1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (c) 2019, Intel Corporation. */
3
4#include <net/xdp_sock_drv.h>
5#include "ice_base.h"
6#include "ice_lib.h"
7#include "ice_dcb_lib.h"
8#include "ice_sriov.h"
9
10/**
11 * __ice_vsi_get_qs_contig - Assign a contiguous chunk of queues to VSI
12 * @qs_cfg: gathered variables needed for PF->VSI queues assignment
13 *
14 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
15 */
16static int __ice_vsi_get_qs_contig(struct ice_qs_cfg *qs_cfg)
17{
18	unsigned int offset, i;
19
20	mutex_lock(qs_cfg->qs_mutex);
21	offset = bitmap_find_next_zero_area(qs_cfg->pf_map, qs_cfg->pf_map_size,
22					    0, qs_cfg->q_count, 0);
23	if (offset >= qs_cfg->pf_map_size) {
24		mutex_unlock(qs_cfg->qs_mutex);
25		return -ENOMEM;
26	}
27
28	bitmap_set(qs_cfg->pf_map, offset, qs_cfg->q_count);
29	for (i = 0; i < qs_cfg->q_count; i++)
30		qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = (u16)(i + offset);
31	mutex_unlock(qs_cfg->qs_mutex);
32
33	return 0;
34}
35
36/**
37 * __ice_vsi_get_qs_sc - Assign a scattered queues from PF to VSI
38 * @qs_cfg: gathered variables needed for pf->vsi queues assignment
39 *
40 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
41 */
42static int __ice_vsi_get_qs_sc(struct ice_qs_cfg *qs_cfg)
43{
44	unsigned int i, index = 0;
45
46	mutex_lock(qs_cfg->qs_mutex);
47	for (i = 0; i < qs_cfg->q_count; i++) {
48		index = find_next_zero_bit(qs_cfg->pf_map,
49					   qs_cfg->pf_map_size, index);
50		if (index >= qs_cfg->pf_map_size)
51			goto err_scatter;
52		set_bit(index, qs_cfg->pf_map);
53		qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = (u16)index;
54	}
55	mutex_unlock(qs_cfg->qs_mutex);
56
57	return 0;
58err_scatter:
59	for (index = 0; index < i; index++) {
60		clear_bit(qs_cfg->vsi_map[index], qs_cfg->pf_map);
61		qs_cfg->vsi_map[index + qs_cfg->vsi_map_offset] = 0;
62	}
63	mutex_unlock(qs_cfg->qs_mutex);
64
65	return -ENOMEM;
66}
67
68/**
69 * ice_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled
70 * @pf: the PF being configured
71 * @pf_q: the PF queue
72 * @ena: enable or disable state of the queue
73 *
74 * This routine will wait for the given Rx queue of the PF to reach the
75 * enabled or disabled state.
76 * Returns -ETIMEDOUT in case of failing to reach the requested state after
77 * multiple retries; else will return 0 in case of success.
78 */
79static int ice_pf_rxq_wait(struct ice_pf *pf, int pf_q, bool ena)
80{
81	int i;
82
83	for (i = 0; i < ICE_Q_WAIT_MAX_RETRY; i++) {
84		if (ena == !!(rd32(&pf->hw, QRX_CTRL(pf_q)) &
85			      QRX_CTRL_QENA_STAT_M))
86			return 0;
87
88		usleep_range(20, 40);
89	}
90
91	return -ETIMEDOUT;
92}
93
94/**
95 * ice_vsi_alloc_q_vector - Allocate memory for a single interrupt vector
96 * @vsi: the VSI being configured
97 * @v_idx: index of the vector in the VSI struct
98 *
99 * We allocate one q_vector and set default value for ITR setting associated
100 * with this q_vector. If allocation fails we return -ENOMEM.
101 */
102static int ice_vsi_alloc_q_vector(struct ice_vsi *vsi, u16 v_idx)
103{
104	struct ice_pf *pf = vsi->back;
105	struct ice_q_vector *q_vector;
106	int err;
107
108	/* allocate q_vector */
109	q_vector = kzalloc(sizeof(*q_vector), GFP_KERNEL);
110	if (!q_vector)
111		return -ENOMEM;
112
113	q_vector->vsi = vsi;
114	q_vector->v_idx = v_idx;
115	q_vector->tx.itr_setting = ICE_DFLT_TX_ITR;
116	q_vector->rx.itr_setting = ICE_DFLT_RX_ITR;
117	q_vector->tx.itr_mode = ITR_DYNAMIC;
118	q_vector->rx.itr_mode = ITR_DYNAMIC;
119	q_vector->tx.type = ICE_TX_CONTAINER;
120	q_vector->rx.type = ICE_RX_CONTAINER;
121	q_vector->irq.index = -ENOENT;
122
123	if (vsi->type == ICE_VSI_VF) {
124		q_vector->reg_idx = ice_calc_vf_reg_idx(vsi->vf, q_vector);
125		goto out;
126	} else if (vsi->type == ICE_VSI_CTRL && vsi->vf) {
127		struct ice_vsi *ctrl_vsi = ice_get_vf_ctrl_vsi(pf, vsi);
128
129		if (ctrl_vsi) {
130			if (unlikely(!ctrl_vsi->q_vectors)) {
131				err = -ENOENT;
132				goto err_free_q_vector;
133			}
134
135			q_vector->irq = ctrl_vsi->q_vectors[0]->irq;
136			goto skip_alloc;
137		}
138	}
139
140	q_vector->irq = ice_alloc_irq(pf, vsi->irq_dyn_alloc);
141	if (q_vector->irq.index < 0) {
142		err = -ENOMEM;
143		goto err_free_q_vector;
144	}
145
146skip_alloc:
147	q_vector->reg_idx = q_vector->irq.index;
148
149	/* only set affinity_mask if the CPU is online */
150	if (cpu_online(v_idx))
151		cpumask_set_cpu(v_idx, &q_vector->affinity_mask);
152
153	/* This will not be called in the driver load path because the netdev
154	 * will not be created yet. All other cases with register the NAPI
155	 * handler here (i.e. resume, reset/rebuild, etc.)
