1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (C) 2021, Intel Corporation. */
3
4#include "ice.h"
5#include "ice_lib.h"
6#include "ice_trace.h"
7
8#define E810_OUT_PROP_DELAY_NS 1
9
10#define UNKNOWN_INCVAL_E822 0x100000000ULL
11
12static const struct ptp_pin_desc ice_pin_desc_e810t[] = {
13	/* name    idx   func         chan */
14	{ "GNSS",  GNSS, PTP_PF_EXTTS, 0, { 0, } },
15	{ "SMA1",  SMA1, PTP_PF_NONE, 1, { 0, } },
16	{ "U.FL1", UFL1, PTP_PF_NONE, 1, { 0, } },
17	{ "SMA2",  SMA2, PTP_PF_NONE, 2, { 0, } },
18	{ "U.FL2", UFL2, PTP_PF_NONE, 2, { 0, } },
19};
20
21/**
22 * ice_get_sma_config_e810t
23 * @hw: pointer to the hw struct
24 * @ptp_pins: pointer to the ptp_pin_desc struture
25 *
26 * Read the configuration of the SMA control logic and put it into the
27 * ptp_pin_desc structure
28 */
29static int
30ice_get_sma_config_e810t(struct ice_hw *hw, struct ptp_pin_desc *ptp_pins)
31{
32	u8 data, i;
33	int status;
34
35	/* Read initial pin state */
36	status = ice_read_sma_ctrl_e810t(hw, &data);
37	if (status)
38		return status;
39
40	/* initialize with defaults */
41	for (i = 0; i < NUM_PTP_PINS_E810T; i++) {
42		snprintf(ptp_pins[i].name, sizeof(ptp_pins[i].name),
43			 "%s", ice_pin_desc_e810t[i].name);
44		ptp_pins[i].index = ice_pin_desc_e810t[i].index;
45		ptp_pins[i].func = ice_pin_desc_e810t[i].func;
46		ptp_pins[i].chan = ice_pin_desc_e810t[i].chan;
47	}
48
49	/* Parse SMA1/UFL1 */
50	switch (data & ICE_SMA1_MASK_E810T) {
51	case ICE_SMA1_MASK_E810T:
52	default:
53		ptp_pins[SMA1].func = PTP_PF_NONE;
54		ptp_pins[UFL1].func = PTP_PF_NONE;
55		break;
56	case ICE_SMA1_DIR_EN_E810T:
57		ptp_pins[SMA1].func = PTP_PF_PEROUT;
58		ptp_pins[UFL1].func = PTP_PF_NONE;
59		break;
60	case ICE_SMA1_TX_EN_E810T:
61		ptp_pins[SMA1].func = PTP_PF_EXTTS;
62		ptp_pins[UFL1].func = PTP_PF_NONE;
63		break;
64	case 0:
65		ptp_pins[SMA1].func = PTP_PF_EXTTS;
66		ptp_pins[UFL1].func = PTP_PF_PEROUT;
67		break;
68	}
69
70	/* Parse SMA2/UFL2 */
71	switch (data & ICE_SMA2_MASK_E810T) {
72	case ICE_SMA2_MASK_E810T:
73	default:
74		ptp_pins[SMA2].func = PTP_PF_NONE;
75		ptp_pins[UFL2].func = PTP_PF_NONE;
76		break;
77	case (ICE_SMA2_TX_EN_E810T | ICE_SMA2_UFL2_RX_DIS_E810T):
78		ptp_pins[SMA2].func = PTP_PF_EXTTS;
79		ptp_pins[UFL2].func = PTP_PF_NONE;
80		break;
81	case (ICE_SMA2_DIR_EN_E810T | ICE_SMA2_UFL2_RX_DIS_E810T):
82		ptp_pins[SMA2].func = PTP_PF_PEROUT;
83		ptp_pins[UFL2].func = PTP_PF_NONE;
84		break;
85	case (ICE_SMA2_DIR_EN_E810T | ICE_SMA2_TX_EN_E810T):
86		ptp_pins[SMA2].func = PTP_PF_NONE;
87		ptp_pins[UFL2].func = PTP_PF_EXTTS;
88		break;
89	case ICE_SMA2_DIR_EN_E810T:
90		ptp_pins[SMA2].func = PTP_PF_PEROUT;
91		ptp_pins[UFL2].func = PTP_PF_EXTTS;
92		break;
93	}
94
95	return 0;
96}
97
98/**
99 * ice_ptp_set_sma_config_e810t
100 * @hw: pointer to the hw struct
101 * @ptp_pins: pointer to the ptp_pin_desc struture
102 *
103 * Set the configuration of the SMA control logic based on the configuration in
104 * num_pins parameter
105 */
106static int
107ice_ptp_set_sma_config_e810t(struct ice_hw *hw,
108			     const struct ptp_pin_desc *ptp_pins)
109{
110	int status;
111	u8 data;
112
113	/* SMA1 and UFL1 cannot be set to TX at the same time */
114	if (ptp_pins[SMA1].func == PTP_PF_PEROUT &&
115	    ptp_pins[UFL1].func == PTP_PF_PEROUT)
116		return -EINVAL;
117
118	/* SMA2 and UFL2 cannot be set to RX at the same time */
119	if (ptp_pins[SMA2].func == PTP_PF_EXTTS &&
120	    ptp_pins[UFL2].func == PTP_PF_EXTTS)
121		return -EINVAL;
122
123	/* Read initial pin state value */
124	status = ice_read_sma_ctrl_e810t(hw, &data);
125	if (status)
126		return status;
127
128	/* Set the right sate based on the desired configuration */
129	data &= ~ICE_SMA1_MASK_E810T;
130	if (ptp_pins[SMA1].func == PTP_PF_NONE &&
131	    ptp_pins[UFL1].func == PTP_PF_NONE) {
132		dev_info(ice_hw_to_dev(hw), "SMA1 + U.FL1 disabled");
133		data |= ICE_SMA1_MASK_E810T;
134	} else if (ptp_pins[SMA1].func == PTP_PF_EXTTS &&
135		   ptp_pins[UFL1].func == PTP_PF_NONE) {
136		dev_info(ice_hw_to_dev(hw), "SMA1 RX");
137		data |= ICE_SMA1_TX_EN_E810T;
138	} else if (ptp_pins[SMA1].func == PTP_PF_NONE &&
139		   ptp_pins[UFL1].func == PTP_PF_PEROUT) {
140		/* U.FL 1 TX will always enable SMA 1 RX */
141		dev_info(ice_hw_to_dev(hw), "SMA1 RX + U.FL1 TX");
142	} else if (ptp_pins[SMA1].func == PTP_PF_EXTTS &&
143		   ptp_pins[UFL1].func == PTP_PF_PEROUT) {
144		dev_info(ice_hw_to_dev(hw), "SMA1 RX + U.FL1 TX");
145	} else if (ptp_pins[SMA1].func == PTP_PF_PEROUT &&
146		   ptp_pins[UFL1].func == PTP_PF_NONE) {
147		dev_info(ice_hw_to_dev(hw), "SMA1 TX");
148		data |= ICE_SMA1_DIR_EN_E810T;
149	}
150
151	data &= ~ICE_SMA2_MASK_E810T;
152	if (ptp_pins[SMA2].func == PTP_PF_NONE &&
153	    ptp_pins[UFL2].func == PTP_PF_NONE) {
154		dev_info(ice_hw_to_dev(hw), "SMA2 + U.FL2 disabled");
155		data |= ICE_SMA2_MASK_E810T;
156	} else if (ptp_pins[SMA2].func == PTP_PF_EXTTS &&
157			ptp_pins[UFL2].func == PTP_PF_NONE) {
158		dev_info(ice_hw_to_dev(hw), "SMA2 RX");
159		data |= (ICE_SMA2_TX_EN_E810T |
160			 ICE_SMA2_UFL2_RX_DIS_E810T);
161	} else if (ptp_pins[SMA2].func == PTP_PF_NONE &&
162		   ptp_pins[UFL2].func == PTP_PF_EXTTS) {
163		dev_info(ice_hw_to_dev(hw), "UFL2 RX");
164		data |= (ICE_SMA2_DIR_EN_E810T | ICE_SMA2_TX_EN_E810T);
165	} else if (ptp_pins[SMA2].func == PTP_PF_PEROUT &&
166		   ptp_pins[UFL2].func == PTP_PF_NONE) {
167		dev_info(ice_hw_to_dev(hw), "SMA2 TX");
168		data |= (ICE_SMA2_DIR_EN_E810T |
169			 ICE_SMA2_UFL2_RX_DIS_E810T);
170	} else if (ptp_pins[SMA2].func == PTP_PF_PEROUT &&
171		   ptp_pins[UFL2].func == PTP_PF_EXTTS) {
172		dev_info(ice_hw_to_dev(hw), "SMA2 TX + U.FL2 RX");
173		data |= ICE_SMA2_DIR_EN_E810T;
174	}
175
176	return ice_write_sma_ctrl_e810t(hw, data);
177}
178
179/**
180 * ice_ptp_set_sma_e810t
181 * @info: the driver's PTP info structure
182 * @pin: pin index in kernel structure
183 * @func: Pin function to be set (PTP_PF_NONE, PTP_PF_EXTTS or PTP_PF_PEROUT)
184 *
185 * Set the configuration of a single SMA pin
186 */
187static int
188ice_ptp_set_sma_e810t(struct ptp_clock_info *info, unsigned int pin,
189		      enum ptp_pin_function func)
190{
191	struct ptp_pin_desc ptp_pins[NUM_PTP_PINS_E810T];
192	struct ice_pf *pf = ptp_info_to_pf(info);
193	struct ice_hw *hw = &pf->hw;
194	int err;
195
196	if (pin < SMA1 || func > PTP_PF_PEROUT)
197		return -EOPNOTSUPP;
198
199	err = ice_get_sma_config_e810t(hw, ptp_pins);
200	if (err)
201		return err;
202
203	/* Disable the same function on the other pin sharing the channel */
204	if (pin == SMA1 && ptp_pins[UFL1].func == func)
205		ptp_pins[UFL1].func = PTP_PF_NONE;
206	if (pin == UFL1 && ptp_pins[SMA1].func == func)
207		ptp_pins[SMA1].func = PTP_PF_NONE;
208
209	if (pin == SMA2 && ptp_pins[UFL2].func == func)
210		ptp_pins[UFL2].func = PTP_PF_NONE;
211	if (pin == UFL2 && ptp_pins[SMA2].func == func)
212		ptp_pins[SMA2].func = PTP_PF_NONE;
213
214	/* Set up new pin function in the temp table */
215	ptp_pins[pin].func = func;
216
217	return ice_ptp_set_sma_config_e810t(hw, ptp_pins);
218}
219
220/**
221 * ice_verify_pin_e810t
222 * @info: the driver's PTP info structure
223 * @pin: Pin index
224 * @func: Assigned function
225 * @chan: Assigned channel
226 *
227 * Verify if pin supports requested pin function. If the Check pins consistency.
228 * Reconfigure the SMA logic attached to the given pin to enable its
229 * desired functionality
230 */
231static int
232ice_verify_pin_e810t(struct ptp_clock_info *info, unsigned int pin,
233		     enum ptp_pin_function func, unsigned int chan)
234{
235	/* Don't allow channel reassignment */
236	if (chan != ice_pin_desc_e810t[pin].chan)
237		return -EOPNOTSUPP;
238
239	/* Check if functions are properly assigned */
240	switch (func) {
241	case PTP_PF_NONE:
242		break;
243	case PTP_PF_EXTTS:
244		if (pin == UFL1)
245			return -EOPNOTSUPP;
246		break;
247	case PTP_PF_PEROUT:
248		if (pin == UFL2 || pin == GNSS)
249			return -EOPNOTSUPP;
250		break;
251	case PTP_PF_PHYSYNC:
252		return -EOPNOTSUPP;
253	}
254
255	return ice_ptp_set_sma_e810t(info, pin, func);
256}
257
258/**
259 * ice_set_tx_tstamp - Enable or disable Tx timestamping
260 * @pf: The PF pointer to search in
261 * @on: bool value for whether timestamps are enabled or disabled
262 */
263static void ice_set_tx_tstamp(struct ice_pf *pf, bool on)
264{
265	struct ice_vsi *vsi;
266	u32 val;
267	u16 i;
268
269	vsi = ice_get_main_vsi(pf);
270	if (!vsi)
271		return;
272
273	/* Set the timestamp enable flag for all the Tx rings */
274	ice_for_each_txq(vsi, i) {
275		if (!vsi->tx_rings[i])
276			continue;
277		vsi->tx_rings[i]->ptp_tx = on;
278	}
279
280	/* Configure the Tx timestamp interrupt */
281	val = rd32(&pf->hw, PFINT_OICR_ENA);
282	if (on)
283		val |= PFINT_OICR_TSYN_TX_M;
284	else
285		val &= ~PFINT_OICR_TSYN_TX_M;
286	wr32(&pf->hw, PFINT_OICR_ENA, val);
287
288	pf->ptp.tstamp_config.tx_type = on ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
289}
290
291/**
292 * ice_set_rx_tstamp - Enable or disable Rx timestamping
293 * @pf: The PF pointer to search in
294 * @on: bool value for whether timestamps are enabled or disabled
295 */
296static void ice_set_rx_tstamp(struct ice_pf *pf, bool on)
297{
298	struct ice_vsi *vsi;
299	u16 i;
300
301	vsi = ice_get_main_vsi(pf);
302	if (!vsi)
303		return;
304
305	/* Set the timestamp flag for all the Rx rings */
306	ice_for_each_rxq(vsi, i) {
307		if (!vsi->rx_rings[i])
308			continue;
309		vsi->rx_rings[i]->ptp_rx = on;
310	}
311
312	pf->ptp.tstamp_config.rx_filter = on ? HWTSTAMP_FILTER_ALL :
313					       HWTSTAMP_FILTER_NONE;
314}
315
316/**
317 * ice_ptp_cfg_timestamp - Configure timestamp for init/deinit
318 * @pf: Board private structure
319 * @ena: bool value to enable or disable time stamp
320 *
321 * This function will configure timestamping during PTP initialization
322 * and deinitialization
323 */
324void ice_ptp_cfg_timestamp(struct ice_pf *pf, bool ena)
325{
326	ice_set_tx_tstamp(pf, ena);
327	ice_set_rx_tstamp(pf, ena);
328}
329
330/**
331 * ice_get_ptp_clock_index - Get the PTP clock index
332 * @pf: the PF pointer
333 *
334 * Determine the clock index of the PTP clock associated with this device. If
335 * this is the PF controlling the clock, just use the local access to the
336 * clock device pointer.
