1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 1999 - 2018 Intel Corporation. */
3
4/* 82562G 10/100 Network Connection
5 * 82562G-2 10/100 Network Connection
6 * 82562GT 10/100 Network Connection
7 * 82562GT-2 10/100 Network Connection
8 * 82562V 10/100 Network Connection
9 * 82562V-2 10/100 Network Connection
10 * 82566DC-2 Gigabit Network Connection
11 * 82566DC Gigabit Network Connection
12 * 82566DM-2 Gigabit Network Connection
13 * 82566DM Gigabit Network Connection
14 * 82566MC Gigabit Network Connection
15 * 82566MM Gigabit Network Connection
16 * 82567LM Gigabit Network Connection
17 * 82567LF Gigabit Network Connection
18 * 82567V Gigabit Network Connection
19 * 82567LM-2 Gigabit Network Connection
20 * 82567LF-2 Gigabit Network Connection
21 * 82567V-2 Gigabit Network Connection
22 * 82567LF-3 Gigabit Network Connection
23 * 82567LM-3 Gigabit Network Connection
24 * 82567LM-4 Gigabit Network Connection
25 * 82577LM Gigabit Network Connection
26 * 82577LC Gigabit Network Connection
27 * 82578DM Gigabit Network Connection
28 * 82578DC Gigabit Network Connection
29 * 82579LM Gigabit Network Connection
30 * 82579V Gigabit Network Connection
31 * Ethernet Connection I217-LM
32 * Ethernet Connection I217-V
33 * Ethernet Connection I218-V
34 * Ethernet Connection I218-LM
35 * Ethernet Connection (2) I218-LM
36 * Ethernet Connection (2) I218-V
37 * Ethernet Connection (3) I218-LM
38 * Ethernet Connection (3) I218-V
39 */
40
41#include "e1000.h"
42
43/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
44/* Offset 04h HSFSTS */
45union ich8_hws_flash_status {
46	struct ich8_hsfsts {
47		u16 flcdone:1;	/* bit 0 Flash Cycle Done */
48		u16 flcerr:1;	/* bit 1 Flash Cycle Error */
49		u16 dael:1;	/* bit 2 Direct Access error Log */
50		u16 berasesz:2;	/* bit 4:3 Sector Erase Size */
51		u16 flcinprog:1;	/* bit 5 flash cycle in Progress */
52		u16 reserved1:2;	/* bit 13:6 Reserved */
53		u16 reserved2:6;	/* bit 13:6 Reserved */
54		u16 fldesvalid:1;	/* bit 14 Flash Descriptor Valid */
55		u16 flockdn:1;	/* bit 15 Flash Config Lock-Down */
56	} hsf_status;
57	u16 regval;
58};
59
60/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
61/* Offset 06h FLCTL */
62union ich8_hws_flash_ctrl {
63	struct ich8_hsflctl {
64		u16 flcgo:1;	/* 0 Flash Cycle Go */
65		u16 flcycle:2;	/* 2:1 Flash Cycle */
66		u16 reserved:5;	/* 7:3 Reserved  */
67		u16 fldbcount:2;	/* 9:8 Flash Data Byte Count */
68		u16 flockdn:6;	/* 15:10 Reserved */
69	} hsf_ctrl;
70	u16 regval;
71};
72
73/* ICH Flash Region Access Permissions */
74union ich8_hws_flash_regacc {
75	struct ich8_flracc {
76		u32 grra:8;	/* 0:7 GbE region Read Access */
77		u32 grwa:8;	/* 8:15 GbE region Write Access */
78		u32 gmrag:8;	/* 23:16 GbE Master Read Access Grant */
79		u32 gmwag:8;	/* 31:24 GbE Master Write Access Grant */
80	} hsf_flregacc;
81	u16 regval;
82};
83
84/* ICH Flash Protected Region */
85union ich8_flash_protected_range {
86	struct ich8_pr {
87		u32 base:13;	/* 0:12 Protected Range Base */
88		u32 reserved1:2;	/* 13:14 Reserved */
89		u32 rpe:1;	/* 15 Read Protection Enable */
90		u32 limit:13;	/* 16:28 Protected Range Limit */
91		u32 reserved2:2;	/* 29:30 Reserved */
92		u32 wpe:1;	/* 31 Write Protection Enable */
93	} range;
94	u32 regval;
95};
96
97static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
98static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
99static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
100static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
101						u32 offset, u8 byte);
102static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
103					 u8 *data);
104static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
105					 u16 *data);
106static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
107					 u8 size, u16 *data);
108static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
109					   u32 *data);
110static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw,
111					  u32 offset, u32 *data);
112static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw,
113					    u32 offset, u32 data);
114static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
115						 u32 offset, u32 dword);
116static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
117static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
118static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
119static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
120static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
121static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
122static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
123static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
124static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
125static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
126static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
127static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
128static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
129static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
130static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
131static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
132static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
133static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
134static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw);
135static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
136static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
137static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force);
138static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
139static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state);
140
141static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
142{
143	return readw(hw->flash_address + reg);
144}
145
146static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
147{
148	return readl(hw->flash_address + reg);
149}
150
151static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
152{
153	writew(val, hw->flash_address + reg);
154}
155
156static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
157{
158	writel(val, hw->flash_address + reg);
159}
160
161#define er16flash(reg)		__er16flash(hw, (reg))
162#define er32flash(reg)		__er32flash(hw, (reg))
163#define ew16flash(reg, val)	__ew16flash(hw, (reg), (val))
164#define ew32flash(reg, val)	__ew32flash(hw, (reg), (val))
165
166/**
167 *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
168 *  @hw: pointer to the HW structure
169 *
170 *  Test access to the PHY registers by reading the PHY ID registers.  If
171 *  the PHY ID is already known (e.g. resume path) compare it with known ID,
172 *  otherwise assume the read PHY ID is correct if it is valid.
173 *
174 *  Assumes the sw/fw/hw semaphore is already acquired.
175 **/
176static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
177{
178	u16 phy_reg = 0;
179	u32 phy_id = 0;
180	s32 ret_val = 0;
181	u16 retry_count;
182	u32 mac_reg = 0;
183
184	for (retry_count = 0; retry_count < 2; retry_count++) {
185		ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg);
186		if (ret_val || (phy_reg == 0xFFFF))
187			continue;
188		phy_id = (u32)(phy_reg << 16);
189
190		ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg);
191		if (ret_val || (phy_reg == 0xFFFF)) {
192			phy_id = 0;
193			continue;
194		}
195		phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
196		break;
197	}
198
199	if (hw->phy.id) {
200		if (hw->phy.id == phy_id)
201			goto out;
202	} else if (phy_id) {
203		hw->phy.id = phy_id;
204		hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
205		goto out;
206	}
207
208	/* In case the PHY needs to be in mdio slow mode,
209	 * set slow mode and try to get the PHY id again.