156	 */
157	if (vsi->netdev)
158		netif_napi_add(vsi->netdev, &q_vector->napi, ice_napi_poll);
159
160out:
161	/* tie q_vector and VSI together */
162	vsi->q_vectors[v_idx] = q_vector;
163
164	return 0;
165
166err_free_q_vector:
167	kfree(q_vector);
168
169	return err;
170}
171
172/**
173 * ice_free_q_vector - Free memory allocated for a specific interrupt vector
174 * @vsi: VSI having the memory freed
175 * @v_idx: index of the vector to be freed
176 */
177static void ice_free_q_vector(struct ice_vsi *vsi, int v_idx)
178{
179	struct ice_q_vector *q_vector;
180	struct ice_pf *pf = vsi->back;
181	struct ice_tx_ring *tx_ring;
182	struct ice_rx_ring *rx_ring;
183	struct device *dev;
184
185	dev = ice_pf_to_dev(pf);
186	if (!vsi->q_vectors[v_idx]) {
187		dev_dbg(dev, "Queue vector at index %d not found\n", v_idx);
188		return;
189	}
190	q_vector = vsi->q_vectors[v_idx];
191
192	ice_for_each_tx_ring(tx_ring, q_vector->tx)
193		tx_ring->q_vector = NULL;
194	ice_for_each_rx_ring(rx_ring, q_vector->rx)
195		rx_ring->q_vector = NULL;
196
197	/* only VSI with an associated netdev is set up with NAPI */
198	if (vsi->netdev)
199		netif_napi_del(&q_vector->napi);
200
201	/* release MSIX interrupt if q_vector had interrupt allocated */
202	if (q_vector->irq.index < 0)
203		goto free_q_vector;
204
205	/* only free last VF ctrl vsi interrupt */
206	if (vsi->type == ICE_VSI_CTRL && vsi->vf &&
207	    ice_get_vf_ctrl_vsi(pf, vsi))
208		goto free_q_vector;
209
210	ice_free_irq(pf, q_vector->irq);
211
212free_q_vector:
213	kfree(q_vector);
214	vsi->q_vectors[v_idx] = NULL;
215}
216
217/**
218 * ice_cfg_itr_gran - set the ITR granularity to 2 usecs if not already set
219 * @hw: board specific structure
220 */
221static void ice_cfg_itr_gran(struct ice_hw *hw)
222{
223	u32 regval = rd32(hw, GLINT_CTL);
224
225	/* no need to update global register if ITR gran is already set */
226	if (!(regval & GLINT_CTL_DIS_AUTOMASK_M) &&
227	    (((regval & GLINT_CTL_ITR_GRAN_200_M) >>
228	     GLINT_CTL_ITR_GRAN_200_S) == ICE_ITR_GRAN_US) &&
229	    (((regval & GLINT_CTL_ITR_GRAN_100_M) >>
230	     GLINT_CTL_ITR_GRAN_100_S) == ICE_ITR_GRAN_US) &&
231	    (((regval & GLINT_CTL_ITR_GRAN_50_M) >>
232	     GLINT_CTL_ITR_GRAN_50_S) == ICE_ITR_GRAN_US) &&
233	    (((regval & GLINT_CTL_ITR_GRAN_25_M) >>
234	      GLINT_CTL_ITR_GRAN_25_S) == ICE_ITR_GRAN_US))
235		return;
236
237	regval = ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_200_S) &
238		  GLINT_CTL_ITR_GRAN_200_M) |
239		 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_100_S) &
240		  GLINT_CTL_ITR_GRAN_100_M) |
241		 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_50_S) &
242		  GLINT_CTL_ITR_GRAN_50_M) |
243		 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_25_S) &
244		  GLINT_CTL_ITR_GRAN_25_M);
245	wr32(hw, GLINT_CTL, regval);
246}
247
248/**
249 * ice_calc_txq_handle - calculate the queue handle
250 * @vsi: VSI that ring belongs to
251 * @ring: ring to get the absolute queue index
252 * @tc: traffic class number
253 */
254static u16 ice_calc_txq_handle(struct ice_vsi *vsi, struct ice_tx_ring *ring, u8 tc)
255{
256	WARN_ONCE(ice_ring_is_xdp(ring) && tc, "XDP ring can't belong to TC other than 0\n");
257
258	if (ring->ch)
259		return ring->q_index - ring->ch->base_q;
260
261	/* Idea here for calculation is that we subtract the number of queue
262	 * count from TC that ring belongs to from it's absolute queue index
263	 * and as a result we get the queue's index within TC.
