1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 2013 - 2018 Intel Corporation. */
3
4#include <linux/prefetch.h>
5#include <linux/bpf_trace.h>
6#include <net/mpls.h>
7#include <net/xdp.h>
8#include "i40e.h"
9#include "i40e_trace.h"
10#include "i40e_prototype.h"
11#include "i40e_txrx_common.h"
12#include "i40e_xsk.h"
13
14#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
15/**
16 * i40e_fdir - Generate a Flow Director descriptor based on fdata
17 * @tx_ring: Tx ring to send buffer on
18 * @fdata: Flow director filter data
19 * @add: Indicate if we are adding a rule or deleting one
20 *
21 **/
22static void i40e_fdir(struct i40e_ring *tx_ring,
23		      struct i40e_fdir_filter *fdata, bool add)
24{
25	struct i40e_filter_program_desc *fdir_desc;
26	struct i40e_pf *pf = tx_ring->vsi->back;
27	u32 flex_ptype, dtype_cmd;
28	u16 i;
29
30	/* grab the next descriptor */
31	i = tx_ring->next_to_use;
32	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
33
34	i++;
35	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
36
37	flex_ptype = I40E_TXD_FLTR_QW0_QINDEX_MASK &
38		     (fdata->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT);
39
40	flex_ptype |= I40E_TXD_FLTR_QW0_FLEXOFF_MASK &
41		      (fdata->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);
42
43	flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
44		      (fdata->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
45
46	/* Use LAN VSI Id if not programmed by user */
47	flex_ptype |= I40E_TXD_FLTR_QW0_DEST_VSI_MASK &
48		      ((u32)(fdata->dest_vsi ? : pf->vsi[pf->lan_vsi]->id) <<
49		       I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT);
50
51	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
52
53	dtype_cmd |= add ?
54		     I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
55		     I40E_TXD_FLTR_QW1_PCMD_SHIFT :
56		     I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
57		     I40E_TXD_FLTR_QW1_PCMD_SHIFT;
58
59	dtype_cmd |= I40E_TXD_FLTR_QW1_DEST_MASK &
60		     (fdata->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT);
61
62	dtype_cmd |= I40E_TXD_FLTR_QW1_FD_STATUS_MASK &
63		     (fdata->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT);
64
65	if (fdata->cnt_index) {
66		dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
67		dtype_cmd |= I40E_TXD_FLTR_QW1_CNTINDEX_MASK &
68			     ((u32)fdata->cnt_index <<
69			      I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT);
70	}
71
72	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
73	fdir_desc->rsvd = cpu_to_le32(0);
74	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
75	fdir_desc->fd_id = cpu_to_le32(fdata->fd_id);
76}
77
78#define I40E_FD_CLEAN_DELAY 10
79/**
80 * i40e_program_fdir_filter - Program a Flow Director filter
81 * @fdir_data: Packet data that will be filter parameters
82 * @raw_packet: the pre-allocated packet buffer for FDir
83 * @pf: The PF pointer
84 * @add: True for add/update, False for remove
85 **/
86static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data,
87				    u8 *raw_packet, struct i40e_pf *pf,
88				    bool add)
89{
90	struct i40e_tx_buffer *tx_buf, *first;
91	struct i40e_tx_desc *tx_desc;
92	struct i40e_ring *tx_ring;
93	struct i40e_vsi *vsi;
94	struct device *dev;
95	dma_addr_t dma;
96	u32 td_cmd = 0;
97	u16 i;
98
99	/* find existing FDIR VSI */
100	vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
101	if (!vsi)
102		return -ENOENT;
103
104	tx_ring = vsi->tx_rings[0];
105	dev = tx_ring->dev;
106
107	/* we need two descriptors to add/del a filter and we can wait */
108	for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) {
109		if (!i)
110			return -EAGAIN;
111		msleep_interruptible(1);
112	}
113
114	dma = dma_map_single(dev, raw_packet,
115			     I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
116	if (dma_mapping_error(dev, dma))
117		goto dma_fail;
118
119	/* grab the next descriptor */
120	i = tx_ring->next_to_use;
121	first = &tx_ring->tx_bi[i];
122	i40e_fdir(tx_ring, fdir_data, add);
123
124	/* Now program a dummy descriptor */
125	i = tx_ring->next_to_use;
126	tx_desc = I40E_TX_DESC(tx_ring, i);
127	tx_buf = &tx_ring->tx_bi[i];
128
129	tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
130
131	memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
132
133	/* record length, and DMA address */
134	dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
135	dma_unmap_addr_set(tx_buf, dma, dma);
136
137	tx_desc->buffer_addr = cpu_to_le64(dma);
138	td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
139
140	tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
141	tx_buf->raw_buf = (void *)raw_packet;
142
143	tx_desc->cmd_type_offset_bsz =
144		build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
145
146	/* Force memory writes to complete before letting h/w
147	 * know there are new descriptors to fetch.
148	 */
149	wmb();
150
151	/* Mark the data descriptor to be watched */
152	first->next_to_watch = tx_desc;
153
154	writel(tx_ring->next_to_use, tx_ring->tail);
155	return 0;
156
157dma_fail:
158	return -1;
159}
160
161/**
162 * i40e_create_dummy_packet - Constructs dummy packet for HW
163 * @dummy_packet: preallocated space for dummy packet
164 * @ipv4: is layer 3 packet of version 4 or 6
165 * @l4proto: next level protocol used in data portion of l3
166 * @data: filter data
167 *
168 * Returns address of layer 4 protocol dummy packet.
169 **/
170static char *i40e_create_dummy_packet(u8 *dummy_packet, bool ipv4, u8 l4proto,
171				      struct i40e_fdir_filter *data)
172{
173	bool is_vlan = !!data->vlan_tag;
174	struct vlan_hdr vlan = {};
175	struct ipv6hdr ipv6 = {};
176	struct ethhdr eth = {};
177	struct iphdr ip = {};
178	u8 *tmp;
179
180	if (ipv4) {
181		eth.h_proto = cpu_to_be16(ETH_P_IP);
182		ip.protocol = l4proto;
183		ip.version = 0x4;
184		ip.ihl = 0x5;
185
186		ip.daddr = data->dst_ip;
187		ip.saddr = data->src_ip;
188	} else {
189		eth.h_proto = cpu_to_be16(ETH_P_IPV6);
190		ipv6.nexthdr = l4proto;
191		ipv6.version = 0x6;
192
193		memcpy(&ipv6.saddr.in6_u.u6_addr32, data->src_ip6,
194		       sizeof(__be32) * 4);
195		memcpy(&ipv6.daddr.in6_u.u6_addr32, data->dst_ip6,
196		       sizeof(__be32) * 4);
197	}
198
199	if (is_vlan) {
200		vlan.h_vlan_TCI = data->vlan_tag;
201		vlan.h_vlan_encapsulated_proto = eth.h_proto;
202		eth.h_proto = data->vlan_etype;
203	}
204
205	tmp = dummy_packet;
206	memcpy(tmp, &eth, sizeof(eth));
207	tmp += sizeof(eth);
208
209	if (is_vlan) {
210		memcpy(tmp, &vlan, sizeof(vlan));
211		tmp += sizeof(vlan);
212	}
213
214	if (ipv4) {
215		memcpy(tmp, &ip, sizeof(ip));
216		tmp += sizeof(ip);
217	} else {
218		memcpy(tmp, &ipv6, sizeof(ipv6));
219		tmp += sizeof(ipv6);
220	}
221
222	return tmp;
223}
224
225/**
226 * i40e_create_dummy_udp_packet - helper function to create UDP packet
227 * @raw_packet: preallocated space for dummy packet
228 * @ipv4: is layer 3 packet of version 4 or 6
229 * @l4proto: next level protocol used in data portion of l3
230 * @data: filter data
231 *
232 * Helper function to populate udp fields.
233 **/
234static void i40e_create_dummy_udp_packet(u8 *raw_packet, bool ipv4, u8 l4proto,
235					 struct i40e_fdir_filter *data)
236{
237	struct udphdr *udp;
238	u8 *tmp;
239
240	tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_UDP, data);
241	udp = (struct udphdr *)(tmp);
242	udp->dest = data->dst_port;
243	udp->source = data->src_port;
244}
245
246/**
247 * i40e_create_dummy_tcp_packet - helper function to create TCP packet
248 * @raw_packet: preallocated space for dummy packet
249 * @ipv4: is layer 3 packet of version 4 or 6
250 * @l4proto: next level protocol used in data portion of l3
251 * @data: filter data
252 *
253 * Helper function to populate tcp fields.
254 **/
255static void i40e_create_dummy_tcp_packet(u8 *raw_packet, bool ipv4, u8 l4proto,
256					 struct i40e_fdir_filter *data)
257{
258	struct tcphdr *tcp;
259	u8 *tmp;
260	/* Dummy tcp packet */
261	static const char tcp_packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
262		0x50, 0x11, 0x0, 0x72, 0, 0, 0, 0};
263
264	tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_TCP, data);
265
266	tcp = (struct tcphdr *)tmp;
267	memcpy(tcp, tcp_packet, sizeof(tcp_packet));
268	tcp->dest = data->dst_port;
269	tcp->source = data->src_port;
270}
271
272/**
273 * i40e_create_dummy_sctp_packet - helper function to create SCTP packet
274 * @raw_packet: preallocated space for dummy packet
275 * @ipv4: is layer 3 packet of version 4 or 6
276 * @l4proto: next level protocol used in data portion of l3
277 * @data: filter data
278 *
279 * Helper function to populate sctp fields.
280 **/
281static void i40e_create_dummy_sctp_packet(u8 *raw_packet, bool ipv4,
282					  u8 l4proto,
283					  struct i40e_fdir_filter *data)
284{
285	struct sctphdr *sctp;
286	u8 *tmp;
287
288	tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_SCTP, data);
289
290	sctp = (struct sctphdr *)tmp;
291	sctp->dest = data->dst_port;
292	sctp->source = data->src_port;
293}
294
295/**
296 * i40e_prepare_fdir_filter - Prepare and program fdir filter
297 * @pf: physical function to attach filter to
298 * @fd_data: filter data
299 * @add: add or delete filter
300 * @packet_addr: address of dummy packet, used in filtering
301 * @payload_offset: offset from dummy packet address to user defined data
302 * @pctype: Packet type for which filter is used
303 *
304 * Helper function to offset data of dummy packet, program it and
305 * handle errors.
306 **/
307static int i40e_prepare_fdir_filter(struct i40e_pf *pf,
308				    struct i40e_fdir_filter *fd_data,
309				    bool add, char *packet_addr,
310				    int payload_offset, u8 pctype)
311{
312	int ret;
313
314	if (fd_data->flex_filter) {
315		u8 *payload;
316		__be16 pattern = fd_data->flex_word;
317		u16 off = fd_data->flex_offset;
318
319		payload = packet_addr + payload_offset;
320
321		/* If user provided vlan, offset payload by vlan header length */
322		if (!!fd_data->vlan_tag)
323			payload += VLAN_HLEN;
324
325		*((__force __be16 *)(payload + off)) = pattern;
326	}
327
328	fd_data->pctype = pctype;
329	ret = i40e_program_fdir_filter(fd_data, packet_addr, pf, add);
330	if (ret) {
331		dev_info(&pf->pdev->dev,
332			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
333			 fd_data->pctype, fd_data->fd_id, ret);
334		/* Free the packet buffer since it wasn't added to the ring */
335		return -EOPNOTSUPP;
336	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
337		if (add)
338			dev_info(&pf->pdev->dev,
339				 "Filter OK for PCTYPE %d loc = %d\n",
340				 fd_data->pctype, fd_data->fd_id);
341		else
342			dev_info(&pf->pdev->dev,
343				 "Filter deleted for PCTYPE %d loc = %d\n",
344				 fd_data->pctype, fd_data->fd_id);
345	}
346
347	return ret;
348}
349
350/**
351 * i40e_change_filter_num - Prepare and program fdir filter
352 * @ipv4: is layer 3 packet of version 4 or 6
353 * @add: add or delete filter
354 * @ipv4_filter_num: field to update
355 * @ipv6_filter_num: field to update
356 *
357 * Update filter number field for pf.
358 **/
359static void i40e_change_filter_num(bool ipv4, bool add, u16 *ipv4_filter_num,
360				   u16 *ipv6_filter_num)
361{
362	if (add) {
363		if (ipv4)
364			(*ipv4_filter_num)++;
365		else
366			(*ipv6_filter_num)++;
367	} else {
368		if (ipv4)
369			(*ipv4_filter_num)--;
370		else
371			(*ipv6_filter_num)--;
372	}
373}
374
375#define I40E_UDPIP_DUMMY_PACKET_LEN	42
376#define I40E_UDPIP6_DUMMY_PACKET_LEN	62
377/**
378 * i40e_add_del_fdir_udp - Add/Remove UDP filters
379 * @vsi: pointer to the targeted VSI
380 * @fd_data: the flow director data required for the FDir descriptor
381 * @add: true adds a filter, false removes it
382 * @ipv4: true is v4, false is v6
383 *
384 * Returns 0 if the filters were successfully added or removed
385 **/
386static int i40e_add_del_fdir_udp(struct i40e_vsi *vsi,
387				 struct i40e_fdir_filter *fd_data,
388				 bool add,
389				 bool ipv4)
390{
391	struct i40e_pf *pf = vsi->back;
392	u8 *raw_packet;
393	int ret;
394
395	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
396	if (!raw_packet)
397		return -ENOMEM;
398
399	i40e_create_dummy_udp_packet(raw_packet, ipv4, IPPROTO_UDP, fd_data);
400
401	if (ipv4)
402		ret = i40e_prepare_fdir_filter
403			(pf, fd_data, add, raw_packet,
404			 I40E_UDPIP_DUMMY_PACKET_LEN,
405			 I40E_FILTER_PCTYPE_NONF_IPV4_UDP);
406	else
407		ret = i40e_prepare_fdir_filter
408			(pf, fd_data, add, raw_packet,
409			 I40E_UDPIP6_DUMMY_PACKET_LEN,
410			 I40E_FILTER_PCTYPE_NONF_IPV6_UDP);
411
412	if (ret) {
413		kfree(raw_packet);
414		return ret;
415	}
416
417	i40e_change_filter_num(ipv4, add, &pf->fd_udp4_filter_cnt,
418			       &pf->fd_udp6_filter_cnt);
419
420	return 0;
421}
422
423#define I40E_TCPIP_DUMMY_PACKET_LEN	54
424#define I40E_TCPIP6_DUMMY_PACKET_LEN	74
425/**
426 * i40e_add_del_fdir_tcp - Add/Remove TCPv4 filters
427 * @vsi: pointer to the targeted VSI
428 * @fd_data: the flow director data required for the FDir descriptor
429 * @add: true adds a filter, false removes it
430 * @ipv4: true is v4, false is v6
431 *
432 * Returns 0 if the filters were successfully added or removed
433 **/
434static int i40e_add_del_fdir_tcp(struct i40e_vsi *vsi,
435				 struct i40e_fdir_filter *fd_data,
436				 bool add,
437				 bool ipv4)
438{
439	struct i40e_pf *pf = vsi->back;
440	u8 *raw_packet;
441	int ret;
442
443	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
444	if (!raw_packet)
445		return -ENOMEM;
446
447	i40e_create_dummy_tcp_packet(raw_packet, ipv4, IPPROTO_TCP, fd_data);
448	if (ipv4)
449		ret = i40e_prepare_fdir_filter
450			(pf, fd_data, add, raw_packet,
451			 I40E_TCPIP_DUMMY_PACKET_LEN,
452			 I40E_FILTER_PCTYPE_NONF_IPV4_TCP);
453	else
454		ret = i40e_prepare_fdir_filter
455			(pf, fd_data, add, raw_packet,
456			 I40E_TCPIP6_DUMMY_PACKET_LEN,
457			 I40E_FILTER_PCTYPE_NONF_IPV6_TCP);
458
459	if (ret) {
460		kfree(raw_packet);
461		return ret;
462	}
463
464	i40e_change_filter_num(ipv4, add, &pf->fd_tcp4_filter_cnt,
465			       &pf->fd_tcp6_filter_cnt);
466
467	if (add) {
468		if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) &&
469		    I40E_DEBUG_FD & pf->hw.debug_mask)
470			dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
471		set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
472	}
473	return 0;
474}
475
476#define I40E_SCTPIP_DUMMY_PACKET_LEN	46
477#define I40E_SCTPIP6_DUMMY_PACKET_LEN	66
478/**
479 * i40e_add_del_fdir_sctp - Add/Remove SCTPv4 Flow Director filters for
480 * a specific flow spec
481 * @vsi: pointer to the targeted VSI
482 * @fd_data: the flow director data required for the FDir descriptor
483 * @add: true adds a filter, false removes it
484 * @ipv4: true is v4, false is v6
485 *
486 * Returns 0 if the filters were successfully added or removed
487 **/
488static int i40e_add_del_fdir_sctp(struct i40e_vsi *vsi,
489				  struct i40e_fdir_filter *fd_data,
490				  bool add,
491				  bool ipv4)
492{
493	struct i40e_pf *pf = vsi->back;
494	u8 *raw_packet;
495	int ret;
496
497	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
498	if (!raw_packet)
499		return -ENOMEM;
500
501	i40e_create_dummy_sctp_packet(raw_packet, ipv4, IPPROTO_SCTP, fd_data);
502
503	if (ipv4)
504		ret = i40e_prepare_fdir_filter
505			(pf, fd_data, add, raw_packet,
506			 I40E_SCTPIP_DUMMY_PACKET_LEN,
507			 I40E_FILTER_PCTYPE_NONF_IPV4_SCTP);
508	else
509		ret = i40e_prepare_fdir_filter
510			(pf, fd_data, add, raw_packet,
511			 I40E_SCTPIP6_DUMMY_PACKET_LEN,
512			 I40E_FILTER_PCTYPE_NONF_IPV6_SCTP);
513
514	if (ret) {
515		kfree(raw_packet);
516		return ret;
517	}
518
519	i40e_change_filter_num(ipv4, add, &pf->fd_sctp4_filter_cnt,
520			       &pf->fd_sctp6_filter_cnt);
521
522	return 0;
523}
524
525#define I40E_IP_DUMMY_PACKET_LEN	34
526#define I40E_IP6_DUMMY_PACKET_LEN	54
527/**