210	 */
211	if (hw->mac.type < e1000_pch_lpt) {
212		hw->phy.ops.release(hw);
213		ret_val = e1000_set_mdio_slow_mode_hv(hw);
214		if (!ret_val)
215			ret_val = e1000e_get_phy_id(hw);
216		hw->phy.ops.acquire(hw);
217	}
218
219	if (ret_val)
220		return false;
221out:
222	if (hw->mac.type >= e1000_pch_lpt) {
223		/* Only unforce SMBus if ME is not active */
224		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
225			/* Unforce SMBus mode in PHY */
226			e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
227			phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
228			e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
229
230			/* Unforce SMBus mode in MAC */
231			mac_reg = er32(CTRL_EXT);
232			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
233			ew32(CTRL_EXT, mac_reg);
234		}
235	}
236
237	return true;
238}
239
240/**
241 *  e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
242 *  @hw: pointer to the HW structure
243 *
244 *  Toggling the LANPHYPC pin value fully power-cycles the PHY and is
245 *  used to reset the PHY to a quiescent state when necessary.
246 **/
247static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
248{
249	u32 mac_reg;
250
251	/* Set Phy Config Counter to 50msec */
252	mac_reg = er32(FEXTNVM3);
253	mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
254	mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
255	ew32(FEXTNVM3, mac_reg);
256
257	/* Toggle LANPHYPC Value bit */
258	mac_reg = er32(CTRL);
259	mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
260	mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
261	ew32(CTRL, mac_reg);
262	e1e_flush();
263	usleep_range(10, 20);
264	mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
265	ew32(CTRL, mac_reg);
266	e1e_flush();
267
268	if (hw->mac.type < e1000_pch_lpt) {
269		msleep(50);
270	} else {
271		u16 count = 20;
272
273		do {
274			usleep_range(5000, 6000);
275		} while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--);
276
277		msleep(30);
278	}
279}
280
281/**
282 *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
283 *  @hw: pointer to the HW structure
284 *
285 *  Workarounds/flow necessary for PHY initialization during driver load
286 *  and resume paths.
287 **/
288static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
289{
290	struct e1000_adapter *adapter = hw->adapter;
291	u32 mac_reg, fwsm = er32(FWSM);
292	s32 ret_val;
293
294	/* Gate automatic PHY configuration by hardware on managed and
295	 * non-managed 82579 and newer adapters.
296	 */
297	e1000_gate_hw_phy_config_ich8lan(hw, true);
298
299	/* It is not possible to be certain of the current state of ULP
300	 * so forcibly disable it.
301	 */
302	hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
303	ret_val = e1000_disable_ulp_lpt_lp(hw, true);
304	if (ret_val)
305		e_warn("Failed to disable ULP\n");
306
307	ret_val = hw->phy.ops.acquire(hw);
308	if (ret_val) {
309		e_dbg("Failed to initialize PHY flow\n");
310		goto out;
311	}
312
313	/* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
314	 * inaccessible and resetting the PHY is not blocked, toggle the
315	 * LANPHYPC Value bit to force the interconnect to PCIe mode.
316	 */
317	switch (hw->mac.type) {
318	case e1000_pch_lpt:
319	case e1000_pch_spt:
320	case e1000_pch_cnp:
321	case e1000_pch_tgp:
322	case e1000_pch_adp:
323	case e1000_pch_mtp:
324	case e1000_pch_lnp:
325	case e1000_pch_ptp:
326	case e1000_pch_nvp:
327		if (e1000_phy_is_accessible_pchlan(hw))
328			break;
329
330		/* Before toggling LANPHYPC, see if PHY is accessible by
331		 * forcing MAC to SMBus mode first.
332		 */
333		mac_reg = er32(CTRL_EXT);
334		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
335		ew32(CTRL_EXT, mac_reg);
336
337		/* Wait 50 milliseconds for MAC to finish any retries
338		 * that it might be trying to perform from previous
339		 * attempts to acknowledge any phy read requests.
340		 */
341		msleep(50);
342
343		fallthrough;
344	case e1000_pch2lan:
345		if (e1000_phy_is_accessible_pchlan(hw))
346			break;
347
348		fallthrough;
349	case e1000_pchlan:
350		if ((hw->mac.type == e1000_pchlan) &&
351		    (fwsm & E1000_ICH_FWSM_FW_VALID))
352			break;
353
354		if (hw->phy.ops.check_reset_block(hw)) {
355			e_dbg("Required LANPHYPC toggle blocked by ME\n");
356			ret_val = -E1000_ERR_PHY;
357			break;
358		}
359
360		/* Toggle LANPHYPC Value bit */
361		e1000_toggle_lanphypc_pch_lpt(hw);
362		if (hw->mac.type >= e1000_pch_lpt) {
363			if (e1000_phy_is_accessible_pchlan(hw))
364				break;
365
366			/* Toggling LANPHYPC brings the PHY out of SMBus mode
367			 * so ensure that the MAC is also out of SMBus mode
368			 */
369			mac_reg = er32(CTRL_EXT);
370			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
371			ew32(CTRL_EXT, mac_reg);
372
373			if (e1000_phy_is_accessible_pchlan(hw))
374				break;
375
376			ret_val = -E1000_ERR_PHY;
377		}
378		break;
379	default:
380		break;
381	}
382
383	hw->phy.ops.release(hw);
384	if (!ret_val) {
385
386		/* Check to see if able to reset PHY.  Print error if not */
387		if (hw->phy.ops.check_reset_block(hw)) {
388			e_err("Reset blocked by ME\n");
389			goto out;
390		}
391
392		/* Reset the PHY before any access to it.  Doing so, ensures
393		 * that the PHY is in a known good state before we read/write
394		 * PHY registers.  The generic reset is sufficient here,
395		 * because we haven't determined the PHY type yet.
396		 */
397		ret_val = e1000e_phy_hw_reset_generic(hw);
398		if (ret_val)
399			goto out;
400
401		/* On a successful reset, possibly need to wait for the PHY
402		 * to quiesce to an accessible state before returning control
403		 * to the calling function.  If the PHY does not quiesce, then
404		 * return E1000E_BLK_PHY_RESET, as this is the condition that
405		 *  the PHY is in.
406		 */
407		ret_val = hw->phy.ops.check_reset_block(hw);
408		if (ret_val)
409			e_err("ME blocked access to PHY after reset\n");
410	}
411
412out:
413	/* Ungate automatic PHY configuration on non-managed 82579 */
414	if ((hw->mac.type == e1000_pch2lan) &&
415	    !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
416		usleep_range(10000, 11000);
417		e1000_gate_hw_phy_config_ich8lan(hw, false);
418	}
419
420	return ret_val;
421}
422
423/**
424 *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
425 *  @hw: pointer to the HW structure
426 *
427 *  Initialize family-specific PHY parameters and function pointers.
