1/* SPDX-License-Identifier: GPL-2.0 */
2/* Copyright(c) 2013 - 2018 Intel Corporation. */
3
4#ifndef _I40E_TXRX_H_
5#define _I40E_TXRX_H_
6
7#include <net/xdp.h>
8
9/* Interrupt Throttling and Rate Limiting Goodies */
10#define I40E_DEFAULT_IRQ_WORK      256
11
12/* The datasheet for the X710 and XL710 indicate that the maximum value for
13 * the ITR is 8160usec which is then called out as 0xFF0 with a 2usec
14 * resolution. 8160 is 0x1FE0 when written out in hex. So instead of storing
15 * the register value which is divided by 2 lets use the actual values and
16 * avoid an excessive amount of translation.
17 */
18#define I40E_ITR_DYNAMIC	0x8000	/* use top bit as a flag */
19#define I40E_ITR_MASK		0x1FFE	/* mask for ITR register value */
20#define I40E_MIN_ITR		     2	/* reg uses 2 usec resolution */
21#define I40E_ITR_20K		    50
22#define I40E_ITR_8K		   122
23#define I40E_MAX_ITR		  8160	/* maximum value as per datasheet */
24#define ITR_TO_REG(setting) ((setting) & ~I40E_ITR_DYNAMIC)
25#define ITR_REG_ALIGN(setting) __ALIGN_MASK(setting, ~I40E_ITR_MASK)
26#define ITR_IS_DYNAMIC(setting) (!!((setting) & I40E_ITR_DYNAMIC))
27
28#define I40E_ITR_RX_DEF		(I40E_ITR_20K | I40E_ITR_DYNAMIC)
29#define I40E_ITR_TX_DEF		(I40E_ITR_20K | I40E_ITR_DYNAMIC)
30
31/* 0x40 is the enable bit for interrupt rate limiting, and must be set if
32 * the value of the rate limit is non-zero
33 */
34#define INTRL_ENA                  BIT(6)
35#define I40E_MAX_INTRL             0x3B    /* reg uses 4 usec resolution */
36#define INTRL_REG_TO_USEC(intrl) ((intrl & ~INTRL_ENA) << 2)
37
38/**
39 * i40e_intrl_usec_to_reg - convert interrupt rate limit to register
40 * @intrl: interrupt rate limit to convert
41 *
42 * This function converts a decimal interrupt rate limit to the appropriate
43 * register format expected by the firmware when setting interrupt rate limit.
44 */
45static inline u16 i40e_intrl_usec_to_reg(int intrl)
46{
47	if (intrl >> 2)
48		return ((intrl >> 2) | INTRL_ENA);
49	else
50		return 0;
51}
52
53#define I40E_QUEUE_END_OF_LIST 0x7FF
54
55/* this enum matches hardware bits and is meant to be used by DYN_CTLN
56 * registers and QINT registers or more generally anywhere in the manual
57 * mentioning ITR_INDX, ITR_NONE cannot be used as an index 'n' into any
58 * register but instead is a special value meaning "don't update" ITR0/1/2.
