1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 2013 - 2018 Intel Corporation. */
3
4#include "iavf.h"
5#include "iavf_prototype.h"
6#include "iavf_client.h"
7/* All iavf tracepoints are defined by the include below, which must
8 * be included exactly once across the whole kernel with
9 * CREATE_TRACE_POINTS defined
10 */
11#define CREATE_TRACE_POINTS
12#include "iavf_trace.h"
13
14static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter);
15static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter);
16static int iavf_close(struct net_device *netdev);
17static void iavf_init_get_resources(struct iavf_adapter *adapter);
18static int iavf_check_reset_complete(struct iavf_hw *hw);
19
20char iavf_driver_name[] = "iavf";
21static const char iavf_driver_string[] =
22	"Intel(R) Ethernet Adaptive Virtual Function Network Driver";
23
24static const char iavf_copyright[] =
25	"Copyright (c) 2013 - 2018 Intel Corporation.";
26
27/* iavf_pci_tbl - PCI Device ID Table
28 *
29 * Wildcard entries (PCI_ANY_ID) should come last
30 * Last entry must be all 0s
31 *
32 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
33 *   Class, Class Mask, private data (not used) }
34 */
35static const struct pci_device_id iavf_pci_tbl[] = {
36	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0},
37	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0},
38	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0},
39	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0},
40	/* required last entry */
41	{0, }
42};
43
44MODULE_DEVICE_TABLE(pci, iavf_pci_tbl);
45
46MODULE_ALIAS("i40evf");
47MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
48MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver");
49MODULE_LICENSE("GPL v2");
50
51static const struct net_device_ops iavf_netdev_ops;
52
53int iavf_status_to_errno(enum iavf_status status)
54{
55	switch (status) {
56	case IAVF_SUCCESS:
57		return 0;
58	case IAVF_ERR_PARAM:
59	case IAVF_ERR_MAC_TYPE:
60	case IAVF_ERR_INVALID_MAC_ADDR:
61	case IAVF_ERR_INVALID_LINK_SETTINGS:
62	case IAVF_ERR_INVALID_PD_ID:
63	case IAVF_ERR_INVALID_QP_ID:
64	case IAVF_ERR_INVALID_CQ_ID:
65	case IAVF_ERR_INVALID_CEQ_ID:
66	case IAVF_ERR_INVALID_AEQ_ID:
67	case IAVF_ERR_INVALID_SIZE:
68	case IAVF_ERR_INVALID_ARP_INDEX:
69	case IAVF_ERR_INVALID_FPM_FUNC_ID:
70	case IAVF_ERR_QP_INVALID_MSG_SIZE:
71	case IAVF_ERR_INVALID_FRAG_COUNT:
72	case IAVF_ERR_INVALID_ALIGNMENT:
73	case IAVF_ERR_INVALID_PUSH_PAGE_INDEX:
74	case IAVF_ERR_INVALID_IMM_DATA_SIZE:
75	case IAVF_ERR_INVALID_VF_ID:
76	case IAVF_ERR_INVALID_HMCFN_ID:
77	case IAVF_ERR_INVALID_PBLE_INDEX:
78	case IAVF_ERR_INVALID_SD_INDEX:
79	case IAVF_ERR_INVALID_PAGE_DESC_INDEX:
80	case IAVF_ERR_INVALID_SD_TYPE:
81	case IAVF_ERR_INVALID_HMC_OBJ_INDEX:
82	case IAVF_ERR_INVALID_HMC_OBJ_COUNT:
83	case IAVF_ERR_INVALID_SRQ_ARM_LIMIT:
84		return -EINVAL;
85	case IAVF_ERR_NVM:
86	case IAVF_ERR_NVM_CHECKSUM:
87	case IAVF_ERR_PHY:
88	case IAVF_ERR_CONFIG:
89	case IAVF_ERR_UNKNOWN_PHY:
90	case IAVF_ERR_LINK_SETUP:
91	case IAVF_ERR_ADAPTER_STOPPED:
92	case IAVF_ERR_PRIMARY_REQUESTS_PENDING:
93	case IAVF_ERR_AUTONEG_NOT_COMPLETE:
94	case IAVF_ERR_RESET_FAILED:
95	case IAVF_ERR_BAD_PTR:
96	case IAVF_ERR_SWFW_SYNC:
97	case IAVF_ERR_QP_TOOMANY_WRS_POSTED:
98	case IAVF_ERR_QUEUE_EMPTY:
99	case IAVF_ERR_FLUSHED_QUEUE:
100	case IAVF_ERR_OPCODE_MISMATCH:
101	case IAVF_ERR_CQP_COMPL_ERROR:
102	case IAVF_ERR_BACKING_PAGE_ERROR:
103	case IAVF_ERR_NO_PBLCHUNKS_AVAILABLE:
104	case IAVF_ERR_MEMCPY_FAILED:
105	case IAVF_ERR_SRQ_ENABLED:
106	case IAVF_ERR_ADMIN_QUEUE_ERROR:
107	case IAVF_ERR_ADMIN_QUEUE_FULL:
108	case IAVF_ERR_BAD_RDMA_CQE:
109	case IAVF_ERR_NVM_BLANK_MODE:
110	case IAVF_ERR_PE_DOORBELL_NOT_ENABLED:
111	case IAVF_ERR_DIAG_TEST_FAILED:
112	case IAVF_ERR_FIRMWARE_API_VERSION:
113	case IAVF_ERR_ADMIN_QUEUE_CRITICAL_ERROR:
114		return -EIO;
115	case IAVF_ERR_DEVICE_NOT_SUPPORTED:
116		return -ENODEV;
117	case IAVF_ERR_NO_AVAILABLE_VSI:
118	case IAVF_ERR_RING_FULL:
119		return -ENOSPC;
120	case IAVF_ERR_NO_MEMORY:
121		return -ENOMEM;
122	case IAVF_ERR_TIMEOUT:
123	case IAVF_ERR_ADMIN_QUEUE_TIMEOUT:
124		return -ETIMEDOUT;
125	case IAVF_ERR_NOT_IMPLEMENTED:
126	case IAVF_NOT_SUPPORTED:
127		return -EOPNOTSUPP;
128	case IAVF_ERR_ADMIN_QUEUE_NO_WORK:
129		return -EALREADY;
130	case IAVF_ERR_NOT_READY:
131		return -EBUSY;
132	case IAVF_ERR_BUF_TOO_SHORT:
133		return -EMSGSIZE;
134	}
135
136	return -EIO;
137}
138
139int virtchnl_status_to_errno(enum virtchnl_status_code v_status)
140{
141	switch (v_status) {
142	case VIRTCHNL_STATUS_SUCCESS:
143		return 0;
144	case VIRTCHNL_STATUS_ERR_PARAM:
145	case VIRTCHNL_STATUS_ERR_INVALID_VF_ID:
146		return -EINVAL;
147	case VIRTCHNL_STATUS_ERR_NO_MEMORY:
148		return -ENOMEM;
149	case VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH:
150	case VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR:
151	case VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR:
152		return -EIO;
153	case VIRTCHNL_STATUS_ERR_NOT_SUPPORTED:
154		return -EOPNOTSUPP;
155	}
156
157	return -EIO;
158}
159
160/**
161 * iavf_pdev_to_adapter - go from pci_dev to adapter
162 * @pdev: pci_dev pointer
163 */
164static struct iavf_adapter *iavf_pdev_to_adapter(struct pci_dev *pdev)
165{
166	return netdev_priv(pci_get_drvdata(pdev));
167}
168
169/**
170 * iavf_is_reset_in_progress - Check if a reset is in progress
171 * @adapter: board private structure
172 */
173static bool iavf_is_reset_in_progress(struct iavf_adapter *adapter)
174{
175	if (adapter->state == __IAVF_RESETTING ||
176	    adapter->flags & (IAVF_FLAG_RESET_PENDING |
177			      IAVF_FLAG_RESET_NEEDED))
178		return true;
179
180	return false;
181}
182
183/**
184 * iavf_wait_for_reset - Wait for reset to finish.
185 * @adapter: board private structure
186 *
187 * Returns 0 if reset finished successfully, negative on timeout or interrupt.
188 */
189int iavf_wait_for_reset(struct iavf_adapter *adapter)
190{
191	int ret = wait_event_interruptible_timeout(adapter->reset_waitqueue,
192					!iavf_is_reset_in_progress(adapter),
193					msecs_to_jiffies(5000));
194
195	/* If ret < 0 then it means wait was interrupted.
196	 * If ret == 0 then it means we got a timeout while waiting
197	 * for reset to finish.
198	 * If ret > 0 it means reset has finished.
199	 */
200	if (ret > 0)
201		return 0;
202	else if (ret < 0)
203		return -EINTR;
204	else
205		return -EBUSY;
206}
207
208/**
209 * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code
210 * @hw:   pointer to the HW structure
211 * @mem:  ptr to mem struct to fill out
212 * @size: size of memory requested
213 * @alignment: what to align the allocation to
214 **/
215enum iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw,
216					 struct iavf_dma_mem *mem,
217					 u64 size, u32 alignment)
218{
219	struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
220
221	if (!mem)
222		return IAVF_ERR_PARAM;
223
224	mem->size = ALIGN(size, alignment);
225	mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size,
226				     (dma_addr_t *)&mem->pa, GFP_KERNEL);
227	if (mem->va)
228		return 0;
229	else
230		return IAVF_ERR_NO_MEMORY;
231}
232
233/**
234 * iavf_free_dma_mem - wrapper for DMA memory freeing
235 * @hw:   pointer to the HW structure
236 * @mem:  ptr to mem struct to free
237 **/
238enum iavf_status iavf_free_dma_mem(struct iavf_hw *hw, struct iavf_dma_mem *mem)
239{
240	struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
241
242	if (!mem || !mem->va)
243		return IAVF_ERR_PARAM;
244	dma_free_coherent(&adapter->pdev->dev, mem->size,
245			  mem->va, (dma_addr_t)mem->pa);
246	return 0;
247}
248
249/**
250 * iavf_allocate_virt_mem - virt memory alloc wrapper
251 * @hw:   pointer to the HW structure
252 * @mem:  ptr to mem struct to fill out
253 * @size: size of memory requested
254 **/
255enum iavf_status iavf_allocate_virt_mem(struct iavf_hw *hw,
256					struct iavf_virt_mem *mem, u32 size)
257{
258	if (!mem)
259		return IAVF_ERR_PARAM;
260
261	mem->size = size;
262	mem->va = kzalloc(size, GFP_KERNEL);
263
264	if (mem->va)
265		return 0;
266	else
267		return IAVF_ERR_NO_MEMORY;
268}
269
270/**
271 * iavf_free_virt_mem - virt memory free wrapper
272 * @hw:   pointer to the HW structure
273 * @mem:  ptr to mem struct to free
274 **/
275void iavf_free_virt_mem(struct iavf_hw *hw, struct iavf_virt_mem *mem)
276{
277	kfree(mem->va);
278}
279
280/**
281 * iavf_schedule_reset - Set the flags and schedule a reset event
282 * @adapter: board private structure
283 * @flags: IAVF_FLAG_RESET_PENDING or IAVF_FLAG_RESET_NEEDED
284 **/
285void iavf_schedule_reset(struct iavf_adapter *adapter, u64 flags)
286{
287	if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section) &&
288	    !(adapter->flags &
289	    (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) {
290		adapter->flags |= flags;
291		queue_work(adapter->wq, &adapter->reset_task);
292	}
293}
294
295/**
296 * iavf_schedule_aq_request - Set the flags and schedule aq request
297 * @adapter: board private structure
298 * @flags: requested aq flags
299 **/
300void iavf_schedule_aq_request(struct iavf_adapter *adapter, u64 flags)
301{
302	adapter->aq_required |= flags;
303	mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0);
304}
305
306/**
307 * iavf_tx_timeout - Respond to a Tx Hang
308 * @netdev: network interface device structure
309 * @txqueue: queue number that is timing out
310 **/
311static void iavf_tx_timeout(struct net_device *netdev, unsigned int txqueue)
312{
313	struct iavf_adapter *adapter = netdev_priv(netdev);
314
315	adapter->tx_timeout_count++;
316	iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED);
317}
318
319/**
320 * iavf_misc_irq_disable - Mask off interrupt generation on the NIC
321 * @adapter: board private structure
322 **/
323static void iavf_misc_irq_disable(struct iavf_adapter *adapter)
324{
325	struct iavf_hw *hw = &adapter->hw;
326
327	if (!adapter->msix_entries)
328		return;
329
330	wr32(hw, IAVF_VFINT_DYN_CTL01, 0);
331
332	iavf_flush(hw);
333
334	synchronize_irq(adapter->msix_entries[0].vector);
335}
336
337/**
338 * iavf_misc_irq_enable - Enable default interrupt generation settings
339 * @adapter: board private structure
340 **/
341static void iavf_misc_irq_enable(struct iavf_adapter *adapter)
342{
343	struct iavf_hw *hw = &adapter->hw;
344
345	wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK |
346				       IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
347	wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK);
348
349	iavf_flush(hw);
350}
351
352/**
353 * iavf_irq_disable - Mask off interrupt generation on the NIC
354 * @adapter: board private structure
355 **/
356static void iavf_irq_disable(struct iavf_adapter *adapter)
357{
358	int i;
359	struct iavf_hw *hw = &adapter->hw;
360
361	if (!adapter->msix_entries)
362		return;
363
364	for (i = 1; i < adapter->num_msix_vectors; i++) {
365		wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0);
366		synchronize_irq(adapter->msix_entries[i].vector);
367	}
368	iavf_flush(hw);
369}
370
371/**
372 * iavf_irq_enable_queues - Enable interrupt for all queues
373 * @adapter: board private structure
374 **/
375static void iavf_irq_enable_queues(struct iavf_adapter *adapter)
376{
377	struct iavf_hw *hw = &adapter->hw;
378	int i;
379
380	for (i = 1; i < adapter->num_msix_vectors; i++) {
381		wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1),
382		     IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
383		     IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK);
384	}
385}
386
387/**
388 * iavf_irq_enable - Enable default interrupt generation settings
389 * @adapter: board private structure
390 * @flush: boolean value whether to run rd32()
391 **/
392void iavf_irq_enable(struct iavf_adapter *adapter, bool flush)
393{
394	struct iavf_hw *hw = &adapter->hw;
395
396	iavf_misc_irq_enable(adapter);
397	iavf_irq_enable_queues(adapter);
398
399	if (flush)
400		iavf_flush(hw);
401}
402
403/**
404 * iavf_msix_aq - Interrupt handler for vector 0
405 * @irq: interrupt number
406 * @data: pointer to netdev
407 **/
408static irqreturn_t iavf_msix_aq(int irq, void *data)
409{
410	struct net_device *netdev = data;
411	struct iavf_adapter *adapter = netdev_priv(netdev);
412	struct iavf_hw *hw = &adapter->hw;
413
414	/* handle non-queue interrupts, these reads clear the registers */
415	rd32(hw, IAVF_VFINT_ICR01);
416	rd32(hw, IAVF_VFINT_ICR0_ENA1);
417
418	if (adapter->state != __IAVF_REMOVE)
419		/* schedule work on the private workqueue */
420		queue_work(adapter->wq, &adapter->adminq_task);
421
422	return IRQ_HANDLED;
423}
424
425/**
426 * iavf_msix_clean_rings - MSIX mode Interrupt Handler
427 * @irq: interrupt number
428 * @data: pointer to a q_vector
429 **/
430static irqreturn_t iavf_msix_clean_rings(int irq, void *data)
431{
432	struct iavf_q_vector *q_vector = data;
433
434	if (!q_vector->tx.ring && !q_vector->rx.ring)
435		return IRQ_HANDLED;
436
437	napi_schedule_irqoff(&q_vector->napi);
438
439	return IRQ_HANDLED;
440}
441
442/**
443 * iavf_map_vector_to_rxq - associate irqs with rx queues
444 * @adapter: board private structure
445 * @v_idx: interrupt number
446 * @r_idx: queue number
447 **/
448static void
449iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx)
450{
451	struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
452	struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx];
453	struct iavf_hw *hw = &adapter->hw;
454
455	rx_ring->q_vector = q_vector;
456	rx_ring->next = q_vector->rx.ring;
457	rx_ring->vsi = &adapter->vsi;
458	q_vector->rx.ring = rx_ring;
459	q_vector->rx.count++;
460	q_vector->rx.next_update = jiffies + 1;
461	q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting);
462	q_vector->ring_mask |= BIT(r_idx);
463	wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx),
464	     q_vector->rx.current_itr >> 1);
465	q_vector->rx.current_itr = q_vector->rx.target_itr;
466}
467
468/**
469 * iavf_map_vector_to_txq - associate irqs with tx queues
470 * @adapter: board private structure
471 * @v_idx: interrupt number
472 * @t_idx: queue number
473 **/
474static void
475iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx)
476{
477	struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
478	struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx];
479	struct iavf_hw *hw = &adapter->hw;
480
481	tx_ring->q_vector = q_vector;
482	tx_ring->next = q_vector->tx.ring;
483	tx_ring->vsi = &adapter->vsi;
484	q_vector->tx.ring = tx_ring;
485	q_vector->tx.count++;
486	q_vector->tx.next_update = jiffies + 1;
487	q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting);
488	q_vector->num_ringpairs++;
489	wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx),
490	     q_vector->tx.target_itr >> 1);
491	q_vector->tx.current_itr = q_vector->tx.target_itr;
492}
493
494/**
495 * iavf_map_rings_to_vectors - Maps descriptor rings to vectors
496 * @adapter: board private structure to initialize
497 *
498 * This function maps descriptor rings to the queue-specific vectors
499 * we were allotted through the MSI-X enabling code.  Ideally, we'd have
500 * one vector per ring/queue, but on a constrained vector budget, we
501 * group the rings as "efficiently" as possible.  You would add new
502 * mapping configurations in here.
503 **/
504static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter)
505{
506	int rings_remaining = adapter->num_active_queues;
507	int ridx = 0, vidx = 0;
508	int q_vectors;
509
510	q_vectors = adapter->num_msix_vectors - NONQ_VECS;
511
512	for (; ridx < rings_remaining; ridx++) {
513		iavf_map_vector_to_rxq(adapter, vidx, ridx);
514		iavf_map_vector_to_txq(adapter, vidx, ridx);
515
516		/* In the case where we have more queues than vectors, continue
517		 * round-robin on vectors until all queues are mapped.
518		 */
519		if (++vidx >= q_vectors)
520			vidx = 0;
521	}
522
523	adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
524}
525
526/**
527 * iavf_irq_affinity_notify - Callback for affinity changes
528 * @notify: context as to what irq was changed
529 * @mask: the new affinity mask
530 *
531 * This is a callback function used by the irq_set_affinity_notifier function
532 * so that we may register to receive changes to the irq affinity masks.
533 **/
534static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify,
535				     const cpumask_t *mask)
536{
537	struct iavf_q_vector *q_vector =
538		container_of(notify, struct iavf_q_vector, affinity_notify);
539
540	cpumask_copy(&q_vector->affinity_mask, mask);
541}
542
543/**
544 * iavf_irq_affinity_release - Callback for affinity notifier release
545 * @ref: internal core kernel usage
546 *
547 * This is a callback function used by the irq_set_affinity_notifier function
548 * to inform the current notification subscriber that they will no longer
549 * receive notifications.
550 **/
551static void iavf_irq_affinity_release(struct kref *ref) {}
552
553/**
554 * iavf_request_traffic_irqs - Initialize MSI-X interrupts
555 * @adapter: board private structure
556 * @basename: device basename
557 *
558 * Allocates MSI-X vectors for tx and rx handling, and requests
559 * interrupts from the kernel.
560 **/
561static int
562iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename)
563{
564	unsigned int vector, q_vectors;
565	unsigned int rx_int_idx = 0, tx_int_idx = 0;
566	int irq_num, err;
567	int cpu;
568
569	iavf_irq_disable(adapter);
570	/* Decrement for Other and TCP Timer vectors */
571	q_vectors = adapter->num_msix_vectors - NONQ_VECS;
572
573	for (vector = 0; vector < q_vectors; vector++) {
574		struct iavf_q_vector *q_vector = &adapter->q_vectors[vector];
575
576		irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
577
578		if (q_vector->tx.ring && q_vector->rx.ring) {
579			snprintf(q_vector->name, sizeof(q_vector->name),
580				 "iavf-%s-TxRx-%u", basename, rx_int_idx++);
581			tx_int_idx++;
582		} else if (q_vector->rx.ring) {
583			snprintf(q_vector->name, sizeof(q_vector->name),
584				 "iavf-%s-rx-%u", basename, rx_int_idx++);
585		} else if (q_vector->tx.ring) {
586			snprintf(q_vector->name, sizeof(q_vector->name),
587				 "iavf-%s-tx-%u", basename, tx_int_idx++);
588		} else {
589			/* skip this unused q_vector */
590			continue;
591		}
592		err = request_irq(irq_num,
593				  iavf_msix_clean_rings,
594				  0,
595				  q_vector->name,
596				  q_vector);
597		if (err) {
598			dev_info(&adapter->pdev->dev,
599				 "Request_irq failed, error: %d\n", err);
600			goto free_queue_irqs;
601		}
602		/* register for affinity change notifications */
603		q_vector->affinity_notify.notify = iavf_irq_affinity_notify;
604		q_vector->affinity_notify.release =
605						   iavf_irq_affinity_release;
606		irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify);
607		/* Spread the IRQ affinity hints across online CPUs. Note that
608		 * get_cpu_mask returns a mask with a permanent lifetime so
609		 * it's safe to use as a hint for irq_update_affinity_hint.
610		 */
611		cpu = cpumask_local_spread(q_vector->v_idx, -1);
612		irq_update_affinity_hint(irq_num, get_cpu_mask(cpu));
613	}
614
615	return 0;
616
617free_queue_irqs:
618	while (vector) {
619		vector--;
620		irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
621		irq_set_affinity_notifier(irq_num, NULL);
622		irq_update_affinity_hint(irq_num, NULL);
623		free_irq(irq_num, &adapter->q_vectors[vector]);
624	}
625	return err;
626}
627
628/**
629 * iavf_request_misc_irq - Initialize MSI-X interrupts
630 * @adapter: board private structure
631 *
632 * Allocates MSI-X vector 0 and requests interrupts from the kernel. This
633 * vector is only for the admin queue, and stays active even when the netdev
634 * is closed.
635 **/
636static int iavf_request_misc_irq(struct iavf_adapter *adapter)
637{
638	struct net_device *netdev = adapter->netdev;
639	int err;
640
641	snprintf(adapter->misc_vector_name,
642		 sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx",
643		 dev_name(&adapter->pdev->dev));
644	err = request_irq(adapter->msix_entries[0].vector,
645			  &iavf_msix_aq, 0,
646			  adapter->misc_vector_name, netdev);
647	if (err) {
648		dev_err(&adapter->pdev->dev,
649			"request_irq for %s failed: %d\n",
650			adapter->misc_vector_name, err);
651		free_irq(adapter->msix_entries[0].vector, netdev);
652	}
653	return err;
654}
655
656/**
657 * iavf_free_traffic_irqs - Free MSI-X interrupts
658 * @adapter: board private structure
659 *
660 * Frees all MSI-X vectors other than 0.