428 **/
429static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
430{
431	struct e1000_phy_info *phy = &hw->phy;
432	s32 ret_val;
433
434	phy->addr = 1;
435	phy->reset_delay_us = 100;
436
437	phy->ops.set_page = e1000_set_page_igp;
438	phy->ops.read_reg = e1000_read_phy_reg_hv;
439	phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
440	phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
441	phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
442	phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
443	phy->ops.write_reg = e1000_write_phy_reg_hv;
444	phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
445	phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
446	phy->ops.power_up = e1000_power_up_phy_copper;
447	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
448	phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
449
450	phy->id = e1000_phy_unknown;
451
452	ret_val = e1000_init_phy_workarounds_pchlan(hw);
453	if (ret_val)
454		return ret_val;
455
456	if (phy->id == e1000_phy_unknown)
457		switch (hw->mac.type) {
458		default:
459			ret_val = e1000e_get_phy_id(hw);
460			if (ret_val)
461				return ret_val;
462			if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
463				break;
464			fallthrough;
465		case e1000_pch2lan:
466		case e1000_pch_lpt:
467		case e1000_pch_spt:
468		case e1000_pch_cnp:
469		case e1000_pch_tgp:
470		case e1000_pch_adp:
471		case e1000_pch_mtp:
472		case e1000_pch_lnp:
473		case e1000_pch_ptp:
474		case e1000_pch_nvp:
475			/* In case the PHY needs to be in mdio slow mode,
476			 * set slow mode and try to get the PHY id again.
477			 */
478			ret_val = e1000_set_mdio_slow_mode_hv(hw);
479			if (ret_val)
480				return ret_val;
481			ret_val = e1000e_get_phy_id(hw);
482			if (ret_val)
483				return ret_val;
484			break;
485		}
486	phy->type = e1000e_get_phy_type_from_id(phy->id);
487
488	switch (phy->type) {
489	case e1000_phy_82577:
490	case e1000_phy_82579:
491	case e1000_phy_i217:
492		phy->ops.check_polarity = e1000_check_polarity_82577;
493		phy->ops.force_speed_duplex =
494		    e1000_phy_force_speed_duplex_82577;
495		phy->ops.get_cable_length = e1000_get_cable_length_82577;
496		phy->ops.get_info = e1000_get_phy_info_82577;
497		phy->ops.commit = e1000e_phy_sw_reset;
498		break;
499	case e1000_phy_82578:
500		phy->ops.check_polarity = e1000_check_polarity_m88;
501		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
502		phy->ops.get_cable_length = e1000e_get_cable_length_m88;
503		phy->ops.get_info = e1000e_get_phy_info_m88;
504		break;
505	default:
506		ret_val = -E1000_ERR_PHY;
507		break;
508	}
509
510	return ret_val;
511}
512
513/**
514 *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
515 *  @hw: pointer to the HW structure
516 *
517 *  Initialize family-specific PHY parameters and function pointers.
518 **/
519static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
520{
521	struct e1000_phy_info *phy = &hw->phy;
522	s32 ret_val;
523	u16 i = 0;
524
525	phy->addr = 1;
526	phy->reset_delay_us = 100;
527
528	phy->ops.power_up = e1000_power_up_phy_copper;
529	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
530
531	/* We may need to do this twice - once for IGP and if that fails,
532	 * we'll set BM func pointers and try again
533	 */
534	ret_val = e1000e_determine_phy_address(hw);
535	if (ret_val) {
536		phy->ops.write_reg = e1000e_write_phy_reg_bm;
537		phy->ops.read_reg = e1000e_read_phy_reg_bm;
538		ret_val = e1000e_determine_phy_address(hw);
539		if (ret_val) {
540			e_dbg("Cannot determine PHY addr. Erroring out\n");
541			return ret_val;
542		}
543	}
544
545	phy->id = 0;
546	while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
547	       (i++ < 100)) {
548		usleep_range(1000, 1100);
549		ret_val = e1000e_get_phy_id(hw);
550		if (ret_val)
551			return ret_val;
552	}
553
554	/* Verify phy id */
555	switch (phy->id) {
556	case IGP03E1000_E_PHY_ID:
557		phy->type = e1000_phy_igp_3;
558		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
559		phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
560		phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
561		phy->ops.get_info = e1000e_get_phy_info_igp;
562		phy->ops.check_polarity = e1000_check_polarity_igp;
563		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
564		break;
565	case IFE_E_PHY_ID:
566	case IFE_PLUS_E_PHY_ID:
567	case IFE_C_E_PHY_ID:
568		phy->type = e1000_phy_ife;
569		phy->autoneg_mask = E1000_ALL_NOT_GIG;
570		phy->ops.get_info = e1000_get_phy_info_ife;
571		phy->ops.check_polarity = e1000_check_polarity_ife;
572		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
573		break;
574	case BME1000_E_PHY_ID:
575		phy->type = e1000_phy_bm;
576		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
577		phy->ops.read_reg = e1000e_read_phy_reg_bm;
578		phy->ops.write_reg = e1000e_write_phy_reg_bm;
579		phy->ops.commit = e1000e_phy_sw_reset;
580		phy->ops.get_info = e1000e_get_phy_info_m88;
581		phy->ops.check_polarity = e1000_check_polarity_m88;
582		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
583		break;
584	default:
585		return -E1000_ERR_PHY;
586	}
587
588	return 0;
589}
590
591/**
592 *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
593 *  @hw: pointer to the HW structure
594 *
595 *  Initialize family-specific NVM parameters and function
596 *  pointers.
597 **/
598static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
599{
600	struct e1000_nvm_info *nvm = &hw->nvm;
601	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
602	u32 gfpreg, sector_base_addr, sector_end_addr;
603	u16 i;
604	u32 nvm_size;
605
606	nvm->type = e1000_nvm_flash_sw;
607
608	if (hw->mac.type >= e1000_pch_spt) {
609		/* in SPT, gfpreg doesn't exist. NVM size is taken from the
610		 * STRAP register. This is because in SPT the GbE Flash region
611		 * is no longer accessed through the flash registers. Instead,
612		 * the mechanism has changed, and the Flash region access
613		 * registers are now implemented in GbE memory space.
614		 */
615		nvm->flash_base_addr = 0;
616		nvm_size = (((er32(STRAP) >> 1) & 0x1F) + 1)
617		    * NVM_SIZE_MULTIPLIER;
618		nvm->flash_bank_size = nvm_size / 2;
619		/* Adjust to word count */
620		nvm->flash_bank_size /= sizeof(u16);
621		/* Set the base address for flash register access */
622		hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR;
623	} else {
624		/* Can't read flash registers if register set isn't mapped. */
625		if (!hw->flash_address) {
626			e_dbg("ERROR: Flash registers not mapped\n");
627			return -E1000_ERR_CONFIG;
628		}
629
630		gfpreg = er32flash(ICH_FLASH_GFPREG);
631
632		/* sector_X_addr is a "sector"-aligned address (4096 bytes)
633		 * Add 1 to sector_end_addr since this sector is included in
634		 * the overall size.
635		 */
636		sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
637		sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
638
639		/* flash_base_addr is byte-aligned */
640		nvm->flash_base_addr = sector_base_addr
641		    << FLASH_SECTOR_ADDR_SHIFT;
642
643		/* find total size of the NVM, then cut in half since the total
644		 * size represents two separate NVM banks.