264	 */
265	return ring->q_index - vsi->tc_cfg.tc_info[tc].qoffset;
266}
267
268/**
269 * ice_eswitch_calc_txq_handle
270 * @ring: pointer to ring which unique index is needed
271 *
272 * To correctly work with many netdevs ring->q_index of Tx rings on switchdev
273 * VSI can repeat. Hardware ring setup requires unique q_index. Calculate it
274 * here by finding index in vsi->tx_rings of this ring.
275 *
276 * Return ICE_INVAL_Q_INDEX when index wasn't found. Should never happen,
277 * because VSI is get from ring->vsi, so it has to be present in this VSI.
278 */
279static u16 ice_eswitch_calc_txq_handle(struct ice_tx_ring *ring)
280{
281	struct ice_vsi *vsi = ring->vsi;
282	int i;
283
284	ice_for_each_txq(vsi, i) {
285		if (vsi->tx_rings[i] == ring)
286			return i;
287	}
288
289	return ICE_INVAL_Q_INDEX;
290}
291
292/**
293 * ice_cfg_xps_tx_ring - Configure XPS for a Tx ring
294 * @ring: The Tx ring to configure
295 *
296 * This enables/disables XPS for a given Tx descriptor ring
297 * based on the TCs enabled for the VSI that ring belongs to.
298 */
299static void ice_cfg_xps_tx_ring(struct ice_tx_ring *ring)
300{
301	if (!ring->q_vector || !ring->netdev)
302		return;
303
304	/* We only initialize XPS once, so as not to overwrite user settings */
305	if (test_and_set_bit(ICE_TX_XPS_INIT_DONE, ring->xps_state))
306		return;
307
308	netif_set_xps_queue(ring->netdev, &ring->q_vector->affinity_mask,
309			    ring->q_index);
310}
311
312/**
313 * ice_setup_tx_ctx - setup a struct ice_tlan_ctx instance
314 * @ring: The Tx ring to configure
315 * @tlan_ctx: Pointer to the Tx LAN queue context structure to be initialized
316 * @pf_q: queue index in the PF space
317 *
318 * Configure the Tx descriptor ring in TLAN context.
319 */
320static void
321ice_setup_tx_ctx(struct ice_tx_ring *ring, struct ice_tlan_ctx *tlan_ctx, u16 pf_q)
322{
323	struct ice_vsi *vsi = ring->vsi;
324	struct ice_hw *hw = &vsi->back->hw;
325
326	tlan_ctx->base = ring->dma >> ICE_TLAN_CTX_BASE_S;
327
328	tlan_ctx->port_num = vsi->port_info->lport;
329
330	/* Transmit Queue Length */
331	tlan_ctx->qlen = ring->count;
332
333	ice_set_cgd_num(tlan_ctx, ring->dcb_tc);
334
335	/* PF number */
336	tlan_ctx->pf_num = hw->pf_id;
337
338	/* queue belongs to a specific VSI type
339	 * VF / VM index should be programmed per vmvf_type setting:
340	 * for vmvf_type = VF, it is VF number between 0-256
341	 * for vmvf_type = VM, it is VM number between 0-767
342	 * for PF or EMP this field should be set to zero
343	 */
344	switch (vsi->type) {
345	case ICE_VSI_LB:
346	case ICE_VSI_CTRL:
347	case ICE_VSI_PF:
348		if (ring->ch)
349			tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VMQ;
350		else
351			tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF;
352		break;
353	case ICE_VSI_VF:
354		/* Firmware expects vmvf_num to be absolute VF ID */
355		tlan_ctx->vmvf_num = hw->func_caps.vf_base_id + vsi->vf->vf_id;
356		tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VF;
357		break;
358	case ICE_VSI_SWITCHDEV_CTRL:
359		tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VMQ;
360		break;
361	default:
362		return;
363	}
364
365	/* make sure the context is associated with the right VSI */
366	if (ring->ch)
367		tlan_ctx->src_vsi = ring->ch->vsi_num;
368	else
369		tlan_ctx->src_vsi = ice_get_hw_vsi_num(hw, vsi->idx);
370
371	/* Restrict Tx timestamps to the PF VSI */
372	switch (vsi->type) {
373	case ICE_VSI_PF:
374		tlan_ctx->tsyn_ena = 1;
375		break;
376	default:
377		break;
378	}
379
380	tlan_ctx->tso_ena = ICE_TX_LEGACY;
381	tlan_ctx->tso_qnum = pf_q;
382
383	/* Legacy or Advanced Host Interface:
384	 * 0: Advanced Host Interface
385	 * 1: Legacy Host Interface
386	 */
387	tlan_ctx->legacy_int = ICE_TX_LEGACY;
388}
389
390/**
391 * ice_rx_offset - Return expected offset into page to access data
392 * @rx_ring: Ring we are requesting offset of
393 *
394 * Returns the offset value for ring into the data buffer.
395 */
396static unsigned int ice_rx_offset(struct ice_rx_ring *rx_ring)
397{
398	if (ice_ring_uses_build_skb(rx_ring))
399		return ICE_SKB_PAD;
400	return 0;
401}
402
403/**
404 * ice_setup_rx_ctx - Configure a receive ring context
405 * @ring: The Rx ring to configure
406 *
407 * Configure the Rx descriptor ring in RLAN context.