661 **/
662static void iavf_free_traffic_irqs(struct iavf_adapter *adapter)
663{
664	int vector, irq_num, q_vectors;
665
666	if (!adapter->msix_entries)
667		return;
668
669	q_vectors = adapter->num_msix_vectors - NONQ_VECS;
670
671	for (vector = 0; vector < q_vectors; vector++) {
672		irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
673		irq_set_affinity_notifier(irq_num, NULL);
674		irq_update_affinity_hint(irq_num, NULL);
675		free_irq(irq_num, &adapter->q_vectors[vector]);
676	}
677}
678
679/**
680 * iavf_free_misc_irq - Free MSI-X miscellaneous vector
681 * @adapter: board private structure
682 *
683 * Frees MSI-X vector 0.
684 **/
685static void iavf_free_misc_irq(struct iavf_adapter *adapter)
686{
687	struct net_device *netdev = adapter->netdev;
688
689	if (!adapter->msix_entries)
690		return;
691
692	free_irq(adapter->msix_entries[0].vector, netdev);
693}
694
695/**
696 * iavf_configure_tx - Configure Transmit Unit after Reset
697 * @adapter: board private structure
698 *
699 * Configure the Tx unit of the MAC after a reset.
700 **/
701static void iavf_configure_tx(struct iavf_adapter *adapter)
702{
703	struct iavf_hw *hw = &adapter->hw;
704	int i;
705
706	for (i = 0; i < adapter->num_active_queues; i++)
707		adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i);
708}
709
710/**
711 * iavf_configure_rx - Configure Receive Unit after Reset
712 * @adapter: board private structure
713 *
714 * Configure the Rx unit of the MAC after a reset.
715 **/
716static void iavf_configure_rx(struct iavf_adapter *adapter)
717{
718	unsigned int rx_buf_len = IAVF_RXBUFFER_2048;
719	struct iavf_hw *hw = &adapter->hw;
720	int i;
721
722	/* Legacy Rx will always default to a 2048 buffer size. */
723#if (PAGE_SIZE < 8192)
724	if (!(adapter->flags & IAVF_FLAG_LEGACY_RX)) {
725		struct net_device *netdev = adapter->netdev;
726
727		/* For jumbo frames on systems with 4K pages we have to use
728		 * an order 1 page, so we might as well increase the size
729		 * of our Rx buffer to make better use of the available space
730		 */
731		rx_buf_len = IAVF_RXBUFFER_3072;
732
733		/* We use a 1536 buffer size for configurations with
734		 * standard Ethernet mtu.  On x86 this gives us enough room
735		 * for shared info and 192 bytes of padding.
736		 */
737		if (!IAVF_2K_TOO_SMALL_WITH_PADDING &&
738		    (netdev->mtu <= ETH_DATA_LEN))
739			rx_buf_len = IAVF_RXBUFFER_1536 - NET_IP_ALIGN;
740	}
741#endif
742
743	for (i = 0; i < adapter->num_active_queues; i++) {
744		adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i);
745		adapter->rx_rings[i].rx_buf_len = rx_buf_len;
746
747		if (adapter->flags & IAVF_FLAG_LEGACY_RX)
748			clear_ring_build_skb_enabled(&adapter->rx_rings[i]);
749		else
750			set_ring_build_skb_enabled(&adapter->rx_rings[i]);
751	}
752}
753
754/**
755 * iavf_find_vlan - Search filter list for specific vlan filter
756 * @adapter: board private structure
757 * @vlan: vlan tag
758 *
759 * Returns ptr to the filter object or NULL. Must be called while holding the
760 * mac_vlan_list_lock.
761 **/
762static struct
763iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter,
764				 struct iavf_vlan vlan)
765{
766	struct iavf_vlan_filter *f;
767
768	list_for_each_entry(f, &adapter->vlan_filter_list, list) {
769		if (f->vlan.vid == vlan.vid &&
770		    f->vlan.tpid == vlan.tpid)
771			return f;
772	}
773
774	return NULL;
775}
776
777/**
778 * iavf_add_vlan - Add a vlan filter to the list
779 * @adapter: board private structure
780 * @vlan: VLAN tag
781 *
782 * Returns ptr to the filter object or NULL when no memory available.
783 **/
784static struct
785iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter,
786				struct iavf_vlan vlan)
787{
788	struct iavf_vlan_filter *f = NULL;
789
790	spin_lock_bh(&adapter->mac_vlan_list_lock);
791
792	f = iavf_find_vlan(adapter, vlan);
793	if (!f) {
794		f = kzalloc(sizeof(*f), GFP_ATOMIC);
795		if (!f)
796			goto clearout;
797
798		f->vlan = vlan;
799
800		list_add_tail(&f->list, &adapter->vlan_filter_list);
801		f->state = IAVF_VLAN_ADD;
802		adapter->num_vlan_filters++;
803		iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ADD_VLAN_FILTER);
804	}
805
806clearout:
807	spin_unlock_bh(&adapter->mac_vlan_list_lock);
808	return f;
809}
810
811/**
812 * iavf_del_vlan - Remove a vlan filter from the list
813 * @adapter: board private structure
814 * @vlan: VLAN tag
815 **/
816static void iavf_del_vlan(struct iavf_adapter *adapter, struct iavf_vlan vlan)
817{
818	struct iavf_vlan_filter *f;
819
820	spin_lock_bh(&adapter->mac_vlan_list_lock);
821
822	f = iavf_find_vlan(adapter, vlan);
823	if (f) {
824		f->state = IAVF_VLAN_REMOVE;
825		iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_DEL_VLAN_FILTER);
826	}
827
828	spin_unlock_bh(&adapter->mac_vlan_list_lock);
829}
830
831/**
832 * iavf_restore_filters
833 * @adapter: board private structure
834 *
835 * Restore existing non MAC filters when VF netdev comes back up
836 **/
837static void iavf_restore_filters(struct iavf_adapter *adapter)
838{
839	struct iavf_vlan_filter *f;
840
841	/* re-add all VLAN filters */
842	spin_lock_bh(&adapter->mac_vlan_list_lock);
843
844	list_for_each_entry(f, &adapter->vlan_filter_list, list) {
845		if (f->state == IAVF_VLAN_INACTIVE)
846			f->state = IAVF_VLAN_ADD;
847	}
848
849	spin_unlock_bh(&adapter->mac_vlan_list_lock);
850	adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER;
851}
852
853/**
854 * iavf_get_num_vlans_added - get number of VLANs added
855 * @adapter: board private structure
856 */
857u16 iavf_get_num_vlans_added(struct iavf_adapter *adapter)
858{
859	return adapter->num_vlan_filters;
860}
861
862/**
863 * iavf_get_max_vlans_allowed - get maximum VLANs allowed for this VF
864 * @adapter: board private structure
865 *
866 * This depends on the negotiated VLAN capability. For VIRTCHNL_VF_OFFLOAD_VLAN,
867 * do not impose a limit as that maintains current behavior and for
868 * VIRTCHNL_VF_OFFLOAD_VLAN_V2, use the maximum allowed sent from the PF.
869 **/
870static u16 iavf_get_max_vlans_allowed(struct iavf_adapter *adapter)
871{
872	/* don't impose any limit for VIRTCHNL_VF_OFFLOAD_VLAN since there has
873	 * never been a limit on the VF driver side
874	 */
875	if (VLAN_ALLOWED(adapter))
876		return VLAN_N_VID;
877	else if (VLAN_V2_ALLOWED(adapter))
878		return adapter->vlan_v2_caps.filtering.max_filters;
879
880	return 0;
881}
882
883/**
884 * iavf_max_vlans_added - check if maximum VLANs allowed already exist
885 * @adapter: board private structure
886 **/
887static bool iavf_max_vlans_added(struct iavf_adapter *adapter)
888{
889	if (iavf_get_num_vlans_added(adapter) <
890	    iavf_get_max_vlans_allowed(adapter))
891		return false;
892
893	return true;
894}
895
896/**
897 * iavf_vlan_rx_add_vid - Add a VLAN filter to a device
898 * @netdev: network device struct
899 * @proto: unused protocol data
900 * @vid: VLAN tag
901 **/
902static int iavf_vlan_rx_add_vid(struct net_device *netdev,
903				__always_unused __be16 proto, u16 vid)
904{
905	struct iavf_adapter *adapter = netdev_priv(netdev);
906
907	/* Do not track VLAN 0 filter, always added by the PF on VF init */
908	if (!vid)
909		return 0;
910
911	if (!VLAN_FILTERING_ALLOWED(adapter))
912		return -EIO;
913
914	if (iavf_max_vlans_added(adapter)) {
915		netdev_err(netdev, "Max allowed VLAN filters %u. Remove existing VLANs or disable filtering via Ethtool if supported.\n",
916			   iavf_get_max_vlans_allowed(adapter));
917		return -EIO;
918	}
919
920	if (!iavf_add_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto))))
921		return -ENOMEM;
922
923	return 0;
924}
925
926/**
927 * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device
928 * @netdev: network device struct
929 * @proto: unused protocol data
930 * @vid: VLAN tag
931 **/
932static int iavf_vlan_rx_kill_vid(struct net_device *netdev,
933				 __always_unused __be16 proto, u16 vid)
934{
935	struct iavf_adapter *adapter = netdev_priv(netdev);
936
937	/* We do not track VLAN 0 filter */
938	if (!vid)
939		return 0;
940
941	iavf_del_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto)));
942	return 0;
943}
944
945/**
946 * iavf_find_filter - Search filter list for specific mac filter
947 * @adapter: board private structure
948 * @macaddr: the MAC address
949 *
950 * Returns ptr to the filter object or NULL. Must be called while holding the
951 * mac_vlan_list_lock.
952 **/
953static struct
954iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter,
955				  const u8 *macaddr)
956{
957	struct iavf_mac_filter *f;
958
959	if (!macaddr)
960		return NULL;
961
962	list_for_each_entry(f, &adapter->mac_filter_list, list) {
963		if (ether_addr_equal(macaddr, f->macaddr))
964			return f;
965	}
966	return NULL;
967}
968
969/**
970 * iavf_add_filter - Add a mac filter to the filter list
971 * @adapter: board private structure
972 * @macaddr: the MAC address
973 *
974 * Returns ptr to the filter object or NULL when no memory available.
975 **/
976struct iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter,
977					const u8 *macaddr)
978{
979	struct iavf_mac_filter *f;
980
981	if (!macaddr)
982		return NULL;
983
984	f = iavf_find_filter(adapter, macaddr);
985	if (!f) {
986		f = kzalloc(sizeof(*f), GFP_ATOMIC);
987		if (!f)
988			return f;
989
990		ether_addr_copy(f->macaddr, macaddr);
991
992		list_add_tail(&f->list, &adapter->mac_filter_list);
993		f->add = true;
994		f->add_handled = false;
995		f->is_new_mac = true;
996		f->is_primary = ether_addr_equal(macaddr, adapter->hw.mac.addr);
997		adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
998	} else {
999		f->remove = false;
1000	}
1001
1002	return f;
1003}
1004
1005/**
1006 * iavf_replace_primary_mac - Replace current primary address
1007 * @adapter: board private structure
1008 * @new_mac: new MAC address to be applied
1009 *
1010 * Replace current dev_addr and send request to PF for removal of previous
1011 * primary MAC address filter and addition of new primary MAC filter.
1012 * Return 0 for success, -ENOMEM for failure.
1013 *
1014 * Do not call this with mac_vlan_list_lock!
1015 **/
1016static int iavf_replace_primary_mac(struct iavf_adapter *adapter,
1017				    const u8 *new_mac)
1018{
1019	struct iavf_hw *hw = &adapter->hw;
1020	struct iavf_mac_filter *new_f;
1021	struct iavf_mac_filter *old_f;
1022
1023	spin_lock_bh(&adapter->mac_vlan_list_lock);
1024
1025	new_f = iavf_add_filter(adapter, new_mac);
1026	if (!new_f) {
1027		spin_unlock_bh(&adapter->mac_vlan_list_lock);
1028		return -ENOMEM;
1029	}
1030
1031	old_f = iavf_find_filter(adapter, hw->mac.addr);
1032	if (old_f) {
1033		old_f->is_primary = false;
1034		old_f->remove = true;
1035		adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
1036	}
1037	/* Always send the request to add if changing primary MAC,
1038	 * even if filter is already present on the list
1039	 */
1040	new_f->is_primary = true;
1041	new_f->add = true;
1042	adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
1043	ether_addr_copy(hw->mac.addr, new_mac);
1044
1045	spin_unlock_bh(&adapter->mac_vlan_list_lock);
1046
1047	/* schedule the watchdog task to immediately process the request */
1048	mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0);
1049	return 0;
1050}
1051
1052/**
1053 * iavf_is_mac_set_handled - wait for a response to set MAC from PF
1054 * @netdev: network interface device structure
1055 * @macaddr: MAC address to set
1056 *
1057 * Returns true on success, false on failure
1058 */
1059static bool iavf_is_mac_set_handled(struct net_device *netdev,
1060				    const u8 *macaddr)
1061{
1062	struct iavf_adapter *adapter = netdev_priv(netdev);
1063	struct iavf_mac_filter *f;
1064	bool ret = false;
1065
1066	spin_lock_bh(&adapter->mac_vlan_list_lock);
1067
1068	f = iavf_find_filter(adapter, macaddr);
1069
1070	if (!f || (!f->add && f->add_handled))
1071		ret = true;
1072
1073	spin_unlock_bh(&adapter->mac_vlan_list_lock);
1074
1075	return ret;
1076}
1077
1078/**
1079 * iavf_set_mac - NDO callback to set port MAC address
1080 * @netdev: network interface device structure
1081 * @p: pointer to an address structure
1082 *
1083 * Returns 0 on success, negative on failure
1084 */
1085static int iavf_set_mac(struct net_device *netdev, void *p)
1086{
1087	struct iavf_adapter *adapter = netdev_priv(netdev);
1088	struct sockaddr *addr = p;
1089	int ret;
1090
1091	if (!is_valid_ether_addr(addr->sa_data))
1092		return -EADDRNOTAVAIL;
1093
1094	ret = iavf_replace_primary_mac(adapter, addr->sa_data);
1095
1096	if (ret)
1097		return ret;
1098
1099	ret = wait_event_interruptible_timeout(adapter->vc_waitqueue,
1100					       iavf_is_mac_set_handled(netdev, addr->sa_data),
1101					       msecs_to_jiffies(2500));
1102
1103	/* If ret < 0 then it means wait was interrupted.
1104	 * If ret == 0 then it means we got a timeout.
1105	 * else it means we got response for set MAC from PF,
1106	 * check if netdev MAC was updated to requested MAC,
1107	 * if yes then set MAC succeeded otherwise it failed return -EACCES
1108	 */
1109	if (ret < 0)
1110		return ret;
1111
1112	if (!ret)
1113		return -EAGAIN;
1114
1115	if (!ether_addr_equal(netdev->dev_addr, addr->sa_data))
1116		return -EACCES;
1117
1118	return 0;
1119}
1120
1121/**
1122 * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address
1123 * @netdev: the netdevice
1124 * @addr: address to add
1125 *
1126 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call
1127 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
1128 */
1129static int iavf_addr_sync(struct net_device *netdev, const u8 *addr)
1130{
1131	struct iavf_adapter *adapter = netdev_priv(netdev);
1132
1133	if (iavf_add_filter(adapter, addr))
1134		return 0;
1135	else
1136		return -ENOMEM;
1137}
1138
1139/**
1140 * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address
1141 * @netdev: the netdevice
1142 * @addr: address to add
1143 *
1144 * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call
1145 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
1146 */
1147static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr)
1148{
1149	struct iavf_adapter *adapter = netdev_priv(netdev);
1150	struct iavf_mac_filter *f;
1151
1152	/* Under some circumstances, we might receive a request to delete
1153	 * our own device address from our uc list. Because we store the
1154	 * device address in the VSI's MAC/VLAN filter list, we need to ignore
1155	 * such requests and not delete our device address from this list.
1156	 */
1157	if (ether_addr_equal(addr, netdev->dev_addr))
1158		return 0;
1159
1160	f = iavf_find_filter(adapter, addr);
1161	if (f) {
1162		f->remove = true;
1163		adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
1164	}
1165	return 0;
1166}
1167
1168/**
1169 * iavf_promiscuous_mode_changed - check if promiscuous mode bits changed
1170 * @adapter: device specific adapter
1171 */
1172bool iavf_promiscuous_mode_changed(struct iavf_adapter *adapter)
1173{
1174	return (adapter->current_netdev_promisc_flags ^ adapter->netdev->flags) &
1175		(IFF_PROMISC | IFF_ALLMULTI);
1176}
1177
1178/**
1179 * iavf_set_rx_mode - NDO callback to set the netdev filters
1180 * @netdev: network interface device structure
1181 **/
1182static void iavf_set_rx_mode(struct net_device *netdev)
1183{
1184	struct iavf_adapter *adapter = netdev_priv(netdev);
1185
1186	spin_lock_bh(&adapter->mac_vlan_list_lock);
1187	__dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
1188	__dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
1189	spin_unlock_bh(&adapter->mac_vlan_list_lock);
1190
1191	spin_lock_bh(&adapter->current_netdev_promisc_flags_lock);
1192	if (iavf_promiscuous_mode_changed(adapter))
1193		adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_PROMISC_MODE;
1194	spin_unlock_bh(&adapter->current_netdev_promisc_flags_lock);
1195}
1196
1197/**
1198 * iavf_napi_enable_all - enable NAPI on all queue vectors
1199 * @adapter: board private structure
1200 **/
1201static void iavf_napi_enable_all(struct iavf_adapter *adapter)
1202{
1203	int q_idx;
1204	struct iavf_q_vector *q_vector;
1205	int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1206
1207	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1208		struct napi_struct *napi;
1209
1210		q_vector = &adapter->q_vectors[q_idx];
1211		napi = &q_vector->napi;
1212		napi_enable(napi);
1213	}
1214}
1215
1216/**
1217 * iavf_napi_disable_all - disable NAPI on all queue vectors
1218 * @adapter: board private structure
1219 **/
1220static void iavf_napi_disable_all(struct iavf_adapter *adapter)
1221{
1222	int q_idx;
1223	struct iavf_q_vector *q_vector;
1224	int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1225
1226	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1227		q_vector = &adapter->q_vectors[q_idx];
1228		napi_disable(&q_vector->napi);
1229	}
1230}
1231
1232/**
1233 * iavf_configure - set up transmit and receive data structures
1234 * @adapter: board private structure
1235 **/
1236static void iavf_configure(struct iavf_adapter *adapter)
1237{
1238	struct net_device *netdev = adapter->netdev;
1239	int i;
1240
1241	iavf_set_rx_mode(netdev);
1242
1243	iavf_configure_tx(adapter);
1244	iavf_configure_rx(adapter);
1245	adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES;
1246
1247	for (i = 0; i < adapter->num_active_queues; i++) {
1248		struct iavf_ring *ring = &adapter->rx_rings[i];
1249
1250		iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring));
1251	}
1252}
1253
1254/**
1255 * iavf_up_complete - Finish the last steps of bringing up a connection
1256 * @adapter: board private structure
1257 *
1258 * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock.
1259 **/
1260static void iavf_up_complete(struct iavf_adapter *adapter)
1261{
1262	iavf_change_state(adapter, __IAVF_RUNNING);
1263	clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1264
1265	iavf_napi_enable_all(adapter);
1266
1267	adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_QUEUES;
1268	if (CLIENT_ENABLED(adapter))
1269		adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_OPEN;
1270	mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0);
1271}
1272
1273/**
1274 * iavf_clear_mac_vlan_filters - Remove mac and vlan filters not sent to PF
1275 * yet and mark other to be removed.
1276 * @adapter: board private structure
1277 **/
1278static void iavf_clear_mac_vlan_filters(struct iavf_adapter *adapter)
1279{
1280	struct iavf_vlan_filter *vlf, *vlftmp;
1281	struct iavf_mac_filter *f, *ftmp;
1282
1283	spin_lock_bh(&adapter->mac_vlan_list_lock);
1284	/* clear the sync flag on all filters */
1285	__dev_uc_unsync(adapter->netdev, NULL);
1286	__dev_mc_unsync(adapter->netdev, NULL);
1287
1288	/* remove all MAC filters */
1289	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list,
1290				 list) {
1291		if (f->add) {
1292			list_del(&f->list);
1293			kfree(f);
1294		} else {
1295			f->remove = true;
1296		}
1297	}
1298
1299	/* disable all VLAN filters */
1300	list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list,
1301				 list)
1302		vlf->state = IAVF_VLAN_DISABLE;
1303
1304	spin_unlock_bh(&adapter->mac_vlan_list_lock);
1305}
1306
1307/**
1308 * iavf_clear_cloud_filters - Remove cloud filters not sent to PF yet and
1309 * mark other to be removed.
1310 * @adapter: board private structure
1311 **/
1312static void iavf_clear_cloud_filters(struct iavf_adapter *adapter)
1313{
1314	struct iavf_cloud_filter *cf, *cftmp;
1315
1316	/* remove all cloud filters */
1317	spin_lock_bh(&adapter->cloud_filter_list_lock);
1318	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list,
1319				 list) {
1320		if (cf->add) {
1321			list_del(&cf->list);
1322			kfree(cf);
1323			adapter->num_cloud_filters--;
1324		} else {
1325			cf->del = true;
1326		}
1327	}
1328	spin_unlock_bh(&adapter->cloud_filter_list_lock);
1329}
1330
1331/**
1332 * iavf_clear_fdir_filters - Remove fdir filters not sent to PF yet and mark
1333 * other to be removed.
1334 * @adapter: board private structure
1335 **/
1336static void iavf_clear_fdir_filters(struct iavf_adapter *adapter)
1337{
1338	struct iavf_fdir_fltr *fdir;
1339
1340	/* remove all Flow Director filters */
1341	spin_lock_bh(&adapter->fdir_fltr_lock);
1342	list_for_each_entry(fdir, &adapter->fdir_list_head, list) {
1343		if (fdir->state == IAVF_FDIR_FLTR_ADD_REQUEST) {
1344			/* Cancel a request, keep filter as inactive */
1345			fdir->state = IAVF_FDIR_FLTR_INACTIVE;
1346		} else if (fdir->state == IAVF_FDIR_FLTR_ADD_PENDING ||
1347			 fdir->state == IAVF_FDIR_FLTR_ACTIVE) {
1348			/* Disable filters which are active or have a pending
1349			 * request to PF to be added
1350			 */
1351			fdir->state = IAVF_FDIR_FLTR_DIS_REQUEST;
1352		}
1353	}
1354	spin_unlock_bh(&adapter->fdir_fltr_lock);
1355}
1356
1357/**
1358 * iavf_clear_adv_rss_conf - Remove adv rss conf not sent to PF yet and mark
1359 * other to be removed.
1360 * @adapter: board private structure
1361 **/
1362static void iavf_clear_adv_rss_conf(struct iavf_adapter *adapter)
1363{
1364	struct iavf_adv_rss *rss, *rsstmp;
1365
1366	/* remove all advance RSS configuration */
1367	spin_lock_bh(&adapter->adv_rss_lock);
1368	list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head,
1369				 list) {
1370		if (rss->state == IAVF_ADV_RSS_ADD_REQUEST) {
1371			list_del(&rss->list);
1372			kfree(rss);
1373		} else {
1374			rss->state = IAVF_ADV_RSS_DEL_REQUEST;
1375		}
1376	}
1377	spin_unlock_bh(&adapter->adv_rss_lock);
1378}
1379
1380/**
1381 * iavf_down - Shutdown the connection processing
1382 * @adapter: board private structure
1383 *
1384 * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock.