337 *
338 * Otherwise, read from the driver shared parameters to determine the clock
339 * index value.
340 *
341 * Returns: the index of the PTP clock associated with this device, or -1 if
342 * there is no associated clock.
343 */
344int ice_get_ptp_clock_index(struct ice_pf *pf)
345{
346	struct device *dev = ice_pf_to_dev(pf);
347	enum ice_aqc_driver_params param_idx;
348	struct ice_hw *hw = &pf->hw;
349	u8 tmr_idx;
350	u32 value;
351	int err;
352
353	/* Use the ptp_clock structure if we're the main PF */
354	if (pf->ptp.clock)
355		return ptp_clock_index(pf->ptp.clock);
356
357	tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc;
358	if (!tmr_idx)
359		param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR0;
360	else
361		param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR1;
362
363	err = ice_aq_get_driver_param(hw, param_idx, &value, NULL);
364	if (err) {
365		dev_err(dev, "Failed to read PTP clock index parameter, err %d aq_err %s\n",
366			err, ice_aq_str(hw->adminq.sq_last_status));
367		return -1;
368	}
369
370	/* The PTP clock index is an integer, and will be between 0 and
371	 * INT_MAX. The highest bit of the driver shared parameter is used to
372	 * indicate whether or not the currently stored clock index is valid.
373	 */
374	if (!(value & PTP_SHARED_CLK_IDX_VALID))
375		return -1;
376
377	return value & ~PTP_SHARED_CLK_IDX_VALID;
378}
379
380/**
381 * ice_set_ptp_clock_index - Set the PTP clock index
382 * @pf: the PF pointer
383 *
384 * Set the PTP clock index for this device into the shared driver parameters,
385 * so that other PFs associated with this device can read it.
386 *
387 * If the PF is unable to store the clock index, it will log an error, but
388 * will continue operating PTP.
389 */
390static void ice_set_ptp_clock_index(struct ice_pf *pf)
391{
392	struct device *dev = ice_pf_to_dev(pf);
393	enum ice_aqc_driver_params param_idx;
394	struct ice_hw *hw = &pf->hw;
395	u8 tmr_idx;
396	u32 value;
397	int err;
398
399	if (!pf->ptp.clock)
400		return;
401
402	tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc;
403	if (!tmr_idx)
404		param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR0;
405	else
406		param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR1;
407
408	value = (u32)ptp_clock_index(pf->ptp.clock);
409	if (value > INT_MAX) {
410		dev_err(dev, "PTP Clock index is too large to store\n");
411		return;
412	}
413	value |= PTP_SHARED_CLK_IDX_VALID;
414
415	err = ice_aq_set_driver_param(hw, param_idx, value, NULL);
416	if (err) {
417		dev_err(dev, "Failed to set PTP clock index parameter, err %d aq_err %s\n",
418			err, ice_aq_str(hw->adminq.sq_last_status));
419	}
420}
421
422/**
423 * ice_clear_ptp_clock_index - Clear the PTP clock index
424 * @pf: the PF pointer
425 *
426 * Clear the PTP clock index for this device. Must be called when
427 * unregistering the PTP clock, in order to ensure other PFs stop reporting
428 * a clock object that no longer exists.
429 */
430static void ice_clear_ptp_clock_index(struct ice_pf *pf)
431{
432	struct device *dev = ice_pf_to_dev(pf);
433	enum ice_aqc_driver_params param_idx;
434	struct ice_hw *hw = &pf->hw;
435	u8 tmr_idx;
436	int err;
437
438	/* Do not clear the index if we don't own the timer */
439	if (!hw->func_caps.ts_func_info.src_tmr_owned)
440		return;
441
442	tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc;
443	if (!tmr_idx)
444		param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR0;
445	else
446		param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR1;
447
448	err = ice_aq_set_driver_param(hw, param_idx, 0, NULL);
449	if (err) {
450		dev_dbg(dev, "Failed to clear PTP clock index parameter, err %d aq_err %s\n",
451			err, ice_aq_str(hw->adminq.sq_last_status));
452	}
453}
454
455/**
456 * ice_ptp_read_src_clk_reg - Read the source clock register
457 * @pf: Board private structure
458 * @sts: Optional parameter for holding a pair of system timestamps from
459 *       the system clock. Will be ignored if NULL is given.
460 */
461static u64
462ice_ptp_read_src_clk_reg(struct ice_pf *pf, struct ptp_system_timestamp *sts)
463{
464	struct ice_hw *hw = &pf->hw;
465	u32 hi, lo, lo2;
466	u8 tmr_idx;
467
468	tmr_idx = ice_get_ptp_src_clock_index(hw);
469	/* Read the system timestamp pre PHC read */
470	ptp_read_system_prets(sts);
471
472	lo = rd32(hw, GLTSYN_TIME_L(tmr_idx));
473
474	/* Read the system timestamp post PHC read */
475	ptp_read_system_postts(sts);
476
477	hi = rd32(hw, GLTSYN_TIME_H(tmr_idx));
478	lo2 = rd32(hw, GLTSYN_TIME_L(tmr_idx));
479
480	if (lo2 < lo) {
481		/* if TIME_L rolled over read TIME_L again and update
482		 * system timestamps
483		 */
484		ptp_read_system_prets(sts);
485		lo = rd32(hw, GLTSYN_TIME_L(tmr_idx));
486		ptp_read_system_postts(sts);
487		hi = rd32(hw, GLTSYN_TIME_H(tmr_idx));
488	}
489
490	return ((u64)hi << 32) | lo;
491}
492
493/**
494 * ice_ptp_extend_32b_ts - Convert a 32b nanoseconds timestamp to 64b
495 * @cached_phc_time: recently cached copy of PHC time
496 * @in_tstamp: Ingress/egress 32b nanoseconds timestamp value
497 *
498 * Hardware captures timestamps which contain only 32 bits of nominal
499 * nanoseconds, as opposed to the 64bit timestamps that the stack expects.
500 * Note that the captured timestamp values may be 40 bits, but the lower
501 * 8 bits are sub-nanoseconds and generally discarded.
502 *
503 * Extend the 32bit nanosecond timestamp using the following algorithm and
504 * assumptions:
505 *
506 * 1) have a recently cached copy of the PHC time
507 * 2) assume that the in_tstamp was captured 2^31 nanoseconds (~2.1
508 *    seconds) before or after the PHC time was captured.
509 * 3) calculate the delta between the cached time and the timestamp
510 * 4) if the delta is smaller than 2^31 nanoseconds, then the timestamp was
511 *    captured after the PHC time. In this case, the full timestamp is just
512 *    the cached PHC time plus the delta.
513 * 5) otherwise, if the delta is larger than 2^31 nanoseconds, then the
514 *    timestamp was captured *before* the PHC time, i.e. because the PHC
515 *    cache was updated after the timestamp was captured by hardware. In this
516 *    case, the full timestamp is the cached time minus the inverse delta.
517 *
518 * This algorithm works even if the PHC time was updated after a Tx timestamp
519 * was requested, but before the Tx timestamp event was reported from
520 * hardware.
521 *
522 * This calculation primarily relies on keeping the cached PHC time up to
523 * date. If the timestamp was captured more than 2^31 nanoseconds after the
524 * PHC time, it is possible that the lower 32bits of PHC time have
525 * overflowed more than once, and we might generate an incorrect timestamp.
526 *
527 * This is prevented by (a) periodically updating the cached PHC time once
528 * a second, and (b) discarding any Tx timestamp packet if it has waited for
529 * a timestamp for more than one second.
530 */
531static u64 ice_ptp_extend_32b_ts(u64 cached_phc_time, u32 in_tstamp)
532{
533	u32 delta, phc_time_lo;
534	u64 ns;
535
536	/* Extract the lower 32 bits of the PHC time */
537	phc_time_lo = (u32)cached_phc_time;
538
539	/* Calculate the delta between the lower 32bits of the cached PHC
540	 * time and the in_tstamp value
541	 */
542	delta = (in_tstamp - phc_time_lo);
543
544	/* Do not assume that the in_tstamp is always more recent than the
545	 * cached PHC time. If the delta is large, it indicates that the
546	 * in_tstamp was taken in the past, and should be converted
547	 * forward.
548	 */
549	if (delta > (U32_MAX / 2)) {
550		/* reverse the delta calculation here */
551		delta = (phc_time_lo - in_tstamp);
552		ns = cached_phc_time - delta;
553	} else {
554		ns = cached_phc_time + delta;
555	}
556
557	return ns;
558}
559
560/**
561 * ice_ptp_extend_40b_ts - Convert a 40b timestamp to 64b nanoseconds
562 * @pf: Board private structure
563 * @in_tstamp: Ingress/egress 40b timestamp value
564 *
565 * The Tx and Rx timestamps are 40 bits wide, including 32 bits of nominal
566 * nanoseconds, 7 bits of sub-nanoseconds, and a valid bit.
567 *
568 *  *--------------------------------------------------------------*
569 *  | 32 bits of nanoseconds | 7 high bits of sub ns underflow | v |
570 *  *--------------------------------------------------------------*
571 *
572 * The low bit is an indicator of whether the timestamp is valid. The next
573 * 7 bits are a capture of the upper 7 bits of the sub-nanosecond underflow,
574 * and the remaining 32 bits are the lower 32 bits of the PHC timer.
575 *
576 * It is assumed that the caller verifies the timestamp is valid prior to
577 * calling this function.
578 *
579 * Extract the 32bit nominal nanoseconds and extend them. Use the cached PHC
580 * time stored in the device private PTP structure as the basis for timestamp
581 * extension.
582 *
583 * See ice_ptp_extend_32b_ts for a detailed explanation of the extension
584 * algorithm.
585 */
586static u64 ice_ptp_extend_40b_ts(struct ice_pf *pf, u64 in_tstamp)
587{
588	const u64 mask = GENMASK_ULL(31, 0);
589	unsigned long discard_time;
590
591	/* Discard the hardware timestamp if the cached PHC time is too old */
592	discard_time = pf->ptp.cached_phc_jiffies + msecs_to_jiffies(2000);
593	if (time_is_before_jiffies(discard_time)) {
594		pf->ptp.tx_hwtstamp_discarded++;
595		return 0;
596	}
597
598	return ice_ptp_extend_32b_ts(pf->ptp.cached_phc_time,
599				     (in_tstamp >> 8) & mask);
600}
601
602/**
603 * ice_ptp_is_tx_tracker_up - Check if Tx tracker is ready for new timestamps
604 * @tx: the PTP Tx timestamp tracker to check
605 *
606 * Check that a given PTP Tx timestamp tracker is up, i.e. that it is ready
607 * to accept new timestamp requests.
608 *
609 * Assumes the tx->lock spinlock is already held.
610 */
611static bool
612ice_ptp_is_tx_tracker_up(struct ice_ptp_tx *tx)
613{
614	lockdep_assert_held(&tx->lock);
615
616	return tx->init && !tx->calibrating;
617}
618
619/**
620 * ice_ptp_process_tx_tstamp - Process Tx timestamps for a port
621 * @tx: the PTP Tx timestamp tracker
622 *
623 * Process timestamps captured by the PHY associated with this port. To do
624 * this, loop over each index with a waiting skb.
625 *
626 * If a given index has a valid timestamp, perform the following steps:
627 *
628 * 1) check that the timestamp request is not stale
629 * 2) check that a timestamp is ready and available in the PHY memory bank
630 * 3) read and copy the timestamp out of the PHY register
631 * 4) unlock the index by clearing the associated in_use bit
632 * 5) check if the timestamp is stale, and discard if so
633 * 6) extend the 40 bit timestamp value to get a 64 bit timestamp value
634 * 7) send this 64 bit timestamp to the stack
635 *
636 * Note that we do not hold the tracking lock while reading the Tx timestamp.
637 * This is because reading the timestamp requires taking a mutex that might
638 * sleep.
639 *
640 * The only place where we set in_use is when a new timestamp is initiated
641 * with a slot index. This is only called in the hard xmit routine where an
642 * SKB has a request flag set. The only places where we clear this bit is this
643 * function, or during teardown when the Tx timestamp tracker is being
644 * removed. A timestamp index will never be re-used until the in_use bit for
645 * that index is cleared.
646 *
647 * If a Tx thread starts a new timestamp, we might not begin processing it
648 * right away but we will notice it at the end when we re-queue the task.
649 *
650 * If a Tx thread starts a new timestamp just after this function exits, the
651 * interrupt for that timestamp should re-trigger this function once
652 * a timestamp is ready.
653 *
654 * In cases where the PTP hardware clock was directly adjusted, some
655 * timestamps may not be able to safely use the timestamp extension math. In
656 * this case, software will set the stale bit for any outstanding Tx
657 * timestamps when the clock is adjusted. Then this function will discard
658 * those captured timestamps instead of sending them to the stack.