408 */
409static int ice_setup_rx_ctx(struct ice_rx_ring *ring)
410{
411	struct ice_vsi *vsi = ring->vsi;
412	u32 rxdid = ICE_RXDID_FLEX_NIC;
413	struct ice_rlan_ctx rlan_ctx;
414	struct ice_hw *hw;
415	u16 pf_q;
416	int err;
417
418	hw = &vsi->back->hw;
419
420	/* what is Rx queue number in global space of 2K Rx queues */
421	pf_q = vsi->rxq_map[ring->q_index];
422
423	/* clear the context structure first */
424	memset(&rlan_ctx, 0, sizeof(rlan_ctx));
425
426	/* Receive Queue Base Address.
427	 * Indicates the starting address of the descriptor queue defined in
428	 * 128 Byte units.
429	 */
430	rlan_ctx.base = ring->dma >> ICE_RLAN_BASE_S;
431
432	rlan_ctx.qlen = ring->count;
433
434	/* Receive Packet Data Buffer Size.
435	 * The Packet Data Buffer Size is defined in 128 byte units.
436	 */
437	rlan_ctx.dbuf = DIV_ROUND_UP(ring->rx_buf_len,
438				     BIT_ULL(ICE_RLAN_CTX_DBUF_S));
439
440	/* use 32 byte descriptors */
441	rlan_ctx.dsize = 1;
442
443	/* Strip the Ethernet CRC bytes before the packet is posted to host
444	 * memory.
445	 */
446	rlan_ctx.crcstrip = !(ring->flags & ICE_RX_FLAGS_CRC_STRIP_DIS);
447
448	/* L2TSEL flag defines the reported L2 Tags in the receive descriptor
449	 * and it needs to remain 1 for non-DVM capable configurations to not
450	 * break backward compatibility for VF drivers. Setting this field to 0
451	 * will cause the single/outer VLAN tag to be stripped to the L2TAG2_2ND
452	 * field in the Rx descriptor. Setting it to 1 allows the VLAN tag to
453	 * be stripped in L2TAG1 of the Rx descriptor, which is where VFs will
454	 * check for the tag
455	 */
456	if (ice_is_dvm_ena(hw))
457		if (vsi->type == ICE_VSI_VF &&
458		    ice_vf_is_port_vlan_ena(vsi->vf))
459			rlan_ctx.l2tsel = 1;
460		else
461			rlan_ctx.l2tsel = 0;
462	else
463		rlan_ctx.l2tsel = 1;
464
465	rlan_ctx.dtype = ICE_RX_DTYPE_NO_SPLIT;
466	rlan_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_NO_SPLIT;
467	rlan_ctx.hsplit_1 = ICE_RLAN_RX_HSPLIT_1_NO_SPLIT;
468
469	/* This controls whether VLAN is stripped from inner headers
470	 * The VLAN in the inner L2 header is stripped to the receive
471	 * descriptor if enabled by this flag.
472	 */
473	rlan_ctx.showiv = 0;
474
475	/* Max packet size for this queue - must not be set to a larger value
476	 * than 5 x DBUF
477	 */
478	rlan_ctx.rxmax = min_t(u32, vsi->max_frame,
479			       ICE_MAX_CHAINED_RX_BUFS * ring->rx_buf_len);
480
481	/* Rx queue threshold in units of 64 */
482	rlan_ctx.lrxqthresh = 1;
483
484	/* Enable Flexible Descriptors in the queue context which
485	 * allows this driver to select a specific receive descriptor format
486	 * increasing context priority to pick up profile ID; default is 0x01;
487	 * setting to 0x03 to ensure profile is programming if prev context is
488	 * of same priority
489	 */
490	if (vsi->type != ICE_VSI_VF)
491		ice_write_qrxflxp_cntxt(hw, pf_q, rxdid, 0x3, true);
492	else
493		ice_write_qrxflxp_cntxt(hw, pf_q, ICE_RXDID_LEGACY_1, 0x3,
494					false);
495
496	/* Absolute queue number out of 2K needs to be passed */
497	err = ice_write_rxq_ctx(hw, &rlan_ctx, pf_q);
498	if (err) {
499		dev_err(ice_pf_to_dev(vsi->back), "Failed to set LAN Rx queue context for absolute Rx queue %d error: %d\n",
500			pf_q, err);
501		return -EIO;
502	}
503
504	if (vsi->type == ICE_VSI_VF)
505		return 0;
506
507	/* configure Rx buffer alignment */
508	if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
509		ice_clear_ring_build_skb_ena(ring);
510	else
511		ice_set_ring_build_skb_ena(ring);
512
513	ring->rx_offset = ice_rx_offset(ring);
514
515	/* init queue specific tail register */
516	ring->tail = hw->hw_addr + QRX_TAIL(pf_q);
517	writel(0, ring->tail);
518
519	return 0;
520}
521
522/**
523 * ice_vsi_cfg_rxq - Configure an Rx queue
524 * @ring: the ring being configured
525 *
526 * Return 0 on success and a negative value on error.
