1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (c) 2018, Intel Corporation. */
3
4/* Intel(R) Ethernet Connection E800 Series Linux Driver */
5
6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8#include <generated/utsrelease.h>
9#include <linux/crash_dump.h>
10#include "ice.h"
11#include "ice_base.h"
12#include "ice_lib.h"
13#include "ice_fltr.h"
14#include "ice_dcb_lib.h"
15#include "ice_dcb_nl.h"
16#include "ice_devlink.h"
17/* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the
18 * ice tracepoint functions. This must be done exactly once across the
19 * ice driver.
20 */
21#define CREATE_TRACE_POINTS
22#include "ice_trace.h"
23#include "ice_eswitch.h"
24#include "ice_tc_lib.h"
25#include "ice_vsi_vlan_ops.h"
26#include <net/xdp_sock_drv.h>
27
28#define DRV_SUMMARY	"Intel(R) Ethernet Connection E800 Series Linux Driver"
29static const char ice_driver_string[] = DRV_SUMMARY;
30static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation.";
31
32/* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */
33#define ICE_DDP_PKG_PATH	"intel/ice/ddp/"
34#define ICE_DDP_PKG_FILE	ICE_DDP_PKG_PATH "ice.pkg"
35
36MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
37MODULE_DESCRIPTION(DRV_SUMMARY);
38MODULE_LICENSE("GPL v2");
39MODULE_FIRMWARE(ICE_DDP_PKG_FILE);
40
41static int debug = -1;
42module_param(debug, int, 0644);
43#ifndef CONFIG_DYNAMIC_DEBUG
44MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)");
45#else
46MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)");
47#endif /* !CONFIG_DYNAMIC_DEBUG */
48
49DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key);
50EXPORT_SYMBOL(ice_xdp_locking_key);
51
52/**
53 * ice_hw_to_dev - Get device pointer from the hardware structure
54 * @hw: pointer to the device HW structure
55 *
56 * Used to access the device pointer from compilation units which can't easily
57 * include the definition of struct ice_pf without leading to circular header
58 * dependencies.
59 */
60struct device *ice_hw_to_dev(struct ice_hw *hw)
61{
62	struct ice_pf *pf = container_of(hw, struct ice_pf, hw);
63
64	return &pf->pdev->dev;
65}
66
67static struct workqueue_struct *ice_wq;
68struct workqueue_struct *ice_lag_wq;
69static const struct net_device_ops ice_netdev_safe_mode_ops;
70static const struct net_device_ops ice_netdev_ops;
71
72static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type);
73
74static void ice_vsi_release_all(struct ice_pf *pf);
75
76static int ice_rebuild_channels(struct ice_pf *pf);
77static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr);
78
79static int
80ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch,
81		     void *cb_priv, enum tc_setup_type type, void *type_data,
82		     void *data,
83		     void (*cleanup)(struct flow_block_cb *block_cb));
84
85bool netif_is_ice(const struct net_device *dev)
86{
87	return dev && (dev->netdev_ops == &ice_netdev_ops);
88}
89
90/**
91 * ice_get_tx_pending - returns number of Tx descriptors not processed
92 * @ring: the ring of descriptors
93 */
94static u16 ice_get_tx_pending(struct ice_tx_ring *ring)
95{
96	u16 head, tail;
97
98	head = ring->next_to_clean;
99	tail = ring->next_to_use;
100
101	if (head != tail)
102		return (head < tail) ?
103			tail - head : (tail + ring->count - head);
104	return 0;
105}
106
107/**
108 * ice_check_for_hang_subtask - check for and recover hung queues
109 * @pf: pointer to PF struct
110 */
111static void ice_check_for_hang_subtask(struct ice_pf *pf)
112{
113	struct ice_vsi *vsi = NULL;
114	struct ice_hw *hw;
115	unsigned int i;
116	int packets;
117	u32 v;
118
119	ice_for_each_vsi(pf, v)
120		if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) {
121			vsi = pf->vsi[v];
122			break;
123		}
124
125	if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state))
126		return;
127
128	if (!(vsi->netdev && netif_carrier_ok(vsi->netdev)))
129		return;
130
131	hw = &vsi->back->hw;
132
133	ice_for_each_txq(vsi, i) {
134		struct ice_tx_ring *tx_ring = vsi->tx_rings[i];
135		struct ice_ring_stats *ring_stats;
136
137		if (!tx_ring)
138			continue;
139		if (ice_ring_ch_enabled(tx_ring))
140			continue;
141
142		ring_stats = tx_ring->ring_stats;
143		if (!ring_stats)
144			continue;
145
146		if (tx_ring->desc) {
147			/* If packet counter has not changed the queue is
148			 * likely stalled, so force an interrupt for this
149			 * queue.
150			 *
151			 * prev_pkt would be negative if there was no
152			 * pending work.
153			 */
154			packets = ring_stats->stats.pkts & INT_MAX;
155			if (ring_stats->tx_stats.prev_pkt == packets) {
156				/* Trigger sw interrupt to revive the queue */
157				ice_trigger_sw_intr(hw, tx_ring->q_vector);
158				continue;
159			}
160
161			/* Memory barrier between read of packet count and call
162			 * to ice_get_tx_pending()
163			 */
164			smp_rmb();
165			ring_stats->tx_stats.prev_pkt =
166			    ice_get_tx_pending(tx_ring) ? packets : -1;
167		}
168	}
169}
170
171/**
172 * ice_init_mac_fltr - Set initial MAC filters
173 * @pf: board private structure
174 *
175 * Set initial set of MAC filters for PF VSI; configure filters for permanent
176 * address and broadcast address. If an error is encountered, netdevice will be
177 * unregistered.
178 */
179static int ice_init_mac_fltr(struct ice_pf *pf)
180{
181	struct ice_vsi *vsi;
182	u8 *perm_addr;
183
184	vsi = ice_get_main_vsi(pf);
185	if (!vsi)
186		return -EINVAL;
187
188	perm_addr = vsi->port_info->mac.perm_addr;
189	return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI);
190}
191
192/**
193 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced
194 * @netdev: the net device on which the sync is happening
195 * @addr: MAC address to sync
196 *
197 * This is a callback function which is called by the in kernel device sync
198 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only
199 * populates the tmp_sync_list, which is later used by ice_add_mac to add the
200 * MAC filters from the hardware.
201 */
202static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr)
203{
204	struct ice_netdev_priv *np = netdev_priv(netdev);
205	struct ice_vsi *vsi = np->vsi;
206
207	if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr,
208				     ICE_FWD_TO_VSI))
209		return -EINVAL;
210
211	return 0;
212}
213
214/**
215 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced
216 * @netdev: the net device on which the unsync is happening
217 * @addr: MAC address to unsync
218 *
219 * This is a callback function which is called by the in kernel device unsync
220 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only
221 * populates the tmp_unsync_list, which is later used by ice_remove_mac to
222 * delete the MAC filters from the hardware.
223 */
224static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr)
225{
226	struct ice_netdev_priv *np = netdev_priv(netdev);
227	struct ice_vsi *vsi = np->vsi;
228
229	/* Under some circumstances, we might receive a request to delete our
230	 * own device address from our uc list. Because we store the device
231	 * address in the VSI's MAC filter list, we need to ignore such
232	 * requests and not delete our device address from this list.
233	 */
234	if (ether_addr_equal(addr, netdev->dev_addr))
235		return 0;
236
237	if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr,
238				     ICE_FWD_TO_VSI))
239		return -EINVAL;
240
241	return 0;
242}
243
244/**
245 * ice_vsi_fltr_changed - check if filter state changed
246 * @vsi: VSI to be checked
247 *
248 * returns true if filter state has changed, false otherwise.
249 */
250static bool ice_vsi_fltr_changed(struct ice_vsi *vsi)
251{
252	return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) ||
253	       test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
254}
255
256/**
257 * ice_set_promisc - Enable promiscuous mode for a given PF
258 * @vsi: the VSI being configured
259 * @promisc_m: mask of promiscuous config bits
260 *
261 */
262static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m)
263{
264	int status;
265
266	if (vsi->type != ICE_VSI_PF)
267		return 0;
268
269	if (ice_vsi_has_non_zero_vlans(vsi)) {
270		promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX);
271		status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi,
272						       promisc_m);
273	} else {
274		status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
275						  promisc_m, 0);
276	}
277	if (status && status != -EEXIST)
278		return status;
279
280	netdev_dbg(vsi->netdev, "set promisc filter bits for VSI %i: 0x%x\n",
281		   vsi->vsi_num, promisc_m);
282	return 0;
283}
284
285/**
286 * ice_clear_promisc - Disable promiscuous mode for a given PF
287 * @vsi: the VSI being configured
288 * @promisc_m: mask of promiscuous config bits
289 *
290 */
291static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m)
292{
293	int status;
294
295	if (vsi->type != ICE_VSI_PF)
296		return 0;
297
298	if (ice_vsi_has_non_zero_vlans(vsi)) {
299		promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX);
300		status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi,
301							 promisc_m);
302	} else {
303		status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
304						    promisc_m, 0);
305	}
306
307	netdev_dbg(vsi->netdev, "clear promisc filter bits for VSI %i: 0x%x\n",
308		   vsi->vsi_num, promisc_m);
309	return status;
310}
311
312/**
313 * ice_vsi_sync_fltr - Update the VSI filter list to the HW
314 * @vsi: ptr to the VSI
315 *
316 * Push any outstanding VSI filter changes through the AdminQ.
317 */
318static int ice_vsi_sync_fltr(struct ice_vsi *vsi)
319{
320	struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
321	struct device *dev = ice_pf_to_dev(vsi->back);
322	struct net_device *netdev = vsi->netdev;
323	bool promisc_forced_on = false;
324	struct ice_pf *pf = vsi->back;
325	struct ice_hw *hw = &pf->hw;
326	u32 changed_flags = 0;
327	int err;
328
329	if (!vsi->netdev)
330		return -EINVAL;
331
332	while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
333		usleep_range(1000, 2000);
334
335	changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags;
336	vsi->current_netdev_flags = vsi->netdev->flags;
337
338	INIT_LIST_HEAD(&vsi->tmp_sync_list);
339	INIT_LIST_HEAD(&vsi->tmp_unsync_list);
340
341	if (ice_vsi_fltr_changed(vsi)) {
342		clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
343		clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
344
345		/* grab the netdev's addr_list_lock */
346		netif_addr_lock_bh(netdev);
347		__dev_uc_sync(netdev, ice_add_mac_to_sync_list,
348			      ice_add_mac_to_unsync_list);
349		__dev_mc_sync(netdev, ice_add_mac_to_sync_list,
350			      ice_add_mac_to_unsync_list);
351		/* our temp lists are populated. release lock */
352		netif_addr_unlock_bh(netdev);
353	}
354
355	/* Remove MAC addresses in the unsync list */
356	err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list);
357	ice_fltr_free_list(dev, &vsi->tmp_unsync_list);
358	if (err) {
359		netdev_err(netdev, "Failed to delete MAC filters\n");
360		/* if we failed because of alloc failures, just bail */
361		if (err == -ENOMEM)
362			goto out;
363	}
364
365	/* Add MAC addresses in the sync list */
366	err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list);
367	ice_fltr_free_list(dev, &vsi->tmp_sync_list);
368	/* If filter is added successfully or already exists, do not go into
369	 * 'if' condition and report it as error. Instead continue processing
370	 * rest of the function.
371	 */
372	if (err && err != -EEXIST) {
373		netdev_err(netdev, "Failed to add MAC filters\n");
374		/* If there is no more space for new umac filters, VSI
375		 * should go into promiscuous mode. There should be some
376		 * space reserved for promiscuous filters.
377		 */
378		if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC &&
379		    !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC,
380				      vsi->state)) {
381			promisc_forced_on = true;
382			netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n",
383				    vsi->vsi_num);
384		} else {
385			goto out;
386		}
387	}
388	err = 0;
389	/* check for changes in promiscuous modes */
390	if (changed_flags & IFF_ALLMULTI) {
391		if (vsi->current_netdev_flags & IFF_ALLMULTI) {
392			err = ice_set_promisc(vsi, ICE_MCAST_PROMISC_BITS);
393			if (err) {
394				vsi->current_netdev_flags &= ~IFF_ALLMULTI;
395				goto out_promisc;
396			}
397		} else {
398			/* !(vsi->current_netdev_flags & IFF_ALLMULTI) */
399			err = ice_clear_promisc(vsi, ICE_MCAST_PROMISC_BITS);
400			if (err) {
401				vsi->current_netdev_flags |= IFF_ALLMULTI;
402				goto out_promisc;
403			}
404		}
405	}
406
407	if (((changed_flags & IFF_PROMISC) || promisc_forced_on) ||
408	    test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) {
409		clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state);
410		if (vsi->current_netdev_flags & IFF_PROMISC) {
411			/* Apply Rx filter rule to get traffic from wire */
412			if (!ice_is_dflt_vsi_in_use(vsi->port_info)) {
413				err = ice_set_dflt_vsi(vsi);
414				if (err && err != -EEXIST) {
415					netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n",
416						   err, vsi->vsi_num);
417					vsi->current_netdev_flags &=
418						~IFF_PROMISC;
419					goto out_promisc;
420				}
421				err = 0;
422				vlan_ops->dis_rx_filtering(vsi);
423
424				/* promiscuous mode implies allmulticast so
425				 * that VSIs that are in promiscuous mode are
426				 * subscribed to multicast packets coming to
427				 * the port
428				 */
429				err = ice_set_promisc(vsi,
430						      ICE_MCAST_PROMISC_BITS);
431				if (err)
432					goto out_promisc;
433			}
434		} else {
435			/* Clear Rx filter to remove traffic from wire */
436			if (ice_is_vsi_dflt_vsi(vsi)) {
437				err = ice_clear_dflt_vsi(vsi);
438				if (err) {
439					netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n",
440						   err, vsi->vsi_num);
441					vsi->current_netdev_flags |=
442						IFF_PROMISC;
443					goto out_promisc;
444				}
445				if (vsi->netdev->features &
446				    NETIF_F_HW_VLAN_CTAG_FILTER)
447					vlan_ops->ena_rx_filtering(vsi);
448			}
449
450			/* disable allmulti here, but only if allmulti is not
451			 * still enabled for the netdev
452			 */
453			if (!(vsi->current_netdev_flags & IFF_ALLMULTI)) {
454				err = ice_clear_promisc(vsi,
455							ICE_MCAST_PROMISC_BITS);
456				if (err) {
457					netdev_err(netdev, "Error %d clearing multicast promiscuous on VSI %i\n",
458						   err, vsi->vsi_num);
459				}
460			}
461		}
462	}
463	goto exit;
464
465out_promisc:
466	set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state);
467	goto exit;
468out:
469	/* if something went wrong then set the changed flag so we try again */
470	set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
471	set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
472exit:
473	clear_bit(ICE_CFG_BUSY, vsi->state);
474	return err;
475}
476
477/**
478 * ice_sync_fltr_subtask - Sync the VSI filter list with HW
479 * @pf: board private structure
480 */
481static void ice_sync_fltr_subtask(struct ice_pf *pf)
482{
483	int v;
484
485	if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags)))
486		return;
487
488	clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
489
490	ice_for_each_vsi(pf, v)
491		if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) &&
492		    ice_vsi_sync_fltr(pf->vsi[v])) {
493			/* come back and try again later */
494			set_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
495			break;
496		}
497}
498
499/**
500 * ice_pf_dis_all_vsi - Pause all VSIs on a PF
501 * @pf: the PF
502 * @locked: is the rtnl_lock already held
503 */
504static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked)
505{
506	int node;
507	int v;
508
509	ice_for_each_vsi(pf, v)
510		if (pf->vsi[v])
511			ice_dis_vsi(pf->vsi[v], locked);
512
513	for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++)
514		pf->pf_agg_node[node].num_vsis = 0;
515
516	for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++)
517		pf->vf_agg_node[node].num_vsis = 0;
518}
519
520/**
521 * ice_clear_sw_switch_recipes - clear switch recipes
522 * @pf: board private structure
523 *
524 * Mark switch recipes as not created in sw structures. There are cases where
525 * rules (especially advanced rules) need to be restored, either re-read from
526 * hardware or added again. For example after the reset. 'recp_created' flag
527 * prevents from doing that and need to be cleared upfront.
528 */
529static void ice_clear_sw_switch_recipes(struct ice_pf *pf)
530{
531	struct ice_sw_recipe *recp;
532	u8 i;
533
534	recp = pf->hw.switch_info->recp_list;
535	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++)
536		recp[i].recp_created = false;
537}
538
539/**
540 * ice_prepare_for_reset - prep for reset
541 * @pf: board private structure
542 * @reset_type: reset type requested
543 *
544 * Inform or close all dependent features in prep for reset.
545 */
546static void
547ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
548{
549	struct ice_hw *hw = &pf->hw;
550	struct ice_vsi *vsi;
551	struct ice_vf *vf;
552	unsigned int bkt;
553
554	dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type);
555
556	/* already prepared for reset */
557	if (test_bit(ICE_PREPARED_FOR_RESET, pf->state))
558		return;
559
560	ice_unplug_aux_dev(pf);
561
562	/* Notify VFs of impending reset */
563	if (ice_check_sq_alive(hw, &hw->mailboxq))
564		ice_vc_notify_reset(pf);
565
566	/* Disable VFs until reset is completed */
567	mutex_lock(&pf->vfs.table_lock);
568	ice_for_each_vf(pf, bkt, vf)
569		ice_set_vf_state_dis(vf);
570	mutex_unlock(&pf->vfs.table_lock);
571
572	if (ice_is_eswitch_mode_switchdev(pf)) {
573		if (reset_type != ICE_RESET_PFR)
574			ice_clear_sw_switch_recipes(pf);
575	}
576
577	/* release ADQ specific HW and SW resources */
578	vsi = ice_get_main_vsi(pf);
579	if (!vsi)
580		goto skip;
581
582	/* to be on safe side, reset orig_rss_size so that normal flow
583	 * of deciding rss_size can take precedence
584	 */
585	vsi->orig_rss_size = 0;
586
587	if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
588		if (reset_type == ICE_RESET_PFR) {
589			vsi->old_ena_tc = vsi->all_enatc;
590			vsi->old_numtc = vsi->all_numtc;
591		} else {
592			ice_remove_q_channels(vsi, true);
593
594			/* for other reset type, do not support channel rebuild
595			 * hence reset needed info
596			 */
597			vsi->old_ena_tc = 0;
598			vsi->all_enatc = 0;
599			vsi->old_numtc = 0;
600			vsi->all_numtc = 0;
601			vsi->req_txq = 0;
602			vsi->req_rxq = 0;
603			clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
604			memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt));
605		}
606	}
607skip:
608
609	/* clear SW filtering DB */
610	ice_clear_hw_tbls(hw);
611	/* disable the VSIs and their queues that are not already DOWN */
612	ice_pf_dis_all_vsi(pf, false);
613
614	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
615		ice_ptp_prepare_for_reset(pf);
616
617	if (ice_is_feature_supported(pf, ICE_F_GNSS))
618		ice_gnss_exit(pf);
619
620	if (hw->port_info)
621		ice_sched_clear_port(hw->port_info);
622
623	ice_shutdown_all_ctrlq(hw);
624
625	set_bit(ICE_PREPARED_FOR_RESET, pf->state);
626}
627
628/**
629 * ice_do_reset - Initiate one of many types of resets
630 * @pf: board private structure
631 * @reset_type: reset type requested before this function was called.
632 */
633static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
634{
635	struct device *dev = ice_pf_to_dev(pf);
636	struct ice_hw *hw = &pf->hw;
637
638	dev_dbg(dev, "reset_type 0x%x requested\n", reset_type);
639
640	if (pf->lag && pf->lag->bonded && reset_type == ICE_RESET_PFR) {
641		dev_dbg(dev, "PFR on a bonded interface, promoting to CORER\n");
642		reset_type = ICE_RESET_CORER;
643	}
644
645	ice_prepare_for_reset(pf, reset_type);
646
647	/* trigger the reset */
648	if (ice_reset(hw, reset_type)) {
649		dev_err(dev, "reset %d failed\n", reset_type);
650		set_bit(ICE_RESET_FAILED, pf->state);
651		clear_bit(ICE_RESET_OICR_RECV, pf->state);
652		clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
653		clear_bit(ICE_PFR_REQ, pf->state);
654		clear_bit(ICE_CORER_REQ, pf->state);
655		clear_bit(ICE_GLOBR_REQ, pf->state);
656		wake_up(&pf->reset_wait_queue);
657		return;
658	}
659
660	/* PFR is a bit of a special case because it doesn't result in an OICR
661	 * interrupt. So for PFR, rebuild after the reset and clear the reset-
662	 * associated state bits.
663	 */
664	if (reset_type == ICE_RESET_PFR) {
665		pf->pfr_count++;
666		ice_rebuild(pf, reset_type);
667		clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
668		clear_bit(ICE_PFR_REQ, pf->state);
669		wake_up(&pf->reset_wait_queue);
670		ice_reset_all_vfs(pf);
671	}
672}
673
674/**
675 * ice_reset_subtask - Set up for resetting the device and driver
676 * @pf: board private structure
677 */
678static void ice_reset_subtask(struct ice_pf *pf)
679{
680	enum ice_reset_req reset_type = ICE_RESET_INVAL;
681
682	/* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an
683	 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type
684	 * of reset is pending and sets bits in pf->state indicating the reset
685	 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set
686	 * prepare for pending reset if not already (for PF software-initiated
687	 * global resets the software should already be prepared for it as
688	 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated
689	 * by firmware or software on other PFs, that bit is not set so prepare
690	 * for the reset now), poll for reset done, rebuild and return.
691	 */
692	if (test_bit(ICE_RESET_OICR_RECV, pf->state)) {
693		/* Perform the largest reset requested */
694		if (test_and_clear_bit(ICE_CORER_RECV, pf->state))
695			reset_type = ICE_RESET_CORER;
696		if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state))
697			reset_type = ICE_RESET_GLOBR;
698		if (test_and_clear_bit(ICE_EMPR_RECV, pf->state))
699			reset_type = ICE_RESET_EMPR;
700		/* return if no valid reset type requested */
701		if (reset_type == ICE_RESET_INVAL)
702			return;
703		ice_prepare_for_reset(pf, reset_type);
704
705		/* make sure we are ready to rebuild */
706		if (ice_check_reset(&pf->hw)) {
707			set_bit(ICE_RESET_FAILED, pf->state);
708		} else {
709			/* done with reset. start rebuild */
710			pf->hw.reset_ongoing = false;
711			ice_rebuild(pf, reset_type);
712			/* clear bit to resume normal operations, but
713			 * ICE_NEEDS_RESTART bit is set in case rebuild failed
714			 */
715			clear_bit(ICE_RESET_OICR_RECV, pf->state);
716			clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
717			clear_bit(ICE_PFR_REQ, pf->state);
718			clear_bit(ICE_CORER_REQ, pf->state);
719			clear_bit(ICE_GLOBR_REQ, pf->state);
720			wake_up(&pf->reset_wait_queue);
721			ice_reset_all_vfs(pf);
722		}
723
724		return;
725	}
726
727	/* No pending resets to finish processing. Check for new resets */
728	if (test_bit(ICE_PFR_REQ, pf->state)) {
729		reset_type = ICE_RESET_PFR;
730		if (pf->lag && pf->lag->bonded) {
731			dev_dbg(ice_pf_to_dev(pf), "PFR on a bonded interface, promoting to CORER\n");
732			reset_type = ICE_RESET_CORER;
733		}
734	}
735	if (test_bit(ICE_CORER_REQ, pf->state))
736		reset_type = ICE_RESET_CORER;
737	if (test_bit(ICE_GLOBR_REQ, pf->state))
738		reset_type = ICE_RESET_GLOBR;
739	/* If no valid reset type requested just return */
740	if (reset_type == ICE_RESET_INVAL)
741		return;
742
743	/* reset if not already down or busy */
744	if (!test_bit(ICE_DOWN, pf->state) &&
745	    !test_bit(ICE_CFG_BUSY, pf->state)) {
746		ice_do_reset(pf, reset_type);
747	}
748}
749
750/**
751 * ice_print_topo_conflict - print topology conflict message
752 * @vsi: the VSI whose topology status is being checked
753 */
754static void ice_print_topo_conflict(struct ice_vsi *vsi)
755{
756	switch (vsi->port_info->phy.link_info.topo_media_conflict) {
757	case ICE_AQ_LINK_TOPO_CONFLICT:
758	case ICE_AQ_LINK_MEDIA_CONFLICT:
759	case ICE_AQ_LINK_TOPO_UNREACH_PRT:
760	case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT:
761	case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA:
762		netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n");
763		break;
764	case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA:
765		if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags))
766			netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n");
767		else
768			netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n");
769		break;
770	default:
771		break;
772	}
773}
774
775/**
776 * ice_print_link_msg - print link up or down message
777 * @vsi: the VSI whose link status is being queried
778 * @isup: boolean for if the link is now up or down
779 */
780void ice_print_link_msg(struct ice_vsi *vsi, bool isup)
781{
782	struct ice_aqc_get_phy_caps_data *caps;
783	const char *an_advertised;
784	const char *fec_req;
785	const char *speed;
786	const char *fec;
787	const char *fc;
788	const char *an;
789	int status;
790
791	if (!vsi)
792		return;
793
794	if (vsi->current_isup == isup)
795		return;
796
797	vsi->current_isup = isup;
798
799	if (!isup) {
800		netdev_info(vsi->netdev, "NIC Link is Down\n");
801		return;
802	}
803
804	switch (vsi->port_info->phy.link_info.link_speed) {
805	case ICE_AQ_LINK_SPEED_100GB:
806		speed = "100 G";
807		break;
808	case ICE_AQ_LINK_SPEED_50GB:
809		speed = "50 G";
810		break;
811	case ICE_AQ_LINK_SPEED_40GB:
812		speed = "40 G";
813		break;
814	case ICE_AQ_LINK_SPEED_25GB:
815		speed = "25 G";
816		break;
817	case ICE_AQ_LINK_SPEED_20GB:
818		speed = "20 G";
819		break;
820	case ICE_AQ_LINK_SPEED_10GB:
821		speed = "10 G";
822		break;
823	case ICE_AQ_LINK_SPEED_5GB:
824		speed = "5 G";
825		break;
826	case ICE_AQ_LINK_SPEED_2500MB:
827		speed = "2.5 G";
828		break;
829	case ICE_AQ_LINK_SPEED_1000MB:
830		speed = "1 G";
831		break;
832	case ICE_AQ_LINK_SPEED_100MB:
833		speed = "100 M";
834		break;
835	default:
836		speed = "Unknown ";
837		break;
838	}
839
840	switch (vsi->port_info->fc.current_mode) {
841	case ICE_FC_FULL:
842		fc = "Rx/Tx";
843		break;
844	case ICE_FC_TX_PAUSE:
845		fc = "Tx";
846		break;
847	case ICE_FC_RX_PAUSE:
848		fc = "Rx";
849		break;
850	case ICE_FC_NONE:
851		fc = "None";
852		break;
853	default:
854		fc = "Unknown";
855		break;
856	}
857
858	/* Get FEC mode based on negotiated link info */
859	switch (vsi->port_info->phy.link_info.fec_info) {
860	case ICE_AQ_LINK_25G_RS_528_FEC_EN:
861	case ICE_AQ_LINK_25G_RS_544_FEC_EN:
862		fec = "RS-FEC";
863		break;
864	case ICE_AQ_LINK_25G_KR_FEC_EN:
865		fec = "FC-FEC/BASE-R";
866		break;
867	default:
868		fec = "NONE";
869		break;
870	}
871
872	/* check if autoneg completed, might be false due to not supported */
873	if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED)
874		an = "True";
875	else
876		an = "False";
877
878	/* Get FEC mode requested based on PHY caps last SW configuration */
879	caps = kzalloc(sizeof(*caps), GFP_KERNEL);
880	if (!caps) {
881		fec_req = "Unknown";
882		an_advertised = "Unknown";
883		goto done;
884	}
885
886	status = ice_aq_get_phy_caps(vsi->port_info, false,
887				     ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL);
888	if (status)
889		netdev_info(vsi->netdev, "Get phy capability failed.\n");
890
891	an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off";
892
893	if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ ||
894	    caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ)
895		fec_req = "RS-FEC";
896	else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ ||
897		 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ)
898		fec_req = "FC-FEC/BASE-R";
899	else
900		fec_req = "NONE";
901
902	kfree(caps);
903
904done:
905	netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n",
906		    speed, fec_req, fec, an_advertised, an, fc);
907	ice_print_topo_conflict(vsi);
908}
909
910/**
911 * ice_vsi_link_event - update the VSI's netdev
912 * @vsi: the VSI on which the link event occurred
913 * @link_up: whether or not the VSI needs to be set up or down
914 */
915static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up)
916{
917	if (!vsi)
918		return;
919
920	if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev)
921		return;
922
923	if (vsi->type == ICE_VSI_PF) {
924		if (link_up == netif_carrier_ok(vsi->netdev))
925			return;
926
927		if (link_up) {
928			netif_carrier_on(vsi->netdev);
929			netif_tx_wake_all_queues(vsi->netdev);
930		} else {
931			netif_carrier_off(vsi->netdev);
932			netif_tx_stop_all_queues(vsi->netdev);
933		}
934	}
935}
936
937/**
938 * ice_set_dflt_mib - send a default config MIB to the FW
939 * @pf: private PF struct
940 *
941 * This function sends a default configuration MIB to the FW.
942 *
943 * If this function errors out at any point, the driver is still able to
944 * function.  The main impact is that LFC may not operate as expected.
945 * Therefore an error state in this function should be treated with a DBG
946 * message and continue on with driver rebuild/reenable.
947 */
948static void ice_set_dflt_mib(struct ice_pf *pf)
949{
950	struct device *dev = ice_pf_to_dev(pf);
951	u8 mib_type, *buf, *lldpmib = NULL;
952	u16 len, typelen, offset = 0;
953	struct ice_lldp_org_tlv *tlv;
954	struct ice_hw *hw = &pf->hw;
955	u32 ouisubtype;
956
957	mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB;
958	lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL);
959	if (!lldpmib) {
960		dev_dbg(dev, "%s Failed to allocate MIB memory\n",
961			__func__);
962		return;
963	}
964
965	/* Add ETS CFG TLV */
966	tlv = (struct ice_lldp_org_tlv *)lldpmib;
967	typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
968		   ICE_IEEE_ETS_TLV_LEN);
969	tlv->typelen = htons(typelen);
970	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
971		      ICE_IEEE_SUBTYPE_ETS_CFG);
972	tlv->ouisubtype = htonl(ouisubtype);
973
974	buf = tlv->tlvinfo;
975	buf[0] = 0;
976
977	/* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0.
978	 * Octets 5 - 12 are BW values, set octet 5 to 100% BW.
979	 * Octets 13 - 20 are TSA values - leave as zeros
980	 */
981	buf[5] = 0x64;
982	len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S;
983	offset += len + 2;
984	tlv = (struct ice_lldp_org_tlv *)
985		((char *)tlv + sizeof(tlv->typelen) + len);
986
987	/* Add ETS REC TLV */
988	buf = tlv->tlvinfo;
989	tlv->typelen = htons(typelen);
990
991	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
992		      ICE_IEEE_SUBTYPE_ETS_REC);
993	tlv->ouisubtype = htonl(ouisubtype);
994
995	/* First octet of buf is reserved
996	 * Octets 1 - 4 map UP to TC - all UPs map to zero
997	 * Octets 5 - 12 are BW values - set TC 0 to 100%.
998	 * Octets 13 - 20 are TSA value - leave as zeros
999	 */
1000	buf[5] = 0x64;
1001	offset += len + 2;
1002	tlv = (struct ice_lldp_org_tlv *)
1003		((char *)tlv + sizeof(tlv->typelen) + len);
1004
1005	/* Add PFC CFG TLV */
1006	typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
1007		   ICE_IEEE_PFC_TLV_LEN);
1008	tlv->typelen = htons(typelen);
1009
1010	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
1011		      ICE_IEEE_SUBTYPE_PFC_CFG);
1012	tlv->ouisubtype = htonl(ouisubtype);
1013
1014	/* Octet 1 left as all zeros - PFC disabled */
1015	buf[0] = 0x08;
1016	len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S;
1017	offset += len + 2;
1018
1019	if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL))
1020		dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__);
1021
1022	kfree(lldpmib);
1023}
1024
1025/**
1026 * ice_check_phy_fw_load - check if PHY FW load failed
1027 * @pf: pointer to PF struct
1028 * @link_cfg_err: bitmap from the link info structure
1029 *
1030 * check if external PHY FW load failed and print an error message if it did
1031 */
1032static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err)
1033{
1034	if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) {
1035		clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags);
1036		return;
1037	}
1038
1039	if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags))
1040		return;
1041
1042	if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) {
1043		dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n");
1044		set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags);
1045	}
1046}
1047
1048/**
1049 * ice_check_module_power
1050 * @pf: pointer to PF struct
1051 * @link_cfg_err: bitmap from the link info structure
1052 *
1053 * check module power level returned by a previous call to aq_get_link_info
1054 * and print error messages if module power level is not supported
1055 */
1056static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err)
1057{
1058	/* if module power level is supported, clear the flag */
1059	if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT |
1060			      ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) {
1061		clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1062		return;
1063	}
1064
1065	/* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the
1066	 * above block didn't clear this bit, there's nothing to do
1067	 */
1068	if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags))
1069		return;
1070
1071	if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) {
1072		dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n");
1073		set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1074	} else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) {
1075		dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n");
1076		set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1077	}
1078}
1079
1080/**
1081 * ice_check_link_cfg_err - check if link configuration failed
1082 * @pf: pointer to the PF struct
1083 * @link_cfg_err: bitmap from the link info structure
1084 *
1085 * print if any link configuration failure happens due to the value in the
1086 * link_cfg_err parameter in the link info structure
1087 */
1088static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err)
1089{
1090	ice_check_module_power(pf, link_cfg_err);
1091	ice_check_phy_fw_load(pf, link_cfg_err);
1092}
1093
1094/**
1095 * ice_link_event - process the link event
1096 * @pf: PF that the link event is associated with
1097 * @pi: port_info for the port that the link event is associated with
1098 * @link_up: true if the physical link is up and false if it is down
1099 * @link_speed: current link speed received from the link event
1100 *
1101 * Returns 0 on success and negative on failure
1102 */
1103static int
1104ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up,
1105	       u16 link_speed)
1106{
1107	struct device *dev = ice_pf_to_dev(pf);
1108	struct ice_phy_info *phy_info;
1109	struct ice_vsi *vsi;
1110	u16 old_link_speed;
1111	bool old_link;
1112	int status;
1113
1114	phy_info = &pi->phy;
1115	phy_info->link_info_old = phy_info->link_info;
1116
1117	old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP);
1118	old_link_speed = phy_info->link_info_old.link_speed;
1119
1120	/* update the link info structures and re-enable link events,
1121	 * don't bail on failure due to other book keeping needed
1122	 */
1123	status = ice_update_link_info(pi);
1124	if (status)
1125		dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n",
1126			pi->lport, status,
1127			ice_aq_str(pi->hw->adminq.sq_last_status));
1128
1129	ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
1130
1131	/* Check if the link state is up after updating link info, and treat
1132	 * this event as an UP event since the link is actually UP now.
1133	 */
1134	if (phy_info->link_info.link_info & ICE_AQ_LINK_UP)
1135		link_up = true;
1136
1137	vsi = ice_get_main_vsi(pf);
1138	if (!vsi || !vsi->port_info)
1139		return -EINVAL;
1140
1141	/* turn off PHY if media was removed */
1142	if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) &&
1143	    !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) {
1144		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
1145		ice_set_link(vsi, false);
1146	}
1147
1148	/* if the old link up/down and speed is the same as the new */
1149	if (link_up == old_link && link_speed == old_link_speed)
1150		return 0;
1151
1152	ice_ptp_link_change(pf, pf->hw.pf_id, link_up);
1153
1154	if (ice_is_dcb_active(pf)) {
1155		if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
1156			ice_dcb_rebuild(pf);
1157	} else {
1158		if (link_up)
1159			ice_set_dflt_mib(pf);
1160	}
1161	ice_vsi_link_event(vsi, link_up);
1162	ice_print_link_msg(vsi, link_up);
1163
1164	ice_vc_notify_link_state(pf);
1165
1166	return 0;
1167}
1168
1169/**
1170 * ice_watchdog_subtask - periodic tasks not using event driven scheduling
1171 * @pf: board private structure
1172 */
1173static void ice_watchdog_subtask(struct ice_pf *pf)
1174{
1175	int i;
1176
1177	/* if interface is down do nothing */
1178	if (test_bit(ICE_DOWN, pf->state) ||
1179	    test_bit(ICE_CFG_BUSY, pf->state))
1180		return;
1181
1182	/* make sure we don't do these things too often */
1183	if (time_before(jiffies,
1184			pf->serv_tmr_prev + pf->serv_tmr_period))
1185		return;
1186
1187	pf->serv_tmr_prev = jiffies;
1188
1189	/* Update the stats for active netdevs so the network stack
1190	 * can look at updated numbers whenever it cares to
1191	 */
1192	ice_update_pf_stats(pf);
1193	ice_for_each_vsi(pf, i)
1194		if (pf->vsi[i] && pf->vsi[i]->netdev)
1195			ice_update_vsi_stats(pf->vsi[i]);
1196}
1197
1198/**
1199 * ice_init_link_events - enable/initialize link events
1200 * @pi: pointer to the port_info instance
1201 *
1202 * Returns -EIO on failure, 0 on success
1203 */
1204static int ice_init_link_events(struct ice_port_info *pi)
1205{
1206	u16 mask;
1207
1208	mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA |
1209		       ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL |
1210		       ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL));
1211
1212	if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) {
1213		dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n",
1214			pi->lport);
1215		return -EIO;
1216	}
1217
1218	if (ice_aq_get_link_info(pi, true, NULL, NULL)) {
1219		dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n",
1220			pi->lport);
1221		return -EIO;
1222	}
1223
1224	return 0;
1225}
1226
1227/**
1228 * ice_handle_link_event - handle link event via ARQ
1229 * @pf: PF that the link event is associated with
1230 * @event: event structure containing link status info
1231 */
1232static int
1233ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event)
1234{
1235	struct ice_aqc_get_link_status_data *link_data;
1236	struct ice_port_info *port_info;
1237	int status;
1238
1239	link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf;
1240	port_info = pf->hw.port_info;
1241	if (!port_info)
1242		return -EINVAL;
1243
1244	status = ice_link_event(pf, port_info,
1245				!!(link_data->link_info & ICE_AQ_LINK_UP),
1246				le16_to_cpu(link_data->link_speed));
1247	if (status)
1248		dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n",
1249			status);
1250
1251	return status;
1252}
1253
1254/**
1255 * ice_aq_prep_for_event - Prepare to wait for an AdminQ event from firmware
1256 * @pf: pointer to the PF private structure
1257 * @task: intermediate helper storage and identifier for waiting
1258 * @opcode: the opcode to wait for
1259 *
1260 * Prepares to wait for a specific AdminQ completion event on the ARQ for
1261 * a given PF. Actual wait would be done by a call to ice_aq_wait_for_event().
