1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 2013 - 2018 Intel Corporation. */
3
4#include <linux/prefetch.h>
5
6#include "iavf.h"
7#include "iavf_trace.h"
8#include "iavf_prototype.h"
9
10static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
11				u32 td_tag)
12{
13	return cpu_to_le64(IAVF_TX_DESC_DTYPE_DATA |
14			   ((u64)td_cmd  << IAVF_TXD_QW1_CMD_SHIFT) |
15			   ((u64)td_offset << IAVF_TXD_QW1_OFFSET_SHIFT) |
16			   ((u64)size  << IAVF_TXD_QW1_TX_BUF_SZ_SHIFT) |
17			   ((u64)td_tag  << IAVF_TXD_QW1_L2TAG1_SHIFT));
18}
19
20#define IAVF_TXD_CMD (IAVF_TX_DESC_CMD_EOP | IAVF_TX_DESC_CMD_RS)
21
22/**
23 * iavf_unmap_and_free_tx_resource - Release a Tx buffer
24 * @ring:      the ring that owns the buffer
25 * @tx_buffer: the buffer to free
26 **/
27static void iavf_unmap_and_free_tx_resource(struct iavf_ring *ring,
28					    struct iavf_tx_buffer *tx_buffer)
29{
30	if (tx_buffer->skb) {
31		if (tx_buffer->tx_flags & IAVF_TX_FLAGS_FD_SB)
32			kfree(tx_buffer->raw_buf);
33		else
34			dev_kfree_skb_any(tx_buffer->skb);
35		if (dma_unmap_len(tx_buffer, len))
36			dma_unmap_single(ring->dev,
37					 dma_unmap_addr(tx_buffer, dma),
38					 dma_unmap_len(tx_buffer, len),
39					 DMA_TO_DEVICE);
40	} else if (dma_unmap_len(tx_buffer, len)) {
41		dma_unmap_page(ring->dev,
42			       dma_unmap_addr(tx_buffer, dma),
43			       dma_unmap_len(tx_buffer, len),
44			       DMA_TO_DEVICE);
45	}
46
47	tx_buffer->next_to_watch = NULL;
48	tx_buffer->skb = NULL;
49	dma_unmap_len_set(tx_buffer, len, 0);
50	/* tx_buffer must be completely set up in the transmit path */
51}
52
53/**
54 * iavf_clean_tx_ring - Free any empty Tx buffers
55 * @tx_ring: ring to be cleaned
56 **/
57static void iavf_clean_tx_ring(struct iavf_ring *tx_ring)
58{
59	unsigned long bi_size;
60	u16 i;
61
62	/* ring already cleared, nothing to do */
63	if (!tx_ring->tx_bi)
64		return;
65
66	/* Free all the Tx ring sk_buffs */
67	for (i = 0; i < tx_ring->count; i++)
68		iavf_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
69
70	bi_size = sizeof(struct iavf_tx_buffer) * tx_ring->count;
71	memset(tx_ring->tx_bi, 0, bi_size);
72
73	/* Zero out the descriptor ring */
74	memset(tx_ring->desc, 0, tx_ring->size);
75
76	tx_ring->next_to_use = 0;
77	tx_ring->next_to_clean = 0;
78
79	if (!tx_ring->netdev)
80		return;
81
82	/* cleanup Tx queue statistics */
83	netdev_tx_reset_queue(txring_txq(tx_ring));
84}
85
86/**
87 * iavf_free_tx_resources - Free Tx resources per queue
88 * @tx_ring: Tx descriptor ring for a specific queue
89 *
90 * Free all transmit software resources
91 **/
92void iavf_free_tx_resources(struct iavf_ring *tx_ring)
93{
94	iavf_clean_tx_ring(tx_ring);
95	kfree(tx_ring->tx_bi);
96	tx_ring->tx_bi = NULL;
97
98	if (tx_ring->desc) {
99		dma_free_coherent(tx_ring->dev, tx_ring->size,
100				  tx_ring->desc, tx_ring->dma);
101		tx_ring->desc = NULL;
102	}
103}
104
105/**
106 * iavf_get_tx_pending - how many Tx descriptors not processed
107 * @ring: the ring of descriptors
108 * @in_sw: is tx_pending being checked in SW or HW
109 *
110 * Since there is no access to the ring head register
111 * in XL710, we need to use our local copies
112 **/
113static u32 iavf_get_tx_pending(struct iavf_ring *ring, bool in_sw)
114{
115	u32 head, tail;
116
117	/* underlying hardware might not allow access and/or always return
118	 * 0 for the head/tail registers so just use the cached values
119	 */
120	head = ring->next_to_clean;
121	tail = ring->next_to_use;
122
123	if (head != tail)
124		return (head < tail) ?
125			tail - head : (tail + ring->count - head);
126
127	return 0;
128}
129
130/**
131 * iavf_force_wb - Issue SW Interrupt so HW does a wb
132 * @vsi: the VSI we care about
133 * @q_vector: the vector on which to force writeback
134 **/
135static void iavf_force_wb(struct iavf_vsi *vsi, struct iavf_q_vector *q_vector)
136{
137	u32 val = IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
138		  IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK | /* set noitr */
139		  IAVF_VFINT_DYN_CTLN1_SWINT_TRIG_MASK |
140		  IAVF_VFINT_DYN_CTLN1_SW_ITR_INDX_ENA_MASK
141		  /* allow 00 to be written to the index */;
142
143	wr32(&vsi->back->hw,
144	     IAVF_VFINT_DYN_CTLN1(q_vector->reg_idx),
145	     val);
146}
147
148/**
149 * iavf_detect_recover_hung - Function to detect and recover hung_queues
150 * @vsi:  pointer to vsi struct with tx queues
151 *
152 * VSI has netdev and netdev has TX queues. This function is to check each of
153 * those TX queues if they are hung, trigger recovery by issuing SW interrupt.
154 **/
155void iavf_detect_recover_hung(struct iavf_vsi *vsi)
156{
157	struct iavf_ring *tx_ring = NULL;
158	struct net_device *netdev;
159	unsigned int i;
160	int packets;
161
162	if (!vsi)
163		return;
164
165	if (test_bit(__IAVF_VSI_DOWN, vsi->state))
166		return;
167
168	netdev = vsi->netdev;
169	if (!netdev)
170		return;
171
172	if (!netif_carrier_ok(netdev))
173		return;
174
175	for (i = 0; i < vsi->back->num_active_queues; i++) {
176		tx_ring = &vsi->back->tx_rings[i];
177		if (tx_ring && tx_ring->desc) {
178			/* If packet counter has not changed the queue is
179			 * likely stalled, so force an interrupt for this
180			 * queue.
181			 *
182			 * prev_pkt_ctr would be negative if there was no
183			 * pending work.
184			 */
185			packets = tx_ring->stats.packets & INT_MAX;
186			if (tx_ring->tx_stats.prev_pkt_ctr == packets) {
187				iavf_force_wb(vsi, tx_ring->q_vector);
188				continue;
189			}
190
191			/* Memory barrier between read of packet count and call
192			 * to iavf_get_tx_pending()
193			 */
194			smp_rmb();
195			tx_ring->tx_stats.prev_pkt_ctr =
196			  iavf_get_tx_pending(tx_ring, true) ? packets : -1;
197		}
198	}
199}
200
201#define WB_STRIDE 4
202
203/**
204 * iavf_clean_tx_irq - Reclaim resources after transmit completes
205 * @vsi: the VSI we care about
206 * @tx_ring: Tx ring to clean
207 * @napi_budget: Used to determine if we are in netpoll
208 *
209 * Returns true if there's any budget left (e.g. the clean is finished)
210 **/
211static bool iavf_clean_tx_irq(struct iavf_vsi *vsi,
212			      struct iavf_ring *tx_ring, int napi_budget)
213{
214	int i = tx_ring->next_to_clean;
215	struct iavf_tx_buffer *tx_buf;
216	struct iavf_tx_desc *tx_desc;
217	unsigned int total_bytes = 0, total_packets = 0;
218	unsigned int budget = IAVF_DEFAULT_IRQ_WORK;
219
220	tx_buf = &tx_ring->tx_bi[i];
221	tx_desc = IAVF_TX_DESC(tx_ring, i);
222	i -= tx_ring->count;
223
224	do {
225		struct iavf_tx_desc *eop_desc = tx_buf->next_to_watch;
226
227		/* if next_to_watch is not set then there is no work pending */
228		if (!eop_desc)
229			break;
230
231		/* prevent any other reads prior to eop_desc */
232		smp_rmb();
233
234		iavf_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
235		/* if the descriptor isn't done, no work yet to do */
236		if (!(eop_desc->cmd_type_offset_bsz &
237		      cpu_to_le64(IAVF_TX_DESC_DTYPE_DESC_DONE)))
238			break;
239
240		/* clear next_to_watch to prevent false hangs */
241		tx_buf->next_to_watch = NULL;
242
243		/* update the statistics for this packet */
244		total_bytes += tx_buf->bytecount;
245		total_packets += tx_buf->gso_segs;
246
247		/* free the skb */
248		napi_consume_skb(tx_buf->skb, napi_budget);
249
250		/* unmap skb header data */
251		dma_unmap_single(tx_ring->dev,
252				 dma_unmap_addr(tx_buf, dma),
253				 dma_unmap_len(tx_buf, len),
254				 DMA_TO_DEVICE);
255
256		/* clear tx_buffer data */
257		tx_buf->skb = NULL;
258		dma_unmap_len_set(tx_buf, len, 0);
259
260		/* unmap remaining buffers */
261		while (tx_desc != eop_desc) {
262			iavf_trace(clean_tx_irq_unmap,
263				   tx_ring, tx_desc, tx_buf);
264
265			tx_buf++;
266			tx_desc++;
267			i++;
268			if (unlikely(!i)) {
269				i -= tx_ring->count;
270				tx_buf = tx_ring->tx_bi;
271				tx_desc = IAVF_TX_DESC(tx_ring, 0);
272			}
273
274			/* unmap any remaining paged data */
275			if (dma_unmap_len(tx_buf, len)) {
276				dma_unmap_page(tx_ring->dev,
277					       dma_unmap_addr(tx_buf, dma),
278					       dma_unmap_len(tx_buf, len),
279					       DMA_TO_DEVICE);
280				dma_unmap_len_set(tx_buf, len, 0);
281			}
282		}
283
284		/* move us one more past the eop_desc for start of next pkt */
285		tx_buf++;
286		tx_desc++;
287		i++;
288		if (unlikely(!i)) {
289			i -= tx_ring->count;
290			tx_buf = tx_ring->tx_bi;
291			tx_desc = IAVF_TX_DESC(tx_ring, 0);
292		}
293
294		prefetch(tx_desc);
295
296		/* update budget accounting */
297		budget--;
298	} while (likely(budget));
299
300	i += tx_ring->count;
301	tx_ring->next_to_clean = i;
302	u64_stats_update_begin(&tx_ring->syncp);
303	tx_ring->stats.bytes += total_bytes;
304	tx_ring->stats.packets += total_packets;
305	u64_stats_update_end(&tx_ring->syncp);
306	tx_ring->q_vector->tx.total_bytes += total_bytes;
307	tx_ring->q_vector->tx.total_packets += total_packets;
308
309	if (tx_ring->flags & IAVF_TXR_FLAGS_WB_ON_ITR) {
310		/* check to see if there are < 4 descriptors
311		 * waiting to be written back, then kick the hardware to force
312		 * them to be written back in case we stay in NAPI.
313		 * In this mode on X722 we do not enable Interrupt.
314		 */
315		unsigned int j = iavf_get_tx_pending(tx_ring, false);
316
317		if (budget &&
318		    ((j / WB_STRIDE) == 0) && (j > 0) &&
319		    !test_bit(__IAVF_VSI_DOWN, vsi->state) &&
320		    (IAVF_DESC_UNUSED(tx_ring) != tx_ring->count))
321			tx_ring->arm_wb = true;
322	}
323
324	/* notify netdev of completed buffers */
325	netdev_tx_completed_queue(txring_txq(tx_ring),
326				  total_packets, total_bytes);
327
328#define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
329	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
330		     (IAVF_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
331		/* Make sure that anybody stopping the queue after this
332		 * sees the new next_to_clean.