527 */
528int ice_vsi_cfg_rxq(struct ice_rx_ring *ring)
529{
530	struct device *dev = ice_pf_to_dev(ring->vsi->back);
531	u32 num_bufs = ICE_RX_DESC_UNUSED(ring);
532	int err;
533
534	ring->rx_buf_len = ring->vsi->rx_buf_len;
535
536	if (ring->vsi->type == ICE_VSI_PF) {
537		if (!xdp_rxq_info_is_reg(&ring->xdp_rxq)) {
538			err = __xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev,
539						 ring->q_index,
540						 ring->q_vector->napi.napi_id,
541						 ring->rx_buf_len);
542			if (err)
543				return err;
544		}
545
546		ring->xsk_pool = ice_xsk_pool(ring);
547		if (ring->xsk_pool) {
548			xdp_rxq_info_unreg(&ring->xdp_rxq);
549
550			ring->rx_buf_len =
551				xsk_pool_get_rx_frame_size(ring->xsk_pool);
552			err = __xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev,
553						 ring->q_index,
554						 ring->q_vector->napi.napi_id,
555						 ring->rx_buf_len);
556			if (err)
557				return err;
558			err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
559							 MEM_TYPE_XSK_BUFF_POOL,
560							 NULL);
561			if (err)
562				return err;
563			xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq);
564
565			dev_info(dev, "Registered XDP mem model MEM_TYPE_XSK_BUFF_POOL on Rx ring %d\n",
566				 ring->q_index);
567		} else {
568			if (!xdp_rxq_info_is_reg(&ring->xdp_rxq)) {
569				err = __xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev,
570							 ring->q_index,
571							 ring->q_vector->napi.napi_id,
572							 ring->rx_buf_len);
573				if (err)
574					return err;
575			}
576
577			err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
578							 MEM_TYPE_PAGE_SHARED,
579							 NULL);
580			if (err)
581				return err;
582		}
583	}
584
585	xdp_init_buff(&ring->xdp, ice_rx_pg_size(ring) / 2, &ring->xdp_rxq);
586	ring->xdp.data = NULL;
587	err = ice_setup_rx_ctx(ring);
588	if (err) {
589		dev_err(dev, "ice_setup_rx_ctx failed for RxQ %d, err %d\n",
590			ring->q_index, err);
591		return err;
592	}
593
594	if (ring->xsk_pool) {
595		bool ok;
596
597		if (!xsk_buff_can_alloc(ring->xsk_pool, num_bufs)) {
598			dev_warn(dev, "XSK buffer pool does not provide enough addresses to fill %d buffers on Rx ring %d\n",
599				 num_bufs, ring->q_index);
600			dev_warn(dev, "Change Rx ring/fill queue size to avoid performance issues\n");
601
602			return 0;
603		}
604
605		ok = ice_alloc_rx_bufs_zc(ring, num_bufs);
606		if (!ok) {
607			u16 pf_q = ring->vsi->rxq_map[ring->q_index];
608
609			dev_info(dev, "Failed to allocate some buffers on XSK buffer pool enabled Rx ring %d (pf_q %d)\n",
610				 ring->q_index, pf_q);
611		}
612
613		return 0;
614	}
615
616	ice_alloc_rx_bufs(ring, num_bufs);
617
618	return 0;
619}
620
621/**
622 * __ice_vsi_get_qs - helper function for assigning queues from PF to VSI
623 * @qs_cfg: gathered variables needed for pf->vsi queues assignment
624 *
625 * This function first tries to find contiguous space. If it is not successful,
626 * it tries with the scatter approach.
627 *
628 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
629 */
630int __ice_vsi_get_qs(struct ice_qs_cfg *qs_cfg)
631{
632	int ret = 0;
633
634	ret = __ice_vsi_get_qs_contig(qs_cfg);
635	if (ret) {
636		/* contig failed, so try with scatter approach */
637		qs_cfg->mapping_mode = ICE_VSI_MAP_SCATTER;
638		qs_cfg->q_count = min_t(unsigned int, qs_cfg->q_count,
639					qs_cfg->scatter_count);
640		ret = __ice_vsi_get_qs_sc(qs_cfg);
641	}
642	return ret;
643}
644
645/**
646 * ice_vsi_ctrl_one_rx_ring - start/stop VSI's Rx ring with no busy wait
647 * @vsi: the VSI being configured
648 * @ena: start or stop the Rx ring
649 * @rxq_idx: 0-based Rx queue index for the VSI passed in
650 * @wait: wait or don't wait for configuration to finish in hardware
651 *
652 * Return 0 on success and negative on error.
653 */
654int
655ice_vsi_ctrl_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx, bool wait)
656{
657	int pf_q = vsi->rxq_map[rxq_idx];
658	struct ice_pf *pf = vsi->back;
659	struct ice_hw *hw = &pf->hw;
660	u32 rx_reg;
661
662	rx_reg = rd32(hw, QRX_CTRL(pf_q));
663
664	/* Skip if the queue is already in the requested state */
665	if (ena == !!(rx_reg & QRX_CTRL_QENA_STAT_M))
666		return 0;
667
668	/* turn on/off the queue */
669	if (ena)
670		rx_reg |= QRX_CTRL_QENA_REQ_M;
671	else
672		rx_reg &= ~QRX_CTRL_QENA_REQ_M;
673	wr32(hw, QRX_CTRL(pf_q), rx_reg);
674
675	if (!wait)
676		return 0;
677
678	ice_flush(hw);
679	return ice_pf_rxq_wait(pf, pf_q, ena);
680}
681
682/**
683 * ice_vsi_wait_one_rx_ring - wait for a VSI's Rx ring to be stopped/started
684 * @vsi: the VSI being configured
685 * @ena: true/false to verify Rx ring has been enabled/disabled respectively
686 * @rxq_idx: 0-based Rx queue index for the VSI passed in
687 *
688 * This routine will wait for the given Rx queue of the VSI to reach the
689 * enabled or disabled state. Returns -ETIMEDOUT in case of failing to reach
690 * the requested state after multiple retries; else will return 0 in case of
691 * success.