1262 *
1263 * Calls are separated to allow caller registering for event before sending
1264 * the command, which mitigates a race between registering and FW responding.
1265 *
1266 * To obtain only the descriptor contents, pass an task->event with null
1267 * msg_buf. If the complete data buffer is desired, allocate the
1268 * task->event.msg_buf with enough space ahead of time.
1269 */
1270void ice_aq_prep_for_event(struct ice_pf *pf, struct ice_aq_task *task,
1271			   u16 opcode)
1272{
1273	INIT_HLIST_NODE(&task->entry);
1274	task->opcode = opcode;
1275	task->state = ICE_AQ_TASK_WAITING;
1276
1277	spin_lock_bh(&pf->aq_wait_lock);
1278	hlist_add_head(&task->entry, &pf->aq_wait_list);
1279	spin_unlock_bh(&pf->aq_wait_lock);
1280}
1281
1282/**
1283 * ice_aq_wait_for_event - Wait for an AdminQ event from firmware
1284 * @pf: pointer to the PF private structure
1285 * @task: ptr prepared by ice_aq_prep_for_event()
1286 * @timeout: how long to wait, in jiffies
1287 *
1288 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The
1289 * current thread will be put to sleep until the specified event occurs or
1290 * until the given timeout is reached.
1291 *
1292 * Returns: zero on success, or a negative error code on failure.
1293 */
1294int ice_aq_wait_for_event(struct ice_pf *pf, struct ice_aq_task *task,
1295			  unsigned long timeout)
1296{
1297	enum ice_aq_task_state *state = &task->state;
1298	struct device *dev = ice_pf_to_dev(pf);
1299	unsigned long start = jiffies;
1300	long ret;
1301	int err;
1302
1303	ret = wait_event_interruptible_timeout(pf->aq_wait_queue,
1304					       *state != ICE_AQ_TASK_WAITING,
1305					       timeout);
1306	switch (*state) {
1307	case ICE_AQ_TASK_NOT_PREPARED:
1308		WARN(1, "call to %s without ice_aq_prep_for_event()", __func__);
1309		err = -EINVAL;
1310		break;
1311	case ICE_AQ_TASK_WAITING:
1312		err = ret < 0 ? ret : -ETIMEDOUT;
1313		break;
1314	case ICE_AQ_TASK_CANCELED:
1315		err = ret < 0 ? ret : -ECANCELED;
1316		break;
1317	case ICE_AQ_TASK_COMPLETE:
1318		err = ret < 0 ? ret : 0;
1319		break;
1320	default:
1321		WARN(1, "Unexpected AdminQ wait task state %u", *state);
1322		err = -EINVAL;
1323		break;
1324	}
1325
1326	dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n",
1327		jiffies_to_msecs(jiffies - start),
1328		jiffies_to_msecs(timeout),
1329		task->opcode);
1330
1331	spin_lock_bh(&pf->aq_wait_lock);
1332	hlist_del(&task->entry);
1333	spin_unlock_bh(&pf->aq_wait_lock);
1334
1335	return err;
1336}
1337
1338/**
1339 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event
1340 * @pf: pointer to the PF private structure
1341 * @opcode: the opcode of the event
1342 * @event: the event to check
1343 *
1344 * Loops over the current list of pending threads waiting for an AdminQ event.
1345 * For each matching task, copy the contents of the event into the task
1346 * structure and wake up the thread.
1347 *
1348 * If multiple threads wait for the same opcode, they will all be woken up.
1349 *
1350 * Note that event->msg_buf will only be duplicated if the event has a buffer
1351 * with enough space already allocated. Otherwise, only the descriptor and
1352 * message length will be copied.
1353 *
1354 * Returns: true if an event was found, false otherwise
1355 */
1356static void ice_aq_check_events(struct ice_pf *pf, u16 opcode,
1357				struct ice_rq_event_info *event)
1358{
1359	struct ice_rq_event_info *task_ev;
1360	struct ice_aq_task *task;
1361	bool found = false;
1362
1363	spin_lock_bh(&pf->aq_wait_lock);
1364	hlist_for_each_entry(task, &pf->aq_wait_list, entry) {
1365		if (task->state != ICE_AQ_TASK_WAITING)
1366			continue;
1367		if (task->opcode != opcode)
1368			continue;
1369
1370		task_ev = &task->event;
1371		memcpy(&task_ev->desc, &event->desc, sizeof(event->desc));
1372		task_ev->msg_len = event->msg_len;
1373
1374		/* Only copy the data buffer if a destination was set */
1375		if (task_ev->msg_buf && task_ev->buf_len >= event->buf_len) {
1376			memcpy(task_ev->msg_buf, event->msg_buf,
1377			       event->buf_len);
1378			task_ev->buf_len = event->buf_len;
1379		}
1380
1381		task->state = ICE_AQ_TASK_COMPLETE;
1382		found = true;
1383	}
1384	spin_unlock_bh(&pf->aq_wait_lock);
1385
1386	if (found)
1387		wake_up(&pf->aq_wait_queue);
1388}
1389
1390/**
1391 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks
1392 * @pf: the PF private structure
1393 *
1394 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads.
1395 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED.
1396 */
1397static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf)
1398{
1399	struct ice_aq_task *task;
1400
1401	spin_lock_bh(&pf->aq_wait_lock);
1402	hlist_for_each_entry(task, &pf->aq_wait_list, entry)
1403		task->state = ICE_AQ_TASK_CANCELED;
1404	spin_unlock_bh(&pf->aq_wait_lock);
1405
1406	wake_up(&pf->aq_wait_queue);
1407}
1408
1409#define ICE_MBX_OVERFLOW_WATERMARK 64
1410
1411/**
1412 * __ice_clean_ctrlq - helper function to clean controlq rings
1413 * @pf: ptr to struct ice_pf
1414 * @q_type: specific Control queue type
1415 */
1416static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type)
1417{
1418	struct device *dev = ice_pf_to_dev(pf);
1419	struct ice_rq_event_info event;
1420	struct ice_hw *hw = &pf->hw;
1421	struct ice_ctl_q_info *cq;
1422	u16 pending, i = 0;
1423	const char *qtype;
1424	u32 oldval, val;
1425
1426	/* Do not clean control queue if/when PF reset fails */
1427	if (test_bit(ICE_RESET_FAILED, pf->state))
1428		return 0;
1429
1430	switch (q_type) {
1431	case ICE_CTL_Q_ADMIN:
1432		cq = &hw->adminq;
1433		qtype = "Admin";
1434		break;
1435	case ICE_CTL_Q_SB:
1436		cq = &hw->sbq;
1437		qtype = "Sideband";
1438		break;
1439	case ICE_CTL_Q_MAILBOX:
1440		cq = &hw->mailboxq;
1441		qtype = "Mailbox";
1442		/* we are going to try to detect a malicious VF, so set the
1443		 * state to begin detection
1444		 */
1445		hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT;
1446		break;
1447	default:
1448		dev_warn(dev, "Unknown control queue type 0x%x\n", q_type);
1449		return 0;
1450	}
1451
1452	/* check for error indications - PF_xx_AxQLEN register layout for
1453	 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN.
1454	 */
1455	val = rd32(hw, cq->rq.len);
1456	if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1457		   PF_FW_ARQLEN_ARQCRIT_M)) {
1458		oldval = val;
1459		if (val & PF_FW_ARQLEN_ARQVFE_M)
1460			dev_dbg(dev, "%s Receive Queue VF Error detected\n",
1461				qtype);
1462		if (val & PF_FW_ARQLEN_ARQOVFL_M) {
1463			dev_dbg(dev, "%s Receive Queue Overflow Error detected\n",
1464				qtype);
1465		}
1466		if (val & PF_FW_ARQLEN_ARQCRIT_M)
1467			dev_dbg(dev, "%s Receive Queue Critical Error detected\n",
1468				qtype);
1469		val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1470			 PF_FW_ARQLEN_ARQCRIT_M);
1471		if (oldval != val)
1472			wr32(hw, cq->rq.len, val);
1473	}
1474
1475	val = rd32(hw, cq->sq.len);
1476	if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1477		   PF_FW_ATQLEN_ATQCRIT_M)) {
1478		oldval = val;
1479		if (val & PF_FW_ATQLEN_ATQVFE_M)
1480			dev_dbg(dev, "%s Send Queue VF Error detected\n",
1481				qtype);
1482		if (val & PF_FW_ATQLEN_ATQOVFL_M) {
1483			dev_dbg(dev, "%s Send Queue Overflow Error detected\n",
1484				qtype);
1485		}
1486		if (val & PF_FW_ATQLEN_ATQCRIT_M)
1487			dev_dbg(dev, "%s Send Queue Critical Error detected\n",
1488				qtype);
1489		val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1490			 PF_FW_ATQLEN_ATQCRIT_M);
1491		if (oldval != val)
1492			wr32(hw, cq->sq.len, val);
1493	}
1494
1495	event.buf_len = cq->rq_buf_size;
1496	event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
1497	if (!event.msg_buf)
1498		return 0;
1499
1500	do {
1501		struct ice_mbx_data data = {};
1502		u16 opcode;
1503		int ret;
1504
1505		ret = ice_clean_rq_elem(hw, cq, &event, &pending);
1506		if (ret == -EALREADY)
1507			break;
1508		if (ret) {
1509			dev_err(dev, "%s Receive Queue event error %d\n", qtype,
1510				ret);
1511			break;
1512		}
1513
1514		opcode = le16_to_cpu(event.desc.opcode);
1515
1516		/* Notify any thread that might be waiting for this event */
1517		ice_aq_check_events(pf, opcode, &event);
1518
1519		switch (opcode) {
1520		case ice_aqc_opc_get_link_status:
1521			if (ice_handle_link_event(pf, &event))
1522				dev_err(dev, "Could not handle link event\n");
1523			break;
1524		case ice_aqc_opc_event_lan_overflow:
1525			ice_vf_lan_overflow_event(pf, &event);
1526			break;
1527		case ice_mbx_opc_send_msg_to_pf:
1528			data.num_msg_proc = i;
1529			data.num_pending_arq = pending;
1530			data.max_num_msgs_mbx = hw->mailboxq.num_rq_entries;
1531			data.async_watermark_val = ICE_MBX_OVERFLOW_WATERMARK;
1532
1533			ice_vc_process_vf_msg(pf, &event, &data);
1534			break;
1535		case ice_aqc_opc_fw_logging:
1536			ice_output_fw_log(hw, &event.desc, event.msg_buf);
1537			break;
1538		case ice_aqc_opc_lldp_set_mib_change:
1539			ice_dcb_process_lldp_set_mib_change(pf, &event);
1540			break;
1541		default:
1542			dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n",
1543				qtype, opcode);
1544			break;
1545		}
1546	} while (pending && (i++ < ICE_DFLT_IRQ_WORK));
1547
1548	kfree(event.msg_buf);
1549
1550	return pending && (i == ICE_DFLT_IRQ_WORK);
1551}
1552
1553/**
1554 * ice_ctrlq_pending - check if there is a difference between ntc and ntu
1555 * @hw: pointer to hardware info
1556 * @cq: control queue information
1557 *
1558 * returns true if there are pending messages in a queue, false if there aren't
1559 */
1560static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq)
1561{
1562	u16 ntu;
1563
1564	ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask);
1565	return cq->rq.next_to_clean != ntu;
1566}
1567
1568/**
1569 * ice_clean_adminq_subtask - clean the AdminQ rings
1570 * @pf: board private structure
1571 */
1572static void ice_clean_adminq_subtask(struct ice_pf *pf)
1573{
1574	struct ice_hw *hw = &pf->hw;
1575
1576	if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state))
1577		return;
1578
1579	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN))
1580		return;
1581
1582	clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
1583
1584	/* There might be a situation where new messages arrive to a control
1585	 * queue between processing the last message and clearing the
1586	 * EVENT_PENDING bit. So before exiting, check queue head again (using
1587	 * ice_ctrlq_pending) and process new messages if any.
1588	 */
1589	if (ice_ctrlq_pending(hw, &hw->adminq))
1590		__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN);
1591
1592	ice_flush(hw);
1593}
1594
1595/**
1596 * ice_clean_mailboxq_subtask - clean the MailboxQ rings
1597 * @pf: board private structure
1598 */
1599static void ice_clean_mailboxq_subtask(struct ice_pf *pf)
1600{
1601	struct ice_hw *hw = &pf->hw;
1602
1603	if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state))
1604		return;
1605
1606	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX))
1607		return;
1608
1609	clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state);
1610
1611	if (ice_ctrlq_pending(hw, &hw->mailboxq))
1612		__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX);
1613
1614	ice_flush(hw);
1615}
1616
1617/**
1618 * ice_clean_sbq_subtask - clean the Sideband Queue rings
1619 * @pf: board private structure
1620 */
1621static void ice_clean_sbq_subtask(struct ice_pf *pf)
1622{
1623	struct ice_hw *hw = &pf->hw;
1624
1625	/* Nothing to do here if sideband queue is not supported */
1626	if (!ice_is_sbq_supported(hw)) {
1627		clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
1628		return;
1629	}
1630
1631	if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state))
1632		return;
1633
1634	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB))
1635		return;
1636
1637	clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
1638
1639	if (ice_ctrlq_pending(hw, &hw->sbq))
1640		__ice_clean_ctrlq(pf, ICE_CTL_Q_SB);
1641
1642	ice_flush(hw);
1643}
1644
1645/**
1646 * ice_service_task_schedule - schedule the service task to wake up
1647 * @pf: board private structure
1648 *
1649 * If not already scheduled, this puts the task into the work queue.
1650 */
1651void ice_service_task_schedule(struct ice_pf *pf)
1652{
1653	if (!test_bit(ICE_SERVICE_DIS, pf->state) &&
1654	    !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) &&
1655	    !test_bit(ICE_NEEDS_RESTART, pf->state))
1656		queue_work(ice_wq, &pf->serv_task);
1657}
1658
1659/**
1660 * ice_service_task_complete - finish up the service task
1661 * @pf: board private structure
1662 */
1663static void ice_service_task_complete(struct ice_pf *pf)
1664{
1665	WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state));
1666
1667	/* force memory (pf->state) to sync before next service task */
1668	smp_mb__before_atomic();
1669	clear_bit(ICE_SERVICE_SCHED, pf->state);
1670}
1671
1672/**
1673 * ice_service_task_stop - stop service task and cancel works
1674 * @pf: board private structure
1675 *
1676 * Return 0 if the ICE_SERVICE_DIS bit was not already set,
1677 * 1 otherwise.
1678 */
1679static int ice_service_task_stop(struct ice_pf *pf)
1680{
1681	int ret;
1682
1683	ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state);
1684
1685	if (pf->serv_tmr.function)
1686		del_timer_sync(&pf->serv_tmr);
1687	if (pf->serv_task.func)
1688		cancel_work_sync(&pf->serv_task);
1689
1690	clear_bit(ICE_SERVICE_SCHED, pf->state);
1691	return ret;
1692}
1693
1694/**
1695 * ice_service_task_restart - restart service task and schedule works
1696 * @pf: board private structure
1697 *
1698 * This function is needed for suspend and resume works (e.g WoL scenario)
1699 */
1700static void ice_service_task_restart(struct ice_pf *pf)
1701{
1702	clear_bit(ICE_SERVICE_DIS, pf->state);
1703	ice_service_task_schedule(pf);
1704}
1705
1706/**
1707 * ice_service_timer - timer callback to schedule service task
1708 * @t: pointer to timer_list
1709 */
1710static void ice_service_timer(struct timer_list *t)
1711{
1712	struct ice_pf *pf = from_timer(pf, t, serv_tmr);
1713
1714	mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies));
1715	ice_service_task_schedule(pf);
1716}
1717
1718/**
1719 * ice_handle_mdd_event - handle malicious driver detect event
1720 * @pf: pointer to the PF structure
1721 *
1722 * Called from service task. OICR interrupt handler indicates MDD event.
1723 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log
1724 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events
1725 * disable the queue, the PF can be configured to reset the VF using ethtool
1726 * private flag mdd-auto-reset-vf.
1727 */
1728static void ice_handle_mdd_event(struct ice_pf *pf)
1729{
1730	struct device *dev = ice_pf_to_dev(pf);
1731	struct ice_hw *hw = &pf->hw;
1732	struct ice_vf *vf;
1733	unsigned int bkt;
1734	u32 reg;
1735
1736	if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) {
1737		/* Since the VF MDD event logging is rate limited, check if
1738		 * there are pending MDD events.
1739		 */
1740		ice_print_vfs_mdd_events(pf);
1741		return;
1742	}
1743
1744	/* find what triggered an MDD event */
1745	reg = rd32(hw, GL_MDET_TX_PQM);
1746	if (reg & GL_MDET_TX_PQM_VALID_M) {
1747		u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >>
1748				GL_MDET_TX_PQM_PF_NUM_S;
1749		u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >>
1750				GL_MDET_TX_PQM_VF_NUM_S;
1751		u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >>
1752				GL_MDET_TX_PQM_MAL_TYPE_S;
1753		u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >>
1754				GL_MDET_TX_PQM_QNUM_S);
1755
1756		if (netif_msg_tx_err(pf))
1757			dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1758				 event, queue, pf_num, vf_num);
1759		wr32(hw, GL_MDET_TX_PQM, 0xffffffff);
1760	}
1761
1762	reg = rd32(hw, GL_MDET_TX_TCLAN);
1763	if (reg & GL_MDET_TX_TCLAN_VALID_M) {
1764		u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >>
1765				GL_MDET_TX_TCLAN_PF_NUM_S;
1766		u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >>
1767				GL_MDET_TX_TCLAN_VF_NUM_S;
1768		u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >>
1769				GL_MDET_TX_TCLAN_MAL_TYPE_S;
1770		u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >>
1771				GL_MDET_TX_TCLAN_QNUM_S);
1772
1773		if (netif_msg_tx_err(pf))
1774			dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1775				 event, queue, pf_num, vf_num);
1776		wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff);
1777	}
1778
1779	reg = rd32(hw, GL_MDET_RX);
1780	if (reg & GL_MDET_RX_VALID_M) {
1781		u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >>
1782				GL_MDET_RX_PF_NUM_S;
1783		u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >>
1784				GL_MDET_RX_VF_NUM_S;
1785		u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >>
1786				GL_MDET_RX_MAL_TYPE_S;
1787		u16 queue = ((reg & GL_MDET_RX_QNUM_M) >>
1788				GL_MDET_RX_QNUM_S);
1789
1790		if (netif_msg_rx_err(pf))
1791			dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n",
1792				 event, queue, pf_num, vf_num);
1793		wr32(hw, GL_MDET_RX, 0xffffffff);
1794	}
1795
1796	/* check to see if this PF caused an MDD event */
1797	reg = rd32(hw, PF_MDET_TX_PQM);
1798	if (reg & PF_MDET_TX_PQM_VALID_M) {
1799		wr32(hw, PF_MDET_TX_PQM, 0xFFFF);
1800		if (netif_msg_tx_err(pf))
1801			dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n");
1802	}
1803
1804	reg = rd32(hw, PF_MDET_TX_TCLAN);
1805	if (reg & PF_MDET_TX_TCLAN_VALID_M) {
1806		wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF);
1807		if (netif_msg_tx_err(pf))
1808			dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n");
1809	}
1810
1811	reg = rd32(hw, PF_MDET_RX);
1812	if (reg & PF_MDET_RX_VALID_M) {
1813		wr32(hw, PF_MDET_RX, 0xFFFF);
1814		if (netif_msg_rx_err(pf))
1815			dev_info(dev, "Malicious Driver Detection event RX detected on PF\n");
1816	}
1817
1818	/* Check to see if one of the VFs caused an MDD event, and then
1819	 * increment counters and set print pending
1820	 */
1821	mutex_lock(&pf->vfs.table_lock);
1822	ice_for_each_vf(pf, bkt, vf) {
1823		reg = rd32(hw, VP_MDET_TX_PQM(vf->vf_id));
1824		if (reg & VP_MDET_TX_PQM_VALID_M) {
1825			wr32(hw, VP_MDET_TX_PQM(vf->vf_id), 0xFFFF);
1826			vf->mdd_tx_events.count++;
1827			set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1828			if (netif_msg_tx_err(pf))
1829				dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n",
1830					 vf->vf_id);
1831		}
1832
1833		reg = rd32(hw, VP_MDET_TX_TCLAN(vf->vf_id));
1834		if (reg & VP_MDET_TX_TCLAN_VALID_M) {
1835			wr32(hw, VP_MDET_TX_TCLAN(vf->vf_id), 0xFFFF);
1836			vf->mdd_tx_events.count++;
1837			set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1838			if (netif_msg_tx_err(pf))
1839				dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n",
1840					 vf->vf_id);
1841		}
1842
1843		reg = rd32(hw, VP_MDET_TX_TDPU(vf->vf_id));
1844		if (reg & VP_MDET_TX_TDPU_VALID_M) {
1845			wr32(hw, VP_MDET_TX_TDPU(vf->vf_id), 0xFFFF);
1846			vf->mdd_tx_events.count++;
1847			set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1848			if (netif_msg_tx_err(pf))
1849				dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n",
1850					 vf->vf_id);
1851		}
1852
1853		reg = rd32(hw, VP_MDET_RX(vf->vf_id));
1854		if (reg & VP_MDET_RX_VALID_M) {
1855			wr32(hw, VP_MDET_RX(vf->vf_id), 0xFFFF);
1856			vf->mdd_rx_events.count++;
1857			set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1858			if (netif_msg_rx_err(pf))
1859				dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n",
1860					 vf->vf_id);
1861
1862			/* Since the queue is disabled on VF Rx MDD events, the
1863			 * PF can be configured to reset the VF through ethtool
1864			 * private flag mdd-auto-reset-vf.
1865			 */
1866			if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) {
1867				/* VF MDD event counters will be cleared by
1868				 * reset, so print the event prior to reset.
1869				 */
1870				ice_print_vf_rx_mdd_event(vf);
1871				ice_reset_vf(vf, ICE_VF_RESET_LOCK);
1872			}
1873		}
1874	}
1875	mutex_unlock(&pf->vfs.table_lock);
1876
1877	ice_print_vfs_mdd_events(pf);
1878}
1879
1880/**
1881 * ice_force_phys_link_state - Force the physical link state
1882 * @vsi: VSI to force the physical link state to up/down
1883 * @link_up: true/false indicates to set the physical link to up/down
1884 *
1885 * Force the physical link state by getting the current PHY capabilities from
1886 * hardware and setting the PHY config based on the determined capabilities. If
1887 * link changes a link event will be triggered because both the Enable Automatic
1888 * Link Update and LESM Enable bits are set when setting the PHY capabilities.
1889 *
1890 * Returns 0 on success, negative on failure
1891 */
1892static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up)
1893{
1894	struct ice_aqc_get_phy_caps_data *pcaps;
1895	struct ice_aqc_set_phy_cfg_data *cfg;
1896	struct ice_port_info *pi;
1897	struct device *dev;
1898	int retcode;
1899
1900	if (!vsi || !vsi->port_info || !vsi->back)
1901		return -EINVAL;
1902	if (vsi->type != ICE_VSI_PF)
1903		return 0;
1904
1905	dev = ice_pf_to_dev(vsi->back);
1906
1907	pi = vsi->port_info;
1908
1909	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1910	if (!pcaps)
1911		return -ENOMEM;
1912
1913	retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
1914				      NULL);
1915	if (retcode) {
1916		dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n",
1917			vsi->vsi_num, retcode);
1918		retcode = -EIO;
1919		goto out;
1920	}
1921
1922	/* No change in link */
1923	if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) &&
1924	    link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP))
1925		goto out;
1926
1927	/* Use the current user PHY configuration. The current user PHY
1928	 * configuration is initialized during probe from PHY capabilities
1929	 * software mode, and updated on set PHY configuration.
1930	 */
1931	cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL);
1932	if (!cfg) {
1933		retcode = -ENOMEM;
1934		goto out;
1935	}
1936
1937	cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
1938	if (link_up)
1939		cfg->caps |= ICE_AQ_PHY_ENA_LINK;
1940	else
1941		cfg->caps &= ~ICE_AQ_PHY_ENA_LINK;
1942
1943	retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL);
1944	if (retcode) {
1945		dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
1946			vsi->vsi_num, retcode);
1947		retcode = -EIO;
1948	}
1949
1950	kfree(cfg);
1951out:
1952	kfree(pcaps);
1953	return retcode;
1954}
1955
1956/**
1957 * ice_init_nvm_phy_type - Initialize the NVM PHY type
1958 * @pi: port info structure
1959 *
1960 * Initialize nvm_phy_type_[low|high] for link lenient mode support
1961 */
1962static int ice_init_nvm_phy_type(struct ice_port_info *pi)
1963{
1964	struct ice_aqc_get_phy_caps_data *pcaps;
1965	struct ice_pf *pf = pi->hw->back;
1966	int err;
1967
1968	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1969	if (!pcaps)
1970		return -ENOMEM;
1971
1972	err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA,
1973				  pcaps, NULL);
1974
1975	if (err) {
1976		dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
1977		goto out;
1978	}
1979
1980	pf->nvm_phy_type_hi = pcaps->phy_type_high;
1981	pf->nvm_phy_type_lo = pcaps->phy_type_low;
1982
1983out:
1984	kfree(pcaps);
1985	return err;
1986}
1987
1988/**
1989 * ice_init_link_dflt_override - Initialize link default override
1990 * @pi: port info structure
1991 *
1992 * Initialize link default override and PHY total port shutdown during probe
1993 */
1994static void ice_init_link_dflt_override(struct ice_port_info *pi)
1995{
1996	struct ice_link_default_override_tlv *ldo;
1997	struct ice_pf *pf = pi->hw->back;
1998
1999	ldo = &pf->link_dflt_override;
2000	if (ice_get_link_default_override(ldo, pi))
2001		return;
2002
2003	if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS))
2004		return;
2005
2006	/* Enable Total Port Shutdown (override/replace link-down-on-close
2007	 * ethtool private flag) for ports with Port Disable bit set.
2008	 */
2009	set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags);
2010	set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags);
2011}
2012
2013/**
2014 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings
2015 * @pi: port info structure
2016 *
2017 * If default override is enabled, initialize the user PHY cfg speed and FEC
2018 * settings using the default override mask from the NVM.
2019 *
2020 * The PHY should only be configured with the default override settings the
2021 * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state
2022 * is used to indicate that the user PHY cfg default override is initialized
2023 * and the PHY has not been configured with the default override settings. The
2024 * state is set here, and cleared in ice_configure_phy the first time the PHY is
2025 * configured.
2026 *
2027 * This function should be called only if the FW doesn't support default
2028 * configuration mode, as reported by ice_fw_supports_report_dflt_cfg.
2029 */
2030static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi)
2031{
2032	struct ice_link_default_override_tlv *ldo;
2033	struct ice_aqc_set_phy_cfg_data *cfg;
2034	struct ice_phy_info *phy = &pi->phy;
2035	struct ice_pf *pf = pi->hw->back;
2036
2037	ldo = &pf->link_dflt_override;
2038
2039	/* If link default override is enabled, use to mask NVM PHY capabilities
2040	 * for speed and FEC default configuration.
2041	 */
2042	cfg = &phy->curr_user_phy_cfg;
2043
2044	if (ldo->phy_type_low || ldo->phy_type_high) {
2045		cfg->phy_type_low = pf->nvm_phy_type_lo &
2046				    cpu_to_le64(ldo->phy_type_low);
2047		cfg->phy_type_high = pf->nvm_phy_type_hi &
2048				     cpu_to_le64(ldo->phy_type_high);
2049	}
2050	cfg->link_fec_opt = ldo->fec_options;
2051	phy->curr_user_fec_req = ICE_FEC_AUTO;
2052
2053	set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state);
2054}
2055
2056/**
2057 * ice_init_phy_user_cfg - Initialize the PHY user configuration
2058 * @pi: port info structure
2059 *
2060 * Initialize the current user PHY configuration, speed, FEC, and FC requested
2061 * mode to default. The PHY defaults are from get PHY capabilities topology
2062 * with media so call when media is first available. An error is returned if
2063 * called when media is not available. The PHY initialization completed state is
2064 * set here.
2065 *
2066 * These configurations are used when setting PHY
2067 * configuration. The user PHY configuration is updated on set PHY
2068 * configuration. Returns 0 on success, negative on failure
2069 */
2070static int ice_init_phy_user_cfg(struct ice_port_info *pi)
2071{
2072	struct ice_aqc_get_phy_caps_data *pcaps;
2073	struct ice_phy_info *phy = &pi->phy;
2074	struct ice_pf *pf = pi->hw->back;
2075	int err;
2076
2077	if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
2078		return -EIO;
2079
2080	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
2081	if (!pcaps)
2082		return -ENOMEM;
2083
2084	if (ice_fw_supports_report_dflt_cfg(pi->hw))
2085		err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG,
2086					  pcaps, NULL);
2087	else
2088		err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
2089					  pcaps, NULL);
2090	if (err) {
2091		dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
2092		goto err_out;
2093	}
2094
2095	ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg);
2096
2097	/* check if lenient mode is supported and enabled */
2098	if (ice_fw_supports_link_override(pi->hw) &&
2099	    !(pcaps->module_compliance_enforcement &
2100	      ICE_AQC_MOD_ENFORCE_STRICT_MODE)) {
2101		set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags);
2102
2103		/* if the FW supports default PHY configuration mode, then the driver
2104		 * does not have to apply link override settings. If not,
2105		 * initialize user PHY configuration with link override values
2106		 */
2107		if (!ice_fw_supports_report_dflt_cfg(pi->hw) &&
2108		    (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) {
2109			ice_init_phy_cfg_dflt_override(pi);
2110			goto out;
2111		}
2112	}
2113
2114	/* if link default override is not enabled, set user flow control and
2115	 * FEC settings based on what get_phy_caps returned
2116	 */
2117	phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps,
2118						      pcaps->link_fec_options);
2119	phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps);
2120
2121out:
2122	phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M;
2123	set_bit(ICE_PHY_INIT_COMPLETE, pf->state);
2124err_out:
2125	kfree(pcaps);
2126	return err;
2127}
2128
2129/**
2130 * ice_configure_phy - configure PHY
2131 * @vsi: VSI of PHY
2132 *
2133 * Set the PHY configuration. If the current PHY configuration is the same as
2134 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise
2135 * configure the based get PHY capabilities for topology with media.
2136 */
2137static int ice_configure_phy(struct ice_vsi *vsi)
2138{
2139	struct device *dev = ice_pf_to_dev(vsi->back);
2140	struct ice_port_info *pi = vsi->port_info;
2141	struct ice_aqc_get_phy_caps_data *pcaps;
2142	struct ice_aqc_set_phy_cfg_data *cfg;
2143	struct ice_phy_info *phy = &pi->phy;
2144	struct ice_pf *pf = vsi->back;
2145	int err;
2146
2147	/* Ensure we have media as we cannot configure a medialess port */
2148	if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
2149		return -ENOMEDIUM;
2150
2151	ice_print_topo_conflict(vsi);
2152
2153	if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) &&
2154	    phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA)
2155		return -EPERM;
2156
2157	if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags))
2158		return ice_force_phys_link_state(vsi, true);
2159
2160	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
2161	if (!pcaps)
2162		return -ENOMEM;
2163
2164	/* Get current PHY config */
2165	err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
2166				  NULL);
2167	if (err) {
2168		dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n",
2169			vsi->vsi_num, err);
2170		goto done;
2171	}
2172
2173	/* If PHY enable link is configured and configuration has not changed,
2174	 * there's nothing to do
2175	 */
2176	if (pcaps->caps & ICE_AQC_PHY_EN_LINK &&
2177	    ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg))
2178		goto done;
2179
2180	/* Use PHY topology as baseline for configuration */
2181	memset(pcaps, 0, sizeof(*pcaps));
2182	if (ice_fw_supports_report_dflt_cfg(pi->hw))
2183		err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG,
2184					  pcaps, NULL);
2185	else
2186		err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
2187					  pcaps, NULL);
2188	if (err) {
2189		dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n",
2190			vsi->vsi_num, err);
2191		goto done;
2192	}
2193
2194	cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
2195	if (!cfg) {
2196		err = -ENOMEM;
2197		goto done;
2198	}
2199
2200	ice_copy_phy_caps_to_cfg(pi, pcaps, cfg);
2201
2202	/* Speed - If default override pending, use curr_user_phy_cfg set in
2203	 * ice_init_phy_user_cfg_ldo.
2204	 */
2205	if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING,
2206			       vsi->back->state)) {
2207		cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low;
2208		cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high;
2209	} else {
2210		u64 phy_low = 0, phy_high = 0;
2211
2212		ice_update_phy_type(&phy_low, &phy_high,
2213				    pi->phy.curr_user_speed_req);
2214		cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low);
2215		cfg->phy_type_high = pcaps->phy_type_high &
2216				     cpu_to_le64(phy_high);
2217	}
2218
2219	/* Can't provide what was requested; use PHY capabilities */
2220	if (!cfg->phy_type_low && !cfg->phy_type_high) {
2221		cfg->phy_type_low = pcaps->phy_type_low;
2222		cfg->phy_type_high = pcaps->phy_type_high;
2223	}
2224
2225	/* FEC */
2226	ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req);
2227
2228	/* Can't provide what was requested; use PHY capabilities */
2229	if (cfg->link_fec_opt !=
2230	    (cfg->link_fec_opt & pcaps->link_fec_options)) {
2231		cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
2232		cfg->link_fec_opt = pcaps->link_fec_options;
2233	}
2234
2235	/* Flow Control - always supported; no need to check against
2236	 * capabilities
2237	 */
2238	ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req);
2239
2240	/* Enable link and link update */
2241	cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK;
2242
2243	err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL);
2244	if (err)
2245		dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
2246			vsi->vsi_num, err);
2247
2248	kfree(cfg);
2249done:
2250	kfree(pcaps);
2251	return err;
2252}
2253
2254/**
2255 * ice_check_media_subtask - Check for media
2256 * @pf: pointer to PF struct
2257 *
2258 * If media is available, then initialize PHY user configuration if it is not
2259 * been, and configure the PHY if the interface is up.
2260 */
2261static void ice_check_media_subtask(struct ice_pf *pf)
2262{
2263	struct ice_port_info *pi;
2264	struct ice_vsi *vsi;
2265	int err;
2266
2267	/* No need to check for media if it's already present */
2268	if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags))
2269		return;
2270
2271	vsi = ice_get_main_vsi(pf);
2272	if (!vsi)
2273		return;
2274
2275	/* Refresh link info and check if media is present */
2276	pi = vsi->port_info;
2277	err = ice_update_link_info(pi);
2278	if (err)
2279		return;
2280
2281	ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
2282
2283	if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
2284		if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state))
2285			ice_init_phy_user_cfg(pi);
2286
2287		/* PHY settings are reset on media insertion, reconfigure
2288		 * PHY to preserve settings.
2289		 */
2290		if (test_bit(ICE_VSI_DOWN, vsi->state) &&
2291		    test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags))
2292			return;
2293
2294		err = ice_configure_phy(vsi);
2295		if (!err)
2296			clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
2297
2298		/* A Link Status Event will be generated; the event handler
2299		 * will complete bringing the interface up
2300		 */
2301	}
2302}
2303
2304/**
2305 * ice_service_task - manage and run subtasks
2306 * @work: pointer to work_struct contained by the PF struct
2307 */
2308static void ice_service_task(struct work_struct *work)
2309{
2310	struct ice_pf *pf = container_of(work, struct ice_pf, serv_task);
2311	unsigned long start_time = jiffies;
2312
2313	/* subtasks */
2314
2315	/* process reset requests first */
2316	ice_reset_subtask(pf);
2317
2318	/* bail if a reset/recovery cycle is pending or rebuild failed */
2319	if (ice_is_reset_in_progress(pf->state) ||
2320	    test_bit(ICE_SUSPENDED, pf->state) ||
2321	    test_bit(ICE_NEEDS_RESTART, pf->state)) {
2322		ice_service_task_complete(pf);
2323		return;
2324	}
2325
2326	if (test_and_clear_bit(ICE_AUX_ERR_PENDING, pf->state)) {
2327		struct iidc_event *event;
2328
2329		event = kzalloc(sizeof(*event), GFP_KERNEL);
2330		if (event) {
2331			set_bit(IIDC_EVENT_CRIT_ERR, event->type);
2332			/* report the entire OICR value to AUX driver */
2333			swap(event->reg, pf->oicr_err_reg);
2334			ice_send_event_to_aux(pf, event);
2335			kfree(event);
2336		}
2337	}
2338
2339	/* unplug aux dev per request, if an unplug request came in
2340	 * while processing a plug request, this will handle it
2341	 */
2342	if (test_and_clear_bit(ICE_FLAG_UNPLUG_AUX_DEV, pf->flags))
2343		ice_unplug_aux_dev(pf);
2344
2345	/* Plug aux device per request */
2346	if (test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags))
2347		ice_plug_aux_dev(pf);
2348
2349	if (test_and_clear_bit(ICE_FLAG_MTU_CHANGED, pf->flags)) {
2350		struct iidc_event *event;
2351
2352		event = kzalloc(sizeof(*event), GFP_KERNEL);
2353		if (event) {
2354			set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type);
2355			ice_send_event_to_aux(pf, event);
2356			kfree(event);
2357		}
2358	}
2359
2360	ice_clean_adminq_subtask(pf);
2361	ice_check_media_subtask(pf);
2362	ice_check_for_hang_subtask(pf);
2363	ice_sync_fltr_subtask(pf);
2364	ice_handle_mdd_event(pf);
2365	ice_watchdog_subtask(pf);
2366
2367	if (ice_is_safe_mode(pf)) {
2368		ice_service_task_complete(pf);
2369		return;
2370	}
2371
2372	ice_process_vflr_event(pf);
2373	ice_clean_mailboxq_subtask(pf);
2374	ice_clean_sbq_subtask(pf);
2375	ice_sync_arfs_fltrs(pf);
2376	ice_flush_fdir_ctx(pf);
2377
2378	/* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */
2379	ice_service_task_complete(pf);
2380
2381	/* If the tasks have taken longer than one service timer period
2382	 * or there is more work to be done, reset the service timer to
2383	 * schedule the service task now.