333		 */
334		smp_mb();
335		if (__netif_subqueue_stopped(tx_ring->netdev,
336					     tx_ring->queue_index) &&
337		   !test_bit(__IAVF_VSI_DOWN, vsi->state)) {
338			netif_wake_subqueue(tx_ring->netdev,
339					    tx_ring->queue_index);
340			++tx_ring->tx_stats.restart_queue;
341		}
342	}
343
344	return !!budget;
345}
346
347/**
348 * iavf_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
349 * @vsi: the VSI we care about
350 * @q_vector: the vector on which to enable writeback
351 *
352 **/
353static void iavf_enable_wb_on_itr(struct iavf_vsi *vsi,
354				  struct iavf_q_vector *q_vector)
355{
356	u16 flags = q_vector->tx.ring[0].flags;
357	u32 val;
358
359	if (!(flags & IAVF_TXR_FLAGS_WB_ON_ITR))
360		return;
361
362	if (q_vector->arm_wb_state)
363		return;
364
365	val = IAVF_VFINT_DYN_CTLN1_WB_ON_ITR_MASK |
366	      IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK; /* set noitr */
367
368	wr32(&vsi->back->hw,
369	     IAVF_VFINT_DYN_CTLN1(q_vector->reg_idx), val);
370	q_vector->arm_wb_state = true;
371}
372
373static inline bool iavf_container_is_rx(struct iavf_q_vector *q_vector,
374					struct iavf_ring_container *rc)
375{
376	return &q_vector->rx == rc;
377}
378
379#define IAVF_AIM_MULTIPLIER_100G	2560
380#define IAVF_AIM_MULTIPLIER_50G		1280
381#define IAVF_AIM_MULTIPLIER_40G		1024
382#define IAVF_AIM_MULTIPLIER_20G		512
383#define IAVF_AIM_MULTIPLIER_10G		256
384#define IAVF_AIM_MULTIPLIER_1G		32
385
386static unsigned int iavf_mbps_itr_multiplier(u32 speed_mbps)
387{
388	switch (speed_mbps) {
389	case SPEED_100000:
390		return IAVF_AIM_MULTIPLIER_100G;
391	case SPEED_50000:
392		return IAVF_AIM_MULTIPLIER_50G;
393	case SPEED_40000:
394		return IAVF_AIM_MULTIPLIER_40G;
395	case SPEED_25000:
396	case SPEED_20000:
397		return IAVF_AIM_MULTIPLIER_20G;
398	case SPEED_10000:
399	default:
400		return IAVF_AIM_MULTIPLIER_10G;
401	case SPEED_1000:
402	case SPEED_100:
403		return IAVF_AIM_MULTIPLIER_1G;
404	}
405}
406
407static unsigned int
408iavf_virtchnl_itr_multiplier(enum virtchnl_link_speed speed_virtchnl)
409{
410	switch (speed_virtchnl) {
411	case VIRTCHNL_LINK_SPEED_40GB:
412		return IAVF_AIM_MULTIPLIER_40G;
413	case VIRTCHNL_LINK_SPEED_25GB:
414	case VIRTCHNL_LINK_SPEED_20GB:
415		return IAVF_AIM_MULTIPLIER_20G;
416	case VIRTCHNL_LINK_SPEED_10GB:
417	default:
418		return IAVF_AIM_MULTIPLIER_10G;
419	case VIRTCHNL_LINK_SPEED_1GB:
420	case VIRTCHNL_LINK_SPEED_100MB:
421		return IAVF_AIM_MULTIPLIER_1G;
422	}
423}
424
425static unsigned int iavf_itr_divisor(struct iavf_adapter *adapter)
426{
427	if (ADV_LINK_SUPPORT(adapter))
428		return IAVF_ITR_ADAPTIVE_MIN_INC *
429			iavf_mbps_itr_multiplier(adapter->link_speed_mbps);
430	else
431		return IAVF_ITR_ADAPTIVE_MIN_INC *
432			iavf_virtchnl_itr_multiplier(adapter->link_speed);
433}
434
435/**
436 * iavf_update_itr - update the dynamic ITR value based on statistics
437 * @q_vector: structure containing interrupt and ring information
438 * @rc: structure containing ring performance data
439 *
440 * Stores a new ITR value based on packets and byte
441 * counts during the last interrupt.  The advantage of per interrupt
442 * computation is faster updates and more accurate ITR for the current
443 * traffic pattern.  Constants in this function were computed
444 * based on theoretical maximum wire speed and thresholds were set based
445 * on testing data as well as attempting to minimize response time
446 * while increasing bulk throughput.
447 **/
448static void iavf_update_itr(struct iavf_q_vector *q_vector,
449			    struct iavf_ring_container *rc)
450{
451	unsigned int avg_wire_size, packets, bytes, itr;
452	unsigned long next_update = jiffies;
453
454	/* If we don't have any rings just leave ourselves set for maximum
455	 * possible latency so we take ourselves out of the equation.
456	 */
457	if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting))
458		return;
459
460	/* For Rx we want to push the delay up and default to low latency.
461	 * for Tx we want to pull the delay down and default to high latency.
462	 */
463	itr = iavf_container_is_rx(q_vector, rc) ?
464	      IAVF_ITR_ADAPTIVE_MIN_USECS | IAVF_ITR_ADAPTIVE_LATENCY :
465	      IAVF_ITR_ADAPTIVE_MAX_USECS | IAVF_ITR_ADAPTIVE_LATENCY;
466
467	/* If we didn't update within up to 1 - 2 jiffies we can assume
468	 * that either packets are coming in so slow there hasn't been
469	 * any work, or that there is so much work that NAPI is dealing
470	 * with interrupt moderation and we don't need to do anything.
471	 */
472	if (time_after(next_update, rc->next_update))
473		goto clear_counts;
474
475	/* If itr_countdown is set it means we programmed an ITR within
476	 * the last 4 interrupt cycles. This has a side effect of us
477	 * potentially firing an early interrupt. In order to work around
478	 * this we need to throw out any data received for a few
479	 * interrupts following the update.
480	 */
481	if (q_vector->itr_countdown) {
482		itr = rc->target_itr;
483		goto clear_counts;
484	}
485
486	packets = rc->total_packets;
487	bytes = rc->total_bytes;
488
489	if (iavf_container_is_rx(q_vector, rc)) {
490		/* If Rx there are 1 to 4 packets and bytes are less than
491		 * 9000 assume insufficient data to use bulk rate limiting
492		 * approach unless Tx is already in bulk rate limiting. We
493		 * are likely latency driven.
494		 */
495		if (packets && packets < 4 && bytes < 9000 &&
496		    (q_vector->tx.target_itr & IAVF_ITR_ADAPTIVE_LATENCY)) {
497			itr = IAVF_ITR_ADAPTIVE_LATENCY;
498			goto adjust_by_size;
499		}
500	} else if (packets < 4) {
501		/* If we have Tx and Rx ITR maxed and Tx ITR is running in
502		 * bulk mode and we are receiving 4 or fewer packets just
503		 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
504		 * that the Rx can relax.
505		 */
506		if (rc->target_itr == IAVF_ITR_ADAPTIVE_MAX_USECS &&
507		    (q_vector->rx.target_itr & IAVF_ITR_MASK) ==
508		     IAVF_ITR_ADAPTIVE_MAX_USECS)
509			goto clear_counts;
510	} else if (packets > 32) {
511		/* If we have processed over 32 packets in a single interrupt
512		 * for Tx assume we need to switch over to "bulk" mode.
513		 */
514		rc->target_itr &= ~IAVF_ITR_ADAPTIVE_LATENCY;
515	}
516
517	/* We have no packets to actually measure against. This means
518	 * either one of the other queues on this vector is active or
519	 * we are a Tx queue doing TSO with too high of an interrupt rate.
520	 *
521	 * Between 4 and 56 we can assume that our current interrupt delay
522	 * is only slightly too low. As such we should increase it by a small
523	 * fixed amount.
524	 */
525	if (packets < 56) {
526		itr = rc->target_itr + IAVF_ITR_ADAPTIVE_MIN_INC;
527		if ((itr & IAVF_ITR_MASK) > IAVF_ITR_ADAPTIVE_MAX_USECS) {
528			itr &= IAVF_ITR_ADAPTIVE_LATENCY;
529			itr += IAVF_ITR_ADAPTIVE_MAX_USECS;
530		}
531		goto clear_counts;
532	}
533
534	if (packets <= 256) {
535		itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
536		itr &= IAVF_ITR_MASK;
537
538		/* Between 56 and 112 is our "goldilocks" zone where we are
539		 * working out "just right". Just report that our current
540		 * ITR is good for us.
541		 */
542		if (packets <= 112)
543			goto clear_counts;
544
545		/* If packet count is 128 or greater we are likely looking
546		 * at a slight overrun of the delay we want. Try halving
547		 * our delay to see if that will cut the number of packets
548		 * in half per interrupt.
549		 */
550		itr /= 2;
551		itr &= IAVF_ITR_MASK;
552		if (itr < IAVF_ITR_ADAPTIVE_MIN_USECS)
553			itr = IAVF_ITR_ADAPTIVE_MIN_USECS;
554
555		goto clear_counts;
556	}
557
558	/* The paths below assume we are dealing with a bulk ITR since
559	 * number of packets is greater than 256. We are just going to have
560	 * to compute a value and try to bring the count under control,
561	 * though for smaller packet sizes there isn't much we can do as
562	 * NAPI polling will likely be kicking in sooner rather than later.
563	 */
564	itr = IAVF_ITR_ADAPTIVE_BULK;
565
566adjust_by_size:
567	/* If packet counts are 256 or greater we can assume we have a gross
568	 * overestimation of what the rate should be. Instead of trying to fine
569	 * tune it just use the formula below to try and dial in an exact value
570	 * give the current packet size of the frame.
571	 */
572	avg_wire_size = bytes / packets;
573
574	/* The following is a crude approximation of:
575	 *  wmem_default / (size + overhead) = desired_pkts_per_int
576	 *  rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
577	 *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
578	 *
579	 * Assuming wmem_default is 212992 and overhead is 640 bytes per
580	 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
581	 * formula down to
582	 *
583	 *  (170 * (size + 24)) / (size + 640) = ITR
584	 *
585	 * We first do some math on the packet size and then finally bitshift
586	 * by 8 after rounding up. We also have to account for PCIe link speed
587	 * difference as ITR scales based on this.
588	 */
589	if (avg_wire_size <= 60) {
590		/* Start at 250k ints/sec */
591		avg_wire_size = 4096;
592	} else if (avg_wire_size <= 380) {
593		/* 250K ints/sec to 60K ints/sec */
594		avg_wire_size *= 40;
595		avg_wire_size += 1696;
596	} else if (avg_wire_size <= 1084) {
597		/* 60K ints/sec to 36K ints/sec */
598		avg_wire_size *= 15;
599		avg_wire_size += 11452;
600	} else if (avg_wire_size <= 1980) {
601		/* 36K ints/sec to 30K ints/sec */
602		avg_wire_size *= 5;
603		avg_wire_size += 22420;
604	} else {
605		/* plateau at a limit of 30K ints/sec */
606		avg_wire_size = 32256;
607	}
608
609	/* If we are in low latency mode halve our delay which doubles the
610	 * rate to somewhere between 100K to 16K ints/sec
611	 */
612	if (itr & IAVF_ITR_ADAPTIVE_LATENCY)
613		avg_wire_size /= 2;
614
615	/* Resultant value is 256 times larger than it needs to be. This
616	 * gives us room to adjust the value as needed to either increase
617	 * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc.
618	 *
619	 * Use addition as we have already recorded the new latency flag
620	 * for the ITR value.