692 */
693int ice_vsi_wait_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx)
694{
695	int pf_q = vsi->rxq_map[rxq_idx];
696	struct ice_pf *pf = vsi->back;
697
698	return ice_pf_rxq_wait(pf, pf_q, ena);
699}
700
701/**
702 * ice_vsi_alloc_q_vectors - Allocate memory for interrupt vectors
703 * @vsi: the VSI being configured
704 *
705 * We allocate one q_vector per queue interrupt. If allocation fails we
706 * return -ENOMEM.
707 */
708int ice_vsi_alloc_q_vectors(struct ice_vsi *vsi)
709{
710	struct device *dev = ice_pf_to_dev(vsi->back);
711	u16 v_idx;
712	int err;
713
714	if (vsi->q_vectors[0]) {
715		dev_dbg(dev, "VSI %d has existing q_vectors\n", vsi->vsi_num);
716		return -EEXIST;
717	}
718
719	for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++) {
720		err = ice_vsi_alloc_q_vector(vsi, v_idx);
721		if (err)
722			goto err_out;
723	}
724
725	return 0;
726
727err_out:
728	while (v_idx--)
729		ice_free_q_vector(vsi, v_idx);
730
731	dev_err(dev, "Failed to allocate %d q_vector for VSI %d, ret=%d\n",
732		vsi->num_q_vectors, vsi->vsi_num, err);
733	vsi->num_q_vectors = 0;
734	return err;
735}
736
737/**
738 * ice_vsi_map_rings_to_vectors - Map VSI rings to interrupt vectors
739 * @vsi: the VSI being configured
740 *
741 * This function maps descriptor rings to the queue-specific vectors allotted
742 * through the MSI-X enabling code. On a constrained vector budget, we map Tx
743 * and Rx rings to the vector as "efficiently" as possible.
744 */
745void ice_vsi_map_rings_to_vectors(struct ice_vsi *vsi)
746{
747	int q_vectors = vsi->num_q_vectors;
748	u16 tx_rings_rem, rx_rings_rem;
749	int v_id;
750
751	/* initially assigning remaining rings count to VSIs num queue value */
752	tx_rings_rem = vsi->num_txq;
753	rx_rings_rem = vsi->num_rxq;
754
755	for (v_id = 0; v_id < q_vectors; v_id++) {
756		struct ice_q_vector *q_vector = vsi->q_vectors[v_id];
757		u8 tx_rings_per_v, rx_rings_per_v;
758		u16 q_id, q_base;
759
760		/* Tx rings mapping to vector */
761		tx_rings_per_v = (u8)DIV_ROUND_UP(tx_rings_rem,
762						  q_vectors - v_id);
763		q_vector->num_ring_tx = tx_rings_per_v;
764		q_vector->tx.tx_ring = NULL;
765		q_vector->tx.itr_idx = ICE_TX_ITR;
766		q_base = vsi->num_txq - tx_rings_rem;
767
768		for (q_id = q_base; q_id < (q_base + tx_rings_per_v); q_id++) {
769			struct ice_tx_ring *tx_ring = vsi->tx_rings[q_id];
770
771			tx_ring->q_vector = q_vector;
772			tx_ring->next = q_vector->tx.tx_ring;
773			q_vector->tx.tx_ring = tx_ring;
774		}
775		tx_rings_rem -= tx_rings_per_v;
776
777		/* Rx rings mapping to vector */
778		rx_rings_per_v = (u8)DIV_ROUND_UP(rx_rings_rem,
779						  q_vectors - v_id);
780		q_vector->num_ring_rx = rx_rings_per_v;
781		q_vector->rx.rx_ring = NULL;
782		q_vector->rx.itr_idx = ICE_RX_ITR;
783		q_base = vsi->num_rxq - rx_rings_rem;
784
785		for (q_id = q_base; q_id < (q_base + rx_rings_per_v); q_id++) {
786			struct ice_rx_ring *rx_ring = vsi->rx_rings[q_id];
787
788			rx_ring->q_vector = q_vector;
789			rx_ring->next = q_vector->rx.rx_ring;
790			q_vector->rx.rx_ring = rx_ring;
791		}
792		rx_rings_rem -= rx_rings_per_v;
793	}
794}
795
796/**
797 * ice_vsi_free_q_vectors - Free memory allocated for interrupt vectors
798 * @vsi: the VSI having memory freed
799 */
800void ice_vsi_free_q_vectors(struct ice_vsi *vsi)
801{
802	int v_idx;
803
804	ice_for_each_q_vector(vsi, v_idx)
805		ice_free_q_vector(vsi, v_idx);
806
807	vsi->num_q_vectors = 0;
808}
809
810/**
811 * ice_vsi_cfg_txq - Configure single Tx queue
812 * @vsi: the VSI that queue belongs to
813 * @ring: Tx ring to be configured
814 * @qg_buf: queue group buffer
815 */
816int
817ice_vsi_cfg_txq(struct ice_vsi *vsi, struct ice_tx_ring *ring,
818		struct ice_aqc_add_tx_qgrp *qg_buf)
819{
820	u8 buf_len = struct_size(qg_buf, txqs, 1);
821	struct ice_tlan_ctx tlan_ctx = { 0 };
822	struct ice_aqc_add_txqs_perq *txq;
823	struct ice_channel *ch = ring->ch;
824	struct ice_pf *pf = vsi->back;
825	struct ice_hw *hw = &pf->hw;
826	int status;
827	u16 pf_q;
828	u8 tc;
829
830	/* Configure XPS */
831	ice_cfg_xps_tx_ring(ring);
832
833	pf_q = ring->reg_idx;
834	ice_setup_tx_ctx(ring, &tlan_ctx, pf_q);
835	/* copy context contents into the qg_buf */
836	qg_buf->txqs[0].txq_id = cpu_to_le16(pf_q);
837	ice_set_ctx(hw, (u8 *)&tlan_ctx, qg_buf->txqs[0].txq_ctx,
838		    ice_tlan_ctx_info);
839
840	/* init queue specific tail reg. It is referred as
841	 * transmit comm scheduler queue doorbell.