1385 **/
1386void iavf_down(struct iavf_adapter *adapter)
1387{
1388	struct net_device *netdev = adapter->netdev;
1389
1390	if (adapter->state <= __IAVF_DOWN_PENDING)
1391		return;
1392
1393	netif_carrier_off(netdev);
1394	netif_tx_disable(netdev);
1395	adapter->link_up = false;
1396	iavf_napi_disable_all(adapter);
1397	iavf_irq_disable(adapter);
1398
1399	iavf_clear_mac_vlan_filters(adapter);
1400	iavf_clear_cloud_filters(adapter);
1401	iavf_clear_fdir_filters(adapter);
1402	iavf_clear_adv_rss_conf(adapter);
1403
1404	if (!(adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) &&
1405	    !(test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))) {
1406		/* cancel any current operation */
1407		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1408		/* Schedule operations to close down the HW. Don't wait
1409		 * here for this to complete. The watchdog is still running
1410		 * and it will take care of this.
1411		 */
1412		if (!list_empty(&adapter->mac_filter_list))
1413			adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
1414		if (!list_empty(&adapter->vlan_filter_list))
1415			adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
1416		if (!list_empty(&adapter->cloud_filter_list))
1417			adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
1418		if (!list_empty(&adapter->fdir_list_head))
1419			adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER;
1420		if (!list_empty(&adapter->adv_rss_list_head))
1421			adapter->aq_required |= IAVF_FLAG_AQ_DEL_ADV_RSS_CFG;
1422	}
1423
1424	adapter->aq_required |= IAVF_FLAG_AQ_DISABLE_QUEUES;
1425	mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0);
1426}
1427
1428/**
1429 * iavf_acquire_msix_vectors - Setup the MSIX capability
1430 * @adapter: board private structure
1431 * @vectors: number of vectors to request
1432 *
1433 * Work with the OS to set up the MSIX vectors needed.
1434 *
1435 * Returns 0 on success, negative on failure
1436 **/
1437static int
1438iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors)
1439{
1440	int err, vector_threshold;
1441
1442	/* We'll want at least 3 (vector_threshold):
1443	 * 0) Other (Admin Queue and link, mostly)
1444	 * 1) TxQ[0] Cleanup
1445	 * 2) RxQ[0] Cleanup
1446	 */
1447	vector_threshold = MIN_MSIX_COUNT;
1448
1449	/* The more we get, the more we will assign to Tx/Rx Cleanup
1450	 * for the separate queues...where Rx Cleanup >= Tx Cleanup.
1451	 * Right now, we simply care about how many we'll get; we'll
1452	 * set them up later while requesting irq's.
1453	 */
1454	err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
1455				    vector_threshold, vectors);
1456	if (err < 0) {
1457		dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n");
1458		kfree(adapter->msix_entries);
1459		adapter->msix_entries = NULL;
1460		return err;
1461	}
1462
1463	/* Adjust for only the vectors we'll use, which is minimum
1464	 * of max_msix_q_vectors + NONQ_VECS, or the number of
1465	 * vectors we were allocated.
1466	 */
1467	adapter->num_msix_vectors = err;
1468	return 0;
1469}
1470
1471/**
1472 * iavf_free_queues - Free memory for all rings
1473 * @adapter: board private structure to initialize
1474 *
1475 * Free all of the memory associated with queue pairs.
1476 **/
1477static void iavf_free_queues(struct iavf_adapter *adapter)
1478{
1479	if (!adapter->vsi_res)
1480		return;
1481	adapter->num_active_queues = 0;
1482	kfree(adapter->tx_rings);
1483	adapter->tx_rings = NULL;
1484	kfree(adapter->rx_rings);
1485	adapter->rx_rings = NULL;
1486}
1487
1488/**
1489 * iavf_set_queue_vlan_tag_loc - set location for VLAN tag offload
1490 * @adapter: board private structure
1491 *
1492 * Based on negotiated capabilities, the VLAN tag needs to be inserted and/or
1493 * stripped in certain descriptor fields. Instead of checking the offload
1494 * capability bits in the hot path, cache the location the ring specific
1495 * flags.
1496 */
1497void iavf_set_queue_vlan_tag_loc(struct iavf_adapter *adapter)
1498{
1499	int i;
1500
1501	for (i = 0; i < adapter->num_active_queues; i++) {
1502		struct iavf_ring *tx_ring = &adapter->tx_rings[i];
1503		struct iavf_ring *rx_ring = &adapter->rx_rings[i];
1504
1505		/* prevent multiple L2TAG bits being set after VFR */
1506		tx_ring->flags &=
1507			~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 |
1508			  IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2);
1509		rx_ring->flags &=
1510			~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 |
1511			  IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2);
1512
1513		if (VLAN_ALLOWED(adapter)) {
1514			tx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1515			rx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1516		} else if (VLAN_V2_ALLOWED(adapter)) {
1517			struct virtchnl_vlan_supported_caps *stripping_support;
1518			struct virtchnl_vlan_supported_caps *insertion_support;
1519
1520			stripping_support =
1521				&adapter->vlan_v2_caps.offloads.stripping_support;
1522			insertion_support =
1523				&adapter->vlan_v2_caps.offloads.insertion_support;
1524
1525			if (stripping_support->outer) {
1526				if (stripping_support->outer &
1527				    VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1528					rx_ring->flags |=
1529						IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1530				else if (stripping_support->outer &
1531					 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2)
1532					rx_ring->flags |=
1533						IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2;
1534			} else if (stripping_support->inner) {
1535				if (stripping_support->inner &
1536				    VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1537					rx_ring->flags |=
1538						IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1539				else if (stripping_support->inner &
1540					 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2)
1541					rx_ring->flags |=
1542						IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2;
1543			}
1544
1545			if (insertion_support->outer) {
1546				if (insertion_support->outer &
1547				    VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1548					tx_ring->flags |=
1549						IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1550				else if (insertion_support->outer &
1551					 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2)
1552					tx_ring->flags |=
1553						IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2;
1554			} else if (insertion_support->inner) {
1555				if (insertion_support->inner &
1556				    VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1557					tx_ring->flags |=
1558						IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1559				else if (insertion_support->inner &
1560					 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2)
1561					tx_ring->flags |=
1562						IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2;
1563			}
1564		}
1565	}
1566}
1567
1568/**
1569 * iavf_alloc_queues - Allocate memory for all rings
1570 * @adapter: board private structure to initialize
1571 *
1572 * We allocate one ring per queue at run-time since we don't know the
1573 * number of queues at compile-time.  The polling_netdev array is
1574 * intended for Multiqueue, but should work fine with a single queue.
1575 **/
1576static int iavf_alloc_queues(struct iavf_adapter *adapter)
1577{
1578	int i, num_active_queues;
1579
1580	/* If we're in reset reallocating queues we don't actually know yet for
1581	 * certain the PF gave us the number of queues we asked for but we'll
1582	 * assume it did.  Once basic reset is finished we'll confirm once we
1583	 * start negotiating config with PF.
1584	 */
1585	if (adapter->num_req_queues)
1586		num_active_queues = adapter->num_req_queues;
1587	else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1588		 adapter->num_tc)
1589		num_active_queues = adapter->ch_config.total_qps;
1590	else
1591		num_active_queues = min_t(int,
1592					  adapter->vsi_res->num_queue_pairs,
1593					  (int)(num_online_cpus()));
1594
1595
1596	adapter->tx_rings = kcalloc(num_active_queues,
1597				    sizeof(struct iavf_ring), GFP_KERNEL);
1598	if (!adapter->tx_rings)
1599		goto err_out;
1600	adapter->rx_rings = kcalloc(num_active_queues,
1601				    sizeof(struct iavf_ring), GFP_KERNEL);
1602	if (!adapter->rx_rings)
1603		goto err_out;
1604
1605	for (i = 0; i < num_active_queues; i++) {
1606		struct iavf_ring *tx_ring;
1607		struct iavf_ring *rx_ring;
1608
1609		tx_ring = &adapter->tx_rings[i];
1610
1611		tx_ring->queue_index = i;
1612		tx_ring->netdev = adapter->netdev;
1613		tx_ring->dev = &adapter->pdev->dev;
1614		tx_ring->count = adapter->tx_desc_count;
1615		tx_ring->itr_setting = IAVF_ITR_TX_DEF;
1616		if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE)
1617			tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR;
1618
1619		rx_ring = &adapter->rx_rings[i];
1620		rx_ring->queue_index = i;
1621		rx_ring->netdev = adapter->netdev;
1622		rx_ring->dev = &adapter->pdev->dev;
1623		rx_ring->count = adapter->rx_desc_count;
1624		rx_ring->itr_setting = IAVF_ITR_RX_DEF;
1625	}
1626
1627	adapter->num_active_queues = num_active_queues;
1628
1629	iavf_set_queue_vlan_tag_loc(adapter);
1630
1631	return 0;
1632
1633err_out:
1634	iavf_free_queues(adapter);
1635	return -ENOMEM;
1636}
1637
1638/**
1639 * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported
1640 * @adapter: board private structure to initialize
1641 *
1642 * Attempt to configure the interrupts using the best available
1643 * capabilities of the hardware and the kernel.
1644 **/
1645static int iavf_set_interrupt_capability(struct iavf_adapter *adapter)
1646{
1647	int vector, v_budget;
1648	int pairs = 0;
1649	int err = 0;
1650
1651	if (!adapter->vsi_res) {
1652		err = -EIO;
1653		goto out;
1654	}
1655	pairs = adapter->num_active_queues;
1656
1657	/* It's easy to be greedy for MSI-X vectors, but it really doesn't do
1658	 * us much good if we have more vectors than CPUs. However, we already
1659	 * limit the total number of queues by the number of CPUs so we do not
1660	 * need any further limiting here.
1661	 */
1662	v_budget = min_t(int, pairs + NONQ_VECS,
1663			 (int)adapter->vf_res->max_vectors);
1664
1665	adapter->msix_entries = kcalloc(v_budget,
1666					sizeof(struct msix_entry), GFP_KERNEL);
1667	if (!adapter->msix_entries) {
1668		err = -ENOMEM;
1669		goto out;
1670	}
1671
1672	for (vector = 0; vector < v_budget; vector++)
1673		adapter->msix_entries[vector].entry = vector;
1674
1675	err = iavf_acquire_msix_vectors(adapter, v_budget);
1676	if (!err)
1677		iavf_schedule_finish_config(adapter);
1678
1679out:
1680	return err;
1681}
1682
1683/**
1684 * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands
1685 * @adapter: board private structure
1686 *
1687 * Return 0 on success, negative on failure
1688 **/
1689static int iavf_config_rss_aq(struct iavf_adapter *adapter)
1690{
1691	struct iavf_aqc_get_set_rss_key_data *rss_key =
1692		(struct iavf_aqc_get_set_rss_key_data *)adapter->rss_key;
1693	struct iavf_hw *hw = &adapter->hw;
1694	enum iavf_status status;
1695
1696	if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) {
1697		/* bail because we already have a command pending */
1698		dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n",
1699			adapter->current_op);
1700		return -EBUSY;
1701	}
1702
1703	status = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key);
1704	if (status) {
1705		dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n",
1706			iavf_stat_str(hw, status),
1707			iavf_aq_str(hw, hw->aq.asq_last_status));
1708		return iavf_status_to_errno(status);
1709
1710	}
1711
1712	status = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false,
1713				     adapter->rss_lut, adapter->rss_lut_size);
1714	if (status) {
1715		dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n",
1716			iavf_stat_str(hw, status),
1717			iavf_aq_str(hw, hw->aq.asq_last_status));
1718		return iavf_status_to_errno(status);
1719	}
1720
1721	return 0;
1722
1723}
1724
1725/**
1726 * iavf_config_rss_reg - Configure RSS keys and lut by writing registers
1727 * @adapter: board private structure
1728 *
1729 * Returns 0 on success, negative on failure
1730 **/
1731static int iavf_config_rss_reg(struct iavf_adapter *adapter)
1732{
1733	struct iavf_hw *hw = &adapter->hw;
1734	u32 *dw;
1735	u16 i;
1736
1737	dw = (u32 *)adapter->rss_key;
1738	for (i = 0; i <= adapter->rss_key_size / 4; i++)
1739		wr32(hw, IAVF_VFQF_HKEY(i), dw[i]);
1740
1741	dw = (u32 *)adapter->rss_lut;
1742	for (i = 0; i <= adapter->rss_lut_size / 4; i++)
1743		wr32(hw, IAVF_VFQF_HLUT(i), dw[i]);
1744
1745	iavf_flush(hw);
1746
1747	return 0;
1748}
1749
1750/**
1751 * iavf_config_rss - Configure RSS keys and lut
1752 * @adapter: board private structure
1753 *
1754 * Returns 0 on success, negative on failure
1755 **/
1756int iavf_config_rss(struct iavf_adapter *adapter)
1757{
1758
1759	if (RSS_PF(adapter)) {
1760		adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT |
1761					IAVF_FLAG_AQ_SET_RSS_KEY;
1762		return 0;
1763	} else if (RSS_AQ(adapter)) {
1764		return iavf_config_rss_aq(adapter);
1765	} else {
1766		return iavf_config_rss_reg(adapter);
1767	}
1768}
1769
1770/**
1771 * iavf_fill_rss_lut - Fill the lut with default values
1772 * @adapter: board private structure
1773 **/
1774static void iavf_fill_rss_lut(struct iavf_adapter *adapter)
1775{
1776	u16 i;
1777
1778	for (i = 0; i < adapter->rss_lut_size; i++)
1779		adapter->rss_lut[i] = i % adapter->num_active_queues;
1780}
1781
1782/**
1783 * iavf_init_rss - Prepare for RSS
1784 * @adapter: board private structure
1785 *
1786 * Return 0 on success, negative on failure
1787 **/
1788static int iavf_init_rss(struct iavf_adapter *adapter)
1789{
1790	struct iavf_hw *hw = &adapter->hw;
1791
1792	if (!RSS_PF(adapter)) {
1793		/* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */
1794		if (adapter->vf_res->vf_cap_flags &
1795		    VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
1796			adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED;
1797		else
1798			adapter->hena = IAVF_DEFAULT_RSS_HENA;
1799
1800		wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena);
1801		wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32));
1802	}
1803
1804	iavf_fill_rss_lut(adapter);
1805	netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size);
1806
1807	return iavf_config_rss(adapter);
1808}
1809
1810/**
1811 * iavf_alloc_q_vectors - Allocate memory for interrupt vectors
1812 * @adapter: board private structure to initialize
1813 *
1814 * We allocate one q_vector per queue interrupt.  If allocation fails we
1815 * return -ENOMEM.
1816 **/
1817static int iavf_alloc_q_vectors(struct iavf_adapter *adapter)
1818{
1819	int q_idx = 0, num_q_vectors;
1820	struct iavf_q_vector *q_vector;
1821
1822	num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1823	adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector),
1824				     GFP_KERNEL);
1825	if (!adapter->q_vectors)
1826		return -ENOMEM;
1827
1828	for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1829		q_vector = &adapter->q_vectors[q_idx];
1830		q_vector->adapter = adapter;
1831		q_vector->vsi = &adapter->vsi;
1832		q_vector->v_idx = q_idx;
1833		q_vector->reg_idx = q_idx;
1834		cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask);
1835		netif_napi_add(adapter->netdev, &q_vector->napi,
1836			       iavf_napi_poll);
1837	}
1838
1839	return 0;
1840}
1841
1842/**
1843 * iavf_free_q_vectors - Free memory allocated for interrupt vectors
1844 * @adapter: board private structure to initialize
1845 *
1846 * This function frees the memory allocated to the q_vectors.  In addition if
1847 * NAPI is enabled it will delete any references to the NAPI struct prior
1848 * to freeing the q_vector.
1849 **/
1850static void iavf_free_q_vectors(struct iavf_adapter *adapter)
1851{
1852	int q_idx, num_q_vectors;
1853
1854	if (!adapter->q_vectors)
1855		return;
1856
1857	num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1858
1859	for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1860		struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx];
1861
1862		netif_napi_del(&q_vector->napi);
1863	}
1864	kfree(adapter->q_vectors);
1865	adapter->q_vectors = NULL;
1866}
1867
1868/**
1869 * iavf_reset_interrupt_capability - Reset MSIX setup
1870 * @adapter: board private structure
1871 *
1872 **/
1873static void iavf_reset_interrupt_capability(struct iavf_adapter *adapter)
1874{
1875	if (!adapter->msix_entries)
1876		return;
1877
1878	pci_disable_msix(adapter->pdev);
1879	kfree(adapter->msix_entries);
1880	adapter->msix_entries = NULL;
1881}
1882
1883/**
1884 * iavf_init_interrupt_scheme - Determine if MSIX is supported and init
1885 * @adapter: board private structure to initialize
1886 *
1887 **/
1888static int iavf_init_interrupt_scheme(struct iavf_adapter *adapter)
1889{
1890	int err;
1891
1892	err = iavf_alloc_queues(adapter);
1893	if (err) {
1894		dev_err(&adapter->pdev->dev,
1895			"Unable to allocate memory for queues\n");
1896		goto err_alloc_queues;
1897	}
1898
1899	err = iavf_set_interrupt_capability(adapter);
1900	if (err) {
1901		dev_err(&adapter->pdev->dev,
1902			"Unable to setup interrupt capabilities\n");
1903		goto err_set_interrupt;
1904	}
1905
1906	err = iavf_alloc_q_vectors(adapter);
1907	if (err) {
1908		dev_err(&adapter->pdev->dev,
1909			"Unable to allocate memory for queue vectors\n");
1910		goto err_alloc_q_vectors;
1911	}
1912
1913	/* If we've made it so far while ADq flag being ON, then we haven't
1914	 * bailed out anywhere in middle. And ADq isn't just enabled but actual
1915	 * resources have been allocated in the reset path.
1916	 * Now we can truly claim that ADq is enabled.
1917	 */
1918	if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1919	    adapter->num_tc)
1920		dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created",
1921			 adapter->num_tc);
1922
1923	dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u",
1924		 (adapter->num_active_queues > 1) ? "Enabled" : "Disabled",
1925		 adapter->num_active_queues);
1926
1927	return 0;
1928err_alloc_q_vectors:
1929	iavf_reset_interrupt_capability(adapter);
1930err_set_interrupt:
1931	iavf_free_queues(adapter);
1932err_alloc_queues:
1933	return err;
1934}
1935
1936/**
1937 * iavf_free_rss - Free memory used by RSS structs
1938 * @adapter: board private structure
1939 **/
1940static void iavf_free_rss(struct iavf_adapter *adapter)
1941{
1942	kfree(adapter->rss_key);
1943	adapter->rss_key = NULL;
1944
1945	kfree(adapter->rss_lut);
1946	adapter->rss_lut = NULL;
1947}
1948
1949/**
1950 * iavf_reinit_interrupt_scheme - Reallocate queues and vectors
1951 * @adapter: board private structure
1952 * @running: true if adapter->state == __IAVF_RUNNING
1953 *
1954 * Returns 0 on success, negative on failure
1955 **/
1956static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter, bool running)
1957{
1958	struct net_device *netdev = adapter->netdev;
1959	int err;
1960
1961	if (running)
1962		iavf_free_traffic_irqs(adapter);
1963	iavf_free_misc_irq(adapter);
1964	iavf_reset_interrupt_capability(adapter);
1965	iavf_free_q_vectors(adapter);
1966	iavf_free_queues(adapter);
1967
1968	err =  iavf_init_interrupt_scheme(adapter);
1969	if (err)
1970		goto err;
1971
1972	netif_tx_stop_all_queues(netdev);
1973
1974	err = iavf_request_misc_irq(adapter);
1975	if (err)
1976		goto err;
1977
1978	set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1979
1980	iavf_map_rings_to_vectors(adapter);
1981err:
1982	return err;
1983}
1984
1985/**
1986 * iavf_finish_config - do all netdev work that needs RTNL
1987 * @work: our work_struct
1988 *
1989 * Do work that needs both RTNL and crit_lock.
1990 **/
1991static void iavf_finish_config(struct work_struct *work)
1992{
1993	struct iavf_adapter *adapter;
1994	int pairs, err;
1995
1996	adapter = container_of(work, struct iavf_adapter, finish_config);
1997
1998	/* Always take RTNL first to prevent circular lock dependency */
1999	rtnl_lock();
2000	mutex_lock(&adapter->crit_lock);
2001
2002	if ((adapter->flags & IAVF_FLAG_SETUP_NETDEV_FEATURES) &&
2003	    adapter->netdev_registered &&
2004	    !test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) {
2005		netdev_update_features(adapter->netdev);
2006		adapter->flags &= ~IAVF_FLAG_SETUP_NETDEV_FEATURES;
2007	}
2008
2009	switch (adapter->state) {
2010	case __IAVF_DOWN:
2011		if (!adapter->netdev_registered) {
2012			err = register_netdevice(adapter->netdev);
2013			if (err) {
2014				dev_err(&adapter->pdev->dev, "Unable to register netdev (%d)\n",
2015					err);
2016
2017				/* go back and try again.*/
2018				iavf_free_rss(adapter);
2019				iavf_free_misc_irq(adapter);
2020				iavf_reset_interrupt_capability(adapter);
2021				iavf_change_state(adapter,
2022						  __IAVF_INIT_CONFIG_ADAPTER);
2023				goto out;
2024			}
2025			adapter->netdev_registered = true;
2026		}
2027
2028		/* Set the real number of queues when reset occurs while
2029		 * state == __IAVF_DOWN
2030		 */
2031		fallthrough;
2032	case __IAVF_RUNNING:
2033		pairs = adapter->num_active_queues;
2034		netif_set_real_num_rx_queues(adapter->netdev, pairs);
2035		netif_set_real_num_tx_queues(adapter->netdev, pairs);
2036		break;
2037
2038	default:
2039		break;
2040	}
2041
2042out:
2043	mutex_unlock(&adapter->crit_lock);
2044	rtnl_unlock();
2045}
2046
2047/**
2048 * iavf_schedule_finish_config - Set the flags and schedule a reset event
2049 * @adapter: board private structure
2050 **/
2051void iavf_schedule_finish_config(struct iavf_adapter *adapter)
2052{
2053	if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
2054		queue_work(adapter->wq, &adapter->finish_config);
2055}
2056
2057/**
2058 * iavf_process_aq_command - process aq_required flags
2059 * and sends aq command
2060 * @adapter: pointer to iavf adapter structure
2061 *
2062 * Returns 0 on success
2063 * Returns error code if no command was sent
2064 * or error code if the command failed.