659 *
660 * If a Tx packet has been waiting for more than 2 seconds, it is not possible
661 * to correctly extend the timestamp using the cached PHC time. It is
662 * extremely unlikely that a packet will ever take this long to timestamp. If
663 * we detect a Tx timestamp request that has waited for this long we assume
664 * the packet will never be sent by hardware and discard it without reading
665 * the timestamp register.
666 */
667static void ice_ptp_process_tx_tstamp(struct ice_ptp_tx *tx)
668{
669	struct ice_ptp_port *ptp_port;
670	struct ice_pf *pf;
671	struct ice_hw *hw;
672	u64 tstamp_ready;
673	bool link_up;
674	int err;
675	u8 idx;
676
677	if (!tx->init)
678		return;
679
680	ptp_port = container_of(tx, struct ice_ptp_port, tx);
681	pf = ptp_port_to_pf(ptp_port);
682	hw = &pf->hw;
683
684	/* Read the Tx ready status first */
685	err = ice_get_phy_tx_tstamp_ready(hw, tx->block, &tstamp_ready);
686	if (err)
687		return;
688
689	/* Drop packets if the link went down */
690	link_up = ptp_port->link_up;
691
692	for_each_set_bit(idx, tx->in_use, tx->len) {
693		struct skb_shared_hwtstamps shhwtstamps = {};
694		u8 phy_idx = idx + tx->offset;
695		u64 raw_tstamp = 0, tstamp;
696		bool drop_ts = !link_up;
697		struct sk_buff *skb;
698
699		/* Drop packets which have waited for more than 2 seconds */
700		if (time_is_before_jiffies(tx->tstamps[idx].start + 2 * HZ)) {
701			drop_ts = true;
702
703			/* Count the number of Tx timestamps that timed out */
704			pf->ptp.tx_hwtstamp_timeouts++;
705		}
706
707		/* Only read a timestamp from the PHY if its marked as ready
708		 * by the tstamp_ready register. This avoids unnecessary
709		 * reading of timestamps which are not yet valid. This is
710		 * important as we must read all timestamps which are valid
711		 * and only timestamps which are valid during each interrupt.
712		 * If we do not, the hardware logic for generating a new
713		 * interrupt can get stuck on some devices.
714		 */
715		if (!(tstamp_ready & BIT_ULL(phy_idx))) {
716			if (drop_ts)
717				goto skip_ts_read;
718
719			continue;
720		}
721
722		ice_trace(tx_tstamp_fw_req, tx->tstamps[idx].skb, idx);
723
724		err = ice_read_phy_tstamp(hw, tx->block, phy_idx, &raw_tstamp);
725		if (err && !drop_ts)
726			continue;
727
728		ice_trace(tx_tstamp_fw_done, tx->tstamps[idx].skb, idx);
729
730		/* For PHYs which don't implement a proper timestamp ready
731		 * bitmap, verify that the timestamp value is different
732		 * from the last cached timestamp. If it is not, skip this for
733		 * now assuming it hasn't yet been captured by hardware.
734		 */
735		if (!drop_ts && tx->verify_cached &&
736		    raw_tstamp == tx->tstamps[idx].cached_tstamp)
737			continue;
738
739		/* Discard any timestamp value without the valid bit set */
740		if (!(raw_tstamp & ICE_PTP_TS_VALID))
741			drop_ts = true;
742
743skip_ts_read:
744		spin_lock(&tx->lock);
745		if (tx->verify_cached && raw_tstamp)
746			tx->tstamps[idx].cached_tstamp = raw_tstamp;
747		clear_bit(idx, tx->in_use);
748		skb = tx->tstamps[idx].skb;
749		tx->tstamps[idx].skb = NULL;
750		if (test_and_clear_bit(idx, tx->stale))
751			drop_ts = true;
752		spin_unlock(&tx->lock);
753
754		/* It is unlikely but possible that the SKB will have been
755		 * flushed at this point due to link change or teardown.
756		 */
757		if (!skb)
758			continue;
759
760		if (drop_ts) {
761			dev_kfree_skb_any(skb);
762			continue;
763		}
764
765		/* Extend the timestamp using cached PHC time */
766		tstamp = ice_ptp_extend_40b_ts(pf, raw_tstamp);
767		if (tstamp) {
768			shhwtstamps.hwtstamp = ns_to_ktime(tstamp);
769			ice_trace(tx_tstamp_complete, skb, idx);
770		}
771
772		skb_tstamp_tx(skb, &shhwtstamps);
773		dev_kfree_skb_any(skb);
774	}
775}
776
777/**
778 * ice_ptp_tx_tstamp - Process Tx timestamps for this function.
779 * @tx: Tx tracking structure to initialize
780 *
781 * Returns: ICE_TX_TSTAMP_WORK_PENDING if there are any outstanding incomplete
782 * Tx timestamps, or ICE_TX_TSTAMP_WORK_DONE otherwise.
783 */
784static enum ice_tx_tstamp_work ice_ptp_tx_tstamp(struct ice_ptp_tx *tx)
785{
786	bool more_timestamps;
787
788	if (!tx->init)
789		return ICE_TX_TSTAMP_WORK_DONE;
790
791	/* Process the Tx timestamp tracker */
792	ice_ptp_process_tx_tstamp(tx);
793
794	/* Check if there are outstanding Tx timestamps */
795	spin_lock(&tx->lock);
796	more_timestamps = tx->init && !bitmap_empty(tx->in_use, tx->len);
797	spin_unlock(&tx->lock);
798
799	if (more_timestamps)
800		return ICE_TX_TSTAMP_WORK_PENDING;
801
802	return ICE_TX_TSTAMP_WORK_DONE;
803}
804
805/**
806 * ice_ptp_alloc_tx_tracker - Initialize tracking for Tx timestamps
807 * @tx: Tx tracking structure to initialize
808 *
809 * Assumes that the length has already been initialized. Do not call directly,
810 * use the ice_ptp_init_tx_* instead.
811 */
812static int
813ice_ptp_alloc_tx_tracker(struct ice_ptp_tx *tx)
814{
815	unsigned long *in_use, *stale;
816	struct ice_tx_tstamp *tstamps;
817
818	tstamps = kcalloc(tx->len, sizeof(*tstamps), GFP_KERNEL);
819	in_use = bitmap_zalloc(tx->len, GFP_KERNEL);
820	stale = bitmap_zalloc(tx->len, GFP_KERNEL);
821
822	if (!tstamps || !in_use || !stale) {
823		kfree(tstamps);
824		bitmap_free(in_use);
825		bitmap_free(stale);
826
827		return -ENOMEM;
828	}
829
830	tx->tstamps = tstamps;
831	tx->in_use = in_use;
832	tx->stale = stale;
833	tx->init = 1;
834
835	spin_lock_init(&tx->lock);
836
837	return 0;
838}
839
840/**
841 * ice_ptp_flush_tx_tracker - Flush any remaining timestamps from the tracker
842 * @pf: Board private structure
843 * @tx: the tracker to flush
844 *
845 * Called during teardown when a Tx tracker is being removed.
846 */
847static void
848ice_ptp_flush_tx_tracker(struct ice_pf *pf, struct ice_ptp_tx *tx)
849{
850	struct ice_hw *hw = &pf->hw;
851	u64 tstamp_ready;
852	int err;
853	u8 idx;
854
855	err = ice_get_phy_tx_tstamp_ready(hw, tx->block, &tstamp_ready);
856	if (err) {
857		dev_dbg(ice_pf_to_dev(pf), "Failed to get the Tx tstamp ready bitmap for block %u, err %d\n",
858			tx->block, err);
859
860		/* If we fail to read the Tx timestamp ready bitmap just
861		 * skip clearing the PHY timestamps.
862		 */
863		tstamp_ready = 0;
864	}
865
866	for_each_set_bit(idx, tx->in_use, tx->len) {
867		u8 phy_idx = idx + tx->offset;
868		struct sk_buff *skb;
869
870		/* In case this timestamp is ready, we need to clear it. */
871		if (!hw->reset_ongoing && (tstamp_ready & BIT_ULL(phy_idx)))
872			ice_clear_phy_tstamp(hw, tx->block, phy_idx);
873
874		spin_lock(&tx->lock);
875		skb = tx->tstamps[idx].skb;
876		tx->tstamps[idx].skb = NULL;
877		clear_bit(idx, tx->in_use);
878		clear_bit(idx, tx->stale);
879		spin_unlock(&tx->lock);
880
881		/* Count the number of Tx timestamps flushed */
882		pf->ptp.tx_hwtstamp_flushed++;
883
884		/* Free the SKB after we've cleared the bit */
885		dev_kfree_skb_any(skb);
886	}
887}
888
889/**
890 * ice_ptp_mark_tx_tracker_stale - Mark unfinished timestamps as stale
891 * @tx: the tracker to mark
892 *
893 * Mark currently outstanding Tx timestamps as stale. This prevents sending
894 * their timestamp value to the stack. This is required to prevent extending
895 * the 40bit hardware timestamp incorrectly.
896 *
897 * This should be called when the PTP clock is modified such as after a set
898 * time request.
899 */
900static void
901ice_ptp_mark_tx_tracker_stale(struct ice_ptp_tx *tx)
902{
903	spin_lock(&tx->lock);
904	bitmap_or(tx->stale, tx->stale, tx->in_use, tx->len);
905	spin_unlock(&tx->lock);
906}
907
908/**
909 * ice_ptp_release_tx_tracker - Release allocated memory for Tx tracker
910 * @pf: Board private structure
911 * @tx: Tx tracking structure to release
912 *
913 * Free memory associated with the Tx timestamp tracker.
914 */
915static void
916ice_ptp_release_tx_tracker(struct ice_pf *pf, struct ice_ptp_tx *tx)
917{
918	spin_lock(&tx->lock);
919	tx->init = 0;
920	spin_unlock(&tx->lock);
921
922	/* wait for potentially outstanding interrupt to complete */
923	synchronize_irq(pf->oicr_irq.virq);
924
925	ice_ptp_flush_tx_tracker(pf, tx);
926
927	kfree(tx->tstamps);
928	tx->tstamps = NULL;
929
930	bitmap_free(tx->in_use);
931	tx->in_use = NULL;
932
933	bitmap_free(tx->stale);
934	tx->stale = NULL;
935
936	tx->len = 0;
937}
938
939/**
940 * ice_ptp_init_tx_e822 - Initialize tracking for Tx timestamps
941 * @pf: Board private structure
942 * @tx: the Tx tracking structure to initialize
943 * @port: the port this structure tracks
944 *
945 * Initialize the Tx timestamp tracker for this port. For generic MAC devices,
946 * the timestamp block is shared for all ports in the same quad. To avoid
947 * ports using the same timestamp index, logically break the block of
948 * registers into chunks based on the port number.
949 */
950static int
951ice_ptp_init_tx_e822(struct ice_pf *pf, struct ice_ptp_tx *tx, u8 port)
952{
953	tx->block = port / ICE_PORTS_PER_QUAD;
954	tx->offset = (port % ICE_PORTS_PER_QUAD) * INDEX_PER_PORT_E822;
955	tx->len = INDEX_PER_PORT_E822;
956	tx->verify_cached = 0;
957
958	return ice_ptp_alloc_tx_tracker(tx);
959}
960
961/**
962 * ice_ptp_init_tx_e810 - Initialize tracking for Tx timestamps
963 * @pf: Board private structure
964 * @tx: the Tx tracking structure to initialize
965 *
966 * Initialize the Tx timestamp tracker for this PF. For E810 devices, each
967 * port has its own block of timestamps, independent of the other ports.
968 */
969static int
970ice_ptp_init_tx_e810(struct ice_pf *pf, struct ice_ptp_tx *tx)
971{
972	tx->block = pf->hw.port_info->lport;
973	tx->offset = 0;
974	tx->len = INDEX_PER_PORT_E810;
975	/* The E810 PHY does not provide a timestamp ready bitmap. Instead,
976	 * verify new timestamps against cached copy of the last read
977	 * timestamp.
978	 */
979	tx->verify_cached = 1;
980
981	return ice_ptp_alloc_tx_tracker(tx);
982}
983
984/**
985 * ice_ptp_update_cached_phctime - Update the cached PHC time values
986 * @pf: Board specific private structure
987 *
988 * This function updates the system time values which are cached in the PF
989 * structure and the Rx rings.
990 *
991 * This function must be called periodically to ensure that the cached value
992 * is never more than 2 seconds old.
993 *
994 * Note that the cached copy in the PF PTP structure is always updated, even
995 * if we can't update the copy in the Rx rings.
996 *
997 * Return:
998 * * 0 - OK, successfully updated
999 * * -EAGAIN - PF was busy, need to reschedule the update
1000 */
1001static int ice_ptp_update_cached_phctime(struct ice_pf *pf)
1002{
1003	struct device *dev = ice_pf_to_dev(pf);
1004	unsigned long update_before;
1005	u64 systime;
1006	int i;
1007
1008	update_before = pf->ptp.cached_phc_jiffies + msecs_to_jiffies(2000);
1009	if (pf->ptp.cached_phc_time &&
1010	    time_is_before_jiffies(update_before)) {
1011		unsigned long time_taken = jiffies - pf->ptp.cached_phc_jiffies;
1012
1013		dev_warn(dev, "%u msecs passed between update to cached PHC time\n",
1014			 jiffies_to_msecs(time_taken));
1015		pf->ptp.late_cached_phc_updates++;
1016	}
1017
1018	/* Read the current PHC time */
1019	systime = ice_ptp_read_src_clk_reg(pf, NULL);
1020
1021	/* Update the cached PHC time stored in the PF structure */
1022	WRITE_ONCE(pf->ptp.cached_phc_time, systime);
1023	WRITE_ONCE(pf->ptp.cached_phc_jiffies, jiffies);
1024
1025	if (test_and_set_bit(ICE_CFG_BUSY, pf->state))
1026		return -EAGAIN;
1027
1028	ice_for_each_vsi(pf, i) {
1029		struct ice_vsi *vsi = pf->vsi[i];
1030		int j;
1031
1032		if (!vsi)
1033			continue;
1034
1035		if (vsi->type != ICE_VSI_PF)
1036			continue;
1037
1038		ice_for_each_rxq(vsi, j) {
1039			if (!vsi->rx_rings[j])
1040				continue;
1041			WRITE_ONCE(vsi->rx_rings[j]->cached_phctime, systime);
1042		}
1043	}
1044	clear_bit(ICE_CFG_BUSY, pf->state);
1045
1046	return 0;
1047}
1048
1049/**
1050 * ice_ptp_reset_cached_phctime - Reset cached PHC time after an update
1051 * @pf: Board specific private structure
1052 *
1053 * This function must be called when the cached PHC time is no longer valid,
1054 * such as after a time adjustment. It marks any currently outstanding Tx
1055 * timestamps as stale and updates the cached PHC time for both the PF and Rx
1056 * rings.