2384	 */
2385	if (time_after(jiffies, (start_time + pf->serv_tmr_period)) ||
2386	    test_bit(ICE_MDD_EVENT_PENDING, pf->state) ||
2387	    test_bit(ICE_VFLR_EVENT_PENDING, pf->state) ||
2388	    test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) ||
2389	    test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) ||
2390	    test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) ||
2391	    test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state))
2392		mod_timer(&pf->serv_tmr, jiffies);
2393}
2394
2395/**
2396 * ice_set_ctrlq_len - helper function to set controlq length
2397 * @hw: pointer to the HW instance
2398 */
2399static void ice_set_ctrlq_len(struct ice_hw *hw)
2400{
2401	hw->adminq.num_rq_entries = ICE_AQ_LEN;
2402	hw->adminq.num_sq_entries = ICE_AQ_LEN;
2403	hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN;
2404	hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN;
2405	hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M;
2406	hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN;
2407	hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2408	hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2409	hw->sbq.num_rq_entries = ICE_SBQ_LEN;
2410	hw->sbq.num_sq_entries = ICE_SBQ_LEN;
2411	hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN;
2412	hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN;
2413}
2414
2415/**
2416 * ice_schedule_reset - schedule a reset
2417 * @pf: board private structure
2418 * @reset: reset being requested
2419 */
2420int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset)
2421{
2422	struct device *dev = ice_pf_to_dev(pf);
2423
2424	/* bail out if earlier reset has failed */
2425	if (test_bit(ICE_RESET_FAILED, pf->state)) {
2426		dev_dbg(dev, "earlier reset has failed\n");
2427		return -EIO;
2428	}
2429	/* bail if reset/recovery already in progress */
2430	if (ice_is_reset_in_progress(pf->state)) {
2431		dev_dbg(dev, "Reset already in progress\n");
2432		return -EBUSY;
2433	}
2434
2435	switch (reset) {
2436	case ICE_RESET_PFR:
2437		set_bit(ICE_PFR_REQ, pf->state);
2438		break;
2439	case ICE_RESET_CORER:
2440		set_bit(ICE_CORER_REQ, pf->state);
2441		break;
2442	case ICE_RESET_GLOBR:
2443		set_bit(ICE_GLOBR_REQ, pf->state);
2444		break;
2445	default:
2446		return -EINVAL;
2447	}
2448
2449	ice_service_task_schedule(pf);
2450	return 0;
2451}
2452
2453/**
2454 * ice_irq_affinity_notify - Callback for affinity changes
2455 * @notify: context as to what irq was changed
2456 * @mask: the new affinity mask
2457 *
2458 * This is a callback function used by the irq_set_affinity_notifier function
2459 * so that we may register to receive changes to the irq affinity masks.
2460 */
2461static void
2462ice_irq_affinity_notify(struct irq_affinity_notify *notify,
2463			const cpumask_t *mask)
2464{
2465	struct ice_q_vector *q_vector =
2466		container_of(notify, struct ice_q_vector, affinity_notify);
2467
2468	cpumask_copy(&q_vector->affinity_mask, mask);
2469}
2470
2471/**
2472 * ice_irq_affinity_release - Callback for affinity notifier release
2473 * @ref: internal core kernel usage
2474 *
2475 * This is a callback function used by the irq_set_affinity_notifier function
2476 * to inform the current notification subscriber that they will no longer
2477 * receive notifications.
2478 */
2479static void ice_irq_affinity_release(struct kref __always_unused *ref) {}
2480
2481/**
2482 * ice_vsi_ena_irq - Enable IRQ for the given VSI
2483 * @vsi: the VSI being configured
2484 */
2485static int ice_vsi_ena_irq(struct ice_vsi *vsi)
2486{
2487	struct ice_hw *hw = &vsi->back->hw;
2488	int i;
2489
2490	ice_for_each_q_vector(vsi, i)
2491		ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]);
2492
2493	ice_flush(hw);
2494	return 0;
2495}
2496
2497/**
2498 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI
2499 * @vsi: the VSI being configured
2500 * @basename: name for the vector
2501 */
2502static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename)
2503{
2504	int q_vectors = vsi->num_q_vectors;
2505	struct ice_pf *pf = vsi->back;
2506	struct device *dev;
2507	int rx_int_idx = 0;
2508	int tx_int_idx = 0;
2509	int vector, err;
2510	int irq_num;
2511
2512	dev = ice_pf_to_dev(pf);
2513	for (vector = 0; vector < q_vectors; vector++) {
2514		struct ice_q_vector *q_vector = vsi->q_vectors[vector];
2515
2516		irq_num = q_vector->irq.virq;
2517
2518		if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) {
2519			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2520				 "%s-%s-%d", basename, "TxRx", rx_int_idx++);
2521			tx_int_idx++;
2522		} else if (q_vector->rx.rx_ring) {
2523			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2524				 "%s-%s-%d", basename, "rx", rx_int_idx++);
2525		} else if (q_vector->tx.tx_ring) {
2526			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2527				 "%s-%s-%d", basename, "tx", tx_int_idx++);
2528		} else {
2529			/* skip this unused q_vector */
2530			continue;
2531		}
2532		if (vsi->type == ICE_VSI_CTRL && vsi->vf)
2533			err = devm_request_irq(dev, irq_num, vsi->irq_handler,
2534					       IRQF_SHARED, q_vector->name,
2535					       q_vector);
2536		else
2537			err = devm_request_irq(dev, irq_num, vsi->irq_handler,
2538					       0, q_vector->name, q_vector);
2539		if (err) {
2540			netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n",
2541				   err);
2542			goto free_q_irqs;
2543		}
2544
2545		/* register for affinity change notifications */
2546		if (!IS_ENABLED(CONFIG_RFS_ACCEL)) {
2547			struct irq_affinity_notify *affinity_notify;
2548
2549			affinity_notify = &q_vector->affinity_notify;
2550			affinity_notify->notify = ice_irq_affinity_notify;
2551			affinity_notify->release = ice_irq_affinity_release;
2552			irq_set_affinity_notifier(irq_num, affinity_notify);
2553		}
2554
2555		/* assign the mask for this irq */
2556		irq_set_affinity_hint(irq_num, &q_vector->affinity_mask);
2557	}
2558
2559	err = ice_set_cpu_rx_rmap(vsi);
2560	if (err) {
2561		netdev_err(vsi->netdev, "Failed to setup CPU RMAP on VSI %u: %pe\n",
2562			   vsi->vsi_num, ERR_PTR(err));
2563		goto free_q_irqs;
2564	}
2565
2566	vsi->irqs_ready = true;
2567	return 0;
2568
2569free_q_irqs:
2570	while (vector--) {
2571		irq_num = vsi->q_vectors[vector]->irq.virq;
2572		if (!IS_ENABLED(CONFIG_RFS_ACCEL))
2573			irq_set_affinity_notifier(irq_num, NULL);
2574		irq_set_affinity_hint(irq_num, NULL);
2575		devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]);
2576	}
2577	return err;
2578}
2579
2580/**
2581 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP
2582 * @vsi: VSI to setup Tx rings used by XDP
2583 *
2584 * Return 0 on success and negative value on error
2585 */
2586static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi)
2587{
2588	struct device *dev = ice_pf_to_dev(vsi->back);
2589	struct ice_tx_desc *tx_desc;
2590	int i, j;
2591
2592	ice_for_each_xdp_txq(vsi, i) {
2593		u16 xdp_q_idx = vsi->alloc_txq + i;
2594		struct ice_ring_stats *ring_stats;
2595		struct ice_tx_ring *xdp_ring;
2596
2597		xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL);
2598		if (!xdp_ring)
2599			goto free_xdp_rings;
2600
2601		ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL);
2602		if (!ring_stats) {
2603			ice_free_tx_ring(xdp_ring);
2604			goto free_xdp_rings;
2605		}
2606
2607		xdp_ring->ring_stats = ring_stats;
2608		xdp_ring->q_index = xdp_q_idx;
2609		xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx];
2610		xdp_ring->vsi = vsi;
2611		xdp_ring->netdev = NULL;
2612		xdp_ring->dev = dev;
2613		xdp_ring->count = vsi->num_tx_desc;
2614		WRITE_ONCE(vsi->xdp_rings[i], xdp_ring);
2615		if (ice_setup_tx_ring(xdp_ring))
2616			goto free_xdp_rings;
2617		ice_set_ring_xdp(xdp_ring);
2618		spin_lock_init(&xdp_ring->tx_lock);
2619		for (j = 0; j < xdp_ring->count; j++) {
2620			tx_desc = ICE_TX_DESC(xdp_ring, j);
2621			tx_desc->cmd_type_offset_bsz = 0;
2622		}
2623	}
2624
2625	return 0;
2626
2627free_xdp_rings:
2628	for (; i >= 0; i--) {
2629		if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) {
2630			kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu);
2631			vsi->xdp_rings[i]->ring_stats = NULL;
2632			ice_free_tx_ring(vsi->xdp_rings[i]);
2633		}
2634	}
2635	return -ENOMEM;
2636}
2637
2638/**
2639 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI
2640 * @vsi: VSI to set the bpf prog on
2641 * @prog: the bpf prog pointer
2642 */
2643static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog)
2644{
2645	struct bpf_prog *old_prog;
2646	int i;
2647
2648	old_prog = xchg(&vsi->xdp_prog, prog);
2649	ice_for_each_rxq(vsi, i)
2650		WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog);
2651
2652	if (old_prog)
2653		bpf_prog_put(old_prog);
2654}
2655
2656/**
2657 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP
2658 * @vsi: VSI to bring up Tx rings used by XDP
2659 * @prog: bpf program that will be assigned to VSI
2660 *
2661 * Return 0 on success and negative value on error
2662 */
2663int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog)
2664{
2665	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2666	int xdp_rings_rem = vsi->num_xdp_txq;
2667	struct ice_pf *pf = vsi->back;
2668	struct ice_qs_cfg xdp_qs_cfg = {
2669		.qs_mutex = &pf->avail_q_mutex,
2670		.pf_map = pf->avail_txqs,
2671		.pf_map_size = pf->max_pf_txqs,
2672		.q_count = vsi->num_xdp_txq,
2673		.scatter_count = ICE_MAX_SCATTER_TXQS,
2674		.vsi_map = vsi->txq_map,
2675		.vsi_map_offset = vsi->alloc_txq,
2676		.mapping_mode = ICE_VSI_MAP_CONTIG
2677	};
2678	struct device *dev;
2679	int i, v_idx;
2680	int status;
2681
2682	dev = ice_pf_to_dev(pf);
2683	vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq,
2684				      sizeof(*vsi->xdp_rings), GFP_KERNEL);
2685	if (!vsi->xdp_rings)
2686		return -ENOMEM;
2687
2688	vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode;
2689	if (__ice_vsi_get_qs(&xdp_qs_cfg))
2690		goto err_map_xdp;
2691
2692	if (static_key_enabled(&ice_xdp_locking_key))
2693		netdev_warn(vsi->netdev,
2694			    "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n");
2695
2696	if (ice_xdp_alloc_setup_rings(vsi))
2697		goto clear_xdp_rings;
2698
2699	/* follow the logic from ice_vsi_map_rings_to_vectors */
2700	ice_for_each_q_vector(vsi, v_idx) {
2701		struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2702		int xdp_rings_per_v, q_id, q_base;
2703
2704		xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem,
2705					       vsi->num_q_vectors - v_idx);
2706		q_base = vsi->num_xdp_txq - xdp_rings_rem;
2707
2708		for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) {
2709			struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id];
2710
2711			xdp_ring->q_vector = q_vector;
2712			xdp_ring->next = q_vector->tx.tx_ring;
2713			q_vector->tx.tx_ring = xdp_ring;
2714		}
2715		xdp_rings_rem -= xdp_rings_per_v;
2716	}
2717
2718	ice_for_each_rxq(vsi, i) {
2719		if (static_key_enabled(&ice_xdp_locking_key)) {
2720			vsi->rx_rings[i]->xdp_ring = vsi->xdp_rings[i % vsi->num_xdp_txq];
2721		} else {
2722			struct ice_q_vector *q_vector = vsi->rx_rings[i]->q_vector;
2723			struct ice_tx_ring *ring;
2724
2725			ice_for_each_tx_ring(ring, q_vector->tx) {
2726				if (ice_ring_is_xdp(ring)) {
2727					vsi->rx_rings[i]->xdp_ring = ring;
2728					break;
2729				}
2730			}
2731		}
2732		ice_tx_xsk_pool(vsi, i);
2733	}
2734
2735	/* omit the scheduler update if in reset path; XDP queues will be
2736	 * taken into account at the end of ice_vsi_rebuild, where
2737	 * ice_cfg_vsi_lan is being called
2738	 */
2739	if (ice_is_reset_in_progress(pf->state))
2740		return 0;
2741
2742	/* tell the Tx scheduler that right now we have
2743	 * additional queues
2744	 */
2745	for (i = 0; i < vsi->tc_cfg.numtc; i++)
2746		max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq;
2747
2748	status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2749				 max_txqs);
2750	if (status) {
2751		dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n",
2752			status);
2753		goto clear_xdp_rings;
2754	}
2755
2756	/* assign the prog only when it's not already present on VSI;
2757	 * this flow is a subject of both ethtool -L and ndo_bpf flows;
2758	 * VSI rebuild that happens under ethtool -L can expose us to
2759	 * the bpf_prog refcount issues as we would be swapping same
2760	 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put
2761	 * on it as it would be treated as an 'old_prog'; for ndo_bpf
2762	 * this is not harmful as dev_xdp_install bumps the refcount
2763	 * before calling the op exposed by the driver;
2764	 */
2765	if (!ice_is_xdp_ena_vsi(vsi))
2766		ice_vsi_assign_bpf_prog(vsi, prog);
2767
2768	return 0;
2769clear_xdp_rings:
2770	ice_for_each_xdp_txq(vsi, i)
2771		if (vsi->xdp_rings[i]) {
2772			kfree_rcu(vsi->xdp_rings[i], rcu);
2773			vsi->xdp_rings[i] = NULL;
2774		}
2775
2776err_map_xdp:
2777	mutex_lock(&pf->avail_q_mutex);
2778	ice_for_each_xdp_txq(vsi, i) {
2779		clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2780		vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2781	}
2782	mutex_unlock(&pf->avail_q_mutex);
2783
2784	devm_kfree(dev, vsi->xdp_rings);
2785	return -ENOMEM;
2786}
2787
2788/**
2789 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings
2790 * @vsi: VSI to remove XDP rings
2791 *
2792 * Detach XDP rings from irq vectors, clean up the PF bitmap and free
2793 * resources
2794 */
2795int ice_destroy_xdp_rings(struct ice_vsi *vsi)
2796{
2797	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2798	struct ice_pf *pf = vsi->back;
2799	int i, v_idx;
2800
2801	/* q_vectors are freed in reset path so there's no point in detaching
2802	 * rings; in case of rebuild being triggered not from reset bits
2803	 * in pf->state won't be set, so additionally check first q_vector
2804	 * against NULL
2805	 */
2806	if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
2807		goto free_qmap;
2808
2809	ice_for_each_q_vector(vsi, v_idx) {
2810		struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2811		struct ice_tx_ring *ring;
2812
2813		ice_for_each_tx_ring(ring, q_vector->tx)
2814			if (!ring->tx_buf || !ice_ring_is_xdp(ring))
2815				break;
2816
2817		/* restore the value of last node prior to XDP setup */
2818		q_vector->tx.tx_ring = ring;
2819	}
2820
2821free_qmap:
2822	mutex_lock(&pf->avail_q_mutex);
2823	ice_for_each_xdp_txq(vsi, i) {
2824		clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2825		vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2826	}
2827	mutex_unlock(&pf->avail_q_mutex);
2828
2829	ice_for_each_xdp_txq(vsi, i)
2830		if (vsi->xdp_rings[i]) {
2831			if (vsi->xdp_rings[i]->desc) {
2832				synchronize_rcu();
2833				ice_free_tx_ring(vsi->xdp_rings[i]);
2834			}
2835			kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu);
2836			vsi->xdp_rings[i]->ring_stats = NULL;
2837			kfree_rcu(vsi->xdp_rings[i], rcu);
2838			vsi->xdp_rings[i] = NULL;
2839		}
2840
2841	devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings);
2842	vsi->xdp_rings = NULL;
2843
2844	if (static_key_enabled(&ice_xdp_locking_key))
2845		static_branch_dec(&ice_xdp_locking_key);
2846
2847	if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
2848		return 0;
2849
2850	ice_vsi_assign_bpf_prog(vsi, NULL);
2851
2852	/* notify Tx scheduler that we destroyed XDP queues and bring
2853	 * back the old number of child nodes
2854	 */
2855	for (i = 0; i < vsi->tc_cfg.numtc; i++)
2856		max_txqs[i] = vsi->num_txq;
2857
2858	/* change number of XDP Tx queues to 0 */
2859	vsi->num_xdp_txq = 0;
2860
2861	return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2862			       max_txqs);
2863}
2864
2865/**
2866 * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI
2867 * @vsi: VSI to schedule napi on
2868 */
2869static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi)
2870{
2871	int i;
2872
2873	ice_for_each_rxq(vsi, i) {
2874		struct ice_rx_ring *rx_ring = vsi->rx_rings[i];
2875
2876		if (rx_ring->xsk_pool)
2877			napi_schedule(&rx_ring->q_vector->napi);
2878	}
2879}
2880
2881/**
2882 * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have
2883 * @vsi: VSI to determine the count of XDP Tx qs
2884 *
2885 * returns 0 if Tx qs count is higher than at least half of CPU count,
2886 * -ENOMEM otherwise
2887 */
2888int ice_vsi_determine_xdp_res(struct ice_vsi *vsi)
2889{
2890	u16 avail = ice_get_avail_txq_count(vsi->back);
2891	u16 cpus = num_possible_cpus();
2892
2893	if (avail < cpus / 2)
2894		return -ENOMEM;
2895
2896	vsi->num_xdp_txq = min_t(u16, avail, cpus);
2897
2898	if (vsi->num_xdp_txq < cpus)
2899		static_branch_inc(&ice_xdp_locking_key);
2900
2901	return 0;
2902}
2903
2904/**
2905 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP
2906 * @vsi: Pointer to VSI structure
2907 */
2908static int ice_max_xdp_frame_size(struct ice_vsi *vsi)
2909{
2910	if (test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
2911		return ICE_RXBUF_1664;
2912	else
2913		return ICE_RXBUF_3072;
2914}
2915
2916/**
2917 * ice_xdp_setup_prog - Add or remove XDP eBPF program
2918 * @vsi: VSI to setup XDP for
2919 * @prog: XDP program
2920 * @extack: netlink extended ack
2921 */
2922static int
2923ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog,
2924		   struct netlink_ext_ack *extack)
2925{
2926	unsigned int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD;
2927	bool if_running = netif_running(vsi->netdev);
2928	int ret = 0, xdp_ring_err = 0;
2929
2930	if (prog && !prog->aux->xdp_has_frags) {
2931		if (frame_size > ice_max_xdp_frame_size(vsi)) {
2932			NL_SET_ERR_MSG_MOD(extack,
2933					   "MTU is too large for linear frames and XDP prog does not support frags");
2934			return -EOPNOTSUPP;
2935		}
2936	}
2937
2938	/* hot swap progs and avoid toggling link */
2939	if (ice_is_xdp_ena_vsi(vsi) == !!prog) {
2940		ice_vsi_assign_bpf_prog(vsi, prog);
2941		return 0;
2942	}
2943
2944	/* need to stop netdev while setting up the program for Rx rings */
2945	if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) {
2946		ret = ice_down(vsi);
2947		if (ret) {
2948			NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed");
2949			return ret;
2950		}
2951	}
2952
2953	if (!ice_is_xdp_ena_vsi(vsi) && prog) {
2954		xdp_ring_err = ice_vsi_determine_xdp_res(vsi);
2955		if (xdp_ring_err) {
2956			NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP");
2957		} else {
2958			xdp_ring_err = ice_prepare_xdp_rings(vsi, prog);
2959			if (xdp_ring_err)
2960				NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed");
2961		}
2962		xdp_features_set_redirect_target(vsi->netdev, true);
2963		/* reallocate Rx queues that are used for zero-copy */
2964		xdp_ring_err = ice_realloc_zc_buf(vsi, true);
2965		if (xdp_ring_err)
2966			NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Rx resources failed");
2967	} else if (ice_is_xdp_ena_vsi(vsi) && !prog) {
2968		xdp_features_clear_redirect_target(vsi->netdev);
2969		xdp_ring_err = ice_destroy_xdp_rings(vsi);
2970		if (xdp_ring_err)
2971			NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed");
2972		/* reallocate Rx queues that were used for zero-copy */
2973		xdp_ring_err = ice_realloc_zc_buf(vsi, false);
2974		if (xdp_ring_err)
2975			NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Rx resources failed");
2976	}
2977
2978	if (if_running)
2979		ret = ice_up(vsi);
2980
2981	if (!ret && prog)
2982		ice_vsi_rx_napi_schedule(vsi);
2983
2984	return (ret || xdp_ring_err) ? -ENOMEM : 0;
2985}
2986
2987/**
2988 * ice_xdp_safe_mode - XDP handler for safe mode
2989 * @dev: netdevice
2990 * @xdp: XDP command
2991 */
2992static int ice_xdp_safe_mode(struct net_device __always_unused *dev,
2993			     struct netdev_bpf *xdp)
2994{
2995	NL_SET_ERR_MSG_MOD(xdp->extack,
2996			   "Please provide working DDP firmware package in order to use XDP\n"
2997			   "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst");
2998	return -EOPNOTSUPP;
2999}
3000
3001/**
3002 * ice_xdp - implements XDP handler
3003 * @dev: netdevice
3004 * @xdp: XDP command
3005 */
3006static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp)
3007{
3008	struct ice_netdev_priv *np = netdev_priv(dev);
3009	struct ice_vsi *vsi = np->vsi;
3010
3011	if (vsi->type != ICE_VSI_PF) {
3012		NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI");
3013		return -EINVAL;
3014	}
3015
3016	switch (xdp->command) {
3017	case XDP_SETUP_PROG:
3018		return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack);
3019	case XDP_SETUP_XSK_POOL:
3020		return ice_xsk_pool_setup(vsi, xdp->xsk.pool,
3021					  xdp->xsk.queue_id);
3022	default:
3023		return -EINVAL;
3024	}
3025}
3026
3027/**
3028 * ice_ena_misc_vector - enable the non-queue interrupts
3029 * @pf: board private structure
3030 */
3031static void ice_ena_misc_vector(struct ice_pf *pf)
3032{
3033	struct ice_hw *hw = &pf->hw;
3034	u32 val;
3035
3036	/* Disable anti-spoof detection interrupt to prevent spurious event
3037	 * interrupts during a function reset. Anti-spoof functionally is
3038	 * still supported.
3039	 */
3040	val = rd32(hw, GL_MDCK_TX_TDPU);
3041	val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M;
3042	wr32(hw, GL_MDCK_TX_TDPU, val);
3043
3044	/* clear things first */
3045	wr32(hw, PFINT_OICR_ENA, 0);	/* disable all */
3046	rd32(hw, PFINT_OICR);		/* read to clear */
3047
3048	val = (PFINT_OICR_ECC_ERR_M |
3049	       PFINT_OICR_MAL_DETECT_M |
3050	       PFINT_OICR_GRST_M |
3051	       PFINT_OICR_PCI_EXCEPTION_M |
3052	       PFINT_OICR_VFLR_M |
3053	       PFINT_OICR_HMC_ERR_M |
3054	       PFINT_OICR_PE_PUSH_M |
3055	       PFINT_OICR_PE_CRITERR_M);
3056
3057	wr32(hw, PFINT_OICR_ENA, val);
3058
3059	/* SW_ITR_IDX = 0, but don't change INTENA */
3060	wr32(hw, GLINT_DYN_CTL(pf->oicr_irq.index),
3061	     GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M);
3062}
3063
3064/**
3065 * ice_misc_intr - misc interrupt handler
3066 * @irq: interrupt number
3067 * @data: pointer to a q_vector
3068 */
3069static irqreturn_t ice_misc_intr(int __always_unused irq, void *data)
3070{
3071	struct ice_pf *pf = (struct ice_pf *)data;
3072	struct ice_hw *hw = &pf->hw;
3073	struct device *dev;
3074	u32 oicr, ena_mask;
3075
3076	dev = ice_pf_to_dev(pf);
3077	set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
3078	set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state);
3079	set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
3080
3081	oicr = rd32(hw, PFINT_OICR);
3082	ena_mask = rd32(hw, PFINT_OICR_ENA);
3083
3084	if (oicr & PFINT_OICR_SWINT_M) {
3085		ena_mask &= ~PFINT_OICR_SWINT_M;
3086		pf->sw_int_count++;
3087	}
3088
3089	if (oicr & PFINT_OICR_MAL_DETECT_M) {
3090		ena_mask &= ~PFINT_OICR_MAL_DETECT_M;
3091		set_bit(ICE_MDD_EVENT_PENDING, pf->state);
3092	}
3093	if (oicr & PFINT_OICR_VFLR_M) {
3094		/* disable any further VFLR event notifications */
3095		if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) {
3096			u32 reg = rd32(hw, PFINT_OICR_ENA);
3097
3098			reg &= ~PFINT_OICR_VFLR_M;
3099			wr32(hw, PFINT_OICR_ENA, reg);
3100		} else {
3101			ena_mask &= ~PFINT_OICR_VFLR_M;
3102			set_bit(ICE_VFLR_EVENT_PENDING, pf->state);
3103		}
3104	}
3105
3106	if (oicr & PFINT_OICR_GRST_M) {
3107		u32 reset;
3108
3109		/* we have a reset warning */
3110		ena_mask &= ~PFINT_OICR_GRST_M;
3111		reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >>
3112			GLGEN_RSTAT_RESET_TYPE_S;
3113
3114		if (reset == ICE_RESET_CORER)
3115			pf->corer_count++;
3116		else if (reset == ICE_RESET_GLOBR)
3117			pf->globr_count++;
3118		else if (reset == ICE_RESET_EMPR)
3119			pf->empr_count++;
3120		else
3121			dev_dbg(dev, "Invalid reset type %d\n", reset);
3122
3123		/* If a reset cycle isn't already in progress, we set a bit in
3124		 * pf->state so that the service task can start a reset/rebuild.
3125		 */
3126		if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) {
3127			if (reset == ICE_RESET_CORER)
3128				set_bit(ICE_CORER_RECV, pf->state);
3129			else if (reset == ICE_RESET_GLOBR)
3130				set_bit(ICE_GLOBR_RECV, pf->state);
3131			else
3132				set_bit(ICE_EMPR_RECV, pf->state);
3133
3134			/* There are couple of different bits at play here.
3135			 * hw->reset_ongoing indicates whether the hardware is
3136			 * in reset. This is set to true when a reset interrupt
3137			 * is received and set back to false after the driver
3138			 * has determined that the hardware is out of reset.
3139			 *
3140			 * ICE_RESET_OICR_RECV in pf->state indicates
3141			 * that a post reset rebuild is required before the
3142			 * driver is operational again. This is set above.
3143			 *
3144			 * As this is the start of the reset/rebuild cycle, set
3145			 * both to indicate that.
3146			 */
3147			hw->reset_ongoing = true;
3148		}
3149	}
3150
3151	if (oicr & PFINT_OICR_TSYN_TX_M) {
3152		ena_mask &= ~PFINT_OICR_TSYN_TX_M;
3153		if (!hw->reset_ongoing)
3154			set_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread);
3155	}
3156
3157	if (oicr & PFINT_OICR_TSYN_EVNT_M) {
3158		u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
3159		u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx));
3160
3161		ena_mask &= ~PFINT_OICR_TSYN_EVNT_M;
3162
3163		if (hw->func_caps.ts_func_info.src_tmr_owned) {
3164			/* Save EVENTs from GLTSYN register */
3165			pf->ptp.ext_ts_irq |= gltsyn_stat &
3166					      (GLTSYN_STAT_EVENT0_M |
3167					       GLTSYN_STAT_EVENT1_M |
3168					       GLTSYN_STAT_EVENT2_M);
3169
3170			set_bit(ICE_MISC_THREAD_EXTTS_EVENT, pf->misc_thread);
3171		}
3172	}
3173
3174#define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M)
3175	if (oicr & ICE_AUX_CRIT_ERR) {
3176		pf->oicr_err_reg |= oicr;
3177		set_bit(ICE_AUX_ERR_PENDING, pf->state);
3178		ena_mask &= ~ICE_AUX_CRIT_ERR;
3179	}
3180
3181	/* Report any remaining unexpected interrupts */
3182	oicr &= ena_mask;
3183	if (oicr) {
3184		dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr);
3185		/* If a critical error is pending there is no choice but to
3186		 * reset the device.
3187		 */
3188		if (oicr & (PFINT_OICR_PCI_EXCEPTION_M |
3189			    PFINT_OICR_ECC_ERR_M)) {
3190			set_bit(ICE_PFR_REQ, pf->state);
3191		}
3192	}
3193
3194	return IRQ_WAKE_THREAD;
3195}
3196
3197/**
3198 * ice_misc_intr_thread_fn - misc interrupt thread function
3199 * @irq: interrupt number
3200 * @data: pointer to a q_vector
3201 */
3202static irqreturn_t ice_misc_intr_thread_fn(int __always_unused irq, void *data)
3203{
3204	struct ice_pf *pf = data;
3205	struct ice_hw *hw;
3206
3207	hw = &pf->hw;
3208
3209	if (ice_is_reset_in_progress(pf->state))
3210		return IRQ_HANDLED;
3211
3212	ice_service_task_schedule(pf);
3213
3214	if (test_and_clear_bit(ICE_MISC_THREAD_EXTTS_EVENT, pf->misc_thread))
3215		ice_ptp_extts_event(pf);
3216
3217	if (test_and_clear_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread)) {
3218		/* Process outstanding Tx timestamps. If there is more work,
3219		 * re-arm the interrupt to trigger again.
3220		 */
3221		if (ice_ptp_process_ts(pf) == ICE_TX_TSTAMP_WORK_PENDING) {
3222			wr32(hw, PFINT_OICR, PFINT_OICR_TSYN_TX_M);
3223			ice_flush(hw);
3224		}
3225	}
3226
3227	ice_irq_dynamic_ena(hw, NULL, NULL);
3228
3229	return IRQ_HANDLED;
3230}
3231
3232/**
3233 * ice_dis_ctrlq_interrupts - disable control queue interrupts
3234 * @hw: pointer to HW structure
3235 */
3236static void ice_dis_ctrlq_interrupts(struct ice_hw *hw)
3237{
3238	/* disable Admin queue Interrupt causes */
3239	wr32(hw, PFINT_FW_CTL,
3240	     rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M);
3241
3242	/* disable Mailbox queue Interrupt causes */
3243	wr32(hw, PFINT_MBX_CTL,
3244	     rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M);
3245
3246	wr32(hw, PFINT_SB_CTL,
3247	     rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M);
3248
3249	/* disable Control queue Interrupt causes */
3250	wr32(hw, PFINT_OICR_CTL,
3251	     rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M);
3252
3253	ice_flush(hw);
3254}
3255
3256/**
3257 * ice_free_irq_msix_misc - Unroll misc vector setup
3258 * @pf: board private structure
3259 */
3260static void ice_free_irq_msix_misc(struct ice_pf *pf)
3261{
3262	int misc_irq_num = pf->oicr_irq.virq;
3263	struct ice_hw *hw = &pf->hw;
3264
3265	ice_dis_ctrlq_interrupts(hw);
3266
3267	/* disable OICR interrupt */
3268	wr32(hw, PFINT_OICR_ENA, 0);
3269	ice_flush(hw);
3270
3271	synchronize_irq(misc_irq_num);
3272	devm_free_irq(ice_pf_to_dev(pf), misc_irq_num, pf);
3273
3274	ice_free_irq(pf, pf->oicr_irq);
3275}
3276
3277/**
3278 * ice_ena_ctrlq_interrupts - enable control queue interrupts
3279 * @hw: pointer to HW structure
3280 * @reg_idx: HW vector index to associate the control queue interrupts with
3281 */
3282static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx)
3283{
3284	u32 val;
3285
3286	val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) |
3287	       PFINT_OICR_CTL_CAUSE_ENA_M);
3288	wr32(hw, PFINT_OICR_CTL, val);
3289
3290	/* enable Admin queue Interrupt causes */
3291	val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) |
3292	       PFINT_FW_CTL_CAUSE_ENA_M);
3293	wr32(hw, PFINT_FW_CTL, val);
3294
3295	/* enable Mailbox queue Interrupt causes */
3296	val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) |
3297	       PFINT_MBX_CTL_CAUSE_ENA_M);
3298	wr32(hw, PFINT_MBX_CTL, val);
3299
3300	/* This enables Sideband queue Interrupt causes */
3301	val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) |
3302	       PFINT_SB_CTL_CAUSE_ENA_M);
3303	wr32(hw, PFINT_SB_CTL, val);
3304
3305	ice_flush(hw);
3306}
3307
3308/**
3309 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events
3310 * @pf: board private structure
3311 *
3312 * This sets up the handler for MSIX 0, which is used to manage the
3313 * non-queue interrupts, e.g. AdminQ and errors. This is not used
3314 * when in MSI or Legacy interrupt mode.
3315 */
3316static int ice_req_irq_msix_misc(struct ice_pf *pf)
3317{
3318	struct device *dev = ice_pf_to_dev(pf);
3319	struct ice_hw *hw = &pf->hw;
3320	struct msi_map oicr_irq;
3321	int err = 0;
3322
3323	if (!pf->int_name[0])
3324		snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc",
3325			 dev_driver_string(dev), dev_name(dev));
3326
3327	/* Do not request IRQ but do enable OICR interrupt since settings are
3328	 * lost during reset. Note that this function is called only during
3329	 * rebuild path and not while reset is in progress.
3330	 */
3331	if (ice_is_reset_in_progress(pf->state))
3332		goto skip_req_irq;
3333
3334	/* reserve one vector in irq_tracker for misc interrupts */
3335	oicr_irq = ice_alloc_irq(pf, false);
3336	if (oicr_irq.index < 0)
3337		return oicr_irq.index;
3338
3339	pf->oicr_irq = oicr_irq;
3340	err = devm_request_threaded_irq(dev, pf->oicr_irq.virq, ice_misc_intr,
3341					ice_misc_intr_thread_fn, 0,
3342					pf->int_name, pf);
3343	if (err) {
3344		dev_err(dev, "devm_request_threaded_irq for %s failed: %d\n",
3345			pf->int_name, err);
3346		ice_free_irq(pf, pf->oicr_irq);
3347		return err;
3348	}
3349
3350skip_req_irq:
3351	ice_ena_misc_vector(pf);
3352
3353	ice_ena_ctrlq_interrupts(hw, pf->oicr_irq.index);
3354	wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_irq.index),
3355	     ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S);
3356
3357	ice_flush(hw);
3358	ice_irq_dynamic_ena(hw, NULL, NULL);
3359
3360	return 0;
3361}
3362
3363/**
3364 * ice_napi_add - register NAPI handler for the VSI
3365 * @vsi: VSI for which NAPI handler is to be registered
3366 *
3367 * This function is only called in the driver's load path. Registering the NAPI
3368 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume,
3369 * reset/rebuild, etc.)
3370 */
3371static void ice_napi_add(struct ice_vsi *vsi)
3372{
3373	int v_idx;
3374
3375	if (!vsi->netdev)
3376		return;
3377
3378	ice_for_each_q_vector(vsi, v_idx)
3379		netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi,
3380			       ice_napi_poll);
3381}
3382
3383/**
3384 * ice_set_ops - set netdev and ethtools ops for the given netdev
3385 * @vsi: the VSI associated with the new netdev
3386 */
3387static void ice_set_ops(struct ice_vsi *vsi)
3388{
3389	struct net_device *netdev = vsi->netdev;
3390	struct ice_pf *pf = ice_netdev_to_pf(netdev);
3391
3392	if (ice_is_safe_mode(pf)) {
3393		netdev->netdev_ops = &ice_netdev_safe_mode_ops;
3394		ice_set_ethtool_safe_mode_ops(netdev);
3395		return;
3396	}
3397
3398	netdev->netdev_ops = &ice_netdev_ops;
3399	netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic;
3400	ice_set_ethtool_ops(netdev);
3401
3402	if (vsi->type != ICE_VSI_PF)
3403		return;
3404
3405	netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
3406			       NETDEV_XDP_ACT_XSK_ZEROCOPY |
3407			       NETDEV_XDP_ACT_RX_SG;
3408	netdev->xdp_zc_max_segs = ICE_MAX_BUF_TXD;
3409}
3410
3411/**
3412 * ice_set_netdev_features - set features for the given netdev
3413 * @netdev: netdev instance
3414 */
3415static void ice_set_netdev_features(struct net_device *netdev)
3416{
3417	struct ice_pf *pf = ice_netdev_to_pf(netdev);
3418	bool is_dvm_ena = ice_is_dvm_ena(&pf->hw);
3419	netdev_features_t csumo_features;
3420	netdev_features_t vlano_features;
3421	netdev_features_t dflt_features;
3422	netdev_features_t tso_features;
3423
3424	if (ice_is_safe_mode(pf)) {
3425		/* safe mode */
3426		netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA;
3427		netdev->hw_features = netdev->features;
3428		return;
3429	}
3430
3431	dflt_features = NETIF_F_SG	|
3432			NETIF_F_HIGHDMA	|
3433			NETIF_F_NTUPLE	|
3434			NETIF_F_RXHASH;
3435
3436	csumo_features = NETIF_F_RXCSUM	  |
3437			 NETIF_F_IP_CSUM  |
3438			 NETIF_F_SCTP_CRC |
3439			 NETIF_F_IPV6_CSUM;
3440
3441	vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER |
3442			 NETIF_F_HW_VLAN_CTAG_TX     |
3443			 NETIF_F_HW_VLAN_CTAG_RX;
3444
3445	/* Enable CTAG/STAG filtering by default in Double VLAN Mode (DVM) */
3446	if (is_dvm_ena)
3447		vlano_features |= NETIF_F_HW_VLAN_STAG_FILTER;
3448
3449	tso_features = NETIF_F_TSO			|
3450		       NETIF_F_TSO_ECN			|
3451		       NETIF_F_TSO6			|
3452		       NETIF_F_GSO_GRE			|
3453		       NETIF_F_GSO_UDP_TUNNEL		|
3454		       NETIF_F_GSO_GRE_CSUM		|
3455		       NETIF_F_GSO_UDP_TUNNEL_CSUM	|
3456		       NETIF_F_GSO_PARTIAL		|
3457		       NETIF_F_GSO_IPXIP4		|
3458		       NETIF_F_GSO_IPXIP6		|
3459		       NETIF_F_GSO_UDP_L4;
3460
3461	netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM |
3462					NETIF_F_GSO_GRE_CSUM;
3463	/* set features that user can change */
3464	netdev->hw_features = dflt_features | csumo_features |
3465			      vlano_features | tso_features;
3466
3467	/* add support for HW_CSUM on packets with MPLS header */
3468	netdev->mpls_features =  NETIF_F_HW_CSUM |
3469				 NETIF_F_TSO     |
3470				 NETIF_F_TSO6;
3471
3472	/* enable features */
3473	netdev->features |= netdev->hw_features;
3474
3475	netdev->hw_features |= NETIF_F_HW_TC;
3476	netdev->hw_features |= NETIF_F_LOOPBACK;
3477
3478	/* encap and VLAN devices inherit default, csumo and tso features */
3479	netdev->hw_enc_features |= dflt_features | csumo_features |
3480				   tso_features;
3481	netdev->vlan_features |= dflt_features | csumo_features |
3482				 tso_features;
3483
3484	/* advertise support but don't enable by default since only one type of
3485	 * VLAN offload can be enabled at a time (i.e. CTAG or STAG). When one
3486	 * type turns on the other has to be turned off. This is enforced by the
3487	 * ice_fix_features() ndo callback.