2065 **/
2066static int iavf_process_aq_command(struct iavf_adapter *adapter)
2067{
2068	if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG)
2069		return iavf_send_vf_config_msg(adapter);
2070	if (adapter->aq_required & IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS)
2071		return iavf_send_vf_offload_vlan_v2_msg(adapter);
2072	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) {
2073		iavf_disable_queues(adapter);
2074		return 0;
2075	}
2076
2077	if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) {
2078		iavf_map_queues(adapter);
2079		return 0;
2080	}
2081
2082	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) {
2083		iavf_add_ether_addrs(adapter);
2084		return 0;
2085	}
2086
2087	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) {
2088		iavf_add_vlans(adapter);
2089		return 0;
2090	}
2091
2092	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) {
2093		iavf_del_ether_addrs(adapter);
2094		return 0;
2095	}
2096
2097	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) {
2098		iavf_del_vlans(adapter);
2099		return 0;
2100	}
2101
2102	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) {
2103		iavf_enable_vlan_stripping(adapter);
2104		return 0;
2105	}
2106
2107	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) {
2108		iavf_disable_vlan_stripping(adapter);
2109		return 0;
2110	}
2111
2112	if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) {
2113		iavf_configure_queues(adapter);
2114		return 0;
2115	}
2116
2117	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) {
2118		iavf_enable_queues(adapter);
2119		return 0;
2120	}
2121
2122	if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) {
2123		/* This message goes straight to the firmware, not the
2124		 * PF, so we don't have to set current_op as we will
2125		 * not get a response through the ARQ.
2126		 */
2127		adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS;
2128		return 0;
2129	}
2130	if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) {
2131		iavf_get_hena(adapter);
2132		return 0;
2133	}
2134	if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) {
2135		iavf_set_hena(adapter);
2136		return 0;
2137	}
2138	if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) {
2139		iavf_set_rss_key(adapter);
2140		return 0;
2141	}
2142	if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) {
2143		iavf_set_rss_lut(adapter);
2144		return 0;
2145	}
2146
2147	if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_PROMISC_MODE) {
2148		iavf_set_promiscuous(adapter);
2149		return 0;
2150	}
2151
2152	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) {
2153		iavf_enable_channels(adapter);
2154		return 0;
2155	}
2156
2157	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) {
2158		iavf_disable_channels(adapter);
2159		return 0;
2160	}
2161	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
2162		iavf_add_cloud_filter(adapter);
2163		return 0;
2164	}
2165
2166	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
2167		iavf_del_cloud_filter(adapter);
2168		return 0;
2169	}
2170	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
2171		iavf_del_cloud_filter(adapter);
2172		return 0;
2173	}
2174	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
2175		iavf_add_cloud_filter(adapter);
2176		return 0;
2177	}
2178	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_FDIR_FILTER) {
2179		iavf_add_fdir_filter(adapter);
2180		return IAVF_SUCCESS;
2181	}
2182	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_FDIR_FILTER) {
2183		iavf_del_fdir_filter(adapter);
2184		return IAVF_SUCCESS;
2185	}
2186	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_ADV_RSS_CFG) {
2187		iavf_add_adv_rss_cfg(adapter);
2188		return 0;
2189	}
2190	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_ADV_RSS_CFG) {
2191		iavf_del_adv_rss_cfg(adapter);
2192		return 0;
2193	}
2194	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING) {
2195		iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021Q);
2196		return 0;
2197	}
2198	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING) {
2199		iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021AD);
2200		return 0;
2201	}
2202	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING) {
2203		iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021Q);
2204		return 0;
2205	}
2206	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING) {
2207		iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021AD);
2208		return 0;
2209	}
2210	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION) {
2211		iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021Q);
2212		return 0;
2213	}
2214	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION) {
2215		iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021AD);
2216		return 0;
2217	}
2218	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION) {
2219		iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021Q);
2220		return 0;
2221	}
2222	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION) {
2223		iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021AD);
2224		return 0;
2225	}
2226
2227	if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_STATS) {
2228		iavf_request_stats(adapter);
2229		return 0;
2230	}
2231
2232	return -EAGAIN;
2233}
2234
2235/**
2236 * iavf_set_vlan_offload_features - set VLAN offload configuration
2237 * @adapter: board private structure
2238 * @prev_features: previous features used for comparison
2239 * @features: updated features used for configuration
2240 *
2241 * Set the aq_required bit(s) based on the requested features passed in to
2242 * configure VLAN stripping and/or VLAN insertion if supported. Also, schedule
2243 * the watchdog if any changes are requested to expedite the request via
2244 * virtchnl.
2245 **/
2246static void
2247iavf_set_vlan_offload_features(struct iavf_adapter *adapter,
2248			       netdev_features_t prev_features,
2249			       netdev_features_t features)
2250{
2251	bool enable_stripping = true, enable_insertion = true;
2252	u16 vlan_ethertype = 0;
2253	u64 aq_required = 0;
2254
2255	/* keep cases separate because one ethertype for offloads can be
2256	 * disabled at the same time as another is disabled, so check for an
2257	 * enabled ethertype first, then check for disabled. Default to
2258	 * ETH_P_8021Q so an ethertype is specified if disabling insertion and
2259	 * stripping.
2260	 */
2261	if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
2262		vlan_ethertype = ETH_P_8021AD;
2263	else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
2264		vlan_ethertype = ETH_P_8021Q;
2265	else if (prev_features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
2266		vlan_ethertype = ETH_P_8021AD;
2267	else if (prev_features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
2268		vlan_ethertype = ETH_P_8021Q;
2269	else
2270		vlan_ethertype = ETH_P_8021Q;
2271
2272	if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX)))
2273		enable_stripping = false;
2274	if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX)))
2275		enable_insertion = false;
2276
2277	if (VLAN_ALLOWED(adapter)) {
2278		/* VIRTCHNL_VF_OFFLOAD_VLAN only has support for toggling VLAN
2279		 * stripping via virtchnl. VLAN insertion can be toggled on the
2280		 * netdev, but it doesn't require a virtchnl message
2281		 */
2282		if (enable_stripping)
2283			aq_required |= IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING;
2284		else
2285			aq_required |= IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING;
2286
2287	} else if (VLAN_V2_ALLOWED(adapter)) {
2288		switch (vlan_ethertype) {
2289		case ETH_P_8021Q:
2290			if (enable_stripping)
2291				aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING;
2292			else
2293				aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING;
2294
2295			if (enable_insertion)
2296				aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION;
2297			else
2298				aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION;
2299			break;
2300		case ETH_P_8021AD:
2301			if (enable_stripping)
2302				aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING;
2303			else
2304				aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING;
2305
2306			if (enable_insertion)
2307				aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION;
2308			else
2309				aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION;
2310			break;
2311		}
2312	}
2313
2314	if (aq_required) {
2315		adapter->aq_required |= aq_required;
2316		mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0);
2317	}
2318}
2319
2320/**
2321 * iavf_startup - first step of driver startup
2322 * @adapter: board private structure
2323 *
2324 * Function process __IAVF_STARTUP driver state.
2325 * When success the state is changed to __IAVF_INIT_VERSION_CHECK
2326 * when fails the state is changed to __IAVF_INIT_FAILED
2327 **/
2328static void iavf_startup(struct iavf_adapter *adapter)
2329{
2330	struct pci_dev *pdev = adapter->pdev;
2331	struct iavf_hw *hw = &adapter->hw;
2332	enum iavf_status status;
2333	int ret;
2334
2335	WARN_ON(adapter->state != __IAVF_STARTUP);
2336
2337	/* driver loaded, probe complete */
2338	adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2339	adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2340	status = iavf_set_mac_type(hw);
2341	if (status) {
2342		dev_err(&pdev->dev, "Failed to set MAC type (%d)\n", status);
2343		goto err;
2344	}
2345
2346	ret = iavf_check_reset_complete(hw);
2347	if (ret) {
2348		dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n",
2349			 ret);
2350		goto err;
2351	}
2352	hw->aq.num_arq_entries = IAVF_AQ_LEN;
2353	hw->aq.num_asq_entries = IAVF_AQ_LEN;
2354	hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
2355	hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
2356
2357	status = iavf_init_adminq(hw);
2358	if (status) {
2359		dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n",
2360			status);
2361		goto err;
2362	}
2363	ret = iavf_send_api_ver(adapter);
2364	if (ret) {
2365		dev_err(&pdev->dev, "Unable to send to PF (%d)\n", ret);
2366		iavf_shutdown_adminq(hw);
2367		goto err;
2368	}
2369	iavf_change_state(adapter, __IAVF_INIT_VERSION_CHECK);
2370	return;
2371err:
2372	iavf_change_state(adapter, __IAVF_INIT_FAILED);
2373}
2374
2375/**
2376 * iavf_init_version_check - second step of driver startup
2377 * @adapter: board private structure
2378 *
2379 * Function process __IAVF_INIT_VERSION_CHECK driver state.
2380 * When success the state is changed to __IAVF_INIT_GET_RESOURCES
2381 * when fails the state is changed to __IAVF_INIT_FAILED
2382 **/
2383static void iavf_init_version_check(struct iavf_adapter *adapter)
2384{
2385	struct pci_dev *pdev = adapter->pdev;
2386	struct iavf_hw *hw = &adapter->hw;
2387	int err = -EAGAIN;
2388
2389	WARN_ON(adapter->state != __IAVF_INIT_VERSION_CHECK);
2390
2391	if (!iavf_asq_done(hw)) {
2392		dev_err(&pdev->dev, "Admin queue command never completed\n");
2393		iavf_shutdown_adminq(hw);
2394		iavf_change_state(adapter, __IAVF_STARTUP);
2395		goto err;
2396	}
2397
2398	/* aq msg sent, awaiting reply */
2399	err = iavf_verify_api_ver(adapter);
2400	if (err) {
2401		if (err == -EALREADY)
2402			err = iavf_send_api_ver(adapter);
2403		else
2404			dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n",
2405				adapter->pf_version.major,
2406				adapter->pf_version.minor,
2407				VIRTCHNL_VERSION_MAJOR,
2408				VIRTCHNL_VERSION_MINOR);
2409		goto err;
2410	}
2411	err = iavf_send_vf_config_msg(adapter);
2412	if (err) {
2413		dev_err(&pdev->dev, "Unable to send config request (%d)\n",
2414			err);
2415		goto err;
2416	}
2417	iavf_change_state(adapter, __IAVF_INIT_GET_RESOURCES);
2418	return;
2419err:
2420	iavf_change_state(adapter, __IAVF_INIT_FAILED);
2421}
2422
2423/**
2424 * iavf_parse_vf_resource_msg - parse response from VIRTCHNL_OP_GET_VF_RESOURCES
2425 * @adapter: board private structure
2426 */
2427int iavf_parse_vf_resource_msg(struct iavf_adapter *adapter)
2428{
2429	int i, num_req_queues = adapter->num_req_queues;
2430	struct iavf_vsi *vsi = &adapter->vsi;
2431
2432	for (i = 0; i < adapter->vf_res->num_vsis; i++) {
2433		if (adapter->vf_res->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV)
2434			adapter->vsi_res = &adapter->vf_res->vsi_res[i];
2435	}
2436	if (!adapter->vsi_res) {
2437		dev_err(&adapter->pdev->dev, "No LAN VSI found\n");
2438		return -ENODEV;
2439	}
2440
2441	if (num_req_queues &&
2442	    num_req_queues > adapter->vsi_res->num_queue_pairs) {
2443		/* Problem.  The PF gave us fewer queues than what we had
2444		 * negotiated in our request.  Need a reset to see if we can't
2445		 * get back to a working state.
2446		 */
2447		dev_err(&adapter->pdev->dev,
2448			"Requested %d queues, but PF only gave us %d.\n",
2449			num_req_queues,
2450			adapter->vsi_res->num_queue_pairs);
2451		adapter->flags |= IAVF_FLAG_REINIT_MSIX_NEEDED;
2452		adapter->num_req_queues = adapter->vsi_res->num_queue_pairs;
2453		iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED);
2454
2455		return -EAGAIN;
2456	}
2457	adapter->num_req_queues = 0;
2458	adapter->vsi.id = adapter->vsi_res->vsi_id;
2459
2460	adapter->vsi.back = adapter;
2461	adapter->vsi.base_vector = 1;
2462	vsi->netdev = adapter->netdev;
2463	vsi->qs_handle = adapter->vsi_res->qset_handle;
2464	if (adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
2465		adapter->rss_key_size = adapter->vf_res->rss_key_size;
2466		adapter->rss_lut_size = adapter->vf_res->rss_lut_size;
2467	} else {
2468		adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE;
2469		adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE;
2470	}
2471
2472	return 0;
2473}
2474
2475/**
2476 * iavf_init_get_resources - third step of driver startup
2477 * @adapter: board private structure
2478 *
2479 * Function process __IAVF_INIT_GET_RESOURCES driver state and
2480 * finishes driver initialization procedure.
2481 * When success the state is changed to __IAVF_DOWN
2482 * when fails the state is changed to __IAVF_INIT_FAILED
2483 **/
2484static void iavf_init_get_resources(struct iavf_adapter *adapter)
2485{
2486	struct pci_dev *pdev = adapter->pdev;
2487	struct iavf_hw *hw = &adapter->hw;
2488	int err;
2489
2490	WARN_ON(adapter->state != __IAVF_INIT_GET_RESOURCES);
2491	/* aq msg sent, awaiting reply */
2492	if (!adapter->vf_res) {
2493		adapter->vf_res = kzalloc(IAVF_VIRTCHNL_VF_RESOURCE_SIZE,
2494					  GFP_KERNEL);
2495		if (!adapter->vf_res) {
2496			err = -ENOMEM;
2497			goto err;
2498		}
2499	}
2500	err = iavf_get_vf_config(adapter);
2501	if (err == -EALREADY) {
2502		err = iavf_send_vf_config_msg(adapter);
2503		goto err;
2504	} else if (err == -EINVAL) {
2505		/* We only get -EINVAL if the device is in a very bad
2506		 * state or if we've been disabled for previous bad
2507		 * behavior. Either way, we're done now.
2508		 */
2509		iavf_shutdown_adminq(hw);
2510		dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n");
2511		return;
2512	}
2513	if (err) {
2514		dev_err(&pdev->dev, "Unable to get VF config (%d)\n", err);
2515		goto err_alloc;
2516	}
2517
2518	err = iavf_parse_vf_resource_msg(adapter);
2519	if (err) {
2520		dev_err(&pdev->dev, "Failed to parse VF resource message from PF (%d)\n",
2521			err);
2522		goto err_alloc;
2523	}
2524	/* Some features require additional messages to negotiate extended
2525	 * capabilities. These are processed in sequence by the
2526	 * __IAVF_INIT_EXTENDED_CAPS driver state.
2527	 */
2528	adapter->extended_caps = IAVF_EXTENDED_CAPS;
2529
2530	iavf_change_state(adapter, __IAVF_INIT_EXTENDED_CAPS);
2531	return;
2532
2533err_alloc:
2534	kfree(adapter->vf_res);
2535	adapter->vf_res = NULL;
2536err:
2537	iavf_change_state(adapter, __IAVF_INIT_FAILED);
2538}
2539
2540/**
2541 * iavf_init_send_offload_vlan_v2_caps - part of initializing VLAN V2 caps
2542 * @adapter: board private structure
2543 *
2544 * Function processes send of the extended VLAN V2 capability message to the
2545 * PF. Must clear IAVF_EXTENDED_CAP_RECV_VLAN_V2 if the message is not sent,
2546 * e.g. due to PF not negotiating VIRTCHNL_VF_OFFLOAD_VLAN_V2.
2547 */
2548static void iavf_init_send_offload_vlan_v2_caps(struct iavf_adapter *adapter)
2549{
2550	int ret;
2551
2552	WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2));
2553
2554	ret = iavf_send_vf_offload_vlan_v2_msg(adapter);
2555	if (ret && ret == -EOPNOTSUPP) {
2556		/* PF does not support VIRTCHNL_VF_OFFLOAD_V2. In this case,
2557		 * we did not send the capability exchange message and do not
2558		 * expect a response.
2559		 */
2560		adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2;
2561	}
2562
2563	/* We sent the message, so move on to the next step */
2564	adapter->extended_caps &= ~IAVF_EXTENDED_CAP_SEND_VLAN_V2;
2565}
2566
2567/**
2568 * iavf_init_recv_offload_vlan_v2_caps - part of initializing VLAN V2 caps
2569 * @adapter: board private structure
2570 *
2571 * Function processes receipt of the extended VLAN V2 capability message from
2572 * the PF.
2573 **/
2574static void iavf_init_recv_offload_vlan_v2_caps(struct iavf_adapter *adapter)
2575{
2576	int ret;
2577
2578	WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2));
2579
2580	memset(&adapter->vlan_v2_caps, 0, sizeof(adapter->vlan_v2_caps));
2581
2582	ret = iavf_get_vf_vlan_v2_caps(adapter);
2583	if (ret)
2584		goto err;
2585
2586	/* We've processed receipt of the VLAN V2 caps message */
2587	adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2;
2588	return;
2589err:
2590	/* We didn't receive a reply. Make sure we try sending again when
2591	 * __IAVF_INIT_FAILED attempts to recover.
2592	 */
2593	adapter->extended_caps |= IAVF_EXTENDED_CAP_SEND_VLAN_V2;
2594	iavf_change_state(adapter, __IAVF_INIT_FAILED);
2595}
2596
2597/**
2598 * iavf_init_process_extended_caps - Part of driver startup
2599 * @adapter: board private structure
2600 *
2601 * Function processes __IAVF_INIT_EXTENDED_CAPS driver state. This state
2602 * handles negotiating capabilities for features which require an additional
2603 * message.
2604 *
2605 * Once all extended capabilities exchanges are finished, the driver will
2606 * transition into __IAVF_INIT_CONFIG_ADAPTER.
2607 */
2608static void iavf_init_process_extended_caps(struct iavf_adapter *adapter)
2609{
2610	WARN_ON(adapter->state != __IAVF_INIT_EXTENDED_CAPS);
2611
2612	/* Process capability exchange for VLAN V2 */
2613	if (adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2) {
2614		iavf_init_send_offload_vlan_v2_caps(adapter);
2615		return;
2616	} else if (adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2) {
2617		iavf_init_recv_offload_vlan_v2_caps(adapter);
2618		return;
2619	}
2620
2621	/* When we reach here, no further extended capabilities exchanges are
2622	 * necessary, so we finally transition into __IAVF_INIT_CONFIG_ADAPTER
2623	 */
2624	iavf_change_state(adapter, __IAVF_INIT_CONFIG_ADAPTER);
2625}
2626
2627/**
2628 * iavf_init_config_adapter - last part of driver startup
2629 * @adapter: board private structure
2630 *
2631 * After all the supported capabilities are negotiated, then the
2632 * __IAVF_INIT_CONFIG_ADAPTER state will finish driver initialization.
2633 */
2634static void iavf_init_config_adapter(struct iavf_adapter *adapter)
2635{
2636	struct net_device *netdev = adapter->netdev;
2637	struct pci_dev *pdev = adapter->pdev;
2638	int err;
2639
2640	WARN_ON(adapter->state != __IAVF_INIT_CONFIG_ADAPTER);
2641
2642	if (iavf_process_config(adapter))
2643		goto err;
2644
2645	adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2646
2647	adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED;
2648
2649	netdev->netdev_ops = &iavf_netdev_ops;
2650	iavf_set_ethtool_ops(netdev);
2651	netdev->watchdog_timeo = 5 * HZ;
2652
2653	/* MTU range: 68 - 9710 */
2654	netdev->min_mtu = ETH_MIN_MTU;
2655	netdev->max_mtu = IAVF_MAX_RXBUFFER - IAVF_PACKET_HDR_PAD;
2656
2657	if (!is_valid_ether_addr(adapter->hw.mac.addr)) {
2658		dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n",
2659			 adapter->hw.mac.addr);
2660		eth_hw_addr_random(netdev);
2661		ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr);
2662	} else {
2663		eth_hw_addr_set(netdev, adapter->hw.mac.addr);
2664		ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr);
2665	}
2666
2667	adapter->tx_desc_count = IAVF_DEFAULT_TXD;
2668	adapter->rx_desc_count = IAVF_DEFAULT_RXD;
2669	err = iavf_init_interrupt_scheme(adapter);
2670	if (err)
2671		goto err_sw_init;
2672	iavf_map_rings_to_vectors(adapter);
2673	if (adapter->vf_res->vf_cap_flags &
2674		VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
2675		adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE;
2676
2677	err = iavf_request_misc_irq(adapter);
2678	if (err)
2679		goto err_sw_init;
2680
2681	netif_carrier_off(netdev);
2682	adapter->link_up = false;
2683	netif_tx_stop_all_queues(netdev);
2684
2685	if (CLIENT_ALLOWED(adapter)) {
2686		err = iavf_lan_add_device(adapter);
2687		if (err)
2688			dev_info(&pdev->dev, "Failed to add VF to client API service list: %d\n",
2689				 err);
2690	}
2691	dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr);
2692	if (netdev->features & NETIF_F_GRO)
2693		dev_info(&pdev->dev, "GRO is enabled\n");
2694
2695	iavf_change_state(adapter, __IAVF_DOWN);
2696	set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
2697
2698	iavf_misc_irq_enable(adapter);
2699	wake_up(&adapter->down_waitqueue);
2700
2701	adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL);
2702	adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL);
2703	if (!adapter->rss_key || !adapter->rss_lut) {
2704		err = -ENOMEM;
2705		goto err_mem;
2706	}
2707	if (RSS_AQ(adapter))
2708		adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
2709	else
2710		iavf_init_rss(adapter);
2711
2712	if (VLAN_V2_ALLOWED(adapter))
2713		/* request initial VLAN offload settings */
2714		iavf_set_vlan_offload_features(adapter, 0, netdev->features);
2715
2716	iavf_schedule_finish_config(adapter);
2717	return;
2718
2719err_mem:
2720	iavf_free_rss(adapter);
2721	iavf_free_misc_irq(adapter);
2722err_sw_init:
2723	iavf_reset_interrupt_capability(adapter);
2724err:
2725	iavf_change_state(adapter, __IAVF_INIT_FAILED);
2726}
2727
2728/**
2729 * iavf_watchdog_task - Periodic call-back task
2730 * @work: pointer to work_struct
2731 **/
2732static void iavf_watchdog_task(struct work_struct *work)
2733{
2734	struct iavf_adapter *adapter = container_of(work,
2735						    struct iavf_adapter,
2736						    watchdog_task.work);
2737	struct iavf_hw *hw = &adapter->hw;
2738	u32 reg_val;
2739
2740	if (!mutex_trylock(&adapter->crit_lock)) {
2741		if (adapter->state == __IAVF_REMOVE)
2742			return;
2743
2744		goto restart_watchdog;
2745	}
2746
2747	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
2748		iavf_change_state(adapter, __IAVF_COMM_FAILED);
2749
2750	switch (adapter->state) {
2751	case __IAVF_STARTUP:
2752		iavf_startup(adapter);
2753		mutex_unlock(&adapter->crit_lock);
2754		queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2755				   msecs_to_jiffies(30));
2756		return;
2757	case __IAVF_INIT_VERSION_CHECK:
2758		iavf_init_version_check(adapter);
2759		mutex_unlock(&adapter->crit_lock);
2760		queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2761				   msecs_to_jiffies(30));
2762		return;
2763	case __IAVF_INIT_GET_RESOURCES:
2764		iavf_init_get_resources(adapter);
2765		mutex_unlock(&adapter->crit_lock);
2766		queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2767				   msecs_to_jiffies(1));
2768		return;
2769	case __IAVF_INIT_EXTENDED_CAPS:
2770		iavf_init_process_extended_caps(adapter);
2771		mutex_unlock(&adapter->crit_lock);
2772		queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2773				   msecs_to_jiffies(1));
2774		return;
2775	case __IAVF_INIT_CONFIG_ADAPTER:
2776		iavf_init_config_adapter(adapter);
2777		mutex_unlock(&adapter->crit_lock);
2778		queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2779				   msecs_to_jiffies(1));
2780		return;
2781	case __IAVF_INIT_FAILED:
2782		if (test_bit(__IAVF_IN_REMOVE_TASK,
2783			     &adapter->crit_section)) {
2784			/* Do not update the state and do not reschedule
2785			 * watchdog task, iavf_remove should handle this state
2786			 * as it can loop forever
2787			 */
2788			mutex_unlock(&adapter->crit_lock);
2789			return;
2790		}
2791		if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) {
2792			dev_err(&adapter->pdev->dev,
2793				"Failed to communicate with PF; waiting before retry\n");
2794			adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
2795			iavf_shutdown_adminq(hw);
2796			mutex_unlock(&adapter->crit_lock);
2797			queue_delayed_work(adapter->wq,
2798					   &adapter->watchdog_task, (5 * HZ));
2799			return;
2800		}
2801		/* Try again from failed step*/
2802		iavf_change_state(adapter, adapter->last_state);
2803		mutex_unlock(&adapter->crit_lock);
2804		queue_delayed_work(adapter->wq, &adapter->watchdog_task, HZ);
2805		return;
2806	case __IAVF_COMM_FAILED:
2807		if (test_bit(__IAVF_IN_REMOVE_TASK,
2808			     &adapter->crit_section)) {
2809			/* Set state to __IAVF_INIT_FAILED and perform remove
2810			 * steps. Remove IAVF_FLAG_PF_COMMS_FAILED so the task
2811			 * doesn't bring the state back to __IAVF_COMM_FAILED.