1057 *
1058 * If updating the PHC time cannot be done immediately, a warning message is
1059 * logged and the work item is scheduled immediately to minimize the window
1060 * with a wrong cached timestamp.
1061 */
1062static void ice_ptp_reset_cached_phctime(struct ice_pf *pf)
1063{
1064	struct device *dev = ice_pf_to_dev(pf);
1065	int err;
1066
1067	/* Update the cached PHC time immediately if possible, otherwise
1068	 * schedule the work item to execute soon.
1069	 */
1070	err = ice_ptp_update_cached_phctime(pf);
1071	if (err) {
1072		/* If another thread is updating the Rx rings, we won't
1073		 * properly reset them here. This could lead to reporting of
1074		 * invalid timestamps, but there isn't much we can do.
1075		 */
1076		dev_warn(dev, "%s: ICE_CFG_BUSY, unable to immediately update cached PHC time\n",
1077			 __func__);
1078
1079		/* Queue the work item to update the Rx rings when possible */
1080		kthread_queue_delayed_work(pf->ptp.kworker, &pf->ptp.work,
1081					   msecs_to_jiffies(10));
1082	}
1083
1084	/* Mark any outstanding timestamps as stale, since they might have
1085	 * been captured in hardware before the time update. This could lead
1086	 * to us extending them with the wrong cached value resulting in
1087	 * incorrect timestamp values.
1088	 */
1089	ice_ptp_mark_tx_tracker_stale(&pf->ptp.port.tx);
1090}
1091
1092/**
1093 * ice_ptp_read_time - Read the time from the device
1094 * @pf: Board private structure
1095 * @ts: timespec structure to hold the current time value
1096 * @sts: Optional parameter for holding a pair of system timestamps from
1097 *       the system clock. Will be ignored if NULL is given.
1098 *
1099 * This function reads the source clock registers and stores them in a timespec.
1100 * However, since the registers are 64 bits of nanoseconds, we must convert the
1101 * result to a timespec before we can return.
1102 */
1103static void
1104ice_ptp_read_time(struct ice_pf *pf, struct timespec64 *ts,
1105		  struct ptp_system_timestamp *sts)
1106{
1107	u64 time_ns = ice_ptp_read_src_clk_reg(pf, sts);
1108
1109	*ts = ns_to_timespec64(time_ns);
1110}
1111
1112/**
1113 * ice_ptp_write_init - Set PHC time to provided value
1114 * @pf: Board private structure
1115 * @ts: timespec structure that holds the new time value
1116 *
1117 * Set the PHC time to the specified time provided in the timespec.
1118 */
1119static int ice_ptp_write_init(struct ice_pf *pf, struct timespec64 *ts)
1120{
1121	u64 ns = timespec64_to_ns(ts);
1122	struct ice_hw *hw = &pf->hw;
1123
1124	return ice_ptp_init_time(hw, ns);
1125}
1126
1127/**
1128 * ice_ptp_write_adj - Adjust PHC clock time atomically
1129 * @pf: Board private structure
1130 * @adj: Adjustment in nanoseconds
1131 *
1132 * Perform an atomic adjustment of the PHC time by the specified number of
1133 * nanoseconds.
1134 */
1135static int ice_ptp_write_adj(struct ice_pf *pf, s32 adj)
1136{
1137	struct ice_hw *hw = &pf->hw;
1138
1139	return ice_ptp_adj_clock(hw, adj);
1140}
1141
1142/**
1143 * ice_base_incval - Get base timer increment value
1144 * @pf: Board private structure
1145 *
1146 * Look up the base timer increment value for this device. The base increment
1147 * value is used to define the nominal clock tick rate. This increment value
1148 * is programmed during device initialization. It is also used as the basis
1149 * for calculating adjustments using scaled_ppm.
1150 */
1151static u64 ice_base_incval(struct ice_pf *pf)
1152{
1153	struct ice_hw *hw = &pf->hw;
1154	u64 incval;
1155
1156	if (ice_is_e810(hw))
1157		incval = ICE_PTP_NOMINAL_INCVAL_E810;
1158	else if (ice_e822_time_ref(hw) < NUM_ICE_TIME_REF_FREQ)
1159		incval = ice_e822_nominal_incval(ice_e822_time_ref(hw));
1160	else
1161		incval = UNKNOWN_INCVAL_E822;
1162
1163	dev_dbg(ice_pf_to_dev(pf), "PTP: using base increment value of 0x%016llx\n",
1164		incval);
1165
1166	return incval;
1167}
1168
1169/**
1170 * ice_ptp_check_tx_fifo - Check whether Tx FIFO is in an OK state
1171 * @port: PTP port for which Tx FIFO is checked
1172 */
1173static int ice_ptp_check_tx_fifo(struct ice_ptp_port *port)
1174{
1175	int quad = port->port_num / ICE_PORTS_PER_QUAD;
1176	int offs = port->port_num % ICE_PORTS_PER_QUAD;
1177	struct ice_pf *pf;
1178	struct ice_hw *hw;
1179	u32 val, phy_sts;
1180	int err;
1181
1182	pf = ptp_port_to_pf(port);
1183	hw = &pf->hw;
1184
1185	if (port->tx_fifo_busy_cnt == FIFO_OK)
1186		return 0;
1187
1188	/* need to read FIFO state */
1189	if (offs == 0 || offs == 1)
1190		err = ice_read_quad_reg_e822(hw, quad, Q_REG_FIFO01_STATUS,
1191					     &val);
1192	else
1193		err = ice_read_quad_reg_e822(hw, quad, Q_REG_FIFO23_STATUS,
1194					     &val);
1195
1196	if (err) {
1197		dev_err(ice_pf_to_dev(pf), "PTP failed to check port %d Tx FIFO, err %d\n",
1198			port->port_num, err);
1199		return err;
1200	}
1201
1202	if (offs & 0x1)
1203		phy_sts = (val & Q_REG_FIFO13_M) >> Q_REG_FIFO13_S;
1204	else
1205		phy_sts = (val & Q_REG_FIFO02_M) >> Q_REG_FIFO02_S;
1206
1207	if (phy_sts & FIFO_EMPTY) {
1208		port->tx_fifo_busy_cnt = FIFO_OK;
1209		return 0;
1210	}
1211
1212	port->tx_fifo_busy_cnt++;
1213
1214	dev_dbg(ice_pf_to_dev(pf), "Try %d, port %d FIFO not empty\n",
1215		port->tx_fifo_busy_cnt, port->port_num);
1216
1217	if (port->tx_fifo_busy_cnt == ICE_PTP_FIFO_NUM_CHECKS) {
1218		dev_dbg(ice_pf_to_dev(pf),
1219			"Port %d Tx FIFO still not empty; resetting quad %d\n",
1220			port->port_num, quad);
1221		ice_ptp_reset_ts_memory_quad_e822(hw, quad);
1222		port->tx_fifo_busy_cnt = FIFO_OK;
1223		return 0;
1224	}
1225
1226	return -EAGAIN;
1227}
1228
1229/**
1230 * ice_ptp_wait_for_offsets - Check for valid Tx and Rx offsets
1231 * @work: Pointer to the kthread_work structure for this task
1232 *
1233 * Check whether hardware has completed measuring the Tx and Rx offset values
1234 * used to configure and enable vernier timestamp calibration.
1235 *
1236 * Once the offset in either direction is measured, configure the associated
1237 * registers with the calibrated offset values and enable timestamping. The Tx
1238 * and Rx directions are configured independently as soon as their associated
1239 * offsets are known.
1240 *
1241 * This function reschedules itself until both Tx and Rx calibration have
1242 * completed.
1243 */
1244static void ice_ptp_wait_for_offsets(struct kthread_work *work)
1245{
1246	struct ice_ptp_port *port;
1247	struct ice_pf *pf;
1248	struct ice_hw *hw;
1249	int tx_err;
1250	int rx_err;
1251
1252	port = container_of(work, struct ice_ptp_port, ov_work.work);
1253	pf = ptp_port_to_pf(port);
1254	hw = &pf->hw;
1255
1256	if (ice_is_reset_in_progress(pf->state)) {
1257		/* wait for device driver to complete reset */
1258		kthread_queue_delayed_work(pf->ptp.kworker,
1259					   &port->ov_work,
1260					   msecs_to_jiffies(100));
1261		return;
1262	}
1263
1264	tx_err = ice_ptp_check_tx_fifo(port);
1265	if (!tx_err)
1266		tx_err = ice_phy_cfg_tx_offset_e822(hw, port->port_num);
1267	rx_err = ice_phy_cfg_rx_offset_e822(hw, port->port_num);
1268	if (tx_err || rx_err) {
1269		/* Tx and/or Rx offset not yet configured, try again later */
1270		kthread_queue_delayed_work(pf->ptp.kworker,
1271					   &port->ov_work,
1272					   msecs_to_jiffies(100));
1273		return;
1274	}
1275}
1276
1277/**
1278 * ice_ptp_port_phy_stop - Stop timestamping for a PHY port
1279 * @ptp_port: PTP port to stop
1280 */
1281static int
1282ice_ptp_port_phy_stop(struct ice_ptp_port *ptp_port)
1283{
1284	struct ice_pf *pf = ptp_port_to_pf(ptp_port);
1285	u8 port = ptp_port->port_num;
1286	struct ice_hw *hw = &pf->hw;
1287	int err;
1288
1289	if (ice_is_e810(hw))
1290		return 0;
1291
1292	mutex_lock(&ptp_port->ps_lock);
1293
1294	kthread_cancel_delayed_work_sync(&ptp_port->ov_work);
1295
1296	err = ice_stop_phy_timer_e822(hw, port, true);
1297	if (err)
1298		dev_err(ice_pf_to_dev(pf), "PTP failed to set PHY port %d down, err %d\n",
1299			port, err);
1300
1301	mutex_unlock(&ptp_port->ps_lock);
1302
1303	return err;
1304}
1305
1306/**
1307 * ice_ptp_port_phy_restart - (Re)start and calibrate PHY timestamping
1308 * @ptp_port: PTP port for which the PHY start is set
1309 *
1310 * Start the PHY timestamping block, and initiate Vernier timestamping
1311 * calibration. If timestamping cannot be calibrated (such as if link is down)
1312 * then disable the timestamping block instead.