528 * i40e_add_del_fdir_ip - Add/Remove IPv4 Flow Director filters for
529 * a specific flow spec
530 * @vsi: pointer to the targeted VSI
531 * @fd_data: the flow director data required for the FDir descriptor
532 * @add: true adds a filter, false removes it
533 * @ipv4: true is v4, false is v6
534 *
535 * Returns 0 if the filters were successfully added or removed
536 **/
537static int i40e_add_del_fdir_ip(struct i40e_vsi *vsi,
538				struct i40e_fdir_filter *fd_data,
539				bool add,
540				bool ipv4)
541{
542	struct i40e_pf *pf = vsi->back;
543	int payload_offset;
544	u8 *raw_packet;
545	int iter_start;
546	int iter_end;
547	int ret;
548	int i;
549
550	if (ipv4) {
551		iter_start = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
552		iter_end = I40E_FILTER_PCTYPE_FRAG_IPV4;
553	} else {
554		iter_start = I40E_FILTER_PCTYPE_NONF_IPV6_OTHER;
555		iter_end = I40E_FILTER_PCTYPE_FRAG_IPV6;
556	}
557
558	for (i = iter_start; i <= iter_end; i++) {
559		raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
560		if (!raw_packet)
561			return -ENOMEM;
562
563		/* IPv6 no header option differs from IPv4 */
564		(void)i40e_create_dummy_packet
565			(raw_packet, ipv4, (ipv4) ? IPPROTO_IP : IPPROTO_NONE,
566			 fd_data);
567
568		payload_offset = (ipv4) ? I40E_IP_DUMMY_PACKET_LEN :
569			I40E_IP6_DUMMY_PACKET_LEN;
570		ret = i40e_prepare_fdir_filter(pf, fd_data, add, raw_packet,
571					       payload_offset, i);
572		if (ret)
573			goto err;
574	}
575
576	i40e_change_filter_num(ipv4, add, &pf->fd_ip4_filter_cnt,
577			       &pf->fd_ip6_filter_cnt);
578
579	return 0;
580err:
581	kfree(raw_packet);
582	return ret;
583}
584
585/**
586 * i40e_add_del_fdir - Build raw packets to add/del fdir filter
587 * @vsi: pointer to the targeted VSI
588 * @input: filter to add or delete
589 * @add: true adds a filter, false removes it
590 *
591 **/
592int i40e_add_del_fdir(struct i40e_vsi *vsi,
593		      struct i40e_fdir_filter *input, bool add)
594{
595	enum ip_ver { ipv6 = 0, ipv4 = 1 };
596	struct i40e_pf *pf = vsi->back;
597	int ret;
598
599	switch (input->flow_type & ~FLOW_EXT) {
600	case TCP_V4_FLOW:
601		ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv4);
602		break;
603	case UDP_V4_FLOW:
604		ret = i40e_add_del_fdir_udp(vsi, input, add, ipv4);
605		break;
606	case SCTP_V4_FLOW:
607		ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv4);
608		break;
609	case TCP_V6_FLOW:
610		ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv6);
611		break;
612	case UDP_V6_FLOW:
613		ret = i40e_add_del_fdir_udp(vsi, input, add, ipv6);
614		break;
615	case SCTP_V6_FLOW:
616		ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv6);
617		break;
618	case IP_USER_FLOW:
619		switch (input->ipl4_proto) {
620		case IPPROTO_TCP:
621			ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv4);
622			break;
623		case IPPROTO_UDP:
624			ret = i40e_add_del_fdir_udp(vsi, input, add, ipv4);
625			break;
626		case IPPROTO_SCTP:
627			ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv4);
628			break;
629		case IPPROTO_IP:
630			ret = i40e_add_del_fdir_ip(vsi, input, add, ipv4);
631			break;
632		default:
633			/* We cannot support masking based on protocol */
634			dev_info(&pf->pdev->dev, "Unsupported IPv4 protocol 0x%02x\n",
635				 input->ipl4_proto);
636			return -EINVAL;
637		}
638		break;
639	case IPV6_USER_FLOW:
640		switch (input->ipl4_proto) {
641		case IPPROTO_TCP:
642			ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv6);
643			break;
644		case IPPROTO_UDP:
645			ret = i40e_add_del_fdir_udp(vsi, input, add, ipv6);
646			break;
647		case IPPROTO_SCTP:
648			ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv6);
649			break;
650		case IPPROTO_IP:
651			ret = i40e_add_del_fdir_ip(vsi, input, add, ipv6);
652			break;
653		default:
654			/* We cannot support masking based on protocol */
655			dev_info(&pf->pdev->dev, "Unsupported IPv6 protocol 0x%02x\n",
656				 input->ipl4_proto);
657			return -EINVAL;
658		}
659		break;
660	default:
661		dev_info(&pf->pdev->dev, "Unsupported flow type 0x%02x\n",
662			 input->flow_type);
663		return -EINVAL;
664	}
665
666	/* The buffer allocated here will be normally be freed by
667	 * i40e_clean_fdir_tx_irq() as it reclaims resources after transmit
668	 * completion. In the event of an error adding the buffer to the FDIR
669	 * ring, it will immediately be freed. It may also be freed by
670	 * i40e_clean_tx_ring() when closing the VSI.
671	 */
672	return ret;
673}
674
675/**
676 * i40e_fd_handle_status - check the Programming Status for FD
677 * @rx_ring: the Rx ring for this descriptor
678 * @qword0_raw: qword0
679 * @qword1: qword1 after le_to_cpu
680 * @prog_id: the id originally used for programming
681 *
682 * This is used to verify if the FD programming or invalidation
683 * requested by SW to the HW is successful or not and take actions accordingly.
684 **/
685static void i40e_fd_handle_status(struct i40e_ring *rx_ring, u64 qword0_raw,
686				  u64 qword1, u8 prog_id)
687{
688	struct i40e_pf *pf = rx_ring->vsi->back;
689	struct pci_dev *pdev = pf->pdev;
690	struct i40e_16b_rx_wb_qw0 *qw0;
691	u32 fcnt_prog, fcnt_avail;
692	u32 error;
693
694	qw0 = (struct i40e_16b_rx_wb_qw0 *)&qword0_raw;
695	error = (qword1 & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
696		I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;
697
698	if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
699		pf->fd_inv = le32_to_cpu(qw0->hi_dword.fd_id);
700		if (qw0->hi_dword.fd_id != 0 ||
701		    (I40E_DEBUG_FD & pf->hw.debug_mask))
702			dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
703				 pf->fd_inv);
704
705		/* Check if the programming error is for ATR.
706		 * If so, auto disable ATR and set a state for
707		 * flush in progress. Next time we come here if flush is in
708		 * progress do nothing, once flush is complete the state will
709		 * be cleared.
710		 */
711		if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state))
712			return;
713
714		pf->fd_add_err++;
715		/* store the current atr filter count */
716		pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
717
718		if (qw0->hi_dword.fd_id == 0 &&
719		    test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) {
720			/* These set_bit() calls aren't atomic with the
721			 * test_bit() here, but worse case we potentially
722			 * disable ATR and queue a flush right after SB
723			 * support is re-enabled. That shouldn't cause an
724			 * issue in practice
725			 */
726			set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
727			set_bit(__I40E_FD_FLUSH_REQUESTED, pf->state);
728		}
729
730		/* filter programming failed most likely due to table full */
731		fcnt_prog = i40e_get_global_fd_count(pf);
732		fcnt_avail = pf->fdir_pf_filter_count;
733		/* If ATR is running fcnt_prog can quickly change,
734		 * if we are very close to full, it makes sense to disable
735		 * FD ATR/SB and then re-enable it when there is room.
736		 */
737		if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
738			if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
739			    !test_and_set_bit(__I40E_FD_SB_AUTO_DISABLED,
740					      pf->state))
741				if (I40E_DEBUG_FD & pf->hw.debug_mask)
742					dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
743		}
744	} else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
745		if (I40E_DEBUG_FD & pf->hw.debug_mask)
746			dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
747				 qw0->hi_dword.fd_id);
748	}
749}
750
751/**
752 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
753 * @ring:      the ring that owns the buffer
754 * @tx_buffer: the buffer to free
755 **/
756static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
757					    struct i40e_tx_buffer *tx_buffer)
758{
759	if (tx_buffer->skb) {
760		if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
761			kfree(tx_buffer->raw_buf);
762		else if (ring_is_xdp(ring))
763			xdp_return_frame(tx_buffer->xdpf);
764		else
765			dev_kfree_skb_any(tx_buffer->skb);
766		if (dma_unmap_len(tx_buffer, len))
767			dma_unmap_single(ring->dev,
768					 dma_unmap_addr(tx_buffer, dma),
769					 dma_unmap_len(tx_buffer, len),
770					 DMA_TO_DEVICE);
771	} else if (dma_unmap_len(tx_buffer, len)) {
772		dma_unmap_page(ring->dev,
773			       dma_unmap_addr(tx_buffer, dma),
774			       dma_unmap_len(tx_buffer, len),
775			       DMA_TO_DEVICE);
776	}
777
778	tx_buffer->next_to_watch = NULL;
779	tx_buffer->skb = NULL;
780	dma_unmap_len_set(tx_buffer, len, 0);
781	/* tx_buffer must be completely set up in the transmit path */
782}
783
784/**
785 * i40e_clean_tx_ring - Free any empty Tx buffers
786 * @tx_ring: ring to be cleaned
787 **/
788void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
789{
790	unsigned long bi_size;
791	u16 i;
792
793	if (ring_is_xdp(tx_ring) && tx_ring->xsk_pool) {
794		i40e_xsk_clean_tx_ring(tx_ring);
795	} else {
796		/* ring already cleared, nothing to do */
797		if (!tx_ring->tx_bi)
798			return;
799
800		/* Free all the Tx ring sk_buffs */
801		for (i = 0; i < tx_ring->count; i++)
802			i40e_unmap_and_free_tx_resource(tx_ring,
803							&tx_ring->tx_bi[i]);
804	}
805
806	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
807	memset(tx_ring->tx_bi, 0, bi_size);
808
809	/* Zero out the descriptor ring */
810	memset(tx_ring->desc, 0, tx_ring->size);
811
812	tx_ring->next_to_use = 0;
813	tx_ring->next_to_clean = 0;
814
815	if (!tx_ring->netdev)
816		return;
817
818	/* cleanup Tx queue statistics */
819	netdev_tx_reset_queue(txring_txq(tx_ring));
820}
821
822/**
823 * i40e_free_tx_resources - Free Tx resources per queue
824 * @tx_ring: Tx descriptor ring for a specific queue
825 *
826 * Free all transmit software resources
827 **/
828void i40e_free_tx_resources(struct i40e_ring *tx_ring)
829{
830	i40e_clean_tx_ring(tx_ring);
831	kfree(tx_ring->tx_bi);
832	tx_ring->tx_bi = NULL;
833
834	if (tx_ring->desc) {
835		dma_free_coherent(tx_ring->dev, tx_ring->size,
836				  tx_ring->desc, tx_ring->dma);
837		tx_ring->desc = NULL;
838	}
839}
840
841/**
842 * i40e_get_tx_pending - how many tx descriptors not processed
843 * @ring: the ring of descriptors
844 * @in_sw: use SW variables
845 *
846 * Since there is no access to the ring head register
847 * in XL710, we need to use our local copies
848 **/
849u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw)
850{
851	u32 head, tail;
852
853	if (!in_sw) {
854		head = i40e_get_head(ring);
855		tail = readl(ring->tail);
856	} else {
857		head = ring->next_to_clean;
858		tail = ring->next_to_use;
859	}
860
861	if (head != tail)
862		return (head < tail) ?
863			tail - head : (tail + ring->count - head);
864
865	return 0;
866}
867
868/**
869 * i40e_detect_recover_hung - Function to detect and recover hung_queues
870 * @vsi:  pointer to vsi struct with tx queues
871 *
872 * VSI has netdev and netdev has TX queues. This function is to check each of
873 * those TX queues if they are hung, trigger recovery by issuing SW interrupt.
874 **/
875void i40e_detect_recover_hung(struct i40e_vsi *vsi)
876{
877	struct i40e_ring *tx_ring = NULL;
878	struct net_device *netdev;
879	unsigned int i;
880	int packets;
881
882	if (!vsi)
883		return;
884
885	if (test_bit(__I40E_VSI_DOWN, vsi->state))
886		return;
887
888	netdev = vsi->netdev;
889	if (!netdev)
890		return;
891
892	if (!netif_carrier_ok(netdev))
893		return;
894
895	for (i = 0; i < vsi->num_queue_pairs; i++) {
896		tx_ring = vsi->tx_rings[i];
897		if (tx_ring && tx_ring->desc) {
898			/* If packet counter has not changed the queue is
899			 * likely stalled, so force an interrupt for this
900			 * queue.
901			 *
902			 * prev_pkt_ctr would be negative if there was no
903			 * pending work.
904			 */
905			packets = tx_ring->stats.packets & INT_MAX;
906			if (tx_ring->tx_stats.prev_pkt_ctr == packets) {
907				i40e_force_wb(vsi, tx_ring->q_vector);
908				continue;
909			}
910
911			/* Memory barrier between read of packet count and call
912			 * to i40e_get_tx_pending()
913			 */
914			smp_rmb();
915			tx_ring->tx_stats.prev_pkt_ctr =
916			    i40e_get_tx_pending(tx_ring, true) ? packets : -1;
917		}
918	}
919}
920
921/**
922 * i40e_clean_tx_irq - Reclaim resources after transmit completes
923 * @vsi: the VSI we care about
924 * @tx_ring: Tx ring to clean
925 * @napi_budget: Used to determine if we are in netpoll
926 * @tx_cleaned: Out parameter set to the number of TXes cleaned
927 *
928 * Returns true if there's any budget left (e.g. the clean is finished)
929 **/
930static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
931			      struct i40e_ring *tx_ring, int napi_budget,
932			      unsigned int *tx_cleaned)
933{
934	int i = tx_ring->next_to_clean;
935	struct i40e_tx_buffer *tx_buf;
936	struct i40e_tx_desc *tx_head;
937	struct i40e_tx_desc *tx_desc;
938	unsigned int total_bytes = 0, total_packets = 0;
939	unsigned int budget = vsi->work_limit;
940
941	tx_buf = &tx_ring->tx_bi[i];
942	tx_desc = I40E_TX_DESC(tx_ring, i);
943	i -= tx_ring->count;
944
945	tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
946
947	do {
948		struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
949
950		/* if next_to_watch is not set then there is no work pending */
951		if (!eop_desc)
952			break;
953
954		/* prevent any other reads prior to eop_desc */
955		smp_rmb();
956
957		i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
958		/* we have caught up to head, no work left to do */
959		if (tx_head == tx_desc)
960			break;
961
962		/* clear next_to_watch to prevent false hangs */
963		tx_buf->next_to_watch = NULL;
964
965		/* update the statistics for this packet */
966		total_bytes += tx_buf->bytecount;
967		total_packets += tx_buf->gso_segs;
968
969		/* free the skb/XDP data */
970		if (ring_is_xdp(tx_ring))
971			xdp_return_frame(tx_buf->xdpf);
972		else
973			napi_consume_skb(tx_buf->skb, napi_budget);
974
975		/* unmap skb header data */
976		dma_unmap_single(tx_ring->dev,
977				 dma_unmap_addr(tx_buf, dma),
978				 dma_unmap_len(tx_buf, len),
979				 DMA_TO_DEVICE);
980
981		/* clear tx_buffer data */
982		tx_buf->skb = NULL;
983		dma_unmap_len_set(tx_buf, len, 0);
984
985		/* unmap remaining buffers */
986		while (tx_desc != eop_desc) {
987			i40e_trace(clean_tx_irq_unmap,
988				   tx_ring, tx_desc, tx_buf);
989
990			tx_buf++;
991			tx_desc++;
992			i++;
993			if (unlikely(!i)) {
994				i -= tx_ring->count;
995				tx_buf = tx_ring->tx_bi;
996				tx_desc = I40E_TX_DESC(tx_ring, 0);
997			}
998
999			/* unmap any remaining paged data */
1000			if (dma_unmap_len(tx_buf, len)) {
1001				dma_unmap_page(tx_ring->dev,
1002					       dma_unmap_addr(tx_buf, dma),
1003					       dma_unmap_len(tx_buf, len),
1004					       DMA_TO_DEVICE);
1005				dma_unmap_len_set(tx_buf, len, 0);
1006			}
1007		}
1008
1009		/* move us one more past the eop_desc for start of next pkt */
1010		tx_buf++;
1011		tx_desc++;
1012		i++;
1013		if (unlikely(!i)) {
1014			i -= tx_ring->count;
1015			tx_buf = tx_ring->tx_bi;
1016			tx_desc = I40E_TX_DESC(tx_ring, 0);
1017		}
1018
1019		prefetch(tx_desc);
1020
1021		/* update budget accounting */
1022		budget--;
1023	} while (likely(budget));
1024
1025	i += tx_ring->count;
1026	tx_ring->next_to_clean = i;
1027	i40e_update_tx_stats(tx_ring, total_packets, total_bytes);
1028	i40e_arm_wb(tx_ring, vsi, budget);
1029
1030	if (ring_is_xdp(tx_ring))
1031		return !!budget;
1032
1033	/* notify netdev of completed buffers */
1034	netdev_tx_completed_queue(txring_txq(tx_ring),
1035				  total_packets, total_bytes);
1036
1037#define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
1038	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
1039		     (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
1040		/* Make sure that anybody stopping the queue after this
1041		 * sees the new next_to_clean.