621	 */
622	itr += DIV_ROUND_UP(avg_wire_size,
623			    iavf_itr_divisor(q_vector->adapter)) *
624		IAVF_ITR_ADAPTIVE_MIN_INC;
625
626	if ((itr & IAVF_ITR_MASK) > IAVF_ITR_ADAPTIVE_MAX_USECS) {
627		itr &= IAVF_ITR_ADAPTIVE_LATENCY;
628		itr += IAVF_ITR_ADAPTIVE_MAX_USECS;
629	}
630
631clear_counts:
632	/* write back value */
633	rc->target_itr = itr;
634
635	/* next update should occur within next jiffy */
636	rc->next_update = next_update + 1;
637
638	rc->total_bytes = 0;
639	rc->total_packets = 0;
640}
641
642/**
643 * iavf_setup_tx_descriptors - Allocate the Tx descriptors
644 * @tx_ring: the tx ring to set up
645 *
646 * Return 0 on success, negative on error
647 **/
648int iavf_setup_tx_descriptors(struct iavf_ring *tx_ring)
649{
650	struct device *dev = tx_ring->dev;
651	int bi_size;
652
653	if (!dev)
654		return -ENOMEM;
655
656	/* warn if we are about to overwrite the pointer */
657	WARN_ON(tx_ring->tx_bi);
658	bi_size = sizeof(struct iavf_tx_buffer) * tx_ring->count;
659	tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
660	if (!tx_ring->tx_bi)
661		goto err;
662
663	/* round up to nearest 4K */
664	tx_ring->size = tx_ring->count * sizeof(struct iavf_tx_desc);
665	tx_ring->size = ALIGN(tx_ring->size, 4096);
666	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
667					   &tx_ring->dma, GFP_KERNEL);
668	if (!tx_ring->desc) {
669		dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
670			 tx_ring->size);
671		goto err;
672	}
673
674	tx_ring->next_to_use = 0;
675	tx_ring->next_to_clean = 0;
676	tx_ring->tx_stats.prev_pkt_ctr = -1;
677	return 0;
678
679err:
680	kfree(tx_ring->tx_bi);
681	tx_ring->tx_bi = NULL;
682	return -ENOMEM;
683}
684
685/**
686 * iavf_clean_rx_ring - Free Rx buffers
687 * @rx_ring: ring to be cleaned
688 **/
689static void iavf_clean_rx_ring(struct iavf_ring *rx_ring)
690{
691	unsigned long bi_size;
692	u16 i;
693
694	/* ring already cleared, nothing to do */
695	if (!rx_ring->rx_bi)
696		return;
697
698	if (rx_ring->skb) {
699		dev_kfree_skb(rx_ring->skb);
700		rx_ring->skb = NULL;
701	}
702
703	/* Free all the Rx ring sk_buffs */
704	for (i = 0; i < rx_ring->count; i++) {
705		struct iavf_rx_buffer *rx_bi = &rx_ring->rx_bi[i];
706
707		if (!rx_bi->page)
708			continue;
709
710		/* Invalidate cache lines that may have been written to by
711		 * device so that we avoid corrupting memory.
712		 */
713		dma_sync_single_range_for_cpu(rx_ring->dev,
714					      rx_bi->dma,
715					      rx_bi->page_offset,
716					      rx_ring->rx_buf_len,
717					      DMA_FROM_DEVICE);
718
719		/* free resources associated with mapping */
720		dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
721				     iavf_rx_pg_size(rx_ring),
722				     DMA_FROM_DEVICE,
723				     IAVF_RX_DMA_ATTR);
724
725		__page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
726
727		rx_bi->page = NULL;
728		rx_bi->page_offset = 0;
729	}
730
731	bi_size = sizeof(struct iavf_rx_buffer) * rx_ring->count;
732	memset(rx_ring->rx_bi, 0, bi_size);
733
734	/* Zero out the descriptor ring */
735	memset(rx_ring->desc, 0, rx_ring->size);
736
737	rx_ring->next_to_alloc = 0;
738	rx_ring->next_to_clean = 0;
739	rx_ring->next_to_use = 0;
740}
741
742/**
743 * iavf_free_rx_resources - Free Rx resources
744 * @rx_ring: ring to clean the resources from
745 *
746 * Free all receive software resources
747 **/
748void iavf_free_rx_resources(struct iavf_ring *rx_ring)
749{
750	iavf_clean_rx_ring(rx_ring);
751	kfree(rx_ring->rx_bi);
752	rx_ring->rx_bi = NULL;
753
754	if (rx_ring->desc) {
755		dma_free_coherent(rx_ring->dev, rx_ring->size,
756				  rx_ring->desc, rx_ring->dma);
757		rx_ring->desc = NULL;
758	}
759}
760
761/**
762 * iavf_setup_rx_descriptors - Allocate Rx descriptors
763 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
764 *
765 * Returns 0 on success, negative on failure
766 **/
767int iavf_setup_rx_descriptors(struct iavf_ring *rx_ring)
768{
769	struct device *dev = rx_ring->dev;
770	int bi_size;
771
772	/* warn if we are about to overwrite the pointer */
773	WARN_ON(rx_ring->rx_bi);
774	bi_size = sizeof(struct iavf_rx_buffer) * rx_ring->count;
775	rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
776	if (!rx_ring->rx_bi)
777		goto err;
778
779	u64_stats_init(&rx_ring->syncp);
780
781	/* Round up to nearest 4K */
782	rx_ring->size = rx_ring->count * sizeof(union iavf_32byte_rx_desc);
783	rx_ring->size = ALIGN(rx_ring->size, 4096);
784	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
785					   &rx_ring->dma, GFP_KERNEL);
786
787	if (!rx_ring->desc) {
788		dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
789			 rx_ring->size);
790		goto err;
791	}
792
793	rx_ring->next_to_alloc = 0;
794	rx_ring->next_to_clean = 0;
795	rx_ring->next_to_use = 0;
796
797	return 0;
798err:
799	kfree(rx_ring->rx_bi);
800	rx_ring->rx_bi = NULL;
801	return -ENOMEM;
802}
803
804/**
805 * iavf_release_rx_desc - Store the new tail and head values
806 * @rx_ring: ring to bump
807 * @val: new head index
808 **/
809static inline void iavf_release_rx_desc(struct iavf_ring *rx_ring, u32 val)
810{
811	rx_ring->next_to_use = val;
812
813	/* update next to alloc since we have filled the ring */
814	rx_ring->next_to_alloc = val;
815
816	/* Force memory writes to complete before letting h/w
817	 * know there are new descriptors to fetch.  (Only
818	 * applicable for weak-ordered memory model archs,
819	 * such as IA-64).
820	 */
821	wmb();
822	writel(val, rx_ring->tail);
823}
824
825/**
826 * iavf_rx_offset - Return expected offset into page to access data
827 * @rx_ring: Ring we are requesting offset of
828 *
829 * Returns the offset value for ring into the data buffer.
830 */
831static inline unsigned int iavf_rx_offset(struct iavf_ring *rx_ring)
832{
833	return ring_uses_build_skb(rx_ring) ? IAVF_SKB_PAD : 0;
834}
835
836/**
837 * iavf_alloc_mapped_page - recycle or make a new page
838 * @rx_ring: ring to use
839 * @bi: rx_buffer struct to modify
840 *
841 * Returns true if the page was successfully allocated or
842 * reused.
843 **/
844static bool iavf_alloc_mapped_page(struct iavf_ring *rx_ring,
845				   struct iavf_rx_buffer *bi)
846{
847	struct page *page = bi->page;
848	dma_addr_t dma;
849
850	/* since we are recycling buffers we should seldom need to alloc */
851	if (likely(page)) {
852		rx_ring->rx_stats.page_reuse_count++;
853		return true;
854	}
855
856	/* alloc new page for storage */
857	page = dev_alloc_pages(iavf_rx_pg_order(rx_ring));
858	if (unlikely(!page)) {
859		rx_ring->rx_stats.alloc_page_failed++;
860		return false;
861	}
862
863	/* map page for use */
864	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
865				 iavf_rx_pg_size(rx_ring),
866				 DMA_FROM_DEVICE,
867				 IAVF_RX_DMA_ATTR);
868
869	/* if mapping failed free memory back to system since
870	 * there isn't much point in holding memory we can't use
871	 */
872	if (dma_mapping_error(rx_ring->dev, dma)) {
873		__free_pages(page, iavf_rx_pg_order(rx_ring));
874		rx_ring->rx_stats.alloc_page_failed++;
875		return false;
876	}
877
878	bi->dma = dma;
879	bi->page = page;
880	bi->page_offset = iavf_rx_offset(rx_ring);
881
882	/* initialize pagecnt_bias to 1 representing we fully own page */
883	bi->pagecnt_bias = 1;
884
885	return true;
886}
887
888/**
889 * iavf_receive_skb - Send a completed packet up the stack
890 * @rx_ring:  rx ring in play
891 * @skb: packet to send up
892 * @vlan_tag: vlan tag for packet
893 **/
894static void iavf_receive_skb(struct iavf_ring *rx_ring,
895			     struct sk_buff *skb, u16 vlan_tag)
896{
897	struct iavf_q_vector *q_vector = rx_ring->q_vector;
898
899	if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
900	    (vlan_tag & VLAN_VID_MASK))
901		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
902	else if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_STAG_RX) &&
903		 vlan_tag & VLAN_VID_MASK)
904		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021AD), vlan_tag);
905
906	napi_gro_receive(&q_vector->napi, skb);
907}
908
909/**
910 * iavf_alloc_rx_buffers - Replace used receive buffers
911 * @rx_ring: ring to place buffers on
912 * @cleaned_count: number of buffers to replace
913 *
914 * Returns false if all allocations were successful, true if any fail
915 **/
916bool iavf_alloc_rx_buffers(struct iavf_ring *rx_ring, u16 cleaned_count)
917{
918	u16 ntu = rx_ring->next_to_use;
919	union iavf_rx_desc *rx_desc;
920	struct iavf_rx_buffer *bi;
921
922	/* do nothing if no valid netdev defined */
923	if (!rx_ring->netdev || !cleaned_count)
924		return false;
925
926	rx_desc = IAVF_RX_DESC(rx_ring, ntu);
927	bi = &rx_ring->rx_bi[ntu];
928
929	do {
930		if (!iavf_alloc_mapped_page(rx_ring, bi))
931			goto no_buffers;
932
933		/* sync the buffer for use by the device */
934		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
935						 bi->page_offset,
936						 rx_ring->rx_buf_len,
937						 DMA_FROM_DEVICE);
938
939		/* Refresh the desc even if buffer_addrs didn't change
940		 * because each write-back erases this info.
941		 */
942		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
943
944		rx_desc++;
945		bi++;
946		ntu++;
947		if (unlikely(ntu == rx_ring->count)) {
948			rx_desc = IAVF_RX_DESC(rx_ring, 0);
949			bi = rx_ring->rx_bi;
950			ntu = 0;
951		}
952
953		/* clear the status bits for the next_to_use descriptor */
954		rx_desc->wb.qword1.status_error_len = 0;
955
956		cleaned_count--;
957	} while (cleaned_count);
958
959	if (rx_ring->next_to_use != ntu)
960		iavf_release_rx_desc(rx_ring, ntu);
961
962	return false;
963
964no_buffers:
965	if (rx_ring->next_to_use != ntu)
966		iavf_release_rx_desc(rx_ring, ntu);
967
968	/* make sure to come back via polling to try again after
969	 * allocation failure
970	 */
971	return true;
972}
973
974/**
975 * iavf_rx_checksum - Indicate in skb if hw indicated a good cksum
976 * @vsi: the VSI we care about
977 * @skb: skb currently being received and modified
978 * @rx_desc: the receive descriptor
979 **/
980static inline void iavf_rx_checksum(struct iavf_vsi *vsi,
981				    struct sk_buff *skb,
982				    union iavf_rx_desc *rx_desc)
983{
984	struct iavf_rx_ptype_decoded decoded;
985	u32 rx_error, rx_status;
986	bool ipv4, ipv6;
987	u8 ptype;
988	u64 qword;
989
990	qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
991	ptype = (qword & IAVF_RXD_QW1_PTYPE_MASK) >> IAVF_RXD_QW1_PTYPE_SHIFT;
992	rx_error = (qword & IAVF_RXD_QW1_ERROR_MASK) >>
993		   IAVF_RXD_QW1_ERROR_SHIFT;
994	rx_status = (qword & IAVF_RXD_QW1_STATUS_MASK) >>
995		    IAVF_RXD_QW1_STATUS_SHIFT;
996	decoded = decode_rx_desc_ptype(ptype);
997
998	skb->ip_summed = CHECKSUM_NONE;
999
1000	skb_checksum_none_assert(skb);
1001
1002	/* Rx csum enabled and ip headers found? */
1003	if (!(vsi->netdev->features & NETIF_F_RXCSUM))
1004		return;
1005
1006	/* did the hardware decode the packet and checksum? */
1007	if (!(rx_status & BIT(IAVF_RX_DESC_STATUS_L3L4P_SHIFT)))
1008		return;
1009
1010	/* both known and outer_ip must be set for the below code to work */
1011	if (!(decoded.known && decoded.outer_ip))
1012		return;
1013
1014	ipv4 = (decoded.outer_ip == IAVF_RX_PTYPE_OUTER_IP) &&
1015	       (decoded.outer_ip_ver == IAVF_RX_PTYPE_OUTER_IPV4);
1016	ipv6 = (decoded.outer_ip == IAVF_RX_PTYPE_OUTER_IP) &&
1017	       (decoded.outer_ip_ver == IAVF_RX_PTYPE_OUTER_IPV6);
1018
1019	if (ipv4 &&
1020	    (rx_error & (BIT(IAVF_RX_DESC_ERROR_IPE_SHIFT) |
1021			 BIT(IAVF_RX_DESC_ERROR_EIPE_SHIFT))))
1022		goto checksum_fail;
1023
1024	/* likely incorrect csum if alternate IP extension headers found */
1025	if (ipv6 &&
1026	    rx_status & BIT(IAVF_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1027		/* don't increment checksum err here, non-fatal err */
1028		return;
1029
1030	/* there was some L4 error, count error and punt packet to the stack */
1031	if (rx_error & BIT(IAVF_RX_DESC_ERROR_L4E_SHIFT))
1032		goto checksum_fail;
1033
1034	/* handle packets that were not able to be checksummed due
1035	 * to arrival speed, in this case the stack can compute
1036	 * the csum.