3488	 */
3489	if (is_dvm_ena)
3490		netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX |
3491			NETIF_F_HW_VLAN_STAG_TX;
3492
3493	/* Leave CRC / FCS stripping enabled by default, but allow the value to
3494	 * be changed at runtime
3495	 */
3496	netdev->hw_features |= NETIF_F_RXFCS;
3497
3498	netif_set_tso_max_size(netdev, ICE_MAX_TSO_SIZE);
3499}
3500
3501/**
3502 * ice_fill_rss_lut - Fill the RSS lookup table with default values
3503 * @lut: Lookup table
3504 * @rss_table_size: Lookup table size
3505 * @rss_size: Range of queue number for hashing
3506 */
3507void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size)
3508{
3509	u16 i;
3510
3511	for (i = 0; i < rss_table_size; i++)
3512		lut[i] = i % rss_size;
3513}
3514
3515/**
3516 * ice_pf_vsi_setup - Set up a PF VSI
3517 * @pf: board private structure
3518 * @pi: pointer to the port_info instance
3519 *
3520 * Returns pointer to the successfully allocated VSI software struct
3521 * on success, otherwise returns NULL on failure.
3522 */
3523static struct ice_vsi *
3524ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3525{
3526	struct ice_vsi_cfg_params params = {};
3527
3528	params.type = ICE_VSI_PF;
3529	params.pi = pi;
3530	params.flags = ICE_VSI_FLAG_INIT;
3531
3532	return ice_vsi_setup(pf, &params);
3533}
3534
3535static struct ice_vsi *
3536ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi,
3537		   struct ice_channel *ch)
3538{
3539	struct ice_vsi_cfg_params params = {};
3540
3541	params.type = ICE_VSI_CHNL;
3542	params.pi = pi;
3543	params.ch = ch;
3544	params.flags = ICE_VSI_FLAG_INIT;
3545
3546	return ice_vsi_setup(pf, &params);
3547}
3548
3549/**
3550 * ice_ctrl_vsi_setup - Set up a control VSI
3551 * @pf: board private structure
3552 * @pi: pointer to the port_info instance
3553 *
3554 * Returns pointer to the successfully allocated VSI software struct
3555 * on success, otherwise returns NULL on failure.
3556 */
3557static struct ice_vsi *
3558ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3559{
3560	struct ice_vsi_cfg_params params = {};
3561
3562	params.type = ICE_VSI_CTRL;
3563	params.pi = pi;
3564	params.flags = ICE_VSI_FLAG_INIT;
3565
3566	return ice_vsi_setup(pf, &params);
3567}
3568
3569/**
3570 * ice_lb_vsi_setup - Set up a loopback VSI
3571 * @pf: board private structure
3572 * @pi: pointer to the port_info instance
3573 *
3574 * Returns pointer to the successfully allocated VSI software struct
3575 * on success, otherwise returns NULL on failure.
3576 */
3577struct ice_vsi *
3578ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3579{
3580	struct ice_vsi_cfg_params params = {};
3581
3582	params.type = ICE_VSI_LB;
3583	params.pi = pi;
3584	params.flags = ICE_VSI_FLAG_INIT;
3585
3586	return ice_vsi_setup(pf, &params);
3587}
3588
3589/**
3590 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload
3591 * @netdev: network interface to be adjusted
3592 * @proto: VLAN TPID
3593 * @vid: VLAN ID to be added
3594 *
3595 * net_device_ops implementation for adding VLAN IDs
3596 */
3597static int
3598ice_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid)
3599{
3600	struct ice_netdev_priv *np = netdev_priv(netdev);
3601	struct ice_vsi_vlan_ops *vlan_ops;
3602	struct ice_vsi *vsi = np->vsi;
3603	struct ice_vlan vlan;
3604	int ret;
3605
3606	/* VLAN 0 is added by default during load/reset */
3607	if (!vid)
3608		return 0;
3609
3610	while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
3611		usleep_range(1000, 2000);
3612
3613	/* Add multicast promisc rule for the VLAN ID to be added if
3614	 * all-multicast is currently enabled.
3615	 */
3616	if (vsi->current_netdev_flags & IFF_ALLMULTI) {
3617		ret = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3618					       ICE_MCAST_VLAN_PROMISC_BITS,
3619					       vid);
3620		if (ret)
3621			goto finish;
3622	}
3623
3624	vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3625
3626	/* Add a switch rule for this VLAN ID so its corresponding VLAN tagged
3627	 * packets aren't pruned by the device's internal switch on Rx
3628	 */
3629	vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0);
3630	ret = vlan_ops->add_vlan(vsi, &vlan);
3631	if (ret)
3632		goto finish;
3633
3634	/* If all-multicast is currently enabled and this VLAN ID is only one
3635	 * besides VLAN-0 we have to update look-up type of multicast promisc
3636	 * rule for VLAN-0 from ICE_SW_LKUP_PROMISC to ICE_SW_LKUP_PROMISC_VLAN.
3637	 */
3638	if ((vsi->current_netdev_flags & IFF_ALLMULTI) &&
3639	    ice_vsi_num_non_zero_vlans(vsi) == 1) {
3640		ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3641					   ICE_MCAST_PROMISC_BITS, 0);
3642		ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3643					 ICE_MCAST_VLAN_PROMISC_BITS, 0);
3644	}
3645
3646finish:
3647	clear_bit(ICE_CFG_BUSY, vsi->state);
3648
3649	return ret;
3650}
3651
3652/**
3653 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload
3654 * @netdev: network interface to be adjusted
3655 * @proto: VLAN TPID
3656 * @vid: VLAN ID to be removed
3657 *
3658 * net_device_ops implementation for removing VLAN IDs
3659 */
3660static int
3661ice_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid)
3662{
3663	struct ice_netdev_priv *np = netdev_priv(netdev);
3664	struct ice_vsi_vlan_ops *vlan_ops;
3665	struct ice_vsi *vsi = np->vsi;
3666	struct ice_vlan vlan;
3667	int ret;
3668
3669	/* don't allow removal of VLAN 0 */
3670	if (!vid)
3671		return 0;
3672
3673	while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
3674		usleep_range(1000, 2000);
3675
3676	ret = ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3677				    ICE_MCAST_VLAN_PROMISC_BITS, vid);
3678	if (ret) {
3679		netdev_err(netdev, "Error clearing multicast promiscuous mode on VSI %i\n",
3680			   vsi->vsi_num);
3681		vsi->current_netdev_flags |= IFF_ALLMULTI;
3682	}
3683
3684	vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3685
3686	/* Make sure VLAN delete is successful before updating VLAN
3687	 * information
3688	 */
3689	vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0);
3690	ret = vlan_ops->del_vlan(vsi, &vlan);
3691	if (ret)
3692		goto finish;
3693
3694	/* Remove multicast promisc rule for the removed VLAN ID if
3695	 * all-multicast is enabled.
3696	 */
3697	if (vsi->current_netdev_flags & IFF_ALLMULTI)
3698		ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3699					   ICE_MCAST_VLAN_PROMISC_BITS, vid);
3700
3701	if (!ice_vsi_has_non_zero_vlans(vsi)) {
3702		/* Update look-up type of multicast promisc rule for VLAN 0
3703		 * from ICE_SW_LKUP_PROMISC_VLAN to ICE_SW_LKUP_PROMISC when
3704		 * all-multicast is enabled and VLAN 0 is the only VLAN rule.
3705		 */
3706		if (vsi->current_netdev_flags & IFF_ALLMULTI) {
3707			ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3708						   ICE_MCAST_VLAN_PROMISC_BITS,
3709						   0);
3710			ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3711						 ICE_MCAST_PROMISC_BITS, 0);
3712		}
3713	}
3714
3715finish:
3716	clear_bit(ICE_CFG_BUSY, vsi->state);
3717
3718	return ret;
3719}
3720
3721/**
3722 * ice_rep_indr_tc_block_unbind
3723 * @cb_priv: indirection block private data
3724 */
3725static void ice_rep_indr_tc_block_unbind(void *cb_priv)
3726{
3727	struct ice_indr_block_priv *indr_priv = cb_priv;
3728
3729	list_del(&indr_priv->list);
3730	kfree(indr_priv);
3731}
3732
3733/**
3734 * ice_tc_indir_block_unregister - Unregister TC indirect block notifications
3735 * @vsi: VSI struct which has the netdev
3736 */
3737static void ice_tc_indir_block_unregister(struct ice_vsi *vsi)
3738{
3739	struct ice_netdev_priv *np = netdev_priv(vsi->netdev);
3740
3741	flow_indr_dev_unregister(ice_indr_setup_tc_cb, np,
3742				 ice_rep_indr_tc_block_unbind);
3743}
3744
3745/**
3746 * ice_tc_indir_block_register - Register TC indirect block notifications
3747 * @vsi: VSI struct which has the netdev
3748 *
3749 * Returns 0 on success, negative value on failure
3750 */
3751static int ice_tc_indir_block_register(struct ice_vsi *vsi)
3752{
3753	struct ice_netdev_priv *np;
3754
3755	if (!vsi || !vsi->netdev)
3756		return -EINVAL;
3757
3758	np = netdev_priv(vsi->netdev);
3759
3760	INIT_LIST_HEAD(&np->tc_indr_block_priv_list);
3761	return flow_indr_dev_register(ice_indr_setup_tc_cb, np);
3762}
3763
3764/**
3765 * ice_get_avail_q_count - Get count of queues in use
3766 * @pf_qmap: bitmap to get queue use count from
3767 * @lock: pointer to a mutex that protects access to pf_qmap
3768 * @size: size of the bitmap
3769 */
3770static u16
3771ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size)
3772{
3773	unsigned long bit;
3774	u16 count = 0;
3775
3776	mutex_lock(lock);
3777	for_each_clear_bit(bit, pf_qmap, size)
3778		count++;
3779	mutex_unlock(lock);
3780
3781	return count;
3782}
3783
3784/**
3785 * ice_get_avail_txq_count - Get count of Tx queues in use
3786 * @pf: pointer to an ice_pf instance
3787 */
3788u16 ice_get_avail_txq_count(struct ice_pf *pf)
3789{
3790	return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex,
3791				     pf->max_pf_txqs);
3792}
3793
3794/**
3795 * ice_get_avail_rxq_count - Get count of Rx queues in use
3796 * @pf: pointer to an ice_pf instance
3797 */
3798u16 ice_get_avail_rxq_count(struct ice_pf *pf)
3799{
3800	return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex,
3801				     pf->max_pf_rxqs);
3802}
3803
3804/**
3805 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf
3806 * @pf: board private structure to initialize
3807 */
3808static void ice_deinit_pf(struct ice_pf *pf)
3809{
3810	ice_service_task_stop(pf);
3811	mutex_destroy(&pf->lag_mutex);
3812	mutex_destroy(&pf->adev_mutex);
3813	mutex_destroy(&pf->sw_mutex);
3814	mutex_destroy(&pf->tc_mutex);
3815	mutex_destroy(&pf->avail_q_mutex);
3816	mutex_destroy(&pf->vfs.table_lock);
3817
3818	if (pf->avail_txqs) {
3819		bitmap_free(pf->avail_txqs);
3820		pf->avail_txqs = NULL;
3821	}
3822
3823	if (pf->avail_rxqs) {
3824		bitmap_free(pf->avail_rxqs);
3825		pf->avail_rxqs = NULL;
3826	}
3827
3828	if (pf->ptp.clock)
3829		ptp_clock_unregister(pf->ptp.clock);
3830}
3831
3832/**
3833 * ice_set_pf_caps - set PFs capability flags
3834 * @pf: pointer to the PF instance
3835 */
3836static void ice_set_pf_caps(struct ice_pf *pf)
3837{
3838	struct ice_hw_func_caps *func_caps = &pf->hw.func_caps;
3839
3840	clear_bit(ICE_FLAG_RDMA_ENA, pf->flags);
3841	if (func_caps->common_cap.rdma)
3842		set_bit(ICE_FLAG_RDMA_ENA, pf->flags);
3843	clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3844	if (func_caps->common_cap.dcb)
3845		set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3846	clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3847	if (func_caps->common_cap.sr_iov_1_1) {
3848		set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3849		pf->vfs.num_supported = min_t(int, func_caps->num_allocd_vfs,
3850					      ICE_MAX_SRIOV_VFS);
3851	}
3852	clear_bit(ICE_FLAG_RSS_ENA, pf->flags);
3853	if (func_caps->common_cap.rss_table_size)
3854		set_bit(ICE_FLAG_RSS_ENA, pf->flags);
3855
3856	clear_bit(ICE_FLAG_FD_ENA, pf->flags);
3857	if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) {
3858		u16 unused;
3859
3860		/* ctrl_vsi_idx will be set to a valid value when flow director
3861		 * is setup by ice_init_fdir
3862		 */
3863		pf->ctrl_vsi_idx = ICE_NO_VSI;
3864		set_bit(ICE_FLAG_FD_ENA, pf->flags);
3865		/* force guaranteed filter pool for PF */
3866		ice_alloc_fd_guar_item(&pf->hw, &unused,
3867				       func_caps->fd_fltr_guar);
3868		/* force shared filter pool for PF */
3869		ice_alloc_fd_shrd_item(&pf->hw, &unused,
3870				       func_caps->fd_fltr_best_effort);
3871	}
3872
3873	clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags);
3874	if (func_caps->common_cap.ieee_1588)
3875		set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags);
3876
3877	pf->max_pf_txqs = func_caps->common_cap.num_txq;
3878	pf->max_pf_rxqs = func_caps->common_cap.num_rxq;
3879}
3880
3881/**
3882 * ice_init_pf - Initialize general software structures (struct ice_pf)
3883 * @pf: board private structure to initialize
3884 */
3885static int ice_init_pf(struct ice_pf *pf)
3886{
3887	ice_set_pf_caps(pf);
3888
3889	mutex_init(&pf->sw_mutex);
3890	mutex_init(&pf->tc_mutex);
3891	mutex_init(&pf->adev_mutex);
3892	mutex_init(&pf->lag_mutex);
3893
3894	INIT_HLIST_HEAD(&pf->aq_wait_list);
3895	spin_lock_init(&pf->aq_wait_lock);
3896	init_waitqueue_head(&pf->aq_wait_queue);
3897
3898	init_waitqueue_head(&pf->reset_wait_queue);
3899
3900	/* setup service timer and periodic service task */
3901	timer_setup(&pf->serv_tmr, ice_service_timer, 0);
3902	pf->serv_tmr_period = HZ;
3903	INIT_WORK(&pf->serv_task, ice_service_task);
3904	clear_bit(ICE_SERVICE_SCHED, pf->state);
3905
3906	mutex_init(&pf->avail_q_mutex);
3907	pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL);
3908	if (!pf->avail_txqs)
3909		return -ENOMEM;
3910
3911	pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL);
3912	if (!pf->avail_rxqs) {
3913		bitmap_free(pf->avail_txqs);
3914		pf->avail_txqs = NULL;
3915		return -ENOMEM;
3916	}
3917
3918	mutex_init(&pf->vfs.table_lock);
3919	hash_init(pf->vfs.table);
3920	ice_mbx_init_snapshot(&pf->hw);
3921
3922	return 0;
3923}
3924
3925/**
3926 * ice_is_wol_supported - check if WoL is supported
3927 * @hw: pointer to hardware info
3928 *
3929 * Check if WoL is supported based on the HW configuration.
3930 * Returns true if NVM supports and enables WoL for this port, false otherwise
3931 */
3932bool ice_is_wol_supported(struct ice_hw *hw)
3933{
3934	u16 wol_ctrl;
3935
3936	/* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control
3937	 * word) indicates WoL is not supported on the corresponding PF ID.
3938	 */
3939	if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl))
3940		return false;
3941
3942	return !(BIT(hw->port_info->lport) & wol_ctrl);
3943}
3944
3945/**
3946 * ice_vsi_recfg_qs - Change the number of queues on a VSI
3947 * @vsi: VSI being changed
3948 * @new_rx: new number of Rx queues
3949 * @new_tx: new number of Tx queues
3950 * @locked: is adev device_lock held
3951 *
3952 * Only change the number of queues if new_tx, or new_rx is non-0.
3953 *
3954 * Returns 0 on success.
3955 */
3956int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx, bool locked)
3957{
3958	struct ice_pf *pf = vsi->back;
3959	int err = 0, timeout = 50;
3960
3961	if (!new_rx && !new_tx)
3962		return -EINVAL;
3963
3964	while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) {
3965		timeout--;
3966		if (!timeout)
3967			return -EBUSY;
3968		usleep_range(1000, 2000);
3969	}
3970
3971	if (new_tx)
3972		vsi->req_txq = (u16)new_tx;
3973	if (new_rx)
3974		vsi->req_rxq = (u16)new_rx;
3975
3976	/* set for the next time the netdev is started */
3977	if (!netif_running(vsi->netdev)) {
3978		ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT);
3979		dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n");
3980		goto done;
3981	}
3982
3983	ice_vsi_close(vsi);
3984	ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT);
3985	ice_pf_dcb_recfg(pf, locked);
3986	ice_vsi_open(vsi);
3987done:
3988	clear_bit(ICE_CFG_BUSY, pf->state);
3989	return err;
3990}
3991
3992/**
3993 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode
3994 * @pf: PF to configure
3995 *
3996 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF
3997 * VSI can still Tx/Rx VLAN tagged packets.
3998 */
3999static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf)
4000{
4001	struct ice_vsi *vsi = ice_get_main_vsi(pf);
4002	struct ice_vsi_ctx *ctxt;
4003	struct ice_hw *hw;
4004	int status;
4005
4006	if (!vsi)
4007		return;
4008
4009	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
4010	if (!ctxt)
4011		return;
4012
4013	hw = &pf->hw;
4014	ctxt->info = vsi->info;
4015
4016	ctxt->info.valid_sections =
4017		cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID |
4018			    ICE_AQ_VSI_PROP_SECURITY_VALID |
4019			    ICE_AQ_VSI_PROP_SW_VALID);
4020
4021	/* disable VLAN anti-spoof */
4022	ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
4023				  ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
4024
4025	/* disable VLAN pruning and keep all other settings */
4026	ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
4027
4028	/* allow all VLANs on Tx and don't strip on Rx */
4029	ctxt->info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL |
4030		ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING;
4031
4032	status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
4033	if (status) {
4034		dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n",
4035			status, ice_aq_str(hw->adminq.sq_last_status));
4036	} else {
4037		vsi->info.sec_flags = ctxt->info.sec_flags;
4038		vsi->info.sw_flags2 = ctxt->info.sw_flags2;
4039		vsi->info.inner_vlan_flags = ctxt->info.inner_vlan_flags;
4040	}
4041
4042	kfree(ctxt);
4043}
4044
4045/**
4046 * ice_log_pkg_init - log result of DDP package load
4047 * @hw: pointer to hardware info
4048 * @state: state of package load
4049 */
4050static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state)
4051{
4052	struct ice_pf *pf = hw->back;
4053	struct device *dev;
4054
4055	dev = ice_pf_to_dev(pf);
4056
4057	switch (state) {
4058	case ICE_DDP_PKG_SUCCESS:
4059		dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n",
4060			 hw->active_pkg_name,
4061			 hw->active_pkg_ver.major,
4062			 hw->active_pkg_ver.minor,
4063			 hw->active_pkg_ver.update,
4064			 hw->active_pkg_ver.draft);
4065		break;
4066	case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED:
4067		dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n",
4068			 hw->active_pkg_name,
4069			 hw->active_pkg_ver.major,
4070			 hw->active_pkg_ver.minor,
4071			 hw->active_pkg_ver.update,
4072			 hw->active_pkg_ver.draft);
4073		break;
4074	case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED:
4075		dev_err(dev, "The device has a DDP package that is not supported by the driver.  The device has package '%s' version %d.%d.x.x.  The driver requires version %d.%d.x.x.  Entering Safe Mode.\n",
4076			hw->active_pkg_name,
4077			hw->active_pkg_ver.major,
4078			hw->active_pkg_ver.minor,
4079			ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
4080		break;
4081	case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED:
4082		dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device.  The device has package '%s' version %d.%d.%d.%d.  The package file found by the driver: '%s' version %d.%d.%d.%d.\n",
4083			 hw->active_pkg_name,
4084			 hw->active_pkg_ver.major,
4085			 hw->active_pkg_ver.minor,
4086			 hw->active_pkg_ver.update,
4087			 hw->active_pkg_ver.draft,
4088			 hw->pkg_name,
4089			 hw->pkg_ver.major,
4090			 hw->pkg_ver.minor,
4091			 hw->pkg_ver.update,
4092			 hw->pkg_ver.draft);
4093		break;
4094	case ICE_DDP_PKG_FW_MISMATCH:
4095		dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package.  Please update the device's NVM.  Entering safe mode.\n");
4096		break;
4097	case ICE_DDP_PKG_INVALID_FILE:
4098		dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n");
4099		break;
4100	case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH:
4101		dev_err(dev, "The DDP package file version is higher than the driver supports.  Please use an updated driver.  Entering Safe Mode.\n");
4102		break;
4103	case ICE_DDP_PKG_FILE_VERSION_TOO_LOW:
4104		dev_err(dev, "The DDP package file version is lower than the driver supports.  The driver requires version %d.%d.x.x.  Please use an updated DDP Package file.  Entering Safe Mode.\n",
4105			ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
4106		break;
4107	case ICE_DDP_PKG_FILE_SIGNATURE_INVALID:
4108		dev_err(dev, "The DDP package could not be loaded because its signature is not valid.  Please use a valid DDP Package.  Entering Safe Mode.\n");
4109		break;
4110	case ICE_DDP_PKG_FILE_REVISION_TOO_LOW:
4111		dev_err(dev, "The DDP Package could not be loaded because its security revision is too low.  Please use an updated DDP Package.  Entering Safe Mode.\n");
4112		break;
4113	case ICE_DDP_PKG_LOAD_ERROR:
4114		dev_err(dev, "An error occurred on the device while loading the DDP package.  The device will be reset.\n");
4115		/* poll for reset to complete */
4116		if (ice_check_reset(hw))
4117			dev_err(dev, "Error resetting device. Please reload the driver\n");
4118		break;
4119	case ICE_DDP_PKG_ERR:
4120	default:
4121		dev_err(dev, "An unknown error occurred when loading the DDP package.  Entering Safe Mode.\n");
4122		break;
4123	}
4124}
4125
4126/**
4127 * ice_load_pkg - load/reload the DDP Package file
4128 * @firmware: firmware structure when firmware requested or NULL for reload
4129 * @pf: pointer to the PF instance
4130 *
4131 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and
4132 * initialize HW tables.
4133 */
4134static void
4135ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf)
4136{
4137	enum ice_ddp_state state = ICE_DDP_PKG_ERR;
4138	struct device *dev = ice_pf_to_dev(pf);
4139	struct ice_hw *hw = &pf->hw;
4140
4141	/* Load DDP Package */
4142	if (firmware && !hw->pkg_copy) {
4143		state = ice_copy_and_init_pkg(hw, firmware->data,
4144					      firmware->size);
4145		ice_log_pkg_init(hw, state);
4146	} else if (!firmware && hw->pkg_copy) {
4147		/* Reload package during rebuild after CORER/GLOBR reset */
4148		state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size);
4149		ice_log_pkg_init(hw, state);
4150	} else {
4151		dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n");
4152	}
4153
4154	if (!ice_is_init_pkg_successful(state)) {
4155		/* Safe Mode */
4156		clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
4157		return;
4158	}
4159
4160	/* Successful download package is the precondition for advanced
4161	 * features, hence setting the ICE_FLAG_ADV_FEATURES flag
4162	 */
4163	set_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
4164}
4165
4166/**
4167 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines
4168 * @pf: pointer to the PF structure
4169 *
4170 * There is no error returned here because the driver should be able to handle
4171 * 128 Byte cache lines, so we only print a warning in case issues are seen,
4172 * specifically with Tx.
4173 */
4174static void ice_verify_cacheline_size(struct ice_pf *pf)
4175{
4176	if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M)
4177		dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n",
4178			 ICE_CACHE_LINE_BYTES);
4179}
4180
4181/**
4182 * ice_send_version - update firmware with driver version
4183 * @pf: PF struct
4184 *
4185 * Returns 0 on success, else error code
4186 */
4187static int ice_send_version(struct ice_pf *pf)
4188{
4189	struct ice_driver_ver dv;
4190
4191	dv.major_ver = 0xff;
4192	dv.minor_ver = 0xff;
4193	dv.build_ver = 0xff;
4194	dv.subbuild_ver = 0;
4195	strscpy((char *)dv.driver_string, UTS_RELEASE,
4196		sizeof(dv.driver_string));
4197	return ice_aq_send_driver_ver(&pf->hw, &dv, NULL);
4198}
4199
4200/**
4201 * ice_init_fdir - Initialize flow director VSI and configuration
4202 * @pf: pointer to the PF instance
4203 *
4204 * returns 0 on success, negative on error
4205 */
4206static int ice_init_fdir(struct ice_pf *pf)
4207{
4208	struct device *dev = ice_pf_to_dev(pf);
4209	struct ice_vsi *ctrl_vsi;
4210	int err;
4211
4212	/* Side Band Flow Director needs to have a control VSI.
4213	 * Allocate it and store it in the PF.
4214	 */
4215	ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info);
4216	if (!ctrl_vsi) {
4217		dev_dbg(dev, "could not create control VSI\n");
4218		return -ENOMEM;
4219	}
4220
4221	err = ice_vsi_open_ctrl(ctrl_vsi);
4222	if (err) {
4223		dev_dbg(dev, "could not open control VSI\n");
4224		goto err_vsi_open;
4225	}
4226
4227	mutex_init(&pf->hw.fdir_fltr_lock);
4228
4229	err = ice_fdir_create_dflt_rules(pf);
4230	if (err)
4231		goto err_fdir_rule;
4232
4233	return 0;
4234
4235err_fdir_rule:
4236	ice_fdir_release_flows(&pf->hw);
4237	ice_vsi_close(ctrl_vsi);
4238err_vsi_open:
4239	ice_vsi_release(ctrl_vsi);
4240	if (pf->ctrl_vsi_idx != ICE_NO_VSI) {
4241		pf->vsi[pf->ctrl_vsi_idx] = NULL;
4242		pf->ctrl_vsi_idx = ICE_NO_VSI;
4243	}
4244	return err;
4245}
4246
4247static void ice_deinit_fdir(struct ice_pf *pf)
4248{
4249	struct ice_vsi *vsi = ice_get_ctrl_vsi(pf);
4250
4251	if (!vsi)
4252		return;
4253
4254	ice_vsi_manage_fdir(vsi, false);
4255	ice_vsi_release(vsi);
4256	if (pf->ctrl_vsi_idx != ICE_NO_VSI) {
4257		pf->vsi[pf->ctrl_vsi_idx] = NULL;
4258		pf->ctrl_vsi_idx = ICE_NO_VSI;
4259	}
4260
4261	mutex_destroy(&(&pf->hw)->fdir_fltr_lock);
4262}
4263
4264/**
4265 * ice_get_opt_fw_name - return optional firmware file name or NULL
4266 * @pf: pointer to the PF instance
4267 */
4268static char *ice_get_opt_fw_name(struct ice_pf *pf)
4269{
4270	/* Optional firmware name same as default with additional dash
4271	 * followed by a EUI-64 identifier (PCIe Device Serial Number)
4272	 */
4273	struct pci_dev *pdev = pf->pdev;
4274	char *opt_fw_filename;
4275	u64 dsn;
4276
4277	/* Determine the name of the optional file using the DSN (two
4278	 * dwords following the start of the DSN Capability).
4279	 */
4280	dsn = pci_get_dsn(pdev);
4281	if (!dsn)
4282		return NULL;
4283
4284	opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL);
4285	if (!opt_fw_filename)
4286		return NULL;
4287
4288	snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg",
4289		 ICE_DDP_PKG_PATH, dsn);
4290
4291	return opt_fw_filename;
4292}
4293
4294/**
4295 * ice_request_fw - Device initialization routine
4296 * @pf: pointer to the PF instance
4297 */
4298static void ice_request_fw(struct ice_pf *pf)
4299{
4300	char *opt_fw_filename = ice_get_opt_fw_name(pf);
4301	const struct firmware *firmware = NULL;
4302	struct device *dev = ice_pf_to_dev(pf);
4303	int err = 0;
4304
4305	/* optional device-specific DDP (if present) overrides the default DDP
4306	 * package file. kernel logs a debug message if the file doesn't exist,
4307	 * and warning messages for other errors.
4308	 */
4309	if (opt_fw_filename) {
4310		err = firmware_request_nowarn(&firmware, opt_fw_filename, dev);
4311		if (err) {
4312			kfree(opt_fw_filename);
4313			goto dflt_pkg_load;
4314		}
4315
4316		/* request for firmware was successful. Download to device */
4317		ice_load_pkg(firmware, pf);
4318		kfree(opt_fw_filename);
4319		release_firmware(firmware);
4320		return;
4321	}
4322
4323dflt_pkg_load:
4324	err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev);
4325	if (err) {
4326		dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n");
4327		return;
4328	}
4329
4330	/* request for firmware was successful. Download to device */
4331	ice_load_pkg(firmware, pf);
4332	release_firmware(firmware);
4333}
4334
4335/**
4336 * ice_print_wake_reason - show the wake up cause in the log
4337 * @pf: pointer to the PF struct
4338 */
4339static void ice_print_wake_reason(struct ice_pf *pf)
4340{
4341	u32 wus = pf->wakeup_reason;
4342	const char *wake_str;
4343
4344	/* if no wake event, nothing to print */
4345	if (!wus)
4346		return;
4347
4348	if (wus & PFPM_WUS_LNKC_M)
4349		wake_str = "Link\n";
4350	else if (wus & PFPM_WUS_MAG_M)
4351		wake_str = "Magic Packet\n";
4352	else if (wus & PFPM_WUS_MNG_M)
4353		wake_str = "Management\n";
4354	else if (wus & PFPM_WUS_FW_RST_WK_M)
4355		wake_str = "Firmware Reset\n";
4356	else
4357		wake_str = "Unknown\n";
4358
4359	dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str);
4360}
4361
4362/**
4363 * ice_register_netdev - register netdev
4364 * @vsi: pointer to the VSI struct
4365 */
4366static int ice_register_netdev(struct ice_vsi *vsi)
4367{
4368	int err;
4369
4370	if (!vsi || !vsi->netdev)
4371		return -EIO;
4372
4373	err = register_netdev(vsi->netdev);
4374	if (err)
4375		return err;
4376
4377	set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
4378	netif_carrier_off(vsi->netdev);
4379	netif_tx_stop_all_queues(vsi->netdev);
4380
4381	return 0;
4382}
4383
4384static void ice_unregister_netdev(struct ice_vsi *vsi)
4385{
4386	if (!vsi || !vsi->netdev)
4387		return;
4388
4389	unregister_netdev(vsi->netdev);
4390	clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
4391}
4392
4393/**
4394 * ice_cfg_netdev - Allocate, configure and register a netdev
4395 * @vsi: the VSI associated with the new netdev
4396 *
4397 * Returns 0 on success, negative value on failure
4398 */
4399static int ice_cfg_netdev(struct ice_vsi *vsi)
4400{
4401	struct ice_netdev_priv *np;
4402	struct net_device *netdev;
4403	u8 mac_addr[ETH_ALEN];
4404
4405	netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq,
4406				    vsi->alloc_rxq);
4407	if (!netdev)
4408		return -ENOMEM;
4409
4410	set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
4411	vsi->netdev = netdev;
4412	np = netdev_priv(netdev);
4413	np->vsi = vsi;
4414
4415	ice_set_netdev_features(netdev);
4416	ice_set_ops(vsi);
4417
4418	if (vsi->type == ICE_VSI_PF) {
4419		SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back));
4420		ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
4421		eth_hw_addr_set(netdev, mac_addr);
4422	}
4423
4424	netdev->priv_flags |= IFF_UNICAST_FLT;
4425
4426	/* Setup netdev TC information */
4427	ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
4428
4429	netdev->max_mtu = ICE_MAX_MTU;
4430
4431	return 0;
4432}
4433
4434static void ice_decfg_netdev(struct ice_vsi *vsi)
4435{
4436	clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
4437	free_netdev(vsi->netdev);
4438	vsi->netdev = NULL;
4439}
4440
4441static int ice_start_eth(struct ice_vsi *vsi)
4442{
4443	int err;
4444
4445	err = ice_init_mac_fltr(vsi->back);
4446	if (err)
4447		return err;
4448
4449	err = ice_vsi_open(vsi);
4450	if (err)
4451		ice_fltr_remove_all(vsi);
4452
4453	return err;
4454}
4455
4456static void ice_stop_eth(struct ice_vsi *vsi)
4457{
4458	ice_fltr_remove_all(vsi);
4459	ice_vsi_close(vsi);
4460}
4461
4462static int ice_init_eth(struct ice_pf *pf)
4463{
4464	struct ice_vsi *vsi = ice_get_main_vsi(pf);
4465	int err;
4466
4467	if (!vsi)
4468		return -EINVAL;
4469
4470	/* init channel list */
4471	INIT_LIST_HEAD(&vsi->ch_list);
4472
4473	err = ice_cfg_netdev(vsi);
4474	if (err)
4475		return err;
4476	/* Setup DCB netlink interface */
4477	ice_dcbnl_setup(vsi);
4478
4479	err = ice_init_mac_fltr(pf);
4480	if (err)
4481		goto err_init_mac_fltr;
4482
4483	err = ice_devlink_create_pf_port(pf);
4484	if (err)
4485		goto err_devlink_create_pf_port;
4486
4487	SET_NETDEV_DEVLINK_PORT(vsi->netdev, &pf->devlink_port);
4488
4489	err = ice_register_netdev(vsi);
4490	if (err)
4491		goto err_register_netdev;
4492
4493	err = ice_tc_indir_block_register(vsi);
4494	if (err)
4495		goto err_tc_indir_block_register;
4496
4497	ice_napi_add(vsi);
4498
4499	return 0;
4500
4501err_tc_indir_block_register:
4502	ice_unregister_netdev(vsi);
4503err_register_netdev:
4504	ice_devlink_destroy_pf_port(pf);
4505err_devlink_create_pf_port:
4506err_init_mac_fltr:
4507	ice_decfg_netdev(vsi);
4508	return err;
4509}
4510
4511static void ice_deinit_eth(struct ice_pf *pf)
4512{
4513	struct ice_vsi *vsi = ice_get_main_vsi(pf);
4514
4515	if (!vsi)
4516		return;
4517
4518	ice_vsi_close(vsi);
4519	ice_unregister_netdev(vsi);
4520	ice_devlink_destroy_pf_port(pf);
4521	ice_tc_indir_block_unregister(vsi);
4522	ice_decfg_netdev(vsi);
4523}
4524
4525/**
4526 * ice_wait_for_fw - wait for full FW readiness
4527 * @hw: pointer to the hardware structure
4528 * @timeout: milliseconds that can elapse before timing out
4529 */
4530static int ice_wait_for_fw(struct ice_hw *hw, u32 timeout)
4531{
4532	int fw_loading;
4533	u32 elapsed = 0;
4534
4535	while (elapsed <= timeout) {
4536		fw_loading = rd32(hw, GL_MNG_FWSM) & GL_MNG_FWSM_FW_LOADING_M;
4537
4538		/* firmware was not yet loaded, we have to wait more */
4539		if (fw_loading) {
4540			elapsed += 100;
4541			msleep(100);
4542			continue;
4543		}
4544		return 0;
4545	}
4546
4547	return -ETIMEDOUT;
4548}
4549
4550static int ice_init_dev(struct ice_pf *pf)
4551{
4552	struct device *dev = ice_pf_to_dev(pf);
4553	struct ice_hw *hw = &pf->hw;
4554	int err;
4555
4556	err = ice_init_hw(hw);
4557	if (err) {
4558		dev_err(dev, "ice_init_hw failed: %d\n", err);
4559		return err;
4560	}
4561
4562	/* Some cards require longer initialization times
4563	 * due to necessity of loading FW from an external source.
4564	 * This can take even half a minute.
4565	 */
4566	if (ice_is_pf_c827(hw)) {
4567		err = ice_wait_for_fw(hw, 30000);
4568		if (err) {
4569			dev_err(dev, "ice_wait_for_fw timed out");
4570			return err;
4571		}
4572	}
4573
4574	ice_init_feature_support(pf);
4575
4576	ice_request_fw(pf);
4577
4578	/* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be
4579	 * set in pf->state, which will cause ice_is_safe_mode to return
4580	 * true
4581	 */
4582	if (ice_is_safe_mode(pf)) {
4583		/* we already got function/device capabilities but these don't
4584		 * reflect what the driver needs to do in safe mode. Instead of
4585		 * adding conditional logic everywhere to ignore these
4586		 * device/function capabilities, override them.
4587		 */
4588		ice_set_safe_mode_caps(hw);
4589	}
4590
4591	err = ice_init_pf(pf);
4592	if (err) {
4593		dev_err(dev, "ice_init_pf failed: %d\n", err);
4594		goto err_init_pf;
4595	}
4596
4597	pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port;
4598	pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port;
4599	pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP;
4600	pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared;
4601	if (pf->hw.tnl.valid_count[TNL_VXLAN]) {
4602		pf->hw.udp_tunnel_nic.tables[0].n_entries =
4603			pf->hw.tnl.valid_count[TNL_VXLAN];
4604		pf->hw.udp_tunnel_nic.tables[0].tunnel_types =
4605			UDP_TUNNEL_TYPE_VXLAN;
4606	}
4607	if (pf->hw.tnl.valid_count[TNL_GENEVE]) {
4608		pf->hw.udp_tunnel_nic.tables[1].n_entries =
4609			pf->hw.tnl.valid_count[TNL_GENEVE];
4610		pf->hw.udp_tunnel_nic.tables[1].tunnel_types =
4611			UDP_TUNNEL_TYPE_GENEVE;
4612	}
4613
4614	err = ice_init_interrupt_scheme(pf);
4615	if (err) {
4616		dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err);
4617		err = -EIO;
4618		goto err_init_interrupt_scheme;
4619	}
4620
4621	/* In case of MSIX we are going to setup the misc vector right here
4622	 * to handle admin queue events etc. In case of legacy and MSI
4623	 * the misc functionality and queue processing is combined in
4624	 * the same vector and that gets setup at open.
