1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 2013 - 2018 Intel Corporation. */
3
4#include "i40e_prototype.h"
5
6/**
7 * i40e_init_nvm - Initialize NVM function pointers
8 * @hw: pointer to the HW structure
9 *
10 * Setup the function pointers and the NVM info structure. Should be called
11 * once per NVM initialization, e.g. inside the i40e_init_shared_code().
12 * Please notice that the NVM term is used here (& in all methods covered
13 * in this file) as an equivalent of the FLASH part mapped into the SR.
14 * We are accessing FLASH always thru the Shadow RAM.
15 **/
16int i40e_init_nvm(struct i40e_hw *hw)
17{
18	struct i40e_nvm_info *nvm = &hw->nvm;
19	int ret_code = 0;
20	u32 fla, gens;
21	u8 sr_size;
22
23	/* The SR size is stored regardless of the nvm programming mode
24	 * as the blank mode may be used in the factory line.
25	 */
26	gens = rd32(hw, I40E_GLNVM_GENS);
27	sr_size = ((gens & I40E_GLNVM_GENS_SR_SIZE_MASK) >>
28			   I40E_GLNVM_GENS_SR_SIZE_SHIFT);
29	/* Switching to words (sr_size contains power of 2KB) */
30	nvm->sr_size = BIT(sr_size) * I40E_SR_WORDS_IN_1KB;
31
32	/* Check if we are in the normal or blank NVM programming mode */
33	fla = rd32(hw, I40E_GLNVM_FLA);
34	if (fla & I40E_GLNVM_FLA_LOCKED_MASK) { /* Normal programming mode */
35		/* Max NVM timeout */
36		nvm->timeout = I40E_MAX_NVM_TIMEOUT;
37		nvm->blank_nvm_mode = false;
38	} else { /* Blank programming mode */
39		nvm->blank_nvm_mode = true;
40		ret_code = -EIO;
41		i40e_debug(hw, I40E_DEBUG_NVM, "NVM init error: unsupported blank mode.\n");
42	}
43
44	return ret_code;
45}
46
47/**
48 * i40e_acquire_nvm - Generic request for acquiring the NVM ownership
49 * @hw: pointer to the HW structure
50 * @access: NVM access type (read or write)
51 *
52 * This function will request NVM ownership for reading
53 * via the proper Admin Command.
54 **/
55int i40e_acquire_nvm(struct i40e_hw *hw,
56		     enum i40e_aq_resource_access_type access)
57{
58	u64 gtime, timeout;
59	u64 time_left = 0;
60	int ret_code = 0;
61
62	if (hw->nvm.blank_nvm_mode)
63		goto i40e_i40e_acquire_nvm_exit;
64
65	ret_code = i40e_aq_request_resource(hw, I40E_NVM_RESOURCE_ID, access,
66					    0, &time_left, NULL);
67	/* Reading the Global Device Timer */
68	gtime = rd32(hw, I40E_GLVFGEN_TIMER);
69
70	/* Store the timeout */
71	hw->nvm.hw_semaphore_timeout = I40E_MS_TO_GTIME(time_left) + gtime;
72
73	if (ret_code)
74		i40e_debug(hw, I40E_DEBUG_NVM,
75			   "NVM acquire type %d failed time_left=%llu ret=%d aq_err=%d\n",
76			   access, time_left, ret_code, hw->aq.asq_last_status);
77
78	if (ret_code && time_left) {
79		/* Poll until the current NVM owner timeouts */
80		timeout = I40E_MS_TO_GTIME(I40E_MAX_NVM_TIMEOUT) + gtime;
81		while ((gtime < timeout) && time_left) {
82			usleep_range(10000, 20000);
83			gtime = rd32(hw, I40E_GLVFGEN_TIMER);
84			ret_code = i40e_aq_request_resource(hw,
85							I40E_NVM_RESOURCE_ID,
86							access, 0, &time_left,
87							NULL);
88			if (!ret_code) {
89				hw->nvm.hw_semaphore_timeout =
90					    I40E_MS_TO_GTIME(time_left) + gtime;
91				break;
92			}
93		}
94		if (ret_code) {
95			hw->nvm.hw_semaphore_timeout = 0;
96			i40e_debug(hw, I40E_DEBUG_NVM,
97				   "NVM acquire timed out, wait %llu ms before trying again. status=%d aq_err=%d\n",
98				   time_left, ret_code, hw->aq.asq_last_status);
99		}
100	}
101
102i40e_i40e_acquire_nvm_exit:
103	return ret_code;
104}
105
106/**
107 * i40e_release_nvm - Generic request for releasing the NVM ownership
108 * @hw: pointer to the HW structure
109 *
110 * This function will release NVM resource via the proper Admin Command.
111 **/
112void i40e_release_nvm(struct i40e_hw *hw)
113{
114	u32 total_delay = 0;
115	int ret_code = 0;
116
117	if (hw->nvm.blank_nvm_mode)
118		return;
119
120	ret_code = i40e_aq_release_resource(hw, I40E_NVM_RESOURCE_ID, 0, NULL);
121
122	/* there are some rare cases when trying to release the resource
123	 * results in an admin Q timeout, so handle them correctly
124	 */
125	while ((ret_code == -EIO) &&
126	       (total_delay < hw->aq.asq_cmd_timeout)) {
127		usleep_range(1000, 2000);
128		ret_code = i40e_aq_release_resource(hw,
129						    I40E_NVM_RESOURCE_ID,
130						    0, NULL);
131		total_delay++;
132	}
133}
134
135/**
136 * i40e_poll_sr_srctl_done_bit - Polls the GLNVM_SRCTL done bit
137 * @hw: pointer to the HW structure
138 *
139 * Polls the SRCTL Shadow RAM register done bit.
140 **/
141static int i40e_poll_sr_srctl_done_bit(struct i40e_hw *hw)
142{
143	int ret_code = -EIO;
144	u32 srctl, wait_cnt;
145
146	/* Poll the I40E_GLNVM_SRCTL until the done bit is set */
147	for (wait_cnt = 0; wait_cnt < I40E_SRRD_SRCTL_ATTEMPTS; wait_cnt++) {
148		srctl = rd32(hw, I40E_GLNVM_SRCTL);
149		if (srctl & I40E_GLNVM_SRCTL_DONE_MASK) {
150			ret_code = 0;
151			break;
152		}
153		udelay(5);
154	}
155	if (ret_code == -EIO)
156		i40e_debug(hw, I40E_DEBUG_NVM, "Done bit in GLNVM_SRCTL not set");
157	return ret_code;
158}
159
160/**
161 * i40e_read_nvm_word_srctl - Reads Shadow RAM via SRCTL register
162 * @hw: pointer to the HW structure
163 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
164 * @data: word read from the Shadow RAM
165 *
166 * Reads one 16 bit word from the Shadow RAM using the GLNVM_SRCTL register.
167 **/
168static int i40e_read_nvm_word_srctl(struct i40e_hw *hw, u16 offset,
169				    u16 *data)
170{
171	int ret_code = -EIO;
172	u32 sr_reg;
173
174	if (offset >= hw->nvm.sr_size) {
175		i40e_debug(hw, I40E_DEBUG_NVM,
176			   "NVM read error: offset %d beyond Shadow RAM limit %d\n",
177			   offset, hw->nvm.sr_size);
178		ret_code = -EINVAL;
179		goto read_nvm_exit;
180	}
181
182	/* Poll the done bit first */
183	ret_code = i40e_poll_sr_srctl_done_bit(hw);
184	if (!ret_code) {
185		/* Write the address and start reading */
186		sr_reg = ((u32)offset << I40E_GLNVM_SRCTL_ADDR_SHIFT) |
187			 BIT(I40E_GLNVM_SRCTL_START_SHIFT);
188		wr32(hw, I40E_GLNVM_SRCTL, sr_reg);
189
190		/* Poll I40E_GLNVM_SRCTL until the done bit is set */
191		ret_code = i40e_poll_sr_srctl_done_bit(hw);
192		if (!ret_code) {
193			sr_reg = rd32(hw, I40E_GLNVM_SRDATA);
194			*data = (u16)((sr_reg &
195				       I40E_GLNVM_SRDATA_RDDATA_MASK)
196				    >> I40E_GLNVM_SRDATA_RDDATA_SHIFT);
197		}
198	}
199	if (ret_code)
200		i40e_debug(hw, I40E_DEBUG_NVM,
201			   "NVM read error: Couldn't access Shadow RAM address: 0x%x\n",
202			   offset);
203
204read_nvm_exit:
205	return ret_code;
206}
207
208/**
209 * i40e_read_nvm_aq - Read Shadow RAM.