1037	 */
1038	if (rx_error & BIT(IAVF_RX_DESC_ERROR_PPRS_SHIFT))
1039		return;
1040
1041	/* Only report checksum unnecessary for TCP, UDP, or SCTP */
1042	switch (decoded.inner_prot) {
1043	case IAVF_RX_PTYPE_INNER_PROT_TCP:
1044	case IAVF_RX_PTYPE_INNER_PROT_UDP:
1045	case IAVF_RX_PTYPE_INNER_PROT_SCTP:
1046		skb->ip_summed = CHECKSUM_UNNECESSARY;
1047		fallthrough;
1048	default:
1049		break;
1050	}
1051
1052	return;
1053
1054checksum_fail:
1055	vsi->back->hw_csum_rx_error++;
1056}
1057
1058/**
1059 * iavf_ptype_to_htype - get a hash type
1060 * @ptype: the ptype value from the descriptor
1061 *
1062 * Returns a hash type to be used by skb_set_hash
1063 **/
1064static inline int iavf_ptype_to_htype(u8 ptype)
1065{
1066	struct iavf_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1067
1068	if (!decoded.known)
1069		return PKT_HASH_TYPE_NONE;
1070
1071	if (decoded.outer_ip == IAVF_RX_PTYPE_OUTER_IP &&
1072	    decoded.payload_layer == IAVF_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1073		return PKT_HASH_TYPE_L4;
1074	else if (decoded.outer_ip == IAVF_RX_PTYPE_OUTER_IP &&
1075		 decoded.payload_layer == IAVF_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1076		return PKT_HASH_TYPE_L3;
1077	else
1078		return PKT_HASH_TYPE_L2;
1079}
1080
1081/**
1082 * iavf_rx_hash - set the hash value in the skb
1083 * @ring: descriptor ring
1084 * @rx_desc: specific descriptor
1085 * @skb: skb currently being received and modified
1086 * @rx_ptype: Rx packet type
1087 **/
1088static inline void iavf_rx_hash(struct iavf_ring *ring,
1089				union iavf_rx_desc *rx_desc,
1090				struct sk_buff *skb,
1091				u8 rx_ptype)
1092{
1093	u32 hash;
1094	const __le64 rss_mask =
1095		cpu_to_le64((u64)IAVF_RX_DESC_FLTSTAT_RSS_HASH <<
1096			    IAVF_RX_DESC_STATUS_FLTSTAT_SHIFT);
1097
1098	if (!(ring->netdev->features & NETIF_F_RXHASH))
1099		return;
1100
1101	if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1102		hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1103		skb_set_hash(skb, hash, iavf_ptype_to_htype(rx_ptype));
1104	}
1105}
1106
1107/**
1108 * iavf_process_skb_fields - Populate skb header fields from Rx descriptor
1109 * @rx_ring: rx descriptor ring packet is being transacted on
1110 * @rx_desc: pointer to the EOP Rx descriptor
1111 * @skb: pointer to current skb being populated
1112 * @rx_ptype: the packet type decoded by hardware
1113 *
1114 * This function checks the ring, descriptor, and packet information in
1115 * order to populate the hash, checksum, VLAN, protocol, and
1116 * other fields within the skb.
1117 **/
1118static inline
1119void iavf_process_skb_fields(struct iavf_ring *rx_ring,
1120			     union iavf_rx_desc *rx_desc, struct sk_buff *skb,
1121			     u8 rx_ptype)
1122{
1123	iavf_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1124
1125	iavf_rx_checksum(rx_ring->vsi, skb, rx_desc);
1126
1127	skb_record_rx_queue(skb, rx_ring->queue_index);
1128
1129	/* modifies the skb - consumes the enet header */
1130	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1131}
1132
1133/**
1134 * iavf_cleanup_headers - Correct empty headers
1135 * @rx_ring: rx descriptor ring packet is being transacted on
1136 * @skb: pointer to current skb being fixed
1137 *
1138 * Also address the case where we are pulling data in on pages only
1139 * and as such no data is present in the skb header.
1140 *
1141 * In addition if skb is not at least 60 bytes we need to pad it so that
1142 * it is large enough to qualify as a valid Ethernet frame.
1143 *
1144 * Returns true if an error was encountered and skb was freed.
1145 **/
1146static bool iavf_cleanup_headers(struct iavf_ring *rx_ring, struct sk_buff *skb)
1147{
1148	/* if eth_skb_pad returns an error the skb was freed */
1149	if (eth_skb_pad(skb))
1150		return true;
1151
1152	return false;
1153}
1154
1155/**
1156 * iavf_reuse_rx_page - page flip buffer and store it back on the ring
1157 * @rx_ring: rx descriptor ring to store buffers on
1158 * @old_buff: donor buffer to have page reused
1159 *
1160 * Synchronizes page for reuse by the adapter
1161 **/
1162static void iavf_reuse_rx_page(struct iavf_ring *rx_ring,
1163			       struct iavf_rx_buffer *old_buff)
1164{
1165	struct iavf_rx_buffer *new_buff;
1166	u16 nta = rx_ring->next_to_alloc;
1167
1168	new_buff = &rx_ring->rx_bi[nta];
1169
1170	/* update, and store next to alloc */
1171	nta++;
1172	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1173
1174	/* transfer page from old buffer to new buffer */
1175	new_buff->dma		= old_buff->dma;
1176	new_buff->page		= old_buff->page;
1177	new_buff->page_offset	= old_buff->page_offset;
1178	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
1179}
1180
1181/**
1182 * iavf_can_reuse_rx_page - Determine if this page can be reused by
1183 * the adapter for another receive
1184 *
1185 * @rx_buffer: buffer containing the page
1186 *
1187 * If page is reusable, rx_buffer->page_offset is adjusted to point to
1188 * an unused region in the page.
1189 *
1190 * For small pages, @truesize will be a constant value, half the size
1191 * of the memory at page.  We'll attempt to alternate between high and
1192 * low halves of the page, with one half ready for use by the hardware
1193 * and the other half being consumed by the stack.  We use the page
1194 * ref count to determine whether the stack has finished consuming the
1195 * portion of this page that was passed up with a previous packet.  If
1196 * the page ref count is >1, we'll assume the "other" half page is
1197 * still busy, and this page cannot be reused.
1198 *
1199 * For larger pages, @truesize will be the actual space used by the
1200 * received packet (adjusted upward to an even multiple of the cache
1201 * line size).  This will advance through the page by the amount
1202 * actually consumed by the received packets while there is still
1203 * space for a buffer.  Each region of larger pages will be used at
1204 * most once, after which the page will not be reused.
1205 *
1206 * In either case, if the page is reusable its refcount is increased.
1207 **/
1208static bool iavf_can_reuse_rx_page(struct iavf_rx_buffer *rx_buffer)
1209{
1210	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1211	struct page *page = rx_buffer->page;
1212
1213	/* Is any reuse possible? */
1214	if (!dev_page_is_reusable(page))
1215		return false;
1216
1217#if (PAGE_SIZE < 8192)
1218	/* if we are only owner of page we can reuse it */
1219	if (unlikely((page_count(page) - pagecnt_bias) > 1))
1220		return false;
1221#else
1222#define IAVF_LAST_OFFSET \
1223	(SKB_WITH_OVERHEAD(PAGE_SIZE) - IAVF_RXBUFFER_2048)
1224	if (rx_buffer->page_offset > IAVF_LAST_OFFSET)
1225		return false;
1226#endif
1227
1228	/* If we have drained the page fragment pool we need to update
1229	 * the pagecnt_bias and page count so that we fully restock the
1230	 * number of references the driver holds.
1231	 */
1232	if (unlikely(!pagecnt_bias)) {
1233		page_ref_add(page, USHRT_MAX);
1234		rx_buffer->pagecnt_bias = USHRT_MAX;
1235	}
1236
1237	return true;
1238}
1239
1240/**
1241 * iavf_add_rx_frag - Add contents of Rx buffer to sk_buff
1242 * @rx_ring: rx descriptor ring to transact packets on
1243 * @rx_buffer: buffer containing page to add
1244 * @skb: sk_buff to place the data into
1245 * @size: packet length from rx_desc
1246 *
1247 * This function will add the data contained in rx_buffer->page to the skb.
1248 * It will just attach the page as a frag to the skb.
1249 *
1250 * The function will then update the page offset.
1251 **/
1252static void iavf_add_rx_frag(struct iavf_ring *rx_ring,
1253			     struct iavf_rx_buffer *rx_buffer,
1254			     struct sk_buff *skb,
1255			     unsigned int size)
1256{
1257#if (PAGE_SIZE < 8192)
1258	unsigned int truesize = iavf_rx_pg_size(rx_ring) / 2;
1259#else
1260	unsigned int truesize = SKB_DATA_ALIGN(size + iavf_rx_offset(rx_ring));
1261#endif
1262
1263	if (!size)
1264		return;
1265
1266	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1267			rx_buffer->page_offset, size, truesize);
1268
1269	/* page is being used so we must update the page offset */
1270#if (PAGE_SIZE < 8192)
1271	rx_buffer->page_offset ^= truesize;
1272#else
1273	rx_buffer->page_offset += truesize;
1274#endif
1275}
1276
1277/**
1278 * iavf_get_rx_buffer - Fetch Rx buffer and synchronize data for use
1279 * @rx_ring: rx descriptor ring to transact packets on
1280 * @size: size of buffer to add to skb
1281 *
1282 * This function will pull an Rx buffer from the ring and synchronize it
1283 * for use by the CPU.
1284 */
1285static struct iavf_rx_buffer *iavf_get_rx_buffer(struct iavf_ring *rx_ring,
1286						 const unsigned int size)
1287{
1288	struct iavf_rx_buffer *rx_buffer;
1289
1290	rx_buffer = &rx_ring->rx_bi[rx_ring->next_to_clean];
1291	prefetchw(rx_buffer->page);
1292	if (!size)
1293		return rx_buffer;
1294
1295	/* we are reusing so sync this buffer for CPU use */
1296	dma_sync_single_range_for_cpu(rx_ring->dev,
1297				      rx_buffer->dma,
1298				      rx_buffer->page_offset,
1299				      size,
1300				      DMA_FROM_DEVICE);
1301
1302	/* We have pulled a buffer for use, so decrement pagecnt_bias */
1303	rx_buffer->pagecnt_bias--;
1304
1305	return rx_buffer;
1306}
1307
1308/**
1309 * iavf_construct_skb - Allocate skb and populate it
1310 * @rx_ring: rx descriptor ring to transact packets on
1311 * @rx_buffer: rx buffer to pull data from
1312 * @size: size of buffer to add to skb
1313 *
1314 * This function allocates an skb.  It then populates it with the page
1315 * data from the current receive descriptor, taking care to set up the
1316 * skb correctly.