645		 */
646		nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
647					<< FLASH_SECTOR_ADDR_SHIFT);
648		nvm->flash_bank_size /= 2;
649		/* Adjust to word count */
650		nvm->flash_bank_size /= sizeof(u16);
651	}
652
653	nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
654
655	/* Clear shadow ram */
656	for (i = 0; i < nvm->word_size; i++) {
657		dev_spec->shadow_ram[i].modified = false;
658		dev_spec->shadow_ram[i].value = 0xFFFF;
659	}
660
661	return 0;
662}
663
664/**
665 *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
666 *  @hw: pointer to the HW structure
667 *
668 *  Initialize family-specific MAC parameters and function
669 *  pointers.
670 **/
671static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
672{
673	struct e1000_mac_info *mac = &hw->mac;
674
675	/* Set media type function pointer */
676	hw->phy.media_type = e1000_media_type_copper;
677
678	/* Set mta register count */
679	mac->mta_reg_count = 32;
680	/* Set rar entry count */
681	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
682	if (mac->type == e1000_ich8lan)
683		mac->rar_entry_count--;
684	/* FWSM register */
685	mac->has_fwsm = true;
686	/* ARC subsystem not supported */
687	mac->arc_subsystem_valid = false;
688	/* Adaptive IFS supported */
689	mac->adaptive_ifs = true;
690
691	/* LED and other operations */
692	switch (mac->type) {
693	case e1000_ich8lan:
694	case e1000_ich9lan:
695	case e1000_ich10lan:
696		/* check management mode */
697		mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
698		/* ID LED init */
699		mac->ops.id_led_init = e1000e_id_led_init_generic;
700		/* blink LED */
701		mac->ops.blink_led = e1000e_blink_led_generic;
702		/* setup LED */
703		mac->ops.setup_led = e1000e_setup_led_generic;
704		/* cleanup LED */
705		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
706		/* turn on/off LED */
707		mac->ops.led_on = e1000_led_on_ich8lan;
708		mac->ops.led_off = e1000_led_off_ich8lan;
709		break;
710	case e1000_pch2lan:
711		mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
712		mac->ops.rar_set = e1000_rar_set_pch2lan;
713		fallthrough;
714	case e1000_pch_lpt:
715	case e1000_pch_spt:
716	case e1000_pch_cnp:
717	case e1000_pch_tgp:
718	case e1000_pch_adp:
719	case e1000_pch_mtp:
720	case e1000_pch_lnp:
721	case e1000_pch_ptp:
722	case e1000_pch_nvp:
723	case e1000_pchlan:
724		/* check management mode */
725		mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
726		/* ID LED init */
727		mac->ops.id_led_init = e1000_id_led_init_pchlan;
728		/* setup LED */
729		mac->ops.setup_led = e1000_setup_led_pchlan;
730		/* cleanup LED */
731		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
732		/* turn on/off LED */
733		mac->ops.led_on = e1000_led_on_pchlan;
734		mac->ops.led_off = e1000_led_off_pchlan;
735		break;
736	default:
737		break;
738	}
739
740	if (mac->type >= e1000_pch_lpt) {
741		mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
742		mac->ops.rar_set = e1000_rar_set_pch_lpt;
743		mac->ops.setup_physical_interface =
744		    e1000_setup_copper_link_pch_lpt;
745		mac->ops.rar_get_count = e1000_rar_get_count_pch_lpt;
746	}
747
748	/* Enable PCS Lock-loss workaround for ICH8 */
749	if (mac->type == e1000_ich8lan)
750		e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
751
752	return 0;
753}
754
755/**
756 *  __e1000_access_emi_reg_locked - Read/write EMI register
757 *  @hw: pointer to the HW structure
758 *  @address: EMI address to program
759 *  @data: pointer to value to read/write from/to the EMI address
760 *  @read: boolean flag to indicate read or write
761 *
762 *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
763 **/
764static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
765					 u16 *data, bool read)
766{
767	s32 ret_val;
768
769	ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address);
770	if (ret_val)
771		return ret_val;
772
773	if (read)
774		ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data);
775	else
776		ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data);
777
778	return ret_val;
779}
780
781/**
782 *  e1000_read_emi_reg_locked - Read Extended Management Interface register
783 *  @hw: pointer to the HW structure
784 *  @addr: EMI address to program
785 *  @data: value to be read from the EMI address
786 *
787 *  Assumes the SW/FW/HW Semaphore is already acquired.
788 **/
789s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
790{
791	return __e1000_access_emi_reg_locked(hw, addr, data, true);
792}
793
794/**
795 *  e1000_write_emi_reg_locked - Write Extended Management Interface register
796 *  @hw: pointer to the HW structure
797 *  @addr: EMI address to program
798 *  @data: value to be written to the EMI address
799 *
800 *  Assumes the SW/FW/HW Semaphore is already acquired.
801 **/
802s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
803{
804	return __e1000_access_emi_reg_locked(hw, addr, &data, false);
805}
806
807/**
808 *  e1000_set_eee_pchlan - Enable/disable EEE support
809 *  @hw: pointer to the HW structure
810 *
811 *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
812 *  the link and the EEE capabilities of the link partner.  The LPI Control
813 *  register bits will remain set only if/when link is up.
814 *
815 *  EEE LPI must not be asserted earlier than one second after link is up.
816 *  On 82579, EEE LPI should not be enabled until such time otherwise there
817 *  can be link issues with some switches.  Other devices can have EEE LPI
818 *  enabled immediately upon link up since they have a timer in hardware which
819 *  prevents LPI from being asserted too early.
820 **/
821s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
822{
823	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
824	s32 ret_val;
825	u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
826
827	switch (hw->phy.type) {
828	case e1000_phy_82579:
829		lpa = I82579_EEE_LP_ABILITY;
830		pcs_status = I82579_EEE_PCS_STATUS;
831		adv_addr = I82579_EEE_ADVERTISEMENT;
832		break;
833	case e1000_phy_i217:
834		lpa = I217_EEE_LP_ABILITY;
835		pcs_status = I217_EEE_PCS_STATUS;
836		adv_addr = I217_EEE_ADVERTISEMENT;
837		break;
838	default:
839		return 0;
840	}
841
842	ret_val = hw->phy.ops.acquire(hw);
843	if (ret_val)
844		return ret_val;
845
846	ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
847	if (ret_val)
848		goto release;
849
850	/* Clear bits that enable EEE in various speeds */
851	lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
852
853	/* Enable EEE if not disabled by user */
854	if (!dev_spec->eee_disable) {
855		/* Save off link partner's EEE ability */
856		ret_val = e1000_read_emi_reg_locked(hw, lpa,
857						    &dev_spec->eee_lp_ability);
858		if (ret_val)
859			goto release;
860
861		/* Read EEE advertisement */
862		ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
863		if (ret_val)
864			goto release;
865
866		/* Enable EEE only for speeds in which the link partner is
867		 * EEE capable and for which we advertise EEE.
868		 */
869		if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
870			lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
871
872		if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
873			e1e_rphy_locked(hw, MII_LPA, &data);
874			if (data & LPA_100FULL)
875				lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
876			else
877				/* EEE is not supported in 100Half, so ignore
878				 * partner's EEE in 100 ability if full-duplex
879				 * is not advertised.