1313 */
1314static int
1315ice_ptp_port_phy_restart(struct ice_ptp_port *ptp_port)
1316{
1317	struct ice_pf *pf = ptp_port_to_pf(ptp_port);
1318	u8 port = ptp_port->port_num;
1319	struct ice_hw *hw = &pf->hw;
1320	int err;
1321
1322	if (ice_is_e810(hw))
1323		return 0;
1324
1325	if (!ptp_port->link_up)
1326		return ice_ptp_port_phy_stop(ptp_port);
1327
1328	mutex_lock(&ptp_port->ps_lock);
1329
1330	kthread_cancel_delayed_work_sync(&ptp_port->ov_work);
1331
1332	/* temporarily disable Tx timestamps while calibrating PHY offset */
1333	spin_lock(&ptp_port->tx.lock);
1334	ptp_port->tx.calibrating = true;
1335	spin_unlock(&ptp_port->tx.lock);
1336	ptp_port->tx_fifo_busy_cnt = 0;
1337
1338	/* Start the PHY timer in Vernier mode */
1339	err = ice_start_phy_timer_e822(hw, port);
1340	if (err)
1341		goto out_unlock;
1342
1343	/* Enable Tx timestamps right away */
1344	spin_lock(&ptp_port->tx.lock);
1345	ptp_port->tx.calibrating = false;
1346	spin_unlock(&ptp_port->tx.lock);
1347
1348	kthread_queue_delayed_work(pf->ptp.kworker, &ptp_port->ov_work, 0);
1349
1350out_unlock:
1351	if (err)
1352		dev_err(ice_pf_to_dev(pf), "PTP failed to set PHY port %d up, err %d\n",
1353			port, err);
1354
1355	mutex_unlock(&ptp_port->ps_lock);
1356
1357	return err;
1358}
1359
1360/**
1361 * ice_ptp_link_change - Reconfigure PTP after link status change
1362 * @pf: Board private structure
1363 * @port: Port for which the PHY start is set
1364 * @linkup: Link is up or down
1365 */
1366void ice_ptp_link_change(struct ice_pf *pf, u8 port, bool linkup)
1367{
1368	struct ice_ptp_port *ptp_port;
1369
1370	if (!test_bit(ICE_FLAG_PTP, pf->flags))
1371		return;
1372
1373	if (WARN_ON_ONCE(port >= ICE_NUM_EXTERNAL_PORTS))
1374		return;
1375
1376	ptp_port = &pf->ptp.port;
1377	if (WARN_ON_ONCE(ptp_port->port_num != port))
1378		return;
1379
1380	/* Update cached link status for this port immediately */
1381	ptp_port->link_up = linkup;
1382
1383	/* E810 devices do not need to reconfigure the PHY */
1384	if (ice_is_e810(&pf->hw))
1385		return;
1386
1387	ice_ptp_port_phy_restart(ptp_port);
1388}
1389
1390/**
1391 * ice_ptp_tx_ena_intr - Enable or disable the Tx timestamp interrupt
1392 * @pf: PF private structure
1393 * @ena: bool value to enable or disable interrupt
1394 * @threshold: Minimum number of packets at which intr is triggered
1395 *
1396 * Utility function to enable or disable Tx timestamp interrupt and threshold
1397 */
1398static int ice_ptp_tx_ena_intr(struct ice_pf *pf, bool ena, u32 threshold)
1399{
1400	struct ice_hw *hw = &pf->hw;
1401	int err = 0;
1402	int quad;
1403	u32 val;
1404
1405	ice_ptp_reset_ts_memory(hw);
1406
1407	for (quad = 0; quad < ICE_MAX_QUAD; quad++) {
1408		err = ice_read_quad_reg_e822(hw, quad, Q_REG_TX_MEM_GBL_CFG,
1409					     &val);
1410		if (err)
1411			break;
1412
1413		if (ena) {
1414			val |= Q_REG_TX_MEM_GBL_CFG_INTR_ENA_M;
1415			val &= ~Q_REG_TX_MEM_GBL_CFG_INTR_THR_M;
1416			val |= ((threshold << Q_REG_TX_MEM_GBL_CFG_INTR_THR_S) &
1417				Q_REG_TX_MEM_GBL_CFG_INTR_THR_M);
1418		} else {
1419			val &= ~Q_REG_TX_MEM_GBL_CFG_INTR_ENA_M;
1420		}
1421
1422		err = ice_write_quad_reg_e822(hw, quad, Q_REG_TX_MEM_GBL_CFG,
1423					      val);
1424		if (err)
1425			break;
1426	}
1427
1428	if (err)
1429		dev_err(ice_pf_to_dev(pf), "PTP failed in intr ena, err %d\n",
1430			err);
1431	return err;
1432}
1433
1434/**
1435 * ice_ptp_reset_phy_timestamping - Reset PHY timestamping block
1436 * @pf: Board private structure
1437 */
1438static void ice_ptp_reset_phy_timestamping(struct ice_pf *pf)
1439{
1440	ice_ptp_port_phy_restart(&pf->ptp.port);
1441}
1442
1443/**
1444 * ice_ptp_adjfine - Adjust clock increment rate
1445 * @info: the driver's PTP info structure
1446 * @scaled_ppm: Parts per million with 16-bit fractional field
1447 *
1448 * Adjust the frequency of the clock by the indicated scaled ppm from the
1449 * base frequency.
1450 */
1451static int ice_ptp_adjfine(struct ptp_clock_info *info, long scaled_ppm)
1452{
1453	struct ice_pf *pf = ptp_info_to_pf(info);
1454	struct ice_hw *hw = &pf->hw;
1455	u64 incval;
1456	int err;
1457
1458	incval = adjust_by_scaled_ppm(ice_base_incval(pf), scaled_ppm);
1459	err = ice_ptp_write_incval_locked(hw, incval);
1460	if (err) {
1461		dev_err(ice_pf_to_dev(pf), "PTP failed to set incval, err %d\n",
1462			err);
1463		return -EIO;
1464	}
1465
1466	return 0;
1467}
1468
1469/**
1470 * ice_ptp_extts_event - Process PTP external clock event
1471 * @pf: Board private structure
1472 */
1473void ice_ptp_extts_event(struct ice_pf *pf)
1474{
1475	struct ptp_clock_event event;
1476	struct ice_hw *hw = &pf->hw;
1477	u8 chan, tmr_idx;
1478	u32 hi, lo;
1479
1480	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
1481	/* Event time is captured by one of the two matched registers
1482	 *      GLTSYN_EVNT_L: 32 LSB of sampled time event
1483	 *      GLTSYN_EVNT_H: 32 MSB of sampled time event
1484	 * Event is defined in GLTSYN_EVNT_0 register
1485	 */
1486	for (chan = 0; chan < GLTSYN_EVNT_H_IDX_MAX; chan++) {
1487		/* Check if channel is enabled */
1488		if (pf->ptp.ext_ts_irq & (1 << chan)) {
1489			lo = rd32(hw, GLTSYN_EVNT_L(chan, tmr_idx));
1490			hi = rd32(hw, GLTSYN_EVNT_H(chan, tmr_idx));
1491			event.timestamp = (((u64)hi) << 32) | lo;
1492			event.type = PTP_CLOCK_EXTTS;
1493			event.index = chan;
1494
1495			/* Fire event */
1496			ptp_clock_event(pf->ptp.clock, &event);
1497			pf->ptp.ext_ts_irq &= ~(1 << chan);
1498		}
1499	}
1500}
1501
1502/**
1503 * ice_ptp_cfg_extts - Configure EXTTS pin and channel
1504 * @pf: Board private structure
1505 * @ena: true to enable; false to disable
1506 * @chan: GPIO channel (0-3)
1507 * @gpio_pin: GPIO pin
1508 * @extts_flags: request flags from the ptp_extts_request.flags
1509 */
1510static int
1511ice_ptp_cfg_extts(struct ice_pf *pf, bool ena, unsigned int chan, u32 gpio_pin,
1512		  unsigned int extts_flags)
1513{
1514	u32 func, aux_reg, gpio_reg, irq_reg;
1515	struct ice_hw *hw = &pf->hw;
1516	u8 tmr_idx;
1517
1518	if (chan > (unsigned int)pf->ptp.info.n_ext_ts)
1519		return -EINVAL;
1520
1521	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
1522
1523	irq_reg = rd32(hw, PFINT_OICR_ENA);
1524
1525	if (ena) {
1526		/* Enable the interrupt */
1527		irq_reg |= PFINT_OICR_TSYN_EVNT_M;
1528		aux_reg = GLTSYN_AUX_IN_0_INT_ENA_M;
1529
1530#define GLTSYN_AUX_IN_0_EVNTLVL_RISING_EDGE	BIT(0)
1531#define GLTSYN_AUX_IN_0_EVNTLVL_FALLING_EDGE	BIT(1)
1532
1533		/* set event level to requested edge */
1534		if (extts_flags & PTP_FALLING_EDGE)
1535			aux_reg |= GLTSYN_AUX_IN_0_EVNTLVL_FALLING_EDGE;
1536		if (extts_flags & PTP_RISING_EDGE)
1537			aux_reg |= GLTSYN_AUX_IN_0_EVNTLVL_RISING_EDGE;
1538
1539		/* Write GPIO CTL reg.
1540		 * 0x1 is input sampled by EVENT register(channel)
1541		 * + num_in_channels * tmr_idx
1542		 */
1543		func = 1 + chan + (tmr_idx * 3);
1544		gpio_reg = ((func << GLGEN_GPIO_CTL_PIN_FUNC_S) &
1545			    GLGEN_GPIO_CTL_PIN_FUNC_M);
1546		pf->ptp.ext_ts_chan |= (1 << chan);
1547	} else {
1548		/* clear the values we set to reset defaults */
1549		aux_reg = 0;
1550		gpio_reg = 0;
1551		pf->ptp.ext_ts_chan &= ~(1 << chan);
1552		if (!pf->ptp.ext_ts_chan)
1553			irq_reg &= ~PFINT_OICR_TSYN_EVNT_M;
1554	}
1555
1556	wr32(hw, PFINT_OICR_ENA, irq_reg);
1557	wr32(hw, GLTSYN_AUX_IN(chan, tmr_idx), aux_reg);
1558	wr32(hw, GLGEN_GPIO_CTL(gpio_pin), gpio_reg);
1559
1560	return 0;
1561}
1562
1563/**
1564 * ice_ptp_cfg_clkout - Configure clock to generate periodic wave
1565 * @pf: Board private structure
1566 * @chan: GPIO channel (0-3)
1567 * @config: desired periodic clk configuration. NULL will disable channel
1568 * @store: If set to true the values will be stored
1569 *
1570 * Configure the internal clock generator modules to generate the clock wave of
1571 * specified period.
1572 */
1573static int ice_ptp_cfg_clkout(struct ice_pf *pf, unsigned int chan,
1574			      struct ice_perout_channel *config, bool store)
1575{
1576	u64 current_time, period, start_time, phase;
1577	struct ice_hw *hw = &pf->hw;
1578	u32 func, val, gpio_pin;
1579	u8 tmr_idx;
1580
1581	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
1582
1583	/* 0. Reset mode & out_en in AUX_OUT */
1584	wr32(hw, GLTSYN_AUX_OUT(chan, tmr_idx), 0);
1585
1586	/* If we're disabling the output, clear out CLKO and TGT and keep
1587	 * output level low
1588	 */
1589	if (!config || !config->ena) {
1590		wr32(hw, GLTSYN_CLKO(chan, tmr_idx), 0);
1591		wr32(hw, GLTSYN_TGT_L(chan, tmr_idx), 0);
1592		wr32(hw, GLTSYN_TGT_H(chan, tmr_idx), 0);
1593
1594		val = GLGEN_GPIO_CTL_PIN_DIR_M;
1595		gpio_pin = pf->ptp.perout_channels[chan].gpio_pin;
1596		wr32(hw, GLGEN_GPIO_CTL(gpio_pin), val);
1597
1598		/* Store the value if requested */
1599		if (store)
1600			memset(&pf->ptp.perout_channels[chan], 0,
1601			       sizeof(struct ice_perout_channel));
1602
1603		return 0;
1604	}
1605	period = config->period;
1606	start_time = config->start_time;
1607	div64_u64_rem(start_time, period, &phase);
1608	gpio_pin = config->gpio_pin;
1609
1610	/* 1. Write clkout with half of required period value */
1611	if (period & 0x1) {
1612		dev_err(ice_pf_to_dev(pf), "CLK Period must be an even value\n");
1613		goto err;
1614	}
1615
1616	period >>= 1;
1617
1618	/* For proper operation, the GLTSYN_CLKO must be larger than clock tick
1619	 */
1620#define MIN_PULSE 3
1621	if (period <= MIN_PULSE || period > U32_MAX) {
1622		dev_err(ice_pf_to_dev(pf), "CLK Period must be > %d && < 2^33",
1623			MIN_PULSE * 2);
1624		goto err;
1625	}
1626
1627	wr32(hw, GLTSYN_CLKO(chan, tmr_idx), lower_32_bits(period));
1628
1629	/* Allow time for programming before start_time is hit */
1630	current_time = ice_ptp_read_src_clk_reg(pf, NULL);
1631
1632	/* if start time is in the past start the timer at the nearest second
1633	 * maintaining phase
1634	 */
1635	if (start_time < current_time)
1636		start_time = div64_u64(current_time + NSEC_PER_SEC - 1,
1637				       NSEC_PER_SEC) * NSEC_PER_SEC + phase;
1638
1639	if (ice_is_e810(hw))
1640		start_time -= E810_OUT_PROP_DELAY_NS;
1641	else
1642		start_time -= ice_e822_pps_delay(ice_e822_time_ref(hw));
1643
1644	/* 2. Write TARGET time */
1645	wr32(hw, GLTSYN_TGT_L(chan, tmr_idx), lower_32_bits(start_time));
1646	wr32(hw, GLTSYN_TGT_H(chan, tmr_idx), upper_32_bits(start_time));
1647
1648	/* 3. Write AUX_OUT register */
1649	val = GLTSYN_AUX_OUT_0_OUT_ENA_M | GLTSYN_AUX_OUT_0_OUTMOD_M;
1650	wr32(hw, GLTSYN_AUX_OUT(chan, tmr_idx), val);
1651
1652	/* 4. write GPIO CTL reg */
1653	func = 8 + chan + (tmr_idx * 4);
1654	val = GLGEN_GPIO_CTL_PIN_DIR_M |
1655	      ((func << GLGEN_GPIO_CTL_PIN_FUNC_S) & GLGEN_GPIO_CTL_PIN_FUNC_M);
1656	wr32(hw, GLGEN_GPIO_CTL(gpio_pin), val);
1657
1658	/* Store the value if requested */
1659	if (store) {
1660		memcpy(&pf->ptp.perout_channels[chan], config,
1661		       sizeof(struct ice_perout_channel));
1662		pf->ptp.perout_channels[chan].start_time = phase;
1663	}
1664
1665	return 0;
1666err:
1667	dev_err(ice_pf_to_dev(pf), "PTP failed to cfg per_clk\n");
1668	return -EFAULT;
1669}
1670
1671/**
1672 * ice_ptp_disable_all_clkout - Disable all currently configured outputs
1673 * @pf: pointer to the PF structure
1674 *
1675 * Disable all currently configured clock outputs. This is necessary before
1676 * certain changes to the PTP hardware clock. Use ice_ptp_enable_all_clkout to
1677 * re-enable the clocks again.
1678 */
1679static void ice_ptp_disable_all_clkout(struct ice_pf *pf)
1680{
1681	uint i;
1682
1683	for (i = 0; i < pf->ptp.info.n_per_out; i++)
1684		if (pf->ptp.perout_channels[i].ena)
1685			ice_ptp_cfg_clkout(pf, i, NULL, false);
1686}
1687
1688/**
1689 * ice_ptp_enable_all_clkout - Enable all configured periodic clock outputs
1690 * @pf: pointer to the PF structure
1691 *
1692 * Enable all currently configured clock outputs. Use this after
1693 * ice_ptp_disable_all_clkout to reconfigure the output signals according to
1694 * their configuration.