1317 */
1318static struct sk_buff *iavf_construct_skb(struct iavf_ring *rx_ring,
1319					  struct iavf_rx_buffer *rx_buffer,
1320					  unsigned int size)
1321{
1322	void *va;
1323#if (PAGE_SIZE < 8192)
1324	unsigned int truesize = iavf_rx_pg_size(rx_ring) / 2;
1325#else
1326	unsigned int truesize = SKB_DATA_ALIGN(size);
1327#endif
1328	unsigned int headlen;
1329	struct sk_buff *skb;
1330
1331	if (!rx_buffer)
1332		return NULL;
1333	/* prefetch first cache line of first page */
1334	va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1335	net_prefetch(va);
1336
1337	/* allocate a skb to store the frags */
1338	skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
1339			       IAVF_RX_HDR_SIZE,
1340			       GFP_ATOMIC | __GFP_NOWARN);
1341	if (unlikely(!skb))
1342		return NULL;
1343
1344	/* Determine available headroom for copy */
1345	headlen = size;
1346	if (headlen > IAVF_RX_HDR_SIZE)
1347		headlen = eth_get_headlen(skb->dev, va, IAVF_RX_HDR_SIZE);
1348
1349	/* align pull length to size of long to optimize memcpy performance */
1350	memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));
1351
1352	/* update all of the pointers */
1353	size -= headlen;
1354	if (size) {
1355		skb_add_rx_frag(skb, 0, rx_buffer->page,
1356				rx_buffer->page_offset + headlen,
1357				size, truesize);
1358
1359		/* buffer is used by skb, update page_offset */
1360#if (PAGE_SIZE < 8192)
1361		rx_buffer->page_offset ^= truesize;
1362#else
1363		rx_buffer->page_offset += truesize;
1364#endif
1365	} else {
1366		/* buffer is unused, reset bias back to rx_buffer */
1367		rx_buffer->pagecnt_bias++;
1368	}
1369
1370	return skb;
1371}
1372
1373/**
1374 * iavf_build_skb - Build skb around an existing buffer
1375 * @rx_ring: Rx descriptor ring to transact packets on
1376 * @rx_buffer: Rx buffer to pull data from
1377 * @size: size of buffer to add to skb
1378 *
1379 * This function builds an skb around an existing Rx buffer, taking care
1380 * to set up the skb correctly and avoid any memcpy overhead.
1381 */
1382static struct sk_buff *iavf_build_skb(struct iavf_ring *rx_ring,
1383				      struct iavf_rx_buffer *rx_buffer,
1384				      unsigned int size)
1385{
1386	void *va;
1387#if (PAGE_SIZE < 8192)
1388	unsigned int truesize = iavf_rx_pg_size(rx_ring) / 2;
1389#else
1390	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1391				SKB_DATA_ALIGN(IAVF_SKB_PAD + size);
1392#endif
1393	struct sk_buff *skb;
1394
1395	if (!rx_buffer || !size)
1396		return NULL;
1397	/* prefetch first cache line of first page */
1398	va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1399	net_prefetch(va);
1400
1401	/* build an skb around the page buffer */
1402	skb = napi_build_skb(va - IAVF_SKB_PAD, truesize);
1403	if (unlikely(!skb))
1404		return NULL;
1405
1406	/* update pointers within the skb to store the data */
1407	skb_reserve(skb, IAVF_SKB_PAD);
1408	__skb_put(skb, size);
1409
1410	/* buffer is used by skb, update page_offset */
1411#if (PAGE_SIZE < 8192)
1412	rx_buffer->page_offset ^= truesize;
1413#else
1414	rx_buffer->page_offset += truesize;
1415#endif
1416
1417	return skb;
1418}
1419
1420/**
1421 * iavf_put_rx_buffer - Clean up used buffer and either recycle or free
1422 * @rx_ring: rx descriptor ring to transact packets on
1423 * @rx_buffer: rx buffer to pull data from
1424 *
1425 * This function will clean up the contents of the rx_buffer.  It will
1426 * either recycle the buffer or unmap it and free the associated resources.
1427 */
1428static void iavf_put_rx_buffer(struct iavf_ring *rx_ring,
1429			       struct iavf_rx_buffer *rx_buffer)
1430{
1431	if (!rx_buffer)
1432		return;
1433
1434	if (iavf_can_reuse_rx_page(rx_buffer)) {
1435		/* hand second half of page back to the ring */
1436		iavf_reuse_rx_page(rx_ring, rx_buffer);
1437		rx_ring->rx_stats.page_reuse_count++;
1438	} else {
1439		/* we are not reusing the buffer so unmap it */
1440		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
1441				     iavf_rx_pg_size(rx_ring),
1442				     DMA_FROM_DEVICE, IAVF_RX_DMA_ATTR);
1443		__page_frag_cache_drain(rx_buffer->page,
1444					rx_buffer->pagecnt_bias);
1445	}
1446
1447	/* clear contents of buffer_info */
1448	rx_buffer->page = NULL;
1449}
1450
1451/**
1452 * iavf_is_non_eop - process handling of non-EOP buffers
1453 * @rx_ring: Rx ring being processed
1454 * @rx_desc: Rx descriptor for current buffer
1455 * @skb: Current socket buffer containing buffer in progress
1456 *
1457 * This function updates next to clean.  If the buffer is an EOP buffer
1458 * this function exits returning false, otherwise it will place the
1459 * sk_buff in the next buffer to be chained and return true indicating
1460 * that this is in fact a non-EOP buffer.
1461 **/
1462static bool iavf_is_non_eop(struct iavf_ring *rx_ring,
1463			    union iavf_rx_desc *rx_desc,
1464			    struct sk_buff *skb)
1465{
1466	u32 ntc = rx_ring->next_to_clean + 1;
1467
1468	/* fetch, update, and store next to clean */
1469	ntc = (ntc < rx_ring->count) ? ntc : 0;
1470	rx_ring->next_to_clean = ntc;
1471
1472	prefetch(IAVF_RX_DESC(rx_ring, ntc));
1473
1474	/* if we are the last buffer then there is nothing else to do */
1475#define IAVF_RXD_EOF BIT(IAVF_RX_DESC_STATUS_EOF_SHIFT)
1476	if (likely(iavf_test_staterr(rx_desc, IAVF_RXD_EOF)))
1477		return false;
1478
1479	rx_ring->rx_stats.non_eop_descs++;
1480
1481	return true;
1482}
1483
1484/**
1485 * iavf_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
1486 * @rx_ring: rx descriptor ring to transact packets on
1487 * @budget: Total limit on number of packets to process
1488 *
1489 * This function provides a "bounce buffer" approach to Rx interrupt
1490 * processing.  The advantage to this is that on systems that have
1491 * expensive overhead for IOMMU access this provides a means of avoiding
1492 * it by maintaining the mapping of the page to the system.
1493 *
1494 * Returns amount of work completed
1495 **/
1496static int iavf_clean_rx_irq(struct iavf_ring *rx_ring, int budget)
1497{
1498	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1499	struct sk_buff *skb = rx_ring->skb;
1500	u16 cleaned_count = IAVF_DESC_UNUSED(rx_ring);
1501	bool failure = false;
1502
1503	while (likely(total_rx_packets < (unsigned int)budget)) {
1504		struct iavf_rx_buffer *rx_buffer;
1505		union iavf_rx_desc *rx_desc;
1506		unsigned int size;
1507		u16 vlan_tag = 0;
1508		u8 rx_ptype;
1509		u64 qword;
1510
1511		/* return some buffers to hardware, one at a time is too slow */
1512		if (cleaned_count >= IAVF_RX_BUFFER_WRITE) {
1513			failure = failure ||
1514				  iavf_alloc_rx_buffers(rx_ring, cleaned_count);
1515			cleaned_count = 0;
1516		}
1517
1518		rx_desc = IAVF_RX_DESC(rx_ring, rx_ring->next_to_clean);
1519
1520		/* status_error_len will always be zero for unused descriptors
1521		 * because it's cleared in cleanup, and overlaps with hdr_addr
1522		 * which is always zero because packet split isn't used, if the
1523		 * hardware wrote DD then the length will be non-zero
1524		 */
1525		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1526
1527		/* This memory barrier is needed to keep us from reading
1528		 * any other fields out of the rx_desc until we have
1529		 * verified the descriptor has been written back.
1530		 */
1531		dma_rmb();
1532#define IAVF_RXD_DD BIT(IAVF_RX_DESC_STATUS_DD_SHIFT)
1533		if (!iavf_test_staterr(rx_desc, IAVF_RXD_DD))
1534			break;
1535
1536		size = (qword & IAVF_RXD_QW1_LENGTH_PBUF_MASK) >>
1537		       IAVF_RXD_QW1_LENGTH_PBUF_SHIFT;
1538
1539		iavf_trace(clean_rx_irq, rx_ring, rx_desc, skb);
1540		rx_buffer = iavf_get_rx_buffer(rx_ring, size);
1541
1542		/* retrieve a buffer from the ring */
1543		if (skb)
1544			iavf_add_rx_frag(rx_ring, rx_buffer, skb, size);
1545		else if (ring_uses_build_skb(rx_ring))
1546			skb = iavf_build_skb(rx_ring, rx_buffer, size);
1547		else
1548			skb = iavf_construct_skb(rx_ring, rx_buffer, size);
1549
1550		/* exit if we failed to retrieve a buffer */
1551		if (!skb) {
1552			rx_ring->rx_stats.alloc_buff_failed++;
1553			if (rx_buffer && size)
1554				rx_buffer->pagecnt_bias++;
1555			break;
1556		}
1557
1558		iavf_put_rx_buffer(rx_ring, rx_buffer);
1559		cleaned_count++;
1560
1561		if (iavf_is_non_eop(rx_ring, rx_desc, skb))
1562			continue;
1563
1564		/* ERR_MASK will only have valid bits if EOP set, and
1565		 * what we are doing here is actually checking
1566		 * IAVF_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1567		 * the error field
1568		 */
1569		if (unlikely(iavf_test_staterr(rx_desc, BIT(IAVF_RXD_QW1_ERROR_SHIFT)))) {
1570			dev_kfree_skb_any(skb);
1571			skb = NULL;
1572			continue;
1573		}
1574
1575		if (iavf_cleanup_headers(rx_ring, skb)) {
1576			skb = NULL;
1577			continue;
1578		}
1579
1580		/* probably a little skewed due to removing CRC */
1581		total_rx_bytes += skb->len;
1582
1583		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1584		rx_ptype = (qword & IAVF_RXD_QW1_PTYPE_MASK) >>
1585			   IAVF_RXD_QW1_PTYPE_SHIFT;
1586
1587		/* populate checksum, VLAN, and protocol */
1588		iavf_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
1589
1590		if (qword & BIT(IAVF_RX_DESC_STATUS_L2TAG1P_SHIFT) &&
1591		    rx_ring->flags & IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1)
1592			vlan_tag = le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1);
1593		if (rx_desc->wb.qword2.ext_status &
1594		    cpu_to_le16(BIT(IAVF_RX_DESC_EXT_STATUS_L2TAG2P_SHIFT)) &&
1595		    rx_ring->flags & IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2)
1596			vlan_tag = le16_to_cpu(rx_desc->wb.qword2.l2tag2_2);
1597
1598		iavf_trace(clean_rx_irq_rx, rx_ring, rx_desc, skb);
1599		iavf_receive_skb(rx_ring, skb, vlan_tag);
1600		skb = NULL;
1601
1602		/* update budget accounting */
1603		total_rx_packets++;
1604	}
1605
1606	rx_ring->skb = skb;
1607
1608	u64_stats_update_begin(&rx_ring->syncp);
1609	rx_ring->stats.packets += total_rx_packets;
1610	rx_ring->stats.bytes += total_rx_bytes;
1611	u64_stats_update_end(&rx_ring->syncp);
1612	rx_ring->q_vector->rx.total_packets += total_rx_packets;
1613	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1614
1615	/* guarantee a trip back through this routine if there was a failure */
1616	return failure ? budget : (int)total_rx_packets;
1617}
1618
1619static inline u32 iavf_buildreg_itr(const int type, u16 itr)
1620{
1621	u32 val;
1622
1623	/* We don't bother with setting the CLEARPBA bit as the data sheet
1624	 * points out doing so is "meaningless since it was already
1625	 * auto-cleared". The auto-clearing happens when the interrupt is
1626	 * asserted.