1042		 */
1043		smp_mb();
1044		if (__netif_subqueue_stopped(tx_ring->netdev,
1045					     tx_ring->queue_index) &&
1046		   !test_bit(__I40E_VSI_DOWN, vsi->state)) {
1047			netif_wake_subqueue(tx_ring->netdev,
1048					    tx_ring->queue_index);
1049			++tx_ring->tx_stats.restart_queue;
1050		}
1051	}
1052
1053	*tx_cleaned = total_packets;
1054	return !!budget;
1055}
1056
1057/**
1058 * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
1059 * @vsi: the VSI we care about
1060 * @q_vector: the vector on which to enable writeback
1061 *
1062 **/
1063static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
1064				  struct i40e_q_vector *q_vector)
1065{
1066	u16 flags = q_vector->tx.ring[0].flags;
1067	u32 val;
1068
1069	if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
1070		return;
1071
1072	if (q_vector->arm_wb_state)
1073		return;
1074
1075	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
1076		val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
1077		      I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
1078
1079		wr32(&vsi->back->hw,
1080		     I40E_PFINT_DYN_CTLN(q_vector->reg_idx),
1081		     val);
1082	} else {
1083		val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
1084		      I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
1085
1086		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
1087	}
1088	q_vector->arm_wb_state = true;
1089}
1090
1091/**
1092 * i40e_force_wb - Issue SW Interrupt so HW does a wb
1093 * @vsi: the VSI we care about
1094 * @q_vector: the vector  on which to force writeback
1095 *
1096 **/
1097void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
1098{
1099	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
1100		u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
1101			  I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
1102			  I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
1103			  I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
1104			  /* allow 00 to be written to the index */
1105
1106		wr32(&vsi->back->hw,
1107		     I40E_PFINT_DYN_CTLN(q_vector->reg_idx), val);
1108	} else {
1109		u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
1110			  I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
1111			  I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
1112			  I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
1113			/* allow 00 to be written to the index */
1114
1115		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
1116	}
1117}
1118
1119static inline bool i40e_container_is_rx(struct i40e_q_vector *q_vector,
1120					struct i40e_ring_container *rc)
1121{
1122	return &q_vector->rx == rc;
1123}
1124
1125static inline unsigned int i40e_itr_divisor(struct i40e_q_vector *q_vector)
1126{
1127	unsigned int divisor;
1128
1129	switch (q_vector->vsi->back->hw.phy.link_info.link_speed) {
1130	case I40E_LINK_SPEED_40GB:
1131		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 1024;
1132		break;
1133	case I40E_LINK_SPEED_25GB:
1134	case I40E_LINK_SPEED_20GB:
1135		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 512;
1136		break;
1137	default:
1138	case I40E_LINK_SPEED_10GB:
1139		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 256;
1140		break;
1141	case I40E_LINK_SPEED_1GB:
1142	case I40E_LINK_SPEED_100MB:
1143		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 32;
1144		break;
1145	}
1146
1147	return divisor;
1148}
1149
1150/**
1151 * i40e_update_itr - update the dynamic ITR value based on statistics
1152 * @q_vector: structure containing interrupt and ring information
1153 * @rc: structure containing ring performance data
1154 *
1155 * Stores a new ITR value based on packets and byte
1156 * counts during the last interrupt.  The advantage of per interrupt
1157 * computation is faster updates and more accurate ITR for the current
1158 * traffic pattern.  Constants in this function were computed
1159 * based on theoretical maximum wire speed and thresholds were set based
1160 * on testing data as well as attempting to minimize response time
1161 * while increasing bulk throughput.
1162 **/
1163static void i40e_update_itr(struct i40e_q_vector *q_vector,
1164			    struct i40e_ring_container *rc)
1165{
1166	unsigned int avg_wire_size, packets, bytes, itr;
1167	unsigned long next_update = jiffies;
1168
1169	/* If we don't have any rings just leave ourselves set for maximum
1170	 * possible latency so we take ourselves out of the equation.
1171	 */
1172	if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting))
1173		return;
1174
1175	/* For Rx we want to push the delay up and default to low latency.
1176	 * for Tx we want to pull the delay down and default to high latency.
1177	 */
1178	itr = i40e_container_is_rx(q_vector, rc) ?
1179	      I40E_ITR_ADAPTIVE_MIN_USECS | I40E_ITR_ADAPTIVE_LATENCY :
1180	      I40E_ITR_ADAPTIVE_MAX_USECS | I40E_ITR_ADAPTIVE_LATENCY;
1181
1182	/* If we didn't update within up to 1 - 2 jiffies we can assume
1183	 * that either packets are coming in so slow there hasn't been
1184	 * any work, or that there is so much work that NAPI is dealing
1185	 * with interrupt moderation and we don't need to do anything.
1186	 */
1187	if (time_after(next_update, rc->next_update))
1188		goto clear_counts;
1189
1190	/* If itr_countdown is set it means we programmed an ITR within
1191	 * the last 4 interrupt cycles. This has a side effect of us
1192	 * potentially firing an early interrupt. In order to work around
1193	 * this we need to throw out any data received for a few
1194	 * interrupts following the update.
1195	 */
1196	if (q_vector->itr_countdown) {
1197		itr = rc->target_itr;
1198		goto clear_counts;
1199	}
1200
1201	packets = rc->total_packets;
1202	bytes = rc->total_bytes;
1203
1204	if (i40e_container_is_rx(q_vector, rc)) {
1205		/* If Rx there are 1 to 4 packets and bytes are less than
1206		 * 9000 assume insufficient data to use bulk rate limiting
1207		 * approach unless Tx is already in bulk rate limiting. We
1208		 * are likely latency driven.
1209		 */
1210		if (packets && packets < 4 && bytes < 9000 &&
1211		    (q_vector->tx.target_itr & I40E_ITR_ADAPTIVE_LATENCY)) {
1212			itr = I40E_ITR_ADAPTIVE_LATENCY;
1213			goto adjust_by_size;
1214		}
1215	} else if (packets < 4) {
1216		/* If we have Tx and Rx ITR maxed and Tx ITR is running in
1217		 * bulk mode and we are receiving 4 or fewer packets just
1218		 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
1219		 * that the Rx can relax.
1220		 */
1221		if (rc->target_itr == I40E_ITR_ADAPTIVE_MAX_USECS &&
1222		    (q_vector->rx.target_itr & I40E_ITR_MASK) ==
1223		     I40E_ITR_ADAPTIVE_MAX_USECS)
1224			goto clear_counts;
1225	} else if (packets > 32) {
1226		/* If we have processed over 32 packets in a single interrupt
1227		 * for Tx assume we need to switch over to "bulk" mode.
1228		 */
1229		rc->target_itr &= ~I40E_ITR_ADAPTIVE_LATENCY;
1230	}
1231
1232	/* We have no packets to actually measure against. This means
1233	 * either one of the other queues on this vector is active or
1234	 * we are a Tx queue doing TSO with too high of an interrupt rate.
1235	 *
1236	 * Between 4 and 56 we can assume that our current interrupt delay
1237	 * is only slightly too low. As such we should increase it by a small
1238	 * fixed amount.
1239	 */
1240	if (packets < 56) {
1241		itr = rc->target_itr + I40E_ITR_ADAPTIVE_MIN_INC;
1242		if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1243			itr &= I40E_ITR_ADAPTIVE_LATENCY;
1244			itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1245		}
1246		goto clear_counts;
1247	}
1248
1249	if (packets <= 256) {
1250		itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
1251		itr &= I40E_ITR_MASK;
1252
1253		/* Between 56 and 112 is our "goldilocks" zone where we are
1254		 * working out "just right". Just report that our current
1255		 * ITR is good for us.
1256		 */
1257		if (packets <= 112)
1258			goto clear_counts;
1259
1260		/* If packet count is 128 or greater we are likely looking
1261		 * at a slight overrun of the delay we want. Try halving
1262		 * our delay to see if that will cut the number of packets
1263		 * in half per interrupt.
1264		 */
1265		itr /= 2;
1266		itr &= I40E_ITR_MASK;
1267		if (itr < I40E_ITR_ADAPTIVE_MIN_USECS)
1268			itr = I40E_ITR_ADAPTIVE_MIN_USECS;
1269
1270		goto clear_counts;
1271	}
1272
1273	/* The paths below assume we are dealing with a bulk ITR since
1274	 * number of packets is greater than 256. We are just going to have
1275	 * to compute a value and try to bring the count under control,
1276	 * though for smaller packet sizes there isn't much we can do as
1277	 * NAPI polling will likely be kicking in sooner rather than later.
1278	 */
1279	itr = I40E_ITR_ADAPTIVE_BULK;
1280
1281adjust_by_size:
1282	/* If packet counts are 256 or greater we can assume we have a gross
1283	 * overestimation of what the rate should be. Instead of trying to fine
1284	 * tune it just use the formula below to try and dial in an exact value
1285	 * give the current packet size of the frame.
1286	 */
1287	avg_wire_size = bytes / packets;
1288
1289	/* The following is a crude approximation of:
1290	 *  wmem_default / (size + overhead) = desired_pkts_per_int
1291	 *  rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1292	 *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1293	 *
1294	 * Assuming wmem_default is 212992 and overhead is 640 bytes per
1295	 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1296	 * formula down to
1297	 *
1298	 *  (170 * (size + 24)) / (size + 640) = ITR
1299	 *
1300	 * We first do some math on the packet size and then finally bitshift
1301	 * by 8 after rounding up. We also have to account for PCIe link speed
1302	 * difference as ITR scales based on this.
1303	 */
1304	if (avg_wire_size <= 60) {
1305		/* Start at 250k ints/sec */
1306		avg_wire_size = 4096;
1307	} else if (avg_wire_size <= 380) {
1308		/* 250K ints/sec to 60K ints/sec */
1309		avg_wire_size *= 40;
1310		avg_wire_size += 1696;
1311	} else if (avg_wire_size <= 1084) {
1312		/* 60K ints/sec to 36K ints/sec */
1313		avg_wire_size *= 15;
1314		avg_wire_size += 11452;
1315	} else if (avg_wire_size <= 1980) {
1316		/* 36K ints/sec to 30K ints/sec */
1317		avg_wire_size *= 5;
1318		avg_wire_size += 22420;
1319	} else {
1320		/* plateau at a limit of 30K ints/sec */
1321		avg_wire_size = 32256;
1322	}
1323
1324	/* If we are in low latency mode halve our delay which doubles the
1325	 * rate to somewhere between 100K to 16K ints/sec
1326	 */
1327	if (itr & I40E_ITR_ADAPTIVE_LATENCY)
1328		avg_wire_size /= 2;
1329
1330	/* Resultant value is 256 times larger than it needs to be. This
1331	 * gives us room to adjust the value as needed to either increase
1332	 * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc.
1333	 *
1334	 * Use addition as we have already recorded the new latency flag
1335	 * for the ITR value.
1336	 */
1337	itr += DIV_ROUND_UP(avg_wire_size, i40e_itr_divisor(q_vector)) *
1338	       I40E_ITR_ADAPTIVE_MIN_INC;
1339
1340	if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1341		itr &= I40E_ITR_ADAPTIVE_LATENCY;
1342		itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1343	}
1344
1345clear_counts:
1346	/* write back value */
1347	rc->target_itr = itr;
1348
1349	/* next update should occur within next jiffy */
1350	rc->next_update = next_update + 1;
1351
1352	rc->total_bytes = 0;
1353	rc->total_packets = 0;
1354}
1355
1356static struct i40e_rx_buffer *i40e_rx_bi(struct i40e_ring *rx_ring, u32 idx)
1357{
1358	return &rx_ring->rx_bi[idx];
1359}
1360
1361/**
1362 * i40e_reuse_rx_page - page flip buffer and store it back on the ring
1363 * @rx_ring: rx descriptor ring to store buffers on
1364 * @old_buff: donor buffer to have page reused
1365 *
1366 * Synchronizes page for reuse by the adapter
1367 **/
1368static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
1369			       struct i40e_rx_buffer *old_buff)
1370{
1371	struct i40e_rx_buffer *new_buff;
1372	u16 nta = rx_ring->next_to_alloc;
1373
1374	new_buff = i40e_rx_bi(rx_ring, nta);
1375
1376	/* update, and store next to alloc */
1377	nta++;
1378	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1379
1380	/* transfer page from old buffer to new buffer */
1381	new_buff->dma		= old_buff->dma;
1382	new_buff->page		= old_buff->page;
1383	new_buff->page_offset	= old_buff->page_offset;
1384	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
1385
1386	/* clear contents of buffer_info */
1387	old_buff->page = NULL;
1388}
1389
1390/**
1391 * i40e_clean_programming_status - clean the programming status descriptor
1392 * @rx_ring: the rx ring that has this descriptor
1393 * @qword0_raw: qword0
1394 * @qword1: qword1 representing status_error_len in CPU ordering
1395 *
1396 * Flow director should handle FD_FILTER_STATUS to check its filter programming
1397 * status being successful or not and take actions accordingly. FCoE should
1398 * handle its context/filter programming/invalidation status and take actions.
1399 *
1400 * Returns an i40e_rx_buffer to reuse if the cleanup occurred, otherwise NULL.
1401 **/
1402void i40e_clean_programming_status(struct i40e_ring *rx_ring, u64 qword0_raw,
1403				   u64 qword1)
1404{
1405	u8 id;
1406
1407	id = (qword1 & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
1408		  I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;
1409
1410	if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
1411		i40e_fd_handle_status(rx_ring, qword0_raw, qword1, id);
1412}
1413
1414/**
1415 * i40e_setup_tx_descriptors - Allocate the Tx descriptors
1416 * @tx_ring: the tx ring to set up
1417 *
1418 * Return 0 on success, negative on error
1419 **/
1420int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
1421{
1422	struct device *dev = tx_ring->dev;
1423	int bi_size;
1424
1425	if (!dev)
1426		return -ENOMEM;
1427
1428	/* warn if we are about to overwrite the pointer */
1429	WARN_ON(tx_ring->tx_bi);
1430	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
1431	tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
1432	if (!tx_ring->tx_bi)
1433		goto err;
1434
1435	u64_stats_init(&tx_ring->syncp);
1436
1437	/* round up to nearest 4K */
1438	tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
1439	/* add u32 for head writeback, align after this takes care of
1440	 * guaranteeing this is at least one cache line in size
1441	 */
1442	tx_ring->size += sizeof(u32);
1443	tx_ring->size = ALIGN(tx_ring->size, 4096);
1444	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
1445					   &tx_ring->dma, GFP_KERNEL);
1446	if (!tx_ring->desc) {
1447		dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
1448			 tx_ring->size);
1449		goto err;
1450	}
1451
1452	tx_ring->next_to_use = 0;
1453	tx_ring->next_to_clean = 0;
1454	tx_ring->tx_stats.prev_pkt_ctr = -1;
1455	return 0;
1456
1457err:
1458	kfree(tx_ring->tx_bi);
1459	tx_ring->tx_bi = NULL;
1460	return -ENOMEM;
1461}
1462
1463static void i40e_clear_rx_bi(struct i40e_ring *rx_ring)
1464{
1465	memset(rx_ring->rx_bi, 0, sizeof(*rx_ring->rx_bi) * rx_ring->count);
1466}
1467
1468/**
1469 * i40e_clean_rx_ring - Free Rx buffers
1470 * @rx_ring: ring to be cleaned
1471 **/
1472void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
1473{
1474	u16 i;
1475
1476	/* ring already cleared, nothing to do */
1477	if (!rx_ring->rx_bi)
1478		return;
1479
1480	if (rx_ring->xsk_pool) {
1481		i40e_xsk_clean_rx_ring(rx_ring);
1482		goto skip_free;
1483	}
1484
1485	/* Free all the Rx ring sk_buffs */
1486	for (i = 0; i < rx_ring->count; i++) {
1487		struct i40e_rx_buffer *rx_bi = i40e_rx_bi(rx_ring, i);
1488
1489		if (!rx_bi->page)
1490			continue;
1491
1492		/* Invalidate cache lines that may have been written to by
1493		 * device so that we avoid corrupting memory.