2812			 */
2813			iavf_change_state(adapter, __IAVF_INIT_FAILED);
2814			adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2815			mutex_unlock(&adapter->crit_lock);
2816			return;
2817		}
2818		reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
2819			  IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
2820		if (reg_val == VIRTCHNL_VFR_VFACTIVE ||
2821		    reg_val == VIRTCHNL_VFR_COMPLETED) {
2822			/* A chance for redemption! */
2823			dev_err(&adapter->pdev->dev,
2824				"Hardware came out of reset. Attempting reinit.\n");
2825			/* When init task contacts the PF and
2826			 * gets everything set up again, it'll restart the
2827			 * watchdog for us. Down, boy. Sit. Stay. Woof.
2828			 */
2829			iavf_change_state(adapter, __IAVF_STARTUP);
2830			adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2831		}
2832		adapter->aq_required = 0;
2833		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2834		mutex_unlock(&adapter->crit_lock);
2835		queue_delayed_work(adapter->wq,
2836				   &adapter->watchdog_task,
2837				   msecs_to_jiffies(10));
2838		return;
2839	case __IAVF_RESETTING:
2840		mutex_unlock(&adapter->crit_lock);
2841		queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2842				   HZ * 2);
2843		return;
2844	case __IAVF_DOWN:
2845	case __IAVF_DOWN_PENDING:
2846	case __IAVF_TESTING:
2847	case __IAVF_RUNNING:
2848		if (adapter->current_op) {
2849			if (!iavf_asq_done(hw)) {
2850				dev_dbg(&adapter->pdev->dev,
2851					"Admin queue timeout\n");
2852				iavf_send_api_ver(adapter);
2853			}
2854		} else {
2855			int ret = iavf_process_aq_command(adapter);
2856
2857			/* An error will be returned if no commands were
2858			 * processed; use this opportunity to update stats
2859			 * if the error isn't -ENOTSUPP
2860			 */
2861			if (ret && ret != -EOPNOTSUPP &&
2862			    adapter->state == __IAVF_RUNNING)
2863				iavf_request_stats(adapter);
2864		}
2865		if (adapter->state == __IAVF_RUNNING)
2866			iavf_detect_recover_hung(&adapter->vsi);
2867		break;
2868	case __IAVF_REMOVE:
2869	default:
2870		mutex_unlock(&adapter->crit_lock);
2871		return;
2872	}
2873
2874	/* check for hw reset */
2875	reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK;
2876	if (!reg_val) {
2877		adapter->aq_required = 0;
2878		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2879		dev_err(&adapter->pdev->dev, "Hardware reset detected\n");
2880		iavf_schedule_reset(adapter, IAVF_FLAG_RESET_PENDING);
2881		mutex_unlock(&adapter->crit_lock);
2882		queue_delayed_work(adapter->wq,
2883				   &adapter->watchdog_task, HZ * 2);
2884		return;
2885	}
2886
2887	schedule_delayed_work(&adapter->client_task, msecs_to_jiffies(5));
2888	mutex_unlock(&adapter->crit_lock);
2889restart_watchdog:
2890	if (adapter->state >= __IAVF_DOWN)
2891		queue_work(adapter->wq, &adapter->adminq_task);
2892	if (adapter->aq_required)
2893		queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2894				   msecs_to_jiffies(20));
2895	else
2896		queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2897				   HZ * 2);
2898}
2899
2900/**
2901 * iavf_disable_vf - disable VF
2902 * @adapter: board private structure
2903 *
2904 * Set communication failed flag and free all resources.
2905 * NOTE: This function is expected to be called with crit_lock being held.
2906 **/
2907static void iavf_disable_vf(struct iavf_adapter *adapter)
2908{
2909	struct iavf_mac_filter *f, *ftmp;
2910	struct iavf_vlan_filter *fv, *fvtmp;
2911	struct iavf_cloud_filter *cf, *cftmp;
2912
2913	adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
2914
2915	/* We don't use netif_running() because it may be true prior to
2916	 * ndo_open() returning, so we can't assume it means all our open
2917	 * tasks have finished, since we're not holding the rtnl_lock here.
2918	 */
2919	if (adapter->state == __IAVF_RUNNING) {
2920		set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
2921		netif_carrier_off(adapter->netdev);
2922		netif_tx_disable(adapter->netdev);
2923		adapter->link_up = false;
2924		iavf_napi_disable_all(adapter);
2925		iavf_irq_disable(adapter);
2926		iavf_free_traffic_irqs(adapter);
2927		iavf_free_all_tx_resources(adapter);
2928		iavf_free_all_rx_resources(adapter);
2929	}
2930
2931	spin_lock_bh(&adapter->mac_vlan_list_lock);
2932
2933	/* Delete all of the filters */
2934	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
2935		list_del(&f->list);
2936		kfree(f);
2937	}
2938
2939	list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) {
2940		list_del(&fv->list);
2941		kfree(fv);
2942	}
2943	adapter->num_vlan_filters = 0;
2944
2945	spin_unlock_bh(&adapter->mac_vlan_list_lock);
2946
2947	spin_lock_bh(&adapter->cloud_filter_list_lock);
2948	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
2949		list_del(&cf->list);
2950		kfree(cf);
2951		adapter->num_cloud_filters--;
2952	}
2953	spin_unlock_bh(&adapter->cloud_filter_list_lock);
2954
2955	iavf_free_misc_irq(adapter);
2956	iavf_reset_interrupt_capability(adapter);
2957	iavf_free_q_vectors(adapter);
2958	iavf_free_queues(adapter);
2959	memset(adapter->vf_res, 0, IAVF_VIRTCHNL_VF_RESOURCE_SIZE);
2960	iavf_shutdown_adminq(&adapter->hw);
2961	adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2962	iavf_change_state(adapter, __IAVF_DOWN);
2963	wake_up(&adapter->down_waitqueue);
2964	dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n");
2965}
2966
2967/**
2968 * iavf_reset_task - Call-back task to handle hardware reset
2969 * @work: pointer to work_struct
2970 *
2971 * During reset we need to shut down and reinitialize the admin queue
2972 * before we can use it to communicate with the PF again. We also clear
2973 * and reinit the rings because that context is lost as well.
2974 **/
2975static void iavf_reset_task(struct work_struct *work)
2976{
2977	struct iavf_adapter *adapter = container_of(work,
2978						      struct iavf_adapter,
2979						      reset_task);
2980	struct virtchnl_vf_resource *vfres = adapter->vf_res;
2981	struct net_device *netdev = adapter->netdev;
2982	struct iavf_hw *hw = &adapter->hw;
2983	struct iavf_mac_filter *f, *ftmp;
2984	struct iavf_cloud_filter *cf;
2985	enum iavf_status status;
2986	u32 reg_val;
2987	int i = 0, err;
2988	bool running;
2989
2990	/* When device is being removed it doesn't make sense to run the reset
2991	 * task, just return in such a case.
2992	 */
2993	if (!mutex_trylock(&adapter->crit_lock)) {
2994		if (adapter->state != __IAVF_REMOVE)
2995			queue_work(adapter->wq, &adapter->reset_task);
2996
2997		return;
2998	}
2999
3000	while (!mutex_trylock(&adapter->client_lock))
3001		usleep_range(500, 1000);
3002	if (CLIENT_ENABLED(adapter)) {
3003		adapter->flags &= ~(IAVF_FLAG_CLIENT_NEEDS_OPEN |
3004				    IAVF_FLAG_CLIENT_NEEDS_CLOSE |
3005				    IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS |
3006				    IAVF_FLAG_SERVICE_CLIENT_REQUESTED);
3007		cancel_delayed_work_sync(&adapter->client_task);
3008		iavf_notify_client_close(&adapter->vsi, true);
3009	}
3010	iavf_misc_irq_disable(adapter);
3011	if (adapter->flags & IAVF_FLAG_RESET_NEEDED) {
3012		adapter->flags &= ~IAVF_FLAG_RESET_NEEDED;
3013		/* Restart the AQ here. If we have been reset but didn't
3014		 * detect it, or if the PF had to reinit, our AQ will be hosed.
3015		 */
3016		iavf_shutdown_adminq(hw);
3017		iavf_init_adminq(hw);
3018		iavf_request_reset(adapter);
3019	}
3020	adapter->flags |= IAVF_FLAG_RESET_PENDING;
3021
3022	/* poll until we see the reset actually happen */
3023	for (i = 0; i < IAVF_RESET_WAIT_DETECTED_COUNT; i++) {
3024		reg_val = rd32(hw, IAVF_VF_ARQLEN1) &
3025			  IAVF_VF_ARQLEN1_ARQENABLE_MASK;
3026		if (!reg_val)
3027			break;
3028		usleep_range(5000, 10000);
3029	}
3030	if (i == IAVF_RESET_WAIT_DETECTED_COUNT) {
3031		dev_info(&adapter->pdev->dev, "Never saw reset\n");
3032		goto continue_reset; /* act like the reset happened */
3033	}
3034
3035	/* wait until the reset is complete and the PF is responding to us */
3036	for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
3037		/* sleep first to make sure a minimum wait time is met */
3038		msleep(IAVF_RESET_WAIT_MS);
3039
3040		reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
3041			  IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
3042		if (reg_val == VIRTCHNL_VFR_VFACTIVE)
3043			break;
3044	}
3045
3046	pci_set_master(adapter->pdev);
3047	pci_restore_msi_state(adapter->pdev);
3048
3049	if (i == IAVF_RESET_WAIT_COMPLETE_COUNT) {
3050		dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n",
3051			reg_val);
3052		iavf_disable_vf(adapter);
3053		mutex_unlock(&adapter->client_lock);
3054		mutex_unlock(&adapter->crit_lock);
3055		return; /* Do not attempt to reinit. It's dead, Jim. */
3056	}
3057
3058continue_reset:
3059	/* We don't use netif_running() because it may be true prior to
3060	 * ndo_open() returning, so we can't assume it means all our open
3061	 * tasks have finished, since we're not holding the rtnl_lock here.
3062	 */
3063	running = adapter->state == __IAVF_RUNNING;
3064
3065	if (running) {
3066		netif_carrier_off(netdev);
3067		netif_tx_stop_all_queues(netdev);
3068		adapter->link_up = false;
3069		iavf_napi_disable_all(adapter);
3070	}
3071	iavf_irq_disable(adapter);
3072
3073	iavf_change_state(adapter, __IAVF_RESETTING);
3074	adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
3075
3076	/* free the Tx/Rx rings and descriptors, might be better to just
3077	 * re-use them sometime in the future
3078	 */
3079	iavf_free_all_rx_resources(adapter);
3080	iavf_free_all_tx_resources(adapter);
3081
3082	adapter->flags |= IAVF_FLAG_QUEUES_DISABLED;
3083	/* kill and reinit the admin queue */
3084	iavf_shutdown_adminq(hw);
3085	adapter->current_op = VIRTCHNL_OP_UNKNOWN;
3086	status = iavf_init_adminq(hw);
3087	if (status) {
3088		dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n",
3089			 status);
3090		goto reset_err;
3091	}
3092	adapter->aq_required = 0;
3093
3094	if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) ||
3095	    (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) {
3096		err = iavf_reinit_interrupt_scheme(adapter, running);
3097		if (err)
3098			goto reset_err;
3099	}
3100
3101	if (RSS_AQ(adapter)) {
3102		adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
3103	} else {
3104		err = iavf_init_rss(adapter);
3105		if (err)
3106			goto reset_err;
3107	}
3108
3109	adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG;
3110	/* always set since VIRTCHNL_OP_GET_VF_RESOURCES has not been
3111	 * sent/received yet, so VLAN_V2_ALLOWED() cannot is not reliable here,
3112	 * however the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS won't be sent until
3113	 * VIRTCHNL_OP_GET_VF_RESOURCES and VIRTCHNL_VF_OFFLOAD_VLAN_V2 have
3114	 * been successfully sent and negotiated
3115	 */
3116	adapter->aq_required |= IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS;
3117	adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
3118
3119	spin_lock_bh(&adapter->mac_vlan_list_lock);
3120
3121	/* Delete filter for the current MAC address, it could have
3122	 * been changed by the PF via administratively set MAC.
3123	 * Will be re-added via VIRTCHNL_OP_GET_VF_RESOURCES.
3124	 */
3125	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
3126		if (ether_addr_equal(f->macaddr, adapter->hw.mac.addr)) {
3127			list_del(&f->list);
3128			kfree(f);
3129		}
3130	}
3131	/* re-add all MAC filters */
3132	list_for_each_entry(f, &adapter->mac_filter_list, list) {
3133		f->add = true;
3134	}
3135	spin_unlock_bh(&adapter->mac_vlan_list_lock);
3136
3137	/* check if TCs are running and re-add all cloud filters */
3138	spin_lock_bh(&adapter->cloud_filter_list_lock);
3139	if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
3140	    adapter->num_tc) {
3141		list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
3142			cf->add = true;
3143		}
3144	}
3145	spin_unlock_bh(&adapter->cloud_filter_list_lock);
3146
3147	adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
3148	adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
3149	iavf_misc_irq_enable(adapter);
3150
3151	mod_delayed_work(adapter->wq, &adapter->watchdog_task, 2);
3152
3153	/* We were running when the reset started, so we need to restore some
3154	 * state here.
3155	 */
3156	if (running) {
3157		/* allocate transmit descriptors */
3158		err = iavf_setup_all_tx_resources(adapter);
3159		if (err)
3160			goto reset_err;
3161
3162		/* allocate receive descriptors */
3163		err = iavf_setup_all_rx_resources(adapter);
3164		if (err)
3165			goto reset_err;
3166
3167		if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) ||
3168		    (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) {
3169			err = iavf_request_traffic_irqs(adapter, netdev->name);
3170			if (err)
3171				goto reset_err;
3172
3173			adapter->flags &= ~IAVF_FLAG_REINIT_MSIX_NEEDED;
3174		}
3175
3176		iavf_configure(adapter);
3177
3178		/* iavf_up_complete() will switch device back
3179		 * to __IAVF_RUNNING
3180		 */
3181		iavf_up_complete(adapter);
3182
3183		iavf_irq_enable(adapter, true);
3184	} else {
3185		iavf_change_state(adapter, __IAVF_DOWN);
3186		wake_up(&adapter->down_waitqueue);
3187	}
3188
3189	adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
3190
3191	wake_up(&adapter->reset_waitqueue);
3192	mutex_unlock(&adapter->client_lock);
3193	mutex_unlock(&adapter->crit_lock);
3194
3195	return;
3196reset_err:
3197	if (running) {
3198		set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
3199		iavf_free_traffic_irqs(adapter);
3200	}
3201	iavf_disable_vf(adapter);
3202
3203	mutex_unlock(&adapter->client_lock);
3204	mutex_unlock(&adapter->crit_lock);
3205	dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n");
3206}
3207
3208/**
3209 * iavf_adminq_task - worker thread to clean the admin queue
3210 * @work: pointer to work_struct containing our data
3211 **/
3212static void iavf_adminq_task(struct work_struct *work)
3213{
3214	struct iavf_adapter *adapter =
3215		container_of(work, struct iavf_adapter, adminq_task);
3216	struct iavf_hw *hw = &adapter->hw;
3217	struct iavf_arq_event_info event;
3218	enum virtchnl_ops v_op;
3219	enum iavf_status ret, v_ret;
3220	u32 val, oldval;
3221	u16 pending;
3222
3223	if (!mutex_trylock(&adapter->crit_lock)) {
3224		if (adapter->state == __IAVF_REMOVE)
3225			return;
3226
3227		queue_work(adapter->wq, &adapter->adminq_task);
3228		goto out;
3229	}
3230
3231	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
3232		goto unlock;
3233
3234	event.buf_len = IAVF_MAX_AQ_BUF_SIZE;
3235	event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
3236	if (!event.msg_buf)
3237		goto unlock;
3238
3239	do {
3240		ret = iavf_clean_arq_element(hw, &event, &pending);
3241		v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high);
3242		v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low);
3243
3244		if (ret || !v_op)
3245			break; /* No event to process or error cleaning ARQ */
3246
3247		iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf,
3248					 event.msg_len);
3249		if (pending != 0)
3250			memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE);
3251	} while (pending);
3252
3253	if (iavf_is_reset_in_progress(adapter))
3254		goto freedom;
3255
3256	/* check for error indications */
3257	val = rd32(hw, hw->aq.arq.len);
3258	if (val == 0xdeadbeef || val == 0xffffffff) /* device in reset */
3259		goto freedom;
3260	oldval = val;
3261	if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) {
3262		dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n");
3263		val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK;
3264	}
3265	if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) {
3266		dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n");
3267		val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK;
3268	}
3269	if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) {
3270		dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n");
3271		val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK;
3272	}
3273	if (oldval != val)
3274		wr32(hw, hw->aq.arq.len, val);
3275
3276	val = rd32(hw, hw->aq.asq.len);
3277	oldval = val;
3278	if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) {
3279		dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n");
3280		val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK;
3281	}
3282	if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) {
3283		dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n");
3284		val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK;
3285	}
3286	if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) {
3287		dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n");
3288		val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK;
3289	}
3290	if (oldval != val)
3291		wr32(hw, hw->aq.asq.len, val);
3292
3293freedom:
3294	kfree(event.msg_buf);
3295unlock:
3296	mutex_unlock(&adapter->crit_lock);
3297out:
3298	/* re-enable Admin queue interrupt cause */
3299	iavf_misc_irq_enable(adapter);
3300}
3301
3302/**
3303 * iavf_client_task - worker thread to perform client work
3304 * @work: pointer to work_struct containing our data
3305 *
3306 * This task handles client interactions. Because client calls can be
3307 * reentrant, we can't handle them in the watchdog.
3308 **/
3309static void iavf_client_task(struct work_struct *work)
3310{
3311	struct iavf_adapter *adapter =
3312		container_of(work, struct iavf_adapter, client_task.work);
3313
3314	/* If we can't get the client bit, just give up. We'll be rescheduled
3315	 * later.
3316	 */
3317
3318	if (!mutex_trylock(&adapter->client_lock))
3319		return;
3320
3321	if (adapter->flags & IAVF_FLAG_SERVICE_CLIENT_REQUESTED) {
3322		iavf_client_subtask(adapter);
3323		adapter->flags &= ~IAVF_FLAG_SERVICE_CLIENT_REQUESTED;
3324		goto out;
3325	}
3326	if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS) {
3327		iavf_notify_client_l2_params(&adapter->vsi);
3328		adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS;
3329		goto out;
3330	}
3331	if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_CLOSE) {
3332		iavf_notify_client_close(&adapter->vsi, false);
3333		adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_CLOSE;
3334		goto out;
3335	}
3336	if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_OPEN) {
3337		iavf_notify_client_open(&adapter->vsi);
3338		adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_OPEN;
3339	}
3340out:
3341	mutex_unlock(&adapter->client_lock);
3342}
3343
3344/**
3345 * iavf_free_all_tx_resources - Free Tx Resources for All Queues
3346 * @adapter: board private structure
3347 *
3348 * Free all transmit software resources
3349 **/
3350void iavf_free_all_tx_resources(struct iavf_adapter *adapter)
3351{
3352	int i;
3353
3354	if (!adapter->tx_rings)
3355		return;
3356
3357	for (i = 0; i < adapter->num_active_queues; i++)
3358		if (adapter->tx_rings[i].desc)
3359			iavf_free_tx_resources(&adapter->tx_rings[i]);
3360}
3361
3362/**
3363 * iavf_setup_all_tx_resources - allocate all queues Tx resources
3364 * @adapter: board private structure
3365 *
3366 * If this function returns with an error, then it's possible one or
3367 * more of the rings is populated (while the rest are not).  It is the
3368 * callers duty to clean those orphaned rings.
3369 *
3370 * Return 0 on success, negative on failure
3371 **/
3372static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter)
3373{
3374	int i, err = 0;
3375
3376	for (i = 0; i < adapter->num_active_queues; i++) {
3377		adapter->tx_rings[i].count = adapter->tx_desc_count;
3378		err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]);
3379		if (!err)
3380			continue;
3381		dev_err(&adapter->pdev->dev,
3382			"Allocation for Tx Queue %u failed\n", i);
3383		break;
3384	}
3385
3386	return err;
3387}
3388
3389/**
3390 * iavf_setup_all_rx_resources - allocate all queues Rx resources
3391 * @adapter: board private structure
3392 *
3393 * If this function returns with an error, then it's possible one or
3394 * more of the rings is populated (while the rest are not).  It is the
3395 * callers duty to clean those orphaned rings.
