to aggregator type nodes, and
4324 * node bandwidth information.
4325 */
4326int ice_replay_vsi_agg(struct ice_hw *hw, u16 vsi_handle)
4327{
4328	struct ice_port_info *pi = hw->port_info;
4329	int status;
4330
4331	mutex_lock(&pi->sched_lock);
4332	status = ice_sched_replay_vsi_agg(hw, vsi_handle);
4333	mutex_unlock(&pi->sched_lock);
4334	return status;
4335}
4336
4337/**
4338 * ice_sched_replay_q_bw - replay queue type node BW
4339 * @pi: port information structure
4340 * @q_ctx: queue context structure
4341 *
4342 * This function replays queue type node bandwidth. This function needs to be
4343 * called with scheduler lock held.
4344 */
4345int ice_sched_replay_q_bw(struct ice_port_info *pi, struct ice_q_ctx *q_ctx)
4346{
4347	struct ice_sched_node *q_node;
4348
4349	/* Following also checks the presence of node in tree */
4350	q_node = ice_sched_find_node_by_teid(pi->root, q_ctx->q_teid);
4351	if (!q_node)
4352		return -EINVAL;
4353	return ice_sched_replay_node_bw(pi->hw, q_node, &q_ctx->bw_t_info);
4354}
4355