842	 */
843	ring->tail = hw->hw_addr + QTX_COMM_DBELL(pf_q);
844
845	if (IS_ENABLED(CONFIG_DCB))
846		tc = ring->dcb_tc;
847	else
848		tc = 0;
849
850	/* Add unique software queue handle of the Tx queue per
851	 * TC into the VSI Tx ring
852	 */
853	if (vsi->type == ICE_VSI_SWITCHDEV_CTRL) {
854		ring->q_handle = ice_eswitch_calc_txq_handle(ring);
855
856		if (ring->q_handle == ICE_INVAL_Q_INDEX)
857			return -ENODEV;
858	} else {
859		ring->q_handle = ice_calc_txq_handle(vsi, ring, tc);
860	}
861
862	if (ch)
863		status = ice_ena_vsi_txq(vsi->port_info, ch->ch_vsi->idx, 0,
864					 ring->q_handle, 1, qg_buf, buf_len,
865					 NULL);
866	else
867		status = ice_ena_vsi_txq(vsi->port_info, vsi->idx, tc,
868					 ring->q_handle, 1, qg_buf, buf_len,
869					 NULL);
870	if (status) {
871		dev_err(ice_pf_to_dev(pf), "Failed to set LAN Tx queue context, error: %d\n",
872			status);
873		return status;
874	}
875
876	/* Add Tx Queue TEID into the VSI Tx ring from the
877	 * response. This will complete configuring and
878	 * enabling the queue.
879	 */
880	txq = &qg_buf->txqs[0];
881	if (pf_q == le16_to_cpu(txq->txq_id))
882		ring->txq_teid = le32_to_cpu(txq->q_teid);
883
884	return 0;
885}
886
887/**
888 * ice_cfg_itr - configure the initial interrupt throttle values
889 * @hw: pointer to the HW structure
890 * @q_vector: interrupt vector that's being configured
891 *
892 * Configure interrupt throttling values for the ring containers that are
893 * associated with the interrupt vector passed in.
894 */
895void ice_cfg_itr(struct ice_hw *hw, struct ice_q_vector *q_vector)
896{
897	ice_cfg_itr_gran(hw);
898
899	if (q_vector->num_ring_rx)
900		ice_write_itr(&q_vector->rx, q_vector->rx.itr_setting);
901
902	if (q_vector->num_ring_tx)
903		ice_write_itr(&q_vector->tx, q_vector->tx.itr_setting);
904
905	ice_write_intrl(q_vector, q_vector->intrl);
906}
907
908/**
909 * ice_cfg_txq_interrupt - configure interrupt on Tx queue
910 * @vsi: the VSI being configured
911 * @txq: Tx queue being mapped to MSI-X vector
912 * @msix_idx: MSI-X vector index within the function
913 * @itr_idx: ITR index of the interrupt cause
914 *
915 * Configure interrupt on Tx queue by associating Tx queue to MSI-X vector
916 * within the function space.
917 */
918void
919ice_cfg_txq_interrupt(struct ice_vsi *vsi, u16 txq, u16 msix_idx, u16 itr_idx)
920{
921	struct ice_pf *pf = vsi->back;
922	struct ice_hw *hw = &pf->hw;
923	u32 val;
924
925	itr_idx = (itr_idx << QINT_TQCTL_ITR_INDX_S) & QINT_TQCTL_ITR_INDX_M;
926
927	val = QINT_TQCTL_CAUSE_ENA_M | itr_idx |
928	      ((msix_idx << QINT_TQCTL_MSIX_INDX_S) & QINT_TQCTL_MSIX_INDX_M);
929
930	wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), val);
931	if (ice_is_xdp_ena_vsi(vsi)) {
932		u32 xdp_txq = txq + vsi->num_xdp_txq;
933
934		wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]),
935		     val);
936	}
937	ice_flush(hw);
938}
939
940/**
941 * ice_cfg_rxq_interrupt - configure interrupt on Rx queue
942 * @vsi: the VSI being configured
943 * @rxq: Rx queue being mapped to MSI-X vector
944 * @msix_idx: MSI-X vector index within the function
945 * @itr_idx: ITR index of the interrupt cause
946 *
947 * Configure interrupt on Rx queue by associating Rx queue to MSI-X vector
948 * within the function space.