1494		 */
1495		dma_sync_single_range_for_cpu(rx_ring->dev,
1496					      rx_bi->dma,
1497					      rx_bi->page_offset,
1498					      rx_ring->rx_buf_len,
1499					      DMA_FROM_DEVICE);
1500
1501		/* free resources associated with mapping */
1502		dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
1503				     i40e_rx_pg_size(rx_ring),
1504				     DMA_FROM_DEVICE,
1505				     I40E_RX_DMA_ATTR);
1506
1507		__page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
1508
1509		rx_bi->page = NULL;
1510		rx_bi->page_offset = 0;
1511	}
1512
1513skip_free:
1514	if (rx_ring->xsk_pool)
1515		i40e_clear_rx_bi_zc(rx_ring);
1516	else
1517		i40e_clear_rx_bi(rx_ring);
1518
1519	/* Zero out the descriptor ring */
1520	memset(rx_ring->desc, 0, rx_ring->size);
1521
1522	rx_ring->next_to_alloc = 0;
1523	rx_ring->next_to_clean = 0;
1524	rx_ring->next_to_process = 0;
1525	rx_ring->next_to_use = 0;
1526}
1527
1528/**
1529 * i40e_free_rx_resources - Free Rx resources
1530 * @rx_ring: ring to clean the resources from
1531 *
1532 * Free all receive software resources
1533 **/
1534void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1535{
1536	i40e_clean_rx_ring(rx_ring);
1537	if (rx_ring->vsi->type == I40E_VSI_MAIN)
1538		xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
1539	rx_ring->xdp_prog = NULL;
1540	kfree(rx_ring->rx_bi);
1541	rx_ring->rx_bi = NULL;
1542
1543	if (rx_ring->desc) {
1544		dma_free_coherent(rx_ring->dev, rx_ring->size,
1545				  rx_ring->desc, rx_ring->dma);
1546		rx_ring->desc = NULL;
1547	}
1548}
1549
1550/**
1551 * i40e_setup_rx_descriptors - Allocate Rx descriptors
1552 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1553 *
1554 * Returns 0 on success, negative on failure
1555 **/
1556int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1557{
1558	struct device *dev = rx_ring->dev;
1559
1560	u64_stats_init(&rx_ring->syncp);
1561
1562	/* Round up to nearest 4K */
1563	rx_ring->size = rx_ring->count * sizeof(union i40e_rx_desc);
1564	rx_ring->size = ALIGN(rx_ring->size, 4096);
1565	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1566					   &rx_ring->dma, GFP_KERNEL);
1567
1568	if (!rx_ring->desc) {
1569		dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1570			 rx_ring->size);
1571		return -ENOMEM;
1572	}
1573
1574	rx_ring->next_to_alloc = 0;
1575	rx_ring->next_to_clean = 0;
1576	rx_ring->next_to_process = 0;
1577	rx_ring->next_to_use = 0;
1578
1579	rx_ring->xdp_prog = rx_ring->vsi->xdp_prog;
1580
1581	rx_ring->rx_bi =
1582		kcalloc(rx_ring->count, sizeof(*rx_ring->rx_bi), GFP_KERNEL);
1583	if (!rx_ring->rx_bi)
1584		return -ENOMEM;
1585
1586	return 0;
1587}
1588
1589/**
1590 * i40e_release_rx_desc - Store the new tail and head values
1591 * @rx_ring: ring to bump
1592 * @val: new head index
1593 **/
1594void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1595{
1596	rx_ring->next_to_use = val;
1597
1598	/* update next to alloc since we have filled the ring */
1599	rx_ring->next_to_alloc = val;
1600
1601	/* Force memory writes to complete before letting h/w
1602	 * know there are new descriptors to fetch.  (Only
1603	 * applicable for weak-ordered memory model archs,
1604	 * such as IA-64).
1605	 */
1606	wmb();
1607	writel(val, rx_ring->tail);
1608}
1609
1610#if (PAGE_SIZE >= 8192)
1611static unsigned int i40e_rx_frame_truesize(struct i40e_ring *rx_ring,
1612					   unsigned int size)
1613{
1614	unsigned int truesize;
1615
1616	truesize = rx_ring->rx_offset ?
1617		SKB_DATA_ALIGN(size + rx_ring->rx_offset) +
1618		SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
1619		SKB_DATA_ALIGN(size);
1620	return truesize;
1621}
1622#endif
1623
1624/**
1625 * i40e_alloc_mapped_page - recycle or make a new page
1626 * @rx_ring: ring to use
1627 * @bi: rx_buffer struct to modify
1628 *
1629 * Returns true if the page was successfully allocated or
1630 * reused.
1631 **/
1632static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
1633				   struct i40e_rx_buffer *bi)
1634{
1635	struct page *page = bi->page;
1636	dma_addr_t dma;
1637
1638	/* since we are recycling buffers we should seldom need to alloc */
1639	if (likely(page)) {
1640		rx_ring->rx_stats.page_reuse_count++;
1641		return true;
1642	}
1643
1644	/* alloc new page for storage */
1645	page = dev_alloc_pages(i40e_rx_pg_order(rx_ring));
1646	if (unlikely(!page)) {
1647		rx_ring->rx_stats.alloc_page_failed++;
1648		return false;
1649	}
1650
1651	rx_ring->rx_stats.page_alloc_count++;
1652
1653	/* map page for use */
1654	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1655				 i40e_rx_pg_size(rx_ring),
1656				 DMA_FROM_DEVICE,
1657				 I40E_RX_DMA_ATTR);
1658
1659	/* if mapping failed free memory back to system since
1660	 * there isn't much point in holding memory we can't use
1661	 */
1662	if (dma_mapping_error(rx_ring->dev, dma)) {
1663		__free_pages(page, i40e_rx_pg_order(rx_ring));
1664		rx_ring->rx_stats.alloc_page_failed++;
1665		return false;
1666	}
1667
1668	bi->dma = dma;
1669	bi->page = page;
1670	bi->page_offset = rx_ring->rx_offset;
1671	page_ref_add(page, USHRT_MAX - 1);
1672	bi->pagecnt_bias = USHRT_MAX;
1673
1674	return true;
1675}
1676
1677/**
1678 * i40e_alloc_rx_buffers - Replace used receive buffers
1679 * @rx_ring: ring to place buffers on
1680 * @cleaned_count: number of buffers to replace
1681 *
1682 * Returns false if all allocations were successful, true if any fail
1683 **/
1684bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
1685{
1686	u16 ntu = rx_ring->next_to_use;
1687	union i40e_rx_desc *rx_desc;
1688	struct i40e_rx_buffer *bi;
1689
1690	/* do nothing if no valid netdev defined */
1691	if (!rx_ring->netdev || !cleaned_count)
1692		return false;
1693
1694	rx_desc = I40E_RX_DESC(rx_ring, ntu);
1695	bi = i40e_rx_bi(rx_ring, ntu);
1696
1697	do {
1698		if (!i40e_alloc_mapped_page(rx_ring, bi))
1699			goto no_buffers;
1700
1701		/* sync the buffer for use by the device */
1702		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
1703						 bi->page_offset,
1704						 rx_ring->rx_buf_len,
1705						 DMA_FROM_DEVICE);
1706
1707		/* Refresh the desc even if buffer_addrs didn't change
1708		 * because each write-back erases this info.
1709		 */
1710		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1711
1712		rx_desc++;
1713		bi++;
1714		ntu++;
1715		if (unlikely(ntu == rx_ring->count)) {
1716			rx_desc = I40E_RX_DESC(rx_ring, 0);
1717			bi = i40e_rx_bi(rx_ring, 0);
1718			ntu = 0;
1719		}
1720
1721		/* clear the status bits for the next_to_use descriptor */
1722		rx_desc->wb.qword1.status_error_len = 0;
1723
1724		cleaned_count--;
1725	} while (cleaned_count);
1726
1727	if (rx_ring->next_to_use != ntu)
1728		i40e_release_rx_desc(rx_ring, ntu);
1729
1730	return false;
1731
1732no_buffers:
1733	if (rx_ring->next_to_use != ntu)
1734		i40e_release_rx_desc(rx_ring, ntu);
1735
1736	/* make sure to come back via polling to try again after
1737	 * allocation failure
1738	 */
1739	return true;
1740}
1741
1742/**
1743 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1744 * @vsi: the VSI we care about
1745 * @skb: skb currently being received and modified
1746 * @rx_desc: the receive descriptor
1747 **/
1748static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1749				    struct sk_buff *skb,
1750				    union i40e_rx_desc *rx_desc)
1751{
1752	struct i40e_rx_ptype_decoded decoded;
1753	u32 rx_error, rx_status;
1754	bool ipv4, ipv6;
1755	u8 ptype;
1756	u64 qword;
1757
1758	qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1759	ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT;
1760	rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1761		   I40E_RXD_QW1_ERROR_SHIFT;
1762	rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1763		    I40E_RXD_QW1_STATUS_SHIFT;
1764	decoded = decode_rx_desc_ptype(ptype);
1765
1766	skb->ip_summed = CHECKSUM_NONE;
1767
1768	skb_checksum_none_assert(skb);
1769
1770	/* Rx csum enabled and ip headers found? */
1771	if (!(vsi->netdev->features & NETIF_F_RXCSUM))
1772		return;
1773
1774	/* did the hardware decode the packet and checksum? */
1775	if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1776		return;
1777
1778	/* both known and outer_ip must be set for the below code to work */
1779	if (!(decoded.known && decoded.outer_ip))
1780		return;
1781
1782	ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1783	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
1784	ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1785	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
1786
1787	if (ipv4 &&
1788	    (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
1789			 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1790		goto checksum_fail;
1791
1792	/* likely incorrect csum if alternate IP extension headers found */
1793	if (ipv6 &&
1794	    rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1795		/* don't increment checksum err here, non-fatal err */
1796		return;
1797
1798	/* there was some L4 error, count error and punt packet to the stack */
1799	if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1800		goto checksum_fail;
1801
1802	/* handle packets that were not able to be checksummed due
1803	 * to arrival speed, in this case the stack can compute
1804	 * the csum.
1805	 */
1806	if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1807		return;
1808
1809	/* If there is an outer header present that might contain a checksum
1810	 * we need to bump the checksum level by 1 to reflect the fact that
1811	 * we are indicating we validated the inner checksum.
1812	 */
1813	if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT)
1814		skb->csum_level = 1;
1815
1816	/* Only report checksum unnecessary for TCP, UDP, or SCTP */
1817	switch (decoded.inner_prot) {
1818	case I40E_RX_PTYPE_INNER_PROT_TCP:
1819	case I40E_RX_PTYPE_INNER_PROT_UDP:
1820	case I40E_RX_PTYPE_INNER_PROT_SCTP:
1821		skb->ip_summed = CHECKSUM_UNNECESSARY;
1822		fallthrough;
1823	default:
1824		break;
1825	}
1826
1827	return;
1828
1829checksum_fail:
1830	vsi->back->hw_csum_rx_error++;
1831}
1832
1833/**
1834 * i40e_ptype_to_htype - get a hash type
1835 * @ptype: the ptype value from the descriptor
1836 *
1837 * Returns a hash type to be used by skb_set_hash
1838 **/
1839static inline int i40e_ptype_to_htype(u8 ptype)
1840{
1841	struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1842
1843	if (!decoded.known)
1844		return PKT_HASH_TYPE_NONE;
1845
1846	if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1847	    decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1848		return PKT_HASH_TYPE_L4;
1849	else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1850		 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1851		return PKT_HASH_TYPE_L3;
1852	else
1853		return PKT_HASH_TYPE_L2;
1854}
1855
1856/**
1857 * i40e_rx_hash - set the hash value in the skb
1858 * @ring: descriptor ring
1859 * @rx_desc: specific descriptor
1860 * @skb: skb currently being received and modified
1861 * @rx_ptype: Rx packet type
1862 **/
1863static inline void i40e_rx_hash(struct i40e_ring *ring,
1864				union i40e_rx_desc *rx_desc,
1865				struct sk_buff *skb,
1866				u8 rx_ptype)
1867{
1868	u32 hash;
1869	const __le64 rss_mask =
1870		cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1871			    I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1872
1873	if (!(ring->netdev->features & NETIF_F_RXHASH))
1874		return;
1875
1876	if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1877		hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1878		skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
1879	}
1880}
1881
1882/**
1883 * i40e_process_skb_fields - Populate skb header fields from Rx descriptor
1884 * @rx_ring: rx descriptor ring packet is being transacted on
1885 * @rx_desc: pointer to the EOP Rx descriptor
1886 * @skb: pointer to current skb being populated
1887 *
1888 * This function checks the ring, descriptor, and packet information in
1889 * order to populate the hash, checksum, VLAN, protocol, and
1890 * other fields within the skb.
1891 **/
1892void i40e_process_skb_fields(struct i40e_ring *rx_ring,
1893			     union i40e_rx_desc *rx_desc, struct sk_buff *skb)
1894{
1895	u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1896	u32 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1897			I40E_RXD_QW1_STATUS_SHIFT;
1898	u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK;
1899	u32 tsyn = (rx_status & I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1900		   I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT;
1901	u8 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1902		      I40E_RXD_QW1_PTYPE_SHIFT;
1903
1904	if (unlikely(tsynvalid))
1905		i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn);
1906
1907	i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1908
1909	i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
1910
1911	skb_record_rx_queue(skb, rx_ring->queue_index);
1912
1913	if (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) {
1914		__le16 vlan_tag = rx_desc->wb.qword0.lo_dword.l2tag1;
1915
1916		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1917				       le16_to_cpu(vlan_tag));
1918	}
1919
1920	/* modifies the skb - consumes the enet header */
1921	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1922}
1923
1924/**
1925 * i40e_cleanup_headers - Correct empty headers
1926 * @rx_ring: rx descriptor ring packet is being transacted on
1927 * @skb: pointer to current skb being fixed
1928 * @rx_desc: pointer to the EOP Rx descriptor
1929 *
1930 * In addition if skb is not at least 60 bytes we need to pad it so that
1931 * it is large enough to qualify as a valid Ethernet frame.
1932 *
1933 * Returns true if an error was encountered and skb was freed.
1934 **/
1935static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb,
1936				 union i40e_rx_desc *rx_desc)
1937
1938{
1939	/* ERR_MASK will only have valid bits if EOP set, and
1940	 * what we are doing here is actually checking
1941	 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1942	 * the error field
1943	 */
1944	if (unlikely(i40e_test_staterr(rx_desc,
1945				       BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
1946		dev_kfree_skb_any(skb);
1947		return true;
1948	}
1949
1950	/* if eth_skb_pad returns an error the skb was freed */
1951	if (eth_skb_pad(skb))
1952		return true;
1953
1954	return false;
1955}
1956
1957/**
1958 * i40e_can_reuse_rx_page - Determine if page can be reused for another Rx
1959 * @rx_buffer: buffer containing the page
1960 * @rx_stats: rx stats structure for the rx ring
1961 *
1962 * If page is reusable, we have a green light for calling i40e_reuse_rx_page,
1963 * which will assign the current buffer to the buffer that next_to_alloc is
1964 * pointing to; otherwise, the DMA mapping needs to be destroyed and
1965 * page freed.
1966 *
1967 * rx_stats will be updated to indicate whether the page was waived
1968 * or busy if it could not be reused.
1969 */
1970static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer,
1971				   struct i40e_rx_queue_stats *rx_stats)
1972{
1973	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1974	struct page *page = rx_buffer->page;
1975
1976	/* Is any reuse possible? */
1977	if (!dev_page_is_reusable(page)) {
1978		rx_stats->page_waive_count++;
1979		return false;
1980	}
1981
1982#if (PAGE_SIZE < 8192)
1983	/* if we are only owner of page we can reuse it */
1984	if (unlikely((rx_buffer->page_count - pagecnt_bias) > 1)) {
1985		rx_stats->page_busy_count++;
1986		return false;
1987	}
1988#else
1989#define I40E_LAST_OFFSET \
1990	(SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048)
1991	if (rx_buffer->page_offset > I40E_LAST_OFFSET) {
1992		rx_stats->page_busy_count++;
1993		return false;
1994	}
1995#endif
1996
1997	/* If we have drained the page fragment pool we need to update
1998	 * the pagecnt_bias and page count so that we fully restock the
1999	 * number of references the driver holds.
2000	 */
2001	if (unlikely(pagecnt_bias == 1)) {
2002		page_ref_add(page, USHRT_MAX - 1);
2003		rx_buffer->pagecnt_bias = USHRT_MAX;
2004	}
2005
2006	return true;
2007}
2008
2009/**
2010 * i40e_rx_buffer_flip - adjusted rx_buffer to point to an unused region
2011 * @rx_buffer: Rx buffer to adjust
2012 * @truesize: Size of adjustment
2013 **/
2014static void i40e_rx_buffer_flip(struct i40e_rx_buffer *rx_buffer,
2015				unsigned int truesize)
2016{
2017#if (PAGE_SIZE < 8192)
2018	rx_buffer->page_offset ^= truesize;
2019#else
2020	rx_buffer->page_offset += truesize;
2021#endif
2022}
2023
2024/**
2025 * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use
2026 * @rx_ring: rx descriptor ring to transact packets on
2027 * @size: size of buffer to add to skb
2028 *
2029 * This function will pull an Rx buffer from the ring and synchronize it
2030 * for use by the CPU.
2031 */
2032static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring,
2033						 const unsigned int size)
2034{
2035	struct i40e_rx_buffer *rx_buffer;
2036
2037	rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_process);
2038	rx_buffer->page_count =
2039#if (PAGE_SIZE < 8192)
2040		page_count(rx_buffer->page);
2041#else
2042		0;
2043#endif
2044	prefetch_page_address(rx_buffer->page);
2045
2046	/* we are reusing so sync this buffer for CPU use */
2047	dma_sync_single_range_for_cpu(rx_ring->dev,
2048				      rx_buffer->dma,
2049				      rx_buffer->page_offset,
2050				      size,
2051				      DMA_FROM_DEVICE);
2052
2053	/* We have pulled a buffer for use, so decrement pagecnt_bias */
2054	rx_buffer->pagecnt_bias--;
2055
2056	return rx_buffer;
2057}
2058
2059/**
2060 * i40e_put_rx_buffer - Clean up used buffer and either recycle or free
2061 * @rx_ring: rx descriptor ring to transact packets on
2062 * @rx_buffer: rx buffer to pull data from
2063 *
2064 * This function will clean up the contents of the rx_buffer.  It will
2065 * either recycle the buffer or unmap it and free the associated resources.