1695 */
1696static void ice_ptp_enable_all_clkout(struct ice_pf *pf)
1697{
1698	uint i;
1699
1700	for (i = 0; i < pf->ptp.info.n_per_out; i++)
1701		if (pf->ptp.perout_channels[i].ena)
1702			ice_ptp_cfg_clkout(pf, i, &pf->ptp.perout_channels[i],
1703					   false);
1704}
1705
1706/**
1707 * ice_ptp_gpio_enable_e810 - Enable/disable ancillary features of PHC
1708 * @info: the driver's PTP info structure
1709 * @rq: The requested feature to change
1710 * @on: Enable/disable flag
1711 */
1712static int
1713ice_ptp_gpio_enable_e810(struct ptp_clock_info *info,
1714			 struct ptp_clock_request *rq, int on)
1715{
1716	struct ice_pf *pf = ptp_info_to_pf(info);
1717	struct ice_perout_channel clk_cfg = {0};
1718	bool sma_pres = false;
1719	unsigned int chan;
1720	u32 gpio_pin;
1721	int err;
1722
1723	if (ice_is_feature_supported(pf, ICE_F_SMA_CTRL))
1724		sma_pres = true;
1725
1726	switch (rq->type) {
1727	case PTP_CLK_REQ_PEROUT:
1728		chan = rq->perout.index;
1729		if (sma_pres) {
1730			if (chan == ice_pin_desc_e810t[SMA1].chan)
1731				clk_cfg.gpio_pin = GPIO_20;
1732			else if (chan == ice_pin_desc_e810t[SMA2].chan)
1733				clk_cfg.gpio_pin = GPIO_22;
1734			else
1735				return -1;
1736		} else if (ice_is_e810t(&pf->hw)) {
1737			if (chan == 0)
1738				clk_cfg.gpio_pin = GPIO_20;
1739			else
1740				clk_cfg.gpio_pin = GPIO_22;
1741		} else if (chan == PPS_CLK_GEN_CHAN) {
1742			clk_cfg.gpio_pin = PPS_PIN_INDEX;
1743		} else {
1744			clk_cfg.gpio_pin = chan;
1745		}
1746
1747		clk_cfg.period = ((rq->perout.period.sec * NSEC_PER_SEC) +
1748				   rq->perout.period.nsec);
1749		clk_cfg.start_time = ((rq->perout.start.sec * NSEC_PER_SEC) +
1750				       rq->perout.start.nsec);
1751		clk_cfg.ena = !!on;
1752
1753		err = ice_ptp_cfg_clkout(pf, chan, &clk_cfg, true);
1754		break;
1755	case PTP_CLK_REQ_EXTTS:
1756		chan = rq->extts.index;
1757		if (sma_pres) {
1758			if (chan < ice_pin_desc_e810t[SMA2].chan)
1759				gpio_pin = GPIO_21;
1760			else
1761				gpio_pin = GPIO_23;
1762		} else if (ice_is_e810t(&pf->hw)) {
1763			if (chan == 0)
1764				gpio_pin = GPIO_21;
1765			else
1766				gpio_pin = GPIO_23;
1767		} else {
1768			gpio_pin = chan;
1769		}
1770
1771		err = ice_ptp_cfg_extts(pf, !!on, chan, gpio_pin,
1772					rq->extts.flags);
1773		break;
1774	default:
1775		return -EOPNOTSUPP;
1776	}
1777
1778	return err;
1779}
1780
1781/**
1782 * ice_ptp_gpio_enable_e823 - Enable/disable ancillary features of PHC
1783 * @info: the driver's PTP info structure
1784 * @rq: The requested feature to change
1785 * @on: Enable/disable flag
1786 */
1787static int ice_ptp_gpio_enable_e823(struct ptp_clock_info *info,
1788				    struct ptp_clock_request *rq, int on)
1789{
1790	struct ice_pf *pf = ptp_info_to_pf(info);
1791	struct ice_perout_channel clk_cfg = {0};
1792	int err;
1793
1794	switch (rq->type) {
1795	case PTP_CLK_REQ_PPS:
1796		clk_cfg.gpio_pin = PPS_PIN_INDEX;
1797		clk_cfg.period = NSEC_PER_SEC;
1798		clk_cfg.ena = !!on;
1799
1800		err = ice_ptp_cfg_clkout(pf, PPS_CLK_GEN_CHAN, &clk_cfg, true);
1801		break;
1802	case PTP_CLK_REQ_EXTTS:
1803		err = ice_ptp_cfg_extts(pf, !!on, rq->extts.index,
1804					TIME_SYNC_PIN_INDEX, rq->extts.flags);
1805		break;
1806	default:
1807		return -EOPNOTSUPP;
1808	}
1809
1810	return err;
1811}
1812
1813/**
1814 * ice_ptp_gettimex64 - Get the time of the clock
1815 * @info: the driver's PTP info structure
1816 * @ts: timespec64 structure to hold the current time value
1817 * @sts: Optional parameter for holding a pair of system timestamps from
1818 *       the system clock. Will be ignored if NULL is given.
1819 *
1820 * Read the device clock and return the correct value on ns, after converting it
1821 * into a timespec struct.
1822 */
1823static int
1824ice_ptp_gettimex64(struct ptp_clock_info *info, struct timespec64 *ts,
1825		   struct ptp_system_timestamp *sts)
1826{
1827	struct ice_pf *pf = ptp_info_to_pf(info);
1828	struct ice_hw *hw = &pf->hw;
1829
1830	if (!ice_ptp_lock(hw)) {
1831		dev_err(ice_pf_to_dev(pf), "PTP failed to get time\n");
1832		return -EBUSY;
1833	}
1834
1835	ice_ptp_read_time(pf, ts, sts);
1836	ice_ptp_unlock(hw);
1837
1838	return 0;
1839}
1840
1841/**
1842 * ice_ptp_settime64 - Set the time of the clock
1843 * @info: the driver's PTP info structure
1844 * @ts: timespec64 structure that holds the new time value
1845 *
1846 * Set the device clock to the user input value. The conversion from timespec
1847 * to ns happens in the write function.
1848 */
1849static int
1850ice_ptp_settime64(struct ptp_clock_info *info, const struct timespec64 *ts)
1851{
1852	struct ice_pf *pf = ptp_info_to_pf(info);
1853	struct timespec64 ts64 = *ts;
1854	struct ice_hw *hw = &pf->hw;
1855	int err;
1856
1857	/* For Vernier mode, we need to recalibrate after new settime
1858	 * Start with disabling timestamp block
1859	 */
1860	if (pf->ptp.port.link_up)
1861		ice_ptp_port_phy_stop(&pf->ptp.port);
1862
1863	if (!ice_ptp_lock(hw)) {
1864		err = -EBUSY;
1865		goto exit;
1866	}
1867
1868	/* Disable periodic outputs */
1869	ice_ptp_disable_all_clkout(pf);
1870
1871	err = ice_ptp_write_init(pf, &ts64);
1872	ice_ptp_unlock(hw);
1873
1874	if (!err)
1875		ice_ptp_reset_cached_phctime(pf);
1876
1877	/* Reenable periodic outputs */
1878	ice_ptp_enable_all_clkout(pf);
1879
1880	/* Recalibrate and re-enable timestamp block */
1881	if (pf->ptp.port.link_up)
1882		ice_ptp_port_phy_restart(&pf->ptp.port);
1883exit:
1884	if (err) {
1885		dev_err(ice_pf_to_dev(pf), "PTP failed to set time %d\n", err);
1886		return err;
1887	}
1888
1889	return 0;
1890}
1891
1892/**
1893 * ice_ptp_adjtime_nonatomic - Do a non-atomic clock adjustment
1894 * @info: the driver's PTP info structure
1895 * @delta: Offset in nanoseconds to adjust the time by
1896 */
1897static int ice_ptp_adjtime_nonatomic(struct ptp_clock_info *info, s64 delta)
1898{
1899	struct timespec64 now, then;
1900	int ret;
1901
1902	then = ns_to_timespec64(delta);
1903	ret = ice_ptp_gettimex64(info, &now, NULL);
1904	if (ret)
1905		return ret;
1906	now = timespec64_add(now, then);
1907
1908	return ice_ptp_settime64(info, (const struct timespec64 *)&now);
1909}
1910
1911/**
1912 * ice_ptp_adjtime - Adjust the time of the clock by the indicated delta
1913 * @info: the driver's PTP info structure
1914 * @delta: Offset in nanoseconds to adjust the time by
1915 */
1916static int ice_ptp_adjtime(struct ptp_clock_info *info, s64 delta)
1917{
1918	struct ice_pf *pf = ptp_info_to_pf(info);
1919	struct ice_hw *hw = &pf->hw;
1920	struct device *dev;
1921	int err;
1922
1923	dev = ice_pf_to_dev(pf);
1924
1925	/* Hardware only supports atomic adjustments using signed 32-bit
1926	 * integers. For any adjustment outside this range, perform
1927	 * a non-atomic get->adjust->set flow.
1928	 */
1929	if (delta > S32_MAX || delta < S32_MIN) {
1930		dev_dbg(dev, "delta = %lld, adjtime non-atomic\n", delta);
1931		return ice_ptp_adjtime_nonatomic(info, delta);
1932	}
1933
1934	if (!ice_ptp_lock(hw)) {
1935		dev_err(dev, "PTP failed to acquire semaphore in adjtime\n");
1936		return -EBUSY;
1937	}
1938
1939	/* Disable periodic outputs */
1940	ice_ptp_disable_all_clkout(pf);
1941
1942	err = ice_ptp_write_adj(pf, delta);
1943
1944	/* Reenable periodic outputs */
1945	ice_ptp_enable_all_clkout(pf);
1946
1947	ice_ptp_unlock(hw);
1948
1949	if (err) {
1950		dev_err(dev, "PTP failed to adjust time, err %d\n", err);
1951		return err;
1952	}
1953
1954	ice_ptp_reset_cached_phctime(pf);
1955
1956	return 0;
1957}
1958
1959#ifdef CONFIG_ICE_HWTS
1960/**
1961 * ice_ptp_get_syncdevicetime - Get the cross time stamp info
1962 * @device: Current device time
1963 * @system: System counter value read synchronously with device time
1964 * @ctx: Context provided by timekeeping code
1965 *
1966 * Read device and system (ART) clock simultaneously and return the corrected
1967 * clock values in ns.
1968 */
1969static int
1970ice_ptp_get_syncdevicetime(ktime_t *device,
1971			   struct system_counterval_t *system,
1972			   void *ctx)
1973{
1974	struct ice_pf *pf = (struct ice_pf *)ctx;
1975	struct ice_hw *hw = &pf->hw;
1976	u32 hh_lock, hh_art_ctl;
1977	int i;
1978
1979	/* Get the HW lock */
1980	hh_lock = rd32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id));
1981	if (hh_lock & PFHH_SEM_BUSY_M) {
1982		dev_err(ice_pf_to_dev(pf), "PTP failed to get hh lock\n");
1983		return -EFAULT;
1984	}
1985
1986	/* Start the ART and device clock sync sequence */
1987	hh_art_ctl = rd32(hw, GLHH_ART_CTL);
1988	hh_art_ctl = hh_art_ctl | GLHH_ART_CTL_ACTIVE_M;
1989	wr32(hw, GLHH_ART_CTL, hh_art_ctl);
1990
1991#define MAX_HH_LOCK_TRIES 100
1992
1993	for (i = 0; i < MAX_HH_LOCK_TRIES; i++) {
1994		/* Wait for sync to complete */
1995		hh_art_ctl = rd32(hw, GLHH_ART_CTL);
1996		if (hh_art_ctl & GLHH_ART_CTL_ACTIVE_M) {
1997			udelay(1);
1998			continue;
1999		} else {
2000			u32 hh_ts_lo, hh_ts_hi, tmr_idx;
2001			u64 hh_ts;
2002
2003			tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc;
2004			/* Read ART time */
2005			hh_ts_lo = rd32(hw, GLHH_ART_TIME_L);
2006			hh_ts_hi = rd32(hw, GLHH_ART_TIME_H);
2007			hh_ts = ((u64)hh_ts_hi << 32) | hh_ts_lo;
2008			*system = convert_art_ns_to_tsc(hh_ts);
2009			/* Read Device source clock time */
2010			hh_ts_lo = rd32(hw, GLTSYN_HHTIME_L(tmr_idx));
2011			hh_ts_hi = rd32(hw, GLTSYN_HHTIME_H(tmr_idx));
2012			hh_ts = ((u64)hh_ts_hi << 32) | hh_ts_lo;
2013			*device = ns_to_ktime(hh_ts);
2014			break;
2015		}
2016	}
2017	/* Release HW lock */
2018	hh_lock = rd32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id));
2019	hh_lock = hh_lock & ~PFHH_SEM_BUSY_M;
2020	wr32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id), hh_lock);
2021
2022	if (i == MAX_HH_LOCK_TRIES)
2023		return -ETIMEDOUT;
2024
2025	return 0;
2026}
2027
2028/**
2029 * ice_ptp_getcrosststamp_e822 - Capture a device cross timestamp
2030 * @info: the driver's PTP info structure
2031 * @cts: The memory to fill the cross timestamp info
2032 *
2033 * Capture a cross timestamp between the ART and the device PTP hardware
2034 * clock. Fill the cross timestamp information and report it back to the
2035 * caller.
2036 *
2037 * This is only valid for E822 devices which have support for generating the
2038 * cross timestamp via PCIe PTM.
2039 *
2040 * In order to correctly correlate the ART timestamp back to the TSC time, the
2041 * CPU must have X86_FEATURE_TSC_KNOWN_FREQ.