3396 *
3397 * Return 0 on success, negative on failure
3398 **/
3399static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter)
3400{
3401	int i, err = 0;
3402
3403	for (i = 0; i < adapter->num_active_queues; i++) {
3404		adapter->rx_rings[i].count = adapter->rx_desc_count;
3405		err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]);
3406		if (!err)
3407			continue;
3408		dev_err(&adapter->pdev->dev,
3409			"Allocation for Rx Queue %u failed\n", i);
3410		break;
3411	}
3412	return err;
3413}
3414
3415/**
3416 * iavf_free_all_rx_resources - Free Rx Resources for All Queues
3417 * @adapter: board private structure
3418 *
3419 * Free all receive software resources
3420 **/
3421void iavf_free_all_rx_resources(struct iavf_adapter *adapter)
3422{
3423	int i;
3424
3425	if (!adapter->rx_rings)
3426		return;
3427
3428	for (i = 0; i < adapter->num_active_queues; i++)
3429		if (adapter->rx_rings[i].desc)
3430			iavf_free_rx_resources(&adapter->rx_rings[i]);
3431}
3432
3433/**
3434 * iavf_validate_tx_bandwidth - validate the max Tx bandwidth
3435 * @adapter: board private structure
3436 * @max_tx_rate: max Tx bw for a tc
3437 **/
3438static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter,
3439				      u64 max_tx_rate)
3440{
3441	int speed = 0, ret = 0;
3442
3443	if (ADV_LINK_SUPPORT(adapter)) {
3444		if (adapter->link_speed_mbps < U32_MAX) {
3445			speed = adapter->link_speed_mbps;
3446			goto validate_bw;
3447		} else {
3448			dev_err(&adapter->pdev->dev, "Unknown link speed\n");
3449			return -EINVAL;
3450		}
3451	}
3452
3453	switch (adapter->link_speed) {
3454	case VIRTCHNL_LINK_SPEED_40GB:
3455		speed = SPEED_40000;
3456		break;
3457	case VIRTCHNL_LINK_SPEED_25GB:
3458		speed = SPEED_25000;
3459		break;
3460	case VIRTCHNL_LINK_SPEED_20GB:
3461		speed = SPEED_20000;
3462		break;
3463	case VIRTCHNL_LINK_SPEED_10GB:
3464		speed = SPEED_10000;
3465		break;
3466	case VIRTCHNL_LINK_SPEED_5GB:
3467		speed = SPEED_5000;
3468		break;
3469	case VIRTCHNL_LINK_SPEED_2_5GB:
3470		speed = SPEED_2500;
3471		break;
3472	case VIRTCHNL_LINK_SPEED_1GB:
3473		speed = SPEED_1000;
3474		break;
3475	case VIRTCHNL_LINK_SPEED_100MB:
3476		speed = SPEED_100;
3477		break;
3478	default:
3479		break;
3480	}
3481
3482validate_bw:
3483	if (max_tx_rate > speed) {
3484		dev_err(&adapter->pdev->dev,
3485			"Invalid tx rate specified\n");
3486		ret = -EINVAL;
3487	}
3488
3489	return ret;
3490}
3491
3492/**
3493 * iavf_validate_ch_config - validate queue mapping info
3494 * @adapter: board private structure
3495 * @mqprio_qopt: queue parameters
3496 *
3497 * This function validates if the config provided by the user to
3498 * configure queue channels is valid or not. Returns 0 on a valid
3499 * config.
3500 **/
3501static int iavf_validate_ch_config(struct iavf_adapter *adapter,
3502				   struct tc_mqprio_qopt_offload *mqprio_qopt)
3503{
3504	u64 total_max_rate = 0;
3505	u32 tx_rate_rem = 0;
3506	int i, num_qps = 0;
3507	u64 tx_rate = 0;
3508	int ret = 0;
3509
3510	if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS ||
3511	    mqprio_qopt->qopt.num_tc < 1)
3512		return -EINVAL;
3513
3514	for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) {
3515		if (!mqprio_qopt->qopt.count[i] ||
3516		    mqprio_qopt->qopt.offset[i] != num_qps)
3517			return -EINVAL;
3518		if (mqprio_qopt->min_rate[i]) {
3519			dev_err(&adapter->pdev->dev,
3520				"Invalid min tx rate (greater than 0) specified for TC%d\n",
3521				i);
3522			return -EINVAL;
3523		}
3524
3525		/* convert to Mbps */
3526		tx_rate = div_u64(mqprio_qopt->max_rate[i],
3527				  IAVF_MBPS_DIVISOR);
3528
3529		if (mqprio_qopt->max_rate[i] &&
3530		    tx_rate < IAVF_MBPS_QUANTA) {
3531			dev_err(&adapter->pdev->dev,
3532				"Invalid max tx rate for TC%d, minimum %dMbps\n",
3533				i, IAVF_MBPS_QUANTA);
3534			return -EINVAL;
3535		}
3536
3537		(void)div_u64_rem(tx_rate, IAVF_MBPS_QUANTA, &tx_rate_rem);
3538
3539		if (tx_rate_rem != 0) {
3540			dev_err(&adapter->pdev->dev,
3541				"Invalid max tx rate for TC%d, not divisible by %d\n",
3542				i, IAVF_MBPS_QUANTA);
3543			return -EINVAL;
3544		}
3545
3546		total_max_rate += tx_rate;
3547		num_qps += mqprio_qopt->qopt.count[i];
3548	}
3549	if (num_qps > adapter->num_active_queues) {
3550		dev_err(&adapter->pdev->dev,
3551			"Cannot support requested number of queues\n");
3552		return -EINVAL;
3553	}
3554
3555	ret = iavf_validate_tx_bandwidth(adapter, total_max_rate);
3556	return ret;
3557}
3558
3559/**
3560 * iavf_del_all_cloud_filters - delete all cloud filters on the traffic classes
3561 * @adapter: board private structure
3562 **/
3563static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter)
3564{
3565	struct iavf_cloud_filter *cf, *cftmp;
3566
3567	spin_lock_bh(&adapter->cloud_filter_list_lock);
3568	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list,
3569				 list) {
3570		list_del(&cf->list);
3571		kfree(cf);
3572		adapter->num_cloud_filters--;
3573	}
3574	spin_unlock_bh(&adapter->cloud_filter_list_lock);
3575}
3576
3577/**
3578 * __iavf_setup_tc - configure multiple traffic classes
3579 * @netdev: network interface device structure
3580 * @type_data: tc offload data
3581 *
3582 * This function processes the config information provided by the
3583 * user to configure traffic classes/queue channels and packages the
3584 * information to request the PF to setup traffic classes.
3585 *
3586 * Returns 0 on success.
3587 **/
3588static int __iavf_setup_tc(struct net_device *netdev, void *type_data)
3589{
3590	struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
3591	struct iavf_adapter *adapter = netdev_priv(netdev);
3592	struct virtchnl_vf_resource *vfres = adapter->vf_res;
3593	u8 num_tc = 0, total_qps = 0;
3594	int ret = 0, netdev_tc = 0;
3595	u64 max_tx_rate;
3596	u16 mode;
3597	int i;
3598
3599	num_tc = mqprio_qopt->qopt.num_tc;
3600	mode = mqprio_qopt->mode;
3601
3602	/* delete queue_channel */
3603	if (!mqprio_qopt->qopt.hw) {
3604		if (adapter->ch_config.state == __IAVF_TC_RUNNING) {
3605			/* reset the tc configuration */
3606			netdev_reset_tc(netdev);
3607			adapter->num_tc = 0;
3608			netif_tx_stop_all_queues(netdev);
3609			netif_tx_disable(netdev);
3610			iavf_del_all_cloud_filters(adapter);
3611			adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS;
3612			total_qps = adapter->orig_num_active_queues;
3613			goto exit;
3614		} else {
3615			return -EINVAL;
3616		}
3617	}
3618
3619	/* add queue channel */
3620	if (mode == TC_MQPRIO_MODE_CHANNEL) {
3621		if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) {
3622			dev_err(&adapter->pdev->dev, "ADq not supported\n");
3623			return -EOPNOTSUPP;
3624		}
3625		if (adapter->ch_config.state != __IAVF_TC_INVALID) {
3626			dev_err(&adapter->pdev->dev, "TC configuration already exists\n");
3627			return -EINVAL;
3628		}
3629
3630		ret = iavf_validate_ch_config(adapter, mqprio_qopt);
3631		if (ret)
3632			return ret;
3633		/* Return if same TC config is requested */
3634		if (adapter->num_tc == num_tc)
3635			return 0;
3636		adapter->num_tc = num_tc;
3637
3638		for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
3639			if (i < num_tc) {
3640				adapter->ch_config.ch_info[i].count =
3641					mqprio_qopt->qopt.count[i];
3642				adapter->ch_config.ch_info[i].offset =
3643					mqprio_qopt->qopt.offset[i];
3644				total_qps += mqprio_qopt->qopt.count[i];
3645				max_tx_rate = mqprio_qopt->max_rate[i];
3646				/* convert to Mbps */
3647				max_tx_rate = div_u64(max_tx_rate,
3648						      IAVF_MBPS_DIVISOR);
3649				adapter->ch_config.ch_info[i].max_tx_rate =
3650					max_tx_rate;
3651			} else {
3652				adapter->ch_config.ch_info[i].count = 1;
3653				adapter->ch_config.ch_info[i].offset = 0;
3654			}
3655		}
3656
3657		/* Take snapshot of original config such as "num_active_queues"
3658		 * It is used later when delete ADQ flow is exercised, so that
3659		 * once delete ADQ flow completes, VF shall go back to its
3660		 * original queue configuration
3661		 */
3662
3663		adapter->orig_num_active_queues = adapter->num_active_queues;
3664
3665		/* Store queue info based on TC so that VF gets configured
3666		 * with correct number of queues when VF completes ADQ config
3667		 * flow
3668		 */
3669		adapter->ch_config.total_qps = total_qps;
3670
3671		netif_tx_stop_all_queues(netdev);
3672		netif_tx_disable(netdev);
3673		adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS;
3674		netdev_reset_tc(netdev);
3675		/* Report the tc mapping up the stack */
3676		netdev_set_num_tc(adapter->netdev, num_tc);
3677		for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
3678			u16 qcount = mqprio_qopt->qopt.count[i];
3679			u16 qoffset = mqprio_qopt->qopt.offset[i];
3680
3681			if (i < num_tc)
3682				netdev_set_tc_queue(netdev, netdev_tc++, qcount,
3683						    qoffset);
3684		}
3685	}
3686exit:
3687	if (test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
3688		return 0;
3689
3690	netif_set_real_num_rx_queues(netdev, total_qps);
3691	netif_set_real_num_tx_queues(netdev, total_qps);
3692
3693	return ret;
3694}
3695
3696/**
3697 * iavf_parse_cls_flower - Parse tc flower filters provided by kernel
3698 * @adapter: board private structure
3699 * @f: pointer to struct flow_cls_offload
3700 * @filter: pointer to cloud filter structure
3701 */
3702static int iavf_parse_cls_flower(struct iavf_adapter *adapter,
3703				 struct flow_cls_offload *f,
3704				 struct iavf_cloud_filter *filter)
3705{
3706	struct flow_rule *rule = flow_cls_offload_flow_rule(f);
3707	struct flow_dissector *dissector = rule->match.dissector;
3708	u16 n_proto_mask = 0;
3709	u16 n_proto_key = 0;
3710	u8 field_flags = 0;
3711	u16 addr_type = 0;
3712	u16 n_proto = 0;
3713	int i = 0;
3714	struct virtchnl_filter *vf = &filter->f;
3715
3716	if (dissector->used_keys &
3717	    ~(BIT_ULL(FLOW_DISSECTOR_KEY_CONTROL) |
3718	      BIT_ULL(FLOW_DISSECTOR_KEY_BASIC) |
3719	      BIT_ULL(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
3720	      BIT_ULL(FLOW_DISSECTOR_KEY_VLAN) |
3721	      BIT_ULL(FLOW_DISSECTOR_KEY_IPV4_ADDRS) |
3722	      BIT_ULL(FLOW_DISSECTOR_KEY_IPV6_ADDRS) |
3723	      BIT_ULL(FLOW_DISSECTOR_KEY_PORTS) |
3724	      BIT_ULL(FLOW_DISSECTOR_KEY_ENC_KEYID))) {
3725		dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%llx\n",
3726			dissector->used_keys);
3727		return -EOPNOTSUPP;
3728	}
3729
3730	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
3731		struct flow_match_enc_keyid match;
3732
3733		flow_rule_match_enc_keyid(rule, &match);
3734		if (match.mask->keyid != 0)
3735			field_flags |= IAVF_CLOUD_FIELD_TEN_ID;
3736	}
3737
3738	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
3739		struct flow_match_basic match;
3740
3741		flow_rule_match_basic(rule, &match);
3742		n_proto_key = ntohs(match.key->n_proto);
3743		n_proto_mask = ntohs(match.mask->n_proto);
3744
3745		if (n_proto_key == ETH_P_ALL) {
3746			n_proto_key = 0;
3747			n_proto_mask = 0;
3748		}
3749		n_proto = n_proto_key & n_proto_mask;
3750		if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6)
3751			return -EINVAL;
3752		if (n_proto == ETH_P_IPV6) {
3753			/* specify flow type as TCP IPv6 */
3754			vf->flow_type = VIRTCHNL_TCP_V6_FLOW;
3755		}
3756
3757		if (match.key->ip_proto != IPPROTO_TCP) {
3758			dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n");
3759			return -EINVAL;
3760		}
3761	}
3762
3763	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
3764		struct flow_match_eth_addrs match;
3765
3766		flow_rule_match_eth_addrs(rule, &match);
3767
3768		/* use is_broadcast and is_zero to check for all 0xf or 0 */
3769		if (!is_zero_ether_addr(match.mask->dst)) {
3770			if (is_broadcast_ether_addr(match.mask->dst)) {
3771				field_flags |= IAVF_CLOUD_FIELD_OMAC;
3772			} else {
3773				dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n",
3774					match.mask->dst);
3775				return -EINVAL;
3776			}
3777		}
3778
3779		if (!is_zero_ether_addr(match.mask->src)) {
3780			if (is_broadcast_ether_addr(match.mask->src)) {
3781				field_flags |= IAVF_CLOUD_FIELD_IMAC;
3782			} else {
3783				dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n",
3784					match.mask->src);
3785				return -EINVAL;
3786			}
3787		}
3788
3789		if (!is_zero_ether_addr(match.key->dst))
3790			if (is_valid_ether_addr(match.key->dst) ||
3791			    is_multicast_ether_addr(match.key->dst)) {
3792				/* set the mask if a valid dst_mac address */
3793				for (i = 0; i < ETH_ALEN; i++)
3794					vf->mask.tcp_spec.dst_mac[i] |= 0xff;
3795				ether_addr_copy(vf->data.tcp_spec.dst_mac,
3796						match.key->dst);
3797			}
3798
3799		if (!is_zero_ether_addr(match.key->src))
3800			if (is_valid_ether_addr(match.key->src) ||
3801			    is_multicast_ether_addr(match.key->src)) {
3802				/* set the mask if a valid dst_mac address */
3803				for (i = 0; i < ETH_ALEN; i++)
3804					vf->mask.tcp_spec.src_mac[i] |= 0xff;
3805				ether_addr_copy(vf->data.tcp_spec.src_mac,
3806						match.key->src);
3807		}
3808	}
3809
3810	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
3811		struct flow_match_vlan match;
3812
3813		flow_rule_match_vlan(rule, &match);
3814		if (match.mask->vlan_id) {
3815			if (match.mask->vlan_id == VLAN_VID_MASK) {
3816				field_flags |= IAVF_CLOUD_FIELD_IVLAN;
3817			} else {
3818				dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n",
3819					match.mask->vlan_id);
3820				return -EINVAL;
3821			}
3822		}
3823		vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff);
3824		vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id);
3825	}
3826
3827	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) {
3828		struct flow_match_control match;
3829
3830		flow_rule_match_control(rule, &match);
3831		addr_type = match.key->addr_type;
3832	}
3833
3834	if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) {
3835		struct flow_match_ipv4_addrs match;
3836
3837		flow_rule_match_ipv4_addrs(rule, &match);
3838		if (match.mask->dst) {
3839			if (match.mask->dst == cpu_to_be32(0xffffffff)) {
3840				field_flags |= IAVF_CLOUD_FIELD_IIP;
3841			} else {
3842				dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n",
3843					be32_to_cpu(match.mask->dst));
3844				return -EINVAL;
3845			}
3846		}
3847
3848		if (match.mask->src) {
3849			if (match.mask->src == cpu_to_be32(0xffffffff)) {
3850				field_flags |= IAVF_CLOUD_FIELD_IIP;
3851			} else {
3852				dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n",
3853					be32_to_cpu(match.mask->src));
3854				return -EINVAL;
3855			}
3856		}
3857
3858		if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) {
3859			dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n");
3860			return -EINVAL;
3861		}
3862		if (match.key->dst) {
3863			vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff);
3864			vf->data.tcp_spec.dst_ip[0] = match.key->dst;
3865		}
3866		if (match.key->src) {
3867			vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff);
3868			vf->data.tcp_spec.src_ip[0] = match.key->src;
3869		}
3870	}
3871
3872	if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) {
3873		struct flow_match_ipv6_addrs match;
3874
3875		flow_rule_match_ipv6_addrs(rule, &match);
3876
3877		/* validate mask, make sure it is not IPV6_ADDR_ANY */
3878		if (ipv6_addr_any(&match.mask->dst)) {
3879			dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n",
3880				IPV6_ADDR_ANY);
3881			return -EINVAL;
3882		}
3883
3884		/* src and dest IPv6 address should not be LOOPBACK
3885		 * (0:0:0:0:0:0:0:1) which can be represented as ::1
3886		 */
3887		if (ipv6_addr_loopback(&match.key->dst) ||
3888		    ipv6_addr_loopback(&match.key->src)) {
3889			dev_err(&adapter->pdev->dev,
3890				"ipv6 addr should not be loopback\n");
3891			return -EINVAL;
3892		}
3893		if (!ipv6_addr_any(&match.mask->dst) ||
3894		    !ipv6_addr_any(&match.mask->src))
3895			field_flags |= IAVF_CLOUD_FIELD_IIP;
3896
3897		for (i = 0; i < 4; i++)
3898			vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff);
3899		memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32,
3900		       sizeof(vf->data.tcp_spec.dst_ip));
3901		for (i = 0; i < 4; i++)
3902			vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff);
3903		memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32,
3904		       sizeof(vf->data.tcp_spec.src_ip));
3905	}
3906	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) {
3907		struct flow_match_ports match;
3908
3909		flow_rule_match_ports(rule, &match);
3910		if (match.mask->src) {
3911			if (match.mask->src == cpu_to_be16(0xffff)) {
3912				field_flags |= IAVF_CLOUD_FIELD_IIP;
3913			} else {
3914				dev_err(&adapter->pdev->dev, "Bad src port mask %u\n",
3915					be16_to_cpu(match.mask->src));
3916				return -EINVAL;
3917			}
3918		}
3919
3920		if (match.mask->dst) {
3921			if (match.mask->dst == cpu_to_be16(0xffff)) {
3922				field_flags |= IAVF_CLOUD_FIELD_IIP;
3923			} else {
3924				dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n",
3925					be16_to_cpu(match.mask->dst));
3926				return -EINVAL;
3927			}
3928		}
3929		if (match.key->dst) {
3930			vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff);
3931			vf->data.tcp_spec.dst_port = match.key->dst;
3932		}
3933
3934		if (match.key->src) {
3935			vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff);
3936			vf->data.tcp_spec.src_port = match.key->src;
3937		}
3938	}
3939	vf->field_flags = field_flags;
3940
3941	return 0;
3942}
3943
3944/**
3945 * iavf_handle_tclass - Forward to a traffic class on the device
3946 * @adapter: board private structure
3947 * @tc: traffic class index on the device
3948 * @filter: pointer to cloud filter structure
3949 */
3950static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc,
3951			      struct iavf_cloud_filter *filter)
3952{
3953	if (tc == 0)
3954		return 0;
3955	if (tc < adapter->num_tc) {
3956		if (!filter->f.data.tcp_spec.dst_port) {
3957			dev_err(&adapter->pdev->dev,
3958				"Specify destination port to redirect to traffic class other than TC0\n");
3959			return -EINVAL;
3960		}
3961	}
3962	/* redirect to a traffic class on the same device */
3963	filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT;
3964	filter->f.action_meta = tc;
3965	return 0;
3966}
3967
3968/**
3969 * iavf_find_cf - Find the cloud filter in the list
3970 * @adapter: Board private structure
3971 * @cookie: filter specific cookie
3972 *
3973 * Returns ptr to the filter object or NULL. Must be called while holding the
3974 * cloud_filter_list_lock.
3975 */
3976static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter,
3977					      unsigned long *cookie)
3978{
3979	struct iavf_cloud_filter *filter = NULL;
3980
3981	if (!cookie)
3982		return NULL;
3983
3984	list_for_each_entry(filter, &adapter->cloud_filter_list, list) {
3985		if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie)))
3986			return filter;
3987	}
3988	return NULL;
3989}
3990
3991/**
3992 * iavf_configure_clsflower - Add tc flower filters
3993 * @adapter: board private structure
3994 * @cls_flower: Pointer to struct flow_cls_offload
3995 */
3996static int iavf_configure_clsflower(struct iavf_adapter *adapter,
3997				    struct flow_cls_offload *cls_flower)
3998{
3999	int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
4000	struct iavf_cloud_filter *filter = NULL;
4001	int err = -EINVAL, count = 50;
4002
4003	if (tc < 0) {
4004		dev_err(&adapter->pdev->dev, "Invalid traffic class\n");
4005		return -EINVAL;
4006	}
4007
4008	filter = kzalloc(sizeof(*filter), GFP_KERNEL);
4009	if (!filter)
4010		return -ENOMEM;
4011
4012	while (!mutex_trylock(&adapter->crit_lock)) {
4013		if (--count == 0) {
4014			kfree(filter);
4015			return err;
4016		}
4017		udelay(1);
4018	}
4019
4020	filter->cookie = cls_flower->cookie;
4021
4022	/* bail out here if filter already exists */
4023	spin_lock_bh(&adapter->cloud_filter_list_lock);
4024	if (iavf_find_cf(adapter, &cls_flower->cookie)) {
4025		dev_err(&adapter->pdev->dev, "Failed to add TC Flower filter, it already exists\n");
4026		err = -EEXIST;
4027		goto spin_unlock;
4028	}
4029	spin_unlock_bh(&adapter->cloud_filter_list_lock);
4030
4031	/* set the mask to all zeroes to begin with */
4032	memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec));
4033	/* start out with flow type and eth type IPv4 to begin with */
4034	filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW;
4035	err = iavf_parse_cls_flower(adapter, cls_flower, filter);
4036	if (err)
4037		goto err;
4038
4039	err = iavf_handle_tclass(adapter, tc, filter);
4040	if (err)
4041		goto err;
4042
4043	/* add filter to the list */
4044	spin_lock_bh(&adapter->cloud_filter_list_lock);
4045	list_add_tail(&filter->list, &adapter->cloud_filter_list);
4046	adapter->num_cloud_filters++;
4047	filter->add = true;
4048	adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
4049spin_unlock:
4050	spin_unlock_bh(&adapter->cloud_filter_list_lock);
4051err:
4052	if (err)
4053		kfree(filter);
4054
4055	mutex_unlock(&adapter->crit_lock);
4056	return err;
4057}
4058
4059/**
4060 * iavf_delete_clsflower - Remove tc flower filters
4061 * @adapter: board private structure
4062 * @cls_flower: Pointer to struct flow_cls_offload
4063 */
4064static int iavf_delete_clsflower(struct iavf_adapter *adapter,
4065				 struct flow_cls_offload *cls_flower)
4066{
4067	struct iavf_cloud_filter *filter = NULL;
4068	int err = 0;
4069
4070	spin_lock_bh(&adapter->cloud_filter_list_lock);
4071	filter = iavf_find_cf(adapter, &cls_flower->cookie);
4072	if (filter) {
4073		filter->del = true;
4074		adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
4075	} else {
4076		err = -EINVAL;
4077	}
4078	spin_unlock_bh(&adapter->cloud_filter_list_lock);
4079
4080	return err;
4081}
4082
4083/**
4084 * iavf_setup_tc_cls_flower - flower classifier offloads
4085 * @adapter: board private structure
4086 * @cls_flower: pointer to flow_cls_offload struct with flow info
4087 */
4088static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter,
4089				    struct flow_cls_offload *cls_flower)
4090{
4091	switch (cls_flower->command) {
4092	case FLOW_CLS_REPLACE:
4093		return iavf_configure_clsflower(adapter, cls_flower);
4094	case FLOW_CLS_DESTROY:
4095		return iavf_delete_clsflower(adapter, cls_flower);
4096	case FLOW_CLS_STATS:
4097		return -EOPNOTSUPP;
4098	default:
4099		return -EOPNOTSUPP;
4100	}
4101}
4102
4103/**
4104 * iavf_setup_tc_block_cb - block callback for tc
4105 * @type: type of offload
4106 * @type_data: offload data
4107 * @cb_priv:
4108 *
4109 * This function is the block callback for traffic classes
4110 **/
4111static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
4112				  void *cb_priv)
4113{
4114	struct iavf_adapter *adapter = cb_priv;
4115
4116	if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
4117		return -EOPNOTSUPP;
4118
4119	switch (type) {
4120	case TC_SETUP_CLSFLOWER:
4121		return iavf_setup_tc_cls_flower(cb_priv, type_data);
4122	default:
4123		return -EOPNOTSUPP;
4124	}
4125}
4126
4127static LIST_HEAD(iavf_block_cb_list);
4128
4129/**
4130 * iavf_setup_tc - configure multiple traffic classes
4131 * @netdev: network interface device structure
4132 * @type: type of offload
4133 * @type_data: tc offload data
4134 *
4135 * This function is the callback to ndo_setup_tc in the
4136 * netdev_ops.