2066 */
2067static void i40e_put_rx_buffer(struct i40e_ring *rx_ring,
2068			       struct i40e_rx_buffer *rx_buffer)
2069{
2070	if (i40e_can_reuse_rx_page(rx_buffer, &rx_ring->rx_stats)) {
2071		/* hand second half of page back to the ring */
2072		i40e_reuse_rx_page(rx_ring, rx_buffer);
2073	} else {
2074		/* we are not reusing the buffer so unmap it */
2075		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
2076				     i40e_rx_pg_size(rx_ring),
2077				     DMA_FROM_DEVICE, I40E_RX_DMA_ATTR);
2078		__page_frag_cache_drain(rx_buffer->page,
2079					rx_buffer->pagecnt_bias);
2080		/* clear contents of buffer_info */
2081		rx_buffer->page = NULL;
2082	}
2083}
2084
2085/**
2086 * i40e_process_rx_buffs- Processing of buffers post XDP prog or on error
2087 * @rx_ring: Rx descriptor ring to transact packets on
2088 * @xdp_res: Result of the XDP program
2089 * @xdp: xdp_buff pointing to the data
2090 **/
2091static void i40e_process_rx_buffs(struct i40e_ring *rx_ring, int xdp_res,
2092				  struct xdp_buff *xdp)
2093{
2094	u32 nr_frags = xdp_get_shared_info_from_buff(xdp)->nr_frags;
2095	u32 next = rx_ring->next_to_clean, i = 0;
2096	struct i40e_rx_buffer *rx_buffer;
2097
2098	xdp->flags = 0;
2099
2100	while (1) {
2101		rx_buffer = i40e_rx_bi(rx_ring, next);
2102		if (++next == rx_ring->count)
2103			next = 0;
2104
2105		if (!rx_buffer->page)
2106			continue;
2107
2108		if (xdp_res != I40E_XDP_CONSUMED)
2109			i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2110		else if (i++ <= nr_frags)
2111			rx_buffer->pagecnt_bias++;
2112
2113		/* EOP buffer will be put in i40e_clean_rx_irq() */
2114		if (next == rx_ring->next_to_process)
2115			return;
2116
2117		i40e_put_rx_buffer(rx_ring, rx_buffer);
2118	}
2119}
2120
2121/**
2122 * i40e_construct_skb - Allocate skb and populate it
2123 * @rx_ring: rx descriptor ring to transact packets on
2124 * @xdp: xdp_buff pointing to the data
2125 *
2126 * This function allocates an skb.  It then populates it with the page
2127 * data from the current receive descriptor, taking care to set up the
2128 * skb correctly.
2129 */
2130static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring,
2131					  struct xdp_buff *xdp)
2132{
2133	unsigned int size = xdp->data_end - xdp->data;
2134	struct i40e_rx_buffer *rx_buffer;
2135	struct skb_shared_info *sinfo;
2136	unsigned int headlen;
2137	struct sk_buff *skb;
2138	u32 nr_frags = 0;
2139
2140	/* prefetch first cache line of first page */
2141	net_prefetch(xdp->data);
2142
2143	/* Note, we get here by enabling legacy-rx via:
2144	 *
2145	 *    ethtool --set-priv-flags <dev> legacy-rx on
2146	 *
2147	 * In this mode, we currently get 0 extra XDP headroom as
2148	 * opposed to having legacy-rx off, where we process XDP
2149	 * packets going to stack via i40e_build_skb(). The latter
2150	 * provides us currently with 192 bytes of headroom.
2151	 *
2152	 * For i40e_construct_skb() mode it means that the
2153	 * xdp->data_meta will always point to xdp->data, since
2154	 * the helper cannot expand the head. Should this ever
2155	 * change in future for legacy-rx mode on, then lets also
2156	 * add xdp->data_meta handling here.
2157	 */
2158
2159	/* allocate a skb to store the frags */
2160	skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
2161			       I40E_RX_HDR_SIZE,
2162			       GFP_ATOMIC | __GFP_NOWARN);
2163	if (unlikely(!skb))
2164		return NULL;
2165
2166	/* Determine available headroom for copy */
2167	headlen = size;
2168	if (headlen > I40E_RX_HDR_SIZE)
2169		headlen = eth_get_headlen(skb->dev, xdp->data,
2170					  I40E_RX_HDR_SIZE);
2171
2172	/* align pull length to size of long to optimize memcpy performance */
2173	memcpy(__skb_put(skb, headlen), xdp->data,
2174	       ALIGN(headlen, sizeof(long)));
2175
2176	if (unlikely(xdp_buff_has_frags(xdp))) {
2177		sinfo = xdp_get_shared_info_from_buff(xdp);
2178		nr_frags = sinfo->nr_frags;
2179	}
2180	rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
2181	/* update all of the pointers */
2182	size -= headlen;
2183	if (size) {
2184		if (unlikely(nr_frags >= MAX_SKB_FRAGS)) {
2185			dev_kfree_skb(skb);
2186			return NULL;
2187		}
2188		skb_add_rx_frag(skb, 0, rx_buffer->page,
2189				rx_buffer->page_offset + headlen,
2190				size, xdp->frame_sz);
2191		/* buffer is used by skb, update page_offset */
2192		i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2193	} else {
2194		/* buffer is unused, reset bias back to rx_buffer */
2195		rx_buffer->pagecnt_bias++;
2196	}
2197
2198	if (unlikely(xdp_buff_has_frags(xdp))) {
2199		struct skb_shared_info *skinfo = skb_shinfo(skb);
2200
2201		memcpy(&skinfo->frags[skinfo->nr_frags], &sinfo->frags[0],
2202		       sizeof(skb_frag_t) * nr_frags);
2203
2204		xdp_update_skb_shared_info(skb, skinfo->nr_frags + nr_frags,
2205					   sinfo->xdp_frags_size,
2206					   nr_frags * xdp->frame_sz,
2207					   xdp_buff_is_frag_pfmemalloc(xdp));
2208
2209		/* First buffer has already been processed, so bump ntc */
2210		if (++rx_ring->next_to_clean == rx_ring->count)
2211			rx_ring->next_to_clean = 0;
2212
2213		i40e_process_rx_buffs(rx_ring, I40E_XDP_PASS, xdp);
2214	}
2215
2216	return skb;
2217}
2218
2219/**
2220 * i40e_build_skb - Build skb around an existing buffer
2221 * @rx_ring: Rx descriptor ring to transact packets on
2222 * @xdp: xdp_buff pointing to the data
2223 *
2224 * This function builds an skb around an existing Rx buffer, taking care
2225 * to set up the skb correctly and avoid any memcpy overhead.
2226 */
2227static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring,
2228				      struct xdp_buff *xdp)
2229{
2230	unsigned int metasize = xdp->data - xdp->data_meta;
2231	struct skb_shared_info *sinfo;
2232	struct sk_buff *skb;
2233	u32 nr_frags;
2234
2235	/* Prefetch first cache line of first page. If xdp->data_meta
2236	 * is unused, this points exactly as xdp->data, otherwise we
2237	 * likely have a consumer accessing first few bytes of meta
2238	 * data, and then actual data.
2239	 */
2240	net_prefetch(xdp->data_meta);
2241
2242	if (unlikely(xdp_buff_has_frags(xdp))) {
2243		sinfo = xdp_get_shared_info_from_buff(xdp);
2244		nr_frags = sinfo->nr_frags;
2245	}
2246
2247	/* build an skb around the page buffer */
2248	skb = napi_build_skb(xdp->data_hard_start, xdp->frame_sz);
2249	if (unlikely(!skb))
2250		return NULL;
2251
2252	/* update pointers within the skb to store the data */
2253	skb_reserve(skb, xdp->data - xdp->data_hard_start);
2254	__skb_put(skb, xdp->data_end - xdp->data);
2255	if (metasize)
2256		skb_metadata_set(skb, metasize);
2257
2258	if (unlikely(xdp_buff_has_frags(xdp))) {
2259		xdp_update_skb_shared_info(skb, nr_frags,
2260					   sinfo->xdp_frags_size,
2261					   nr_frags * xdp->frame_sz,
2262					   xdp_buff_is_frag_pfmemalloc(xdp));
2263
2264		i40e_process_rx_buffs(rx_ring, I40E_XDP_PASS, xdp);
2265	} else {
2266		struct i40e_rx_buffer *rx_buffer;
2267
2268		rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
2269		/* buffer is used by skb, update page_offset */
2270		i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2271	}
2272
2273	return skb;
2274}
2275
2276/**
2277 * i40e_is_non_eop - process handling of non-EOP buffers
2278 * @rx_ring: Rx ring being processed
2279 * @rx_desc: Rx descriptor for current buffer
2280 *
2281 * If the buffer is an EOP buffer, this function exits returning false,
2282 * otherwise return true indicating that this is in fact a non-EOP buffer.
2283 */
2284bool i40e_is_non_eop(struct i40e_ring *rx_ring,
2285		     union i40e_rx_desc *rx_desc)
2286{
2287	/* if we are the last buffer then there is nothing else to do */
2288#define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
2289	if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
2290		return false;
2291
2292	rx_ring->rx_stats.non_eop_descs++;
2293
2294	return true;
2295}
2296
2297static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
2298			      struct i40e_ring *xdp_ring);
2299
2300int i40e_xmit_xdp_tx_ring(struct xdp_buff *xdp, struct i40e_ring *xdp_ring)
2301{
2302	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2303
2304	if (unlikely(!xdpf))
2305		return I40E_XDP_CONSUMED;
2306
2307	return i40e_xmit_xdp_ring(xdpf, xdp_ring);
2308}
2309
2310/**
2311 * i40e_run_xdp - run an XDP program
2312 * @rx_ring: Rx ring being processed
2313 * @xdp: XDP buffer containing the frame
2314 * @xdp_prog: XDP program to run
2315 **/
2316static int i40e_run_xdp(struct i40e_ring *rx_ring, struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
2317{
2318	int err, result = I40E_XDP_PASS;
2319	struct i40e_ring *xdp_ring;
2320	u32 act;
2321
2322	if (!xdp_prog)
2323		goto xdp_out;
2324
2325	prefetchw(xdp->data_hard_start); /* xdp_frame write */
2326
2327	act = bpf_prog_run_xdp(xdp_prog, xdp);
2328	switch (act) {
2329	case XDP_PASS:
2330		break;
2331	case XDP_TX:
2332		xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2333		result = i40e_xmit_xdp_tx_ring(xdp, xdp_ring);
2334		if (result == I40E_XDP_CONSUMED)
2335			goto out_failure;
2336		break;
2337	case XDP_REDIRECT:
2338		err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
2339		if (err)
2340			goto out_failure;
2341		result = I40E_XDP_REDIR;
2342		break;
2343	default:
2344		bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act);
2345		fallthrough;
2346	case XDP_ABORTED:
2347out_failure:
2348		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
2349		fallthrough; /* handle aborts by dropping packet */
2350	case XDP_DROP:
2351		result = I40E_XDP_CONSUMED;
2352		break;
2353	}
2354xdp_out:
2355	return result;
2356}
2357
2358/**
2359 * i40e_xdp_ring_update_tail - Updates the XDP Tx ring tail register
2360 * @xdp_ring: XDP Tx ring
2361 *
2362 * This function updates the XDP Tx ring tail register.
2363 **/
2364void i40e_xdp_ring_update_tail(struct i40e_ring *xdp_ring)
2365{
2366	/* Force memory writes to complete before letting h/w
2367	 * know there are new descriptors to fetch.
2368	 */
2369	wmb();
2370	writel_relaxed(xdp_ring->next_to_use, xdp_ring->tail);
2371}
2372
2373/**
2374 * i40e_update_rx_stats - Update Rx ring statistics
2375 * @rx_ring: rx descriptor ring
2376 * @total_rx_bytes: number of bytes received
2377 * @total_rx_packets: number of packets received
2378 *
2379 * This function updates the Rx ring statistics.
2380 **/
2381void i40e_update_rx_stats(struct i40e_ring *rx_ring,
2382			  unsigned int total_rx_bytes,
2383			  unsigned int total_rx_packets)
2384{
2385	u64_stats_update_begin(&rx_ring->syncp);
2386	rx_ring->stats.packets += total_rx_packets;
2387	rx_ring->stats.bytes += total_rx_bytes;
2388	u64_stats_update_end(&rx_ring->syncp);
2389	rx_ring->q_vector->rx.total_packets += total_rx_packets;
2390	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
2391}
2392
2393/**
2394 * i40e_finalize_xdp_rx - Bump XDP Tx tail and/or flush redirect map
2395 * @rx_ring: Rx ring
2396 * @xdp_res: Result of the receive batch
2397 *
2398 * This function bumps XDP Tx tail and/or flush redirect map, and
2399 * should be called when a batch of packets has been processed in the
2400 * napi loop.
2401 **/
2402void i40e_finalize_xdp_rx(struct i40e_ring *rx_ring, unsigned int xdp_res)
2403{
2404	if (xdp_res & I40E_XDP_REDIR)
2405		xdp_do_flush_map();
2406
2407	if (xdp_res & I40E_XDP_TX) {
2408		struct i40e_ring *xdp_ring =
2409			rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2410
2411		i40e_xdp_ring_update_tail(xdp_ring);
2412	}
2413}
2414
2415/**
2416 * i40e_inc_ntp: Advance the next_to_process index
2417 * @rx_ring: Rx ring
2418 **/
2419static void i40e_inc_ntp(struct i40e_ring *rx_ring)
2420{
2421	u32 ntp = rx_ring->next_to_process + 1;
2422
2423	ntp = (ntp < rx_ring->count) ? ntp : 0;
2424	rx_ring->next_to_process = ntp;
2425	prefetch(I40E_RX_DESC(rx_ring, ntp));
2426}
2427
2428/**
2429 * i40e_add_xdp_frag: Add a frag to xdp_buff
2430 * @xdp: xdp_buff pointing to the data
2431 * @nr_frags: return number of buffers for the packet
2432 * @rx_buffer: rx_buffer holding data of the current frag
2433 * @size: size of data of current frag
2434 */
2435static int i40e_add_xdp_frag(struct xdp_buff *xdp, u32 *nr_frags,
2436			     struct i40e_rx_buffer *rx_buffer, u32 size)
2437{
2438	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
2439
2440	if (!xdp_buff_has_frags(xdp)) {
2441		sinfo->nr_frags = 0;
2442		sinfo->xdp_frags_size = 0;
2443		xdp_buff_set_frags_flag(xdp);
2444	} else if (unlikely(sinfo->nr_frags >= MAX_SKB_FRAGS)) {
2445		/* Overflowing packet: All frags need to be dropped */
2446		return -ENOMEM;
2447	}
2448
2449	__skb_fill_page_desc_noacc(sinfo, sinfo->nr_frags++, rx_buffer->page,
2450				   rx_buffer->page_offset, size);
2451
2452	sinfo->xdp_frags_size += size;
2453
2454	if (page_is_pfmemalloc(rx_buffer->page))
2455		xdp_buff_set_frag_pfmemalloc(xdp);
2456	*nr_frags = sinfo->nr_frags;
2457
2458	return 0;
2459}
2460
2461/**
2462 * i40e_consume_xdp_buff - Consume all the buffers of the packet and update ntc
2463 * @rx_ring: rx descriptor ring to transact packets on
2464 * @xdp: xdp_buff pointing to the data
2465 * @rx_buffer: rx_buffer of eop desc
2466 */
2467static void i40e_consume_xdp_buff(struct i40e_ring *rx_ring,
2468				  struct xdp_buff *xdp,
2469				  struct i40e_rx_buffer *rx_buffer)
2470{
2471	i40e_process_rx_buffs(rx_ring, I40E_XDP_CONSUMED, xdp);
2472	i40e_put_rx_buffer(rx_ring, rx_buffer);
2473	rx_ring->next_to_clean = rx_ring->next_to_process;
2474	xdp->data = NULL;
2475}
2476
2477/**
2478 * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
2479 * @rx_ring: rx descriptor ring to transact packets on
2480 * @budget: Total limit on number of packets to process
2481 * @rx_cleaned: Out parameter of the number of packets processed
2482 *
2483 * This function provides a "bounce buffer" approach to Rx interrupt
2484 * processing.  The advantage to this is that on systems that have
2485 * expensive overhead for IOMMU access this provides a means of avoiding
2486 * it by maintaining the mapping of the page to the system.
2487 *
2488 * Returns amount of work completed
2489 **/
2490static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget,
2491			     unsigned int *rx_cleaned)
2492{
2493	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
2494	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
2495	u16 clean_threshold = rx_ring->count / 2;
2496	unsigned int offset = rx_ring->rx_offset;
2497	struct xdp_buff *xdp = &rx_ring->xdp;
2498	unsigned int xdp_xmit = 0;
2499	struct bpf_prog *xdp_prog;
2500	bool failure = false;
2501	int xdp_res = 0;
2502
2503	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
2504
2505	while (likely(total_rx_packets < (unsigned int)budget)) {
2506		u16 ntp = rx_ring->next_to_process;
2507		struct i40e_rx_buffer *rx_buffer;
2508		union i40e_rx_desc *rx_desc;
2509		struct sk_buff *skb;
2510		unsigned int size;
2511		u32 nfrags = 0;
2512		bool neop;
2513		u64 qword;
2514
2515		/* return some buffers to hardware, one at a time is too slow */
2516		if (cleaned_count >= clean_threshold) {
2517			failure = failure ||
2518				  i40e_alloc_rx_buffers(rx_ring, cleaned_count);
2519			cleaned_count = 0;
2520		}
2521
2522		rx_desc = I40E_RX_DESC(rx_ring, ntp);
2523
2524		/* status_error_len will always be zero for unused descriptors
2525		 * because it's cleared in cleanup, and overlaps with hdr_addr
2526		 * which is always zero because packet split isn't used, if the
2527		 * hardware wrote DD then the length will be non-zero
2528		 */
2529		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
2530
2531		/* This memory barrier is needed to keep us from reading
2532		 * any other fields out of the rx_desc until we have
2533		 * verified the descriptor has been written back.