59 */
60enum i40e_dyn_idx_t {
61	I40E_IDX_ITR0 = 0,
62	I40E_IDX_ITR1 = 1,
63	I40E_IDX_ITR2 = 2,
64	I40E_ITR_NONE = 3	/* ITR_NONE must not be used as an index */
65};
66
67/* these are indexes into ITRN registers */
68#define I40E_RX_ITR    I40E_IDX_ITR0
69#define I40E_TX_ITR    I40E_IDX_ITR1
70
71/* Supported RSS offloads */
72#define I40E_DEFAULT_RSS_HENA ( \
73	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_UDP) | \
74	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_SCTP) | \
75	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_TCP) | \
76	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_OTHER) | \
77	BIT_ULL(I40E_FILTER_PCTYPE_FRAG_IPV4) | \
78	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_UDP) | \
79	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_TCP) | \
80	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_SCTP) | \
81	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_OTHER) | \
82	BIT_ULL(I40E_FILTER_PCTYPE_FRAG_IPV6) | \
83	BIT_ULL(I40E_FILTER_PCTYPE_L2_PAYLOAD))
84
85#define I40E_DEFAULT_RSS_HENA_EXPANDED (I40E_DEFAULT_RSS_HENA | \
86	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_TCP_SYN_NO_ACK) | \
87	BIT_ULL(I40E_FILTER_PCTYPE_NONF_UNICAST_IPV4_UDP) | \
88	BIT_ULL(I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV4_UDP) | \
89	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_TCP_SYN_NO_ACK) | \
90	BIT_ULL(I40E_FILTER_PCTYPE_NONF_UNICAST_IPV6_UDP) | \
91	BIT_ULL(I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV6_UDP))
92
93#define i40e_pf_get_default_rss_hena(pf) \
94	(((pf)->hw_features & I40E_HW_MULTIPLE_TCP_UDP_RSS_PCTYPE) ? \
95	  I40E_DEFAULT_RSS_HENA_EXPANDED : I40E_DEFAULT_RSS_HENA)
96
97/* Supported Rx Buffer Sizes (a multiple of 128) */
98#define I40E_RXBUFFER_256   256
99#define I40E_RXBUFFER_1536  1536  /* 128B aligned standard Ethernet frame */
100#define I40E_RXBUFFER_2048  2048
101#define I40E_RXBUFFER_3072  3072  /* Used for large frames w/ padding */
102#define I40E_MAX_RXBUFFER   9728  /* largest size for single descriptor */
103
104/* NOTE: netdev_alloc_skb reserves up to 64 bytes, NET_IP_ALIGN means we
105 * reserve 2 more, and skb_shared_info adds an additional 384 bytes more,
106 * this adds up to 512 bytes of extra data meaning the smallest allocation
107 * we could have is 1K.
108 * i.e. RXBUFFER_256 --> 960 byte skb (size-1024 slab)
109 * i.e. RXBUFFER_512 --> 1216 byte skb (size-2048 slab)
110 */
111#define I40E_RX_HDR_SIZE I40E_RXBUFFER_256
112#define I40E_PACKET_HDR_PAD (ETH_HLEN + ETH_FCS_LEN + (VLAN_HLEN * 2))
113#define i40e_rx_desc i40e_16byte_rx_desc
114
115#define I40E_RX_DMA_ATTR \
116	(DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING)
117
118/* Attempt to maximize the headroom available for incoming frames.  We
119 * use a 2K buffer for receives and need 1536/1534 to store the data for
120 * the frame.  This leaves us with 512 bytes of room.  From that we need
121 * to deduct the space needed for the shared info and the padding needed
122 * to IP align the frame.
123 *
124 * Note: For cache line sizes 256 or larger this value is going to end
125 *	 up negative.  In these cases we should fall back to the legacy
126 *	 receive path.
127 */
128#if (PAGE_SIZE < 8192)
129#define I40E_2K_TOO_SMALL_WITH_PADDING \
130((NET_SKB_PAD + I40E_RXBUFFER_1536) > SKB_WITH_OVERHEAD(I40E_RXBUFFER_2048))
131
132static inline int i40e_compute_pad(int rx_buf_len)
133{
134	int page_size, pad_size;
135
136	page_size = ALIGN(rx_buf_len, PAGE_SIZE / 2);
137	pad_size = SKB_WITH_OVERHEAD(page_size) - rx_buf_len;
138
139	return pad_size;
140}
141
142static inline int i40e_skb_pad(void)
143{
144	int rx_buf_len;
145
146	/* If a 2K buffer cannot handle a standard Ethernet frame then
147	 * optimize padding for a 3K buffer instead of a 1.5K buffer.
148	 *
149	 * For a 3K buffer we need to add enough padding to allow for
150	 * tailroom due to NET_IP_ALIGN possibly shifting us out of
151	 * cache-line alignment.