210 * @hw: pointer to the HW structure.
211 * @module_pointer: module pointer location in words from the NVM beginning
212 * @offset: offset in words from module start
213 * @words: number of words to read
214 * @data: buffer with words to read to the Shadow RAM
215 * @last_command: tells the AdminQ that this is the last command
216 *
217 * Reads a 16 bit words buffer to the Shadow RAM using the admin command.
218 **/
219static int i40e_read_nvm_aq(struct i40e_hw *hw,
220			    u8 module_pointer, u32 offset,
221			    u16 words, void *data,
222			    bool last_command)
223{
224	struct i40e_asq_cmd_details cmd_details;
225	int ret_code = -EIO;
226
227	memset(&cmd_details, 0, sizeof(cmd_details));
228	cmd_details.wb_desc = &hw->nvm_wb_desc;
229
230	/* Here we are checking the SR limit only for the flat memory model.
231	 * We cannot do it for the module-based model, as we did not acquire
232	 * the NVM resource yet (we cannot get the module pointer value).
233	 * Firmware will check the module-based model.
234	 */
235	if ((offset + words) > hw->nvm.sr_size)
236		i40e_debug(hw, I40E_DEBUG_NVM,
237			   "NVM read error: offset %d beyond Shadow RAM limit %d\n",
238			   (offset + words), hw->nvm.sr_size);
239	else if (words > I40E_SR_SECTOR_SIZE_IN_WORDS)
240		/* We can read only up to 4KB (one sector), in one AQ write */
241		i40e_debug(hw, I40E_DEBUG_NVM,
242			   "NVM read fail error: tried to read %d words, limit is %d.\n",
243			   words, I40E_SR_SECTOR_SIZE_IN_WORDS);
244	else if (((offset + (words - 1)) / I40E_SR_SECTOR_SIZE_IN_WORDS)
245		 != (offset / I40E_SR_SECTOR_SIZE_IN_WORDS))
246		/* A single read cannot spread over two sectors */
247		i40e_debug(hw, I40E_DEBUG_NVM,
248			   "NVM read error: cannot spread over two sectors in a single read offset=%d words=%d\n",
249			   offset, words);
250	else
251		ret_code = i40e_aq_read_nvm(hw, module_pointer,
252					    2 * offset,  /*bytes*/
253					    2 * words,   /*bytes*/
254					    data, last_command, &cmd_details);
255
256	return ret_code;
257}
258
259/**
260 * i40e_read_nvm_word_aq - Reads Shadow RAM via AQ
261 * @hw: pointer to the HW structure
262 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
263 * @data: word read from the Shadow RAM
264 *
265 * Reads one 16 bit word from the Shadow RAM using the AdminQ
266 **/
267static int i40e_read_nvm_word_aq(struct i40e_hw *hw, u16 offset,
268				 u16 *data)
269{
270	int ret_code = -EIO;
271
272	ret_code = i40e_read_nvm_aq(hw, 0x0, offset, 1, data, true);
273	*data = le16_to_cpu(*(__le16 *)data);
274
275	return ret_code;
276}
277
278/**
279 * __i40e_read_nvm_word - Reads nvm word, assumes caller does the locking
280 * @hw: pointer to the HW structure
281 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
282 * @data: word read from the Shadow RAM
283 *
284 * Reads one 16 bit word from the Shadow RAM.
285 *
286 * Do not use this function except in cases where the nvm lock is already
287 * taken via i40e_acquire_nvm().
288 **/
289static int __i40e_read_nvm_word(struct i40e_hw *hw,
290				u16 offset, u16 *data)
291{
292	if (hw->flags & I40E_HW_FLAG_AQ_SRCTL_ACCESS_ENABLE)
293		return i40e_read_nvm_word_aq(hw, offset, data);
294
295	return i40e_read_nvm_word_srctl(hw, offset, data);
296}
297
298/**
299 * i40e_read_nvm_word - Reads nvm word and acquire lock if necessary
300 * @hw: pointer to the HW structure
301 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
302 * @data: word read from the Shadow RAM
303 *
304 * Reads one 16 bit word from the Shadow RAM.
305 **/
306int i40e_read_nvm_word(struct i40e_hw *hw, u16 offset,
307		       u16 *data)
308{
309	int ret_code = 0;
310
311	if (hw->flags & I40E_HW_FLAG_NVM_READ_REQUIRES_LOCK)
312		ret_code = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
313	if (ret_code)
314		return ret_code;
315
316	ret_code = __i40e_read_nvm_word(hw, offset, data);
317
318	if (hw->flags & I40E_HW_FLAG_NVM_READ_REQUIRES_LOCK)
319		i40e_release_nvm(hw);
320
321	return ret_code;
322}
323
324/**
325 * i40e_read_nvm_module_data - Reads NVM Buffer to specified memory location
326 * @hw: Pointer to the HW structure
327 * @module_ptr: Pointer to module in words with respect to NVM beginning
328 * @module_offset: Offset in words from module start
329 * @data_offset: Offset in words from reading data area start
330 * @words_data_size: Words to read from NVM
331 * @data_ptr: Pointer to memory location where resulting buffer will be stored
332 **/
333int i40e_read_nvm_module_data(struct i40e_hw *hw,
334			      u8 module_ptr,
335			      u16 module_offset,
336			      u16 data_offset,
337			      u16 words_data_size,
338			      u16 *data_ptr)
339{
340	u16 specific_ptr = 0;
341	u16 ptr_value = 0;
342	u32 offset = 0;
343	int status;
344
345	if (module_ptr != 0) {
346		status = i40e_read_nvm_word(hw, module_ptr, &ptr_value);
347		if (status) {
348			i40e_debug(hw, I40E_DEBUG_ALL,
349				   "Reading nvm word failed.Error code: %d.\n",
350				   status);
351			return -EIO;
352		}
353	}
354#define I40E_NVM_INVALID_PTR_VAL 0x7FFF
355#define I40E_NVM_INVALID_VAL 0xFFFF
356
357	/* Pointer not initialized */
358	if (ptr_value == I40E_NVM_INVALID_PTR_VAL ||
359	    ptr_value == I40E_NVM_INVALID_VAL) {
360		i40e_debug(hw, I40E_DEBUG_ALL, "Pointer not initialized.\n");
361		return -EINVAL;
362	}
363
364	/* Check whether the module is in SR mapped area or outside */
365	if (ptr_value & I40E_PTR_TYPE) {
366		/* Pointer points outside of the Shared RAM mapped area */
367		i40e_debug(hw, I40E_DEBUG_ALL,
368			   "Reading nvm data failed. Pointer points outside of the Shared RAM mapped area.\n");
369
370		return -EINVAL;
371	} else {
372		/* Read from the Shadow RAM */
373
374		status = i40e_read_nvm_word(hw, ptr_value + module_offset,
375					    &specific_ptr);
376		if (status) {
377			i40e_debug(hw, I40E_DEBUG_ALL,
378				   "Reading nvm word failed.Error code: %d.\n",
379				   status);
380			return -EIO;
381		}
382
383		offset = ptr_value + module_offset + specific_ptr +
384			data_offset;
385
386		status = i40e_read_nvm_buffer(hw, offset, &words_data_size,
387					      data_ptr);
388		if (status) {
389			i40e_debug(hw, I40E_DEBUG_ALL,
390				   "Reading nvm buffer failed.Error code: %d.\n",
391				   status);
392		}
393	}
394
395	return status;
396}
397
398/**
399 * i40e_read_nvm_buffer_srctl - Reads Shadow RAM buffer via SRCTL register
400 * @hw: pointer to the HW structure
401 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
402 * @words: (in) number of words to read; (out) number of words actually read
403 * @data: words read from the Shadow RAM
404 *
405 * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_srrd()
406 * method. The buffer read is preceded by the NVM ownership take
407 * and followed by the release.