4137 *
4138 * Returns 0 on success
4139 **/
4140static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type,
4141			 void *type_data)
4142{
4143	struct iavf_adapter *adapter = netdev_priv(netdev);
4144
4145	switch (type) {
4146	case TC_SETUP_QDISC_MQPRIO:
4147		return __iavf_setup_tc(netdev, type_data);
4148	case TC_SETUP_BLOCK:
4149		return flow_block_cb_setup_simple(type_data,
4150						  &iavf_block_cb_list,
4151						  iavf_setup_tc_block_cb,
4152						  adapter, adapter, true);
4153	default:
4154		return -EOPNOTSUPP;
4155	}
4156}
4157
4158/**
4159 * iavf_restore_fdir_filters
4160 * @adapter: board private structure
4161 *
4162 * Restore existing FDIR filters when VF netdev comes back up.
4163 **/
4164static void iavf_restore_fdir_filters(struct iavf_adapter *adapter)
4165{
4166	struct iavf_fdir_fltr *f;
4167
4168	spin_lock_bh(&adapter->fdir_fltr_lock);
4169	list_for_each_entry(f, &adapter->fdir_list_head, list) {
4170		if (f->state == IAVF_FDIR_FLTR_DIS_REQUEST) {
4171			/* Cancel a request, keep filter as active */
4172			f->state = IAVF_FDIR_FLTR_ACTIVE;
4173		} else if (f->state == IAVF_FDIR_FLTR_DIS_PENDING ||
4174			   f->state == IAVF_FDIR_FLTR_INACTIVE) {
4175			/* Add filters which are inactive or have a pending
4176			 * request to PF to be deleted
4177			 */
4178			f->state = IAVF_FDIR_FLTR_ADD_REQUEST;
4179			adapter->aq_required |= IAVF_FLAG_AQ_ADD_FDIR_FILTER;
4180		}
4181	}
4182	spin_unlock_bh(&adapter->fdir_fltr_lock);
4183}
4184
4185/**
4186 * iavf_open - Called when a network interface is made active
4187 * @netdev: network interface device structure
4188 *
4189 * Returns 0 on success, negative value on failure
4190 *
4191 * The open entry point is called when a network interface is made
4192 * active by the system (IFF_UP).  At this point all resources needed
4193 * for transmit and receive operations are allocated, the interrupt
4194 * handler is registered with the OS, the watchdog is started,
4195 * and the stack is notified that the interface is ready.
4196 **/
4197static int iavf_open(struct net_device *netdev)
4198{
4199	struct iavf_adapter *adapter = netdev_priv(netdev);
4200	int err;
4201
4202	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) {
4203		dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n");
4204		return -EIO;
4205	}
4206
4207	while (!mutex_trylock(&adapter->crit_lock)) {
4208		/* If we are in __IAVF_INIT_CONFIG_ADAPTER state the crit_lock
4209		 * is already taken and iavf_open is called from an upper
4210		 * device's notifier reacting on NETDEV_REGISTER event.
4211		 * We have to leave here to avoid dead lock.
4212		 */
4213		if (adapter->state == __IAVF_INIT_CONFIG_ADAPTER)
4214			return -EBUSY;
4215
4216		usleep_range(500, 1000);
4217	}
4218
4219	if (adapter->state != __IAVF_DOWN) {
4220		err = -EBUSY;
4221		goto err_unlock;
4222	}
4223
4224	if (adapter->state == __IAVF_RUNNING &&
4225	    !test_bit(__IAVF_VSI_DOWN, adapter->vsi.state)) {
4226		dev_dbg(&adapter->pdev->dev, "VF is already open.\n");
4227		err = 0;
4228		goto err_unlock;
4229	}
4230
4231	/* allocate transmit descriptors */
4232	err = iavf_setup_all_tx_resources(adapter);
4233	if (err)
4234		goto err_setup_tx;
4235
4236	/* allocate receive descriptors */
4237	err = iavf_setup_all_rx_resources(adapter);
4238	if (err)
4239		goto err_setup_rx;
4240
4241	/* clear any pending interrupts, may auto mask */
4242	err = iavf_request_traffic_irqs(adapter, netdev->name);
4243	if (err)
4244		goto err_req_irq;
4245
4246	spin_lock_bh(&adapter->mac_vlan_list_lock);
4247
4248	iavf_add_filter(adapter, adapter->hw.mac.addr);
4249
4250	spin_unlock_bh(&adapter->mac_vlan_list_lock);
4251
4252	/* Restore filters that were removed with IFF_DOWN */
4253	iavf_restore_filters(adapter);
4254	iavf_restore_fdir_filters(adapter);
4255
4256	iavf_configure(adapter);
4257
4258	iavf_up_complete(adapter);
4259
4260	iavf_irq_enable(adapter, true);
4261
4262	mutex_unlock(&adapter->crit_lock);
4263
4264	return 0;
4265
4266err_req_irq:
4267	iavf_down(adapter);
4268	iavf_free_traffic_irqs(adapter);
4269err_setup_rx:
4270	iavf_free_all_rx_resources(adapter);
4271err_setup_tx:
4272	iavf_free_all_tx_resources(adapter);
4273err_unlock:
4274	mutex_unlock(&adapter->crit_lock);
4275
4276	return err;
4277}
4278
4279/**
4280 * iavf_close - Disables a network interface
4281 * @netdev: network interface device structure
4282 *
4283 * Returns 0, this is not allowed to fail
4284 *
4285 * The close entry point is called when an interface is de-activated
4286 * by the OS.  The hardware is still under the drivers control, but
4287 * needs to be disabled. All IRQs except vector 0 (reserved for admin queue)
4288 * are freed, along with all transmit and receive resources.
4289 **/
4290static int iavf_close(struct net_device *netdev)
4291{
4292	struct iavf_adapter *adapter = netdev_priv(netdev);
4293	u64 aq_to_restore;
4294	int status;
4295
4296	mutex_lock(&adapter->crit_lock);
4297
4298	if (adapter->state <= __IAVF_DOWN_PENDING) {
4299		mutex_unlock(&adapter->crit_lock);
4300		return 0;
4301	}
4302
4303	set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
4304	if (CLIENT_ENABLED(adapter))
4305		adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_CLOSE;
4306	/* We cannot send IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS before
4307	 * IAVF_FLAG_AQ_DISABLE_QUEUES because in such case there is rtnl
4308	 * deadlock with adminq_task() until iavf_close timeouts. We must send
4309	 * IAVF_FLAG_AQ_GET_CONFIG before IAVF_FLAG_AQ_DISABLE_QUEUES to make
4310	 * disable queues possible for vf. Give only necessary flags to
4311	 * iavf_down and save other to set them right before iavf_close()
4312	 * returns, when IAVF_FLAG_AQ_DISABLE_QUEUES will be already sent and
4313	 * iavf will be in DOWN state.
4314	 */
4315	aq_to_restore = adapter->aq_required;
4316	adapter->aq_required &= IAVF_FLAG_AQ_GET_CONFIG;
4317
4318	/* Remove flags which we do not want to send after close or we want to
4319	 * send before disable queues.
4320	 */
4321	aq_to_restore &= ~(IAVF_FLAG_AQ_GET_CONFIG		|
4322			   IAVF_FLAG_AQ_ENABLE_QUEUES		|
4323			   IAVF_FLAG_AQ_CONFIGURE_QUEUES	|
4324			   IAVF_FLAG_AQ_ADD_VLAN_FILTER		|
4325			   IAVF_FLAG_AQ_ADD_MAC_FILTER		|
4326			   IAVF_FLAG_AQ_ADD_CLOUD_FILTER	|
4327			   IAVF_FLAG_AQ_ADD_FDIR_FILTER		|
4328			   IAVF_FLAG_AQ_ADD_ADV_RSS_CFG);
4329
4330	iavf_down(adapter);
4331	iavf_change_state(adapter, __IAVF_DOWN_PENDING);
4332	iavf_free_traffic_irqs(adapter);
4333
4334	mutex_unlock(&adapter->crit_lock);
4335
4336	/* We explicitly don't free resources here because the hardware is
4337	 * still active and can DMA into memory. Resources are cleared in
4338	 * iavf_virtchnl_completion() after we get confirmation from the PF
4339	 * driver that the rings have been stopped.
4340	 *
4341	 * Also, we wait for state to transition to __IAVF_DOWN before
4342	 * returning. State change occurs in iavf_virtchnl_completion() after
4343	 * VF resources are released (which occurs after PF driver processes and
4344	 * responds to admin queue commands).
4345	 */
4346
4347	status = wait_event_timeout(adapter->down_waitqueue,
4348				    adapter->state == __IAVF_DOWN,
4349				    msecs_to_jiffies(500));
4350	if (!status)
4351		netdev_warn(netdev, "Device resources not yet released\n");
4352
4353	mutex_lock(&adapter->crit_lock);
4354	adapter->aq_required |= aq_to_restore;
4355	mutex_unlock(&adapter->crit_lock);
4356	return 0;
4357}
4358
4359/**
4360 * iavf_change_mtu - Change the Maximum Transfer Unit
4361 * @netdev: network interface device structure
4362 * @new_mtu: new value for maximum frame size
4363 *
4364 * Returns 0 on success, negative on failure
4365 **/
4366static int iavf_change_mtu(struct net_device *netdev, int new_mtu)
4367{
4368	struct iavf_adapter *adapter = netdev_priv(netdev);
4369	int ret = 0;
4370
4371	netdev_dbg(netdev, "changing MTU from %d to %d\n",
4372		   netdev->mtu, new_mtu);
4373	netdev->mtu = new_mtu;
4374	if (CLIENT_ENABLED(adapter)) {
4375		iavf_notify_client_l2_params(&adapter->vsi);
4376		adapter->flags |= IAVF_FLAG_SERVICE_CLIENT_REQUESTED;
4377	}
4378
4379	if (netif_running(netdev)) {
4380		iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED);
4381		ret = iavf_wait_for_reset(adapter);
4382		if (ret < 0)
4383			netdev_warn(netdev, "MTU change interrupted waiting for reset");
4384		else if (ret)
4385			netdev_warn(netdev, "MTU change timed out waiting for reset");
4386	}
4387
4388	return ret;
4389}
4390
4391/**
4392 * iavf_disable_fdir - disable Flow Director and clear existing filters
4393 * @adapter: board private structure
4394 **/
4395static void iavf_disable_fdir(struct iavf_adapter *adapter)
4396{
4397	struct iavf_fdir_fltr *fdir, *fdirtmp;
4398	bool del_filters = false;
4399
4400	adapter->flags &= ~IAVF_FLAG_FDIR_ENABLED;
4401
4402	/* remove all Flow Director filters */
4403	spin_lock_bh(&adapter->fdir_fltr_lock);
4404	list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head,
4405				 list) {
4406		if (fdir->state == IAVF_FDIR_FLTR_ADD_REQUEST ||
4407		    fdir->state == IAVF_FDIR_FLTR_INACTIVE) {
4408			/* Delete filters not registered in PF */
4409			list_del(&fdir->list);
4410			kfree(fdir);
4411			adapter->fdir_active_fltr--;
4412		} else if (fdir->state == IAVF_FDIR_FLTR_ADD_PENDING ||
4413			   fdir->state == IAVF_FDIR_FLTR_DIS_REQUEST ||
4414			   fdir->state == IAVF_FDIR_FLTR_ACTIVE) {
4415			/* Filters registered in PF, schedule their deletion */
4416			fdir->state = IAVF_FDIR_FLTR_DEL_REQUEST;
4417			del_filters = true;
4418		} else if (fdir->state == IAVF_FDIR_FLTR_DIS_PENDING) {
4419			/* Request to delete filter already sent to PF, change
4420			 * state to DEL_PENDING to delete filter after PF's
4421			 * response, not set as INACTIVE
4422			 */
4423			fdir->state = IAVF_FDIR_FLTR_DEL_PENDING;
4424		}
4425	}
4426	spin_unlock_bh(&adapter->fdir_fltr_lock);
4427
4428	if (del_filters) {
4429		adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER;
4430		mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0);
4431	}
4432}
4433
4434#define NETIF_VLAN_OFFLOAD_FEATURES	(NETIF_F_HW_VLAN_CTAG_RX | \
4435					 NETIF_F_HW_VLAN_CTAG_TX | \
4436					 NETIF_F_HW_VLAN_STAG_RX | \
4437					 NETIF_F_HW_VLAN_STAG_TX)
4438
4439/**
4440 * iavf_set_features - set the netdev feature flags
4441 * @netdev: ptr to the netdev being adjusted
4442 * @features: the feature set that the stack is suggesting
4443 * Note: expects to be called while under rtnl_lock()
4444 **/
4445static int iavf_set_features(struct net_device *netdev,
4446			     netdev_features_t features)
4447{
4448	struct iavf_adapter *adapter = netdev_priv(netdev);
4449
4450	/* trigger update on any VLAN feature change */
4451	if ((netdev->features & NETIF_VLAN_OFFLOAD_FEATURES) ^
4452	    (features & NETIF_VLAN_OFFLOAD_FEATURES))
4453		iavf_set_vlan_offload_features(adapter, netdev->features,
4454					       features);
4455
4456	if ((netdev->features & NETIF_F_NTUPLE) ^ (features & NETIF_F_NTUPLE)) {
4457		if (features & NETIF_F_NTUPLE)
4458			adapter->flags |= IAVF_FLAG_FDIR_ENABLED;
4459		else
4460			iavf_disable_fdir(adapter);
4461	}
4462
4463	return 0;
4464}
4465
4466/**
4467 * iavf_features_check - Validate encapsulated packet conforms to limits
4468 * @skb: skb buff
4469 * @dev: This physical port's netdev
4470 * @features: Offload features that the stack believes apply
4471 **/
4472static netdev_features_t iavf_features_check(struct sk_buff *skb,
4473					     struct net_device *dev,
4474					     netdev_features_t features)
4475{
4476	size_t len;
4477
4478	/* No point in doing any of this if neither checksum nor GSO are
4479	 * being requested for this frame.  We can rule out both by just
4480	 * checking for CHECKSUM_PARTIAL
4481	 */
4482	if (skb->ip_summed != CHECKSUM_PARTIAL)
4483		return features;
4484
4485	/* We cannot support GSO if the MSS is going to be less than
4486	 * 64 bytes.  If it is then we need to drop support for GSO.
4487	 */
4488	if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
4489		features &= ~NETIF_F_GSO_MASK;
4490
4491	/* MACLEN can support at most 63 words */
4492	len = skb_network_header(skb) - skb->data;
4493	if (len & ~(63 * 2))
4494		goto out_err;
4495
4496	/* IPLEN and EIPLEN can support at most 127 dwords */
4497	len = skb_transport_header(skb) - skb_network_header(skb);
4498	if (len & ~(127 * 4))
4499		goto out_err;
4500
4501	if (skb->encapsulation) {
4502		/* L4TUNLEN can support 127 words */
4503		len = skb_inner_network_header(skb) - skb_transport_header(skb);
4504		if (len & ~(127 * 2))
4505			goto out_err;
4506
4507		/* IPLEN can support at most 127 dwords */
4508		len = skb_inner_transport_header(skb) -
4509		      skb_inner_network_header(skb);
4510		if (len & ~(127 * 4))
4511			goto out_err;
4512	}
4513
4514	/* No need to validate L4LEN as TCP is the only protocol with a
4515	 * flexible value and we support all possible values supported
4516	 * by TCP, which is at most 15 dwords
4517	 */
4518
4519	return features;
4520out_err:
4521	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
4522}
4523
4524/**
4525 * iavf_get_netdev_vlan_hw_features - get NETDEV VLAN features that can toggle on/off
4526 * @adapter: board private structure
4527 *
4528 * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2
4529 * were negotiated determine the VLAN features that can be toggled on and off.
4530 **/
4531static netdev_features_t
4532iavf_get_netdev_vlan_hw_features(struct iavf_adapter *adapter)
4533{
4534	netdev_features_t hw_features = 0;
4535
4536	if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags)
4537		return hw_features;
4538
4539	/* Enable VLAN features if supported */
4540	if (VLAN_ALLOWED(adapter)) {
4541		hw_features |= (NETIF_F_HW_VLAN_CTAG_TX |
4542				NETIF_F_HW_VLAN_CTAG_RX);
4543	} else if (VLAN_V2_ALLOWED(adapter)) {
4544		struct virtchnl_vlan_caps *vlan_v2_caps =
4545			&adapter->vlan_v2_caps;
4546		struct virtchnl_vlan_supported_caps *stripping_support =
4547			&vlan_v2_caps->offloads.stripping_support;
4548		struct virtchnl_vlan_supported_caps *insertion_support =
4549			&vlan_v2_caps->offloads.insertion_support;
4550
4551		if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED &&
4552		    stripping_support->outer & VIRTCHNL_VLAN_TOGGLE) {
4553			if (stripping_support->outer &
4554			    VIRTCHNL_VLAN_ETHERTYPE_8100)
4555				hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
4556			if (stripping_support->outer &
4557			    VIRTCHNL_VLAN_ETHERTYPE_88A8)
4558				hw_features |= NETIF_F_HW_VLAN_STAG_RX;
4559		} else if (stripping_support->inner !=
4560			   VIRTCHNL_VLAN_UNSUPPORTED &&
4561			   stripping_support->inner & VIRTCHNL_VLAN_TOGGLE) {
4562			if (stripping_support->inner &
4563			    VIRTCHNL_VLAN_ETHERTYPE_8100)
4564				hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
4565		}
4566
4567		if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED &&
4568		    insertion_support->outer & VIRTCHNL_VLAN_TOGGLE) {
4569			if (insertion_support->outer &
4570			    VIRTCHNL_VLAN_ETHERTYPE_8100)
4571				hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
4572			if (insertion_support->outer &
4573			    VIRTCHNL_VLAN_ETHERTYPE_88A8)
4574				hw_features |= NETIF_F_HW_VLAN_STAG_TX;
4575		} else if (insertion_support->inner &&
4576			   insertion_support->inner & VIRTCHNL_VLAN_TOGGLE) {
4577			if (insertion_support->inner &
4578			    VIRTCHNL_VLAN_ETHERTYPE_8100)
4579				hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
4580		}
4581	}
4582
4583	return hw_features;
4584}
4585
4586/**
4587 * iavf_get_netdev_vlan_features - get the enabled NETDEV VLAN fetures
4588 * @adapter: board private structure
4589 *
4590 * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2
4591 * were negotiated determine the VLAN features that are enabled by default.