2042 */
2043static int
2044ice_ptp_getcrosststamp_e822(struct ptp_clock_info *info,
2045			    struct system_device_crosststamp *cts)
2046{
2047	struct ice_pf *pf = ptp_info_to_pf(info);
2048
2049	return get_device_system_crosststamp(ice_ptp_get_syncdevicetime,
2050					     pf, NULL, cts);
2051}
2052#endif /* CONFIG_ICE_HWTS */
2053
2054/**
2055 * ice_ptp_get_ts_config - ioctl interface to read the timestamping config
2056 * @pf: Board private structure
2057 * @ifr: ioctl data
2058 *
2059 * Copy the timestamping config to user buffer
2060 */
2061int ice_ptp_get_ts_config(struct ice_pf *pf, struct ifreq *ifr)
2062{
2063	struct hwtstamp_config *config;
2064
2065	if (!test_bit(ICE_FLAG_PTP, pf->flags))
2066		return -EIO;
2067
2068	config = &pf->ptp.tstamp_config;
2069
2070	return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
2071		-EFAULT : 0;
2072}
2073
2074/**
2075 * ice_ptp_set_timestamp_mode - Setup driver for requested timestamp mode
2076 * @pf: Board private structure
2077 * @config: hwtstamp settings requested or saved
2078 */
2079static int
2080ice_ptp_set_timestamp_mode(struct ice_pf *pf, struct hwtstamp_config *config)
2081{
2082	switch (config->tx_type) {
2083	case HWTSTAMP_TX_OFF:
2084		ice_set_tx_tstamp(pf, false);
2085		break;
2086	case HWTSTAMP_TX_ON:
2087		ice_set_tx_tstamp(pf, true);
2088		break;
2089	default:
2090		return -ERANGE;
2091	}
2092
2093	switch (config->rx_filter) {
2094	case HWTSTAMP_FILTER_NONE:
2095		ice_set_rx_tstamp(pf, false);
2096		break;
2097	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
2098	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
2099	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
2100	case HWTSTAMP_FILTER_PTP_V2_EVENT:
2101	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
2102	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
2103	case HWTSTAMP_FILTER_PTP_V2_SYNC:
2104	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
2105	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
2106	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
2107	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
2108	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
2109	case HWTSTAMP_FILTER_NTP_ALL:
2110	case HWTSTAMP_FILTER_ALL:
2111		ice_set_rx_tstamp(pf, true);
2112		break;
2113	default:
2114		return -ERANGE;
2115	}
2116
2117	return 0;
2118}
2119
2120/**
2121 * ice_ptp_set_ts_config - ioctl interface to control the timestamping
2122 * @pf: Board private structure
2123 * @ifr: ioctl data
2124 *
2125 * Get the user config and store it
2126 */
2127int ice_ptp_set_ts_config(struct ice_pf *pf, struct ifreq *ifr)
2128{
2129	struct hwtstamp_config config;
2130	int err;
2131
2132	if (!test_bit(ICE_FLAG_PTP, pf->flags))
2133		return -EAGAIN;
2134
2135	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
2136		return -EFAULT;
2137
2138	err = ice_ptp_set_timestamp_mode(pf, &config);
2139	if (err)
2140		return err;
2141
2142	/* Return the actual configuration set */
2143	config = pf->ptp.tstamp_config;
2144
2145	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
2146		-EFAULT : 0;
2147}
2148
2149/**
2150 * ice_ptp_rx_hwtstamp - Check for an Rx timestamp
2151 * @rx_ring: Ring to get the VSI info
2152 * @rx_desc: Receive descriptor
2153 * @skb: Particular skb to send timestamp with
2154 *
2155 * The driver receives a notification in the receive descriptor with timestamp.
2156 * The timestamp is in ns, so we must convert the result first.
2157 */
2158void
2159ice_ptp_rx_hwtstamp(struct ice_rx_ring *rx_ring,
2160		    union ice_32b_rx_flex_desc *rx_desc, struct sk_buff *skb)
2161{
2162	struct skb_shared_hwtstamps *hwtstamps;
2163	u64 ts_ns, cached_time;
2164	u32 ts_high;
2165
2166	if (!(rx_desc->wb.time_stamp_low & ICE_PTP_TS_VALID))
2167		return;
2168
2169	cached_time = READ_ONCE(rx_ring->cached_phctime);
2170
2171	/* Do not report a timestamp if we don't have a cached PHC time */
2172	if (!cached_time)
2173		return;
2174
2175	/* Use ice_ptp_extend_32b_ts directly, using the ring-specific cached
2176	 * PHC value, rather than accessing the PF. This also allows us to
2177	 * simply pass the upper 32bits of nanoseconds directly. Calling
2178	 * ice_ptp_extend_40b_ts is unnecessary as it would just discard these
2179	 * bits itself.
2180	 */
2181	ts_high = le32_to_cpu(rx_desc->wb.flex_ts.ts_high);
2182	ts_ns = ice_ptp_extend_32b_ts(cached_time, ts_high);
2183
2184	hwtstamps = skb_hwtstamps(skb);
2185	memset(hwtstamps, 0, sizeof(*hwtstamps));
2186	hwtstamps->hwtstamp = ns_to_ktime(ts_ns);
2187}
2188
2189/**
2190 * ice_ptp_disable_sma_pins_e810t - Disable E810-T SMA pins
2191 * @pf: pointer to the PF structure
2192 * @info: PTP clock info structure
2193 *
2194 * Disable the OS access to the SMA pins. Called to clear out the OS
2195 * indications of pin support when we fail to setup the E810-T SMA control
2196 * register.
2197 */
2198static void
2199ice_ptp_disable_sma_pins_e810t(struct ice_pf *pf, struct ptp_clock_info *info)
2200{
2201	struct device *dev = ice_pf_to_dev(pf);
2202
2203	dev_warn(dev, "Failed to configure E810-T SMA pin control\n");
2204
2205	info->enable = NULL;
2206	info->verify = NULL;
2207	info->n_pins = 0;
2208	info->n_ext_ts = 0;
2209	info->n_per_out = 0;
2210}
2211
2212/**
2213 * ice_ptp_setup_sma_pins_e810t - Setup the SMA pins
2214 * @pf: pointer to the PF structure
2215 * @info: PTP clock info structure
2216 *
2217 * Finish setting up the SMA pins by allocating pin_config, and setting it up
2218 * according to the current status of the SMA. On failure, disable all of the
2219 * extended SMA pin support.
2220 */
2221static void
2222ice_ptp_setup_sma_pins_e810t(struct ice_pf *pf, struct ptp_clock_info *info)
2223{
2224	struct device *dev = ice_pf_to_dev(pf);
2225	int err;
2226
2227	/* Allocate memory for kernel pins interface */
2228	info->pin_config = devm_kcalloc(dev, info->n_pins,
2229					sizeof(*info->pin_config), GFP_KERNEL);
2230	if (!info->pin_config) {
2231		ice_ptp_disable_sma_pins_e810t(pf, info);
2232		return;
2233	}
2234
2235	/* Read current SMA status */
2236	err = ice_get_sma_config_e810t(&pf->hw, info->pin_config);
2237	if (err)
2238		ice_ptp_disable_sma_pins_e810t(pf, info);
2239}
2240
2241/**
2242 * ice_ptp_setup_pins_e810 - Setup PTP pins in sysfs
2243 * @pf: pointer to the PF instance
2244 * @info: PTP clock capabilities
2245 */
2246static void
2247ice_ptp_setup_pins_e810(struct ice_pf *pf, struct ptp_clock_info *info)
2248{
2249	if (ice_is_feature_supported(pf, ICE_F_SMA_CTRL)) {
2250		info->n_ext_ts = N_EXT_TS_E810;
2251		info->n_per_out = N_PER_OUT_E810T;
2252		info->n_pins = NUM_PTP_PINS_E810T;
2253		info->verify = ice_verify_pin_e810t;
2254
2255		/* Complete setup of the SMA pins */
2256		ice_ptp_setup_sma_pins_e810t(pf, info);
2257	} else if (ice_is_e810t(&pf->hw)) {
2258		info->n_ext_ts = N_EXT_TS_NO_SMA_E810T;
2259		info->n_per_out = N_PER_OUT_NO_SMA_E810T;
2260	} else {
2261		info->n_per_out = N_PER_OUT_E810;
2262		info->n_ext_ts = N_EXT_TS_E810;
2263	}
2264}
2265
2266/**
2267 * ice_ptp_setup_pins_e823 - Setup PTP pins in sysfs
2268 * @pf: pointer to the PF instance
2269 * @info: PTP clock capabilities
2270 */
2271static void
2272ice_ptp_setup_pins_e823(struct ice_pf *pf, struct ptp_clock_info *info)
2273{
2274	info->pps = 1;
2275	info->n_per_out = 0;
2276	info->n_ext_ts = 1;
2277}
2278
2279/**
2280 * ice_ptp_set_funcs_e822 - Set specialized functions for E822 support
2281 * @pf: Board private structure
2282 * @info: PTP info to fill
2283 *
2284 * Assign functions to the PTP capabiltiies structure for E822 devices.
2285 * Functions which operate across all device families should be set directly
2286 * in ice_ptp_set_caps. Only add functions here which are distinct for E822
2287 * devices.
2288 */
2289static void
2290ice_ptp_set_funcs_e822(struct ice_pf *pf, struct ptp_clock_info *info)
2291{
2292#ifdef CONFIG_ICE_HWTS
2293	if (boot_cpu_has(X86_FEATURE_ART) &&
2294	    boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ))
2295		info->getcrosststamp = ice_ptp_getcrosststamp_e822;
2296#endif /* CONFIG_ICE_HWTS */
2297}
2298
2299/**
2300 * ice_ptp_set_funcs_e810 - Set specialized functions for E810 support
2301 * @pf: Board private structure
2302 * @info: PTP info to fill
2303 *
2304 * Assign functions to the PTP capabiltiies structure for E810 devices.
2305 * Functions which operate across all device families should be set directly
2306 * in ice_ptp_set_caps. Only add functions here which are distinct for e810
2307 * devices.
2308 */
2309static void
2310ice_ptp_set_funcs_e810(struct ice_pf *pf, struct ptp_clock_info *info)
2311{
2312	info->enable = ice_ptp_gpio_enable_e810;
2313	ice_ptp_setup_pins_e810(pf, info);
2314}
2315
2316/**
2317 * ice_ptp_set_funcs_e823 - Set specialized functions for E823 support
2318 * @pf: Board private structure
2319 * @info: PTP info to fill
2320 *
2321 * Assign functions to the PTP capabiltiies structure for E823 devices.
2322 * Functions which operate across all device families should be set directly
2323 * in ice_ptp_set_caps. Only add functions here which are distinct for e823
2324 * devices.
2325 */
2326static void
2327ice_ptp_set_funcs_e823(struct ice_pf *pf, struct ptp_clock_info *info)
2328{
2329	info->enable = ice_ptp_gpio_enable_e823;
2330	ice_ptp_setup_pins_e823(pf, info);
2331}
2332
2333/**
2334 * ice_ptp_set_caps - Set PTP capabilities
2335 * @pf: Board private structure
2336 */
2337static void ice_ptp_set_caps(struct ice_pf *pf)
2338{
2339	struct ptp_clock_info *info = &pf->ptp.info;
2340	struct device *dev = ice_pf_to_dev(pf);
2341
2342	snprintf(info->name, sizeof(info->name) - 1, "%s-%s-clk",
2343		 dev_driver_string(dev), dev_name(dev));
2344	info->owner = THIS_MODULE;
2345	info->max_adj = 100000000;
2346	info->adjtime = ice_ptp_adjtime;
2347	info->adjfine = ice_ptp_adjfine;
2348	info->gettimex64 = ice_ptp_gettimex64;
2349	info->settime64 = ice_ptp_settime64;
2350
2351	if (ice_is_e810(&pf->hw))
2352		ice_ptp_set_funcs_e810(pf, info);
2353	else if (ice_is_e823(&pf->hw))
2354		ice_ptp_set_funcs_e823(pf, info);
2355	else
2356		ice_ptp_set_funcs_e822(pf, info);
2357}
2358
2359/**
2360 * ice_ptp_create_clock - Create PTP clock device for userspace
2361 * @pf: Board private structure
2362 *
2363 * This function creates a new PTP clock device. It only creates one if we
2364 * don't already have one. Will return error if it can't create one, but success
2365 * if we already have a device. Should be used by ice_ptp_init to create clock
2366 * initially, and prevent global resets from creating new clock devices.
2367 */
2368static long ice_ptp_create_clock(struct ice_pf *pf)
2369{
2370	struct ptp_clock_info *info;
2371	struct ptp_clock *clock;
2372	struct device *dev;
2373
2374	/* No need to create a clock device if we already have one */
2375	if (pf->ptp.clock)
2376		return 0;
2377
2378	ice_ptp_set_caps(pf);
2379
2380	info = &pf->ptp.info;
2381	dev = ice_pf_to_dev(pf);
2382
2383	/* Attempt to register the clock before enabling the hardware. */
2384	clock = ptp_clock_register(info, dev);
2385	if (IS_ERR(clock))
2386		return PTR_ERR(clock);
2387
2388	pf->ptp.clock = clock;
2389
2390	return 0;
2391}
2392
2393/**
2394 * ice_ptp_request_ts - Request an available Tx timestamp index
2395 * @tx: the PTP Tx timestamp tracker to request from
2396 * @skb: the SKB to associate with this timestamp request
2397 */
2398s8 ice_ptp_request_ts(struct ice_ptp_tx *tx, struct sk_buff *skb)
2399{
2400	u8 idx;
2401
2402	spin_lock(&tx->lock);
2403
2404	/* Check that this tracker is accepting new timestamp requests */
2405	if (!ice_ptp_is_tx_tracker_up(tx)) {
2406		spin_unlock(&tx->lock);
2407		return -1;
2408	}
2409
2410	/* Find and set the first available index */
2411	idx = find_first_zero_bit(tx->in_use, tx->len);
2412	if (idx < tx->len) {
2413		/* We got a valid index that no other thread could have set. Store
2414		 * a reference to the skb and the start time to allow discarding old
2415		 * requests.