2534		 */
2535		dma_rmb();
2536
2537		if (i40e_rx_is_programming_status(qword)) {
2538			i40e_clean_programming_status(rx_ring,
2539						      rx_desc->raw.qword[0],
2540						      qword);
2541			rx_buffer = i40e_rx_bi(rx_ring, ntp);
2542			i40e_inc_ntp(rx_ring);
2543			i40e_reuse_rx_page(rx_ring, rx_buffer);
2544			/* Update ntc and bump cleaned count if not in the
2545			 * middle of mb packet.
2546			 */
2547			if (rx_ring->next_to_clean == ntp) {
2548				rx_ring->next_to_clean =
2549					rx_ring->next_to_process;
2550				cleaned_count++;
2551			}
2552			continue;
2553		}
2554
2555		size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
2556		       I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
2557		if (!size)
2558			break;
2559
2560		i40e_trace(clean_rx_irq, rx_ring, rx_desc, xdp);
2561		/* retrieve a buffer from the ring */
2562		rx_buffer = i40e_get_rx_buffer(rx_ring, size);
2563
2564		neop = i40e_is_non_eop(rx_ring, rx_desc);
2565		i40e_inc_ntp(rx_ring);
2566
2567		if (!xdp->data) {
2568			unsigned char *hard_start;
2569
2570			hard_start = page_address(rx_buffer->page) +
2571				     rx_buffer->page_offset - offset;
2572			xdp_prepare_buff(xdp, hard_start, offset, size, true);
2573#if (PAGE_SIZE > 4096)
2574			/* At larger PAGE_SIZE, frame_sz depend on len size */
2575			xdp->frame_sz = i40e_rx_frame_truesize(rx_ring, size);
2576#endif
2577		} else if (i40e_add_xdp_frag(xdp, &nfrags, rx_buffer, size) &&
2578			   !neop) {
2579			/* Overflowing packet: Drop all frags on EOP */
2580			i40e_consume_xdp_buff(rx_ring, xdp, rx_buffer);
2581			break;
2582		}
2583
2584		if (neop)
2585			continue;
2586
2587		xdp_res = i40e_run_xdp(rx_ring, xdp, xdp_prog);
2588
2589		if (xdp_res) {
2590			xdp_xmit |= xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR);
2591
2592			if (unlikely(xdp_buff_has_frags(xdp))) {
2593				i40e_process_rx_buffs(rx_ring, xdp_res, xdp);
2594				size = xdp_get_buff_len(xdp);
2595			} else if (xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR)) {
2596				i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2597			} else {
2598				rx_buffer->pagecnt_bias++;
2599			}
2600			total_rx_bytes += size;
2601		} else {
2602			if (ring_uses_build_skb(rx_ring))
2603				skb = i40e_build_skb(rx_ring, xdp);
2604			else
2605				skb = i40e_construct_skb(rx_ring, xdp);
2606
2607			/* drop if we failed to retrieve a buffer */
2608			if (!skb) {
2609				rx_ring->rx_stats.alloc_buff_failed++;
2610				i40e_consume_xdp_buff(rx_ring, xdp, rx_buffer);
2611				break;
2612			}
2613
2614			if (i40e_cleanup_headers(rx_ring, skb, rx_desc))
2615				goto process_next;
2616
2617			/* probably a little skewed due to removing CRC */
2618			total_rx_bytes += skb->len;
2619
2620			/* populate checksum, VLAN, and protocol */
2621			i40e_process_skb_fields(rx_ring, rx_desc, skb);
2622
2623			i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, xdp);
2624			napi_gro_receive(&rx_ring->q_vector->napi, skb);
2625		}
2626
2627		/* update budget accounting */
2628		total_rx_packets++;
2629process_next:
2630		cleaned_count += nfrags + 1;
2631		i40e_put_rx_buffer(rx_ring, rx_buffer);
2632		rx_ring->next_to_clean = rx_ring->next_to_process;
2633
2634		xdp->data = NULL;
2635	}
2636
2637	i40e_finalize_xdp_rx(rx_ring, xdp_xmit);
2638
2639	i40e_update_rx_stats(rx_ring, total_rx_bytes, total_rx_packets);
2640
2641	*rx_cleaned = total_rx_packets;
2642
2643	/* guarantee a trip back through this routine if there was a failure */
2644	return failure ? budget : (int)total_rx_packets;
2645}
2646
2647static inline u32 i40e_buildreg_itr(const int type, u16 itr)
2648{
2649	u32 val;
2650
2651	/* We don't bother with setting the CLEARPBA bit as the data sheet
2652	 * points out doing so is "meaningless since it was already
2653	 * auto-cleared". The auto-clearing happens when the interrupt is
2654	 * asserted.
2655	 *
2656	 * Hardware errata 28 for also indicates that writing to a
2657	 * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear
2658	 * an event in the PBA anyway so we need to rely on the automask
2659	 * to hold pending events for us until the interrupt is re-enabled
2660	 *
2661	 * The itr value is reported in microseconds, and the register
2662	 * value is recorded in 2 microsecond units. For this reason we
2663	 * only need to shift by the interval shift - 1 instead of the
2664	 * full value.
2665	 */
2666	itr &= I40E_ITR_MASK;
2667
2668	val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
2669	      (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) |
2670	      (itr << (I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT - 1));
2671
2672	return val;
2673}
2674
2675/* a small macro to shorten up some long lines */
2676#define INTREG I40E_PFINT_DYN_CTLN
2677
2678/* The act of updating the ITR will cause it to immediately trigger. In order
2679 * to prevent this from throwing off adaptive update statistics we defer the
2680 * update so that it can only happen so often. So after either Tx or Rx are
2681 * updated we make the adaptive scheme wait until either the ITR completely
2682 * expires via the next_update expiration or we have been through at least
2683 * 3 interrupts.
2684 */
2685#define ITR_COUNTDOWN_START 3
2686
2687/**
2688 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
2689 * @vsi: the VSI we care about
2690 * @q_vector: q_vector for which itr is being updated and interrupt enabled
2691 *
2692 **/
2693static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
2694					  struct i40e_q_vector *q_vector)
2695{
2696	struct i40e_hw *hw = &vsi->back->hw;
2697	u32 intval;
2698
2699	/* If we don't have MSIX, then we only need to re-enable icr0 */
2700	if (!(vsi->back->flags & I40E_FLAG_MSIX_ENABLED)) {
2701		i40e_irq_dynamic_enable_icr0(vsi->back);
2702		return;
2703	}
2704
2705	/* These will do nothing if dynamic updates are not enabled */
2706	i40e_update_itr(q_vector, &q_vector->tx);
2707	i40e_update_itr(q_vector, &q_vector->rx);
2708
2709	/* This block of logic allows us to get away with only updating
2710	 * one ITR value with each interrupt. The idea is to perform a
2711	 * pseudo-lazy update with the following criteria.
2712	 *
2713	 * 1. Rx is given higher priority than Tx if both are in same state
2714	 * 2. If we must reduce an ITR that is given highest priority.
2715	 * 3. We then give priority to increasing ITR based on amount.
2716	 */
2717	if (q_vector->rx.target_itr < q_vector->rx.current_itr) {
2718		/* Rx ITR needs to be reduced, this is highest priority */
2719		intval = i40e_buildreg_itr(I40E_RX_ITR,
2720					   q_vector->rx.target_itr);
2721		q_vector->rx.current_itr = q_vector->rx.target_itr;
2722		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2723	} else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) ||
2724		   ((q_vector->rx.target_itr - q_vector->rx.current_itr) <
2725		    (q_vector->tx.target_itr - q_vector->tx.current_itr))) {
2726		/* Tx ITR needs to be reduced, this is second priority
2727		 * Tx ITR needs to be increased more than Rx, fourth priority
2728		 */
2729		intval = i40e_buildreg_itr(I40E_TX_ITR,
2730					   q_vector->tx.target_itr);
2731		q_vector->tx.current_itr = q_vector->tx.target_itr;
2732		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2733	} else if (q_vector->rx.current_itr != q_vector->rx.target_itr) {
2734		/* Rx ITR needs to be increased, third priority */
2735		intval = i40e_buildreg_itr(I40E_RX_ITR,
2736					   q_vector->rx.target_itr);
2737		q_vector->rx.current_itr = q_vector->rx.target_itr;
2738		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2739	} else {
2740		/* No ITR update, lowest priority */
2741		intval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
2742		if (q_vector->itr_countdown)
2743			q_vector->itr_countdown--;
2744	}
2745
2746	if (!test_bit(__I40E_VSI_DOWN, vsi->state))
2747		wr32(hw, INTREG(q_vector->reg_idx), intval);
2748}
2749
2750/**
2751 * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
2752 * @napi: napi struct with our devices info in it
2753 * @budget: amount of work driver is allowed to do this pass, in packets
2754 *
2755 * This function will clean all queues associated with a q_vector.
2756 *
2757 * Returns the amount of work done
2758 **/
2759int i40e_napi_poll(struct napi_struct *napi, int budget)
2760{
2761	struct i40e_q_vector *q_vector =
2762			       container_of(napi, struct i40e_q_vector, napi);
2763	struct i40e_vsi *vsi = q_vector->vsi;
2764	struct i40e_ring *ring;
2765	bool tx_clean_complete = true;
2766	bool rx_clean_complete = true;
2767	unsigned int tx_cleaned = 0;
2768	unsigned int rx_cleaned = 0;
2769	bool clean_complete = true;
2770	bool arm_wb = false;
2771	int budget_per_ring;
2772	int work_done = 0;
2773
2774	if (test_bit(__I40E_VSI_DOWN, vsi->state)) {
2775		napi_complete(napi);
2776		return 0;
2777	}
2778
2779	/* Since the actual Tx work is minimal, we can give the Tx a larger
2780	 * budget and be more aggressive about cleaning up the Tx descriptors.
2781	 */
2782	i40e_for_each_ring(ring, q_vector->tx) {
2783		bool wd = ring->xsk_pool ?
2784			  i40e_clean_xdp_tx_irq(vsi, ring) :
2785			  i40e_clean_tx_irq(vsi, ring, budget, &tx_cleaned);
2786
2787		if (!wd) {
2788			clean_complete = tx_clean_complete = false;
2789			continue;
2790		}
2791		arm_wb |= ring->arm_wb;
2792		ring->arm_wb = false;
2793	}
2794
2795	/* Handle case where we are called by netpoll with a budget of 0 */
2796	if (budget <= 0)
2797		goto tx_only;
2798
2799	/* normally we have 1 Rx ring per q_vector */
2800	if (unlikely(q_vector->num_ringpairs > 1))
2801		/* We attempt to distribute budget to each Rx queue fairly, but
2802		 * don't allow the budget to go below 1 because that would exit
2803		 * polling early.
2804		 */
2805		budget_per_ring = max_t(int, budget / q_vector->num_ringpairs, 1);
2806	else
2807		/* Max of 1 Rx ring in this q_vector so give it the budget */
2808		budget_per_ring = budget;
2809
2810	i40e_for_each_ring(ring, q_vector->rx) {
2811		int cleaned = ring->xsk_pool ?
2812			      i40e_clean_rx_irq_zc(ring, budget_per_ring) :
2813			      i40e_clean_rx_irq(ring, budget_per_ring, &rx_cleaned);
2814
2815		work_done += cleaned;
2816		/* if we clean as many as budgeted, we must not be done */
2817		if (cleaned >= budget_per_ring)
2818			clean_complete = rx_clean_complete = false;
2819	}
2820
2821	if (!i40e_enabled_xdp_vsi(vsi))
2822		trace_i40e_napi_poll(napi, q_vector, budget, budget_per_ring, rx_cleaned,
2823				     tx_cleaned, rx_clean_complete, tx_clean_complete);
2824
2825	/* If work not completed, return budget and polling will return */
2826	if (!clean_complete) {
2827		int cpu_id = smp_processor_id();
2828
2829		/* It is possible that the interrupt affinity has changed but,
2830		 * if the cpu is pegged at 100%, polling will never exit while
2831		 * traffic continues and the interrupt will be stuck on this
2832		 * cpu.  We check to make sure affinity is correct before we
2833		 * continue to poll, otherwise we must stop polling so the
2834		 * interrupt can move to the correct cpu.
2835		 */
2836		if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) {
2837			/* Tell napi that we are done polling */
2838			napi_complete_done(napi, work_done);
2839
2840			/* Force an interrupt */
2841			i40e_force_wb(vsi, q_vector);
2842
2843			/* Return budget-1 so that polling stops */
2844			return budget - 1;
2845		}
2846tx_only:
2847		if (arm_wb) {
2848			q_vector->tx.ring[0].tx_stats.tx_force_wb++;
2849			i40e_enable_wb_on_itr(vsi, q_vector);
2850		}
2851		return budget;
2852	}
2853
2854	if (q_vector->tx.ring[0].flags & I40E_TXR_FLAGS_WB_ON_ITR)
2855		q_vector->arm_wb_state = false;
2856
2857	/* Exit the polling mode, but don't re-enable interrupts if stack might
2858	 * poll us due to busy-polling
2859	 */
2860	if (likely(napi_complete_done(napi, work_done)))
2861		i40e_update_enable_itr(vsi, q_vector);
2862
2863	return min(work_done, budget - 1);
2864}
2865
2866/**
2867 * i40e_atr - Add a Flow Director ATR filter
2868 * @tx_ring:  ring to add programming descriptor to
2869 * @skb:      send buffer
2870 * @tx_flags: send tx flags
2871 **/
2872static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
2873		     u32 tx_flags)
2874{
2875	struct i40e_filter_program_desc *fdir_desc;
2876	struct i40e_pf *pf = tx_ring->vsi->back;
2877	union {
2878		unsigned char *network;
2879		struct iphdr *ipv4;
2880		struct ipv6hdr *ipv6;
2881	} hdr;
2882	struct tcphdr *th;
2883	unsigned int hlen;
2884	u32 flex_ptype, dtype_cmd;
2885	int l4_proto;
2886	u16 i;
2887
2888	/* make sure ATR is enabled */
2889	if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
2890		return;
2891
2892	if (test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2893		return;
2894
2895	/* if sampling is disabled do nothing */
2896	if (!tx_ring->atr_sample_rate)
2897		return;
2898
2899	/* Currently only IPv4/IPv6 with TCP is supported */
2900	if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
2901		return;
2902
2903	/* snag network header to get L4 type and address */
2904	hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ?
2905		      skb_inner_network_header(skb) : skb_network_header(skb);
2906
2907	/* Note: tx_flags gets modified to reflect inner protocols in
2908	 * tx_enable_csum function if encap is enabled.
2909	 */
2910	if (tx_flags & I40E_TX_FLAGS_IPV4) {
2911		/* access ihl as u8 to avoid unaligned access on ia64 */
2912		hlen = (hdr.network[0] & 0x0F) << 2;
2913		l4_proto = hdr.ipv4->protocol;
2914	} else {
2915		/* find the start of the innermost ipv6 header */
2916		unsigned int inner_hlen = hdr.network - skb->data;
2917		unsigned int h_offset = inner_hlen;
2918
2919		/* this function updates h_offset to the end of the header */
2920		l4_proto =
2921		  ipv6_find_hdr(skb, &h_offset, IPPROTO_TCP, NULL, NULL);
2922		/* hlen will contain our best estimate of the tcp header */
2923		hlen = h_offset - inner_hlen;
2924	}
2925
2926	if (l4_proto != IPPROTO_TCP)
2927		return;
2928
2929	th = (struct tcphdr *)(hdr.network + hlen);
2930
2931	/* Due to lack of space, no more new filters can be programmed */
2932	if (th->syn && test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2933		return;
2934	if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED) {
2935		/* HW ATR eviction will take care of removing filters on FIN
2936		 * and RST packets.
2937		 */
2938		if (th->fin || th->rst)
2939			return;
2940	}
2941
2942	tx_ring->atr_count++;
2943
2944	/* sample on all syn/fin/rst packets or once every atr sample rate */
2945	if (!th->fin &&
2946	    !th->syn &&
2947	    !th->rst &&
2948	    (tx_ring->atr_count < tx_ring->atr_sample_rate))
2949		return;
2950
2951	tx_ring->atr_count = 0;
2952
2953	/* grab the next descriptor */
2954	i = tx_ring->next_to_use;
2955	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
2956
2957	i++;
2958	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2959
2960	flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
2961		      I40E_TXD_FLTR_QW0_QINDEX_MASK;
2962	flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ?
2963		      (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
2964		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
2965		      (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
2966		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
2967
2968	flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
2969
2970	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
2971
2972	dtype_cmd |= (th->fin || th->rst) ?
2973		     (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
2974		      I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
2975		     (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
2976		      I40E_TXD_FLTR_QW1_PCMD_SHIFT);
2977
2978	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
2979		     I40E_TXD_FLTR_QW1_DEST_SHIFT;
2980
2981	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
2982		     I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
2983
2984	dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2985	if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
2986		dtype_cmd |=
2987			((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) <<
2988			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2989			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2990	else
2991		dtype_cmd |=
2992			((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) <<
2993			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2994			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2995
2996	if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED)
2997		dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;
2998
2999	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
3000	fdir_desc->rsvd = cpu_to_le32(0);
3001	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
3002	fdir_desc->fd_id = cpu_to_le32(0);
3003}
3004
3005/**
3006 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
3007 * @skb:     send buffer
3008 * @tx_ring: ring to send buffer on
3009 * @flags:   the tx flags to be set
3010 *
3011 * Checks the skb and set up correspondingly several generic transmit flags
3012 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
3013 *
3014 * Returns error code indicate the frame should be dropped upon error and the
3015 * otherwise  returns 0 to indicate the flags has been set properly.