949 */
950void
951ice_cfg_rxq_interrupt(struct ice_vsi *vsi, u16 rxq, u16 msix_idx, u16 itr_idx)
952{
953	struct ice_pf *pf = vsi->back;
954	struct ice_hw *hw = &pf->hw;
955	u32 val;
956
957	itr_idx = (itr_idx << QINT_RQCTL_ITR_INDX_S) & QINT_RQCTL_ITR_INDX_M;
958
959	val = QINT_RQCTL_CAUSE_ENA_M | itr_idx |
960	      ((msix_idx << QINT_RQCTL_MSIX_INDX_S) & QINT_RQCTL_MSIX_INDX_M);
961
962	wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), val);
963
964	ice_flush(hw);
965}
966
967/**
968 * ice_trigger_sw_intr - trigger a software interrupt
969 * @hw: pointer to the HW structure
970 * @q_vector: interrupt vector to trigger the software interrupt for
971 */
972void ice_trigger_sw_intr(struct ice_hw *hw, struct ice_q_vector *q_vector)
973{
974	wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx),
975	     (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S) |
976	     GLINT_DYN_CTL_SWINT_TRIG_M |
977	     GLINT_DYN_CTL_INTENA_M);
978}
979
980/**
981 * ice_vsi_stop_tx_ring - Disable single Tx ring
982 * @vsi: the VSI being configured
983 * @rst_src: reset source
984 * @rel_vmvf_num: Relative ID of VF/VM
985 * @ring: Tx ring to be stopped
986 * @txq_meta: Meta data of Tx ring to be stopped
987 */
988int
989ice_vsi_stop_tx_ring(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
990		     u16 rel_vmvf_num, struct ice_tx_ring *ring,
991		     struct ice_txq_meta *txq_meta)
992{
993	struct ice_pf *pf = vsi->back;
994	struct ice_q_vector *q_vector;
995	struct ice_hw *hw = &pf->hw;
996	int status;
997	u32 val;
998
999	/* clear cause_ena bit for disabled queues */
1000	val = rd32(hw, QINT_TQCTL(ring->reg_idx));
1001	val &= ~QINT_TQCTL_CAUSE_ENA_M;
1002	wr32(hw, QINT_TQCTL(ring->reg_idx), val);
1003
1004	/* software is expected to wait for 100 ns */
1005	ndelay(100);
1006
1007	/* trigger a software interrupt for the vector
1008	 * associated to the queue to schedule NAPI handler
1009	 */
1010	q_vector = ring->q_vector;
1011	if (q_vector && !(vsi->vf && ice_is_vf_disabled(vsi->vf)))
1012		ice_trigger_sw_intr(hw, q_vector);
1013
1014	status = ice_dis_vsi_txq(vsi->port_info, txq_meta->vsi_idx,
1015				 txq_meta->tc, 1, &txq_meta->q_handle,
1016				 &txq_meta->q_id, &txq_meta->q_teid, rst_src,
1017				 rel_vmvf_num, NULL);
1018
1019	/* if the disable queue command was exercised during an
1020	 * active reset flow, -EBUSY is returned.
1021	 * This is not an error as the reset operation disables
1022	 * queues at the hardware level anyway.
1023	 */
1024	if (status == -EBUSY) {
1025		dev_dbg(ice_pf_to_dev(vsi->back), "Reset in progress. LAN Tx queues already disabled\n");
1026	} else if (status == -ENOENT) {
1027		dev_dbg(ice_pf_to_dev(vsi->back), "LAN Tx queues do not exist, nothing to disable\n");
1028	} else if (status) {
1029		dev_dbg(ice_pf_to_dev(vsi->back), "Failed to disable LAN Tx queues, error: %d\n",
1030			status);
1031		return status;
1032	}
1033
1034	return 0;
1035}
1036
1037/**
1038 * ice_fill_txq_meta - Prepare the Tx queue's meta data
1039 * @vsi: VSI that ring belongs to
1040 * @ring: ring that txq_meta will be based on
1041 * @txq_meta: a helper struct that wraps Tx queue's information
1042 *
1043 * Set up a helper struct that will contain all the necessary fields that
1044 * are needed for stopping Tx queue
1045 */
1046void
1047ice_fill_txq_meta(struct ice_vsi *vsi, struct ice_tx_ring *ring,
1048		  struct ice_txq_meta *txq_meta)
1049{
1050	struct ice_channel *ch = ring->ch;
1051	u8 tc;
1052
1053	if (IS_ENABLED(CONFIG_DCB))
1054		tc = ring->dcb_tc;
1055	else
1056		tc = 0;
1057
1058	txq_meta->q_id = ring->reg_idx;
1059	txq_meta->q_teid = ring->txq_teid;
1060	txq_meta->q_handle = ring->q_handle;
1061	if (ch) {
1062		txq_meta->vsi_idx = ch->ch_vsi->idx;
1063		txq_meta->tc = 0;
1064	} else {
1065		txq_meta->vsi_idx = vsi->idx;
1066		txq_meta->tc = tc;
1067	}
1068}
1069