4625	 */
4626	err = ice_req_irq_msix_misc(pf);
4627	if (err) {
4628		dev_err(dev, "setup of misc vector failed: %d\n", err);
4629		goto err_req_irq_msix_misc;
4630	}
4631
4632	return 0;
4633
4634err_req_irq_msix_misc:
4635	ice_clear_interrupt_scheme(pf);
4636err_init_interrupt_scheme:
4637	ice_deinit_pf(pf);
4638err_init_pf:
4639	ice_deinit_hw(hw);
4640	return err;
4641}
4642
4643static void ice_deinit_dev(struct ice_pf *pf)
4644{
4645	ice_free_irq_msix_misc(pf);
4646	ice_deinit_pf(pf);
4647	ice_deinit_hw(&pf->hw);
4648
4649	/* Service task is already stopped, so call reset directly. */
4650	ice_reset(&pf->hw, ICE_RESET_PFR);
4651	pci_wait_for_pending_transaction(pf->pdev);
4652	ice_clear_interrupt_scheme(pf);
4653}
4654
4655static void ice_init_features(struct ice_pf *pf)
4656{
4657	struct device *dev = ice_pf_to_dev(pf);
4658
4659	if (ice_is_safe_mode(pf))
4660		return;
4661
4662	/* initialize DDP driven features */
4663	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
4664		ice_ptp_init(pf);
4665
4666	if (ice_is_feature_supported(pf, ICE_F_GNSS))
4667		ice_gnss_init(pf);
4668
4669	/* Note: Flow director init failure is non-fatal to load */
4670	if (ice_init_fdir(pf))
4671		dev_err(dev, "could not initialize flow director\n");
4672
4673	/* Note: DCB init failure is non-fatal to load */
4674	if (ice_init_pf_dcb(pf, false)) {
4675		clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
4676		clear_bit(ICE_FLAG_DCB_ENA, pf->flags);
4677	} else {
4678		ice_cfg_lldp_mib_change(&pf->hw, true);
4679	}
4680
4681	if (ice_init_lag(pf))
4682		dev_warn(dev, "Failed to init link aggregation support\n");
4683}
4684
4685static void ice_deinit_features(struct ice_pf *pf)
4686{
4687	if (ice_is_safe_mode(pf))
4688		return;
4689
4690	ice_deinit_lag(pf);
4691	if (test_bit(ICE_FLAG_DCB_CAPABLE, pf->flags))
4692		ice_cfg_lldp_mib_change(&pf->hw, false);
4693	ice_deinit_fdir(pf);
4694	if (ice_is_feature_supported(pf, ICE_F_GNSS))
4695		ice_gnss_exit(pf);
4696	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
4697		ice_ptp_release(pf);
4698}
4699
4700static void ice_init_wakeup(struct ice_pf *pf)
4701{
4702	/* Save wakeup reason register for later use */
4703	pf->wakeup_reason = rd32(&pf->hw, PFPM_WUS);
4704
4705	/* check for a power management event */
4706	ice_print_wake_reason(pf);
4707
4708	/* clear wake status, all bits */
4709	wr32(&pf->hw, PFPM_WUS, U32_MAX);
4710
4711	/* Disable WoL at init, wait for user to enable */
4712	device_set_wakeup_enable(ice_pf_to_dev(pf), false);
4713}
4714
4715static int ice_init_link(struct ice_pf *pf)
4716{
4717	struct device *dev = ice_pf_to_dev(pf);
4718	int err;
4719
4720	err = ice_init_link_events(pf->hw.port_info);
4721	if (err) {
4722		dev_err(dev, "ice_init_link_events failed: %d\n", err);
4723		return err;
4724	}
4725
4726	/* not a fatal error if this fails */
4727	err = ice_init_nvm_phy_type(pf->hw.port_info);
4728	if (err)
4729		dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err);
4730
4731	/* not a fatal error if this fails */
4732	err = ice_update_link_info(pf->hw.port_info);
4733	if (err)
4734		dev_err(dev, "ice_update_link_info failed: %d\n", err);
4735
4736	ice_init_link_dflt_override(pf->hw.port_info);
4737
4738	ice_check_link_cfg_err(pf,
4739			       pf->hw.port_info->phy.link_info.link_cfg_err);
4740
4741	/* if media available, initialize PHY settings */
4742	if (pf->hw.port_info->phy.link_info.link_info &
4743	    ICE_AQ_MEDIA_AVAILABLE) {
4744		/* not a fatal error if this fails */
4745		err = ice_init_phy_user_cfg(pf->hw.port_info);
4746		if (err)
4747			dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err);
4748
4749		if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) {
4750			struct ice_vsi *vsi = ice_get_main_vsi(pf);
4751
4752			if (vsi)
4753				ice_configure_phy(vsi);
4754		}
4755	} else {
4756		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
4757	}
4758
4759	return err;
4760}
4761
4762static int ice_init_pf_sw(struct ice_pf *pf)
4763{
4764	bool dvm = ice_is_dvm_ena(&pf->hw);
4765	struct ice_vsi *vsi;
4766	int err;
4767
4768	/* create switch struct for the switch element created by FW on boot */
4769	pf->first_sw = kzalloc(sizeof(*pf->first_sw), GFP_KERNEL);
4770	if (!pf->first_sw)
4771		return -ENOMEM;
4772
4773	if (pf->hw.evb_veb)
4774		pf->first_sw->bridge_mode = BRIDGE_MODE_VEB;
4775	else
4776		pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA;
4777
4778	pf->first_sw->pf = pf;
4779
4780	/* record the sw_id available for later use */
4781	pf->first_sw->sw_id = pf->hw.port_info->sw_id;
4782
4783	err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL);
4784	if (err)
4785		goto err_aq_set_port_params;
4786
4787	vsi = ice_pf_vsi_setup(pf, pf->hw.port_info);
4788	if (!vsi) {
4789		err = -ENOMEM;
4790		goto err_pf_vsi_setup;
4791	}
4792
4793	return 0;
4794
4795err_pf_vsi_setup:
4796err_aq_set_port_params:
4797	kfree(pf->first_sw);
4798	return err;
4799}
4800
4801static void ice_deinit_pf_sw(struct ice_pf *pf)
4802{
4803	struct ice_vsi *vsi = ice_get_main_vsi(pf);
4804
4805	if (!vsi)
4806		return;
4807
4808	ice_vsi_release(vsi);
4809	kfree(pf->first_sw);
4810}
4811
4812static int ice_alloc_vsis(struct ice_pf *pf)
4813{
4814	struct device *dev = ice_pf_to_dev(pf);
4815
4816	pf->num_alloc_vsi = pf->hw.func_caps.guar_num_vsi;
4817	if (!pf->num_alloc_vsi)
4818		return -EIO;
4819
4820	if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) {
4821		dev_warn(dev,
4822			 "limiting the VSI count due to UDP tunnel limitation %d > %d\n",
4823			 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES);
4824		pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES;
4825	}
4826
4827	pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi),
4828			       GFP_KERNEL);
4829	if (!pf->vsi)
4830		return -ENOMEM;
4831
4832	pf->vsi_stats = devm_kcalloc(dev, pf->num_alloc_vsi,
4833				     sizeof(*pf->vsi_stats), GFP_KERNEL);
4834	if (!pf->vsi_stats) {
4835		devm_kfree(dev, pf->vsi);
4836		return -ENOMEM;
4837	}
4838
4839	return 0;
4840}
4841
4842static void ice_dealloc_vsis(struct ice_pf *pf)
4843{
4844	devm_kfree(ice_pf_to_dev(pf), pf->vsi_stats);
4845	pf->vsi_stats = NULL;
4846
4847	pf->num_alloc_vsi = 0;
4848	devm_kfree(ice_pf_to_dev(pf), pf->vsi);
4849	pf->vsi = NULL;
4850}
4851
4852static int ice_init_devlink(struct ice_pf *pf)
4853{
4854	int err;
4855
4856	err = ice_devlink_register_params(pf);
4857	if (err)
4858		return err;
4859
4860	ice_devlink_init_regions(pf);
4861	ice_devlink_register(pf);
4862
4863	return 0;
4864}
4865
4866static void ice_deinit_devlink(struct ice_pf *pf)
4867{
4868	ice_devlink_unregister(pf);
4869	ice_devlink_destroy_regions(pf);
4870	ice_devlink_unregister_params(pf);
4871}
4872
4873static int ice_init(struct ice_pf *pf)
4874{
4875	int err;
4876
4877	err = ice_init_dev(pf);
4878	if (err)
4879		return err;
4880
4881	err = ice_alloc_vsis(pf);
4882	if (err)
4883		goto err_alloc_vsis;
4884
4885	err = ice_init_pf_sw(pf);
4886	if (err)
4887		goto err_init_pf_sw;
4888
4889	ice_init_wakeup(pf);
4890
4891	err = ice_init_link(pf);
4892	if (err)
4893		goto err_init_link;
4894
4895	err = ice_send_version(pf);
4896	if (err)
4897		goto err_init_link;
4898
4899	ice_verify_cacheline_size(pf);
4900
4901	if (ice_is_safe_mode(pf))
4902		ice_set_safe_mode_vlan_cfg(pf);
4903	else
4904		/* print PCI link speed and width */
4905		pcie_print_link_status(pf->pdev);
4906
4907	/* ready to go, so clear down state bit */
4908	clear_bit(ICE_DOWN, pf->state);
4909	clear_bit(ICE_SERVICE_DIS, pf->state);
4910
4911	/* since everything is good, start the service timer */
4912	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
4913
4914	return 0;
4915
4916err_init_link:
4917	ice_deinit_pf_sw(pf);
4918err_init_pf_sw:
4919	ice_dealloc_vsis(pf);
4920err_alloc_vsis:
4921	ice_deinit_dev(pf);
4922	return err;
4923}
4924
4925static void ice_deinit(struct ice_pf *pf)
4926{
4927	set_bit(ICE_SERVICE_DIS, pf->state);
4928	set_bit(ICE_DOWN, pf->state);
4929
4930	ice_deinit_pf_sw(pf);
4931	ice_dealloc_vsis(pf);
4932	ice_deinit_dev(pf);
4933}
4934
4935/**
4936 * ice_load - load pf by init hw and starting VSI
4937 * @pf: pointer to the pf instance
4938 */
4939int ice_load(struct ice_pf *pf)
4940{
4941	struct ice_vsi_cfg_params params = {};
4942	struct ice_vsi *vsi;
4943	int err;
4944
4945	err = ice_init_dev(pf);
4946	if (err)
4947		return err;
4948
4949	vsi = ice_get_main_vsi(pf);
4950
4951	params = ice_vsi_to_params(vsi);
4952	params.flags = ICE_VSI_FLAG_INIT;
4953
4954	rtnl_lock();
4955	err = ice_vsi_cfg(vsi, &params);
4956	if (err)
4957		goto err_vsi_cfg;
4958
4959	err = ice_start_eth(ice_get_main_vsi(pf));
4960	if (err)
4961		goto err_start_eth;
4962	rtnl_unlock();
4963
4964	err = ice_init_rdma(pf);
4965	if (err)
4966		goto err_init_rdma;
4967
4968	ice_init_features(pf);
4969	ice_service_task_restart(pf);
4970
4971	clear_bit(ICE_DOWN, pf->state);
4972
4973	return 0;
4974
4975err_init_rdma:
4976	ice_vsi_close(ice_get_main_vsi(pf));
4977	rtnl_lock();
4978err_start_eth:
4979	ice_vsi_decfg(ice_get_main_vsi(pf));
4980err_vsi_cfg:
4981	rtnl_unlock();
4982	ice_deinit_dev(pf);
4983	return err;
4984}
4985
4986/**
4987 * ice_unload - unload pf by stopping VSI and deinit hw
4988 * @pf: pointer to the pf instance
4989 */
4990void ice_unload(struct ice_pf *pf)
4991{
4992	ice_deinit_features(pf);
4993	ice_deinit_rdma(pf);
4994	rtnl_lock();
4995	ice_stop_eth(ice_get_main_vsi(pf));
4996	ice_vsi_decfg(ice_get_main_vsi(pf));
4997	rtnl_unlock();
4998	ice_deinit_dev(pf);
4999}
5000
5001/**
5002 * ice_probe - Device initialization routine
5003 * @pdev: PCI device information struct
5004 * @ent: entry in ice_pci_tbl
5005 *
5006 * Returns 0 on success, negative on failure
5007 */
5008static int
5009ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent)
5010{
5011	struct device *dev = &pdev->dev;
5012	struct ice_pf *pf;
5013	struct ice_hw *hw;
5014	int err;
5015
5016	if (pdev->is_virtfn) {
5017		dev_err(dev, "can't probe a virtual function\n");
5018		return -EINVAL;
5019	}
5020
5021	/* when under a kdump kernel initiate a reset before enabling the
5022	 * device in order to clear out any pending DMA transactions. These
5023	 * transactions can cause some systems to machine check when doing
5024	 * the pcim_enable_device() below.
5025	 */
5026	if (is_kdump_kernel()) {
5027		pci_save_state(pdev);
5028		pci_clear_master(pdev);
5029		err = pcie_flr(pdev);
5030		if (err)
5031			return err;
5032		pci_restore_state(pdev);
5033	}
5034
5035	/* this driver uses devres, see
5036	 * Documentation/driver-api/driver-model/devres.rst
5037	 */
5038	err = pcim_enable_device(pdev);
5039	if (err)
5040		return err;
5041
5042	err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev));
5043	if (err) {
5044		dev_err(dev, "BAR0 I/O map error %d\n", err);
5045		return err;
5046	}
5047
5048	pf = ice_allocate_pf(dev);
5049	if (!pf)
5050		return -ENOMEM;
5051
5052	/* initialize Auxiliary index to invalid value */
5053	pf->aux_idx = -1;
5054
5055	/* set up for high or low DMA */
5056	err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
5057	if (err) {
5058		dev_err(dev, "DMA configuration failed: 0x%x\n", err);
5059		return err;
5060	}
5061
5062	pci_set_master(pdev);
5063
5064	pf->pdev = pdev;
5065	pci_set_drvdata(pdev, pf);
5066	set_bit(ICE_DOWN, pf->state);
5067	/* Disable service task until DOWN bit is cleared */
5068	set_bit(ICE_SERVICE_DIS, pf->state);
5069
5070	hw = &pf->hw;
5071	hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0];
5072	pci_save_state(pdev);
5073
5074	hw->back = pf;
5075	hw->port_info = NULL;
5076	hw->vendor_id = pdev->vendor;
5077	hw->device_id = pdev->device;
5078	pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
5079	hw->subsystem_vendor_id = pdev->subsystem_vendor;
5080	hw->subsystem_device_id = pdev->subsystem_device;
5081	hw->bus.device = PCI_SLOT(pdev->devfn);
5082	hw->bus.func = PCI_FUNC(pdev->devfn);
5083	ice_set_ctrlq_len(hw);
5084
5085	pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M);
5086
5087#ifndef CONFIG_DYNAMIC_DEBUG
5088	if (debug < -1)
5089		hw->debug_mask = debug;
5090#endif
5091
5092	err = ice_init(pf);
5093	if (err)
5094		goto err_init;
5095
5096	err = ice_init_eth(pf);
5097	if (err)
5098		goto err_init_eth;
5099
5100	err = ice_init_rdma(pf);
5101	if (err)
5102		goto err_init_rdma;
5103
5104	err = ice_init_devlink(pf);
5105	if (err)
5106		goto err_init_devlink;
5107
5108	ice_init_features(pf);
5109
5110	return 0;
5111
5112err_init_devlink:
5113	ice_deinit_rdma(pf);
5114err_init_rdma:
5115	ice_deinit_eth(pf);
5116err_init_eth:
5117	ice_deinit(pf);
5118err_init:
5119	pci_disable_device(pdev);
5120	return err;
5121}
5122
5123/**
5124 * ice_set_wake - enable or disable Wake on LAN
5125 * @pf: pointer to the PF struct
5126 *
5127 * Simple helper for WoL control
5128 */
5129static void ice_set_wake(struct ice_pf *pf)
5130{
5131	struct ice_hw *hw = &pf->hw;
5132	bool wol = pf->wol_ena;
5133
5134	/* clear wake state, otherwise new wake events won't fire */
5135	wr32(hw, PFPM_WUS, U32_MAX);
5136
5137	/* enable / disable APM wake up, no RMW needed */
5138	wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0);
5139
5140	/* set magic packet filter enabled */
5141	wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0);
5142}
5143
5144/**
5145 * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet
5146 * @pf: pointer to the PF struct
5147 *
5148 * Issue firmware command to enable multicast magic wake, making
5149 * sure that any locally administered address (LAA) is used for
5150 * wake, and that PF reset doesn't undo the LAA.
5151 */
5152static void ice_setup_mc_magic_wake(struct ice_pf *pf)
5153{
5154	struct device *dev = ice_pf_to_dev(pf);
5155	struct ice_hw *hw = &pf->hw;
5156	u8 mac_addr[ETH_ALEN];
5157	struct ice_vsi *vsi;
5158	int status;
5159	u8 flags;
5160
5161	if (!pf->wol_ena)
5162		return;
5163
5164	vsi = ice_get_main_vsi(pf);
5165	if (!vsi)
5166		return;
5167
5168	/* Get current MAC address in case it's an LAA */
5169	if (vsi->netdev)
5170		ether_addr_copy(mac_addr, vsi->netdev->dev_addr);
5171	else
5172		ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
5173
5174	flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN |
5175		ICE_AQC_MAN_MAC_UPDATE_LAA_WOL |
5176		ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP;
5177
5178	status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL);
5179	if (status)
5180		dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n",
5181			status, ice_aq_str(hw->adminq.sq_last_status));
5182}
5183
5184/**
5185 * ice_remove - Device removal routine
5186 * @pdev: PCI device information struct
5187 */
5188static void ice_remove(struct pci_dev *pdev)
5189{
5190	struct ice_pf *pf = pci_get_drvdata(pdev);
5191	int i;
5192
5193	for (i = 0; i < ICE_MAX_RESET_WAIT; i++) {
5194		if (!ice_is_reset_in_progress(pf->state))
5195			break;
5196		msleep(100);
5197	}
5198
5199	if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) {
5200		set_bit(ICE_VF_RESETS_DISABLED, pf->state);
5201		ice_free_vfs(pf);
5202	}
5203
5204	ice_service_task_stop(pf);
5205	ice_aq_cancel_waiting_tasks(pf);
5206	set_bit(ICE_DOWN, pf->state);
5207
5208	if (!ice_is_safe_mode(pf))
5209		ice_remove_arfs(pf);
5210	ice_deinit_features(pf);
5211	ice_deinit_devlink(pf);
5212	ice_deinit_rdma(pf);
5213	ice_deinit_eth(pf);
5214	ice_deinit(pf);
5215
5216	ice_vsi_release_all(pf);
5217
5218	ice_setup_mc_magic_wake(pf);
5219	ice_set_wake(pf);
5220
5221	pci_disable_device(pdev);
5222}
5223
5224/**
5225 * ice_shutdown - PCI callback for shutting down device
5226 * @pdev: PCI device information struct
5227 */
5228static void ice_shutdown(struct pci_dev *pdev)
5229{
5230	struct ice_pf *pf = pci_get_drvdata(pdev);
5231
5232	ice_remove(pdev);
5233
5234	if (system_state == SYSTEM_POWER_OFF) {
5235		pci_wake_from_d3(pdev, pf->wol_ena);
5236		pci_set_power_state(pdev, PCI_D3hot);
5237	}
5238}
5239
5240#ifdef CONFIG_PM
5241/**
5242 * ice_prepare_for_shutdown - prep for PCI shutdown
5243 * @pf: board private structure
5244 *
5245 * Inform or close all dependent features in prep for PCI device shutdown
5246 */
5247static void ice_prepare_for_shutdown(struct ice_pf *pf)
5248{
5249	struct ice_hw *hw = &pf->hw;
5250	u32 v;
5251
5252	/* Notify VFs of impending reset */
5253	if (ice_check_sq_alive(hw, &hw->mailboxq))
5254		ice_vc_notify_reset(pf);
5255
5256	dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n");
5257
5258	/* disable the VSIs and their queues that are not already DOWN */
5259	ice_pf_dis_all_vsi(pf, false);
5260
5261	ice_for_each_vsi(pf, v)
5262		if (pf->vsi[v])
5263			pf->vsi[v]->vsi_num = 0;
5264
5265	ice_shutdown_all_ctrlq(hw);
5266}
5267
5268/**
5269 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme
5270 * @pf: board private structure to reinitialize
5271 *
5272 * This routine reinitialize interrupt scheme that was cleared during
5273 * power management suspend callback.
5274 *
5275 * This should be called during resume routine to re-allocate the q_vectors
5276 * and reacquire interrupts.
5277 */
5278static int ice_reinit_interrupt_scheme(struct ice_pf *pf)
5279{
5280	struct device *dev = ice_pf_to_dev(pf);
5281	int ret, v;
5282
5283	/* Since we clear MSIX flag during suspend, we need to
5284	 * set it back during resume...
5285	 */
5286
5287	ret = ice_init_interrupt_scheme(pf);
5288	if (ret) {
5289		dev_err(dev, "Failed to re-initialize interrupt %d\n", ret);
5290		return ret;
5291	}
5292
5293	/* Remap vectors and rings, after successful re-init interrupts */
5294	ice_for_each_vsi(pf, v) {
5295		if (!pf->vsi[v])
5296			continue;
5297
5298		ret = ice_vsi_alloc_q_vectors(pf->vsi[v]);
5299		if (ret)
5300			goto err_reinit;
5301		ice_vsi_map_rings_to_vectors(pf->vsi[v]);
5302	}
5303
5304	ret = ice_req_irq_msix_misc(pf);
5305	if (ret) {
5306		dev_err(dev, "Setting up misc vector failed after device suspend %d\n",
5307			ret);
5308		goto err_reinit;
5309	}
5310
5311	return 0;
5312
5313err_reinit:
5314	while (v--)
5315		if (pf->vsi[v])
5316			ice_vsi_free_q_vectors(pf->vsi[v]);
5317
5318	return ret;
5319}
5320
5321/**
5322 * ice_suspend
5323 * @dev: generic device information structure
5324 *
5325 * Power Management callback to quiesce the device and prepare
5326 * for D3 transition.
5327 */
5328static int __maybe_unused ice_suspend(struct device *dev)
5329{
5330	struct pci_dev *pdev = to_pci_dev(dev);
5331	struct ice_pf *pf;
5332	int disabled, v;
5333
5334	pf = pci_get_drvdata(pdev);
5335
5336	if (!ice_pf_state_is_nominal(pf)) {
5337		dev_err(dev, "Device is not ready, no need to suspend it\n");
5338		return -EBUSY;
5339	}
5340
5341	/* Stop watchdog tasks until resume completion.
5342	 * Even though it is most likely that the service task is
5343	 * disabled if the device is suspended or down, the service task's
5344	 * state is controlled by a different state bit, and we should
5345	 * store and honor whatever state that bit is in at this point.
5346	 */
5347	disabled = ice_service_task_stop(pf);
5348
5349	ice_unplug_aux_dev(pf);
5350
5351	/* Already suspended?, then there is nothing to do */
5352	if (test_and_set_bit(ICE_SUSPENDED, pf->state)) {
5353		if (!disabled)
5354			ice_service_task_restart(pf);
5355		return 0;
5356	}
5357
5358	if (test_bit(ICE_DOWN, pf->state) ||
5359	    ice_is_reset_in_progress(pf->state)) {
5360		dev_err(dev, "can't suspend device in reset or already down\n");
5361		if (!disabled)
5362			ice_service_task_restart(pf);
5363		return 0;
5364	}
5365
5366	ice_setup_mc_magic_wake(pf);
5367
5368	ice_prepare_for_shutdown(pf);
5369
5370	ice_set_wake(pf);
5371
5372	/* Free vectors, clear the interrupt scheme and release IRQs
5373	 * for proper hibernation, especially with large number of CPUs.
5374	 * Otherwise hibernation might fail when mapping all the vectors back
5375	 * to CPU0.
5376	 */
5377	ice_free_irq_msix_misc(pf);
5378	ice_for_each_vsi(pf, v) {
5379		if (!pf->vsi[v])
5380			continue;
5381		ice_vsi_free_q_vectors(pf->vsi[v]);
5382	}
5383	ice_clear_interrupt_scheme(pf);
5384
5385	pci_save_state(pdev);
5386	pci_wake_from_d3(pdev, pf->wol_ena);
5387	pci_set_power_state(pdev, PCI_D3hot);
5388	return 0;
5389}
5390
5391/**
5392 * ice_resume - PM callback for waking up from D3
5393 * @dev: generic device information structure
5394 */
5395static int __maybe_unused ice_resume(struct device *dev)
5396{
5397	struct pci_dev *pdev = to_pci_dev(dev);
5398	enum ice_reset_req reset_type;
5399	struct ice_pf *pf;
5400	struct ice_hw *hw;
5401	int ret;
5402
5403	pci_set_power_state(pdev, PCI_D0);
5404	pci_restore_state(pdev);
5405	pci_save_state(pdev);
5406
5407	if (!pci_device_is_present(pdev))
5408		return -ENODEV;
5409
5410	ret = pci_enable_device_mem(pdev);
5411	if (ret) {
5412		dev_err(dev, "Cannot enable device after suspend\n");
5413		return ret;
5414	}
5415
5416	pf = pci_get_drvdata(pdev);
5417	hw = &pf->hw;
5418
5419	pf->wakeup_reason = rd32(hw, PFPM_WUS);
5420	ice_print_wake_reason(pf);
5421
5422	/* We cleared the interrupt scheme when we suspended, so we need to
5423	 * restore it now to resume device functionality.
5424	 */
5425	ret = ice_reinit_interrupt_scheme(pf);
5426	if (ret)
5427		dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret);
5428
5429	clear_bit(ICE_DOWN, pf->state);
5430	/* Now perform PF reset and rebuild */
5431	reset_type = ICE_RESET_PFR;
5432	/* re-enable service task for reset, but allow reset to schedule it */
5433	clear_bit(ICE_SERVICE_DIS, pf->state);
5434
5435	if (ice_schedule_reset(pf, reset_type))
5436		dev_err(dev, "Reset during resume failed.\n");
5437
5438	clear_bit(ICE_SUSPENDED, pf->state);
5439	ice_service_task_restart(pf);
5440
5441	/* Restart the service task */
5442	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
5443
5444	return 0;
5445}
5446#endif /* CONFIG_PM */
5447
5448/**
5449 * ice_pci_err_detected - warning that PCI error has been detected
5450 * @pdev: PCI device information struct
5451 * @err: the type of PCI error
5452 *
5453 * Called to warn that something happened on the PCI bus and the error handling
5454 * is in progress.  Allows the driver to gracefully prepare/handle PCI errors.
5455 */
5456static pci_ers_result_t
5457ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err)
5458{
5459	struct ice_pf *pf = pci_get_drvdata(pdev);
5460
5461	if (!pf) {
5462		dev_err(&pdev->dev, "%s: unrecoverable device error %d\n",
5463			__func__, err);
5464		return PCI_ERS_RESULT_DISCONNECT;
5465	}
5466
5467	if (!test_bit(ICE_SUSPENDED, pf->state)) {
5468		ice_service_task_stop(pf);
5469
5470		if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) {
5471			set_bit(ICE_PFR_REQ, pf->state);
5472			ice_prepare_for_reset(pf, ICE_RESET_PFR);
5473		}
5474	}
5475
5476	return PCI_ERS_RESULT_NEED_RESET;
5477}
5478
5479/**
5480 * ice_pci_err_slot_reset - a PCI slot reset has just happened
5481 * @pdev: PCI device information struct
5482 *
5483 * Called to determine if the driver can recover from the PCI slot reset by
5484 * using a register read to determine if the device is recoverable.
5485 */
5486static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev)
5487{
5488	struct ice_pf *pf = pci_get_drvdata(pdev);
5489	pci_ers_result_t result;
5490	int err;
5491	u32 reg;
5492
5493	err = pci_enable_device_mem(pdev);
5494	if (err) {
5495		dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n",
5496			err);
5497		result = PCI_ERS_RESULT_DISCONNECT;
5498	} else {
5499		pci_set_master(pdev);
5500		pci_restore_state(pdev);
5501		pci_save_state(pdev);
5502		pci_wake_from_d3(pdev, false);
5503
5504		/* Check for life */
5505		reg = rd32(&pf->hw, GLGEN_RTRIG);
5506		if (!reg)
5507			result = PCI_ERS_RESULT_RECOVERED;
5508		else
5509			result = PCI_ERS_RESULT_DISCONNECT;
5510	}
5511
5512	return result;
5513}
5514
5515/**
5516 * ice_pci_err_resume - restart operations after PCI error recovery
5517 * @pdev: PCI device information struct
5518 *
5519 * Called to allow the driver to bring things back up after PCI error and/or
5520 * reset recovery have finished
5521 */
5522static void ice_pci_err_resume(struct pci_dev *pdev)
5523{
5524	struct ice_pf *pf = pci_get_drvdata(pdev);
5525
5526	if (!pf) {
5527		dev_err(&pdev->dev, "%s failed, device is unrecoverable\n",
5528			__func__);
5529		return;
5530	}
5531
5532	if (test_bit(ICE_SUSPENDED, pf->state)) {
5533		dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n",
5534			__func__);
5535		return;
5536	}
5537
5538	ice_restore_all_vfs_msi_state(pdev);
5539
5540	ice_do_reset(pf, ICE_RESET_PFR);
5541	ice_service_task_restart(pf);
5542	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
5543}
5544
5545/**
5546 * ice_pci_err_reset_prepare - prepare device driver for PCI reset
5547 * @pdev: PCI device information struct
5548 */
5549static void ice_pci_err_reset_prepare(struct pci_dev *pdev)
5550{
5551	struct ice_pf *pf = pci_get_drvdata(pdev);
5552
5553	if (!test_bit(ICE_SUSPENDED, pf->state)) {
5554		ice_service_task_stop(pf);
5555
5556		if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) {
5557			set_bit(ICE_PFR_REQ, pf->state);
5558			ice_prepare_for_reset(pf, ICE_RESET_PFR);
5559		}
5560	}
5561}
5562
5563/**
5564 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin
5565 * @pdev: PCI device information struct
5566 */
5567static void ice_pci_err_reset_done(struct pci_dev *pdev)
5568{
5569	ice_pci_err_resume(pdev);
5570}
5571
5572/* ice_pci_tbl - PCI Device ID Table
5573 *
5574 * Wildcard entries (PCI_ANY_ID) should come last
5575 * Last entry must be all 0s
5576 *
5577 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
5578 *   Class, Class Mask, private data (not used) }
5579 */
5580static const struct pci_device_id ice_pci_tbl[] = {
5581	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 },
5582	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 },
5583	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 },
5584	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE), 0 },
5585	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP), 0 },
5586	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP), 0 },
5587	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE), 0 },
5588	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP), 0 },
5589	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP), 0 },
5590	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T), 0 },
5591	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII), 0 },
5592	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE), 0 },
5593	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP), 0 },
5594	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP), 0 },
5595	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T), 0 },
5596	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII), 0 },
5597	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE), 0 },
5598	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP), 0 },
5599	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T), 0 },
5600	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII), 0 },
5601	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE), 0 },
5602	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP), 0 },
5603	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T), 0 },
5604	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE), 0 },
5605	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP), 0 },
5606	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822_SI_DFLT), 0 },
5607	/* required last entry */
5608	{ 0, }
5609};
5610MODULE_DEVICE_TABLE(pci, ice_pci_tbl);
5611
5612static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume);
5613
5614static const struct pci_error_handlers ice_pci_err_handler = {
5615	.error_detected = ice_pci_err_detected,
5616	.slot_reset = ice_pci_err_slot_reset,
5617	.reset_prepare = ice_pci_err_reset_prepare,
5618	.reset_done = ice_pci_err_reset_done,
5619	.resume = ice_pci_err_resume
5620};
5621
5622static struct pci_driver ice_driver = {
5623	.name = KBUILD_MODNAME,
5624	.id_table = ice_pci_tbl,
5625	.probe = ice_probe,
5626	.remove = ice_remove,
5627#ifdef CONFIG_PM
5628	.driver.pm = &ice_pm_ops,
5629#endif /* CONFIG_PM */
5630	.shutdown = ice_shutdown,
5631	.sriov_configure = ice_sriov_configure,
5632	.err_handler = &ice_pci_err_handler
5633};
5634
5635/**
5636 * ice_module_init - Driver registration routine
5637 *
5638 * ice_module_init is the first routine called when the driver is
5639 * loaded. All it does is register with the PCI subsystem.
5640 */
5641static int __init ice_module_init(void)
5642{
5643	int status = -ENOMEM;
5644
5645	pr_info("%s\n", ice_driver_string);
5646	pr_info("%s\n", ice_copyright);
5647
5648	ice_wq = alloc_workqueue("%s", 0, 0, KBUILD_MODNAME);
5649	if (!ice_wq) {
5650		pr_err("Failed to create workqueue\n");
5651		return status;
5652	}
5653
5654	ice_lag_wq = alloc_ordered_workqueue("ice_lag_wq", 0);
5655	if (!ice_lag_wq) {
5656		pr_err("Failed to create LAG workqueue\n");
5657		goto err_dest_wq;
5658	}
5659
5660	status = pci_register_driver(&ice_driver);
5661	if (status) {
5662		pr_err("failed to register PCI driver, err %d\n", status);
5663		goto err_dest_lag_wq;
5664	}
5665
5666	return 0;
5667
5668err_dest_lag_wq:
5669	destroy_workqueue(ice_lag_wq);
5670err_dest_wq:
5671	destroy_workqueue(ice_wq);
5672	return status;
5673}
5674module_init(ice_module_init);
5675
5676/**
5677 * ice_module_exit - Driver exit cleanup routine
5678 *
5679 * ice_module_exit is called just before the driver is removed
5680 * from memory.
5681 */
5682static void __exit ice_module_exit(void)
5683{
5684	pci_unregister_driver(&ice_driver);
5685	destroy_workqueue(ice_wq);
5686	destroy_workqueue(ice_lag_wq);
5687	pr_info("module unloaded\n");
5688}
5689module_exit(ice_module_exit);
5690
5691/**
5692 * ice_set_mac_address - NDO callback to set MAC address
5693 * @netdev: network interface device structure
5694 * @pi: pointer to an address structure
5695 *
5696 * Returns 0 on success, negative on failure
5697 */
5698static int ice_set_mac_address(struct net_device *netdev, void *pi)
5699{
5700	struct ice_netdev_priv *np = netdev_priv(netdev);
5701	struct ice_vsi *vsi = np->vsi;
5702	struct ice_pf *pf = vsi->back;
5703	struct ice_hw *hw = &pf->hw;
5704	struct sockaddr *addr = pi;
5705	u8 old_mac[ETH_ALEN];
5706	u8 flags = 0;
5707	u8 *mac;
5708	int err;
5709
5710	mac = (u8 *)addr->sa_data;
5711
5712	if (!is_valid_ether_addr(mac))
5713		return -EADDRNOTAVAIL;
5714
5715	if (test_bit(ICE_DOWN, pf->state) ||
5716	    ice_is_reset_in_progress(pf->state)) {
5717		netdev_err(netdev, "can't set mac %pM. device not ready\n",
5718			   mac);
5719		return -EBUSY;
5720	}
5721
5722	if (ice_chnl_dmac_fltr_cnt(pf)) {
5723		netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n",
5724			   mac);
5725		return -EAGAIN;
5726	}
5727
5728	netif_addr_lock_bh(netdev);
5729	ether_addr_copy(old_mac, netdev->dev_addr);
5730	/* change the netdev's MAC address */
5731	eth_hw_addr_set(netdev, mac);
5732	netif_addr_unlock_bh(netdev);
5733
5734	/* Clean up old MAC filter. Not an error if old filter doesn't exist */
5735	err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI);
5736	if (err && err != -ENOENT) {
5737		err = -EADDRNOTAVAIL;
5738		goto err_update_filters;
5739	}
5740
5741	/* Add filter for new MAC. If filter exists, return success */
5742	err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI);
5743	if (err == -EEXIST) {
5744		/* Although this MAC filter is already present in hardware it's
5745		 * possible in some cases (e.g. bonding) that dev_addr was
5746		 * modified outside of the driver and needs to be restored back
5747		 * to this value.
5748		 */
5749		netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac);
5750
5751		return 0;
5752	} else if (err) {
5753		/* error if the new filter addition failed */
5754		err = -EADDRNOTAVAIL;
5755	}
5756
5757err_update_filters:
5758	if (err) {
5759		netdev_err(netdev, "can't set MAC %pM. filter update failed\n",
5760			   mac);
5761		netif_addr_lock_bh(netdev);
5762		eth_hw_addr_set(netdev, old_mac);
5763		netif_addr_unlock_bh(netdev);
5764		return err;
5765	}
5766
5767	netdev_dbg(vsi->netdev, "updated MAC address to %pM\n",
5768		   netdev->dev_addr);
5769
5770	/* write new MAC address to the firmware */
5771	flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL;
5772	err = ice_aq_manage_mac_write(hw, mac, flags, NULL);
5773	if (err) {
5774		netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n",
5775			   mac, err);
5776	}
5777	return 0;
5778}
5779
5780/**
5781 * ice_set_rx_mode - NDO callback to set the netdev filters
5782 * @netdev: network interface device structure
5783 */
5784static void ice_set_rx_mode(struct net_device *netdev)
5785{
5786	struct ice_netdev_priv *np = netdev_priv(netdev);
5787	struct ice_vsi *vsi = np->vsi;
5788
5789	if (!vsi || ice_is_switchdev_running(vsi->back))
5790		return;
5791
5792	/* Set the flags to synchronize filters
5793	 * ndo_set_rx_mode may be triggered even without a change in netdev
5794	 * flags
5795	 */
5796	set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
5797	set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
5798	set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags);
5799
5800	/* schedule our worker thread which will take care of
5801	 * applying the new filter changes
5802	 */
5803	ice_service_task_schedule(vsi->back);
5804}
5805
5806/**
5807 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate
5808 * @netdev: network interface device structure
5809 * @queue_index: Queue ID
5810 * @maxrate: maximum bandwidth in Mbps
5811 */
5812static int
5813ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate)
5814{
5815	struct ice_netdev_priv *np = netdev_priv(netdev);
5816	struct ice_vsi *vsi = np->vsi;
5817	u16 q_handle;
5818	int status;
5819	u8 tc;
5820
5821	/* Validate maxrate requested is within permitted range */
5822	if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) {
5823		netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n",
5824			   maxrate, queue_index);
5825		return -EINVAL;
5826	}
5827
5828	q_handle = vsi->tx_rings[queue_index]->q_handle;
5829	tc = ice_dcb_get_tc(vsi, queue_index);
5830
5831	vsi = ice_locate_vsi_using_queue(vsi, queue_index);
5832	if (!vsi) {
5833		netdev_err(netdev, "Invalid VSI for given queue %d\n",
5834			   queue_index);
5835		return -EINVAL;
5836	}
5837
5838	/* Set BW back to default, when user set maxrate to 0 */
5839	if (!maxrate)
5840		status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc,
5841					       q_handle, ICE_MAX_BW);
5842	else
5843		status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc,
5844					  q_handle, ICE_MAX_BW, maxrate * 1000);
5845	if (status)
5846		netdev_err(netdev, "Unable to set Tx max rate, error %d\n",
5847			   status);
5848
5849	return status;
5850}
5851
5852/**
5853 * ice_fdb_add - add an entry to the hardware database
5854 * @ndm: the input from the stack
5855 * @tb: pointer to array of nladdr (unused)
5856 * @dev: the net device pointer
5857 * @addr: the MAC address entry being added
5858 * @vid: VLAN ID
5859 * @flags: instructions from stack about fdb operation
5860 * @extack: netlink extended ack
5861 */
5862static int
5863ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[],
5864	    struct net_device *dev, const unsigned char *addr, u16 vid,
5865	    u16 flags, struct netlink_ext_ack __always_unused *extack)
5866{
5867	int err;
5868
5869	if (vid) {
5870		netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n");
5871		return -EINVAL;
5872	}
5873	if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) {
5874		netdev_err(dev, "FDB only supports static addresses\n");
5875		return -EINVAL;
5876	}
5877
5878	if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
5879		err = dev_uc_add_excl(dev, addr);
5880	else if (is_multicast_ether_addr(addr))
5881		err = dev_mc_add_excl(dev, addr);
5882	else
5883		err = -EINVAL;
5884
5885	/* Only return duplicate errors if NLM_F_EXCL is set */
5886	if (err == -EEXIST && !(flags & NLM_F_EXCL))
5887		err = 0;
5888
5889	return err;
5890}
5891
5892/**
5893 * ice_fdb_del - delete an entry from the hardware database
5894 * @ndm: the input from the stack
5895 * @tb: pointer to array of nladdr (unused)
5896 * @dev: the net device pointer
5897 * @addr: the MAC address entry being added
5898 * @vid: VLAN ID
5899 * @extack: netlink extended ack
5900 */
5901static int
5902ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[],
5903	    struct net_device *dev, const unsigned char *addr,
5904	    __always_unused u16 vid, struct netlink_ext_ack *extack)
5905{
5906	int err;
5907
5908	if (ndm->ndm_state & NUD_PERMANENT) {
5909		netdev_err(dev, "FDB only supports static addresses\n");
5910		return -EINVAL;
5911	}
5912
5913	if (is_unicast_ether_addr(addr))
5914		err = dev_uc_del(dev, addr);
5915	else if (is_multicast_ether_addr(addr))
5916		err = dev_mc_del(dev, addr);
5917	else
5918		err = -EINVAL;
5919
5920	return err;
5921}
5922
5923#define NETIF_VLAN_OFFLOAD_FEATURES	(NETIF_F_HW_VLAN_CTAG_RX | \
5924					 NETIF_F_HW_VLAN_CTAG_TX | \
5925					 NETIF_F_HW_VLAN_STAG_RX | \
5926					 NETIF_F_HW_VLAN_STAG_TX)
5927
5928#define NETIF_VLAN_STRIPPING_FEATURES	(NETIF_F_HW_VLAN_CTAG_RX | \
5929					 NETIF_F_HW_VLAN_STAG_RX)
5930
5931#define NETIF_VLAN_FILTERING_FEATURES	(NETIF_F_HW_VLAN_CTAG_FILTER | \
5932					 NETIF_F_HW_VLAN_STAG_FILTER)
5933
5934/**
5935 * ice_fix_features - fix the netdev features flags based on device limitations
5936 * @netdev: ptr to the netdev that flags are being fixed on
5937 * @features: features that need to be checked and possibly fixed
5938 *
5939 * Make sure any fixups are made to features in this callback. This enables the
5940 * driver to not have to check unsupported configurations throughout the driver
5941 * because that's the responsiblity of this callback.