3016 **/
3017static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
3018					     struct i40e_ring *tx_ring,
3019					     u32 *flags)
3020{
3021	__be16 protocol = skb->protocol;
3022	u32  tx_flags = 0;
3023
3024	if (protocol == htons(ETH_P_8021Q) &&
3025	    !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
3026		/* When HW VLAN acceleration is turned off by the user the
3027		 * stack sets the protocol to 8021q so that the driver
3028		 * can take any steps required to support the SW only
3029		 * VLAN handling.  In our case the driver doesn't need
3030		 * to take any further steps so just set the protocol
3031		 * to the encapsulated ethertype.
3032		 */
3033		skb->protocol = vlan_get_protocol(skb);
3034		goto out;
3035	}
3036
3037	/* if we have a HW VLAN tag being added, default to the HW one */
3038	if (skb_vlan_tag_present(skb)) {
3039		tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
3040		tx_flags |= I40E_TX_FLAGS_HW_VLAN;
3041	/* else if it is a SW VLAN, check the next protocol and store the tag */
3042	} else if (protocol == htons(ETH_P_8021Q)) {
3043		struct vlan_hdr *vhdr, _vhdr;
3044
3045		vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
3046		if (!vhdr)
3047			return -EINVAL;
3048
3049		protocol = vhdr->h_vlan_encapsulated_proto;
3050		tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
3051		tx_flags |= I40E_TX_FLAGS_SW_VLAN;
3052	}
3053
3054	if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED))
3055		goto out;
3056
3057	/* Insert 802.1p priority into VLAN header */
3058	if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
3059	    (skb->priority != TC_PRIO_CONTROL)) {
3060		tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
3061		tx_flags |= (skb->priority & 0x7) <<
3062				I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
3063		if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
3064			struct vlan_ethhdr *vhdr;
3065			int rc;
3066
3067			rc = skb_cow_head(skb, 0);
3068			if (rc < 0)
3069				return rc;
3070			vhdr = skb_vlan_eth_hdr(skb);
3071			vhdr->h_vlan_TCI = htons(tx_flags >>
3072						 I40E_TX_FLAGS_VLAN_SHIFT);
3073		} else {
3074			tx_flags |= I40E_TX_FLAGS_HW_VLAN;
3075		}
3076	}
3077
3078out:
3079	*flags = tx_flags;
3080	return 0;
3081}
3082
3083/**
3084 * i40e_tso - set up the tso context descriptor
3085 * @first:    pointer to first Tx buffer for xmit
3086 * @hdr_len:  ptr to the size of the packet header
3087 * @cd_type_cmd_tso_mss: Quad Word 1
3088 *
3089 * Returns 0 if no TSO can happen, 1 if tso is going, or error
3090 **/
3091static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
3092		    u64 *cd_type_cmd_tso_mss)
3093{
3094	struct sk_buff *skb = first->skb;
3095	u64 cd_cmd, cd_tso_len, cd_mss;
3096	__be16 protocol;
3097	union {
3098		struct iphdr *v4;
3099		struct ipv6hdr *v6;
3100		unsigned char *hdr;
3101	} ip;
3102	union {
3103		struct tcphdr *tcp;
3104		struct udphdr *udp;
3105		unsigned char *hdr;
3106	} l4;
3107	u32 paylen, l4_offset;
3108	u16 gso_size;
3109	int err;
3110
3111	if (skb->ip_summed != CHECKSUM_PARTIAL)
3112		return 0;
3113
3114	if (!skb_is_gso(skb))
3115		return 0;
3116
3117	err = skb_cow_head(skb, 0);
3118	if (err < 0)
3119		return err;
3120
3121	protocol = vlan_get_protocol(skb);
3122
3123	if (eth_p_mpls(protocol))
3124		ip.hdr = skb_inner_network_header(skb);
3125	else
3126		ip.hdr = skb_network_header(skb);
3127	l4.hdr = skb_checksum_start(skb);
3128
3129	/* initialize outer IP header fields */
3130	if (ip.v4->version == 4) {
3131		ip.v4->tot_len = 0;
3132		ip.v4->check = 0;
3133
3134		first->tx_flags |= I40E_TX_FLAGS_TSO;
3135	} else {
3136		ip.v6->payload_len = 0;
3137		first->tx_flags |= I40E_TX_FLAGS_TSO;
3138	}
3139
3140	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
3141					 SKB_GSO_GRE_CSUM |
3142					 SKB_GSO_IPXIP4 |
3143					 SKB_GSO_IPXIP6 |
3144					 SKB_GSO_UDP_TUNNEL |
3145					 SKB_GSO_UDP_TUNNEL_CSUM)) {
3146		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3147		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
3148			l4.udp->len = 0;
3149
3150			/* determine offset of outer transport header */
3151			l4_offset = l4.hdr - skb->data;
3152
3153			/* remove payload length from outer checksum */
3154			paylen = skb->len - l4_offset;
3155			csum_replace_by_diff(&l4.udp->check,
3156					     (__force __wsum)htonl(paylen));
3157		}
3158
3159		/* reset pointers to inner headers */
3160		ip.hdr = skb_inner_network_header(skb);
3161		l4.hdr = skb_inner_transport_header(skb);
3162
3163		/* initialize inner IP header fields */
3164		if (ip.v4->version == 4) {
3165			ip.v4->tot_len = 0;
3166			ip.v4->check = 0;
3167		} else {
3168			ip.v6->payload_len = 0;
3169		}
3170	}
3171
3172	/* determine offset of inner transport header */
3173	l4_offset = l4.hdr - skb->data;
3174
3175	/* remove payload length from inner checksum */
3176	paylen = skb->len - l4_offset;
3177
3178	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
3179		csum_replace_by_diff(&l4.udp->check, (__force __wsum)htonl(paylen));
3180		/* compute length of segmentation header */
3181		*hdr_len = sizeof(*l4.udp) + l4_offset;
3182	} else {
3183		csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
3184		/* compute length of segmentation header */
3185		*hdr_len = (l4.tcp->doff * 4) + l4_offset;
3186	}
3187
3188	/* pull values out of skb_shinfo */
3189	gso_size = skb_shinfo(skb)->gso_size;
3190
3191	/* update GSO size and bytecount with header size */
3192	first->gso_segs = skb_shinfo(skb)->gso_segs;
3193	first->bytecount += (first->gso_segs - 1) * *hdr_len;
3194
3195	/* find the field values */
3196	cd_cmd = I40E_TX_CTX_DESC_TSO;
3197	cd_tso_len = skb->len - *hdr_len;
3198	cd_mss = gso_size;
3199	*cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
3200				(cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
3201				(cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
3202	return 1;
3203}
3204
3205/**
3206 * i40e_tsyn - set up the tsyn context descriptor
3207 * @tx_ring:  ptr to the ring to send
3208 * @skb:      ptr to the skb we're sending
3209 * @tx_flags: the collected send information
3210 * @cd_type_cmd_tso_mss: Quad Word 1
3211 *
3212 * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
3213 **/
3214static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
3215		     u32 tx_flags, u64 *cd_type_cmd_tso_mss)
3216{
3217	struct i40e_pf *pf;
3218
3219	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
3220		return 0;
3221
3222	/* Tx timestamps cannot be sampled when doing TSO */
3223	if (tx_flags & I40E_TX_FLAGS_TSO)
3224		return 0;
3225
3226	/* only timestamp the outbound packet if the user has requested it and
3227	 * we are not already transmitting a packet to be timestamped
3228	 */
3229	pf = i40e_netdev_to_pf(tx_ring->netdev);
3230	if (!(pf->flags & I40E_FLAG_PTP))
3231		return 0;
3232
3233	if (pf->ptp_tx &&
3234	    !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, pf->state)) {
3235		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3236		pf->ptp_tx_start = jiffies;
3237		pf->ptp_tx_skb = skb_get(skb);
3238	} else {
3239		pf->tx_hwtstamp_skipped++;
3240		return 0;
3241	}
3242
3243	*cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
3244				I40E_TXD_CTX_QW1_CMD_SHIFT;
3245
3246	return 1;
3247}
3248
3249/**
3250 * i40e_tx_enable_csum - Enable Tx checksum offloads
3251 * @skb: send buffer
3252 * @tx_flags: pointer to Tx flags currently set
3253 * @td_cmd: Tx descriptor command bits to set
3254 * @td_offset: Tx descriptor header offsets to set
3255 * @tx_ring: Tx descriptor ring
3256 * @cd_tunneling: ptr to context desc bits
3257 **/
3258static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
3259			       u32 *td_cmd, u32 *td_offset,
3260			       struct i40e_ring *tx_ring,
3261			       u32 *cd_tunneling)
3262{
3263	union {
3264		struct iphdr *v4;
3265		struct ipv6hdr *v6;
3266		unsigned char *hdr;
3267	} ip;
3268	union {
3269		struct tcphdr *tcp;
3270		struct udphdr *udp;
3271		unsigned char *hdr;
3272	} l4;
3273	unsigned char *exthdr;
3274	u32 offset, cmd = 0;
3275	__be16 frag_off;
3276	__be16 protocol;
3277	u8 l4_proto = 0;
3278
3279	if (skb->ip_summed != CHECKSUM_PARTIAL)
3280		return 0;
3281
3282	protocol = vlan_get_protocol(skb);
3283
3284	if (eth_p_mpls(protocol)) {
3285		ip.hdr = skb_inner_network_header(skb);
3286		l4.hdr = skb_checksum_start(skb);
3287	} else {
3288		ip.hdr = skb_network_header(skb);
3289		l4.hdr = skb_transport_header(skb);
3290	}
3291
3292	/* set the tx_flags to indicate the IP protocol type. this is
3293	 * required so that checksum header computation below is accurate.
3294	 */
3295	if (ip.v4->version == 4)
3296		*tx_flags |= I40E_TX_FLAGS_IPV4;
3297	else
3298		*tx_flags |= I40E_TX_FLAGS_IPV6;
3299
3300	/* compute outer L2 header size */
3301	offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
3302
3303	if (skb->encapsulation) {
3304		u32 tunnel = 0;
3305		/* define outer network header type */
3306		if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3307			tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3308				  I40E_TX_CTX_EXT_IP_IPV4 :
3309				  I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
3310
3311			l4_proto = ip.v4->protocol;
3312		} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3313			int ret;
3314
3315			tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
3316
3317			exthdr = ip.hdr + sizeof(*ip.v6);
3318			l4_proto = ip.v6->nexthdr;
3319			ret = ipv6_skip_exthdr(skb, exthdr - skb->data,
3320					       &l4_proto, &frag_off);
3321			if (ret < 0)
3322				return -1;
3323		}
3324
3325		/* define outer transport */
3326		switch (l4_proto) {
3327		case IPPROTO_UDP:
3328			tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
3329			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3330			break;
3331		case IPPROTO_GRE:
3332			tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
3333			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3334			break;
3335		case IPPROTO_IPIP:
3336		case IPPROTO_IPV6:
3337			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3338			l4.hdr = skb_inner_network_header(skb);
3339			break;
3340		default:
3341			if (*tx_flags & I40E_TX_FLAGS_TSO)
3342				return -1;
3343
3344			skb_checksum_help(skb);
3345			return 0;
3346		}
3347
3348		/* compute outer L3 header size */
3349		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
3350			  I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
3351
3352		/* switch IP header pointer from outer to inner header */
3353		ip.hdr = skb_inner_network_header(skb);
3354
3355		/* compute tunnel header size */
3356		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
3357			  I40E_TXD_CTX_QW0_NATLEN_SHIFT;
3358
3359		/* indicate if we need to offload outer UDP header */
3360		if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
3361		    !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3362		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
3363			tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
3364
3365		/* record tunnel offload values */
3366		*cd_tunneling |= tunnel;
3367
3368		/* switch L4 header pointer from outer to inner */
3369		l4.hdr = skb_inner_transport_header(skb);
3370		l4_proto = 0;
3371
3372		/* reset type as we transition from outer to inner headers */
3373		*tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
3374		if (ip.v4->version == 4)
3375			*tx_flags |= I40E_TX_FLAGS_IPV4;
3376		if (ip.v6->version == 6)
3377			*tx_flags |= I40E_TX_FLAGS_IPV6;
3378	}
3379
3380	/* Enable IP checksum offloads */
3381	if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3382		l4_proto = ip.v4->protocol;
3383		/* the stack computes the IP header already, the only time we
3384		 * need the hardware to recompute it is in the case of TSO.
3385		 */
3386		cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3387		       I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
3388		       I40E_TX_DESC_CMD_IIPT_IPV4;
3389	} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3390		cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
3391
3392		exthdr = ip.hdr + sizeof(*ip.v6);
3393		l4_proto = ip.v6->nexthdr;
3394		if (l4.hdr != exthdr)
3395			ipv6_skip_exthdr(skb, exthdr - skb->data,
3396					 &l4_proto, &frag_off);
3397	}
3398
3399	/* compute inner L3 header size */
3400	offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
3401
3402	/* Enable L4 checksum offloads */
3403	switch (l4_proto) {
3404	case IPPROTO_TCP:
3405		/* enable checksum offloads */
3406		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
3407		offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3408		break;
3409	case IPPROTO_SCTP:
3410		/* enable SCTP checksum offload */
3411		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
3412		offset |= (sizeof(struct sctphdr) >> 2) <<
3413			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3414		break;
3415	case IPPROTO_UDP:
3416		/* enable UDP checksum offload */
3417		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
3418		offset |= (sizeof(struct udphdr) >> 2) <<
3419			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3420		break;
3421	default:
3422		if (*tx_flags & I40E_TX_FLAGS_TSO)
3423			return -1;
3424		skb_checksum_help(skb);
3425		return 0;
3426	}
3427
3428	*td_cmd |= cmd;
3429	*td_offset |= offset;
3430
3431	return 1;
3432}
3433
3434/**
3435 * i40e_create_tx_ctx - Build the Tx context descriptor
3436 * @tx_ring:  ring to create the descriptor on
3437 * @cd_type_cmd_tso_mss: Quad Word 1
3438 * @cd_tunneling: Quad Word 0 - bits 0-31
3439 * @cd_l2tag2: Quad Word 0 - bits 32-63
3440 **/
3441static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
3442			       const u64 cd_type_cmd_tso_mss,
3443			       const u32 cd_tunneling, const u32 cd_l2tag2)
3444{
3445	struct i40e_tx_context_desc *context_desc;
3446	int i = tx_ring->next_to_use;
3447
3448	if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
3449	    !cd_tunneling && !cd_l2tag2)
3450		return;
3451
3452	/* grab the next descriptor */
3453	context_desc = I40E_TX_CTXTDESC(tx_ring, i);
3454
3455	i++;
3456	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
3457
3458	/* cpu_to_le32 and assign to struct fields */
3459	context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
3460	context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
3461	context_desc->rsvd = cpu_to_le16(0);
3462	context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
3463}
3464
3465/**
3466 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
3467 * @tx_ring: the ring to be checked
3468 * @size:    the size buffer we want to assure is available
3469 *
3470 * Returns -EBUSY if a stop is needed, else 0
3471 **/
3472int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
3473{
3474	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
3475	/* Memory barrier before checking head and tail */
3476	smp_mb();
3477
3478	++tx_ring->tx_stats.tx_stopped;
3479
3480	/* Check again in a case another CPU has just made room available. */
3481	if (likely(I40E_DESC_UNUSED(tx_ring) < size))
3482		return -EBUSY;
3483
3484	/* A reprieve! - use start_queue because it doesn't call schedule */
3485	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
3486	++tx_ring->tx_stats.restart_queue;
3487	return 0;
3488}
3489
3490/**
3491 * __i40e_chk_linearize - Check if there are more than 8 buffers per packet
3492 * @skb:      send buffer
3493 *
3494 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
3495 * and so we need to figure out the cases where we need to linearize the skb.
3496 *
3497 * For TSO we need to count the TSO header and segment payload separately.
3498 * As such we need to check cases where we have 7 fragments or more as we
3499 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
3500 * the segment payload in the first descriptor, and another 7 for the
3501 * fragments.
3502 **/
3503bool __i40e_chk_linearize(struct sk_buff *skb)
3504{
3505	const skb_frag_t *frag, *stale;
3506	int nr_frags, sum;
3507
3508	/* no need to check if number of frags is less than 7 */
3509	nr_frags = skb_shinfo(skb)->nr_frags;
3510	if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
3511		return false;
3512
3513	/* We need to walk through the list and validate that each group
3514	 * of 6 fragments totals at least gso_size.
3515	 */
3516	nr_frags -= I40E_MAX_BUFFER_TXD - 2;
3517	frag = &skb_shinfo(skb)->frags[0];
3518
3519	/* Initialize size to the negative value of gso_size minus 1.  We
3520	 * use this as the worst case scenerio in which the frag ahead
3521	 * of us only provides one byte which is why we are limited to 6
3522	 * descriptors for a single transmit as the header and previous
3523	 * fragment are already consuming 2 descriptors.
3524	 */
3525	sum = 1 - skb_shinfo(skb)->gso_size;
3526
3527	/* Add size of frags 0 through 4 to create our initial sum */
3528	sum += skb_frag_size(frag++);
3529	sum += skb_frag_size(frag++);
3530	sum += skb_frag_size(frag++);
3531	sum += skb_frag_size(frag++);
3532	sum += skb_frag_size(frag++);
3533
3534	/* Walk through fragments adding latest fragment, testing it, and
3535	 * then removing stale fragments from the sum.