152	 */
153	if (I40E_2K_TOO_SMALL_WITH_PADDING)
154		rx_buf_len = I40E_RXBUFFER_3072 + SKB_DATA_ALIGN(NET_IP_ALIGN);
155	else
156		rx_buf_len = I40E_RXBUFFER_1536;
157
158	/* if needed make room for NET_IP_ALIGN */
159	rx_buf_len -= NET_IP_ALIGN;
160
161	return i40e_compute_pad(rx_buf_len);
162}
163
164#define I40E_SKB_PAD i40e_skb_pad()
165#else
166#define I40E_2K_TOO_SMALL_WITH_PADDING false
167#define I40E_SKB_PAD (NET_SKB_PAD + NET_IP_ALIGN)
168#endif
169
170/**
171 * i40e_test_staterr - tests bits in Rx descriptor status and error fields
172 * @rx_desc: pointer to receive descriptor (in le64 format)
173 * @stat_err_bits: value to mask
174 *
175 * This function does some fast chicanery in order to return the
176 * value of the mask which is really only used for boolean tests.
177 * The status_error_len doesn't need to be shifted because it begins
178 * at offset zero.
179 */
180static inline bool i40e_test_staterr(union i40e_rx_desc *rx_desc,
181				     const u64 stat_err_bits)
182{
183	return !!(rx_desc->wb.qword1.status_error_len &
184		  cpu_to_le64(stat_err_bits));
185}
186
187/* How many Rx Buffers do we bundle into one write to the hardware ? */
188#define I40E_RX_BUFFER_WRITE	32	/* Must be power of 2 */
189
190#define I40E_RX_NEXT_DESC(r, i, n)		\
191	do {					\
192		(i)++;				\
193		if ((i) == (r)->count)		\
194			i = 0;			\
195		(n) = I40E_RX_DESC((r), (i));	\
196	} while (0)
197
198
199#define I40E_MAX_BUFFER_TXD	8
200#define I40E_MIN_TX_LEN		17
201
202/* The size limit for a transmit buffer in a descriptor is (16K - 1).
203 * In order to align with the read requests we will align the value to
204 * the nearest 4K which represents our maximum read request size.
205 */
206#define I40E_MAX_READ_REQ_SIZE		4096
207#define I40E_MAX_DATA_PER_TXD		(16 * 1024 - 1)
208#define I40E_MAX_DATA_PER_TXD_ALIGNED \
209	(I40E_MAX_DATA_PER_TXD & ~(I40E_MAX_READ_REQ_SIZE - 1))
210
211/**
212 * i40e_txd_use_count  - estimate the number of descriptors needed for Tx
213 * @size: transmit request size in bytes
214 *
215 * Due to hardware alignment restrictions (4K alignment), we need to
216 * assume that we can have no more than 12K of data per descriptor, even
217 * though each descriptor can take up to 16K - 1 bytes of aligned memory.
218 * Thus, we need to divide by 12K. But division is slow! Instead,
219 * we decompose the operation into shifts and one relatively cheap
220 * multiply operation.
221 *
222 * To divide by 12K, we first divide by 4K, then divide by 3:
223 *     To divide by 4K, shift right by 12 bits
224 *     To divide by 3, multiply by 85, then divide by 256
225 *     (Divide by 256 is done by shifting right by 8 bits)
226 * Finally, we add one to round up. Because 256 isn't an exact multiple of
227 * 3, we'll underestimate near each multiple of 12K. This is actually more
228 * accurate as we have 4K - 1 of wiggle room that we can fit into the last
229 * segment.  For our purposes this is accurate out to 1M which is orders of
230 * magnitude greater than our largest possible GSO size.