5942 *
5943 * Single VLAN Mode (SVM) Supported Features:
5944 *	NETIF_F_HW_VLAN_CTAG_FILTER
5945 *	NETIF_F_HW_VLAN_CTAG_RX
5946 *	NETIF_F_HW_VLAN_CTAG_TX
5947 *
5948 * Double VLAN Mode (DVM) Supported Features:
5949 *	NETIF_F_HW_VLAN_CTAG_FILTER
5950 *	NETIF_F_HW_VLAN_CTAG_RX
5951 *	NETIF_F_HW_VLAN_CTAG_TX
5952 *
5953 *	NETIF_F_HW_VLAN_STAG_FILTER
5954 *	NETIF_HW_VLAN_STAG_RX
5955 *	NETIF_HW_VLAN_STAG_TX
5956 *
5957 * Features that need fixing:
5958 *	Cannot simultaneously enable CTAG and STAG stripping and/or insertion.
5959 *	These are mutually exlusive as the VSI context cannot support multiple
5960 *	VLAN ethertypes simultaneously for stripping and/or insertion. If this
5961 *	is not done, then default to clearing the requested STAG offload
5962 *	settings.
5963 *
5964 *	All supported filtering has to be enabled or disabled together. For
5965 *	example, in DVM, CTAG and STAG filtering have to be enabled and disabled
5966 *	together. If this is not done, then default to VLAN filtering disabled.
5967 *	These are mutually exclusive as there is currently no way to
5968 *	enable/disable VLAN filtering based on VLAN ethertype when using VLAN
5969 *	prune rules.
5970 */
5971static netdev_features_t
5972ice_fix_features(struct net_device *netdev, netdev_features_t features)
5973{
5974	struct ice_netdev_priv *np = netdev_priv(netdev);
5975	netdev_features_t req_vlan_fltr, cur_vlan_fltr;
5976	bool cur_ctag, cur_stag, req_ctag, req_stag;
5977
5978	cur_vlan_fltr = netdev->features & NETIF_VLAN_FILTERING_FEATURES;
5979	cur_ctag = cur_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER;
5980	cur_stag = cur_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER;
5981
5982	req_vlan_fltr = features & NETIF_VLAN_FILTERING_FEATURES;
5983	req_ctag = req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER;
5984	req_stag = req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER;
5985
5986	if (req_vlan_fltr != cur_vlan_fltr) {
5987		if (ice_is_dvm_ena(&np->vsi->back->hw)) {
5988			if (req_ctag && req_stag) {
5989				features |= NETIF_VLAN_FILTERING_FEATURES;
5990			} else if (!req_ctag && !req_stag) {
5991				features &= ~NETIF_VLAN_FILTERING_FEATURES;
5992			} else if ((!cur_ctag && req_ctag && !cur_stag) ||
5993				   (!cur_stag && req_stag && !cur_ctag)) {
5994				features |= NETIF_VLAN_FILTERING_FEATURES;
5995				netdev_warn(netdev,  "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been enabled for both types.\n");
5996			} else if ((cur_ctag && !req_ctag && cur_stag) ||
5997				   (cur_stag && !req_stag && cur_ctag)) {
5998				features &= ~NETIF_VLAN_FILTERING_FEATURES;
5999				netdev_warn(netdev,  "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been disabled for both types.\n");
6000			}
6001		} else {
6002			if (req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER)
6003				netdev_warn(netdev, "cannot support requested 802.1ad filtering setting in SVM mode\n");
6004
6005			if (req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER)
6006				features |= NETIF_F_HW_VLAN_CTAG_FILTER;
6007		}
6008	}
6009
6010	if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) &&
6011	    (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))) {
6012		netdev_warn(netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n");
6013		features &= ~(NETIF_F_HW_VLAN_STAG_RX |
6014			      NETIF_F_HW_VLAN_STAG_TX);
6015	}
6016
6017	if (!(netdev->features & NETIF_F_RXFCS) &&
6018	    (features & NETIF_F_RXFCS) &&
6019	    (features & NETIF_VLAN_STRIPPING_FEATURES) &&
6020	    !ice_vsi_has_non_zero_vlans(np->vsi)) {
6021		netdev_warn(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n");
6022		features &= ~NETIF_VLAN_STRIPPING_FEATURES;
6023	}
6024
6025	return features;
6026}
6027
6028/**
6029 * ice_set_vlan_offload_features - set VLAN offload features for the PF VSI
6030 * @vsi: PF's VSI
6031 * @features: features used to determine VLAN offload settings
6032 *
6033 * First, determine the vlan_ethertype based on the VLAN offload bits in
6034 * features. Then determine if stripping and insertion should be enabled or
6035 * disabled. Finally enable or disable VLAN stripping and insertion.
6036 */
6037static int
6038ice_set_vlan_offload_features(struct ice_vsi *vsi, netdev_features_t features)
6039{
6040	bool enable_stripping = true, enable_insertion = true;
6041	struct ice_vsi_vlan_ops *vlan_ops;
6042	int strip_err = 0, insert_err = 0;
6043	u16 vlan_ethertype = 0;
6044
6045	vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
6046
6047	if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
6048		vlan_ethertype = ETH_P_8021AD;
6049	else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
6050		vlan_ethertype = ETH_P_8021Q;
6051
6052	if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX)))
6053		enable_stripping = false;
6054	if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX)))
6055		enable_insertion = false;
6056
6057	if (enable_stripping)
6058		strip_err = vlan_ops->ena_stripping(vsi, vlan_ethertype);
6059	else
6060		strip_err = vlan_ops->dis_stripping(vsi);
6061
6062	if (enable_insertion)
6063		insert_err = vlan_ops->ena_insertion(vsi, vlan_ethertype);
6064	else
6065		insert_err = vlan_ops->dis_insertion(vsi);
6066
6067	if (strip_err || insert_err)
6068		return -EIO;
6069
6070	return 0;
6071}
6072
6073/**
6074 * ice_set_vlan_filtering_features - set VLAN filtering features for the PF VSI
6075 * @vsi: PF's VSI
6076 * @features: features used to determine VLAN filtering settings
6077 *
6078 * Enable or disable Rx VLAN filtering based on the VLAN filtering bits in the
6079 * features.
6080 */
6081static int
6082ice_set_vlan_filtering_features(struct ice_vsi *vsi, netdev_features_t features)
6083{
6084	struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
6085	int err = 0;
6086
6087	/* support Single VLAN Mode (SVM) and Double VLAN Mode (DVM) by checking
6088	 * if either bit is set
6089	 */
6090	if (features &
6091	    (NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER))
6092		err = vlan_ops->ena_rx_filtering(vsi);
6093	else
6094		err = vlan_ops->dis_rx_filtering(vsi);
6095
6096	return err;
6097}
6098
6099/**
6100 * ice_set_vlan_features - set VLAN settings based on suggested feature set
6101 * @netdev: ptr to the netdev being adjusted
6102 * @features: the feature set that the stack is suggesting
6103 *
6104 * Only update VLAN settings if the requested_vlan_features are different than
6105 * the current_vlan_features.
6106 */
6107static int
6108ice_set_vlan_features(struct net_device *netdev, netdev_features_t features)
6109{
6110	netdev_features_t current_vlan_features, requested_vlan_features;
6111	struct ice_netdev_priv *np = netdev_priv(netdev);
6112	struct ice_vsi *vsi = np->vsi;
6113	int err;
6114
6115	current_vlan_features = netdev->features & NETIF_VLAN_OFFLOAD_FEATURES;
6116	requested_vlan_features = features & NETIF_VLAN_OFFLOAD_FEATURES;
6117	if (current_vlan_features ^ requested_vlan_features) {
6118		if ((features & NETIF_F_RXFCS) &&
6119		    (features & NETIF_VLAN_STRIPPING_FEATURES)) {
6120			dev_err(ice_pf_to_dev(vsi->back),
6121				"To enable VLAN stripping, you must first enable FCS/CRC stripping\n");
6122			return -EIO;
6123		}
6124
6125		err = ice_set_vlan_offload_features(vsi, features);
6126		if (err)
6127			return err;
6128	}
6129
6130	current_vlan_features = netdev->features &
6131		NETIF_VLAN_FILTERING_FEATURES;
6132	requested_vlan_features = features & NETIF_VLAN_FILTERING_FEATURES;
6133	if (current_vlan_features ^ requested_vlan_features) {
6134		err = ice_set_vlan_filtering_features(vsi, features);
6135		if (err)
6136			return err;
6137	}
6138
6139	return 0;
6140}
6141
6142/**
6143 * ice_set_loopback - turn on/off loopback mode on underlying PF
6144 * @vsi: ptr to VSI
6145 * @ena: flag to indicate the on/off setting
6146 */
6147static int ice_set_loopback(struct ice_vsi *vsi, bool ena)
6148{
6149	bool if_running = netif_running(vsi->netdev);
6150	int ret;
6151
6152	if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) {
6153		ret = ice_down(vsi);
6154		if (ret) {
6155			netdev_err(vsi->netdev, "Preparing device to toggle loopback failed\n");
6156			return ret;
6157		}
6158	}
6159	ret = ice_aq_set_mac_loopback(&vsi->back->hw, ena, NULL);
6160	if (ret)
6161		netdev_err(vsi->netdev, "Failed to toggle loopback state\n");
6162	if (if_running)
6163		ret = ice_up(vsi);
6164
6165	return ret;
6166}
6167
6168/**
6169 * ice_set_features - set the netdev feature flags
6170 * @netdev: ptr to the netdev being adjusted
6171 * @features: the feature set that the stack is suggesting
6172 */
6173static int
6174ice_set_features(struct net_device *netdev, netdev_features_t features)
6175{
6176	netdev_features_t changed = netdev->features ^ features;
6177	struct ice_netdev_priv *np = netdev_priv(netdev);
6178	struct ice_vsi *vsi = np->vsi;
6179	struct ice_pf *pf = vsi->back;
6180	int ret = 0;
6181
6182	/* Don't set any netdev advanced features with device in Safe Mode */
6183	if (ice_is_safe_mode(pf)) {
6184		dev_err(ice_pf_to_dev(pf),
6185			"Device is in Safe Mode - not enabling advanced netdev features\n");
6186		return ret;
6187	}
6188
6189	/* Do not change setting during reset */
6190	if (ice_is_reset_in_progress(pf->state)) {
6191		dev_err(ice_pf_to_dev(pf),
6192			"Device is resetting, changing advanced netdev features temporarily unavailable.\n");
6193		return -EBUSY;
6194	}
6195
6196	/* Multiple features can be changed in one call so keep features in
6197	 * separate if/else statements to guarantee each feature is checked
6198	 */
6199	if (changed & NETIF_F_RXHASH)
6200		ice_vsi_manage_rss_lut(vsi, !!(features & NETIF_F_RXHASH));
6201
6202	ret = ice_set_vlan_features(netdev, features);
6203	if (ret)
6204		return ret;
6205
6206	/* Turn on receive of FCS aka CRC, and after setting this
6207	 * flag the packet data will have the 4 byte CRC appended
6208	 */
6209	if (changed & NETIF_F_RXFCS) {
6210		if ((features & NETIF_F_RXFCS) &&
6211		    (features & NETIF_VLAN_STRIPPING_FEATURES)) {
6212			dev_err(ice_pf_to_dev(vsi->back),
6213				"To disable FCS/CRC stripping, you must first disable VLAN stripping\n");
6214			return -EIO;
6215		}
6216
6217		ice_vsi_cfg_crc_strip(vsi, !!(features & NETIF_F_RXFCS));
6218		ret = ice_down_up(vsi);
6219		if (ret)
6220			return ret;
6221	}
6222
6223	if (changed & NETIF_F_NTUPLE) {
6224		bool ena = !!(features & NETIF_F_NTUPLE);
6225
6226		ice_vsi_manage_fdir(vsi, ena);
6227		ena ? ice_init_arfs(vsi) : ice_clear_arfs(vsi);
6228	}
6229
6230	/* don't turn off hw_tc_offload when ADQ is already enabled */
6231	if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) {
6232		dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n");
6233		return -EACCES;
6234	}
6235
6236	if (changed & NETIF_F_HW_TC) {
6237		bool ena = !!(features & NETIF_F_HW_TC);
6238
6239		ena ? set_bit(ICE_FLAG_CLS_FLOWER, pf->flags) :
6240		      clear_bit(ICE_FLAG_CLS_FLOWER, pf->flags);
6241	}
6242
6243	if (changed & NETIF_F_LOOPBACK)
6244		ret = ice_set_loopback(vsi, !!(features & NETIF_F_LOOPBACK));
6245
6246	return ret;
6247}
6248
6249/**
6250 * ice_vsi_vlan_setup - Setup VLAN offload properties on a PF VSI
6251 * @vsi: VSI to setup VLAN properties for
6252 */
6253static int ice_vsi_vlan_setup(struct ice_vsi *vsi)
6254{
6255	int err;
6256
6257	err = ice_set_vlan_offload_features(vsi, vsi->netdev->features);
6258	if (err)
6259		return err;
6260
6261	err = ice_set_vlan_filtering_features(vsi, vsi->netdev->features);
6262	if (err)
6263		return err;
6264
6265	return ice_vsi_add_vlan_zero(vsi);
6266}
6267
6268/**
6269 * ice_vsi_cfg_lan - Setup the VSI lan related config
6270 * @vsi: the VSI being configured
6271 *
6272 * Return 0 on success and negative value on error
6273 */
6274int ice_vsi_cfg_lan(struct ice_vsi *vsi)
6275{
6276	int err;
6277
6278	if (vsi->netdev && vsi->type == ICE_VSI_PF) {
6279		ice_set_rx_mode(vsi->netdev);
6280
6281		err = ice_vsi_vlan_setup(vsi);
6282		if (err)
6283			return err;
6284	}
6285	ice_vsi_cfg_dcb_rings(vsi);
6286
6287	err = ice_vsi_cfg_lan_txqs(vsi);
6288	if (!err && ice_is_xdp_ena_vsi(vsi))
6289		err = ice_vsi_cfg_xdp_txqs(vsi);
6290	if (!err)
6291		err = ice_vsi_cfg_rxqs(vsi);
6292
6293	return err;
6294}
6295
6296/* THEORY OF MODERATION:
6297 * The ice driver hardware works differently than the hardware that DIMLIB was
6298 * originally made for. ice hardware doesn't have packet count limits that
6299 * can trigger an interrupt, but it *does* have interrupt rate limit support,
6300 * which is hard-coded to a limit of 250,000 ints/second.
6301 * If not using dynamic moderation, the INTRL value can be modified
6302 * by ethtool rx-usecs-high.
6303 */
6304struct ice_dim {
6305	/* the throttle rate for interrupts, basically worst case delay before
6306	 * an initial interrupt fires, value is stored in microseconds.
6307	 */
6308	u16 itr;
6309};
6310
6311/* Make a different profile for Rx that doesn't allow quite so aggressive
6312 * moderation at the high end (it maxes out at 126us or about 8k interrupts a
6313 * second.
6314 */
6315static const struct ice_dim rx_profile[] = {
6316	{2},    /* 500,000 ints/s, capped at 250K by INTRL */
6317	{8},    /* 125,000 ints/s */
6318	{16},   /*  62,500 ints/s */
6319	{62},   /*  16,129 ints/s */
6320	{126}   /*   7,936 ints/s */
6321};
6322
6323/* The transmit profile, which has the same sorts of values
6324 * as the previous struct
6325 */
6326static const struct ice_dim tx_profile[] = {
6327	{2},    /* 500,000 ints/s, capped at 250K by INTRL */
6328	{8},    /* 125,000 ints/s */
6329	{40},   /*  16,125 ints/s */
6330	{128},  /*   7,812 ints/s */
6331	{256}   /*   3,906 ints/s */
6332};
6333
6334static void ice_tx_dim_work(struct work_struct *work)
6335{
6336	struct ice_ring_container *rc;
6337	struct dim *dim;
6338	u16 itr;
6339
6340	dim = container_of(work, struct dim, work);
6341	rc = dim->priv;
6342
6343	WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile));
6344
6345	/* look up the values in our local table */
6346	itr = tx_profile[dim->profile_ix].itr;
6347
6348	ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim);
6349	ice_write_itr(rc, itr);
6350
6351	dim->state = DIM_START_MEASURE;
6352}
6353
6354static void ice_rx_dim_work(struct work_struct *work)
6355{
6356	struct ice_ring_container *rc;
6357	struct dim *dim;
6358	u16 itr;
6359
6360	dim = container_of(work, struct dim, work);
6361	rc = dim->priv;
6362
6363	WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile));
6364
6365	/* look up the values in our local table */
6366	itr = rx_profile[dim->profile_ix].itr;
6367
6368	ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim);
6369	ice_write_itr(rc, itr);
6370
6371	dim->state = DIM_START_MEASURE;
6372}
6373
6374#define ICE_DIM_DEFAULT_PROFILE_IX 1
6375
6376/**
6377 * ice_init_moderation - set up interrupt moderation
6378 * @q_vector: the vector containing rings to be configured
6379 *
6380 * Set up interrupt moderation registers, with the intent to do the right thing
6381 * when called from reset or from probe, and whether or not dynamic moderation
6382 * is enabled or not. Take special care to write all the registers in both
6383 * dynamic moderation mode or not in order to make sure hardware is in a known
6384 * state.
6385 */
6386static void ice_init_moderation(struct ice_q_vector *q_vector)
6387{
6388	struct ice_ring_container *rc;
6389	bool tx_dynamic, rx_dynamic;
6390
6391	rc = &q_vector->tx;
6392	INIT_WORK(&rc->dim.work, ice_tx_dim_work);
6393	rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
6394	rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX;
6395	rc->dim.priv = rc;
6396	tx_dynamic = ITR_IS_DYNAMIC(rc);
6397
6398	/* set the initial TX ITR to match the above */
6399	ice_write_itr(rc, tx_dynamic ?
6400		      tx_profile[rc->dim.profile_ix].itr : rc->itr_setting);
6401
6402	rc = &q_vector->rx;
6403	INIT_WORK(&rc->dim.work, ice_rx_dim_work);
6404	rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
6405	rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX;
6406	rc->dim.priv = rc;
6407	rx_dynamic = ITR_IS_DYNAMIC(rc);
6408
6409	/* set the initial RX ITR to match the above */
6410	ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr :
6411				       rc->itr_setting);
6412
6413	ice_set_q_vector_intrl(q_vector);
6414}
6415
6416/**
6417 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI
6418 * @vsi: the VSI being configured
6419 */
6420static void ice_napi_enable_all(struct ice_vsi *vsi)
6421{
6422	int q_idx;
6423
6424	if (!vsi->netdev)
6425		return;
6426
6427	ice_for_each_q_vector(vsi, q_idx) {
6428		struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
6429
6430		ice_init_moderation(q_vector);
6431
6432		if (q_vector->rx.rx_ring || q_vector->tx.tx_ring)
6433			napi_enable(&q_vector->napi);
6434	}
6435}
6436
6437/**
6438 * ice_up_complete - Finish the last steps of bringing up a connection
6439 * @vsi: The VSI being configured
6440 *
6441 * Return 0 on success and negative value on error
6442 */
6443static int ice_up_complete(struct ice_vsi *vsi)
6444{
6445	struct ice_pf *pf = vsi->back;
6446	int err;
6447
6448	ice_vsi_cfg_msix(vsi);
6449
6450	/* Enable only Rx rings, Tx rings were enabled by the FW when the
6451	 * Tx queue group list was configured and the context bits were
6452	 * programmed using ice_vsi_cfg_txqs
6453	 */
6454	err = ice_vsi_start_all_rx_rings(vsi);
6455	if (err)
6456		return err;
6457
6458	clear_bit(ICE_VSI_DOWN, vsi->state);
6459	ice_napi_enable_all(vsi);
6460	ice_vsi_ena_irq(vsi);
6461
6462	if (vsi->port_info &&
6463	    (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) &&
6464	    vsi->netdev && vsi->type == ICE_VSI_PF) {
6465		ice_print_link_msg(vsi, true);
6466		netif_tx_start_all_queues(vsi->netdev);
6467		netif_carrier_on(vsi->netdev);
6468		ice_ptp_link_change(pf, pf->hw.pf_id, true);
6469	}
6470
6471	/* Perform an initial read of the statistics registers now to
6472	 * set the baseline so counters are ready when interface is up
6473	 */
6474	ice_update_eth_stats(vsi);
6475
6476	if (vsi->type == ICE_VSI_PF)
6477		ice_service_task_schedule(pf);
6478
6479	return 0;
6480}
6481
6482/**
6483 * ice_up - Bring the connection back up after being down
6484 * @vsi: VSI being configured
6485 */
6486int ice_up(struct ice_vsi *vsi)
6487{
6488	int err;
6489
6490	err = ice_vsi_cfg_lan(vsi);
6491	if (!err)
6492		err = ice_up_complete(vsi);
6493
6494	return err;
6495}
6496
6497/**
6498 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring
6499 * @syncp: pointer to u64_stats_sync
6500 * @stats: stats that pkts and bytes count will be taken from
6501 * @pkts: packets stats counter
6502 * @bytes: bytes stats counter
6503 *
6504 * This function fetches stats from the ring considering the atomic operations
6505 * that needs to be performed to read u64 values in 32 bit machine.
6506 */
6507void
6508ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp,
6509			     struct ice_q_stats stats, u64 *pkts, u64 *bytes)
6510{
6511	unsigned int start;
6512
6513	do {
6514		start = u64_stats_fetch_begin(syncp);
6515		*pkts = stats.pkts;
6516		*bytes = stats.bytes;
6517	} while (u64_stats_fetch_retry(syncp, start));
6518}
6519
6520/**
6521 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters
6522 * @vsi: the VSI to be updated
6523 * @vsi_stats: the stats struct to be updated
6524 * @rings: rings to work on
6525 * @count: number of rings
6526 */
6527static void
6528ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi,
6529			     struct rtnl_link_stats64 *vsi_stats,
6530			     struct ice_tx_ring **rings, u16 count)
6531{
6532	u16 i;
6533
6534	for (i = 0; i < count; i++) {
6535		struct ice_tx_ring *ring;
6536		u64 pkts = 0, bytes = 0;
6537
6538		ring = READ_ONCE(rings[i]);
6539		if (!ring || !ring->ring_stats)
6540			continue;
6541		ice_fetch_u64_stats_per_ring(&ring->ring_stats->syncp,
6542					     ring->ring_stats->stats, &pkts,
6543					     &bytes);
6544		vsi_stats->tx_packets += pkts;
6545		vsi_stats->tx_bytes += bytes;
6546		vsi->tx_restart += ring->ring_stats->tx_stats.restart_q;
6547		vsi->tx_busy += ring->ring_stats->tx_stats.tx_busy;
6548		vsi->tx_linearize += ring->ring_stats->tx_stats.tx_linearize;
6549	}
6550}
6551
6552/**
6553 * ice_update_vsi_ring_stats - Update VSI stats counters
6554 * @vsi: the VSI to be updated
6555 */
6556static void ice_update_vsi_ring_stats(struct ice_vsi *vsi)
6557{
6558	struct rtnl_link_stats64 *net_stats, *stats_prev;
6559	struct rtnl_link_stats64 *vsi_stats;
6560	struct ice_pf *pf = vsi->back;
6561	u64 pkts, bytes;
6562	int i;
6563
6564	vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC);
6565	if (!vsi_stats)
6566		return;
6567
6568	/* reset non-netdev (extended) stats */
6569	vsi->tx_restart = 0;
6570	vsi->tx_busy = 0;
6571	vsi->tx_linearize = 0;
6572	vsi->rx_buf_failed = 0;
6573	vsi->rx_page_failed = 0;
6574
6575	rcu_read_lock();
6576
6577	/* update Tx rings counters */
6578	ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings,
6579				     vsi->num_txq);
6580
6581	/* update Rx rings counters */
6582	ice_for_each_rxq(vsi, i) {
6583		struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]);
6584		struct ice_ring_stats *ring_stats;
6585
6586		ring_stats = ring->ring_stats;
6587		ice_fetch_u64_stats_per_ring(&ring_stats->syncp,
6588					     ring_stats->stats, &pkts,
6589					     &bytes);
6590		vsi_stats->rx_packets += pkts;
6591		vsi_stats->rx_bytes += bytes;
6592		vsi->rx_buf_failed += ring_stats->rx_stats.alloc_buf_failed;
6593		vsi->rx_page_failed += ring_stats->rx_stats.alloc_page_failed;
6594	}
6595
6596	/* update XDP Tx rings counters */
6597	if (ice_is_xdp_ena_vsi(vsi))
6598		ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings,
6599					     vsi->num_xdp_txq);
6600
6601	rcu_read_unlock();
6602
6603	net_stats = &vsi->net_stats;
6604	stats_prev = &vsi->net_stats_prev;
6605
6606	/* Update netdev counters, but keep in mind that values could start at
6607	 * random value after PF reset. And as we increase the reported stat by
6608	 * diff of Prev-Cur, we need to be sure that Prev is valid. If it's not,
6609	 * let's skip this round.
6610	 */
6611	if (likely(pf->stat_prev_loaded)) {
6612		net_stats->tx_packets += vsi_stats->tx_packets - stats_prev->tx_packets;
6613		net_stats->tx_bytes += vsi_stats->tx_bytes - stats_prev->tx_bytes;
6614		net_stats->rx_packets += vsi_stats->rx_packets - stats_prev->rx_packets;
6615		net_stats->rx_bytes += vsi_stats->rx_bytes - stats_prev->rx_bytes;
6616	}
6617
6618	stats_prev->tx_packets = vsi_stats->tx_packets;
6619	stats_prev->tx_bytes = vsi_stats->tx_bytes;
6620	stats_prev->rx_packets = vsi_stats->rx_packets;
6621	stats_prev->rx_bytes = vsi_stats->rx_bytes;
6622
6623	kfree(vsi_stats);
6624}
6625
6626/**
6627 * ice_update_vsi_stats - Update VSI stats counters
6628 * @vsi: the VSI to be updated
6629 */
6630void ice_update_vsi_stats(struct ice_vsi *vsi)
6631{
6632	struct rtnl_link_stats64 *cur_ns = &vsi->net_stats;
6633	struct ice_eth_stats *cur_es = &vsi->eth_stats;
6634	struct ice_pf *pf = vsi->back;
6635
6636	if (test_bit(ICE_VSI_DOWN, vsi->state) ||
6637	    test_bit(ICE_CFG_BUSY, pf->state))
6638		return;
6639
6640	/* get stats as recorded by Tx/Rx rings */
6641	ice_update_vsi_ring_stats(vsi);
6642
6643	/* get VSI stats as recorded by the hardware */
6644	ice_update_eth_stats(vsi);
6645
6646	cur_ns->tx_errors = cur_es->tx_errors;
6647	cur_ns->rx_dropped = cur_es->rx_discards;
6648	cur_ns->tx_dropped = cur_es->tx_discards;
6649	cur_ns->multicast = cur_es->rx_multicast;
6650
6651	/* update some more netdev stats if this is main VSI */
6652	if (vsi->type == ICE_VSI_PF) {
6653		cur_ns->rx_crc_errors = pf->stats.crc_errors;
6654		cur_ns->rx_errors = pf->stats.crc_errors +
6655				    pf->stats.illegal_bytes +
6656				    pf->stats.rx_len_errors +
6657				    pf->stats.rx_undersize +
6658				    pf->hw_csum_rx_error +
6659				    pf->stats.rx_jabber +
6660				    pf->stats.rx_fragments +
6661				    pf->stats.rx_oversize;
6662		cur_ns->rx_length_errors = pf->stats.rx_len_errors;
6663		/* record drops from the port level */
6664		cur_ns->rx_missed_errors = pf->stats.eth.rx_discards;
6665	}
6666}
6667
6668/**
6669 * ice_update_pf_stats - Update PF port stats counters
6670 * @pf: PF whose stats needs to be updated
6671 */
6672void ice_update_pf_stats(struct ice_pf *pf)
6673{
6674	struct ice_hw_port_stats *prev_ps, *cur_ps;
6675	struct ice_hw *hw = &pf->hw;
6676	u16 fd_ctr_base;
6677	u8 port;
6678
6679	port = hw->port_info->lport;
6680	prev_ps = &pf->stats_prev;
6681	cur_ps = &pf->stats;
6682
6683	if (ice_is_reset_in_progress(pf->state))
6684		pf->stat_prev_loaded = false;
6685
6686	ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded,
6687			  &prev_ps->eth.rx_bytes,
6688			  &cur_ps->eth.rx_bytes);
6689
6690	ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded,
6691			  &prev_ps->eth.rx_unicast,
6692			  &cur_ps->eth.rx_unicast);
6693
6694	ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded,
6695			  &prev_ps->eth.rx_multicast,
6696			  &cur_ps->eth.rx_multicast);
6697
6698	ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded,
6699			  &prev_ps->eth.rx_broadcast,
6700			  &cur_ps->eth.rx_broadcast);
6701
6702	ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded,
6703			  &prev_ps->eth.rx_discards,
6704			  &cur_ps->eth.rx_discards);
6705
6706	ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded,
6707			  &prev_ps->eth.tx_bytes,
6708			  &cur_ps->eth.tx_bytes);
6709
6710	ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded,
6711			  &prev_ps->eth.tx_unicast,
6712			  &cur_ps->eth.tx_unicast);
6713
6714	ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded,
6715			  &prev_ps->eth.tx_multicast,
6716			  &cur_ps->eth.tx_multicast);
6717
6718	ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded,
6719			  &prev_ps->eth.tx_broadcast,
6720			  &cur_ps->eth.tx_broadcast);
6721
6722	ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded,
6723			  &prev_ps->tx_dropped_link_down,
6724			  &cur_ps->tx_dropped_link_down);
6725
6726	ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded,
6727			  &prev_ps->rx_size_64, &cur_ps->rx_size_64);
6728
6729	ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded,
6730			  &prev_ps->rx_size_127, &cur_ps->rx_size_127);
6731
6732	ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded,
6733			  &prev_ps->rx_size_255, &cur_ps->rx_size_255);
6734
6735	ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded,
6736			  &prev_ps->rx_size_511, &cur_ps->rx_size_511);
6737
6738	ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded,
6739			  &prev_ps->rx_size_1023, &cur_ps->rx_size_1023);
6740
6741	ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded,
6742			  &prev_ps->rx_size_1522, &cur_ps->rx_size_1522);
6743
6744	ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded,
6745			  &prev_ps->rx_size_big, &cur_ps->rx_size_big);
6746
6747	ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded,
6748			  &prev_ps->tx_size_64, &cur_ps->tx_size_64);
6749
6750	ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded,
6751			  &prev_ps->tx_size_127, &cur_ps->tx_size_127);
6752
6753	ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded,
6754			  &prev_ps->tx_size_255, &cur_ps->tx_size_255);
6755
6756	ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded,
6757			  &prev_ps->tx_size_511, &cur_ps->tx_size_511);
6758
6759	ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded,
6760			  &prev_ps->tx_size_1023, &cur_ps->tx_size_1023);
6761
6762	ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded,
6763			  &prev_ps->tx_size_1522, &cur_ps->tx_size_1522);
6764
6765	ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded,
6766			  &prev_ps->tx_size_big, &cur_ps->tx_size_big);
6767
6768	fd_ctr_base = hw->fd_ctr_base;
6769
6770	ice_stat_update40(hw,
6771			  GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)),
6772			  pf->stat_prev_loaded, &prev_ps->fd_sb_match,
6773			  &cur_ps->fd_sb_match);
6774	ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded,
6775			  &prev_ps->link_xon_rx, &cur_ps->link_xon_rx);
6776
6777	ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded,
6778			  &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx);
6779
6780	ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded,
6781			  &prev_ps->link_xon_tx, &cur_ps->link_xon_tx);
6782
6783	ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded,
6784			  &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx);
6785
6786	ice_update_dcb_stats(pf);
6787
6788	ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded,
6789			  &prev_ps->crc_errors, &cur_ps->crc_errors);
6790
6791	ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded,
6792			  &prev_ps->illegal_bytes, &cur_ps->illegal_bytes);
6793
6794	ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded,
6795			  &prev_ps->mac_local_faults,
6796			  &cur_ps->mac_local_faults);
6797
6798	ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded,
6799			  &prev_ps->mac_remote_faults,
6800			  &cur_ps->mac_remote_faults);
6801
6802	ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded,
6803			  &prev_ps->rx_len_errors, &cur_ps->rx_len_errors);
6804
6805	ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded,
6806			  &prev_ps->rx_undersize, &cur_ps->rx_undersize);
6807
6808	ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded,
6809			  &prev_ps->rx_fragments, &cur_ps->rx_fragments);
6810
6811	ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded,
6812			  &prev_ps->rx_oversize, &cur_ps->rx_oversize);
6813
6814	ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded,
6815			  &prev_ps->rx_jabber, &cur_ps->rx_jabber);
6816
6817	cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0;
6818
6819	pf->stat_prev_loaded = true;
6820}
6821
6822/**
6823 * ice_get_stats64 - get statistics for network device structure
6824 * @netdev: network interface device structure
6825 * @stats: main device statistics structure
6826 */
6827static
6828void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
6829{
6830	struct ice_netdev_priv *np = netdev_priv(netdev);
6831	struct rtnl_link_stats64 *vsi_stats;
6832	struct ice_vsi *vsi = np->vsi;
6833
6834	vsi_stats = &vsi->net_stats;
6835
6836	if (!vsi->num_txq || !vsi->num_rxq)
6837		return;
6838
6839	/* netdev packet/byte stats come from ring counter. These are obtained
6840	 * by summing up ring counters (done by ice_update_vsi_ring_stats).
6841	 * But, only call the update routine and read the registers if VSI is
6842	 * not down.
6843	 */
6844	if (!test_bit(ICE_VSI_DOWN, vsi->state))
6845		ice_update_vsi_ring_stats(vsi);
6846	stats->tx_packets = vsi_stats->tx_packets;
6847	stats->tx_bytes = vsi_stats->tx_bytes;
6848	stats->rx_packets = vsi_stats->rx_packets;
6849	stats->rx_bytes = vsi_stats->rx_bytes;
6850
6851	/* The rest of the stats can be read from the hardware but instead we
6852	 * just return values that the watchdog task has already obtained from
6853	 * the hardware.