408 **/
409static int i40e_read_nvm_buffer_srctl(struct i40e_hw *hw, u16 offset,
410				      u16 *words, u16 *data)
411{
412	int ret_code = 0;
413	u16 index, word;
414
415	/* Loop thru the selected region */
416	for (word = 0; word < *words; word++) {
417		index = offset + word;
418		ret_code = i40e_read_nvm_word_srctl(hw, index, &data[word]);
419		if (ret_code)
420			break;
421	}
422
423	/* Update the number of words read from the Shadow RAM */
424	*words = word;
425
426	return ret_code;
427}
428
429/**
430 * i40e_read_nvm_buffer_aq - Reads Shadow RAM buffer via AQ
431 * @hw: pointer to the HW structure
432 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
433 * @words: (in) number of words to read; (out) number of words actually read
434 * @data: words read from the Shadow RAM
435 *
436 * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_aq()
437 * method. The buffer read is preceded by the NVM ownership take
438 * and followed by the release.
439 **/
440static int i40e_read_nvm_buffer_aq(struct i40e_hw *hw, u16 offset,
441				   u16 *words, u16 *data)
442{
443	bool last_cmd = false;
444	u16 words_read = 0;
445	u16 read_size;
446	int ret_code;
447	u16 i = 0;
448
449	do {
450		/* Calculate number of bytes we should read in this step.
451		 * FVL AQ do not allow to read more than one page at a time or
452		 * to cross page boundaries.
453		 */
454		if (offset % I40E_SR_SECTOR_SIZE_IN_WORDS)
455			read_size = min(*words,
456					(u16)(I40E_SR_SECTOR_SIZE_IN_WORDS -
457				      (offset % I40E_SR_SECTOR_SIZE_IN_WORDS)));
458		else
459			read_size = min((*words - words_read),
460					I40E_SR_SECTOR_SIZE_IN_WORDS);
461
462		/* Check if this is last command, if so set proper flag */
463		if ((words_read + read_size) >= *words)
464			last_cmd = true;
465
466		ret_code = i40e_read_nvm_aq(hw, 0x0, offset, read_size,
467					    data + words_read, last_cmd);
468		if (ret_code)
469			goto read_nvm_buffer_aq_exit;
470
471		/* Increment counter for words already read and move offset to
472		 * new read location
473		 */
474		words_read += read_size;
475		offset += read_size;
476	} while (words_read < *words);
477
478	for (i = 0; i < *words; i++)
479		data[i] = le16_to_cpu(((__le16 *)data)[i]);
480
481read_nvm_buffer_aq_exit:
482	*words = words_read;
483	return ret_code;
484}
485
486/**
487 * __i40e_read_nvm_buffer - Reads nvm buffer, caller must acquire lock
488 * @hw: pointer to the HW structure
489 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
490 * @words: (in) number of words to read; (out) number of words actually read
491 * @data: words read from the Shadow RAM
492 *
493 * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_srrd()
494 * method.
495 **/
496static int __i40e_read_nvm_buffer(struct i40e_hw *hw,
497				  u16 offset, u16 *words,
498				  u16 *data)
499{
500	if (hw->flags & I40E_HW_FLAG_AQ_SRCTL_ACCESS_ENABLE)
501		return i40e_read_nvm_buffer_aq(hw, offset, words, data);
502
503	return i40e_read_nvm_buffer_srctl(hw, offset, words, data);
504}
505
506/**
507 * i40e_read_nvm_buffer - Reads Shadow RAM buffer and acquire lock if necessary
508 * @hw: pointer to the HW structure
509 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
510 * @words: (in) number of words to read; (out) number of words actually read
511 * @data: words read from the Shadow RAM
512 *
513 * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_srrd()
514 * method. The buffer read is preceded by the NVM ownership take
515 * and followed by the release.
516 **/
517int i40e_read_nvm_buffer(struct i40e_hw *hw, u16 offset,
518			 u16 *words, u16 *data)
519{
520	int ret_code = 0;
521
522	if (hw->flags & I40E_HW_FLAG_AQ_SRCTL_ACCESS_ENABLE) {
523		ret_code = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
524		if (!ret_code) {
525			ret_code = i40e_read_nvm_buffer_aq(hw, offset, words,
526							   data);
527			i40e_release_nvm(hw);
528		}
529	} else {
530		ret_code = i40e_read_nvm_buffer_srctl(hw, offset, words, data);
531	}
532
533	return ret_code;
534}
535
536/**
537 * i40e_write_nvm_aq - Writes Shadow RAM.
538 * @hw: pointer to the HW structure.
539 * @module_pointer: module pointer location in words from the NVM beginning
540 * @offset: offset in words from module start
541 * @words: number of words to write
542 * @data: buffer with words to write to the Shadow RAM
543 * @last_command: tells the AdminQ that this is the last command
544 *
545 * Writes a 16 bit words buffer to the Shadow RAM using the admin command.
546 **/
547static int i40e_write_nvm_aq(struct i40e_hw *hw, u8 module_pointer,
548			     u32 offset, u16 words, void *data,
549			     bool last_command)
550{
551	struct i40e_asq_cmd_details cmd_details;
552	int ret_code = -EIO;
553
554	memset(&cmd_details, 0, sizeof(cmd_details));
555	cmd_details.wb_desc = &hw->nvm_wb_desc;
556
557	/* Here we are checking the SR limit only for the flat memory model.
558	 * We cannot do it for the module-based model, as we did not acquire
559	 * the NVM resource yet (we cannot get the module pointer value).
560	 * Firmware will check the module-based model.
561	 */
562	if ((offset + words) > hw->nvm.sr_size)
563		i40e_debug(hw, I40E_DEBUG_NVM,
564			   "NVM write error: offset %d beyond Shadow RAM limit %d\n",
565			   (offset + words), hw->nvm.sr_size);
566	else if (words > I40E_SR_SECTOR_SIZE_IN_WORDS)
567		/* We can write only up to 4KB (one sector), in one AQ write */
568		i40e_debug(hw, I40E_DEBUG_NVM,
569			   "NVM write fail error: tried to write %d words, limit is %d.\n",
570			   words, I40E_SR_SECTOR_SIZE_IN_WORDS);
571	else if (((offset + (words - 1)) / I40E_SR_SECTOR_SIZE_IN_WORDS)
572		 != (offset / I40E_SR_SECTOR_SIZE_IN_WORDS))
573		/* A single write cannot spread over two sectors */
574		i40e_debug(hw, I40E_DEBUG_NVM,
575			   "NVM write error: cannot spread over two sectors in a single write offset=%d words=%d\n",
576			   offset, words);
577	else
578		ret_code = i40e_aq_update_nvm(hw, module_pointer,
579					      2 * offset,  /*bytes*/
580					      2 * words,   /*bytes*/
581					      data, last_command, 0,
582					      &cmd_details);
583
584	return ret_code;
585}
586
587/**
588 * i40e_calc_nvm_checksum - Calculates and returns the checksum
589 * @hw: pointer to hardware structure
590 * @checksum: pointer to the checksum
591 *
592 * This function calculates SW Checksum that covers the whole 64kB shadow RAM
593 * except the VPD and PCIe ALT Auto-load modules. The structure and size of VPD
594 * is customer specific and unknown. Therefore, this function skips all maximum
595 * possible size of VPD (1kB).