231 *
232 * This would then be implemented as:
233 *     return (((size >> 12) * 85) >> 8) + 1;
234 *
235 * Since multiplication and division are commutative, we can reorder
236 * operations into:
237 *     return ((size * 85) >> 20) + 1;
238 */
239static inline unsigned int i40e_txd_use_count(unsigned int size)
240{
241	return ((size * 85) >> 20) + 1;
242}
243
244/* Tx Descriptors needed, worst case */
245#define DESC_NEEDED (MAX_SKB_FRAGS + 6)
246
247#define I40E_TX_FLAGS_HW_VLAN		BIT(1)
248#define I40E_TX_FLAGS_SW_VLAN		BIT(2)
249#define I40E_TX_FLAGS_TSO		BIT(3)
250#define I40E_TX_FLAGS_IPV4		BIT(4)
251#define I40E_TX_FLAGS_IPV6		BIT(5)
252#define I40E_TX_FLAGS_TSYN		BIT(8)
253#define I40E_TX_FLAGS_FD_SB		BIT(9)
254#define I40E_TX_FLAGS_UDP_TUNNEL	BIT(10)
255#define I40E_TX_FLAGS_VLAN_MASK		0xffff0000
256#define I40E_TX_FLAGS_VLAN_PRIO_MASK	0xe0000000
257#define I40E_TX_FLAGS_VLAN_PRIO_SHIFT	29
258#define I40E_TX_FLAGS_VLAN_SHIFT	16
259
260struct i40e_tx_buffer {
261	struct i40e_tx_desc *next_to_watch;
262	union {
263		struct xdp_frame *xdpf;
264		struct sk_buff *skb;
265		void *raw_buf;
266	};
267	unsigned int bytecount;
268	unsigned short gso_segs;
269
270	DEFINE_DMA_UNMAP_ADDR(dma);
271	DEFINE_DMA_UNMAP_LEN(len);
272	u32 tx_flags;
273};
274
275struct i40e_rx_buffer {
276	dma_addr_t dma;
277	struct page *page;
278	__u32 page_offset;
279	__u16 pagecnt_bias;
280	__u32 page_count;
281};
282
283struct i40e_queue_stats {
284	u64 packets;
285	u64 bytes;
286};
287
288struct i40e_tx_queue_stats {
289	u64 restart_queue;
290	u64 tx_busy;
291	u64 tx_done_old;
292	u64 tx_linearize;
293	u64 tx_force_wb;
294	u64 tx_stopped;
295	int prev_pkt_ctr;
296};
297
298struct i40e_rx_queue_stats {
299	u64 non_eop_descs;
300	u64 alloc_page_failed;
301	u64 alloc_buff_failed;
302	u64 page_reuse_count;
303	u64 page_alloc_count;
304	u64 page_waive_count;
305	u64 page_busy_count;
306};
307
308enum i40e_ring_state_t {
309	__I40E_TX_FDIR_INIT_DONE,
310	__I40E_TX_XPS_INIT_DONE,
311	__I40E_RING_STATE_NBITS /* must be last */
312};
313
314/* some useful defines for virtchannel interface, which
315 * is the only remaining user of header split
316 */
317#define I40E_RX_DTYPE_HEADER_SPLIT  1
318#define I40E_RX_SPLIT_L2      0x1
319#define I40E_RX_SPLIT_IP      0x2
320#define I40E_RX_SPLIT_TCP_UDP 0x4
321#define I40E_RX_SPLIT_SCTP    0x8
322
323/* struct that defines a descriptor ring, associated with a VSI */
324struct i40e_ring {
325	struct i40e_ring *next;		/* pointer to next ring in q_vector */
326	void *desc;			/* Descriptor ring memory */
327	struct device *dev;		/* Used for DMA mapping */
328	struct net_device *netdev;	/* netdev ring maps to */
329	struct bpf_prog *xdp_prog;
330	union {
331		struct i40e_tx_buffer *tx_bi;
332		struct i40e_rx_buffer *rx_bi;
333		struct xdp_buff **rx_bi_zc;
334	};
335	DECLARE_BITMAP(state, __I40E_RING_STATE_NBITS);
336	u16 queue_index;		/* Queue number of ring */
337	u8 dcb_tc;			/* Traffic class of ring */
338	u8 __iomem *tail;
339
340	/* Storing xdp_buff on ring helps in saving the state of partially built
341	 * packet when i40e_clean_rx_ring_irq() must return before it sees EOP
342	 * and to resume packet building for this ring in the next call to
343	 * i40e_clean_rx_ring_irq().
344	 */
345	struct xdp_buff xdp;
346
347	/* Next descriptor to be processed; next_to_clean is updated only on
348	 * processing EOP descriptor
349	 */
350	u16 next_to_process;
351	/* high bit set means dynamic, use accessor routines to read/write.