880				 */
881				dev_spec->eee_lp_ability &=
882				    ~I82579_EEE_100_SUPPORTED;
883		}
884	}
885
886	if (hw->phy.type == e1000_phy_82579) {
887		ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
888						    &data);
889		if (ret_val)
890			goto release;
891
892		data &= ~I82579_LPI_100_PLL_SHUT;
893		ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
894						     data);
895	}
896
897	/* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
898	ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
899	if (ret_val)
900		goto release;
901
902	ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
903release:
904	hw->phy.ops.release(hw);
905
906	return ret_val;
907}
908
909/**
910 *  e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
911 *  @hw:   pointer to the HW structure
912 *  @link: link up bool flag
913 *
914 *  When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
915 *  preventing further DMA write requests.  Workaround the issue by disabling
916 *  the de-assertion of the clock request when in 1Gpbs mode.
917 *  Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
918 *  speeds in order to avoid Tx hangs.
919 **/
920static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
921{
922	u32 fextnvm6 = er32(FEXTNVM6);
923	u32 status = er32(STATUS);
924	s32 ret_val = 0;
925	u16 reg;
926
927	if (link && (status & E1000_STATUS_SPEED_1000)) {
928		ret_val = hw->phy.ops.acquire(hw);
929		if (ret_val)
930			return ret_val;
931
932		ret_val =
933		    e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
934						&reg);
935		if (ret_val)
936			goto release;
937
938		ret_val =
939		    e1000e_write_kmrn_reg_locked(hw,
940						 E1000_KMRNCTRLSTA_K1_CONFIG,
941						 reg &
942						 ~E1000_KMRNCTRLSTA_K1_ENABLE);
943		if (ret_val)
944			goto release;
945
946		usleep_range(10, 20);
947
948		ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
949
950		ret_val =
951		    e1000e_write_kmrn_reg_locked(hw,
952						 E1000_KMRNCTRLSTA_K1_CONFIG,
953						 reg);
954release:
955		hw->phy.ops.release(hw);
956	} else {
957		/* clear FEXTNVM6 bit 8 on link down or 10/100 */
958		fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
959
960		if ((hw->phy.revision > 5) || !link ||
961		    ((status & E1000_STATUS_SPEED_100) &&
962		     (status & E1000_STATUS_FD)))
963			goto update_fextnvm6;
964
965		ret_val = e1e_rphy(hw, I217_INBAND_CTRL, &reg);
966		if (ret_val)
967			return ret_val;
968
969		/* Clear link status transmit timeout */
970		reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
971
972		if (status & E1000_STATUS_SPEED_100) {
973			/* Set inband Tx timeout to 5x10us for 100Half */
974			reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
975
976			/* Do not extend the K1 entry latency for 100Half */
977			fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
978		} else {
979			/* Set inband Tx timeout to 50x10us for 10Full/Half */
980			reg |= 50 <<
981			    I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
982
983			/* Extend the K1 entry latency for 10 Mbps */
984			fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
985		}
986
987		ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg);
988		if (ret_val)
989			return ret_val;
990
991update_fextnvm6:
992		ew32(FEXTNVM6, fextnvm6);
993	}
994
995	return ret_val;
996}
997
998/**
999 *  e1000_platform_pm_pch_lpt - Set platform power management values
1000 *  @hw: pointer to the HW structure
1001 *  @link: bool indicating link status
1002 *
1003 *  Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
1004 *  GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
1005 *  when link is up (which must not exceed the maximum latency supported
1006 *  by the platform), otherwise specify there is no LTR requirement.
1007 *  Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop
1008 *  latencies in the LTR Extended Capability Structure in the PCIe Extended
1009 *  Capability register set, on this device LTR is set by writing the
1010 *  equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
1011 *  set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
1012 *  message to the PMC.
1013 **/
1014static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
1015{
1016	u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
1017	    link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
1018	u32 max_ltr_enc_d = 0;	/* maximum LTR decoded by platform */
1019	u32 lat_enc_d = 0;	/* latency decoded */
1020	u16 lat_enc = 0;	/* latency encoded */
1021
1022	if (link) {
1023		u16 speed, duplex, scale = 0;
1024		u16 max_snoop, max_nosnoop;
1025		u16 max_ltr_enc;	/* max LTR latency encoded */
1026		u64 value;
1027		u32 rxa;
1028
1029		if (!hw->adapter->max_frame_size) {
1030			e_dbg("max_frame_size not set.\n");
1031			return -E1000_ERR_CONFIG;
1032		}
1033
1034		hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1035		if (!speed) {
1036			e_dbg("Speed not set.\n");
1037			return -E1000_ERR_CONFIG;
1038		}
1039
1040		/* Rx Packet Buffer Allocation size (KB) */
1041		rxa = er32(PBA) & E1000_PBA_RXA_MASK;
1042
1043		/* Determine the maximum latency tolerated by the device.
1044		 *
1045		 * Per the PCIe spec, the tolerated latencies are encoded as
1046		 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1047		 * a 10-bit value (0-1023) to provide a range from 1 ns to
1048		 * 2^25*(2^10-1) ns.  The scale is encoded as 0=2^0ns,
1049		 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1050		 */
1051		rxa *= 512;
1052		value = (rxa > hw->adapter->max_frame_size) ?
1053			(rxa - hw->adapter->max_frame_size) * (16000 / speed) :
1054			0;
1055
1056		while (value > PCI_LTR_VALUE_MASK) {
1057			scale++;
1058			value = DIV_ROUND_UP(value, BIT(5));
1059		}
1060		if (scale > E1000_LTRV_SCALE_MAX) {
1061			e_dbg("Invalid LTR latency scale %d\n", scale);
1062			return -E1000_ERR_CONFIG;
1063		}
1064		lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value);
1065
1066		/* Determine the maximum latency tolerated by the platform */
1067		pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT,
1068				     &max_snoop);
1069		pci_read_config_word(hw->adapter->pdev,
1070				     E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1071		max_ltr_enc = max_t(u16, max_snoop, max_nosnoop);
1072
1073		lat_enc_d = (lat_enc & E1000_LTRV_VALUE_MASK) *
1074			     (1U << (E1000_LTRV_SCALE_FACTOR *
1075			     ((lat_enc & E1000_LTRV_SCALE_MASK)
1076			     >> E1000_LTRV_SCALE_SHIFT)));
1077
1078		max_ltr_enc_d = (max_ltr_enc & E1000_LTRV_VALUE_MASK) *
1079				 (1U << (E1000_LTRV_SCALE_FACTOR *
1080				 ((max_ltr_enc & E1000_LTRV_SCALE_MASK)
1081				 >> E1000_LTRV_SCALE_SHIFT)));
1082
1083		if (lat_enc_d > max_ltr_enc_d)
1084			lat_enc = max_ltr_enc;
1085	}
1086
1087	/* Set Snoop and No-Snoop latencies the same */
1088	reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1089	ew32(LTRV, reg);
1090
1091	return 0;
1092}
1093
1094/**
1095 *  e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1096 *  @hw: pointer to the HW structure
1097 *  @to_sx: boolean indicating a system power state transition to Sx
1098 *
1099 *  When link is down, configure ULP mode to significantly reduce the power
1100 *  to the PHY.  If on a Manageability Engine (ME) enabled system, tell the
1101 *  ME firmware to start the ULP configuration.  If not on an ME enabled
1102 *  system, configure the ULP mode by software.