596 **/
597static int i40e_calc_nvm_checksum(struct i40e_hw *hw,
598				  u16 *checksum)
599{
600	struct i40e_virt_mem vmem;
601	u16 pcie_alt_module = 0;
602	u16 checksum_local = 0;
603	u16 vpd_module = 0;
604	int ret_code;
605	u16 *data;
606	u16 i = 0;
607
608	ret_code = i40e_allocate_virt_mem(hw, &vmem,
609				    I40E_SR_SECTOR_SIZE_IN_WORDS * sizeof(u16));
610	if (ret_code)
611		goto i40e_calc_nvm_checksum_exit;
612	data = (u16 *)vmem.va;
613
614	/* read pointer to VPD area */
615	ret_code = __i40e_read_nvm_word(hw, I40E_SR_VPD_PTR, &vpd_module);
616	if (ret_code) {
617		ret_code = -EIO;
618		goto i40e_calc_nvm_checksum_exit;
619	}
620
621	/* read pointer to PCIe Alt Auto-load module */
622	ret_code = __i40e_read_nvm_word(hw, I40E_SR_PCIE_ALT_AUTO_LOAD_PTR,
623					&pcie_alt_module);
624	if (ret_code) {
625		ret_code = -EIO;
626		goto i40e_calc_nvm_checksum_exit;
627	}
628
629	/* Calculate SW checksum that covers the whole 64kB shadow RAM
630	 * except the VPD and PCIe ALT Auto-load modules
631	 */
632	for (i = 0; i < hw->nvm.sr_size; i++) {
633		/* Read SR page */
634		if ((i % I40E_SR_SECTOR_SIZE_IN_WORDS) == 0) {
635			u16 words = I40E_SR_SECTOR_SIZE_IN_WORDS;
636
637			ret_code = __i40e_read_nvm_buffer(hw, i, &words, data);
638			if (ret_code) {
639				ret_code = -EIO;
640				goto i40e_calc_nvm_checksum_exit;
641			}
642		}
643
644		/* Skip Checksum word */
645		if (i == I40E_SR_SW_CHECKSUM_WORD)
646			continue;
647		/* Skip VPD module (convert byte size to word count) */
648		if ((i >= (u32)vpd_module) &&
649		    (i < ((u32)vpd_module +
650		     (I40E_SR_VPD_MODULE_MAX_SIZE / 2)))) {
651			continue;
652		}
653		/* Skip PCIe ALT module (convert byte size to word count) */
654		if ((i >= (u32)pcie_alt_module) &&
655		    (i < ((u32)pcie_alt_module +
656		     (I40E_SR_PCIE_ALT_MODULE_MAX_SIZE / 2)))) {
657			continue;
658		}
659
660		checksum_local += data[i % I40E_SR_SECTOR_SIZE_IN_WORDS];
661	}
662
663	*checksum = (u16)I40E_SR_SW_CHECKSUM_BASE - checksum_local;
664
665i40e_calc_nvm_checksum_exit:
666	i40e_free_virt_mem(hw, &vmem);
667	return ret_code;
668}
669
670/**
671 * i40e_update_nvm_checksum - Updates the NVM checksum
672 * @hw: pointer to hardware structure
673 *
674 * NVM ownership must be acquired before calling this function and released
675 * on ARQ completion event reception by caller.
676 * This function will commit SR to NVM.
677 **/
678int i40e_update_nvm_checksum(struct i40e_hw *hw)
679{
680	__le16 le_sum;
681	int ret_code;
682	u16 checksum;
683
684	ret_code = i40e_calc_nvm_checksum(hw, &checksum);
685	if (!ret_code) {
686		le_sum = cpu_to_le16(checksum);
687		ret_code = i40e_write_nvm_aq(hw, 0x00, I40E_SR_SW_CHECKSUM_WORD,
688					     1, &le_sum, true);
689	}
690
691	return ret_code;
692}
693
694/**
695 * i40e_validate_nvm_checksum - Validate EEPROM checksum
696 * @hw: pointer to hardware structure
697 * @checksum: calculated checksum
698 *
699 * Performs checksum calculation and validates the NVM SW checksum. If the
700 * caller does not need checksum, the value can be NULL.
701 **/
702int i40e_validate_nvm_checksum(struct i40e_hw *hw,
703			       u16 *checksum)
704{
705	u16 checksum_local = 0;
706	u16 checksum_sr = 0;
707	int ret_code = 0;
708
709	/* We must acquire the NVM lock in order to correctly synchronize the
710	 * NVM accesses across multiple PFs. Without doing so it is possible
711	 * for one of the PFs to read invalid data potentially indicating that
712	 * the checksum is invalid.
713	 */
714	ret_code = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
715	if (ret_code)
716		return ret_code;
717	ret_code = i40e_calc_nvm_checksum(hw, &checksum_local);
718	__i40e_read_nvm_word(hw, I40E_SR_SW_CHECKSUM_WORD, &checksum_sr);
719	i40e_release_nvm(hw);
720	if (ret_code)
721		return ret_code;
722
723	/* Verify read checksum from EEPROM is the same as
724	 * calculated checksum
725	 */
726	if (checksum_local != checksum_sr)
727		ret_code = -EIO;
728
729	/* If the user cares, return the calculated checksum */
730	if (checksum)
731		*checksum = checksum_local;
732
733	return ret_code;
734}
735
736static int i40e_nvmupd_state_init(struct i40e_hw *hw,
737				  struct i40e_nvm_access *cmd,
738				  u8 *bytes, int *perrno);
739static int i40e_nvmupd_state_reading(struct i40e_hw *hw,
740				     struct i40e_nvm_access *cmd,
741				     u8 *bytes, int *perrno);
742static int i40e_nvmupd_state_writing(struct i40e_hw *hw,
743				     struct i40e_nvm_access *cmd,
744				     u8 *bytes, int *errno);
745static enum i40e_nvmupd_cmd i40e_nvmupd_validate_command(struct i40e_hw *hw,
746						struct i40e_nvm_access *cmd,
747						int *perrno);
748static int i40e_nvmupd_nvm_erase(struct i40e_hw *hw,
749				 struct i40e_nvm_access *cmd,
750				 int *perrno);
751static int i40e_nvmupd_nvm_write(struct i40e_hw *hw,
752				 struct i40e_nvm_access *cmd,
753				 u8 *bytes, int *perrno);
754static int i40e_nvmupd_nvm_read(struct i40e_hw *hw,
755				struct i40e_nvm_access *cmd,
756				u8 *bytes, int *perrno);
757static int i40e_nvmupd_exec_aq(struct i40e_hw *hw,
758			       struct i40e_nvm_access *cmd,
759			       u8 *bytes, int *perrno);
760static int i40e_nvmupd_get_aq_result(struct i40e_hw *hw,
761				     struct i40e_nvm_access *cmd,
762				     u8 *bytes, int *perrno);
763static int i40e_nvmupd_get_aq_event(struct i40e_hw *hw,
764				    struct i40e_nvm_access *cmd,
765				    u8 *bytes, int *perrno);
766static inline u8 i40e_nvmupd_get_module(u32 val)
767{
768	return (u8)(val & I40E_NVM_MOD_PNT_MASK);
769}
770static inline u8 i40e_nvmupd_get_transaction(u32 val)
771{
772	return (u8)((val & I40E_NVM_TRANS_MASK) >> I40E_NVM_TRANS_SHIFT);
773}
774
775static inline u8 i40e_nvmupd_get_preservation_flags(u32 val)
776{
777	return (u8)((val & I40E_NVM_PRESERVATION_FLAGS_MASK) >>
778		    I40E_NVM_PRESERVATION_FLAGS_SHIFT);
779}
780
781static const char * const i40e_nvm_update_state_str[] = {
782	"I40E_NVMUPD_INVALID",
783	"I40E_NVMUPD_READ_CON",
784	"I40E_NVMUPD_READ_SNT",
785	"I40E_NVMUPD_READ_LCB",
786	"I40E_NVMUPD_READ_SA",
787	"I40E_NVMUPD_WRITE_ERA",
788	"I40E_NVMUPD_WRITE_CON",
789	"I40E_NVMUPD_WRITE_SNT",
790	"I40E_NVMUPD_WRITE_LCB",
791	"I40E_NVMUPD_WRITE_SA",
792	"I40E_NVMUPD_CSUM_CON",
793	"I40E_NVMUPD_CSUM_SA",
794	"I40E_NVMUPD_CSUM_LCB",
795	"I40E_NVMUPD_STATUS",
796	"I40E_NVMUPD_EXEC_AQ",
797	"I40E_NVMUPD_GET_AQ_RESULT",
798	"I40E_NVMUPD_GET_AQ_EVENT",
799};
800
801/**
802 * i40e_nvmupd_command - Process an NVM update command
803 * @hw: pointer to hardware structure
804 * @cmd: pointer to nvm update command
805 * @bytes: pointer to the data buffer
806 * @perrno: pointer to return error code
807 *
808 * Dispatches command depending on what update state is current
809 **/
810int i40e_nvmupd_command(struct i40e_hw *hw,
811			struct i40e_nvm_access *cmd,
812			u8 *bytes, int *perrno)
813{
814	enum i40e_nvmupd_cmd upd_cmd;
815	int status;
816
817	/* assume success */
818	*perrno = 0;
819
820	/* early check for status command and debug msgs */
821	upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
822
823	i40e_debug(hw, I40E_DEBUG_NVM, "%s state %d nvm_release_on_hold %d opc 0x%04x cmd 0x%08x config 0x%08x offset 0x%08x data_size 0x%08x\n",
824		   i40e_nvm_update_state_str[upd_cmd],
825		   hw->nvmupd_state,
826		   hw->nvm_release_on_done, hw->nvm_wait_opcode,
827		   cmd->command, cmd->config, cmd->offset, cmd->data_size);
828
829	if (upd_cmd == I40E_NVMUPD_INVALID) {
830		*perrno = -EFAULT;
831		i40e_debug(hw, I40E_DEBUG_NVM,
832			   "i40e_nvmupd_validate_command returns %d errno %d\n",
833			   upd_cmd, *perrno);
834	}
835
836	/* a status request returns immediately rather than
837	 * going into the state machine
838	 */
839	if (upd_cmd == I40E_NVMUPD_STATUS) {
840		if (!cmd->data_size) {
841			*perrno = -EFAULT;
842			return -EINVAL;
843		}
844
845		bytes[0] = hw->nvmupd_state;
846
847		if (cmd->data_size >= 4) {
848			bytes[1] = 0;
849			*((u16 *)&bytes[2]) = hw->nvm_wait_opcode;
850		}
851
852		/* Clear error status on read */
853		if (hw->nvmupd_state == I40E_NVMUPD_STATE_ERROR)
854			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
855
856		return 0;
857	}
858
859	/* Clear status even it is not read and log */
860	if (hw->nvmupd_state == I40E_NVMUPD_STATE_ERROR) {
861		i40e_debug(hw, I40E_DEBUG_NVM,
862			   "Clearing I40E_NVMUPD_STATE_ERROR state without reading\n");
863		hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
864	}
865
866	/* Acquire lock to prevent race condition where adminq_task
867	 * can execute after i40e_nvmupd_nvm_read/write but before state
868	 * variables (nvm_wait_opcode, nvm_release_on_done) are updated.