1627	 *
1628	 * Hardware errata 28 for also indicates that writing to a
1629	 * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear
1630	 * an event in the PBA anyway so we need to rely on the automask
1631	 * to hold pending events for us until the interrupt is re-enabled
1632	 *
1633	 * The itr value is reported in microseconds, and the register
1634	 * value is recorded in 2 microsecond units. For this reason we
1635	 * only need to shift by the interval shift - 1 instead of the
1636	 * full value.
1637	 */
1638	itr &= IAVF_ITR_MASK;
1639
1640	val = IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
1641	      (type << IAVF_VFINT_DYN_CTLN1_ITR_INDX_SHIFT) |
1642	      (itr << (IAVF_VFINT_DYN_CTLN1_INTERVAL_SHIFT - 1));
1643
1644	return val;
1645}
1646
1647/* a small macro to shorten up some long lines */
1648#define INTREG IAVF_VFINT_DYN_CTLN1
1649
1650/* The act of updating the ITR will cause it to immediately trigger. In order
1651 * to prevent this from throwing off adaptive update statistics we defer the
1652 * update so that it can only happen so often. So after either Tx or Rx are
1653 * updated we make the adaptive scheme wait until either the ITR completely
1654 * expires via the next_update expiration or we have been through at least
1655 * 3 interrupts.
1656 */
1657#define ITR_COUNTDOWN_START 3
1658
1659/**
1660 * iavf_update_enable_itr - Update itr and re-enable MSIX interrupt
1661 * @vsi: the VSI we care about
1662 * @q_vector: q_vector for which itr is being updated and interrupt enabled
1663 *
1664 **/
1665static inline void iavf_update_enable_itr(struct iavf_vsi *vsi,
1666					  struct iavf_q_vector *q_vector)
1667{
1668	struct iavf_hw *hw = &vsi->back->hw;
1669	u32 intval;
1670
1671	/* These will do nothing if dynamic updates are not enabled */
1672	iavf_update_itr(q_vector, &q_vector->tx);
1673	iavf_update_itr(q_vector, &q_vector->rx);
1674
1675	/* This block of logic allows us to get away with only updating
1676	 * one ITR value with each interrupt. The idea is to perform a
1677	 * pseudo-lazy update with the following criteria.
1678	 *
1679	 * 1. Rx is given higher priority than Tx if both are in same state
1680	 * 2. If we must reduce an ITR that is given highest priority.
1681	 * 3. We then give priority to increasing ITR based on amount.
1682	 */
1683	if (q_vector->rx.target_itr < q_vector->rx.current_itr) {
1684		/* Rx ITR needs to be reduced, this is highest priority */
1685		intval = iavf_buildreg_itr(IAVF_RX_ITR,
1686					   q_vector->rx.target_itr);
1687		q_vector->rx.current_itr = q_vector->rx.target_itr;
1688		q_vector->itr_countdown = ITR_COUNTDOWN_START;
1689	} else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) ||
1690		   ((q_vector->rx.target_itr - q_vector->rx.current_itr) <
1691		    (q_vector->tx.target_itr - q_vector->tx.current_itr))) {
1692		/* Tx ITR needs to be reduced, this is second priority
1693		 * Tx ITR needs to be increased more than Rx, fourth priority
1694		 */
1695		intval = iavf_buildreg_itr(IAVF_TX_ITR,
1696					   q_vector->tx.target_itr);
1697		q_vector->tx.current_itr = q_vector->tx.target_itr;
1698		q_vector->itr_countdown = ITR_COUNTDOWN_START;
1699	} else if (q_vector->rx.current_itr != q_vector->rx.target_itr) {
1700		/* Rx ITR needs to be increased, third priority */
1701		intval = iavf_buildreg_itr(IAVF_RX_ITR,
1702					   q_vector->rx.target_itr);
1703		q_vector->rx.current_itr = q_vector->rx.target_itr;
1704		q_vector->itr_countdown = ITR_COUNTDOWN_START;
1705	} else {
1706		/* No ITR update, lowest priority */
1707		intval = iavf_buildreg_itr(IAVF_ITR_NONE, 0);
1708		if (q_vector->itr_countdown)
1709			q_vector->itr_countdown--;
1710	}
1711
1712	if (!test_bit(__IAVF_VSI_DOWN, vsi->state))
1713		wr32(hw, INTREG(q_vector->reg_idx), intval);
1714}
1715
1716/**
1717 * iavf_napi_poll - NAPI polling Rx/Tx cleanup routine
1718 * @napi: napi struct with our devices info in it
1719 * @budget: amount of work driver is allowed to do this pass, in packets
1720 *
1721 * This function will clean all queues associated with a q_vector.
1722 *
1723 * Returns the amount of work done
1724 **/
1725int iavf_napi_poll(struct napi_struct *napi, int budget)
1726{
1727	struct iavf_q_vector *q_vector =
1728			       container_of(napi, struct iavf_q_vector, napi);
1729	struct iavf_vsi *vsi = q_vector->vsi;
1730	struct iavf_ring *ring;
1731	bool clean_complete = true;
1732	bool arm_wb = false;
1733	int budget_per_ring;
1734	int work_done = 0;
1735
1736	if (test_bit(__IAVF_VSI_DOWN, vsi->state)) {
1737		napi_complete(napi);
1738		return 0;
1739	}
1740
1741	/* Since the actual Tx work is minimal, we can give the Tx a larger
1742	 * budget and be more aggressive about cleaning up the Tx descriptors.
1743	 */
1744	iavf_for_each_ring(ring, q_vector->tx) {
1745		if (!iavf_clean_tx_irq(vsi, ring, budget)) {
1746			clean_complete = false;
1747			continue;
1748		}
1749		arm_wb |= ring->arm_wb;
1750		ring->arm_wb = false;
1751	}
1752
1753	/* Handle case where we are called by netpoll with a budget of 0 */
1754	if (budget <= 0)
1755		goto tx_only;
1756
1757	/* We attempt to distribute budget to each Rx queue fairly, but don't
1758	 * allow the budget to go below 1 because that would exit polling early.
1759	 */
1760	budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
1761
1762	iavf_for_each_ring(ring, q_vector->rx) {
1763		int cleaned = iavf_clean_rx_irq(ring, budget_per_ring);
1764
1765		work_done += cleaned;
1766		/* if we clean as many as budgeted, we must not be done */
1767		if (cleaned >= budget_per_ring)
1768			clean_complete = false;
1769	}
1770
1771	/* If work not completed, return budget and polling will return */
1772	if (!clean_complete) {
1773		int cpu_id = smp_processor_id();
1774
1775		/* It is possible that the interrupt affinity has changed but,
1776		 * if the cpu is pegged at 100%, polling will never exit while
1777		 * traffic continues and the interrupt will be stuck on this
1778		 * cpu.  We check to make sure affinity is correct before we
1779		 * continue to poll, otherwise we must stop polling so the
1780		 * interrupt can move to the correct cpu.
1781		 */
1782		if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) {
1783			/* Tell napi that we are done polling */
1784			napi_complete_done(napi, work_done);
1785
1786			/* Force an interrupt */
1787			iavf_force_wb(vsi, q_vector);
1788
1789			/* Return budget-1 so that polling stops */
1790			return budget - 1;
1791		}
1792tx_only:
1793		if (arm_wb) {
1794			q_vector->tx.ring[0].tx_stats.tx_force_wb++;
1795			iavf_enable_wb_on_itr(vsi, q_vector);
1796		}
1797		return budget;
1798	}
1799
1800	if (vsi->back->flags & IAVF_TXR_FLAGS_WB_ON_ITR)
1801		q_vector->arm_wb_state = false;
1802
1803	/* Exit the polling mode, but don't re-enable interrupts if stack might
1804	 * poll us due to busy-polling
1805	 */
1806	if (likely(napi_complete_done(napi, work_done)))
1807		iavf_update_enable_itr(vsi, q_vector);
1808
1809	return min_t(int, work_done, budget - 1);
1810}
1811
1812/**
1813 * iavf_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
1814 * @skb:     send buffer
1815 * @tx_ring: ring to send buffer on
1816 * @flags:   the tx flags to be set
1817 *
1818 * Checks the skb and set up correspondingly several generic transmit flags
1819 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
1820 *
1821 * Returns error code indicate the frame should be dropped upon error and the
1822 * otherwise  returns 0 to indicate the flags has been set properly.