352	 * hardware only supports 2us resolution for the ITR registers.
353	 * these values always store the USER setting, and must be converted
354	 * before programming to a register.
355	 */
356	u16 itr_setting;
357
358	u16 count;			/* Number of descriptors */
359	u16 reg_idx;			/* HW register index of the ring */
360	u16 rx_buf_len;
361
362	/* used in interrupt processing */
363	u16 next_to_use;
364	u16 next_to_clean;
365	u16 xdp_tx_active;
366
367	u8 atr_sample_rate;
368	u8 atr_count;
369
370	bool ring_active;		/* is ring online or not */
371	bool arm_wb;		/* do something to arm write back */
372	u8 packet_stride;
373
374	u16 flags;
375#define I40E_TXR_FLAGS_WB_ON_ITR		BIT(0)
376#define I40E_RXR_FLAGS_BUILD_SKB_ENABLED	BIT(1)
377#define I40E_TXR_FLAGS_XDP			BIT(2)
378
379	/* stats structs */
380	struct i40e_queue_stats	stats;
381	struct u64_stats_sync syncp;
382	union {
383		struct i40e_tx_queue_stats tx_stats;
384		struct i40e_rx_queue_stats rx_stats;
385	};
386
387	unsigned int size;		/* length of descriptor ring in bytes */
388	dma_addr_t dma;			/* physical address of ring */
389
390	struct i40e_vsi *vsi;		/* Backreference to associated VSI */
391	struct i40e_q_vector *q_vector;	/* Backreference to associated vector */
392
393	struct rcu_head rcu;		/* to avoid race on free */
394	u16 next_to_alloc;
395
396	struct i40e_channel *ch;
397	u16 rx_offset;
398	struct xdp_rxq_info xdp_rxq;
399	struct xsk_buff_pool *xsk_pool;
400} ____cacheline_internodealigned_in_smp;
401
402static inline bool ring_uses_build_skb(struct i40e_ring *ring)
403{
404	return !!(ring->flags & I40E_RXR_FLAGS_BUILD_SKB_ENABLED);
405}
406
407static inline void set_ring_build_skb_enabled(struct i40e_ring *ring)
408{
409	ring->flags |= I40E_RXR_FLAGS_BUILD_SKB_ENABLED;
410}
411
412static inline void clear_ring_build_skb_enabled(struct i40e_ring *ring)
413{
414	ring->flags &= ~I40E_RXR_FLAGS_BUILD_SKB_ENABLED;
415}
416
417static inline bool ring_is_xdp(struct i40e_ring *ring)
418{
419	return !!(ring->flags & I40E_TXR_FLAGS_XDP);
420}
421
422static inline void set_ring_xdp(struct i40e_ring *ring)
423{
424	ring->flags |= I40E_TXR_FLAGS_XDP;
425}
426
427#define I40E_ITR_ADAPTIVE_MIN_INC	0x0002
428#define I40E_ITR_ADAPTIVE_MIN_USECS	0x0002
429#define I40E_ITR_ADAPTIVE_MAX_USECS	0x007e
430#define I40E_ITR_ADAPTIVE_LATENCY	0x8000
431#define I40E_ITR_ADAPTIVE_BULK		0x0000
432
433struct i40e_ring_container {
434	struct i40e_ring *ring;		/* pointer to linked list of ring(s) */
435	unsigned long next_update;	/* jiffies value of next update */
436	unsigned int total_bytes;	/* total bytes processed this int */
437	unsigned int total_packets;	/* total packets processed this int */
438	u16 count;
439	u16 target_itr;			/* target ITR setting for ring(s) */
440	u16 current_itr;		/* current ITR setting for ring(s) */
441};
442
443/* iterator for handling rings in ring container */
444#define i40e_for_each_ring(pos, head) \
445	for (pos = (head).ring; pos != NULL; pos = pos->next)
446
447static inline unsigned int i40e_rx_pg_order(struct i40e_ring *ring)
448{
449#if (PAGE_SIZE < 8192)
450	if (ring->rx_buf_len > (PAGE_SIZE / 2))
451		return 1;
452#endif
453	return 0;
454}
455
456#define i40e_rx_pg_size(_ring) (PAGE_SIZE << i40e_rx_pg_order(_ring))
457
458bool i40e_alloc_rx_buffers(struct i40e_ring *rxr, u16 cleaned_count);
459netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
460u16 i40e_lan_select_queue(struct net_device *netdev, struct sk_buff *skb,
461			  struct net_device *sb_dev);