869	 *
870	 * During NVMUpdate, it is observed that lock could be held for
871	 * ~5ms for most commands. However lock is held for ~60ms for
872	 * NVMUPD_CSUM_LCB command.
873	 */
874	mutex_lock(&hw->aq.arq_mutex);
875	switch (hw->nvmupd_state) {
876	case I40E_NVMUPD_STATE_INIT:
877		status = i40e_nvmupd_state_init(hw, cmd, bytes, perrno);
878		break;
879
880	case I40E_NVMUPD_STATE_READING:
881		status = i40e_nvmupd_state_reading(hw, cmd, bytes, perrno);
882		break;
883
884	case I40E_NVMUPD_STATE_WRITING:
885		status = i40e_nvmupd_state_writing(hw, cmd, bytes, perrno);
886		break;
887
888	case I40E_NVMUPD_STATE_INIT_WAIT:
889	case I40E_NVMUPD_STATE_WRITE_WAIT:
890		/* if we need to stop waiting for an event, clear
891		 * the wait info and return before doing anything else
892		 */
893		if (cmd->offset == 0xffff) {
894			i40e_nvmupd_clear_wait_state(hw);
895			status = 0;
896			break;
897		}
898
899		status = -EBUSY;
900		*perrno = -EBUSY;
901		break;
902
903	default:
904		/* invalid state, should never happen */
905		i40e_debug(hw, I40E_DEBUG_NVM,
906			   "NVMUPD: no such state %d\n", hw->nvmupd_state);
907		status = -EOPNOTSUPP;
908		*perrno = -ESRCH;
909		break;
910	}
911
912	mutex_unlock(&hw->aq.arq_mutex);
913	return status;
914}
915
916/**
917 * i40e_nvmupd_state_init - Handle NVM update state Init
918 * @hw: pointer to hardware structure
919 * @cmd: pointer to nvm update command buffer
920 * @bytes: pointer to the data buffer
921 * @perrno: pointer to return error code
922 *
923 * Process legitimate commands of the Init state and conditionally set next
924 * state. Reject all other commands.
925 **/
926static int i40e_nvmupd_state_init(struct i40e_hw *hw,
927				  struct i40e_nvm_access *cmd,
928				  u8 *bytes, int *perrno)
929{
930	enum i40e_nvmupd_cmd upd_cmd;
931	int status = 0;
932
933	upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
934
935	switch (upd_cmd) {
936	case I40E_NVMUPD_READ_SA:
937		status = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
938		if (status) {
939			*perrno = i40e_aq_rc_to_posix(status,
940						     hw->aq.asq_last_status);
941		} else {
942			status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
943			i40e_release_nvm(hw);
944		}
945		break;
946
947	case I40E_NVMUPD_READ_SNT:
948		status = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
949		if (status) {
950			*perrno = i40e_aq_rc_to_posix(status,
951						     hw->aq.asq_last_status);
952		} else {
953			status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
954			if (status)
955				i40e_release_nvm(hw);
956			else
957				hw->nvmupd_state = I40E_NVMUPD_STATE_READING;
958		}
959		break;
960
961	case I40E_NVMUPD_WRITE_ERA:
962		status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
963		if (status) {
964			*perrno = i40e_aq_rc_to_posix(status,
965						     hw->aq.asq_last_status);
966		} else {
967			status = i40e_nvmupd_nvm_erase(hw, cmd, perrno);
968			if (status) {
969				i40e_release_nvm(hw);
970			} else {
971				hw->nvm_release_on_done = true;
972				hw->nvm_wait_opcode = i40e_aqc_opc_nvm_erase;
973				hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
974			}
975		}
976		break;
977
978	case I40E_NVMUPD_WRITE_SA:
979		status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
980		if (status) {
981			*perrno = i40e_aq_rc_to_posix(status,
982						     hw->aq.asq_last_status);
983		} else {
984			status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
985			if (status) {
986				i40e_release_nvm(hw);
987			} else {
988				hw->nvm_release_on_done = true;
989				hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
990				hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
991			}
992		}
993		break;
994
995	case I40E_NVMUPD_WRITE_SNT:
996		status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
997		if (status) {
998			*perrno = i40e_aq_rc_to_posix(status,
999						     hw->aq.asq_last_status);
1000		} else {
1001			status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
1002			if (status) {
1003				i40e_release_nvm(hw);
1004			} else {
1005				hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1006				hw->nvmupd_state = I40E_NVMUPD_STATE_WRITE_WAIT;
1007			}
1008		}
1009		break;
1010
1011	case I40E_NVMUPD_CSUM_SA:
1012		status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
1013		if (status) {
1014			*perrno = i40e_aq_rc_to_posix(status,
1015						     hw->aq.asq_last_status);
1016		} else {
1017			status = i40e_update_nvm_checksum(hw);
1018			if (status) {
1019				*perrno = hw->aq.asq_last_status ?
1020				   i40e_aq_rc_to_posix(status,
1021						       hw->aq.asq_last_status) :
1022				   -EIO;
1023				i40e_release_nvm(hw);
1024			} else {
1025				hw->nvm_release_on_done = true;
1026				hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1027				hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
1028			}
1029		}
1030		break;
1031
1032	case I40E_NVMUPD_EXEC_AQ:
1033		status = i40e_nvmupd_exec_aq(hw, cmd, bytes, perrno);
1034		break;
1035
1036	case I40E_NVMUPD_GET_AQ_RESULT:
1037		status = i40e_nvmupd_get_aq_result(hw, cmd, bytes, perrno);
1038		break;
1039
1040	case I40E_NVMUPD_GET_AQ_EVENT:
1041		status = i40e_nvmupd_get_aq_event(hw, cmd, bytes, perrno);
1042		break;
1043
1044	default:
1045		i40e_debug(hw, I40E_DEBUG_NVM,
1046			   "NVMUPD: bad cmd %s in init state\n",
1047			   i40e_nvm_update_state_str[upd_cmd]);
1048		status = -EIO;
1049		*perrno = -ESRCH;
1050		break;
1051	}
1052	return status;
1053}
1054
1055/**
1056 * i40e_nvmupd_state_reading - Handle NVM update state Reading
1057 * @hw: pointer to hardware structure
1058 * @cmd: pointer to nvm update command buffer
1059 * @bytes: pointer to the data buffer
1060 * @perrno: pointer to return error code
1061 *
1062 * NVM ownership is already held.  Process legitimate commands and set any
1063 * change in state; reject all other commands.