1103 */
1104s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1105{
1106	u32 mac_reg;
1107	s32 ret_val = 0;
1108	u16 phy_reg;
1109	u16 oem_reg = 0;
1110
1111	if ((hw->mac.type < e1000_pch_lpt) ||
1112	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1113	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1114	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1115	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1116	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1117		return 0;
1118
1119	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1120		/* Request ME configure ULP mode in the PHY */
1121		mac_reg = er32(H2ME);
1122		mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1123		ew32(H2ME, mac_reg);
1124
1125		goto out;
1126	}
1127
1128	if (!to_sx) {
1129		int i = 0;
1130
1131		/* Poll up to 5 seconds for Cable Disconnected indication */
1132		while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1133			/* Bail if link is re-acquired */
1134			if (er32(STATUS) & E1000_STATUS_LU)
1135				return -E1000_ERR_PHY;
1136
1137			if (i++ == 100)
1138				break;
1139
1140			msleep(50);
1141		}
1142		e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n",
1143		      (er32(FEXT) &
1144		       E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50);
1145	}
1146
1147	ret_val = hw->phy.ops.acquire(hw);
1148	if (ret_val)
1149		goto out;
1150
1151	/* Force SMBus mode in PHY */
1152	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1153	if (ret_val)
1154		goto release;
1155	phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
1156	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1157
1158	/* Force SMBus mode in MAC */
1159	mac_reg = er32(CTRL_EXT);
1160	mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1161	ew32(CTRL_EXT, mac_reg);
1162
1163	/* Si workaround for ULP entry flow on i127/rev6 h/w.  Enable
1164	 * LPLU and disable Gig speed when entering ULP
1165	 */
1166	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) {
1167		ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS,
1168						       &oem_reg);
1169		if (ret_val)
1170			goto release;
1171
1172		phy_reg = oem_reg;
1173		phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS;
1174
1175		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1176							phy_reg);
1177
1178		if (ret_val)
1179			goto release;
1180	}
1181
1182	/* Set Inband ULP Exit, Reset to SMBus mode and
1183	 * Disable SMBus Release on PERST# in PHY
1184	 */
1185	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1186	if (ret_val)
1187		goto release;
1188	phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1189		    I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1190	if (to_sx) {
1191		if (er32(WUFC) & E1000_WUFC_LNKC)
1192			phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1193		else
1194			phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1195
1196		phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1197		phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT;
1198	} else {
1199		phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1200		phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP;
1201		phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1202	}
1203	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1204
1205	/* Set Disable SMBus Release on PERST# in MAC */
1206	mac_reg = er32(FEXTNVM7);
1207	mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1208	ew32(FEXTNVM7, mac_reg);
1209
1210	/* Commit ULP changes in PHY by starting auto ULP configuration */
1211	phy_reg |= I218_ULP_CONFIG1_START;
1212	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1213
1214	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) &&
1215	    to_sx && (er32(STATUS) & E1000_STATUS_LU)) {
1216		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1217							oem_reg);
1218		if (ret_val)
1219			goto release;
1220	}
1221
1222release:
1223	hw->phy.ops.release(hw);
1224out:
1225	if (ret_val)
1226		e_dbg("Error in ULP enable flow: %d\n", ret_val);
1227	else
1228		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1229
1230	return ret_val;
1231}
1232
1233/**
1234 *  e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1235 *  @hw: pointer to the HW structure
1236 *  @force: boolean indicating whether or not to force disabling ULP
1237 *
1238 *  Un-configure ULP mode when link is up, the system is transitioned from
1239 *  Sx or the driver is unloaded.  If on a Manageability Engine (ME) enabled
1240 *  system, poll for an indication from ME that ULP has been un-configured.
1241 *  If not on an ME enabled system, un-configure the ULP mode by software.
1242 *
1243 *  During nominal operation, this function is called when link is acquired
1244 *  to disable ULP mode (force=false); otherwise, for example when unloading
1245 *  the driver or during Sx->S0 transitions, this is called with force=true
1246 *  to forcibly disable ULP.
1247 */
1248static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1249{
1250	s32 ret_val = 0;
1251	u32 mac_reg;
1252	u16 phy_reg;
1253	int i = 0;
1254
1255	if ((hw->mac.type < e1000_pch_lpt) ||
1256	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1257	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1258	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1259	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1260	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1261		return 0;
1262
1263	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1264		struct e1000_adapter *adapter = hw->adapter;
1265		bool firmware_bug = false;
1266
1267		if (force) {
1268			/* Request ME un-configure ULP mode in the PHY */
1269			mac_reg = er32(H2ME);
1270			mac_reg &= ~E1000_H2ME_ULP;
1271			mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1272			ew32(H2ME, mac_reg);
1273		}
1274
1275		/* Poll up to 2.5 seconds for ME to clear ULP_CFG_DONE.
1276		 * If this takes more than 1 second, show a warning indicating a
1277		 * firmware bug
1278		 */
1279		while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) {
1280			if (i++ == 250) {
1281				ret_val = -E1000_ERR_PHY;
1282				goto out;
1283			}
1284			if (i > 100 && !firmware_bug)
1285				firmware_bug = true;
1286
1287			usleep_range(10000, 11000);
1288		}
1289		if (firmware_bug)
1290			e_warn("ULP_CONFIG_DONE took %d msec. This is a firmware bug\n",
1291			       i * 10);
1292		else
1293			e_dbg("ULP_CONFIG_DONE cleared after %d msec\n",
1294			      i * 10);
1295
1296		if (force) {
1297			mac_reg = er32(H2ME);
1298			mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1299			ew32(H2ME, mac_reg);
1300		} else {
1301			/* Clear H2ME.ULP after ME ULP configuration */
1302			mac_reg = er32(H2ME);
1303			mac_reg &= ~E1000_H2ME_ULP;
1304			ew32(H2ME, mac_reg);
1305		}
1306
1307		goto out;
1308	}
1309
1310	ret_val = hw->phy.ops.acquire(hw);
1311	if (ret_val)
1312		goto out;
1313
1314	if (force)
1315		/* Toggle LANPHYPC Value bit */
1316		e1000_toggle_lanphypc_pch_lpt(hw);
1317
1318	/* Unforce SMBus mode in PHY */
1319	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1320	if (ret_val) {
1321		/* The MAC might be in PCIe mode, so temporarily force to
1322		 * SMBus mode in order to access the PHY.
1323		 */
1324		mac_reg = er32(CTRL_EXT);
1325		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1326		ew32(CTRL_EXT, mac_reg);
1327
1328		msleep(50);
1329
1330		ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1331						       &phy_reg);
1332		if (ret_val)
1333			goto release;
1334	}
1335	phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1336	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1337
1338	/* Unforce SMBus mode in MAC */
1339	mac_reg = er32(CTRL_EXT);
1340	mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1341	ew32(CTRL_EXT, mac_reg);
1342
1343	/* When ULP mode was previously entered, K1 was disabled by the
1344	 * hardware.  Re-Enable K1 in the PHY when exiting ULP.