4592 **/
4593static netdev_features_t
4594iavf_get_netdev_vlan_features(struct iavf_adapter *adapter)
4595{
4596	netdev_features_t features = 0;
4597
4598	if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags)
4599		return features;
4600
4601	if (VLAN_ALLOWED(adapter)) {
4602		features |= NETIF_F_HW_VLAN_CTAG_FILTER |
4603			NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX;
4604	} else if (VLAN_V2_ALLOWED(adapter)) {
4605		struct virtchnl_vlan_caps *vlan_v2_caps =
4606			&adapter->vlan_v2_caps;
4607		struct virtchnl_vlan_supported_caps *filtering_support =
4608			&vlan_v2_caps->filtering.filtering_support;
4609		struct virtchnl_vlan_supported_caps *stripping_support =
4610			&vlan_v2_caps->offloads.stripping_support;
4611		struct virtchnl_vlan_supported_caps *insertion_support =
4612			&vlan_v2_caps->offloads.insertion_support;
4613		u32 ethertype_init;
4614
4615		/* give priority to outer stripping and don't support both outer
4616		 * and inner stripping
4617		 */
4618		ethertype_init = vlan_v2_caps->offloads.ethertype_init;
4619		if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4620			if (stripping_support->outer &
4621			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4622			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4623				features |= NETIF_F_HW_VLAN_CTAG_RX;
4624			else if (stripping_support->outer &
4625				 VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4626				 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4627				features |= NETIF_F_HW_VLAN_STAG_RX;
4628		} else if (stripping_support->inner !=
4629			   VIRTCHNL_VLAN_UNSUPPORTED) {
4630			if (stripping_support->inner &
4631			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4632			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4633				features |= NETIF_F_HW_VLAN_CTAG_RX;
4634		}
4635
4636		/* give priority to outer insertion and don't support both outer
4637		 * and inner insertion
4638		 */
4639		if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4640			if (insertion_support->outer &
4641			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4642			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4643				features |= NETIF_F_HW_VLAN_CTAG_TX;
4644			else if (insertion_support->outer &
4645				 VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4646				 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4647				features |= NETIF_F_HW_VLAN_STAG_TX;
4648		} else if (insertion_support->inner !=
4649			   VIRTCHNL_VLAN_UNSUPPORTED) {
4650			if (insertion_support->inner &
4651			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4652			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4653				features |= NETIF_F_HW_VLAN_CTAG_TX;
4654		}
4655
4656		/* give priority to outer filtering and don't bother if both
4657		 * outer and inner filtering are enabled
4658		 */
4659		ethertype_init = vlan_v2_caps->filtering.ethertype_init;
4660		if (filtering_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4661			if (filtering_support->outer &
4662			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4663			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4664				features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4665			if (filtering_support->outer &
4666			    VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4667			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4668				features |= NETIF_F_HW_VLAN_STAG_FILTER;
4669		} else if (filtering_support->inner !=
4670			   VIRTCHNL_VLAN_UNSUPPORTED) {
4671			if (filtering_support->inner &
4672			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4673			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4674				features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4675			if (filtering_support->inner &
4676			    VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4677			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4678				features |= NETIF_F_HW_VLAN_STAG_FILTER;
4679		}
4680	}
4681
4682	return features;
4683}
4684
4685#define IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested, allowed, feature_bit) \
4686	(!(((requested) & (feature_bit)) && \
4687	   !((allowed) & (feature_bit))))
4688
4689/**
4690 * iavf_fix_netdev_vlan_features - fix NETDEV VLAN features based on support
4691 * @adapter: board private structure
4692 * @requested_features: stack requested NETDEV features
4693 **/
4694static netdev_features_t
4695iavf_fix_netdev_vlan_features(struct iavf_adapter *adapter,
4696			      netdev_features_t requested_features)
4697{
4698	netdev_features_t allowed_features;
4699
4700	allowed_features = iavf_get_netdev_vlan_hw_features(adapter) |
4701		iavf_get_netdev_vlan_features(adapter);
4702
4703	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4704					      allowed_features,
4705					      NETIF_F_HW_VLAN_CTAG_TX))
4706		requested_features &= ~NETIF_F_HW_VLAN_CTAG_TX;
4707
4708	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4709					      allowed_features,
4710					      NETIF_F_HW_VLAN_CTAG_RX))
4711		requested_features &= ~NETIF_F_HW_VLAN_CTAG_RX;
4712
4713	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4714					      allowed_features,
4715					      NETIF_F_HW_VLAN_STAG_TX))
4716		requested_features &= ~NETIF_F_HW_VLAN_STAG_TX;
4717	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4718					      allowed_features,
4719					      NETIF_F_HW_VLAN_STAG_RX))
4720		requested_features &= ~NETIF_F_HW_VLAN_STAG_RX;
4721
4722	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4723					      allowed_features,
4724					      NETIF_F_HW_VLAN_CTAG_FILTER))
4725		requested_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
4726
4727	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4728					      allowed_features,
4729					      NETIF_F_HW_VLAN_STAG_FILTER))
4730		requested_features &= ~NETIF_F_HW_VLAN_STAG_FILTER;
4731
4732	if ((requested_features &
4733	     (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) &&
4734	    (requested_features &
4735	     (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) &&
4736	    adapter->vlan_v2_caps.offloads.ethertype_match ==
4737	    VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION) {
4738		netdev_warn(adapter->netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n");
4739		requested_features &= ~(NETIF_F_HW_VLAN_STAG_RX |
4740					NETIF_F_HW_VLAN_STAG_TX);
4741	}
4742
4743	return requested_features;
4744}
4745
4746/**
4747 * iavf_fix_features - fix up the netdev feature bits
4748 * @netdev: our net device
4749 * @features: desired feature bits
4750 *
4751 * Returns fixed-up features bits
4752 **/
4753static netdev_features_t iavf_fix_features(struct net_device *netdev,
4754					   netdev_features_t features)
4755{
4756	struct iavf_adapter *adapter = netdev_priv(netdev);
4757
4758	if (!FDIR_FLTR_SUPPORT(adapter))
4759		features &= ~NETIF_F_NTUPLE;
4760
4761	return iavf_fix_netdev_vlan_features(adapter, features);
4762}
4763
4764static const struct net_device_ops iavf_netdev_ops = {
4765	.ndo_open		= iavf_open,
4766	.ndo_stop		= iavf_close,
4767	.ndo_start_xmit		= iavf_xmit_frame,
4768	.ndo_set_rx_mode	= iavf_set_rx_mode,
4769	.ndo_validate_addr	= eth_validate_addr,
4770	.ndo_set_mac_address	= iavf_set_mac,
4771	.ndo_change_mtu		= iavf_change_mtu,
4772	.ndo_tx_timeout		= iavf_tx_timeout,
4773	.ndo_vlan_rx_add_vid	= iavf_vlan_rx_add_vid,
4774	.ndo_vlan_rx_kill_vid	= iavf_vlan_rx_kill_vid,
4775	.ndo_features_check	= iavf_features_check,
4776	.ndo_fix_features	= iavf_fix_features,
4777	.ndo_set_features	= iavf_set_features,
4778	.ndo_setup_tc		= iavf_setup_tc,
4779};
4780
4781/**
4782 * iavf_check_reset_complete - check that VF reset is complete
4783 * @hw: pointer to hw struct
4784 *
4785 * Returns 0 if device is ready to use, or -EBUSY if it's in reset.
4786 **/
4787static int iavf_check_reset_complete(struct iavf_hw *hw)
4788{
4789	u32 rstat;
4790	int i;
4791
4792	for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
4793		rstat = rd32(hw, IAVF_VFGEN_RSTAT) &
4794			     IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
4795		if ((rstat == VIRTCHNL_VFR_VFACTIVE) ||
4796		    (rstat == VIRTCHNL_VFR_COMPLETED))
4797			return 0;
4798		usleep_range(10, 20);
4799	}
4800	return -EBUSY;
4801}
4802
4803/**
4804 * iavf_process_config - Process the config information we got from the PF
4805 * @adapter: board private structure
4806 *
4807 * Verify that we have a valid config struct, and set up our netdev features
4808 * and our VSI struct.
4809 **/
4810int iavf_process_config(struct iavf_adapter *adapter)
4811{
4812	struct virtchnl_vf_resource *vfres = adapter->vf_res;
4813	netdev_features_t hw_vlan_features, vlan_features;
4814	struct net_device *netdev = adapter->netdev;
4815	netdev_features_t hw_enc_features;
4816	netdev_features_t hw_features;
4817
4818	hw_enc_features = NETIF_F_SG			|
4819			  NETIF_F_IP_CSUM		|
4820			  NETIF_F_IPV6_CSUM		|
4821			  NETIF_F_HIGHDMA		|
4822			  NETIF_F_SOFT_FEATURES	|
4823			  NETIF_F_TSO			|
4824			  NETIF_F_TSO_ECN		|
4825			  NETIF_F_TSO6			|
4826			  NETIF_F_SCTP_CRC		|
4827			  NETIF_F_RXHASH		|
4828			  NETIF_F_RXCSUM		|
4829			  0;
4830
4831	/* advertise to stack only if offloads for encapsulated packets is
4832	 * supported
4833	 */
4834	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) {
4835		hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL	|
4836				   NETIF_F_GSO_GRE		|
4837				   NETIF_F_GSO_GRE_CSUM		|
4838				   NETIF_F_GSO_IPXIP4		|
4839				   NETIF_F_GSO_IPXIP6		|
4840				   NETIF_F_GSO_UDP_TUNNEL_CSUM	|
4841				   NETIF_F_GSO_PARTIAL		|
4842				   0;
4843
4844		if (!(vfres->vf_cap_flags &
4845		      VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM))
4846			netdev->gso_partial_features |=
4847				NETIF_F_GSO_UDP_TUNNEL_CSUM;
4848
4849		netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
4850		netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
4851		netdev->hw_enc_features |= hw_enc_features;
4852	}
4853	/* record features VLANs can make use of */
4854	netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID;
4855
4856	/* Write features and hw_features separately to avoid polluting
4857	 * with, or dropping, features that are set when we registered.
4858	 */
4859	hw_features = hw_enc_features;
4860
4861	/* get HW VLAN features that can be toggled */
4862	hw_vlan_features = iavf_get_netdev_vlan_hw_features(adapter);
4863
4864	/* Enable cloud filter if ADQ is supported */
4865	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)
4866		hw_features |= NETIF_F_HW_TC;
4867	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_USO)
4868		hw_features |= NETIF_F_GSO_UDP_L4;
4869
4870	netdev->hw_features |= hw_features | hw_vlan_features;
4871	vlan_features = iavf_get_netdev_vlan_features(adapter);
4872
4873	netdev->features |= hw_features | vlan_features;
4874
4875	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)
4876		netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4877
4878	if (FDIR_FLTR_SUPPORT(adapter)) {
4879		netdev->hw_features |= NETIF_F_NTUPLE;
4880		netdev->features |= NETIF_F_NTUPLE;
4881		adapter->flags |= IAVF_FLAG_FDIR_ENABLED;
4882	}
4883
4884	netdev->priv_flags |= IFF_UNICAST_FLT;
4885
4886	/* Do not turn on offloads when they are requested to be turned off.
4887	 * TSO needs minimum 576 bytes to work correctly.
4888	 */
4889	if (netdev->wanted_features) {
4890		if (!(netdev->wanted_features & NETIF_F_TSO) ||
4891		    netdev->mtu < 576)
4892			netdev->features &= ~NETIF_F_TSO;
4893		if (!(netdev->wanted_features & NETIF_F_TSO6) ||
4894		    netdev->mtu < 576)
4895			netdev->features &= ~NETIF_F_TSO6;
4896		if (!(netdev->wanted_features & NETIF_F_TSO_ECN))
4897			netdev->features &= ~NETIF_F_TSO_ECN;
4898		if (!(netdev->wanted_features & NETIF_F_GRO))
4899			netdev->features &= ~NETIF_F_GRO;
4900		if (!(netdev->wanted_features & NETIF_F_GSO))
4901			netdev->features &= ~NETIF_F_GSO;
4902	}
4903
4904	return 0;
4905}
4906
4907/**
4908 * iavf_probe - Device Initialization Routine
4909 * @pdev: PCI device information struct
4910 * @ent: entry in iavf_pci_tbl
4911 *
4912 * Returns 0 on success, negative on failure
4913 *
4914 * iavf_probe initializes an adapter identified by a pci_dev structure.
4915 * The OS initialization, configuring of the adapter private structure,
4916 * and a hardware reset occur.
4917 **/
4918static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
4919{
4920	struct net_device *netdev;
4921	struct iavf_adapter *adapter = NULL;
4922	struct iavf_hw *hw = NULL;
4923	int err;
4924
4925	err = pci_enable_device(pdev);
4926	if (err)
4927		return err;
4928
4929	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
4930	if (err) {
4931		dev_err(&pdev->dev,
4932			"DMA configuration failed: 0x%x\n", err);
4933		goto err_dma;
4934	}
4935
4936	err = pci_request_regions(pdev, iavf_driver_name);
4937	if (err) {
4938		dev_err(&pdev->dev,
4939			"pci_request_regions failed 0x%x\n", err);
4940		goto err_pci_reg;
4941	}
4942
4943	pci_set_master(pdev);
4944
4945	netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter),
4946				   IAVF_MAX_REQ_QUEUES);
4947	if (!netdev) {
4948		err = -ENOMEM;
4949		goto err_alloc_etherdev;
4950	}
4951
4952	SET_NETDEV_DEV(netdev, &pdev->dev);
4953
4954	pci_set_drvdata(pdev, netdev);
4955	adapter = netdev_priv(netdev);
4956
4957	adapter->netdev = netdev;
4958	adapter->pdev = pdev;
4959
4960	hw = &adapter->hw;
4961	hw->back = adapter;
4962
4963	adapter->wq = alloc_ordered_workqueue("%s", WQ_MEM_RECLAIM,
4964					      iavf_driver_name);
4965	if (!adapter->wq) {
4966		err = -ENOMEM;
4967		goto err_alloc_wq;
4968	}
4969
4970	adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1;
4971	iavf_change_state(adapter, __IAVF_STARTUP);
4972
4973	/* Call save state here because it relies on the adapter struct. */
4974	pci_save_state(pdev);
4975
4976	hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
4977			      pci_resource_len(pdev, 0));
4978	if (!hw->hw_addr) {
4979		err = -EIO;
4980		goto err_ioremap;
4981	}
4982	hw->vendor_id = pdev->vendor;
4983	hw->device_id = pdev->device;
4984	pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
4985	hw->subsystem_vendor_id = pdev->subsystem_vendor;
4986	hw->subsystem_device_id = pdev->subsystem_device;
4987	hw->bus.device = PCI_SLOT(pdev->devfn);
4988	hw->bus.func = PCI_FUNC(pdev->devfn);
4989	hw->bus.bus_id = pdev->bus->number;
4990
4991	/* set up the locks for the AQ, do this only once in probe
4992	 * and destroy them only once in remove
4993	 */
4994	mutex_init(&adapter->crit_lock);
4995	mutex_init(&adapter->client_lock);
4996	mutex_init(&hw->aq.asq_mutex);
4997	mutex_init(&hw->aq.arq_mutex);
4998
4999	spin_lock_init(&adapter->mac_vlan_list_lock);
5000	spin_lock_init(&adapter->cloud_filter_list_lock);
5001	spin_lock_init(&adapter->fdir_fltr_lock);
5002	spin_lock_init(&adapter->adv_rss_lock);
5003	spin_lock_init(&adapter->current_netdev_promisc_flags_lock);
5004
5005	INIT_LIST_HEAD(&adapter->mac_filter_list);
5006	INIT_LIST_HEAD(&adapter->vlan_filter_list);
5007	INIT_LIST_HEAD(&adapter->cloud_filter_list);
5008	INIT_LIST_HEAD(&adapter->fdir_list_head);
5009	INIT_LIST_HEAD(&adapter->adv_rss_list_head);
5010
5011	INIT_WORK(&adapter->reset_task, iavf_reset_task);
5012	INIT_WORK(&adapter->adminq_task, iavf_adminq_task);
5013	INIT_WORK(&adapter->finish_config, iavf_finish_config);
5014	INIT_DELAYED_WORK(&adapter->watchdog_task, iavf_watchdog_task);
5015	INIT_DELAYED_WORK(&adapter->client_task, iavf_client_task);
5016
5017	/* Setup the wait queue for indicating transition to down status */
5018	init_waitqueue_head(&adapter->down_waitqueue);
5019
5020	/* Setup the wait queue for indicating transition to running state */
5021	init_waitqueue_head(&adapter->reset_waitqueue);
5022
5023	/* Setup the wait queue for indicating virtchannel events */
5024	init_waitqueue_head(&adapter->vc_waitqueue);
5025
5026	queue_delayed_work(adapter->wq, &adapter->watchdog_task,
5027			   msecs_to_jiffies(5 * (pdev->devfn & 0x07)));
5028	/* Initialization goes on in the work. Do not add more of it below. */
5029	return 0;
5030
5031err_ioremap:
5032	destroy_workqueue(adapter->wq);
5033err_alloc_wq:
5034	free_netdev(netdev);
5035err_alloc_etherdev:
5036	pci_release_regions(pdev);
5037err_pci_reg:
5038err_dma:
5039	pci_disable_device(pdev);
5040	return err;
5041}
5042
5043/**
5044 * iavf_suspend - Power management suspend routine
5045 * @dev_d: device info pointer
5046 *
5047 * Called when the system (VM) is entering sleep/suspend.
5048 **/
5049static int __maybe_unused iavf_suspend(struct device *dev_d)
5050{
5051	struct net_device *netdev = dev_get_drvdata(dev_d);
5052	struct iavf_adapter *adapter = netdev_priv(netdev);
5053
5054	netif_device_detach(netdev);
5055
5056	while (!mutex_trylock(&adapter->crit_lock))
5057		usleep_range(500, 1000);
5058
5059	if (netif_running(netdev)) {
5060		rtnl_lock();
5061		iavf_down(adapter);
5062		rtnl_unlock();
5063	}
5064	iavf_free_misc_irq(adapter);
5065	iavf_reset_interrupt_capability(adapter);
5066
5067	mutex_unlock(&adapter->crit_lock);
5068
5069	return 0;
5070}
5071
5072/**
5073 * iavf_resume - Power management resume routine
5074 * @dev_d: device info pointer
5075 *
5076 * Called when the system (VM) is resumed from sleep/suspend.
5077 **/
5078static int __maybe_unused iavf_resume(struct device *dev_d)
5079{
5080	struct pci_dev *pdev = to_pci_dev(dev_d);
5081	struct iavf_adapter *adapter;
5082	u32 err;
5083
5084	adapter = iavf_pdev_to_adapter(pdev);
5085
5086	pci_set_master(pdev);
5087
5088	rtnl_lock();
5089	err = iavf_set_interrupt_capability(adapter);
5090	if (err) {
5091		rtnl_unlock();
5092		dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n");
5093		return err;
5094	}
5095	err = iavf_request_misc_irq(adapter);
5096	rtnl_unlock();
5097	if (err) {
5098		dev_err(&pdev->dev, "Cannot get interrupt vector.\n");
5099		return err;
5100	}
5101
5102	queue_work(adapter->wq, &adapter->reset_task);
5103
5104	netif_device_attach(adapter->netdev);
5105
5106	return err;
5107}
5108
5109/**
5110 * iavf_remove - Device Removal Routine
5111 * @pdev: PCI device information struct
5112 *
5113 * iavf_remove is called by the PCI subsystem to alert the driver
5114 * that it should release a PCI device.  The could be caused by a
5115 * Hot-Plug event, or because the driver is going to be removed from
5116 * memory.
5117 **/
5118static void iavf_remove(struct pci_dev *pdev)
5119{
5120	struct iavf_fdir_fltr *fdir, *fdirtmp;
5121	struct iavf_vlan_filter *vlf, *vlftmp;
5122	struct iavf_cloud_filter *cf, *cftmp;
5123	struct iavf_adv_rss *rss, *rsstmp;
5124	struct iavf_mac_filter *f, *ftmp;
5125	struct iavf_adapter *adapter;
5126	struct net_device *netdev;
5127	struct iavf_hw *hw;
5128	int err;
5129
5130	/* Don't proceed with remove if netdev is already freed */
5131	netdev = pci_get_drvdata(pdev);
5132	if (!netdev)
5133		return;
5134
5135	adapter = iavf_pdev_to_adapter(pdev);
5136	hw = &adapter->hw;
5137
5138	if (test_and_set_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
5139		return;
5140
5141	/* Wait until port initialization is complete.
5142	 * There are flows where register/unregister netdev may race.
5143	 */
5144	while (1) {
5145		mutex_lock(&adapter->crit_lock);
5146		if (adapter->state == __IAVF_RUNNING ||
5147		    adapter->state == __IAVF_DOWN ||
5148		    adapter->state == __IAVF_INIT_FAILED) {
5149			mutex_unlock(&adapter->crit_lock);
5150			break;
5151		}
5152		/* Simply return if we already went through iavf_shutdown */
5153		if (adapter->state == __IAVF_REMOVE) {
5154			mutex_unlock(&adapter->crit_lock);
5155			return;
5156		}
5157
5158		mutex_unlock(&adapter->crit_lock);
5159		usleep_range(500, 1000);
5160	}
5161	cancel_delayed_work_sync(&adapter->watchdog_task);
5162	cancel_work_sync(&adapter->finish_config);
5163
5164	rtnl_lock();
5165	if (adapter->netdev_registered) {
5166		unregister_netdevice(netdev);
5167		adapter->netdev_registered = false;
5168	}
5169	rtnl_unlock();
5170
5171	if (CLIENT_ALLOWED(adapter)) {
5172		err = iavf_lan_del_device(adapter);
5173		if (err)
5174			dev_warn(&pdev->dev, "Failed to delete client device: %d\n",
5175				 err);
5176	}
5177
5178	mutex_lock(&adapter->crit_lock);
5179	dev_info(&adapter->pdev->dev, "Removing device\n");
5180	iavf_change_state(adapter, __IAVF_REMOVE);
5181
5182	iavf_request_reset(adapter);
5183	msleep(50);
5184	/* If the FW isn't responding, kick it once, but only once. */
5185	if (!iavf_asq_done(hw)) {
5186		iavf_request_reset(adapter);
5187		msleep(50);
5188	}
5189
5190	iavf_misc_irq_disable(adapter);
5191	/* Shut down all the garbage mashers on the detention level */
5192	cancel_work_sync(&adapter->reset_task);
5193	cancel_delayed_work_sync(&adapter->watchdog_task);
5194	cancel_work_sync(&adapter->adminq_task);
5195	cancel_delayed_work_sync(&adapter->client_task);
5196
5197	adapter->aq_required = 0;
5198	adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
5199
5200	iavf_free_all_tx_resources(adapter);
5201	iavf_free_all_rx_resources(adapter);
5202	iavf_free_misc_irq(adapter);
5203
5204	iavf_reset_interrupt_capability(adapter);
5205	iavf_free_q_vectors(adapter);
5206
5207	iavf_free_rss(adapter);
5208
5209	if (hw->aq.asq.count)
5210		iavf_shutdown_adminq(hw);
5211
5212	/* destroy the locks only once, here */
5213	mutex_destroy(&hw->aq.arq_mutex);
5214	mutex_destroy(&hw->aq.asq_mutex);
5215	mutex_destroy(&adapter->client_lock);
5216	mutex_unlock(&adapter->crit_lock);
5217	mutex_destroy(&adapter->crit_lock);
5218
5219	iounmap(hw->hw_addr);
5220	pci_release_regions(pdev);
5221	iavf_free_queues(adapter);
5222	kfree(adapter->vf_res);
5223	spin_lock_bh(&adapter->mac_vlan_list_lock);
5224	/* If we got removed before an up/down sequence, we've got a filter
5225	 * hanging out there that we need to get rid of.
5226	 */
5227	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
5228		list_del(&f->list);
5229		kfree(f);
5230	}
5231	list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list,
5232				 list) {
5233		list_del(&vlf->list);
5234		kfree(vlf);
5235	}
5236
5237	spin_unlock_bh(&adapter->mac_vlan_list_lock);
5238
5239	spin_lock_bh(&adapter->cloud_filter_list_lock);
5240	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
5241		list_del(&cf->list);
5242		kfree(cf);
5243	}
5244	spin_unlock_bh(&adapter->cloud_filter_list_lock);
5245
5246	spin_lock_bh(&adapter->fdir_fltr_lock);
5247	list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head, list) {
5248		list_del(&fdir->list);
5249		kfree(fdir);
5250	}
5251	spin_unlock_bh(&adapter->fdir_fltr_lock);
5252
5253	spin_lock_bh(&adapter->adv_rss_lock);
5254	list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head,
5255				 list) {
5256		list_del(&rss->list);
5257		kfree(rss);
5258	}
5259	spin_unlock_bh(&adapter->adv_rss_lock);
5260
5261	destroy_workqueue(adapter->wq);
5262
5263	pci_set_drvdata(pdev, NULL);
5264
5265	free_netdev(netdev);
5266
5267	pci_disable_device(pdev);
5268}
5269
5270/**
5271 * iavf_shutdown - Shutdown the device in preparation for a reboot
5272 * @pdev: pci device structure
5273 **/
5274static void iavf_shutdown(struct pci_dev *pdev)
5275{
5276	iavf_remove(pdev);
5277
5278	if (system_state == SYSTEM_POWER_OFF)
5279		pci_set_power_state(pdev, PCI_D3hot);
5280}
5281
5282static SIMPLE_DEV_PM_OPS(iavf_pm_ops, iavf_suspend, iavf_resume);
5283
5284static struct pci_driver iavf_driver = {
5285	.name      = iavf_driver_name,
5286	.id_table  = iavf_pci_tbl,
5287	.probe     = iavf_probe,
5288	.remove    = iavf_remove,
5289	.driver.pm = &iavf_pm_ops,
5290	.shutdown  = iavf_shutdown,
5291};
5292
5293/**
5294 * iavf_init_module - Driver Registration Routine
5295 *
5296 * iavf_init_module is the first routine called when the driver is
5297 * loaded. All it does is register with the PCI subsystem.
5298 **/
5299static int __init iavf_init_module(void)
5300{
5301	pr_info("iavf: %s\n", iavf_driver_string);
5302
5303	pr_info("%s\n", iavf_copyright);
5304
5305	return pci_register_driver(&iavf_driver);
5306}
5307
5308module_init(iavf_init_module);
5309
5310/**
5311 * iavf_exit_module - Driver Exit Cleanup Routine
5312 *
5313 * iavf_exit_module is called just before the driver is removed
5314 * from memory.
5315 **/
5316static void __exit iavf_exit_module(void)
5317{
5318	pci_unregister_driver(&iavf_driver);
5319}
5320
5321module_exit(iavf_exit_module);
5322
5323/* iavf_main.c */
5324