1064 **/
1065static int i40e_nvmupd_state_reading(struct i40e_hw *hw,
1066				     struct i40e_nvm_access *cmd,
1067				     u8 *bytes, int *perrno)
1068{
1069	enum i40e_nvmupd_cmd upd_cmd;
1070	int status = 0;
1071
1072	upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
1073
1074	switch (upd_cmd) {
1075	case I40E_NVMUPD_READ_SA:
1076	case I40E_NVMUPD_READ_CON:
1077		status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
1078		break;
1079
1080	case I40E_NVMUPD_READ_LCB:
1081		status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
1082		i40e_release_nvm(hw);
1083		hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1084		break;
1085
1086	default:
1087		i40e_debug(hw, I40E_DEBUG_NVM,
1088			   "NVMUPD: bad cmd %s in reading state.\n",
1089			   i40e_nvm_update_state_str[upd_cmd]);
1090		status = -EOPNOTSUPP;
1091		*perrno = -ESRCH;
1092		break;
1093	}
1094	return status;
1095}
1096
1097/**
1098 * i40e_nvmupd_state_writing - Handle NVM update state Writing
1099 * @hw: pointer to hardware structure
1100 * @cmd: pointer to nvm update command buffer
1101 * @bytes: pointer to the data buffer
1102 * @perrno: pointer to return error code
1103 *
1104 * NVM ownership is already held.  Process legitimate commands and set any
1105 * change in state; reject all other commands
1106 **/
1107static int i40e_nvmupd_state_writing(struct i40e_hw *hw,
1108				     struct i40e_nvm_access *cmd,
1109				     u8 *bytes, int *perrno)
1110{
1111	enum i40e_nvmupd_cmd upd_cmd;
1112	bool retry_attempt = false;
1113	int status = 0;
1114
1115	upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
1116
1117retry:
1118	switch (upd_cmd) {
1119	case I40E_NVMUPD_WRITE_CON:
1120		status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
1121		if (!status) {
1122			hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1123			hw->nvmupd_state = I40E_NVMUPD_STATE_WRITE_WAIT;
1124		}
1125		break;
1126
1127	case I40E_NVMUPD_WRITE_LCB:
1128		status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
1129		if (status) {
1130			*perrno = hw->aq.asq_last_status ?
1131				   i40e_aq_rc_to_posix(status,
1132						       hw->aq.asq_last_status) :
1133				   -EIO;
1134			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1135		} else {
1136			hw->nvm_release_on_done = true;
1137			hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1138			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
1139		}
1140		break;
1141
1142	case I40E_NVMUPD_CSUM_CON:
1143		/* Assumes the caller has acquired the nvm */
1144		status = i40e_update_nvm_checksum(hw);
1145		if (status) {
1146			*perrno = hw->aq.asq_last_status ?
1147				   i40e_aq_rc_to_posix(status,
1148						       hw->aq.asq_last_status) :
1149				   -EIO;
1150			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1151		} else {
1152			hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1153			hw->nvmupd_state = I40E_NVMUPD_STATE_WRITE_WAIT;
1154		}
1155		break;
1156
1157	case I40E_NVMUPD_CSUM_LCB:
1158		/* Assumes the caller has acquired the nvm */
1159		status = i40e_update_nvm_checksum(hw);
1160		if (status) {
1161			*perrno = hw->aq.asq_last_status ?
1162				   i40e_aq_rc_to_posix(status,
1163						       hw->aq.asq_last_status) :
1164				   -EIO;
1165			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1166		} else {
1167			hw->nvm_release_on_done = true;
1168			hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1169			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
1170		}
1171		break;
1172
1173	default:
1174		i40e_debug(hw, I40E_DEBUG_NVM,
1175			   "NVMUPD: bad cmd %s in writing state.\n",
1176			   i40e_nvm_update_state_str[upd_cmd]);
1177		status = -EOPNOTSUPP;
1178		*perrno = -ESRCH;
1179		break;
1180	}
1181
1182	/* In some circumstances, a multi-write transaction takes longer
1183	 * than the default 3 minute timeout on the write semaphore.  If
1184	 * the write failed with an EBUSY status, this is likely the problem,
1185	 * so here we try to reacquire the semaphore then retry the write.
1186	 * We only do one retry, then give up.
1187	 */
1188	if (status && (hw->aq.asq_last_status == I40E_AQ_RC_EBUSY) &&
1189	    !retry_attempt) {
1190		u32 old_asq_status = hw->aq.asq_last_status;
1191		int old_status = status;
1192		u32 gtime;
1193
1194		gtime = rd32(hw, I40E_GLVFGEN_TIMER);
1195		if (gtime >= hw->nvm.hw_semaphore_timeout) {
1196			i40e_debug(hw, I40E_DEBUG_ALL,
1197				   "NVMUPD: write semaphore expired (%d >= %lld), retrying\n",
1198				   gtime, hw->nvm.hw_semaphore_timeout);
1199			i40e_release_nvm(hw);
1200			status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
1201			if (status) {
1202				i40e_debug(hw, I40E_DEBUG_ALL,
1203					   "NVMUPD: write semaphore reacquire failed aq_err = %d\n",
1204					   hw->aq.asq_last_status);
1205				status = old_status;
1206				hw->aq.asq_last_status = old_asq_status;
1207			} else {
1208				retry_attempt = true;
1209				goto retry;
1210			}
1211		}
1212	}
1213
1214	return status;
1215}
1216
1217/**
1218 * i40e_nvmupd_clear_wait_state - clear wait state on hw
1219 * @hw: pointer to the hardware structure
1220 **/
1221void i40e_nvmupd_clear_wait_state(struct i40e_hw *hw)
1222{
1223	i40e_debug(hw, I40E_DEBUG_NVM,
1224		   "NVMUPD: clearing wait on opcode 0x%04x\n",
1225		   hw->nvm_wait_opcode);
1226
1227	if (hw->nvm_release_on_done) {
1228		i40e_release_nvm(hw);
1229		hw->nvm_release_on_done = false;
1230	}
1231	hw->nvm_wait_opcode = 0;
1232
1233	if (hw->aq.arq_last_status) {
1234		hw->nvmupd_state = I40E_NVMUPD_STATE_ERROR;
1235		return;
1236	}
1237
1238	switch (hw->nvmupd_state) {
1239	case I40E_NVMUPD_STATE_INIT_WAIT:
1240		hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1241		break;
1242
1243	case I40E_NVMUPD_STATE_WRITE_WAIT:
1244		hw->nvmupd_state = I40E_NVMUPD_STATE_WRITING;
1245		break;
1246
1247	default:
1248		break;
1249	}
1250}
1251
1252/**
1253 * i40e_nvmupd_check_wait_event - handle NVM update operation events
1254 * @hw: pointer to the hardware structure
1255 * @opcode: the event that just happened
1256 * @desc: AdminQ descriptor
1257 **/
1258void i40e_nvmupd_check_wait_event(struct i40e_hw *hw, u16 opcode,
1259				  struct i40e_aq_desc *desc)
1260{
1261	u32 aq_desc_len = sizeof(struct i40e_aq_desc);
1262
1263	if (opcode == hw->nvm_wait_opcode) {
1264		memcpy(&hw->nvm_aq_event_desc, desc, aq_desc_len);