2416		 */
2417		set_bit(idx, tx->in_use);
2418		clear_bit(idx, tx->stale);
2419		tx->tstamps[idx].start = jiffies;
2420		tx->tstamps[idx].skb = skb_get(skb);
2421		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2422		ice_trace(tx_tstamp_request, skb, idx);
2423	}
2424
2425	spin_unlock(&tx->lock);
2426
2427	/* return the appropriate PHY timestamp register index, -1 if no
2428	 * indexes were available.
2429	 */
2430	if (idx >= tx->len)
2431		return -1;
2432	else
2433		return idx + tx->offset;
2434}
2435
2436/**
2437 * ice_ptp_process_ts - Process the PTP Tx timestamps
2438 * @pf: Board private structure
2439 *
2440 * Returns: ICE_TX_TSTAMP_WORK_PENDING if there are any outstanding Tx
2441 * timestamps that need processing, and ICE_TX_TSTAMP_WORK_DONE otherwise.
2442 */
2443enum ice_tx_tstamp_work ice_ptp_process_ts(struct ice_pf *pf)
2444{
2445	return ice_ptp_tx_tstamp(&pf->ptp.port.tx);
2446}
2447
2448static void ice_ptp_periodic_work(struct kthread_work *work)
2449{
2450	struct ice_ptp *ptp = container_of(work, struct ice_ptp, work.work);
2451	struct ice_pf *pf = container_of(ptp, struct ice_pf, ptp);
2452	int err;
2453
2454	if (!test_bit(ICE_FLAG_PTP, pf->flags))
2455		return;
2456
2457	err = ice_ptp_update_cached_phctime(pf);
2458
2459	/* Run twice a second or reschedule if phc update failed */
2460	kthread_queue_delayed_work(ptp->kworker, &ptp->work,
2461				   msecs_to_jiffies(err ? 10 : 500));
2462}
2463
2464/**
2465 * ice_ptp_reset - Initialize PTP hardware clock support after reset
2466 * @pf: Board private structure
2467 */
2468void ice_ptp_reset(struct ice_pf *pf)
2469{
2470	struct ice_ptp *ptp = &pf->ptp;
2471	struct ice_hw *hw = &pf->hw;
2472	struct timespec64 ts;
2473	int err, itr = 1;
2474	u64 time_diff;
2475
2476	if (test_bit(ICE_PFR_REQ, pf->state))
2477		goto pfr;
2478
2479	if (!hw->func_caps.ts_func_info.src_tmr_owned)
2480		goto reset_ts;
2481
2482	err = ice_ptp_init_phc(hw);
2483	if (err)
2484		goto err;
2485
2486	/* Acquire the global hardware lock */
2487	if (!ice_ptp_lock(hw)) {
2488		err = -EBUSY;
2489		goto err;
2490	}
2491
2492	/* Write the increment time value to PHY and LAN */
2493	err = ice_ptp_write_incval(hw, ice_base_incval(pf));
2494	if (err) {
2495		ice_ptp_unlock(hw);
2496		goto err;
2497	}
2498
2499	/* Write the initial Time value to PHY and LAN using the cached PHC
2500	 * time before the reset and time difference between stopping and
2501	 * starting the clock.
2502	 */
2503	if (ptp->cached_phc_time) {
2504		time_diff = ktime_get_real_ns() - ptp->reset_time;
2505		ts = ns_to_timespec64(ptp->cached_phc_time + time_diff);
2506	} else {
2507		ts = ktime_to_timespec64(ktime_get_real());
2508	}
2509	err = ice_ptp_write_init(pf, &ts);
2510	if (err) {
2511		ice_ptp_unlock(hw);
2512		goto err;
2513	}
2514
2515	/* Release the global hardware lock */
2516	ice_ptp_unlock(hw);
2517
2518	if (!ice_is_e810(hw)) {
2519		/* Enable quad interrupts */
2520		err = ice_ptp_tx_ena_intr(pf, true, itr);
2521		if (err)
2522			goto err;
2523	}
2524
2525reset_ts:
2526	/* Restart the PHY timestamping block */
2527	ice_ptp_reset_phy_timestamping(pf);
2528
2529pfr:
2530	/* Init Tx structures */
2531	if (ice_is_e810(&pf->hw)) {
2532		err = ice_ptp_init_tx_e810(pf, &ptp->port.tx);
2533	} else {
2534		kthread_init_delayed_work(&ptp->port.ov_work,
2535					  ice_ptp_wait_for_offsets);
2536		err = ice_ptp_init_tx_e822(pf, &ptp->port.tx,
2537					   ptp->port.port_num);
2538	}
2539	if (err)
2540		goto err;
2541
2542	set_bit(ICE_FLAG_PTP, pf->flags);
2543
2544	/* Start periodic work going */
2545	kthread_queue_delayed_work(ptp->kworker, &ptp->work, 0);
2546
2547	dev_info(ice_pf_to_dev(pf), "PTP reset successful\n");
2548	return;
2549
2550err:
2551	dev_err(ice_pf_to_dev(pf), "PTP reset failed %d\n", err);
2552}
2553
2554/**
2555 * ice_ptp_prepare_for_reset - Prepare PTP for reset
2556 * @pf: Board private structure
2557 */
2558void ice_ptp_prepare_for_reset(struct ice_pf *pf)
2559{
2560	struct ice_ptp *ptp = &pf->ptp;
2561	u8 src_tmr;
2562
2563	clear_bit(ICE_FLAG_PTP, pf->flags);
2564
2565	/* Disable timestamping for both Tx and Rx */
2566	ice_ptp_cfg_timestamp(pf, false);
2567
2568	kthread_cancel_delayed_work_sync(&ptp->work);
2569
2570	if (test_bit(ICE_PFR_REQ, pf->state))
2571		return;
2572
2573	ice_ptp_release_tx_tracker(pf, &pf->ptp.port.tx);
2574
2575	/* Disable periodic outputs */
2576	ice_ptp_disable_all_clkout(pf);
2577
2578	src_tmr = ice_get_ptp_src_clock_index(&pf->hw);
2579
2580	/* Disable source clock */
2581	wr32(&pf->hw, GLTSYN_ENA(src_tmr), (u32)~GLTSYN_ENA_TSYN_ENA_M);
2582
2583	/* Acquire PHC and system timer to restore after reset */
2584	ptp->reset_time = ktime_get_real_ns();
2585}
2586
2587/**
2588 * ice_ptp_init_owner - Initialize PTP_1588_CLOCK device
2589 * @pf: Board private structure
2590 *
2591 * Setup and initialize a PTP clock device that represents the device hardware
2592 * clock. Save the clock index for other functions connected to the same
2593 * hardware resource.
2594 */
2595static int ice_ptp_init_owner(struct ice_pf *pf)
2596{
2597	struct ice_hw *hw = &pf->hw;
2598	struct timespec64 ts;
2599	int err, itr = 1;
2600
2601	err = ice_ptp_init_phc(hw);
2602	if (err) {
2603		dev_err(ice_pf_to_dev(pf), "Failed to initialize PHC, err %d\n",
2604			err);
2605		return err;
2606	}
2607
2608	/* Acquire the global hardware lock */
2609	if (!ice_ptp_lock(hw)) {
2610		err = -EBUSY;
2611		goto err_exit;
2612	}
2613
2614	/* Write the increment time value to PHY and LAN */
2615	err = ice_ptp_write_incval(hw, ice_base_incval(pf));
2616	if (err) {
2617		ice_ptp_unlock(hw);
2618		goto err_exit;
2619	}
2620
2621	ts = ktime_to_timespec64(ktime_get_real());
2622	/* Write the initial Time value to PHY and LAN */
2623	err = ice_ptp_write_init(pf, &ts);
2624	if (err) {
2625		ice_ptp_unlock(hw);
2626		goto err_exit;
2627	}
2628
2629	/* Release the global hardware lock */
2630	ice_ptp_unlock(hw);
2631
2632	if (!ice_is_e810(hw)) {
2633		/* Enable quad interrupts */
2634		err = ice_ptp_tx_ena_intr(pf, true, itr);
2635		if (err)
2636			goto err_exit;
2637	}
2638
2639	/* Ensure we have a clock device */
2640	err = ice_ptp_create_clock(pf);
2641	if (err)
2642		goto err_clk;
2643
2644	/* Store the PTP clock index for other PFs */
2645	ice_set_ptp_clock_index(pf);
2646
2647	return 0;
2648
2649err_clk:
2650	pf->ptp.clock = NULL;
2651err_exit:
2652	return err;
2653}
2654
2655/**
2656 * ice_ptp_init_work - Initialize PTP work threads
2657 * @pf: Board private structure
2658 * @ptp: PF PTP structure
2659 */
2660static int ice_ptp_init_work(struct ice_pf *pf, struct ice_ptp *ptp)
2661{
2662	struct kthread_worker *kworker;
2663
2664	/* Initialize work functions */
2665	kthread_init_delayed_work(&ptp->work, ice_ptp_periodic_work);
2666
2667	/* Allocate a kworker for handling work required for the ports
2668	 * connected to the PTP hardware clock.
2669	 */
2670	kworker = kthread_create_worker(0, "ice-ptp-%s",
2671					dev_name(ice_pf_to_dev(pf)));
2672	if (IS_ERR(kworker))
2673		return PTR_ERR(kworker);
2674
2675	ptp->kworker = kworker;
2676
2677	/* Start periodic work going */
2678	kthread_queue_delayed_work(ptp->kworker, &ptp->work, 0);
2679
2680	return 0;
2681}
2682
2683/**
2684 * ice_ptp_init_port - Initialize PTP port structure
2685 * @pf: Board private structure
2686 * @ptp_port: PTP port structure
2687 */
2688static int ice_ptp_init_port(struct ice_pf *pf, struct ice_ptp_port *ptp_port)
2689{
2690	mutex_init(&ptp_port->ps_lock);
2691
2692	if (ice_is_e810(&pf->hw))
2693		return ice_ptp_init_tx_e810(pf, &ptp_port->tx);
2694
2695	kthread_init_delayed_work(&ptp_port->ov_work,
2696				  ice_ptp_wait_for_offsets);
2697	return ice_ptp_init_tx_e822(pf, &ptp_port->tx, ptp_port->port_num);
2698}
2699
2700/**
2701 * ice_ptp_init - Initialize PTP hardware clock support
2702 * @pf: Board private structure
2703 *
2704 * Set up the device for interacting with the PTP hardware clock for all
2705 * functions, both the function that owns the clock hardware, and the
2706 * functions connected to the clock hardware.
2707 *
2708 * The clock owner will allocate and register a ptp_clock with the
2709 * PTP_1588_CLOCK infrastructure. All functions allocate a kthread and work
2710 * items used for asynchronous work such as Tx timestamps and periodic work.
2711 */
2712void ice_ptp_init(struct ice_pf *pf)
2713{
2714	struct ice_ptp *ptp = &pf->ptp;
2715	struct ice_hw *hw = &pf->hw;
2716	int err;
2717
2718	/* If this function owns the clock hardware, it must allocate and
2719	 * configure the PTP clock device to represent it.
2720	 */
2721	if (hw->func_caps.ts_func_info.src_tmr_owned) {
2722		err = ice_ptp_init_owner(pf);
2723		if (err)
2724			goto err;
2725	}
2726
2727	ptp->port.port_num = hw->pf_id;
2728	err = ice_ptp_init_port(pf, &ptp->port);
2729	if (err)
2730		goto err;
2731
2732	/* Start the PHY timestamping block */
2733	ice_ptp_reset_phy_timestamping(pf);
2734
2735	set_bit(ICE_FLAG_PTP, pf->flags);
2736	err = ice_ptp_init_work(pf, ptp);
2737	if (err)
2738		goto err;
2739
2740	dev_info(ice_pf_to_dev(pf), "PTP init successful\n");
2741	return;
2742
2743err:
2744	/* If we registered a PTP clock, release it */
2745	if (pf->ptp.clock) {
2746		ptp_clock_unregister(ptp->clock);
2747		pf->ptp.clock = NULL;
2748	}
2749	clear_bit(ICE_FLAG_PTP, pf->flags);
2750	dev_err(ice_pf_to_dev(pf), "PTP failed %d\n", err);
2751}
2752
2753/**
2754 * ice_ptp_release - Disable the driver/HW support and unregister the clock
2755 * @pf: Board private structure
2756 *
2757 * This function handles the cleanup work required from the initialization by
2758 * clearing out the important information and unregistering the clock
2759 */
2760void ice_ptp_release(struct ice_pf *pf)
2761{
2762	if (!test_bit(ICE_FLAG_PTP, pf->flags))
2763		return;
2764
2765	/* Disable timestamping for both Tx and Rx */
2766	ice_ptp_cfg_timestamp(pf, false);
2767
2768	ice_ptp_release_tx_tracker(pf, &pf->ptp.port.tx);
2769
2770	clear_bit(ICE_FLAG_PTP, pf->flags);
2771
2772	kthread_cancel_delayed_work_sync(&pf->ptp.work);
2773
2774	ice_ptp_port_phy_stop(&pf->ptp.port);
2775	mutex_destroy(&pf->ptp.port.ps_lock);
2776	if (pf->ptp.kworker) {
2777		kthread_destroy_worker(pf->ptp.kworker);
2778		pf->ptp.kworker = NULL;
2779	}
2780
2781	if (!pf->ptp.clock)
2782		return;
2783
2784	/* Disable periodic outputs */
2785	ice_ptp_disable_all_clkout(pf);
2786
2787	ice_clear_ptp_clock_index(pf);
2788	ptp_clock_unregister(pf->ptp.clock);
2789	pf->ptp.clock = NULL;
2790
2791	dev_info(ice_pf_to_dev(pf), "Removed PTP clock\n");
2792}
2793