6854	 */
6855	stats->multicast = vsi_stats->multicast;
6856	stats->tx_errors = vsi_stats->tx_errors;
6857	stats->tx_dropped = vsi_stats->tx_dropped;
6858	stats->rx_errors = vsi_stats->rx_errors;
6859	stats->rx_dropped = vsi_stats->rx_dropped;
6860	stats->rx_crc_errors = vsi_stats->rx_crc_errors;
6861	stats->rx_length_errors = vsi_stats->rx_length_errors;
6862}
6863
6864/**
6865 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI
6866 * @vsi: VSI having NAPI disabled
6867 */
6868static void ice_napi_disable_all(struct ice_vsi *vsi)
6869{
6870	int q_idx;
6871
6872	if (!vsi->netdev)
6873		return;
6874
6875	ice_for_each_q_vector(vsi, q_idx) {
6876		struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
6877
6878		if (q_vector->rx.rx_ring || q_vector->tx.tx_ring)
6879			napi_disable(&q_vector->napi);
6880
6881		cancel_work_sync(&q_vector->tx.dim.work);
6882		cancel_work_sync(&q_vector->rx.dim.work);
6883	}
6884}
6885
6886/**
6887 * ice_down - Shutdown the connection
6888 * @vsi: The VSI being stopped
6889 *
6890 * Caller of this function is expected to set the vsi->state ICE_DOWN bit
6891 */
6892int ice_down(struct ice_vsi *vsi)
6893{
6894	int i, tx_err, rx_err, vlan_err = 0;
6895
6896	WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state));
6897
6898	if (vsi->netdev && vsi->type == ICE_VSI_PF) {
6899		vlan_err = ice_vsi_del_vlan_zero(vsi);
6900		ice_ptp_link_change(vsi->back, vsi->back->hw.pf_id, false);
6901		netif_carrier_off(vsi->netdev);
6902		netif_tx_disable(vsi->netdev);
6903	} else if (vsi->type == ICE_VSI_SWITCHDEV_CTRL) {
6904		ice_eswitch_stop_all_tx_queues(vsi->back);
6905	}
6906
6907	ice_vsi_dis_irq(vsi);
6908
6909	tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0);
6910	if (tx_err)
6911		netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n",
6912			   vsi->vsi_num, tx_err);
6913	if (!tx_err && ice_is_xdp_ena_vsi(vsi)) {
6914		tx_err = ice_vsi_stop_xdp_tx_rings(vsi);
6915		if (tx_err)
6916			netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n",
6917				   vsi->vsi_num, tx_err);
6918	}
6919
6920	rx_err = ice_vsi_stop_all_rx_rings(vsi);
6921	if (rx_err)
6922		netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n",
6923			   vsi->vsi_num, rx_err);
6924
6925	ice_napi_disable_all(vsi);
6926
6927	ice_for_each_txq(vsi, i)
6928		ice_clean_tx_ring(vsi->tx_rings[i]);
6929
6930	if (ice_is_xdp_ena_vsi(vsi))
6931		ice_for_each_xdp_txq(vsi, i)
6932			ice_clean_tx_ring(vsi->xdp_rings[i]);
6933
6934	ice_for_each_rxq(vsi, i)
6935		ice_clean_rx_ring(vsi->rx_rings[i]);
6936
6937	if (tx_err || rx_err || vlan_err) {
6938		netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n",
6939			   vsi->vsi_num, vsi->vsw->sw_id);
6940		return -EIO;
6941	}
6942
6943	return 0;
6944}
6945
6946/**
6947 * ice_down_up - shutdown the VSI connection and bring it up
6948 * @vsi: the VSI to be reconnected
6949 */
6950int ice_down_up(struct ice_vsi *vsi)
6951{
6952	int ret;
6953
6954	/* if DOWN already set, nothing to do */
6955	if (test_and_set_bit(ICE_VSI_DOWN, vsi->state))
6956		return 0;
6957
6958	ret = ice_down(vsi);
6959	if (ret)
6960		return ret;
6961
6962	ret = ice_up(vsi);
6963	if (ret) {
6964		netdev_err(vsi->netdev, "reallocating resources failed during netdev features change, may need to reload driver\n");
6965		return ret;
6966	}
6967
6968	return 0;
6969}
6970
6971/**
6972 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources
6973 * @vsi: VSI having resources allocated
6974 *
6975 * Return 0 on success, negative on failure
6976 */
6977int ice_vsi_setup_tx_rings(struct ice_vsi *vsi)
6978{
6979	int i, err = 0;
6980
6981	if (!vsi->num_txq) {
6982		dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n",
6983			vsi->vsi_num);
6984		return -EINVAL;
6985	}
6986
6987	ice_for_each_txq(vsi, i) {
6988		struct ice_tx_ring *ring = vsi->tx_rings[i];
6989
6990		if (!ring)
6991			return -EINVAL;
6992
6993		if (vsi->netdev)
6994			ring->netdev = vsi->netdev;
6995		err = ice_setup_tx_ring(ring);
6996		if (err)
6997			break;
6998	}
6999
7000	return err;
7001}
7002
7003/**
7004 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources
7005 * @vsi: VSI having resources allocated
7006 *
7007 * Return 0 on success, negative on failure
7008 */
7009int ice_vsi_setup_rx_rings(struct ice_vsi *vsi)
7010{
7011	int i, err = 0;
7012
7013	if (!vsi->num_rxq) {
7014		dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n",
7015			vsi->vsi_num);
7016		return -EINVAL;
7017	}
7018
7019	ice_for_each_rxq(vsi, i) {
7020		struct ice_rx_ring *ring = vsi->rx_rings[i];
7021
7022		if (!ring)
7023			return -EINVAL;
7024
7025		if (vsi->netdev)
7026			ring->netdev = vsi->netdev;
7027		err = ice_setup_rx_ring(ring);
7028		if (err)
7029			break;
7030	}
7031
7032	return err;
7033}
7034
7035/**
7036 * ice_vsi_open_ctrl - open control VSI for use
7037 * @vsi: the VSI to open
7038 *
7039 * Initialization of the Control VSI
7040 *
7041 * Returns 0 on success, negative value on error
7042 */
7043int ice_vsi_open_ctrl(struct ice_vsi *vsi)
7044{
7045	char int_name[ICE_INT_NAME_STR_LEN];
7046	struct ice_pf *pf = vsi->back;
7047	struct device *dev;
7048	int err;
7049
7050	dev = ice_pf_to_dev(pf);
7051	/* allocate descriptors */
7052	err = ice_vsi_setup_tx_rings(vsi);
7053	if (err)
7054		goto err_setup_tx;
7055
7056	err = ice_vsi_setup_rx_rings(vsi);
7057	if (err)
7058		goto err_setup_rx;
7059
7060	err = ice_vsi_cfg_lan(vsi);
7061	if (err)
7062		goto err_setup_rx;
7063
7064	snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl",
7065		 dev_driver_string(dev), dev_name(dev));
7066	err = ice_vsi_req_irq_msix(vsi, int_name);
7067	if (err)
7068		goto err_setup_rx;
7069
7070	ice_vsi_cfg_msix(vsi);
7071
7072	err = ice_vsi_start_all_rx_rings(vsi);
7073	if (err)
7074		goto err_up_complete;
7075
7076	clear_bit(ICE_VSI_DOWN, vsi->state);
7077	ice_vsi_ena_irq(vsi);
7078
7079	return 0;
7080
7081err_up_complete:
7082	ice_down(vsi);
7083err_setup_rx:
7084	ice_vsi_free_rx_rings(vsi);
7085err_setup_tx:
7086	ice_vsi_free_tx_rings(vsi);
7087
7088	return err;
7089}
7090
7091/**
7092 * ice_vsi_open - Called when a network interface is made active
7093 * @vsi: the VSI to open
7094 *
7095 * Initialization of the VSI
7096 *
7097 * Returns 0 on success, negative value on error
7098 */
7099int ice_vsi_open(struct ice_vsi *vsi)
7100{
7101	char int_name[ICE_INT_NAME_STR_LEN];
7102	struct ice_pf *pf = vsi->back;
7103	int err;
7104
7105	/* allocate descriptors */
7106	err = ice_vsi_setup_tx_rings(vsi);
7107	if (err)
7108		goto err_setup_tx;
7109
7110	err = ice_vsi_setup_rx_rings(vsi);
7111	if (err)
7112		goto err_setup_rx;
7113
7114	err = ice_vsi_cfg_lan(vsi);
7115	if (err)
7116		goto err_setup_rx;
7117
7118	snprintf(int_name, sizeof(int_name) - 1, "%s-%s",
7119		 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name);
7120	err = ice_vsi_req_irq_msix(vsi, int_name);
7121	if (err)
7122		goto err_setup_rx;
7123
7124	ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
7125
7126	if (vsi->type == ICE_VSI_PF) {
7127		/* Notify the stack of the actual queue counts. */
7128		err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq);
7129		if (err)
7130			goto err_set_qs;
7131
7132		err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq);
7133		if (err)
7134			goto err_set_qs;
7135	}
7136
7137	err = ice_up_complete(vsi);
7138	if (err)
7139		goto err_up_complete;
7140
7141	return 0;
7142
7143err_up_complete:
7144	ice_down(vsi);
7145err_set_qs:
7146	ice_vsi_free_irq(vsi);
7147err_setup_rx:
7148	ice_vsi_free_rx_rings(vsi);
7149err_setup_tx:
7150	ice_vsi_free_tx_rings(vsi);
7151
7152	return err;
7153}
7154
7155/**
7156 * ice_vsi_release_all - Delete all VSIs
7157 * @pf: PF from which all VSIs are being removed
7158 */
7159static void ice_vsi_release_all(struct ice_pf *pf)
7160{
7161	int err, i;
7162
7163	if (!pf->vsi)
7164		return;
7165
7166	ice_for_each_vsi(pf, i) {
7167		if (!pf->vsi[i])
7168			continue;
7169
7170		if (pf->vsi[i]->type == ICE_VSI_CHNL)
7171			continue;
7172
7173		err = ice_vsi_release(pf->vsi[i]);
7174		if (err)
7175			dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n",
7176				i, err, pf->vsi[i]->vsi_num);
7177	}
7178}
7179
7180/**
7181 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type
7182 * @pf: pointer to the PF instance
7183 * @type: VSI type to rebuild
7184 *
7185 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type
7186 */
7187static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type)
7188{
7189	struct device *dev = ice_pf_to_dev(pf);
7190	int i, err;
7191
7192	ice_for_each_vsi(pf, i) {
7193		struct ice_vsi *vsi = pf->vsi[i];
7194
7195		if (!vsi || vsi->type != type)
7196			continue;
7197
7198		/* rebuild the VSI */
7199		err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT);
7200		if (err) {
7201			dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n",
7202				err, vsi->idx, ice_vsi_type_str(type));
7203			return err;
7204		}
7205
7206		/* replay filters for the VSI */
7207		err = ice_replay_vsi(&pf->hw, vsi->idx);
7208		if (err) {
7209			dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n",
7210				err, vsi->idx, ice_vsi_type_str(type));
7211			return err;
7212		}
7213
7214		/* Re-map HW VSI number, using VSI handle that has been
7215		 * previously validated in ice_replay_vsi() call above
7216		 */
7217		vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
7218
7219		/* enable the VSI */
7220		err = ice_ena_vsi(vsi, false);
7221		if (err) {
7222			dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n",
7223				err, vsi->idx, ice_vsi_type_str(type));
7224			return err;
7225		}
7226
7227		dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx,
7228			 ice_vsi_type_str(type));
7229	}
7230
7231	return 0;
7232}
7233
7234/**
7235 * ice_update_pf_netdev_link - Update PF netdev link status
7236 * @pf: pointer to the PF instance
7237 */
7238static void ice_update_pf_netdev_link(struct ice_pf *pf)
7239{
7240	bool link_up;
7241	int i;
7242
7243	ice_for_each_vsi(pf, i) {
7244		struct ice_vsi *vsi = pf->vsi[i];
7245
7246		if (!vsi || vsi->type != ICE_VSI_PF)
7247			return;
7248
7249		ice_get_link_status(pf->vsi[i]->port_info, &link_up);
7250		if (link_up) {
7251			netif_carrier_on(pf->vsi[i]->netdev);
7252			netif_tx_wake_all_queues(pf->vsi[i]->netdev);
7253		} else {
7254			netif_carrier_off(pf->vsi[i]->netdev);
7255			netif_tx_stop_all_queues(pf->vsi[i]->netdev);
7256		}
7257	}
7258}
7259
7260/**
7261 * ice_rebuild - rebuild after reset
7262 * @pf: PF to rebuild
7263 * @reset_type: type of reset
7264 *
7265 * Do not rebuild VF VSI in this flow because that is already handled via
7266 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a
7267 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want
7268 * to reset/rebuild all the VF VSI twice.
7269 */
7270static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type)
7271{
7272	struct device *dev = ice_pf_to_dev(pf);
7273	struct ice_hw *hw = &pf->hw;
7274	bool dvm;
7275	int err;
7276
7277	if (test_bit(ICE_DOWN, pf->state))
7278		goto clear_recovery;
7279
7280	dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type);
7281
7282#define ICE_EMP_RESET_SLEEP_MS 5000
7283	if (reset_type == ICE_RESET_EMPR) {
7284		/* If an EMP reset has occurred, any previously pending flash
7285		 * update will have completed. We no longer know whether or
7286		 * not the NVM update EMP reset is restricted.
7287		 */
7288		pf->fw_emp_reset_disabled = false;
7289
7290		msleep(ICE_EMP_RESET_SLEEP_MS);
7291	}
7292
7293	err = ice_init_all_ctrlq(hw);
7294	if (err) {
7295		dev_err(dev, "control queues init failed %d\n", err);
7296		goto err_init_ctrlq;
7297	}
7298
7299	/* if DDP was previously loaded successfully */
7300	if (!ice_is_safe_mode(pf)) {
7301		/* reload the SW DB of filter tables */
7302		if (reset_type == ICE_RESET_PFR)
7303			ice_fill_blk_tbls(hw);
7304		else
7305			/* Reload DDP Package after CORER/GLOBR reset */
7306			ice_load_pkg(NULL, pf);
7307	}
7308
7309	err = ice_clear_pf_cfg(hw);
7310	if (err) {
7311		dev_err(dev, "clear PF configuration failed %d\n", err);
7312		goto err_init_ctrlq;
7313	}
7314
7315	ice_clear_pxe_mode(hw);
7316
7317	err = ice_init_nvm(hw);
7318	if (err) {
7319		dev_err(dev, "ice_init_nvm failed %d\n", err);
7320		goto err_init_ctrlq;
7321	}
7322
7323	err = ice_get_caps(hw);
7324	if (err) {
7325		dev_err(dev, "ice_get_caps failed %d\n", err);
7326		goto err_init_ctrlq;
7327	}
7328
7329	err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
7330	if (err) {
7331		dev_err(dev, "set_mac_cfg failed %d\n", err);
7332		goto err_init_ctrlq;
7333	}
7334
7335	dvm = ice_is_dvm_ena(hw);
7336
7337	err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL);
7338	if (err)
7339		goto err_init_ctrlq;
7340
7341	err = ice_sched_init_port(hw->port_info);
7342	if (err)
7343		goto err_sched_init_port;
7344
7345	/* start misc vector */
7346	err = ice_req_irq_msix_misc(pf);
7347	if (err) {
7348		dev_err(dev, "misc vector setup failed: %d\n", err);
7349		goto err_sched_init_port;
7350	}
7351
7352	if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
7353		wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
7354		if (!rd32(hw, PFQF_FD_SIZE)) {
7355			u16 unused, guar, b_effort;
7356
7357			guar = hw->func_caps.fd_fltr_guar;
7358			b_effort = hw->func_caps.fd_fltr_best_effort;
7359
7360			/* force guaranteed filter pool for PF */
7361			ice_alloc_fd_guar_item(hw, &unused, guar);
7362			/* force shared filter pool for PF */
7363			ice_alloc_fd_shrd_item(hw, &unused, b_effort);
7364		}
7365	}
7366
7367	if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
7368		ice_dcb_rebuild(pf);
7369
7370	/* If the PF previously had enabled PTP, PTP init needs to happen before
7371	 * the VSI rebuild. If not, this causes the PTP link status events to
7372	 * fail.
7373	 */
7374	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
7375		ice_ptp_reset(pf);
7376
7377	if (ice_is_feature_supported(pf, ICE_F_GNSS))
7378		ice_gnss_init(pf);
7379
7380	/* rebuild PF VSI */
7381	err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF);
7382	if (err) {
7383		dev_err(dev, "PF VSI rebuild failed: %d\n", err);
7384		goto err_vsi_rebuild;
7385	}
7386
7387	/* configure PTP timestamping after VSI rebuild */
7388	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
7389		ice_ptp_cfg_timestamp(pf, false);
7390
7391	err = ice_vsi_rebuild_by_type(pf, ICE_VSI_SWITCHDEV_CTRL);
7392	if (err) {
7393		dev_err(dev, "Switchdev CTRL VSI rebuild failed: %d\n", err);
7394		goto err_vsi_rebuild;
7395	}
7396
7397	if (reset_type == ICE_RESET_PFR) {
7398		err = ice_rebuild_channels(pf);
7399		if (err) {
7400			dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n",
7401				err);
7402			goto err_vsi_rebuild;
7403		}
7404	}
7405
7406	/* If Flow Director is active */
7407	if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
7408		err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL);
7409		if (err) {
7410			dev_err(dev, "control VSI rebuild failed: %d\n", err);
7411			goto err_vsi_rebuild;
7412		}
7413
7414		/* replay HW Flow Director recipes */
7415		if (hw->fdir_prof)
7416			ice_fdir_replay_flows(hw);
7417
7418		/* replay Flow Director filters */
7419		ice_fdir_replay_fltrs(pf);
7420
7421		ice_rebuild_arfs(pf);
7422	}
7423
7424	ice_update_pf_netdev_link(pf);
7425
7426	/* tell the firmware we are up */
7427	err = ice_send_version(pf);
7428	if (err) {
7429		dev_err(dev, "Rebuild failed due to error sending driver version: %d\n",
7430			err);
7431		goto err_vsi_rebuild;
7432	}
7433
7434	ice_replay_post(hw);
7435
7436	/* if we get here, reset flow is successful */
7437	clear_bit(ICE_RESET_FAILED, pf->state);
7438
7439	ice_plug_aux_dev(pf);
7440	if (ice_is_feature_supported(pf, ICE_F_SRIOV_LAG))
7441		ice_lag_rebuild(pf);
7442	return;
7443
7444err_vsi_rebuild:
7445err_sched_init_port:
7446	ice_sched_cleanup_all(hw);
7447err_init_ctrlq:
7448	ice_shutdown_all_ctrlq(hw);
7449	set_bit(ICE_RESET_FAILED, pf->state);
7450clear_recovery:
7451	/* set this bit in PF state to control service task scheduling */
7452	set_bit(ICE_NEEDS_RESTART, pf->state);
7453	dev_err(dev, "Rebuild failed, unload and reload driver\n");
7454}
7455
7456/**
7457 * ice_change_mtu - NDO callback to change the MTU
7458 * @netdev: network interface device structure
7459 * @new_mtu: new value for maximum frame size
7460 *
7461 * Returns 0 on success, negative on failure
7462 */
7463static int ice_change_mtu(struct net_device *netdev, int new_mtu)
7464{
7465	struct ice_netdev_priv *np = netdev_priv(netdev);
7466	struct ice_vsi *vsi = np->vsi;
7467	struct ice_pf *pf = vsi->back;
7468	struct bpf_prog *prog;
7469	u8 count = 0;
7470	int err = 0;
7471
7472	if (new_mtu == (int)netdev->mtu) {
7473		netdev_warn(netdev, "MTU is already %u\n", netdev->mtu);
7474		return 0;
7475	}
7476
7477	prog = vsi->xdp_prog;
7478	if (prog && !prog->aux->xdp_has_frags) {
7479		int frame_size = ice_max_xdp_frame_size(vsi);
7480
7481		if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) {
7482			netdev_err(netdev, "max MTU for XDP usage is %d\n",
7483				   frame_size - ICE_ETH_PKT_HDR_PAD);
7484			return -EINVAL;
7485		}
7486	} else if (test_bit(ICE_FLAG_LEGACY_RX, pf->flags)) {
7487		if (new_mtu + ICE_ETH_PKT_HDR_PAD > ICE_MAX_FRAME_LEGACY_RX) {
7488			netdev_err(netdev, "Too big MTU for legacy-rx; Max is %d\n",
7489				   ICE_MAX_FRAME_LEGACY_RX - ICE_ETH_PKT_HDR_PAD);
7490			return -EINVAL;
7491		}
7492	}
7493
7494	/* if a reset is in progress, wait for some time for it to complete */
7495	do {
7496		if (ice_is_reset_in_progress(pf->state)) {
7497			count++;
7498			usleep_range(1000, 2000);
7499		} else {
7500			break;
7501		}
7502
7503	} while (count < 100);
7504
7505	if (count == 100) {
7506		netdev_err(netdev, "can't change MTU. Device is busy\n");
7507		return -EBUSY;
7508	}
7509
7510	netdev->mtu = (unsigned int)new_mtu;
7511	err = ice_down_up(vsi);
7512	if (err)
7513		return err;
7514
7515	netdev_dbg(netdev, "changed MTU to %d\n", new_mtu);
7516	set_bit(ICE_FLAG_MTU_CHANGED, pf->flags);
7517
7518	return err;
7519}
7520
7521/**
7522 * ice_eth_ioctl - Access the hwtstamp interface
7523 * @netdev: network interface device structure
7524 * @ifr: interface request data
7525 * @cmd: ioctl command
7526 */
7527static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7528{
7529	struct ice_netdev_priv *np = netdev_priv(netdev);
7530	struct ice_pf *pf = np->vsi->back;
7531
7532	switch (cmd) {
7533	case SIOCGHWTSTAMP:
7534		return ice_ptp_get_ts_config(pf, ifr);
7535	case SIOCSHWTSTAMP:
7536		return ice_ptp_set_ts_config(pf, ifr);
7537	default:
7538		return -EOPNOTSUPP;
7539	}
7540}
7541
7542/**
7543 * ice_aq_str - convert AQ err code to a string
7544 * @aq_err: the AQ error code to convert
7545 */
7546const char *ice_aq_str(enum ice_aq_err aq_err)
7547{
7548	switch (aq_err) {
7549	case ICE_AQ_RC_OK:
7550		return "OK";
7551	case ICE_AQ_RC_EPERM:
7552		return "ICE_AQ_RC_EPERM";
7553	case ICE_AQ_RC_ENOENT:
7554		return "ICE_AQ_RC_ENOENT";
7555	case ICE_AQ_RC_ENOMEM:
7556		return "ICE_AQ_RC_ENOMEM";
7557	case ICE_AQ_RC_EBUSY:
7558		return "ICE_AQ_RC_EBUSY";
7559	case ICE_AQ_RC_EEXIST:
7560		return "ICE_AQ_RC_EEXIST";
7561	case ICE_AQ_RC_EINVAL:
7562		return "ICE_AQ_RC_EINVAL";
7563	case ICE_AQ_RC_ENOSPC:
7564		return "ICE_AQ_RC_ENOSPC";
7565	case ICE_AQ_RC_ENOSYS:
7566		return "ICE_AQ_RC_ENOSYS";
7567	case ICE_AQ_RC_EMODE:
7568		return "ICE_AQ_RC_EMODE";
7569	case ICE_AQ_RC_ENOSEC:
7570		return "ICE_AQ_RC_ENOSEC";
7571	case ICE_AQ_RC_EBADSIG:
7572		return "ICE_AQ_RC_EBADSIG";
7573	case ICE_AQ_RC_ESVN:
7574		return "ICE_AQ_RC_ESVN";
7575	case ICE_AQ_RC_EBADMAN:
7576		return "ICE_AQ_RC_EBADMAN";
7577	case ICE_AQ_RC_EBADBUF:
7578		return "ICE_AQ_RC_EBADBUF";
7579	}
7580
7581	return "ICE_AQ_RC_UNKNOWN";
7582}
7583
7584/**
7585 * ice_set_rss_lut - Set RSS LUT
7586 * @vsi: Pointer to VSI structure
7587 * @lut: Lookup table
7588 * @lut_size: Lookup table size
7589 *
7590 * Returns 0 on success, negative on failure
7591 */
7592int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size)
7593{
7594	struct ice_aq_get_set_rss_lut_params params = {};
7595	struct ice_hw *hw = &vsi->back->hw;
7596	int status;
7597
7598	if (!lut)
7599		return -EINVAL;
7600
7601	params.vsi_handle = vsi->idx;
7602	params.lut_size = lut_size;
7603	params.lut_type = vsi->rss_lut_type;
7604	params.lut = lut;
7605
7606	status = ice_aq_set_rss_lut(hw, &params);
7607	if (status)
7608		dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n",
7609			status, ice_aq_str(hw->adminq.sq_last_status));
7610
7611	return status;
7612}
7613
7614/**
7615 * ice_set_rss_key - Set RSS key
7616 * @vsi: Pointer to the VSI structure
7617 * @seed: RSS hash seed
7618 *
7619 * Returns 0 on success, negative on failure
7620 */
7621int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed)
7622{
7623	struct ice_hw *hw = &vsi->back->hw;
7624	int status;
7625
7626	if (!seed)
7627		return -EINVAL;
7628
7629	status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed);
7630	if (status)
7631		dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n",
7632			status, ice_aq_str(hw->adminq.sq_last_status));
7633
7634	return status;
7635}
7636
7637/**
7638 * ice_get_rss_lut - Get RSS LUT
7639 * @vsi: Pointer to VSI structure
7640 * @lut: Buffer to store the lookup table entries
7641 * @lut_size: Size of buffer to store the lookup table entries
7642 *
7643 * Returns 0 on success, negative on failure
7644 */
7645int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size)
7646{
7647	struct ice_aq_get_set_rss_lut_params params = {};
7648	struct ice_hw *hw = &vsi->back->hw;
7649	int status;
7650
7651	if (!lut)
7652		return -EINVAL;
7653
7654	params.vsi_handle = vsi->idx;
7655	params.lut_size = lut_size;
7656	params.lut_type = vsi->rss_lut_type;
7657	params.lut = lut;
7658
7659	status = ice_aq_get_rss_lut(hw, &params);
7660	if (status)
7661		dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n",
7662			status, ice_aq_str(hw->adminq.sq_last_status));
7663
7664	return status;
7665}
7666
7667/**
7668 * ice_get_rss_key - Get RSS key
7669 * @vsi: Pointer to VSI structure
7670 * @seed: Buffer to store the key in
7671 *
7672 * Returns 0 on success, negative on failure
7673 */
7674int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed)
7675{
7676	struct ice_hw *hw = &vsi->back->hw;
7677	int status;
7678
7679	if (!seed)
7680		return -EINVAL;
7681
7682	status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed);
7683	if (status)
7684		dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n",
7685			status, ice_aq_str(hw->adminq.sq_last_status));
7686
7687	return status;
7688}
7689
7690/**
7691 * ice_bridge_getlink - Get the hardware bridge mode
7692 * @skb: skb buff
7693 * @pid: process ID
7694 * @seq: RTNL message seq
7695 * @dev: the netdev being configured
7696 * @filter_mask: filter mask passed in
7697 * @nlflags: netlink flags passed in
7698 *
7699 * Return the bridge mode (VEB/VEPA)
7700 */
7701static int
7702ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
7703		   struct net_device *dev, u32 filter_mask, int nlflags)
7704{
7705	struct ice_netdev_priv *np = netdev_priv(dev);
7706	struct ice_vsi *vsi = np->vsi;
7707	struct ice_pf *pf = vsi->back;
7708	u16 bmode;
7709
7710	bmode = pf->first_sw->bridge_mode;
7711
7712	return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags,
7713				       filter_mask, NULL);
7714}
7715
7716/**
7717 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA)
7718 * @vsi: Pointer to VSI structure
7719 * @bmode: Hardware bridge mode (VEB/VEPA)
7720 *
7721 * Returns 0 on success, negative on failure
7722 */
7723static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode)
7724{
7725	struct ice_aqc_vsi_props *vsi_props;
7726	struct ice_hw *hw = &vsi->back->hw;
7727	struct ice_vsi_ctx *ctxt;
7728	int ret;
7729
7730	vsi_props = &vsi->info;
7731
7732	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
7733	if (!ctxt)
7734		return -ENOMEM;
7735
7736	ctxt->info = vsi->info;
7737
7738	if (bmode == BRIDGE_MODE_VEB)
7739		/* change from VEPA to VEB mode */
7740		ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
7741	else
7742		/* change from VEB to VEPA mode */
7743		ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
7744	ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
7745
7746	ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
7747	if (ret) {
7748		dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n",
7749			bmode, ret, ice_aq_str(hw->adminq.sq_last_status));
7750		goto out;
7751	}
7752	/* Update sw flags for book keeping */
7753	vsi_props->sw_flags = ctxt->info.sw_flags;
7754
7755out:
7756	kfree(ctxt);
7757	return ret;
7758}
7759
7760/**
7761 * ice_bridge_setlink - Set the hardware bridge mode
7762 * @dev: the netdev being configured
7763 * @nlh: RTNL message
7764 * @flags: bridge setlink flags
7765 * @extack: netlink extended ack
7766 *
7767 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is
7768 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if
7769 * not already set for all VSIs connected to this switch. And also update the
7770 * unicast switch filter rules for the corresponding switch of the netdev.
7771 */
7772static int
7773ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
7774		   u16 __always_unused flags,
7775		   struct netlink_ext_ack __always_unused *extack)
7776{
7777	struct ice_netdev_priv *np = netdev_priv(dev);
7778	struct ice_pf *pf = np->vsi->back;
7779	struct nlattr *attr, *br_spec;
7780	struct ice_hw *hw = &pf->hw;
7781	struct ice_sw *pf_sw;
7782	int rem, v, err = 0;
7783
7784	pf_sw = pf->first_sw;
7785	/* find the attribute in the netlink message */
7786	br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
7787	if (!br_spec)
7788		return -EINVAL;
7789
7790	nla_for_each_nested(attr, br_spec, rem) {
7791		__u16 mode;
7792
7793		if (nla_type(attr) != IFLA_BRIDGE_MODE)
7794			continue;
7795		mode = nla_get_u16(attr);
7796		if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB)
7797			return -EINVAL;
7798		/* Continue  if bridge mode is not being flipped */
7799		if (mode == pf_sw->bridge_mode)
7800			continue;
7801		/* Iterates through the PF VSI list and update the loopback
7802		 * mode of the VSI
7803		 */
7804		ice_for_each_vsi(pf, v) {
7805			if (!pf->vsi[v])
7806				continue;
7807			err = ice_vsi_update_bridge_mode(pf->vsi[v], mode);
7808			if (err)
7809				return err;
7810		}
7811
7812		hw->evb_veb = (mode == BRIDGE_MODE_VEB);
7813		/* Update the unicast switch filter rules for the corresponding
7814		 * switch of the netdev
7815		 */
7816		err = ice_update_sw_rule_bridge_mode(hw);
7817		if (err) {
7818			netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n",
7819				   mode, err,
7820				   ice_aq_str(hw->adminq.sq_last_status));
7821			/* revert hw->evb_veb */
7822			hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB);
7823			return err;
7824		}
7825
7826		pf_sw->bridge_mode = mode;
7827	}
7828
7829	return 0;
7830}
7831
7832/**
7833 * ice_tx_timeout - Respond to a Tx Hang
7834 * @netdev: network interface device structure
7835 * @txqueue: Tx queue
7836 */
7837static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue)
7838{
7839	struct ice_netdev_priv *np = netdev_priv(netdev);
7840	struct ice_tx_ring *tx_ring = NULL;
7841	struct ice_vsi *vsi = np->vsi;
7842	struct ice_pf *pf = vsi->back;
7843	u32 i;
7844
7845	pf->tx_timeout_count++;
7846
7847	/* Check if PFC is enabled for the TC to which the queue belongs
7848	 * to. If yes then Tx timeout is not caused by a hung queue, no
7849	 * need to reset and rebuild
7850	 */
7851	if (ice_is_pfc_causing_hung_q(pf, txqueue)) {
7852		dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n",
7853			 txqueue);
7854		return;
7855	}
7856
7857	/* now that we have an index, find the tx_ring struct */
7858	ice_for_each_txq(vsi, i)
7859		if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
7860			if (txqueue == vsi->tx_rings[i]->q_index) {
7861				tx_ring = vsi->tx_rings[i];
7862				break;
7863			}
7864
7865	/* Reset recovery level if enough time has elapsed after last timeout.
7866	 * Also ensure no new reset action happens before next timeout period.
7867	 */
7868	if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20)))
7869		pf->tx_timeout_recovery_level = 1;
7870	else if (time_before(jiffies, (pf->tx_timeout_last_recovery +
7871				       netdev->watchdog_timeo)))
7872		return;
7873
7874	if (tx_ring) {
7875		struct ice_hw *hw = &pf->hw;
7876		u32 head, val = 0;
7877
7878		head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) &
7879			QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S;
7880		/* Read interrupt register */
7881		val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx));
7882
7883		netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n",
7884			    vsi->vsi_num, txqueue, tx_ring->next_to_clean,
7885			    head, tx_ring->next_to_use, val);
7886	}
7887
7888	pf->tx_timeout_last_recovery = jiffies;
7889	netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n",
7890		    pf->tx_timeout_recovery_level, txqueue);
7891
7892	switch (pf->tx_timeout_recovery_level) {
7893	case 1:
7894		set_bit(ICE_PFR_REQ, pf->state);
7895		break;
7896	case 2:
7897		set_bit(ICE_CORER_REQ, pf->state);
7898		break;
7899	case 3:
7900		set_bit(ICE_GLOBR_REQ, pf->state);
7901		break;
7902	default:
7903		netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n");
7904		set_bit(ICE_DOWN, pf->state);
7905		set_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
7906		set_bit(ICE_SERVICE_DIS, pf->state);
7907		break;
7908	}
7909
7910	ice_service_task_schedule(pf);
7911	pf->tx_timeout_recovery_level++;
7912}
7913
7914/**
7915 * ice_setup_tc_cls_flower - flower classifier offloads
7916 * @np: net device to configure
7917 * @filter_dev: device on which filter is added
7918 * @cls_flower: offload data
7919 */
7920static int
7921ice_setup_tc_cls_flower(struct ice_netdev_priv *np,
7922			struct net_device *filter_dev,
7923			struct flow_cls_offload *cls_flower)
7924{
7925	struct ice_vsi *vsi = np->vsi;
7926
7927	if (cls_flower->common.chain_index)
7928		return -EOPNOTSUPP;
7929
7930	switch (cls_flower->command) {
7931	case FLOW_CLS_REPLACE:
7932		return ice_add_cls_flower(filter_dev, vsi, cls_flower);
7933	case FLOW_CLS_DESTROY:
7934		return ice_del_cls_flower(vsi, cls_flower);
7935	default:
7936		return -EINVAL;
7937	}
7938}
7939
7940/**
7941 * ice_setup_tc_block_cb - callback handler registered for TC block
7942 * @type: TC SETUP type
7943 * @type_data: TC flower offload data that contains user input
7944 * @cb_priv: netdev private data
7945 */
7946static int
7947ice_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv)
7948{
7949	struct ice_netdev_priv *np = cb_priv;
7950
7951	switch (type) {
7952	case TC_SETUP_CLSFLOWER:
7953		return ice_setup_tc_cls_flower(np, np->vsi->netdev,
7954					       type_data);
7955	default:
7956		return -EOPNOTSUPP;
7957	}
7958}
7959
7960/**
7961 * ice_validate_mqprio_qopt - Validate TCF input parameters
7962 * @vsi: Pointer to VSI
7963 * @mqprio_qopt: input parameters for mqprio queue configuration
7964 *
7965 * This function validates MQPRIO params, such as qcount (power of 2 wherever
7966 * needed), and make sure user doesn't specify qcount and BW rate limit
7967 * for TCs, which are more than "num_tc"
7968 */
7969static int
7970ice_validate_mqprio_qopt(struct ice_vsi *vsi,
7971			 struct tc_mqprio_qopt_offload *mqprio_qopt)
7972{
7973	int non_power_of_2_qcount = 0;
7974	struct ice_pf *pf = vsi->back;
7975	int max_rss_q_cnt = 0;
7976	u64 sum_min_rate = 0;
7977	struct device *dev;
7978	int i, speed;
7979	u8 num_tc;
7980
7981	if (vsi->type != ICE_VSI_PF)
7982		return -EINVAL;
7983
7984	if (mqprio_qopt->qopt.offset[0] != 0 ||
7985	    mqprio_qopt->qopt.num_tc < 1 ||
7986	    mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC)
7987		return -EINVAL;
7988
7989	dev = ice_pf_to_dev(pf);
7990	vsi->ch_rss_size = 0;
7991	num_tc = mqprio_qopt->qopt.num_tc;
7992	speed = ice_get_link_speed_kbps(vsi);
7993
7994	for (i = 0; num_tc; i++) {
7995		int qcount = mqprio_qopt->qopt.count[i];
7996		u64 max_rate, min_rate, rem;
7997
7998		if (!qcount)
7999			return -EINVAL;
8000
8001		if (is_power_of_2(qcount)) {
8002			if (non_power_of_2_qcount &&
8003			    qcount > non_power_of_2_qcount) {
8004				dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n",
8005					qcount, non_power_of_2_qcount);
8006				return -EINVAL;
8007			}
8008			if (qcount > max_rss_q_cnt)
8009				max_rss_q_cnt = qcount;
8010		} else {
8011			if (non_power_of_2_qcount &&
8012			    qcount != non_power_of_2_qcount) {
8013				dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n",
8014					qcount, non_power_of_2_qcount);
8015				return -EINVAL;
8016			}
8017			if (qcount < max_rss_q_cnt) {
8018				dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n",
8019					qcount, max_rss_q_cnt);
8020				return -EINVAL;
8021			}
8022			max_rss_q_cnt = qcount;
8023			non_power_of_2_qcount = qcount;
8024		}
8025
8026		/* TC command takes input in K/N/Gbps or K/M/Gbit etc but
8027		 * converts the bandwidth rate limit into Bytes/s when
8028		 * passing it down to the driver. So convert input bandwidth
8029		 * from Bytes/s to Kbps
8030		 */
8031		max_rate = mqprio_qopt->max_rate[i];
8032		max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR);
8033
8034		/* min_rate is minimum guaranteed rate and it can't be zero */
8035		min_rate = mqprio_qopt->min_rate[i];
8036		min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR);
8037		sum_min_rate += min_rate;
8038
8039		if (min_rate && min_rate < ICE_MIN_BW_LIMIT) {
8040			dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i,
8041				min_rate, ICE_MIN_BW_LIMIT);
8042			return -EINVAL;
8043		}
8044
8045		if (max_rate && max_rate > speed) {
8046			dev_err(dev, "TC%d: max_rate(%llu Kbps) > link speed of %u Kbps\n",
8047				i, max_rate, speed);
8048			return -EINVAL;
8049		}
8050
8051		iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem);
8052		if (rem) {
8053			dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps",
8054				i, ICE_MIN_BW_LIMIT);
8055			return -EINVAL;
8056		}
8057
8058		iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem);
8059		if (rem) {
8060			dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps",
8061				i, ICE_MIN_BW_LIMIT);
8062			return -EINVAL;
8063		}
8064
8065		/* min_rate can't be more than max_rate, except when max_rate
8066		 * is zero (implies max_rate sought is max line rate). In such
8067		 * a case min_rate can be more than max.
8068		 */
8069		if (max_rate && min_rate > max_rate) {
8070			dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n",
8071				min_rate, max_rate);
8072			return -EINVAL;
8073		}
8074
8075		if (i >= mqprio_qopt->qopt.num_tc - 1)
8076			break;
8077		if (mqprio_qopt->qopt.offset[i + 1] !=
8078		    (mqprio_qopt->qopt.offset[i] + qcount))
8079			return -EINVAL;
8080	}
8081	if (vsi->num_rxq <
8082	    (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i]))
8083		return -EINVAL;
8084	if (vsi->num_txq <
8085	    (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i]))
8086		return -EINVAL;
8087
8088	if (sum_min_rate && sum_min_rate > (u64)speed) {
8089		dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n",
8090			sum_min_rate, speed);
8091		return -EINVAL;
8092	}
8093
8094	/* make sure vsi->ch_rss_size is set correctly based on TC's qcount */
8095	vsi->ch_rss_size = max_rss_q_cnt;
8096
8097	return 0;
8098}
8099
8100/**
8101 * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF
8102 * @pf: ptr to PF device
8103 * @vsi: ptr to VSI
8104 */
8105static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi)
8106{
8107	struct device *dev = ice_pf_to_dev(pf);
8108	bool added = false;
8109	struct ice_hw *hw;
8110	int flow;
8111
8112	if (!(vsi->num_gfltr || vsi->num_bfltr))
8113		return -EINVAL;
8114
8115	hw = &pf->hw;
8116	for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) {
8117		struct ice_fd_hw_prof *prof;
8118		int tun, status;
8119		u64 entry_h;
8120
8121		if (!(hw->fdir_prof && hw->fdir_prof[flow] &&
8122		      hw->fdir_prof[flow]->cnt))
8123			continue;
8124
8125		for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) {
8126			enum ice_flow_priority prio;
8127			u64 prof_id;
8128
8129			/* add this VSI to FDir profile for this flow */
8130			prio = ICE_FLOW_PRIO_NORMAL;
8131			prof = hw->fdir_prof[flow];
8132			prof_id = flow + tun * ICE_FLTR_PTYPE_MAX;
8133			status = ice_flow_add_entry(hw, ICE_BLK_FD, prof_id,
8134						    prof->vsi_h[0], vsi->idx,
8135						    prio, prof->fdir_seg[tun],
8136						    &entry_h);
8137			if (status) {
8138				dev_err(dev, "channel VSI idx %d, not able to add to group %d\n",
8139					vsi->idx, flow);
8140				continue;
8141			}
8142
8143			prof->entry_h[prof->cnt][tun] = entry_h;
8144		}
8145
8146		/* store VSI for filter replay and delete */
8147		prof->vsi_h[prof->cnt] = vsi->idx;
8148		prof->cnt++;
8149
8150		added = true;
8151		dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx,
8152			flow);
8153	}
8154
8155	if (!added)
8156		dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx);
8157
8158	return 0;
8159}
8160
8161/**
8162 * ice_add_channel - add a channel by adding VSI
8163 * @pf: ptr to PF device
8164 * @sw_id: underlying HW switching element ID
8165 * @ch: ptr to channel structure
8166 *
8167 * Add a channel (VSI) using add_vsi and queue_map
8168 */
8169static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch)
8170{
8171	struct device *dev = ice_pf_to_dev(pf);
8172	struct ice_vsi *vsi;
8173
8174	if (ch->type != ICE_VSI_CHNL) {
8175		dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type);
8176		return -EINVAL;
8177	}
8178
8179	vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch);
8180	if (!vsi || vsi->type != ICE_VSI_CHNL) {
8181		dev_err(dev, "create chnl VSI failure\n");
8182		return -EINVAL;
8183	}
8184
8185	ice_add_vsi_to_fdir(pf, vsi);
8186
8187	ch->sw_id = sw_id;
8188	ch->vsi_num = vsi->vsi_num;
8189	ch->info.mapping_flags = vsi->info.mapping_flags;
8190	ch->ch_vsi = vsi;
8191	/* set the back pointer of channel for newly created VSI */
8192	vsi->ch = ch;
8193
8194	memcpy(&ch->info.q_mapping, &vsi->info.q_mapping,
8195	       sizeof(vsi->info.q_mapping));
8196	memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping,
8197	       sizeof(vsi->info.tc_mapping));
8198
8199	return 0;
8200}
8201
8202/**
8203 * ice_chnl_cfg_res
8204 * @vsi: the VSI being setup
8205 * @ch: ptr to channel structure
8206 *
8207 * Configure channel specific resources such as rings, vector.