1265		i40e_nvmupd_clear_wait_state(hw);
1266	}
1267}
1268
1269/**
1270 * i40e_nvmupd_validate_command - Validate given command
1271 * @hw: pointer to hardware structure
1272 * @cmd: pointer to nvm update command buffer
1273 * @perrno: pointer to return error code
1274 *
1275 * Return one of the valid command types or I40E_NVMUPD_INVALID
1276 **/
1277static enum i40e_nvmupd_cmd i40e_nvmupd_validate_command(struct i40e_hw *hw,
1278						 struct i40e_nvm_access *cmd,
1279						 int *perrno)
1280{
1281	enum i40e_nvmupd_cmd upd_cmd;
1282	u8 module, transaction;
1283
1284	/* anything that doesn't match a recognized case is an error */
1285	upd_cmd = I40E_NVMUPD_INVALID;
1286
1287	transaction = i40e_nvmupd_get_transaction(cmd->config);
1288	module = i40e_nvmupd_get_module(cmd->config);
1289
1290	/* limits on data size */
1291	if ((cmd->data_size < 1) ||
1292	    (cmd->data_size > I40E_NVMUPD_MAX_DATA)) {
1293		i40e_debug(hw, I40E_DEBUG_NVM,
1294			   "i40e_nvmupd_validate_command data_size %d\n",
1295			   cmd->data_size);
1296		*perrno = -EFAULT;
1297		return I40E_NVMUPD_INVALID;
1298	}
1299
1300	switch (cmd->command) {
1301	case I40E_NVM_READ:
1302		switch (transaction) {
1303		case I40E_NVM_CON:
1304			upd_cmd = I40E_NVMUPD_READ_CON;
1305			break;
1306		case I40E_NVM_SNT:
1307			upd_cmd = I40E_NVMUPD_READ_SNT;
1308			break;
1309		case I40E_NVM_LCB:
1310			upd_cmd = I40E_NVMUPD_READ_LCB;
1311			break;
1312		case I40E_NVM_SA:
1313			upd_cmd = I40E_NVMUPD_READ_SA;
1314			break;
1315		case I40E_NVM_EXEC:
1316			if (module == 0xf)
1317				upd_cmd = I40E_NVMUPD_STATUS;
1318			else if (module == 0)
1319				upd_cmd = I40E_NVMUPD_GET_AQ_RESULT;
1320			break;
1321		case I40E_NVM_AQE:
1322			upd_cmd = I40E_NVMUPD_GET_AQ_EVENT;
1323			break;
1324		}
1325		break;
1326
1327	case I40E_NVM_WRITE:
1328		switch (transaction) {
1329		case I40E_NVM_CON:
1330			upd_cmd = I40E_NVMUPD_WRITE_CON;
1331			break;
1332		case I40E_NVM_SNT:
1333			upd_cmd = I40E_NVMUPD_WRITE_SNT;
1334			break;
1335		case I40E_NVM_LCB:
1336			upd_cmd = I40E_NVMUPD_WRITE_LCB;
1337			break;
1338		case I40E_NVM_SA:
1339			upd_cmd = I40E_NVMUPD_WRITE_SA;
1340			break;
1341		case I40E_NVM_ERA:
1342			upd_cmd = I40E_NVMUPD_WRITE_ERA;
1343			break;
1344		case I40E_NVM_CSUM:
1345			upd_cmd = I40E_NVMUPD_CSUM_CON;
1346			break;
1347		case (I40E_NVM_CSUM|I40E_NVM_SA):
1348			upd_cmd = I40E_NVMUPD_CSUM_SA;
1349			break;
1350		case (I40E_NVM_CSUM|I40E_NVM_LCB):
1351			upd_cmd = I40E_NVMUPD_CSUM_LCB;
1352			break;
1353		case I40E_NVM_EXEC:
1354			if (module == 0)
1355				upd_cmd = I40E_NVMUPD_EXEC_AQ;
1356			break;
1357		}
1358		break;
1359	}
1360
1361	return upd_cmd;
1362}
1363
1364/**
1365 * i40e_nvmupd_exec_aq - Run an AQ command
1366 * @hw: pointer to hardware structure
1367 * @cmd: pointer to nvm update command buffer
1368 * @bytes: pointer to the data buffer
1369 * @perrno: pointer to return error code
1370 *
1371 * cmd structure contains identifiers and data buffer
1372 **/
1373static int i40e_nvmupd_exec_aq(struct i40e_hw *hw,
1374			       struct i40e_nvm_access *cmd,
1375			       u8 *bytes, int *perrno)
1376{
1377	struct i40e_asq_cmd_details cmd_details;
1378	struct i40e_aq_desc *aq_desc;
1379	u32 buff_size = 0;
1380	u8 *buff = NULL;
1381	u32 aq_desc_len;
1382	u32 aq_data_len;
1383	int status;
1384
1385	i40e_debug(hw, I40E_DEBUG_NVM, "NVMUPD: %s\n", __func__);
1386	if (cmd->offset == 0xffff)
1387		return 0;
1388
1389	memset(&cmd_details, 0, sizeof(cmd_details));
1390	cmd_details.wb_desc = &hw->nvm_wb_desc;
1391
1392	aq_desc_len = sizeof(struct i40e_aq_desc);
1393	memset(&hw->nvm_wb_desc, 0, aq_desc_len);
1394
1395	/* get the aq descriptor */
1396	if (cmd->data_size < aq_desc_len) {
1397		i40e_debug(hw, I40E_DEBUG_NVM,
1398			   "NVMUPD: not enough aq desc bytes for exec, size %d < %d\n",
1399			   cmd->data_size, aq_desc_len);
1400		*perrno = -EINVAL;
1401		return -EINVAL;
1402	}
1403	aq_desc = (struct i40e_aq_desc *)bytes;
1404
1405	/* if data buffer needed, make sure it's ready */
1406	aq_data_len = cmd->data_size - aq_desc_len;
1407	buff_size = max_t(u32, aq_data_len, le16_to_cpu(aq_desc->datalen));
1408	if (buff_size) {
1409		if (!hw->nvm_buff.va) {
1410			status = i40e_allocate_virt_mem(hw, &hw->nvm_buff,
1411							hw->aq.asq_buf_size);
1412			if (status)
1413				i40e_debug(hw, I40E_DEBUG_NVM,
1414					   "NVMUPD: i40e_allocate_virt_mem for exec buff failed, %d\n",
1415					   status);
1416		}
1417
1418		if (hw->nvm_buff.va) {
1419			buff = hw->nvm_buff.va;
1420			memcpy(buff, &bytes[aq_desc_len], aq_data_len);
1421		}
1422	}
1423
1424	if (cmd->offset)
1425		memset(&hw->nvm_aq_event_desc, 0, aq_desc_len);
1426
1427	/* and away we go! */
1428	status = i40e_asq_send_command(hw, aq_desc, buff,
1429				       buff_size, &cmd_details);
1430	if (status) {
1431		i40e_debug(hw, I40E_DEBUG_NVM,
1432			   "%s err %pe aq_err %s\n",
1433			   __func__, ERR_PTR(status),
1434			   i40e_aq_str(hw, hw->aq.asq_last_status));
1435		*perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
1436		return status;
1437	}
1438
1439	/* should we wait for a followup event? */
1440	if (cmd->offset) {
1441		hw->nvm_wait_opcode = cmd->offset;
1442		hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
1443	}
1444
1445	return status;
1446}
1447
1448/**
1449 * i40e_nvmupd_get_aq_result - Get the results from the previous exec_aq
1450 * @hw: pointer to hardware structure
1451 * @cmd: pointer to nvm update command buffer
1452 * @bytes: pointer to the data buffer
1453 * @perrno: pointer to return error code
1454 *
1455 * cmd structure contains identifiers and data buffer
1456 **/
1457static int i40e_nvmupd_get_aq_result(struct i40e_hw *hw,
1458				     struct i40e_nvm_access *cmd,
1459				     u8 *bytes, int *perrno)
1460{
1461	u32 aq_total_len;
1462	u32 aq_desc_len;
1463	int remainder;
1464	u8 *buff;
1465
1466	i40e_debug(hw, I40E_DEBUG_NVM, "NVMUPD: %s\n", __func__);
1467
1468	aq_desc_len = sizeof(struct i40e_aq_desc);
1469	aq_total_len = aq_desc_len + le16_to_cpu(hw->nvm_wb_desc.datalen);
1470
1471	/* check offset range */
1472	if (cmd->offset > aq_total_len) {
1473		i40e_debug(hw, I40E_DEBUG_NVM, "%s: offset too big %d > %d\n",
1474			   __func__, cmd->offset, aq_total_len);
1475		*perrno = -EINVAL;
1476		return -EINVAL;
1477	}
1478
1479	/* check copylength range */