1823 **/
1824static void iavf_tx_prepare_vlan_flags(struct sk_buff *skb,
1825				       struct iavf_ring *tx_ring, u32 *flags)
1826{
1827	u32  tx_flags = 0;
1828
1829
1830	/* stack will only request hardware VLAN insertion offload for protocols
1831	 * that the driver supports and has enabled
1832	 */
1833	if (!skb_vlan_tag_present(skb))
1834		return;
1835
1836	tx_flags |= skb_vlan_tag_get(skb) << IAVF_TX_FLAGS_VLAN_SHIFT;
1837	if (tx_ring->flags & IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2) {
1838		tx_flags |= IAVF_TX_FLAGS_HW_OUTER_SINGLE_VLAN;
1839	} else if (tx_ring->flags & IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1) {
1840		tx_flags |= IAVF_TX_FLAGS_HW_VLAN;
1841	} else {
1842		dev_dbg(tx_ring->dev, "Unsupported Tx VLAN tag location requested\n");
1843		return;
1844	}
1845
1846	*flags = tx_flags;
1847}
1848
1849/**
1850 * iavf_tso - set up the tso context descriptor
1851 * @first:    pointer to first Tx buffer for xmit
1852 * @hdr_len:  ptr to the size of the packet header
1853 * @cd_type_cmd_tso_mss: Quad Word 1
1854 *
1855 * Returns 0 if no TSO can happen, 1 if tso is going, or error
1856 **/
1857static int iavf_tso(struct iavf_tx_buffer *first, u8 *hdr_len,
1858		    u64 *cd_type_cmd_tso_mss)
1859{
1860	struct sk_buff *skb = first->skb;
1861	u64 cd_cmd, cd_tso_len, cd_mss;
1862	union {
1863		struct iphdr *v4;
1864		struct ipv6hdr *v6;
1865		unsigned char *hdr;
1866	} ip;
1867	union {
1868		struct tcphdr *tcp;
1869		struct udphdr *udp;
1870		unsigned char *hdr;
1871	} l4;
1872	u32 paylen, l4_offset;
1873	u16 gso_segs, gso_size;
1874	int err;
1875
1876	if (skb->ip_summed != CHECKSUM_PARTIAL)
1877		return 0;
1878
1879	if (!skb_is_gso(skb))
1880		return 0;
1881
1882	err = skb_cow_head(skb, 0);
1883	if (err < 0)
1884		return err;
1885
1886	ip.hdr = skb_network_header(skb);
1887	l4.hdr = skb_transport_header(skb);
1888
1889	/* initialize outer IP header fields */
1890	if (ip.v4->version == 4) {
1891		ip.v4->tot_len = 0;
1892		ip.v4->check = 0;
1893	} else {
1894		ip.v6->payload_len = 0;
1895	}
1896
1897	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
1898					 SKB_GSO_GRE_CSUM |
1899					 SKB_GSO_IPXIP4 |
1900					 SKB_GSO_IPXIP6 |
1901					 SKB_GSO_UDP_TUNNEL |
1902					 SKB_GSO_UDP_TUNNEL_CSUM)) {
1903		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
1904		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
1905			l4.udp->len = 0;
1906
1907			/* determine offset of outer transport header */
1908			l4_offset = l4.hdr - skb->data;
1909
1910			/* remove payload length from outer checksum */
1911			paylen = skb->len - l4_offset;
1912			csum_replace_by_diff(&l4.udp->check,
1913					     (__force __wsum)htonl(paylen));
1914		}
1915
1916		/* reset pointers to inner headers */
1917		ip.hdr = skb_inner_network_header(skb);
1918		l4.hdr = skb_inner_transport_header(skb);
1919
1920		/* initialize inner IP header fields */
1921		if (ip.v4->version == 4) {
1922			ip.v4->tot_len = 0;
1923			ip.v4->check = 0;
1924		} else {
1925			ip.v6->payload_len = 0;
1926		}
1927	}
1928
1929	/* determine offset of inner transport header */
1930	l4_offset = l4.hdr - skb->data;
1931	/* remove payload length from inner checksum */
1932	paylen = skb->len - l4_offset;
1933
1934	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
1935		csum_replace_by_diff(&l4.udp->check,
1936				     (__force __wsum)htonl(paylen));
1937		/* compute length of UDP segmentation header */
1938		*hdr_len = (u8)sizeof(l4.udp) + l4_offset;
1939	} else {
1940		csum_replace_by_diff(&l4.tcp->check,
1941				     (__force __wsum)htonl(paylen));
1942		/* compute length of TCP segmentation header */
1943		*hdr_len = (u8)((l4.tcp->doff * 4) + l4_offset);
1944	}
1945
1946	/* pull values out of skb_shinfo */
1947	gso_size = skb_shinfo(skb)->gso_size;
1948	gso_segs = skb_shinfo(skb)->gso_segs;
1949
1950	/* update GSO size and bytecount with header size */
1951	first->gso_segs = gso_segs;
1952	first->bytecount += (first->gso_segs - 1) * *hdr_len;
1953
1954	/* find the field values */
1955	cd_cmd = IAVF_TX_CTX_DESC_TSO;
1956	cd_tso_len = skb->len - *hdr_len;
1957	cd_mss = gso_size;
1958	*cd_type_cmd_tso_mss |= (cd_cmd << IAVF_TXD_CTX_QW1_CMD_SHIFT) |
1959				(cd_tso_len << IAVF_TXD_CTX_QW1_TSO_LEN_SHIFT) |
1960				(cd_mss << IAVF_TXD_CTX_QW1_MSS_SHIFT);
1961	return 1;
1962}
1963
1964/**
1965 * iavf_tx_enable_csum - Enable Tx checksum offloads
1966 * @skb: send buffer
1967 * @tx_flags: pointer to Tx flags currently set
1968 * @td_cmd: Tx descriptor command bits to set
1969 * @td_offset: Tx descriptor header offsets to set
1970 * @tx_ring: Tx descriptor ring
1971 * @cd_tunneling: ptr to context desc bits
1972 **/
1973static int iavf_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
1974			       u32 *td_cmd, u32 *td_offset,
1975			       struct iavf_ring *tx_ring,
1976			       u32 *cd_tunneling)
1977{
1978	union {
1979		struct iphdr *v4;
1980		struct ipv6hdr *v6;
1981		unsigned char *hdr;
1982	} ip;
1983	union {
1984		struct tcphdr *tcp;
1985		struct udphdr *udp;
1986		unsigned char *hdr;
1987	} l4;
1988	unsigned char *exthdr;
1989	u32 offset, cmd = 0;
1990	__be16 frag_off;
1991	u8 l4_proto = 0;
1992
1993	if (skb->ip_summed != CHECKSUM_PARTIAL)
1994		return 0;
1995
1996	ip.hdr = skb_network_header(skb);
1997	l4.hdr = skb_transport_header(skb);
1998
1999	/* compute outer L2 header size */
2000	offset = ((ip.hdr - skb->data) / 2) << IAVF_TX_DESC_LENGTH_MACLEN_SHIFT;
2001
2002	if (skb->encapsulation) {
2003		u32 tunnel = 0;
2004		/* define outer network header type */
2005		if (*tx_flags & IAVF_TX_FLAGS_IPV4) {
2006			tunnel |= (*tx_flags & IAVF_TX_FLAGS_TSO) ?
2007				  IAVF_TX_CTX_EXT_IP_IPV4 :
2008				  IAVF_TX_CTX_EXT_IP_IPV4_NO_CSUM;
2009
2010			l4_proto = ip.v4->protocol;
2011		} else if (*tx_flags & IAVF_TX_FLAGS_IPV6) {
2012			tunnel |= IAVF_TX_CTX_EXT_IP_IPV6;
2013
2014			exthdr = ip.hdr + sizeof(*ip.v6);
2015			l4_proto = ip.v6->nexthdr;
2016			if (l4.hdr != exthdr)
2017				ipv6_skip_exthdr(skb, exthdr - skb->data,
2018						 &l4_proto, &frag_off);
2019		}
2020
2021		/* define outer transport */
2022		switch (l4_proto) {
2023		case IPPROTO_UDP:
2024			tunnel |= IAVF_TXD_CTX_UDP_TUNNELING;
2025			*tx_flags |= IAVF_TX_FLAGS_VXLAN_TUNNEL;
2026			break;
2027		case IPPROTO_GRE:
2028			tunnel |= IAVF_TXD_CTX_GRE_TUNNELING;
2029			*tx_flags |= IAVF_TX_FLAGS_VXLAN_TUNNEL;
2030			break;
2031		case IPPROTO_IPIP:
2032		case IPPROTO_IPV6:
2033			*tx_flags |= IAVF_TX_FLAGS_VXLAN_TUNNEL;
2034			l4.hdr = skb_inner_network_header(skb);
2035			break;
2036		default:
2037			if (*tx_flags & IAVF_TX_FLAGS_TSO)
2038				return -1;
2039
2040			skb_checksum_help(skb);
2041			return 0;
2042		}
2043
2044		/* compute outer L3 header size */
2045		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
2046			  IAVF_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
2047
2048		/* switch IP header pointer from outer to inner header */
2049		ip.hdr = skb_inner_network_header(skb);
2050
2051		/* compute tunnel header size */
2052		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
2053			  IAVF_TXD_CTX_QW0_NATLEN_SHIFT;
2054
2055		/* indicate if we need to offload outer UDP header */
2056		if ((*tx_flags & IAVF_TX_FLAGS_TSO) &&
2057		    !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
2058		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
2059			tunnel |= IAVF_TXD_CTX_QW0_L4T_CS_MASK;
2060
2061		/* record tunnel offload values */
2062		*cd_tunneling |= tunnel;
2063
2064		/* switch L4 header pointer from outer to inner */
2065		l4.hdr = skb_inner_transport_header(skb);
2066		l4_proto = 0;
2067
2068		/* reset type as we transition from outer to inner headers */
2069		*tx_flags &= ~(IAVF_TX_FLAGS_IPV4 | IAVF_TX_FLAGS_IPV6);
2070		if (ip.v4->version == 4)
2071			*tx_flags |= IAVF_TX_FLAGS_IPV4;
2072		if (ip.v6->version == 6)
2073			*tx_flags |= IAVF_TX_FLAGS_IPV6;
2074	}
2075
2076	/* Enable IP checksum offloads */
2077	if (*tx_flags & IAVF_TX_FLAGS_IPV4) {
2078		l4_proto = ip.v4->protocol;
2079		/* the stack computes the IP header already, the only time we
2080		 * need the hardware to recompute it is in the case of TSO.
2081		 */
2082		cmd |= (*tx_flags & IAVF_TX_FLAGS_TSO) ?
2083		       IAVF_TX_DESC_CMD_IIPT_IPV4_CSUM :
2084		       IAVF_TX_DESC_CMD_IIPT_IPV4;
2085	} else if (*tx_flags & IAVF_TX_FLAGS_IPV6) {
2086		cmd |= IAVF_TX_DESC_CMD_IIPT_IPV6;
2087
2088		exthdr = ip.hdr + sizeof(*ip.v6);
2089		l4_proto = ip.v6->nexthdr;
2090		if (l4.hdr != exthdr)
2091			ipv6_skip_exthdr(skb, exthdr - skb->data,
2092					 &l4_proto, &frag_off);
2093	}
2094
2095	/* compute inner L3 header size */
2096	offset |= ((l4.hdr - ip.hdr) / 4) << IAVF_TX_DESC_LENGTH_IPLEN_SHIFT;
2097
2098	/* Enable L4 checksum offloads */
2099	switch (l4_proto) {
2100	case IPPROTO_TCP:
2101		/* enable checksum offloads */
2102		cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_TCP;
2103		offset |= l4.tcp->doff << IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2104		break;
2105	case IPPROTO_SCTP:
2106		/* enable SCTP checksum offload */
2107		cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_SCTP;
2108		offset |= (sizeof(struct sctphdr) >> 2) <<
2109			  IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2110		break;
2111	case IPPROTO_UDP:
2112		/* enable UDP checksum offload */
2113		cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_UDP;
2114		offset |= (sizeof(struct udphdr) >> 2) <<
2115			  IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2116		break;
2117	default:
2118		if (*tx_flags & IAVF_TX_FLAGS_TSO)
2119			return -1;
2120		skb_checksum_help(skb);
2121		return 0;
2122	}
2123
2124	*td_cmd |= cmd;
2125	*td_offset |= offset;
2126
2127	return 1;
2128}
2129
2130/**
2131 * iavf_create_tx_ctx - Build the Tx context descriptor
2132 * @tx_ring:  ring to create the descriptor on
2133 * @cd_type_cmd_tso_mss: Quad Word 1
2134 * @cd_tunneling: Quad Word 0 - bits 0-31
2135 * @cd_l2tag2: Quad Word 0 - bits 32-63
2136 **/
2137static void iavf_create_tx_ctx(struct iavf_ring *tx_ring,
2138			       const u64 cd_type_cmd_tso_mss,
2139			       const u32 cd_tunneling, const u32 cd_l2tag2)
2140{
2141	struct iavf_tx_context_desc *context_desc;
2142	int i = tx_ring->next_to_use;
2143
2144	if ((cd_type_cmd_tso_mss == IAVF_TX_DESC_DTYPE_CONTEXT) &&
2145	    !cd_tunneling && !cd_l2tag2)
2146		return;
2147
2148	/* grab the next descriptor */
2149	context_desc = IAVF_TX_CTXTDESC(tx_ring, i);
2150
2151	i++;
2152	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2153
2154	/* cpu_to_le32 and assign to struct fields */
2155	context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
2156	context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
2157	context_desc->rsvd = cpu_to_le16(0);
2158	context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
2159}
2160
2161/**
2162 * __iavf_chk_linearize - Check if there are more than 8 buffers per packet
2163 * @skb:      send buffer
2164 *
2165 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
2166 * and so we need to figure out the cases where we need to linearize the skb.
2167 *
2168 * For TSO we need to count the TSO header and segment payload separately.
2169 * As such we need to check cases where we have 7 fragments or more as we
2170 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
2171 * the segment payload in the first descriptor, and another 7 for the
2172 * fragments.
2173 **/
2174bool __iavf_chk_linearize(struct sk_buff *skb)
2175{
2176	const skb_frag_t *frag, *stale;
2177	int nr_frags, sum;
2178
2179	/* no need to check if number of frags is less than 7 */
2180	nr_frags = skb_shinfo(skb)->nr_frags;
2181	if (nr_frags < (IAVF_MAX_BUFFER_TXD - 1))
2182		return false;
2183
2184	/* We need to walk through the list and validate that each group
2185	 * of 6 fragments totals at least gso_size.
2186	 */
2187	nr_frags -= IAVF_MAX_BUFFER_TXD - 2;
2188	frag = &skb_shinfo(skb)->frags[0];
2189
2190	/* Initialize size to the negative value of gso_size minus 1.  We
2191	 * use this as the worst case scenerio in which the frag ahead
2192	 * of us only provides one byte which is why we are limited to 6
2193	 * descriptors for a single transmit as the header and previous
2194	 * fragment are already consuming 2 descriptors.
2195	 */
2196	sum = 1 - skb_shinfo(skb)->gso_size;
2197
2198	/* Add size of frags 0 through 4 to create our initial sum */
2199	sum += skb_frag_size(frag++);
2200	sum += skb_frag_size(frag++);
2201	sum += skb_frag_size(frag++);
2202	sum += skb_frag_size(frag++);
2203	sum += skb_frag_size(frag++);
2204
2205	/* Walk through fragments adding latest fragment, testing it, and
2206	 * then removing stale fragments from the sum.