462void i40e_clean_tx_ring(struct i40e_ring *tx_ring);
463void i40e_clean_rx_ring(struct i40e_ring *rx_ring);
464int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring);
465int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring);
466void i40e_free_tx_resources(struct i40e_ring *tx_ring);
467void i40e_free_rx_resources(struct i40e_ring *rx_ring);
468int i40e_napi_poll(struct napi_struct *napi, int budget);
469void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector);
470u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw);
471void i40e_detect_recover_hung(struct i40e_vsi *vsi);
472int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size);
473bool __i40e_chk_linearize(struct sk_buff *skb);
474int i40e_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
475		  u32 flags);
476bool i40e_is_non_eop(struct i40e_ring *rx_ring,
477		     union i40e_rx_desc *rx_desc);
478
479/**
480 * i40e_get_head - Retrieve head from head writeback
481 * @tx_ring:  tx ring to fetch head of
482 *
483 * Returns value of Tx ring head based on value stored
484 * in head write-back location
485 **/
486static inline u32 i40e_get_head(struct i40e_ring *tx_ring)
487{
488	void *head = (struct i40e_tx_desc *)tx_ring->desc + tx_ring->count;
489
490	return le32_to_cpu(*(volatile __le32 *)head);
491}
492
493/**
494 * i40e_xmit_descriptor_count - calculate number of Tx descriptors needed
495 * @skb:     send buffer
496 *
497 * Returns number of data descriptors needed for this skb. Returns 0 to indicate
498 * there is not enough descriptors available in this ring since we need at least
499 * one descriptor.
500 **/
501static inline int i40e_xmit_descriptor_count(struct sk_buff *skb)
502{
503	const skb_frag_t *frag = &skb_shinfo(skb)->frags[0];
504	unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
505	int count = 0, size = skb_headlen(skb);
506
507	for (;;) {
508		count += i40e_txd_use_count(size);
509
510		if (!nr_frags--)
511			break;
512
513		size = skb_frag_size(frag++);
514	}
515
516	return count;
517}
518
519/**
520 * i40e_maybe_stop_tx - 1st level check for Tx stop conditions
521 * @tx_ring: the ring to be checked
522 * @size:    the size buffer we want to assure is available
523 *
524 * Returns 0 if stop is not needed
525 **/
526static inline int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
527{
528	if (likely(I40E_DESC_UNUSED(tx_ring) >= size))
529		return 0;
530	return __i40e_maybe_stop_tx(tx_ring, size);
531}
532
533/**
534 * i40e_chk_linearize - Check if there are more than 8 fragments per packet
535 * @skb:      send buffer
536 * @count:    number of buffers used
537 *
538 * Note: Our HW can't scatter-gather more than 8 fragments to build
539 * a packet on the wire and so we need to figure out the cases where we
540 * need to linearize the skb.
541 **/
542static inline bool i40e_chk_linearize(struct sk_buff *skb, int count)
543{
544	/* Both TSO and single send will work if count is less than 8 */
545	if (likely(count < I40E_MAX_BUFFER_TXD))
546		return false;
547
548	if (skb_is_gso(skb))
549		return __i40e_chk_linearize(skb);
550
551	/* we can support up to 8 data buffers for a single send */
552	return count != I40E_MAX_BUFFER_TXD;
553}
554
555/**
556 * txring_txq - Find the netdev Tx ring based on the i40e Tx ring
557 * @ring: Tx ring to find the netdev equivalent of
558 **/
559static inline struct netdev_queue *txring_txq(const struct i40e_ring *ring)
560{
561	return netdev_get_tx_queue(ring->netdev, ring->queue_index);
562}
563#endif /* _I40E_TXRX_H_ */
564