1480	if (cmd->data_size > (aq_total_len - cmd->offset)) {
1481		int new_len = aq_total_len - cmd->offset;
1482
1483		i40e_debug(hw, I40E_DEBUG_NVM, "%s: copy length %d too big, trimming to %d\n",
1484			   __func__, cmd->data_size, new_len);
1485		cmd->data_size = new_len;
1486	}
1487
1488	remainder = cmd->data_size;
1489	if (cmd->offset < aq_desc_len) {
1490		u32 len = aq_desc_len - cmd->offset;
1491
1492		len = min(len, cmd->data_size);
1493		i40e_debug(hw, I40E_DEBUG_NVM, "%s: aq_desc bytes %d to %d\n",
1494			   __func__, cmd->offset, cmd->offset + len);
1495
1496		buff = ((u8 *)&hw->nvm_wb_desc) + cmd->offset;
1497		memcpy(bytes, buff, len);
1498
1499		bytes += len;
1500		remainder -= len;
1501		buff = hw->nvm_buff.va;
1502	} else {
1503		buff = hw->nvm_buff.va + (cmd->offset - aq_desc_len);
1504	}
1505
1506	if (remainder > 0) {
1507		int start_byte = buff - (u8 *)hw->nvm_buff.va;
1508
1509		i40e_debug(hw, I40E_DEBUG_NVM, "%s: databuf bytes %d to %d\n",
1510			   __func__, start_byte, start_byte + remainder);
1511		memcpy(bytes, buff, remainder);
1512	}
1513
1514	return 0;
1515}
1516
1517/**
1518 * i40e_nvmupd_get_aq_event - Get the Admin Queue event from previous exec_aq
1519 * @hw: pointer to hardware structure
1520 * @cmd: pointer to nvm update command buffer
1521 * @bytes: pointer to the data buffer
1522 * @perrno: pointer to return error code
1523 *
1524 * cmd structure contains identifiers and data buffer
1525 **/
1526static int i40e_nvmupd_get_aq_event(struct i40e_hw *hw,
1527				    struct i40e_nvm_access *cmd,
1528				    u8 *bytes, int *perrno)
1529{
1530	u32 aq_total_len;
1531	u32 aq_desc_len;
1532
1533	i40e_debug(hw, I40E_DEBUG_NVM, "NVMUPD: %s\n", __func__);
1534
1535	aq_desc_len = sizeof(struct i40e_aq_desc);
1536	aq_total_len = aq_desc_len + le16_to_cpu(hw->nvm_aq_event_desc.datalen);
1537
1538	/* check copylength range */
1539	if (cmd->data_size > aq_total_len) {
1540		i40e_debug(hw, I40E_DEBUG_NVM,
1541			   "%s: copy length %d too big, trimming to %d\n",
1542			   __func__, cmd->data_size, aq_total_len);
1543		cmd->data_size = aq_total_len;
1544	}
1545
1546	memcpy(bytes, &hw->nvm_aq_event_desc, cmd->data_size);
1547
1548	return 0;
1549}
1550
1551/**
1552 * i40e_nvmupd_nvm_read - Read NVM
1553 * @hw: pointer to hardware structure
1554 * @cmd: pointer to nvm update command buffer
1555 * @bytes: pointer to the data buffer
1556 * @perrno: pointer to return error code
1557 *
1558 * cmd structure contains identifiers and data buffer
1559 **/
1560static int i40e_nvmupd_nvm_read(struct i40e_hw *hw,
1561				struct i40e_nvm_access *cmd,
1562				u8 *bytes, int *perrno)
1563{
1564	struct i40e_asq_cmd_details cmd_details;
1565	u8 module, transaction;
1566	int status;
1567	bool last;
1568
1569	transaction = i40e_nvmupd_get_transaction(cmd->config);
1570	module = i40e_nvmupd_get_module(cmd->config);
1571	last = (transaction == I40E_NVM_LCB) || (transaction == I40E_NVM_SA);
1572
1573	memset(&cmd_details, 0, sizeof(cmd_details));
1574	cmd_details.wb_desc = &hw->nvm_wb_desc;
1575
1576	status = i40e_aq_read_nvm(hw, module, cmd->offset, (u16)cmd->data_size,
1577				  bytes, last, &cmd_details);
1578	if (status) {
1579		i40e_debug(hw, I40E_DEBUG_NVM,
1580			   "i40e_nvmupd_nvm_read mod 0x%x  off 0x%x  len 0x%x\n",
1581			   module, cmd->offset, cmd->data_size);
1582		i40e_debug(hw, I40E_DEBUG_NVM,
1583			   "i40e_nvmupd_nvm_read status %d aq %d\n",
1584			   status, hw->aq.asq_last_status);
1585		*perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
1586	}
1587
1588	return status;
1589}
1590
1591/**
1592 * i40e_nvmupd_nvm_erase - Erase an NVM module
1593 * @hw: pointer to hardware structure
1594 * @cmd: pointer to nvm update command buffer
1595 * @perrno: pointer to return error code
1596 *
1597 * module, offset, data_size and data are in cmd structure
1598 **/
1599static int i40e_nvmupd_nvm_erase(struct i40e_hw *hw,
1600				 struct i40e_nvm_access *cmd,
1601				 int *perrno)
1602{
1603	struct i40e_asq_cmd_details cmd_details;
1604	u8 module, transaction;
1605	int status = 0;
1606	bool last;
1607
1608	transaction = i40e_nvmupd_get_transaction(cmd->config);
1609	module = i40e_nvmupd_get_module(cmd->config);
1610	last = (transaction & I40E_NVM_LCB);
1611
1612	memset(&cmd_details, 0, sizeof(cmd_details));
1613	cmd_details.wb_desc = &hw->nvm_wb_desc;
1614
1615	status = i40e_aq_erase_nvm(hw, module, cmd->offset, (u16)cmd->data_size,
1616				   last, &cmd_details);
1617	if (status) {
1618		i40e_debug(hw, I40E_DEBUG_NVM,
1619			   "i40e_nvmupd_nvm_erase mod 0x%x  off 0x%x len 0x%x\n",
1620			   module, cmd->offset, cmd->data_size);
1621		i40e_debug(hw, I40E_DEBUG_NVM,
1622			   "i40e_nvmupd_nvm_erase status %d aq %d\n",
1623			   status, hw->aq.asq_last_status);
1624		*perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
1625	}
1626
1627	return status;
1628}
1629
1630/**
1631 * i40e_nvmupd_nvm_write - Write NVM
1632 * @hw: pointer to hardware structure
1633 * @cmd: pointer to nvm update command buffer
1634 * @bytes: pointer to the data buffer
1635 * @perrno: pointer to return error code
1636 *
1637 * module, offset, data_size and data are in cmd structure
1638 **/
1639static int i40e_nvmupd_nvm_write(struct i40e_hw *hw,
1640				 struct i40e_nvm_access *cmd,
1641				 u8 *bytes, int *perrno)
1642{
1643	struct i40e_asq_cmd_details cmd_details;
1644	u8 module, transaction;
1645	u8 preservation_flags;
1646	int status = 0;
1647	bool last;
1648
1649	transaction = i40e_nvmupd_get_transaction(cmd->config);
1650	module = i40e_nvmupd_get_module(cmd->config);
1651	last = (transaction & I40E_NVM_LCB);
1652	preservation_flags = i40e_nvmupd_get_preservation_flags(cmd->config);
1653
1654	memset(&cmd_details, 0, sizeof(cmd_details));
1655	cmd_details.wb_desc = &hw->nvm_wb_desc;
1656
1657	status = i40e_aq_update_nvm(hw, module, cmd->offset,
1658				    (u16)cmd->data_size, bytes, last,
1659				    preservation_flags, &cmd_details);
1660	if (status) {
1661		i40e_debug(hw, I40E_DEBUG_NVM,
1662			   "i40e_nvmupd_nvm_write mod 0x%x off 0x%x len 0x%x\n",
1663			   module, cmd->offset, cmd->data_size);
1664		i40e_debug(hw, I40E_DEBUG_NVM,
1665			   "i40e_nvmupd_nvm_write status %d aq %d\n",
1666			   status, hw->aq.asq_last_status);
1667		*perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
1668	}
1669
1670	return status;
1671}
1672