1345	 */
1346	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1347	if (ret_val)
1348		goto release;
1349	phy_reg |= HV_PM_CTRL_K1_ENABLE;
1350	e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1351
1352	/* Clear ULP enabled configuration */
1353	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1354	if (ret_val)
1355		goto release;
1356	phy_reg &= ~(I218_ULP_CONFIG1_IND |
1357		     I218_ULP_CONFIG1_STICKY_ULP |
1358		     I218_ULP_CONFIG1_RESET_TO_SMBUS |
1359		     I218_ULP_CONFIG1_WOL_HOST |
1360		     I218_ULP_CONFIG1_INBAND_EXIT |
1361		     I218_ULP_CONFIG1_EN_ULP_LANPHYPC |
1362		     I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST |
1363		     I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1364	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1365
1366	/* Commit ULP changes by starting auto ULP configuration */
1367	phy_reg |= I218_ULP_CONFIG1_START;
1368	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1369
1370	/* Clear Disable SMBus Release on PERST# in MAC */
1371	mac_reg = er32(FEXTNVM7);
1372	mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1373	ew32(FEXTNVM7, mac_reg);
1374
1375release:
1376	hw->phy.ops.release(hw);
1377	if (force) {
1378		e1000_phy_hw_reset(hw);
1379		msleep(50);
1380	}
1381out:
1382	if (ret_val)
1383		e_dbg("Error in ULP disable flow: %d\n", ret_val);
1384	else
1385		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1386
1387	return ret_val;
1388}
1389
1390/**
1391 *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1392 *  @hw: pointer to the HW structure
1393 *
1394 *  Checks to see of the link status of the hardware has changed.  If a
1395 *  change in link status has been detected, then we read the PHY registers
1396 *  to get the current speed/duplex if link exists.
1397 **/
1398static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1399{
1400	struct e1000_mac_info *mac = &hw->mac;
1401	s32 ret_val, tipg_reg = 0;
1402	u16 emi_addr, emi_val = 0;
1403	bool link;
1404	u16 phy_reg;
1405
1406	/* We only want to go out to the PHY registers to see if Auto-Neg
1407	 * has completed and/or if our link status has changed.  The
1408	 * get_link_status flag is set upon receiving a Link Status
1409	 * Change or Rx Sequence Error interrupt.
1410	 */
1411	if (!mac->get_link_status)
1412		return 0;
1413	mac->get_link_status = false;
1414
1415	/* First we want to see if the MII Status Register reports
1416	 * link.  If so, then we want to get the current speed/duplex
1417	 * of the PHY.
1418	 */
1419	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1420	if (ret_val)
1421		goto out;
1422
1423	if (hw->mac.type == e1000_pchlan) {
1424		ret_val = e1000_k1_gig_workaround_hv(hw, link);
1425		if (ret_val)
1426			goto out;
1427	}
1428
1429	/* When connected at 10Mbps half-duplex, some parts are excessively
1430	 * aggressive resulting in many collisions. To avoid this, increase
1431	 * the IPG and reduce Rx latency in the PHY.
1432	 */
1433	if ((hw->mac.type >= e1000_pch2lan) && link) {
1434		u16 speed, duplex;
1435
1436		e1000e_get_speed_and_duplex_copper(hw, &speed, &duplex);
1437		tipg_reg = er32(TIPG);
1438		tipg_reg &= ~E1000_TIPG_IPGT_MASK;
1439
1440		if (duplex == HALF_DUPLEX && speed == SPEED_10) {
1441			tipg_reg |= 0xFF;
1442			/* Reduce Rx latency in analog PHY */
1443			emi_val = 0;
1444		} else if (hw->mac.type >= e1000_pch_spt &&
1445			   duplex == FULL_DUPLEX && speed != SPEED_1000) {
1446			tipg_reg |= 0xC;
1447			emi_val = 1;
1448		} else {
1449
1450			/* Roll back the default values */
1451			tipg_reg |= 0x08;
1452			emi_val = 1;
1453		}
1454
1455		ew32(TIPG, tipg_reg);
1456
1457		ret_val = hw->phy.ops.acquire(hw);
1458		if (ret_val)
1459			goto out;
1460
1461		if (hw->mac.type == e1000_pch2lan)
1462			emi_addr = I82579_RX_CONFIG;
1463		else
1464			emi_addr = I217_RX_CONFIG;
1465		ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val);
1466
1467		if (hw->mac.type >= e1000_pch_lpt) {
1468			u16 phy_reg;
1469
1470			e1e_rphy_locked(hw, I217_PLL_CLOCK_GATE_REG, &phy_reg);
1471			phy_reg &= ~I217_PLL_CLOCK_GATE_MASK;
1472			if (speed == SPEED_100 || speed == SPEED_10)
1473				phy_reg |= 0x3E8;
1474			else
1475				phy_reg |= 0xFA;
1476			e1e_wphy_locked(hw, I217_PLL_CLOCK_GATE_REG, phy_reg);
1477
1478			if (speed == SPEED_1000) {
1479				hw->phy.ops.read_reg_locked(hw, HV_PM_CTRL,
1480							    &phy_reg);
1481
1482				phy_reg |= HV_PM_CTRL_K1_CLK_REQ;
1483
1484				hw->phy.ops.write_reg_locked(hw, HV_PM_CTRL,
1485							     phy_reg);
1486			}
1487		}
1488		hw->phy.ops.release(hw);
1489
1490		if (ret_val)
1491			goto out;
1492
1493		if (hw->mac.type >= e1000_pch_spt) {
1494			u16 data;
1495			u16 ptr_gap;
1496
1497			if (speed == SPEED_1000) {
1498				ret_val = hw->phy.ops.acquire(hw);
1499				if (ret_val)
1500					goto out;
1501
1502				ret_val = e1e_rphy_locked(hw,
1503							  PHY_REG(776, 20),
1504							  &data);
1505				if (ret_val) {
1506					hw->phy.ops.release(hw);
1507					goto out;
1508				}
1509
1510				ptr_gap = (data & (0x3FF << 2)) >> 2;
1511				if (ptr_gap < 0x18) {
1512					data &= ~(0x3FF << 2);
1513					data |= (0x18 << 2);
1514					ret_val =
1515					    e1e_wphy_locked(hw,
1516							    PHY_REG(776, 20),
1517							    data);
1518				}
1519				hw->phy.ops.release(hw);
1520				if (ret_val)
1521					goto out;
1522			} else {
1523				ret_val = hw->phy.ops.acquire(hw);
1524				if (ret_val)
1525					goto out;
1526
1527				ret_val = e1e_wphy_locked(hw,
1528							  PHY_REG(776, 20),
1529							  0xC023);
1530				hw->phy.ops.release(hw);
1531				if (ret_val)
1532					goto out;
1533
1534			}
1535		}
1536	}
1537
1538	/* I217 Packet Loss issue:
1539	 * ensure that FEXTNVM4 Beacon Duration is set correctly
1540	 * on power up.