8208 */
8209static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch)
8210{
8211	int i;
8212
8213	for (i = 0; i < ch->num_txq; i++) {
8214		struct ice_q_vector *tx_q_vector, *rx_q_vector;
8215		struct ice_ring_container *rc;
8216		struct ice_tx_ring *tx_ring;
8217		struct ice_rx_ring *rx_ring;
8218
8219		tx_ring = vsi->tx_rings[ch->base_q + i];
8220		rx_ring = vsi->rx_rings[ch->base_q + i];
8221		if (!tx_ring || !rx_ring)
8222			continue;
8223
8224		/* setup ring being channel enabled */
8225		tx_ring->ch = ch;
8226		rx_ring->ch = ch;
8227
8228		/* following code block sets up vector specific attributes */
8229		tx_q_vector = tx_ring->q_vector;
8230		rx_q_vector = rx_ring->q_vector;
8231		if (!tx_q_vector && !rx_q_vector)
8232			continue;
8233
8234		if (tx_q_vector) {
8235			tx_q_vector->ch = ch;
8236			/* setup Tx and Rx ITR setting if DIM is off */
8237			rc = &tx_q_vector->tx;
8238			if (!ITR_IS_DYNAMIC(rc))
8239				ice_write_itr(rc, rc->itr_setting);
8240		}
8241		if (rx_q_vector) {
8242			rx_q_vector->ch = ch;
8243			/* setup Tx and Rx ITR setting if DIM is off */
8244			rc = &rx_q_vector->rx;
8245			if (!ITR_IS_DYNAMIC(rc))
8246				ice_write_itr(rc, rc->itr_setting);
8247		}
8248	}
8249
8250	/* it is safe to assume that, if channel has non-zero num_t[r]xq, then
8251	 * GLINT_ITR register would have written to perform in-context
8252	 * update, hence perform flush
8253	 */
8254	if (ch->num_txq || ch->num_rxq)
8255		ice_flush(&vsi->back->hw);
8256}
8257
8258/**
8259 * ice_cfg_chnl_all_res - configure channel resources
8260 * @vsi: pte to main_vsi
8261 * @ch: ptr to channel structure
8262 *
8263 * This function configures channel specific resources such as flow-director
8264 * counter index, and other resources such as queues, vectors, ITR settings
8265 */
8266static void
8267ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch)
8268{
8269	/* configure channel (aka ADQ) resources such as queues, vectors,
8270	 * ITR settings for channel specific vectors and anything else
8271	 */
8272	ice_chnl_cfg_res(vsi, ch);
8273}
8274
8275/**
8276 * ice_setup_hw_channel - setup new channel
8277 * @pf: ptr to PF device
8278 * @vsi: the VSI being setup
8279 * @ch: ptr to channel structure
8280 * @sw_id: underlying HW switching element ID
8281 * @type: type of channel to be created (VMDq2/VF)
8282 *
8283 * Setup new channel (VSI) based on specified type (VMDq2/VF)
8284 * and configures Tx rings accordingly
8285 */
8286static int
8287ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi,
8288		     struct ice_channel *ch, u16 sw_id, u8 type)
8289{
8290	struct device *dev = ice_pf_to_dev(pf);
8291	int ret;
8292
8293	ch->base_q = vsi->next_base_q;
8294	ch->type = type;
8295
8296	ret = ice_add_channel(pf, sw_id, ch);
8297	if (ret) {
8298		dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id);
8299		return ret;
8300	}
8301
8302	/* configure/setup ADQ specific resources */
8303	ice_cfg_chnl_all_res(vsi, ch);
8304
8305	/* make sure to update the next_base_q so that subsequent channel's
8306	 * (aka ADQ) VSI queue map is correct
8307	 */
8308	vsi->next_base_q = vsi->next_base_q + ch->num_rxq;
8309	dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num,
8310		ch->num_rxq);
8311
8312	return 0;
8313}
8314
8315/**
8316 * ice_setup_channel - setup new channel using uplink element
8317 * @pf: ptr to PF device
8318 * @vsi: the VSI being setup
8319 * @ch: ptr to channel structure
8320 *
8321 * Setup new channel (VSI) based on specified type (VMDq2/VF)
8322 * and uplink switching element
8323 */
8324static bool
8325ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi,
8326		  struct ice_channel *ch)
8327{
8328	struct device *dev = ice_pf_to_dev(pf);
8329	u16 sw_id;
8330	int ret;
8331
8332	if (vsi->type != ICE_VSI_PF) {
8333		dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type);
8334		return false;
8335	}
8336
8337	sw_id = pf->first_sw->sw_id;
8338
8339	/* create channel (VSI) */
8340	ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL);
8341	if (ret) {
8342		dev_err(dev, "failed to setup hw_channel\n");
8343		return false;
8344	}
8345	dev_dbg(dev, "successfully created channel()\n");
8346
8347	return ch->ch_vsi ? true : false;
8348}
8349
8350/**
8351 * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate
8352 * @vsi: VSI to be configured
8353 * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit
8354 * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit
8355 */
8356static int
8357ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate)
8358{
8359	int err;
8360
8361	err = ice_set_min_bw_limit(vsi, min_tx_rate);
8362	if (err)
8363		return err;
8364
8365	return ice_set_max_bw_limit(vsi, max_tx_rate);
8366}
8367
8368/**
8369 * ice_create_q_channel - function to create channel
8370 * @vsi: VSI to be configured
8371 * @ch: ptr to channel (it contains channel specific params)
8372 *
8373 * This function creates channel (VSI) using num_queues specified by user,
8374 * reconfigs RSS if needed.
8375 */
8376static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch)
8377{
8378	struct ice_pf *pf = vsi->back;
8379	struct device *dev;
8380
8381	if (!ch)
8382		return -EINVAL;
8383
8384	dev = ice_pf_to_dev(pf);
8385	if (!ch->num_txq || !ch->num_rxq) {
8386		dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq);
8387		return -EINVAL;
8388	}
8389
8390	if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) {
8391		dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n",
8392			vsi->cnt_q_avail, ch->num_txq);
8393		return -EINVAL;
8394	}
8395
8396	if (!ice_setup_channel(pf, vsi, ch)) {
8397		dev_info(dev, "Failed to setup channel\n");
8398		return -EINVAL;
8399	}
8400	/* configure BW rate limit */
8401	if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) {
8402		int ret;
8403
8404		ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate,
8405				       ch->min_tx_rate);
8406		if (ret)
8407			dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n",
8408				ch->max_tx_rate, ch->ch_vsi->vsi_num);
8409		else
8410			dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n",
8411				ch->max_tx_rate, ch->ch_vsi->vsi_num);
8412	}
8413
8414	vsi->cnt_q_avail -= ch->num_txq;
8415
8416	return 0;
8417}
8418
8419/**
8420 * ice_rem_all_chnl_fltrs - removes all channel filters
8421 * @pf: ptr to PF, TC-flower based filter are tracked at PF level
8422 *
8423 * Remove all advanced switch filters only if they are channel specific
8424 * tc-flower based filter
8425 */
8426static void ice_rem_all_chnl_fltrs(struct ice_pf *pf)
8427{
8428	struct ice_tc_flower_fltr *fltr;
8429	struct hlist_node *node;
8430
8431	/* to remove all channel filters, iterate an ordered list of filters */
8432	hlist_for_each_entry_safe(fltr, node,
8433				  &pf->tc_flower_fltr_list,
8434				  tc_flower_node) {
8435		struct ice_rule_query_data rule;
8436		int status;
8437
8438		/* for now process only channel specific filters */
8439		if (!ice_is_chnl_fltr(fltr))
8440			continue;
8441
8442		rule.rid = fltr->rid;
8443		rule.rule_id = fltr->rule_id;
8444		rule.vsi_handle = fltr->dest_vsi_handle;
8445		status = ice_rem_adv_rule_by_id(&pf->hw, &rule);
8446		if (status) {
8447			if (status == -ENOENT)
8448				dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n",
8449					rule.rule_id);
8450			else
8451				dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n",
8452					status);
8453		} else if (fltr->dest_vsi) {
8454			/* update advanced switch filter count */
8455			if (fltr->dest_vsi->type == ICE_VSI_CHNL) {
8456				u32 flags = fltr->flags;
8457
8458				fltr->dest_vsi->num_chnl_fltr--;
8459				if (flags & (ICE_TC_FLWR_FIELD_DST_MAC |
8460					     ICE_TC_FLWR_FIELD_ENC_DST_MAC))
8461					pf->num_dmac_chnl_fltrs--;
8462			}
8463		}
8464
8465		hlist_del(&fltr->tc_flower_node);
8466		kfree(fltr);
8467	}
8468}
8469
8470/**
8471 * ice_remove_q_channels - Remove queue channels for the TCs
8472 * @vsi: VSI to be configured
8473 * @rem_fltr: delete advanced switch filter or not
8474 *
8475 * Remove queue channels for the TCs
8476 */
8477static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr)
8478{
8479	struct ice_channel *ch, *ch_tmp;
8480	struct ice_pf *pf = vsi->back;
8481	int i;
8482
8483	/* remove all tc-flower based filter if they are channel filters only */
8484	if (rem_fltr)
8485		ice_rem_all_chnl_fltrs(pf);
8486
8487	/* remove ntuple filters since queue configuration is being changed */
8488	if  (vsi->netdev->features & NETIF_F_NTUPLE) {
8489		struct ice_hw *hw = &pf->hw;
8490
8491		mutex_lock(&hw->fdir_fltr_lock);
8492		ice_fdir_del_all_fltrs(vsi);
8493		mutex_unlock(&hw->fdir_fltr_lock);
8494	}
8495
8496	/* perform cleanup for channels if they exist */
8497	list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) {
8498		struct ice_vsi *ch_vsi;
8499
8500		list_del(&ch->list);
8501		ch_vsi = ch->ch_vsi;
8502		if (!ch_vsi) {
8503			kfree(ch);
8504			continue;
8505		}
8506
8507		/* Reset queue contexts */
8508		for (i = 0; i < ch->num_rxq; i++) {
8509			struct ice_tx_ring *tx_ring;
8510			struct ice_rx_ring *rx_ring;
8511
8512			tx_ring = vsi->tx_rings[ch->base_q + i];
8513			rx_ring = vsi->rx_rings[ch->base_q + i];
8514			if (tx_ring) {
8515				tx_ring->ch = NULL;
8516				if (tx_ring->q_vector)
8517					tx_ring->q_vector->ch = NULL;
8518			}
8519			if (rx_ring) {
8520				rx_ring->ch = NULL;
8521				if (rx_ring->q_vector)
8522					rx_ring->q_vector->ch = NULL;
8523			}
8524		}
8525
8526		/* Release FD resources for the channel VSI */
8527		ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx);
8528
8529		/* clear the VSI from scheduler tree */
8530		ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx);
8531
8532		/* Delete VSI from FW, PF and HW VSI arrays */
8533		ice_vsi_delete(ch->ch_vsi);
8534
8535		/* free the channel */
8536		kfree(ch);
8537	}
8538
8539	/* clear the channel VSI map which is stored in main VSI */
8540	ice_for_each_chnl_tc(i)
8541		vsi->tc_map_vsi[i] = NULL;
8542
8543	/* reset main VSI's all TC information */
8544	vsi->all_enatc = 0;
8545	vsi->all_numtc = 0;
8546}
8547
8548/**
8549 * ice_rebuild_channels - rebuild channel
8550 * @pf: ptr to PF
8551 *
8552 * Recreate channel VSIs and replay filters
8553 */
8554static int ice_rebuild_channels(struct ice_pf *pf)
8555{
8556	struct device *dev = ice_pf_to_dev(pf);
8557	struct ice_vsi *main_vsi;
8558	bool rem_adv_fltr = true;
8559	struct ice_channel *ch;
8560	struct ice_vsi *vsi;
8561	int tc_idx = 1;
8562	int i, err;
8563
8564	main_vsi = ice_get_main_vsi(pf);
8565	if (!main_vsi)
8566		return 0;
8567
8568	if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) ||
8569	    main_vsi->old_numtc == 1)
8570		return 0; /* nothing to be done */
8571
8572	/* reconfigure main VSI based on old value of TC and cached values
8573	 * for MQPRIO opts
8574	 */
8575	err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc);
8576	if (err) {
8577		dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n",
8578			main_vsi->old_ena_tc, main_vsi->vsi_num);
8579		return err;
8580	}
8581
8582	/* rebuild ADQ VSIs */
8583	ice_for_each_vsi(pf, i) {
8584		enum ice_vsi_type type;
8585
8586		vsi = pf->vsi[i];
8587		if (!vsi || vsi->type != ICE_VSI_CHNL)
8588			continue;
8589
8590		type = vsi->type;
8591
8592		/* rebuild ADQ VSI */
8593		err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT);
8594		if (err) {
8595			dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n",
8596				ice_vsi_type_str(type), vsi->idx, err);
8597			goto cleanup;
8598		}
8599
8600		/* Re-map HW VSI number, using VSI handle that has been
8601		 * previously validated in ice_replay_vsi() call above
8602		 */
8603		vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
8604
8605		/* replay filters for the VSI */
8606		err = ice_replay_vsi(&pf->hw, vsi->idx);
8607		if (err) {
8608			dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n",
8609				ice_vsi_type_str(type), err, vsi->idx);
8610			rem_adv_fltr = false;
8611			goto cleanup;
8612		}
8613		dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n",
8614			 ice_vsi_type_str(type), vsi->idx);
8615
8616		/* store ADQ VSI at correct TC index in main VSI's
8617		 * map of TC to VSI
8618		 */
8619		main_vsi->tc_map_vsi[tc_idx++] = vsi;
8620	}
8621
8622	/* ADQ VSI(s) has been rebuilt successfully, so setup
8623	 * channel for main VSI's Tx and Rx rings
8624	 */
8625	list_for_each_entry(ch, &main_vsi->ch_list, list) {
8626		struct ice_vsi *ch_vsi;
8627
8628		ch_vsi = ch->ch_vsi;
8629		if (!ch_vsi)
8630			continue;
8631
8632		/* reconfig channel resources */
8633		ice_cfg_chnl_all_res(main_vsi, ch);
8634
8635		/* replay BW rate limit if it is non-zero */
8636		if (!ch->max_tx_rate && !ch->min_tx_rate)
8637			continue;
8638
8639		err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate,
8640				       ch->min_tx_rate);
8641		if (err)
8642			dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n",
8643				err, ch->max_tx_rate, ch->min_tx_rate,
8644				ch_vsi->vsi_num);
8645		else
8646			dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n",
8647				ch->max_tx_rate, ch->min_tx_rate,
8648				ch_vsi->vsi_num);
8649	}
8650
8651	/* reconfig RSS for main VSI */
8652	if (main_vsi->ch_rss_size)
8653		ice_vsi_cfg_rss_lut_key(main_vsi);
8654
8655	return 0;
8656
8657cleanup:
8658	ice_remove_q_channels(main_vsi, rem_adv_fltr);
8659	return err;
8660}
8661
8662/**
8663 * ice_create_q_channels - Add queue channel for the given TCs
8664 * @vsi: VSI to be configured
8665 *
8666 * Configures queue channel mapping to the given TCs
8667 */
8668static int ice_create_q_channels(struct ice_vsi *vsi)
8669{
8670	struct ice_pf *pf = vsi->back;
8671	struct ice_channel *ch;
8672	int ret = 0, i;
8673
8674	ice_for_each_chnl_tc(i) {
8675		if (!(vsi->all_enatc & BIT(i)))
8676			continue;
8677
8678		ch = kzalloc(sizeof(*ch), GFP_KERNEL);
8679		if (!ch) {
8680			ret = -ENOMEM;
8681			goto err_free;
8682		}
8683		INIT_LIST_HEAD(&ch->list);
8684		ch->num_rxq = vsi->mqprio_qopt.qopt.count[i];
8685		ch->num_txq = vsi->mqprio_qopt.qopt.count[i];
8686		ch->base_q = vsi->mqprio_qopt.qopt.offset[i];
8687		ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i];
8688		ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i];
8689
8690		/* convert to Kbits/s */
8691		if (ch->max_tx_rate)
8692			ch->max_tx_rate = div_u64(ch->max_tx_rate,
8693						  ICE_BW_KBPS_DIVISOR);
8694		if (ch->min_tx_rate)
8695			ch->min_tx_rate = div_u64(ch->min_tx_rate,
8696						  ICE_BW_KBPS_DIVISOR);
8697
8698		ret = ice_create_q_channel(vsi, ch);
8699		if (ret) {
8700			dev_err(ice_pf_to_dev(pf),
8701				"failed creating channel TC:%d\n", i);
8702			kfree(ch);
8703			goto err_free;
8704		}
8705		list_add_tail(&ch->list, &vsi->ch_list);
8706		vsi->tc_map_vsi[i] = ch->ch_vsi;
8707		dev_dbg(ice_pf_to_dev(pf),
8708			"successfully created channel: VSI %pK\n", ch->ch_vsi);
8709	}
8710	return 0;
8711
8712err_free:
8713	ice_remove_q_channels(vsi, false);
8714
8715	return ret;
8716}
8717
8718/**
8719 * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes
8720 * @netdev: net device to configure
8721 * @type_data: TC offload data
8722 */
8723static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data)
8724{
8725	struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
8726	struct ice_netdev_priv *np = netdev_priv(netdev);
8727	struct ice_vsi *vsi = np->vsi;
8728	struct ice_pf *pf = vsi->back;
8729	u16 mode, ena_tc_qdisc = 0;
8730	int cur_txq, cur_rxq;
8731	u8 hw = 0, num_tcf;
8732	struct device *dev;
8733	int ret, i;
8734
8735	dev = ice_pf_to_dev(pf);
8736	num_tcf = mqprio_qopt->qopt.num_tc;
8737	hw = mqprio_qopt->qopt.hw;
8738	mode = mqprio_qopt->mode;
8739	if (!hw) {
8740		clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
8741		vsi->ch_rss_size = 0;
8742		memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt));
8743		goto config_tcf;
8744	}
8745
8746	/* Generate queue region map for number of TCF requested */
8747	for (i = 0; i < num_tcf; i++)
8748		ena_tc_qdisc |= BIT(i);
8749
8750	switch (mode) {
8751	case TC_MQPRIO_MODE_CHANNEL:
8752
8753		if (pf->hw.port_info->is_custom_tx_enabled) {
8754			dev_err(dev, "Custom Tx scheduler feature enabled, can't configure ADQ\n");
8755			return -EBUSY;
8756		}
8757		ice_tear_down_devlink_rate_tree(pf);
8758
8759		ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt);
8760		if (ret) {
8761			netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n",
8762				   ret);
8763			return ret;
8764		}
8765		memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt));
8766		set_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
8767		/* don't assume state of hw_tc_offload during driver load
8768		 * and set the flag for TC flower filter if hw_tc_offload
8769		 * already ON
8770		 */
8771		if (vsi->netdev->features & NETIF_F_HW_TC)
8772			set_bit(ICE_FLAG_CLS_FLOWER, pf->flags);
8773		break;
8774	default:
8775		return -EINVAL;
8776	}
8777
8778config_tcf:
8779
8780	/* Requesting same TCF configuration as already enabled */
8781	if (ena_tc_qdisc == vsi->tc_cfg.ena_tc &&
8782	    mode != TC_MQPRIO_MODE_CHANNEL)
8783		return 0;
8784
8785	/* Pause VSI queues */
8786	ice_dis_vsi(vsi, true);
8787
8788	if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
8789		ice_remove_q_channels(vsi, true);
8790
8791	if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
8792		vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf),
8793				     num_online_cpus());
8794		vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf),
8795				     num_online_cpus());
8796	} else {
8797		/* logic to rebuild VSI, same like ethtool -L */
8798		u16 offset = 0, qcount_tx = 0, qcount_rx = 0;
8799
8800		for (i = 0; i < num_tcf; i++) {
8801			if (!(ena_tc_qdisc & BIT(i)))
8802				continue;
8803
8804			offset = vsi->mqprio_qopt.qopt.offset[i];
8805			qcount_rx = vsi->mqprio_qopt.qopt.count[i];
8806			qcount_tx = vsi->mqprio_qopt.qopt.count[i];
8807		}
8808		vsi->req_txq = offset + qcount_tx;
8809		vsi->req_rxq = offset + qcount_rx;
8810
8811		/* store away original rss_size info, so that it gets reused
8812		 * form ice_vsi_rebuild during tc-qdisc delete stage - to
8813		 * determine, what should be the rss_sizefor main VSI
8814		 */
8815		vsi->orig_rss_size = vsi->rss_size;
8816	}
8817
8818	/* save current values of Tx and Rx queues before calling VSI rebuild
8819	 * for fallback option
8820	 */
8821	cur_txq = vsi->num_txq;
8822	cur_rxq = vsi->num_rxq;
8823
8824	/* proceed with rebuild main VSI using correct number of queues */
8825	ret = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT);
8826	if (ret) {
8827		/* fallback to current number of queues */
8828		dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n");
8829		vsi->req_txq = cur_txq;
8830		vsi->req_rxq = cur_rxq;
8831		clear_bit(ICE_RESET_FAILED, pf->state);
8832		if (ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT)) {
8833			dev_err(dev, "Rebuild of main VSI failed again\n");
8834			return ret;
8835		}
8836	}
8837
8838	vsi->all_numtc = num_tcf;
8839	vsi->all_enatc = ena_tc_qdisc;
8840	ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc);
8841	if (ret) {
8842		netdev_err(netdev, "failed configuring TC for VSI id=%d\n",
8843			   vsi->vsi_num);
8844		goto exit;
8845	}
8846
8847	if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
8848		u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0];
8849		u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0];
8850
8851		/* set TC0 rate limit if specified */
8852		if (max_tx_rate || min_tx_rate) {
8853			/* convert to Kbits/s */
8854			if (max_tx_rate)
8855				max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR);
8856			if (min_tx_rate)
8857				min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR);
8858
8859			ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate);
8860			if (!ret) {
8861				dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n",
8862					max_tx_rate, min_tx_rate, vsi->vsi_num);
8863			} else {
8864				dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n",
8865					max_tx_rate, min_tx_rate, vsi->vsi_num);
8866				goto exit;
8867			}
8868		}
8869		ret = ice_create_q_channels(vsi);
8870		if (ret) {
8871			netdev_err(netdev, "failed configuring queue channels\n");
8872			goto exit;
8873		} else {
8874			netdev_dbg(netdev, "successfully configured channels\n");
8875		}
8876	}
8877
8878	if (vsi->ch_rss_size)
8879		ice_vsi_cfg_rss_lut_key(vsi);
8880
8881exit:
8882	/* if error, reset the all_numtc and all_enatc */
8883	if (ret) {
8884		vsi->all_numtc = 0;
8885		vsi->all_enatc = 0;
8886	}
8887	/* resume VSI */
8888	ice_ena_vsi(vsi, true);
8889
8890	return ret;
8891}
8892
8893static LIST_HEAD(ice_block_cb_list);
8894
8895static int
8896ice_setup_tc(struct net_device *netdev, enum tc_setup_type type,
8897	     void *type_data)
8898{
8899	struct ice_netdev_priv *np = netdev_priv(netdev);
8900	struct ice_pf *pf = np->vsi->back;
8901	bool locked = false;
8902	int err;
8903
8904	switch (type) {
8905	case TC_SETUP_BLOCK:
8906		return flow_block_cb_setup_simple(type_data,
8907						  &ice_block_cb_list,
8908						  ice_setup_tc_block_cb,
8909						  np, np, true);
8910	case TC_SETUP_QDISC_MQPRIO:
8911		if (ice_is_eswitch_mode_switchdev(pf)) {
8912			netdev_err(netdev, "TC MQPRIO offload not supported, switchdev is enabled\n");
8913			return -EOPNOTSUPP;
8914		}
8915
8916		if (pf->adev) {
8917			mutex_lock(&pf->adev_mutex);
8918			device_lock(&pf->adev->dev);
8919			locked = true;
8920			if (pf->adev->dev.driver) {
8921				netdev_err(netdev, "Cannot change qdisc when RDMA is active\n");
8922				err = -EBUSY;
8923				goto adev_unlock;
8924			}
8925		}
8926
8927		/* setup traffic classifier for receive side */
8928		mutex_lock(&pf->tc_mutex);
8929		err = ice_setup_tc_mqprio_qdisc(netdev, type_data);
8930		mutex_unlock(&pf->tc_mutex);
8931
8932adev_unlock:
8933		if (locked) {
8934			device_unlock(&pf->adev->dev);
8935			mutex_unlock(&pf->adev_mutex);
8936		}
8937		return err;
8938	default:
8939		return -EOPNOTSUPP;
8940	}
8941	return -EOPNOTSUPP;
8942}
8943
8944static struct ice_indr_block_priv *
8945ice_indr_block_priv_lookup(struct ice_netdev_priv *np,
8946			   struct net_device *netdev)
8947{
8948	struct ice_indr_block_priv *cb_priv;
8949
8950	list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) {
8951		if (!cb_priv->netdev)
8952			return NULL;
8953		if (cb_priv->netdev == netdev)
8954			return cb_priv;
8955	}
8956	return NULL;
8957}
8958
8959static int
8960ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data,
8961			void *indr_priv)
8962{
8963	struct ice_indr_block_priv *priv = indr_priv;
8964	struct ice_netdev_priv *np = priv->np;
8965
8966	switch (type) {
8967	case TC_SETUP_CLSFLOWER:
8968		return ice_setup_tc_cls_flower(np, priv->netdev,
8969					       (struct flow_cls_offload *)
8970					       type_data);
8971	default:
8972		return -EOPNOTSUPP;
8973	}
8974}
8975
8976static int
8977ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch,
8978			struct ice_netdev_priv *np,
8979			struct flow_block_offload *f, void *data,
8980			void (*cleanup)(struct flow_block_cb *block_cb))
8981{
8982	struct ice_indr_block_priv *indr_priv;
8983	struct flow_block_cb *block_cb;
8984
8985	if (!ice_is_tunnel_supported(netdev) &&
8986	    !(is_vlan_dev(netdev) &&
8987	      vlan_dev_real_dev(netdev) == np->vsi->netdev))
8988		return -EOPNOTSUPP;
8989
8990	if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
8991		return -EOPNOTSUPP;
8992
8993	switch (f->command) {
8994	case FLOW_BLOCK_BIND:
8995		indr_priv = ice_indr_block_priv_lookup(np, netdev);
8996		if (indr_priv)
8997			return -EEXIST;
8998
8999		indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL);
9000		if (!indr_priv)
9001			return -ENOMEM;
9002
9003		indr_priv->netdev = netdev;
9004		indr_priv->np = np;
9005		list_add(&indr_priv->list, &np->tc_indr_block_priv_list);
9006
9007		block_cb =
9008			flow_indr_block_cb_alloc(ice_indr_setup_block_cb,
9009						 indr_priv, indr_priv,
9010						 ice_rep_indr_tc_block_unbind,
9011						 f, netdev, sch, data, np,
9012						 cleanup);
9013
9014		if (IS_ERR(block_cb)) {
9015			list_del(&indr_priv->list);
9016			kfree(indr_priv);
9017			return PTR_ERR(block_cb);
9018		}
9019		flow_block_cb_add(block_cb, f);
9020		list_add_tail(&block_cb->driver_list, &ice_block_cb_list);
9021		break;
9022	case FLOW_BLOCK_UNBIND:
9023		indr_priv = ice_indr_block_priv_lookup(np, netdev);
9024		if (!indr_priv)
9025			return -ENOENT;
9026
9027		block_cb = flow_block_cb_lookup(f->block,
9028						ice_indr_setup_block_cb,
9029						indr_priv);
9030		if (!block_cb)
9031			return -ENOENT;
9032
9033		flow_indr_block_cb_remove(block_cb, f);
9034
9035		list_del(&block_cb->driver_list);
9036		break;
9037	default:
9038		return -EOPNOTSUPP;
9039	}
9040	return 0;
9041}
9042
9043static int
9044ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch,
9045		     void *cb_priv, enum tc_setup_type type, void *type_data,
9046		     void *data,
9047		     void (*cleanup)(struct flow_block_cb *block_cb))
9048{
9049	switch (type) {
9050	case TC_SETUP_BLOCK:
9051		return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data,
9052					       data, cleanup);
9053
9054	default:
9055		return -EOPNOTSUPP;
9056	}
9057}
9058
9059/**
9060 * ice_open - Called when a network interface becomes active
9061 * @netdev: network interface device structure
9062 *
9063 * The open entry point is called when a network interface is made
9064 * active by the system (IFF_UP). At this point all resources needed
9065 * for transmit and receive operations are allocated, the interrupt
9066 * handler is registered with the OS, the netdev watchdog is enabled,
9067 * and the stack is notified that the interface is ready.
9068 *
9069 * Returns 0 on success, negative value on failure
9070 */
9071int ice_open(struct net_device *netdev)
9072{
9073	struct ice_netdev_priv *np = netdev_priv(netdev);
9074	struct ice_pf *pf = np->vsi->back;
9075
9076	if (ice_is_reset_in_progress(pf->state)) {
9077		netdev_err(netdev, "can't open net device while reset is in progress");
9078		return -EBUSY;
9079	}
9080
9081	return ice_open_internal(netdev);
9082}
9083
9084/**
9085 * ice_open_internal - Called when a network interface becomes active
9086 * @netdev: network interface device structure
9087 *
9088 * Internal ice_open implementation. Should not be used directly except for ice_open and reset
9089 * handling routine
9090 *
9091 * Returns 0 on success, negative value on failure
9092 */
9093int ice_open_internal(struct net_device *netdev)
9094{
9095	struct ice_netdev_priv *np = netdev_priv(netdev);
9096	struct ice_vsi *vsi = np->vsi;
9097	struct ice_pf *pf = vsi->back;
9098	struct ice_port_info *pi;
9099	int err;
9100
9101	if (test_bit(ICE_NEEDS_RESTART, pf->state)) {
9102		netdev_err(netdev, "driver needs to be unloaded and reloaded\n");
9103		return -EIO;
9104	}
9105
9106	netif_carrier_off(netdev);
9107
9108	pi = vsi->port_info;
9109	err = ice_update_link_info(pi);
9110	if (err) {
9111		netdev_err(netdev, "Failed to get link info, error %d\n", err);
9112		return err;
9113	}
9114
9115	ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
9116
9117	/* Set PHY if there is media, otherwise, turn off PHY */
9118	if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
9119		clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
9120		if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) {
9121			err = ice_init_phy_user_cfg(pi);
9122			if (err) {
9123				netdev_err(netdev, "Failed to initialize PHY settings, error %d\n",
9124					   err);
9125				return err;
9126			}
9127		}
9128
9129		err = ice_configure_phy(vsi);
9130		if (err) {
9131			netdev_err(netdev, "Failed to set physical link up, error %d\n",
9132				   err);
9133			return err;
9134		}
9135	} else {
9136		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
9137		ice_set_link(vsi, false);
9138	}
9139
9140	err = ice_vsi_open(vsi);
9141	if (err)
9142		netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n",
9143			   vsi->vsi_num, vsi->vsw->sw_id);
9144
9145	/* Update existing tunnels information */
9146	udp_tunnel_get_rx_info(netdev);
9147
9148	return err;
9149}
9150
9151/**
9152 * ice_stop - Disables a network interface
9153 * @netdev: network interface device structure
9154 *
9155 * The stop entry point is called when an interface is de-activated by the OS,
9156 * and the netdevice enters the DOWN state. The hardware is still under the
9157 * driver's control, but the netdev interface is disabled.
9158 *
9159 * Returns success only - not allowed to fail
9160 */
9161int ice_stop(struct net_device *netdev)
9162{
9163	struct ice_netdev_priv *np = netdev_priv(netdev);
9164	struct ice_vsi *vsi = np->vsi;
9165	struct ice_pf *pf = vsi->back;
9166
9167	if (ice_is_reset_in_progress(pf->state)) {
9168		netdev_err(netdev, "can't stop net device while reset is in progress");
9169		return -EBUSY;
9170	}
9171
9172	if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) {
9173		int link_err = ice_force_phys_link_state(vsi, false);
9174
9175		if (link_err) {
9176			if (link_err == -ENOMEDIUM)
9177				netdev_info(vsi->netdev, "Skipping link reconfig - no media attached, VSI %d\n",
9178					    vsi->vsi_num);
9179			else
9180				netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n",
9181					   vsi->vsi_num, link_err);
9182
9183			ice_vsi_close(vsi);
9184			return -EIO;
9185		}
9186	}
9187
9188	ice_vsi_close(vsi);
9189
9190	return 0;
9191}
9192
9193/**
9194 * ice_features_check - Validate encapsulated packet conforms to limits
9195 * @skb: skb buffer
9196 * @netdev: This port's netdev
9197 * @features: Offload features that the stack believes apply
9198 */
9199static netdev_features_t
9200ice_features_check(struct sk_buff *skb,
9201		   struct net_device __always_unused *netdev,
9202		   netdev_features_t features)
9203{
9204	bool gso = skb_is_gso(skb);
9205	size_t len;
9206
9207	/* No point in doing any of this if neither checksum nor GSO are
9208	 * being requested for this frame. We can rule out both by just
9209	 * checking for CHECKSUM_PARTIAL
9210	 */
9211	if (skb->ip_summed != CHECKSUM_PARTIAL)
9212		return features;
9213
9214	/* We cannot support GSO if the MSS is going to be less than
9215	 * 64 bytes. If it is then we need to drop support for GSO.
9216	 */
9217	if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS))
9218		features &= ~NETIF_F_GSO_MASK;
9219
9220	len = skb_network_offset(skb);
9221	if (len > ICE_TXD_MACLEN_MAX || len & 0x1)
9222		goto out_rm_features;
9223
9224	len = skb_network_header_len(skb);
9225	if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
9226		goto out_rm_features;
9227
9228	if (skb->encapsulation) {
9229		/* this must work for VXLAN frames AND IPIP/SIT frames, and in
9230		 * the case of IPIP frames, the transport header pointer is
9231		 * after the inner header! So check to make sure that this
9232		 * is a GRE or UDP_TUNNEL frame before doing that math.
9233		 */
9234		if (gso && (skb_shinfo(skb)->gso_type &
9235			    (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) {
9236			len = skb_inner_network_header(skb) -
9237			      skb_transport_header(skb);
9238			if (len > ICE_TXD_L4LEN_MAX || len & 0x1)
9239				goto out_rm_features;
9240		}
9241
9242		len = skb_inner_network_header_len(skb);
9243		if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
9244			goto out_rm_features;
9245	}
9246
9247	return features;
9248out_rm_features:
9249	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
9250}
9251
9252static const struct net_device_ops ice_netdev_safe_mode_ops = {
9253	.ndo_open = ice_open,
9254	.ndo_stop = ice_stop,
9255	.ndo_start_xmit = ice_start_xmit,
9256	.ndo_set_mac_address = ice_set_mac_address,
9257	.ndo_validate_addr = eth_validate_addr,
9258	.ndo_change_mtu = ice_change_mtu,
9259	.ndo_get_stats64 = ice_get_stats64,
9260	.ndo_tx_timeout = ice_tx_timeout,
9261	.ndo_bpf = ice_xdp_safe_mode,
9262};
9263
9264static const struct net_device_ops ice_netdev_ops = {
9265	.ndo_open = ice_open,
9266	.ndo_stop = ice_stop,
9267	.ndo_start_xmit = ice_start_xmit,
9268	.ndo_select_queue = ice_select_queue,
9269	.ndo_features_check = ice_features_check,
9270	.ndo_fix_features = ice_fix_features,
9271	.ndo_set_rx_mode = ice_set_rx_mode,
9272	.ndo_set_mac_address = ice_set_mac_address,
9273	.ndo_validate_addr = eth_validate_addr,
9274	.ndo_change_mtu = ice_change_mtu,
9275	.ndo_get_stats64 = ice_get_stats64,
9276	.ndo_set_tx_maxrate = ice_set_tx_maxrate,
9277	.ndo_eth_ioctl = ice_eth_ioctl,
9278	.ndo_set_vf_spoofchk = ice_set_vf_spoofchk,
9279	.ndo_set_vf_mac = ice_set_vf_mac,
9280	.ndo_get_vf_config = ice_get_vf_cfg,
9281	.ndo_set_vf_trust = ice_set_vf_trust,
9282	.ndo_set_vf_vlan = ice_set_vf_port_vlan,
9283	.ndo_set_vf_link_state = ice_set_vf_link_state,
9284	.ndo_get_vf_stats = ice_get_vf_stats,
9285	.ndo_set_vf_rate = ice_set_vf_bw,
9286	.ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid,
9287	.ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid,
9288	.ndo_setup_tc = ice_setup_tc,
9289	.ndo_set_features = ice_set_features,
9290	.ndo_bridge_getlink = ice_bridge_getlink,
9291	.ndo_bridge_setlink = ice_bridge_setlink,
9292	.ndo_fdb_add = ice_fdb_add,
9293	.ndo_fdb_del = ice_fdb_del,
9294#ifdef CONFIG_RFS_ACCEL
9295	.ndo_rx_flow_steer = ice_rx_flow_steer,
9296#endif
9297	.ndo_tx_timeout = ice_tx_timeout,
9298	.ndo_bpf = ice_xdp,
9299	.ndo_xdp_xmit = ice_xdp_xmit,
9300	.ndo_xsk_wakeup = ice_xsk_wakeup,
9301};
9302