3536	 */
3537	for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
3538		int stale_size = skb_frag_size(stale);
3539
3540		sum += skb_frag_size(frag++);
3541
3542		/* The stale fragment may present us with a smaller
3543		 * descriptor than the actual fragment size. To account
3544		 * for that we need to remove all the data on the front and
3545		 * figure out what the remainder would be in the last
3546		 * descriptor associated with the fragment.
3547		 */
3548		if (stale_size > I40E_MAX_DATA_PER_TXD) {
3549			int align_pad = -(skb_frag_off(stale)) &
3550					(I40E_MAX_READ_REQ_SIZE - 1);
3551
3552			sum -= align_pad;
3553			stale_size -= align_pad;
3554
3555			do {
3556				sum -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3557				stale_size -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3558			} while (stale_size > I40E_MAX_DATA_PER_TXD);
3559		}
3560
3561		/* if sum is negative we failed to make sufficient progress */
3562		if (sum < 0)
3563			return true;
3564
3565		if (!nr_frags--)
3566			break;
3567
3568		sum -= stale_size;
3569	}
3570
3571	return false;
3572}
3573
3574/**
3575 * i40e_tx_map - Build the Tx descriptor
3576 * @tx_ring:  ring to send buffer on
3577 * @skb:      send buffer
3578 * @first:    first buffer info buffer to use
3579 * @tx_flags: collected send information
3580 * @hdr_len:  size of the packet header
3581 * @td_cmd:   the command field in the descriptor
3582 * @td_offset: offset for checksum or crc
3583 *
3584 * Returns 0 on success, -1 on failure to DMA
3585 **/
3586static inline int i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
3587			      struct i40e_tx_buffer *first, u32 tx_flags,
3588			      const u8 hdr_len, u32 td_cmd, u32 td_offset)
3589{
3590	unsigned int data_len = skb->data_len;
3591	unsigned int size = skb_headlen(skb);
3592	skb_frag_t *frag;
3593	struct i40e_tx_buffer *tx_bi;
3594	struct i40e_tx_desc *tx_desc;
3595	u16 i = tx_ring->next_to_use;
3596	u32 td_tag = 0;
3597	dma_addr_t dma;
3598	u16 desc_count = 1;
3599
3600	if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
3601		td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
3602		td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
3603			 I40E_TX_FLAGS_VLAN_SHIFT;
3604	}
3605
3606	first->tx_flags = tx_flags;
3607
3608	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
3609
3610	tx_desc = I40E_TX_DESC(tx_ring, i);
3611	tx_bi = first;
3612
3613	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
3614		unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3615
3616		if (dma_mapping_error(tx_ring->dev, dma))
3617			goto dma_error;
3618
3619		/* record length, and DMA address */
3620		dma_unmap_len_set(tx_bi, len, size);
3621		dma_unmap_addr_set(tx_bi, dma, dma);
3622
3623		/* align size to end of page */
3624		max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
3625		tx_desc->buffer_addr = cpu_to_le64(dma);
3626
3627		while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
3628			tx_desc->cmd_type_offset_bsz =
3629				build_ctob(td_cmd, td_offset,
3630					   max_data, td_tag);
3631
3632			tx_desc++;
3633			i++;
3634			desc_count++;
3635
3636			if (i == tx_ring->count) {
3637				tx_desc = I40E_TX_DESC(tx_ring, 0);
3638				i = 0;
3639			}
3640
3641			dma += max_data;
3642			size -= max_data;
3643
3644			max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3645			tx_desc->buffer_addr = cpu_to_le64(dma);
3646		}
3647
3648		if (likely(!data_len))
3649			break;
3650
3651		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
3652							  size, td_tag);
3653
3654		tx_desc++;
3655		i++;
3656		desc_count++;
3657
3658		if (i == tx_ring->count) {
3659			tx_desc = I40E_TX_DESC(tx_ring, 0);
3660			i = 0;
3661		}
3662
3663		size = skb_frag_size(frag);
3664		data_len -= size;
3665
3666		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
3667				       DMA_TO_DEVICE);
3668
3669		tx_bi = &tx_ring->tx_bi[i];
3670	}
3671
3672	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
3673
3674	i++;
3675	if (i == tx_ring->count)
3676		i = 0;
3677
3678	tx_ring->next_to_use = i;
3679
3680	i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
3681
3682	/* write last descriptor with EOP bit */
3683	td_cmd |= I40E_TX_DESC_CMD_EOP;
3684
3685	/* We OR these values together to check both against 4 (WB_STRIDE)
3686	 * below. This is safe since we don't re-use desc_count afterwards.
3687	 */
3688	desc_count |= ++tx_ring->packet_stride;
3689
3690	if (desc_count >= WB_STRIDE) {
3691		/* write last descriptor with RS bit set */
3692		td_cmd |= I40E_TX_DESC_CMD_RS;
3693		tx_ring->packet_stride = 0;
3694	}
3695
3696	tx_desc->cmd_type_offset_bsz =
3697			build_ctob(td_cmd, td_offset, size, td_tag);
3698
3699	skb_tx_timestamp(skb);
3700
3701	/* Force memory writes to complete before letting h/w know there
3702	 * are new descriptors to fetch.
3703	 *
3704	 * We also use this memory barrier to make certain all of the
3705	 * status bits have been updated before next_to_watch is written.
3706	 */
3707	wmb();
3708
3709	/* set next_to_watch value indicating a packet is present */
3710	first->next_to_watch = tx_desc;
3711
3712	/* notify HW of packet */
3713	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
3714		writel(i, tx_ring->tail);
3715	}
3716
3717	return 0;
3718
3719dma_error:
3720	dev_info(tx_ring->dev, "TX DMA map failed\n");
3721
3722	/* clear dma mappings for failed tx_bi map */
3723	for (;;) {
3724		tx_bi = &tx_ring->tx_bi[i];
3725		i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
3726		if (tx_bi == first)
3727			break;
3728		if (i == 0)
3729			i = tx_ring->count;
3730		i--;
3731	}
3732
3733	tx_ring->next_to_use = i;
3734
3735	return -1;
3736}
3737
3738static u16 i40e_swdcb_skb_tx_hash(struct net_device *dev,
3739				  const struct sk_buff *skb,
3740				  u16 num_tx_queues)
3741{
3742	u32 jhash_initval_salt = 0xd631614b;
3743	u32 hash;
3744
3745	if (skb->sk && skb->sk->sk_hash)
3746		hash = skb->sk->sk_hash;
3747	else
3748		hash = (__force u16)skb->protocol ^ skb->hash;
3749
3750	hash = jhash_1word(hash, jhash_initval_salt);
3751
3752	return (u16)(((u64)hash * num_tx_queues) >> 32);
3753}
3754
3755u16 i40e_lan_select_queue(struct net_device *netdev,
3756			  struct sk_buff *skb,
3757			  struct net_device __always_unused *sb_dev)
3758{
3759	struct i40e_netdev_priv *np = netdev_priv(netdev);
3760	struct i40e_vsi *vsi = np->vsi;
3761	struct i40e_hw *hw;
3762	u16 qoffset;
3763	u16 qcount;
3764	u8 tclass;
3765	u16 hash;
3766	u8 prio;
3767
3768	/* is DCB enabled at all? */
3769	if (vsi->tc_config.numtc == 1 ||
3770	    i40e_is_tc_mqprio_enabled(vsi->back))
3771		return netdev_pick_tx(netdev, skb, sb_dev);
3772
3773	prio = skb->priority;
3774	hw = &vsi->back->hw;
3775	tclass = hw->local_dcbx_config.etscfg.prioritytable[prio];
3776	/* sanity check */
3777	if (unlikely(!(vsi->tc_config.enabled_tc & BIT(tclass))))
3778		tclass = 0;
3779
3780	/* select a queue assigned for the given TC */
3781	qcount = vsi->tc_config.tc_info[tclass].qcount;
3782	hash = i40e_swdcb_skb_tx_hash(netdev, skb, qcount);
3783
3784	qoffset = vsi->tc_config.tc_info[tclass].qoffset;
3785	return qoffset + hash;
3786}
3787
3788/**
3789 * i40e_xmit_xdp_ring - transmits an XDP buffer to an XDP Tx ring
3790 * @xdpf: data to transmit
3791 * @xdp_ring: XDP Tx ring
3792 **/
3793static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
3794			      struct i40e_ring *xdp_ring)
3795{
3796	struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
3797	u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0;
3798	u16 i = 0, index = xdp_ring->next_to_use;
3799	struct i40e_tx_buffer *tx_head = &xdp_ring->tx_bi[index];
3800	struct i40e_tx_buffer *tx_bi = tx_head;
3801	struct i40e_tx_desc *tx_desc = I40E_TX_DESC(xdp_ring, index);
3802	void *data = xdpf->data;
3803	u32 size = xdpf->len;
3804
3805	if (unlikely(I40E_DESC_UNUSED(xdp_ring) < 1 + nr_frags)) {
3806		xdp_ring->tx_stats.tx_busy++;
3807		return I40E_XDP_CONSUMED;
3808	}
3809
3810	tx_head->bytecount = xdp_get_frame_len(xdpf);
3811	tx_head->gso_segs = 1;
3812	tx_head->xdpf = xdpf;
3813
3814	for (;;) {
3815		dma_addr_t dma;
3816
3817		dma = dma_map_single(xdp_ring->dev, data, size, DMA_TO_DEVICE);
3818		if (dma_mapping_error(xdp_ring->dev, dma))
3819			goto unmap;
3820
3821		/* record length, and DMA address */
3822		dma_unmap_len_set(tx_bi, len, size);
3823		dma_unmap_addr_set(tx_bi, dma, dma);
3824
3825		tx_desc->buffer_addr = cpu_to_le64(dma);
3826		tx_desc->cmd_type_offset_bsz =
3827			build_ctob(I40E_TX_DESC_CMD_ICRC, 0, size, 0);
3828
3829		if (++index == xdp_ring->count)
3830			index = 0;
3831
3832		if (i == nr_frags)
3833			break;
3834
3835		tx_bi = &xdp_ring->tx_bi[index];
3836		tx_desc = I40E_TX_DESC(xdp_ring, index);
3837
3838		data = skb_frag_address(&sinfo->frags[i]);
3839		size = skb_frag_size(&sinfo->frags[i]);
3840		i++;
3841	}
3842
3843	tx_desc->cmd_type_offset_bsz |=
3844		cpu_to_le64(I40E_TXD_CMD << I40E_TXD_QW1_CMD_SHIFT);
3845
3846	/* Make certain all of the status bits have been updated
3847	 * before next_to_watch is written.
3848	 */
3849	smp_wmb();
3850
3851	xdp_ring->xdp_tx_active++;
3852
3853	tx_head->next_to_watch = tx_desc;
3854	xdp_ring->next_to_use = index;
3855
3856	return I40E_XDP_TX;
3857
3858unmap:
3859	for (;;) {
3860		tx_bi = &xdp_ring->tx_bi[index];
3861		if (dma_unmap_len(tx_bi, len))
3862			dma_unmap_page(xdp_ring->dev,
3863				       dma_unmap_addr(tx_bi, dma),
3864				       dma_unmap_len(tx_bi, len),
3865				       DMA_TO_DEVICE);
3866		dma_unmap_len_set(tx_bi, len, 0);
3867		if (tx_bi == tx_head)
3868			break;
3869
3870		if (!index)
3871			index += xdp_ring->count;
3872		index--;
3873	}
3874
3875	return I40E_XDP_CONSUMED;
3876}
3877
3878/**
3879 * i40e_xmit_frame_ring - Sends buffer on Tx ring
3880 * @skb:     send buffer
3881 * @tx_ring: ring to send buffer on
3882 *
3883 * Returns NETDEV_TX_OK if sent, else an error code
3884 **/
3885static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
3886					struct i40e_ring *tx_ring)
3887{
3888	u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
3889	u32 cd_tunneling = 0, cd_l2tag2 = 0;
3890	struct i40e_tx_buffer *first;
3891	u32 td_offset = 0;
3892	u32 tx_flags = 0;
3893	u32 td_cmd = 0;
3894	u8 hdr_len = 0;
3895	int tso, count;
3896	int tsyn;
3897
3898	/* prefetch the data, we'll need it later */
3899	prefetch(skb->data);
3900
3901	i40e_trace(xmit_frame_ring, skb, tx_ring);
3902
3903	count = i40e_xmit_descriptor_count(skb);
3904	if (i40e_chk_linearize(skb, count)) {
3905		if (__skb_linearize(skb)) {
3906			dev_kfree_skb_any(skb);
3907			return NETDEV_TX_OK;
3908		}
3909		count = i40e_txd_use_count(skb->len);
3910		tx_ring->tx_stats.tx_linearize++;
3911	}
3912
3913	/* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
3914	 *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
3915	 *       + 4 desc gap to avoid the cache line where head is,
3916	 *       + 1 desc for context descriptor,
3917	 * otherwise try next time
3918	 */
3919	if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
3920		tx_ring->tx_stats.tx_busy++;
3921		return NETDEV_TX_BUSY;
3922	}
3923
3924	/* record the location of the first descriptor for this packet */
3925	first = &tx_ring->tx_bi[tx_ring->next_to_use];
3926	first->skb = skb;
3927	first->bytecount = skb->len;
3928	first->gso_segs = 1;
3929
3930	/* prepare the xmit flags */
3931	if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
3932		goto out_drop;
3933
3934	tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
3935
3936	if (tso < 0)
3937		goto out_drop;
3938	else if (tso)
3939		tx_flags |= I40E_TX_FLAGS_TSO;
3940
3941	/* Always offload the checksum, since it's in the data descriptor */
3942	tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
3943				  tx_ring, &cd_tunneling);
3944	if (tso < 0)
3945		goto out_drop;
3946
3947	tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
3948
3949	if (tsyn)
3950		tx_flags |= I40E_TX_FLAGS_TSYN;
3951
3952	/* always enable CRC insertion offload */
3953	td_cmd |= I40E_TX_DESC_CMD_ICRC;
3954
3955	i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
3956			   cd_tunneling, cd_l2tag2);
3957
3958	/* Add Flow Director ATR if it's enabled.
3959	 *
3960	 * NOTE: this must always be directly before the data descriptor.
3961	 */
3962	i40e_atr(tx_ring, skb, tx_flags);
3963
3964	if (i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
3965			td_cmd, td_offset))
3966		goto cleanup_tx_tstamp;
3967
3968	return NETDEV_TX_OK;
3969
3970out_drop:
3971	i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring);
3972	dev_kfree_skb_any(first->skb);
3973	first->skb = NULL;
3974cleanup_tx_tstamp:
3975	if (unlikely(tx_flags & I40E_TX_FLAGS_TSYN)) {
3976		struct i40e_pf *pf = i40e_netdev_to_pf(tx_ring->netdev);
3977
3978		dev_kfree_skb_any(pf->ptp_tx_skb);
3979		pf->ptp_tx_skb = NULL;
3980		clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
3981	}
3982
3983	return NETDEV_TX_OK;
3984}
3985
3986/**
3987 * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
3988 * @skb:    send buffer
3989 * @netdev: network interface device structure
3990 *
3991 * Returns NETDEV_TX_OK if sent, else an error code
3992 **/
3993netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3994{
3995	struct i40e_netdev_priv *np = netdev_priv(netdev);
3996	struct i40e_vsi *vsi = np->vsi;
3997	struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
3998
3999	/* hardware can't handle really short frames, hardware padding works
4000	 * beyond this point
4001	 */
4002	if (skb_put_padto(skb, I40E_MIN_TX_LEN))
4003		return NETDEV_TX_OK;
4004
4005	return i40e_xmit_frame_ring(skb, tx_ring);
4006}
4007
4008/**
4009 * i40e_xdp_xmit - Implements ndo_xdp_xmit
4010 * @dev: netdev
4011 * @n: number of frames
4012 * @frames: array of XDP buffer pointers
4013 * @flags: XDP extra info
4014 *
4015 * Returns number of frames successfully sent. Failed frames
4016 * will be free'ed by XDP core.
4017 *
4018 * For error cases, a negative errno code is returned and no-frames
4019 * are transmitted (caller must handle freeing frames).
4020 **/
4021int i40e_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
4022		  u32 flags)
4023{
4024	struct i40e_netdev_priv *np = netdev_priv(dev);
4025	unsigned int queue_index = smp_processor_id();
4026	struct i40e_vsi *vsi = np->vsi;
4027	struct i40e_pf *pf = vsi->back;
4028	struct i40e_ring *xdp_ring;
4029	int nxmit = 0;
4030	int i;
4031
4032	if (test_bit(__I40E_VSI_DOWN, vsi->state))
4033		return -ENETDOWN;
4034
4035	if (!i40e_enabled_xdp_vsi(vsi) || queue_index >= vsi->num_queue_pairs ||
4036	    test_bit(__I40E_CONFIG_BUSY, pf->state))
4037		return -ENXIO;
4038
4039	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
4040		return -EINVAL;
4041
4042	xdp_ring = vsi->xdp_rings[queue_index];
4043
4044	for (i = 0; i < n; i++) {
4045		struct xdp_frame *xdpf = frames[i];
4046		int err;
4047
4048		err = i40e_xmit_xdp_ring(xdpf, xdp_ring);
4049		if (err != I40E_XDP_TX)
4050			break;
4051		nxmit++;
4052	}
4053
4054	if (unlikely(flags & XDP_XMIT_FLUSH))
4055		i40e_xdp_ring_update_tail(xdp_ring);
4056
4057	return nxmit;
4058}
4059