2207	 */
2208	for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
2209		int stale_size = skb_frag_size(stale);
2210
2211		sum += skb_frag_size(frag++);
2212
2213		/* The stale fragment may present us with a smaller
2214		 * descriptor than the actual fragment size. To account
2215		 * for that we need to remove all the data on the front and
2216		 * figure out what the remainder would be in the last
2217		 * descriptor associated with the fragment.
2218		 */
2219		if (stale_size > IAVF_MAX_DATA_PER_TXD) {
2220			int align_pad = -(skb_frag_off(stale)) &
2221					(IAVF_MAX_READ_REQ_SIZE - 1);
2222
2223			sum -= align_pad;
2224			stale_size -= align_pad;
2225
2226			do {
2227				sum -= IAVF_MAX_DATA_PER_TXD_ALIGNED;
2228				stale_size -= IAVF_MAX_DATA_PER_TXD_ALIGNED;
2229			} while (stale_size > IAVF_MAX_DATA_PER_TXD);
2230		}
2231
2232		/* if sum is negative we failed to make sufficient progress */
2233		if (sum < 0)
2234			return true;
2235
2236		if (!nr_frags--)
2237			break;
2238
2239		sum -= stale_size;
2240	}
2241
2242	return false;
2243}
2244
2245/**
2246 * __iavf_maybe_stop_tx - 2nd level check for tx stop conditions
2247 * @tx_ring: the ring to be checked
2248 * @size:    the size buffer we want to assure is available
2249 *
2250 * Returns -EBUSY if a stop is needed, else 0
2251 **/
2252int __iavf_maybe_stop_tx(struct iavf_ring *tx_ring, int size)
2253{
2254	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
2255	/* Memory barrier before checking head and tail */
2256	smp_mb();
2257
2258	/* Check again in a case another CPU has just made room available. */
2259	if (likely(IAVF_DESC_UNUSED(tx_ring) < size))
2260		return -EBUSY;
2261
2262	/* A reprieve! - use start_queue because it doesn't call schedule */
2263	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
2264	++tx_ring->tx_stats.restart_queue;
2265	return 0;
2266}
2267
2268/**
2269 * iavf_tx_map - Build the Tx descriptor
2270 * @tx_ring:  ring to send buffer on
2271 * @skb:      send buffer
2272 * @first:    first buffer info buffer to use
2273 * @tx_flags: collected send information
2274 * @hdr_len:  size of the packet header
2275 * @td_cmd:   the command field in the descriptor
2276 * @td_offset: offset for checksum or crc
2277 **/
2278static inline void iavf_tx_map(struct iavf_ring *tx_ring, struct sk_buff *skb,
2279			       struct iavf_tx_buffer *first, u32 tx_flags,
2280			       const u8 hdr_len, u32 td_cmd, u32 td_offset)
2281{
2282	unsigned int data_len = skb->data_len;
2283	unsigned int size = skb_headlen(skb);
2284	skb_frag_t *frag;
2285	struct iavf_tx_buffer *tx_bi;
2286	struct iavf_tx_desc *tx_desc;
2287	u16 i = tx_ring->next_to_use;
2288	u32 td_tag = 0;
2289	dma_addr_t dma;
2290
2291	if (tx_flags & IAVF_TX_FLAGS_HW_VLAN) {
2292		td_cmd |= IAVF_TX_DESC_CMD_IL2TAG1;
2293		td_tag = (tx_flags & IAVF_TX_FLAGS_VLAN_MASK) >>
2294			 IAVF_TX_FLAGS_VLAN_SHIFT;
2295	}
2296
2297	first->tx_flags = tx_flags;
2298
2299	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
2300
2301	tx_desc = IAVF_TX_DESC(tx_ring, i);
2302	tx_bi = first;
2303
2304	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
2305		unsigned int max_data = IAVF_MAX_DATA_PER_TXD_ALIGNED;
2306
2307		if (dma_mapping_error(tx_ring->dev, dma))
2308			goto dma_error;
2309
2310		/* record length, and DMA address */
2311		dma_unmap_len_set(tx_bi, len, size);
2312		dma_unmap_addr_set(tx_bi, dma, dma);
2313
2314		/* align size to end of page */
2315		max_data += -dma & (IAVF_MAX_READ_REQ_SIZE - 1);
2316		tx_desc->buffer_addr = cpu_to_le64(dma);
2317
2318		while (unlikely(size > IAVF_MAX_DATA_PER_TXD)) {
2319			tx_desc->cmd_type_offset_bsz =
2320				build_ctob(td_cmd, td_offset,
2321					   max_data, td_tag);
2322
2323			tx_desc++;
2324			i++;
2325
2326			if (i == tx_ring->count) {
2327				tx_desc = IAVF_TX_DESC(tx_ring, 0);
2328				i = 0;
2329			}
2330
2331			dma += max_data;
2332			size -= max_data;
2333
2334			max_data = IAVF_MAX_DATA_PER_TXD_ALIGNED;
2335			tx_desc->buffer_addr = cpu_to_le64(dma);
2336		}
2337
2338		if (likely(!data_len))
2339			break;
2340
2341		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
2342							  size, td_tag);
2343
2344		tx_desc++;
2345		i++;
2346
2347		if (i == tx_ring->count) {
2348			tx_desc = IAVF_TX_DESC(tx_ring, 0);
2349			i = 0;
2350		}
2351
2352		size = skb_frag_size(frag);
2353		data_len -= size;
2354
2355		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
2356				       DMA_TO_DEVICE);
2357
2358		tx_bi = &tx_ring->tx_bi[i];
2359	}
2360
2361	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
2362
2363	i++;
2364	if (i == tx_ring->count)
2365		i = 0;
2366
2367	tx_ring->next_to_use = i;
2368
2369	iavf_maybe_stop_tx(tx_ring, DESC_NEEDED);
2370
2371	/* write last descriptor with RS and EOP bits */
2372	td_cmd |= IAVF_TXD_CMD;
2373	tx_desc->cmd_type_offset_bsz =
2374			build_ctob(td_cmd, td_offset, size, td_tag);
2375
2376	skb_tx_timestamp(skb);
2377
2378	/* Force memory writes to complete before letting h/w know there
2379	 * are new descriptors to fetch.
2380	 *
2381	 * We also use this memory barrier to make certain all of the
2382	 * status bits have been updated before next_to_watch is written.
2383	 */
2384	wmb();
2385
2386	/* set next_to_watch value indicating a packet is present */
2387	first->next_to_watch = tx_desc;
2388
2389	/* notify HW of packet */
2390	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
2391		writel(i, tx_ring->tail);
2392	}
2393
2394	return;
2395
2396dma_error:
2397	dev_info(tx_ring->dev, "TX DMA map failed\n");
2398
2399	/* clear dma mappings for failed tx_bi map */
2400	for (;;) {
2401		tx_bi = &tx_ring->tx_bi[i];
2402		iavf_unmap_and_free_tx_resource(tx_ring, tx_bi);
2403		if (tx_bi == first)
2404			break;
2405		if (i == 0)
2406			i = tx_ring->count;
2407		i--;
2408	}
2409
2410	tx_ring->next_to_use = i;
2411}
2412
2413/**
2414 * iavf_xmit_frame_ring - Sends buffer on Tx ring
2415 * @skb:     send buffer
2416 * @tx_ring: ring to send buffer on
2417 *
2418 * Returns NETDEV_TX_OK if sent, else an error code
2419 **/
2420static netdev_tx_t iavf_xmit_frame_ring(struct sk_buff *skb,
2421					struct iavf_ring *tx_ring)
2422{
2423	u64 cd_type_cmd_tso_mss = IAVF_TX_DESC_DTYPE_CONTEXT;
2424	u32 cd_tunneling = 0, cd_l2tag2 = 0;
2425	struct iavf_tx_buffer *first;
2426	u32 td_offset = 0;
2427	u32 tx_flags = 0;
2428	__be16 protocol;
2429	u32 td_cmd = 0;
2430	u8 hdr_len = 0;
2431	int tso, count;
2432
2433	/* prefetch the data, we'll need it later */
2434	prefetch(skb->data);
2435
2436	iavf_trace(xmit_frame_ring, skb, tx_ring);
2437
2438	count = iavf_xmit_descriptor_count(skb);
2439	if (iavf_chk_linearize(skb, count)) {
2440		if (__skb_linearize(skb)) {
2441			dev_kfree_skb_any(skb);
2442			return NETDEV_TX_OK;
2443		}
2444		count = iavf_txd_use_count(skb->len);
2445		tx_ring->tx_stats.tx_linearize++;
2446	}
2447
2448	/* need: 1 descriptor per page * PAGE_SIZE/IAVF_MAX_DATA_PER_TXD,
2449	 *       + 1 desc for skb_head_len/IAVF_MAX_DATA_PER_TXD,
2450	 *       + 4 desc gap to avoid the cache line where head is,
2451	 *       + 1 desc for context descriptor,
2452	 * otherwise try next time
2453	 */
2454	if (iavf_maybe_stop_tx(tx_ring, count + 4 + 1)) {
2455		tx_ring->tx_stats.tx_busy++;
2456		return NETDEV_TX_BUSY;
2457	}
2458
2459	/* record the location of the first descriptor for this packet */
2460	first = &tx_ring->tx_bi[tx_ring->next_to_use];
2461	first->skb = skb;
2462	first->bytecount = skb->len;
2463	first->gso_segs = 1;
2464
2465	/* prepare the xmit flags */
2466	iavf_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags);
2467	if (tx_flags & IAVF_TX_FLAGS_HW_OUTER_SINGLE_VLAN) {
2468		cd_type_cmd_tso_mss |= IAVF_TX_CTX_DESC_IL2TAG2 <<
2469			IAVF_TXD_CTX_QW1_CMD_SHIFT;
2470		cd_l2tag2 = (tx_flags & IAVF_TX_FLAGS_VLAN_MASK) >>
2471			IAVF_TX_FLAGS_VLAN_SHIFT;
2472	}
2473
2474	/* obtain protocol of skb */
2475	protocol = vlan_get_protocol(skb);
2476
2477	/* setup IPv4/IPv6 offloads */
2478	if (protocol == htons(ETH_P_IP))
2479		tx_flags |= IAVF_TX_FLAGS_IPV4;
2480	else if (protocol == htons(ETH_P_IPV6))
2481		tx_flags |= IAVF_TX_FLAGS_IPV6;
2482
2483	tso = iavf_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
2484
2485	if (tso < 0)
2486		goto out_drop;
2487	else if (tso)
2488		tx_flags |= IAVF_TX_FLAGS_TSO;
2489
2490	/* Always offload the checksum, since it's in the data descriptor */
2491	tso = iavf_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
2492				  tx_ring, &cd_tunneling);
2493	if (tso < 0)
2494		goto out_drop;
2495
2496	/* always enable CRC insertion offload */
2497	td_cmd |= IAVF_TX_DESC_CMD_ICRC;
2498
2499	iavf_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
2500			   cd_tunneling, cd_l2tag2);
2501
2502	iavf_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
2503		    td_cmd, td_offset);
2504
2505	return NETDEV_TX_OK;
2506
2507out_drop:
2508	iavf_trace(xmit_frame_ring_drop, first->skb, tx_ring);
2509	dev_kfree_skb_any(first->skb);
2510	first->skb = NULL;
2511	return NETDEV_TX_OK;
2512}
2513
2514/**
2515 * iavf_xmit_frame - Selects the correct VSI and Tx queue to send buffer
2516 * @skb:    send buffer
2517 * @netdev: network interface device structure
2518 *
2519 * Returns NETDEV_TX_OK if sent, else an error code
2520 **/
2521netdev_tx_t iavf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2522{
2523	struct iavf_adapter *adapter = netdev_priv(netdev);
2524	struct iavf_ring *tx_ring = &adapter->tx_rings[skb->queue_mapping];
2525
2526	/* hardware can't handle really short frames, hardware padding works
2527	 * beyond this point
2528	 */
2529	if (unlikely(skb->len < IAVF_MIN_TX_LEN)) {
2530		if (skb_pad(skb, IAVF_MIN_TX_LEN - skb->len))
2531			return NETDEV_TX_OK;
2532		skb->len = IAVF_MIN_TX_LEN;
2533		skb_set_tail_pointer(skb, IAVF_MIN_TX_LEN);
2534	}
2535
2536	return iavf_xmit_frame_ring(skb, tx_ring);
2537}
2538