1541	 * Set the Beacon Duration for I217 to 8 usec
1542	 */
1543	if (hw->mac.type >= e1000_pch_lpt) {
1544		u32 mac_reg;
1545
1546		mac_reg = er32(FEXTNVM4);
1547		mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1548		mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1549		ew32(FEXTNVM4, mac_reg);
1550	}
1551
1552	/* Work-around I218 hang issue */
1553	if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1554	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1555	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) ||
1556	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3)) {
1557		ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1558		if (ret_val)
1559			goto out;
1560	}
1561	if (hw->mac.type >= e1000_pch_lpt) {
1562		/* Set platform power management values for
1563		 * Latency Tolerance Reporting (LTR)
1564		 */
1565		ret_val = e1000_platform_pm_pch_lpt(hw, link);
1566		if (ret_val)
1567			goto out;
1568	}
1569
1570	/* Clear link partner's EEE ability */
1571	hw->dev_spec.ich8lan.eee_lp_ability = 0;
1572
1573	if (hw->mac.type >= e1000_pch_lpt) {
1574		u32 fextnvm6 = er32(FEXTNVM6);
1575
1576		if (hw->mac.type == e1000_pch_spt) {
1577			/* FEXTNVM6 K1-off workaround - for SPT only */
1578			u32 pcieanacfg = er32(PCIEANACFG);
1579
1580			if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE)
1581				fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE;
1582			else
1583				fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1584		}
1585
1586		ew32(FEXTNVM6, fextnvm6);
1587	}
1588
1589	if (!link)
1590		goto out;
1591
1592	switch (hw->mac.type) {
1593	case e1000_pch2lan:
1594		ret_val = e1000_k1_workaround_lv(hw);
1595		if (ret_val)
1596			return ret_val;
1597		fallthrough;
1598	case e1000_pchlan:
1599		if (hw->phy.type == e1000_phy_82578) {
1600			ret_val = e1000_link_stall_workaround_hv(hw);
1601			if (ret_val)
1602				return ret_val;
1603		}
1604
1605		/* Workaround for PCHx parts in half-duplex:
1606		 * Set the number of preambles removed from the packet
1607		 * when it is passed from the PHY to the MAC to prevent
1608		 * the MAC from misinterpreting the packet type.
1609		 */
1610		e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1611		phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1612
1613		if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
1614			phy_reg |= BIT(HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1615
1616		e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1617		break;
1618	default:
1619		break;
1620	}
1621
1622	/* Check if there was DownShift, must be checked
1623	 * immediately after link-up
1624	 */
1625	e1000e_check_downshift(hw);
1626
1627	/* Enable/Disable EEE after link up */
1628	if (hw->phy.type > e1000_phy_82579) {
1629		ret_val = e1000_set_eee_pchlan(hw);
1630		if (ret_val)
1631			return ret_val;
1632	}
1633
1634	/* If we are forcing speed/duplex, then we simply return since
1635	 * we have already determined whether we have link or not.
1636	 */
1637	if (!mac->autoneg)
1638		return -E1000_ERR_CONFIG;
1639
1640	/* Auto-Neg is enabled.  Auto Speed Detection takes care
1641	 * of MAC speed/duplex configuration.  So we only need to
1642	 * configure Collision Distance in the MAC.
1643	 */
1644	mac->ops.config_collision_dist(hw);
1645
1646	/* Configure Flow Control now that Auto-Neg has completed.
1647	 * First, we need to restore the desired flow control
1648	 * settings because we may have had to re-autoneg with a
1649	 * different link partner.
1650	 */
1651	ret_val = e1000e_config_fc_after_link_up(hw);
1652	if (ret_val)
1653		e_dbg("Error configuring flow control\n");
1654
1655	return ret_val;
1656
1657out:
1658	mac->get_link_status = true;
1659	return ret_val;
1660}
1661
1662static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
1663{
1664	struct e1000_hw *hw = &adapter->hw;
1665	s32 rc;
1666
1667	rc = e1000_init_mac_params_ich8lan(hw);
1668	if (rc)
1669		return rc;
1670
1671	rc = e1000_init_nvm_params_ich8lan(hw);
1672	if (rc)
1673		return rc;
1674
1675	switch (hw->mac.type) {
1676	case e1000_ich8lan:
1677	case e1000_ich9lan:
1678	case e1000_ich10lan:
1679		rc = e1000_init_phy_params_ich8lan(hw);
1680		break;
1681	case e1000_pchlan:
1682	case e1000_pch2lan:
1683	case e1000_pch_lpt:
1684	case e1000_pch_spt:
1685	case e1000_pch_cnp:
1686	case e1000_pch_tgp:
1687	case e1000_pch_adp:
1688	case e1000_pch_mtp:
1689	case e1000_pch_lnp:
1690	case e1000_pch_ptp:
1691	case e1000_pch_nvp:
1692		rc = e1000_init_phy_params_pchlan(hw);
1693		break;
1694	default:
1695		break;
1696	}
1697	if (rc)
1698		return rc;
1699
1700	/* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
1701	 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1702	 */
1703	if ((adapter->hw.phy.type == e1000_phy_ife) ||
1704	    ((adapter->hw.mac.type >= e1000_pch2lan) &&
1705	     (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
1706		adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
1707		adapter->max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
1708
1709		hw->mac.ops.blink_led = NULL;
1710	}
1711
1712	if ((adapter->hw.mac.type == e1000_ich8lan) &&
1713	    (adapter->hw.phy.type != e1000_phy_ife))
1714		adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
1715
1716	/* Enable workaround for 82579 w/ ME enabled */
1717	if ((adapter->hw.mac.type == e1000_pch2lan) &&
1718	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1719		adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1720
1721	return 0;
1722}
1723
1724static DEFINE_MUTEX(nvm_mutex);
1725
1726/**
1727 *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1728 *  @hw: pointer to the HW structure
1729 *
1730 *  Acquires the mutex for performing NVM operations.
1731 **/
1732static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1733{
1734	mutex_lock(&nvm_mutex);
1735
1736	return 0;
1737}
1738
1739/**
1740 *  e1000_release_nvm_ich8lan - Release NVM mutex
1741 *  @hw: pointer to the HW structure
1742 *
1743 *  Releases the mutex used while performing NVM operations.
1744 **/
1745static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1746{
1747	mutex_unlock(&nvm_mutex);
1748}
1749
1750/**
1751 *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1752 *  @hw: pointer to the HW structure
1753 *
1754 *  Acquires the software control flag for performing PHY and select
1755 *  MAC CSR accesses.
1756 **/
1757static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1758{
1759	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1760	s32 ret_val = 0;
1761
1762	if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
1763			     &hw->adapter->state)) {
1764		e_dbg("contention for Phy access\n");
1765		return -E1000_ERR_PHY;
1766	}
1767
1768	while (timeout) {
1769		extcnf_ctrl = er32(EXTCNF_CTRL);
1770		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1771			break;
1772
1773		mdelay(1);
1774		timeout--;
1775	}
1776
1777	if (!timeout) {
1778		e_dbg("SW has already locked the resource.\n");
1779		ret_val = -E1000_ERR_CONFIG;
1780		goto out;
1781	}
1782
1783	timeout = SW_FLAG_TIMEOUT;
1784
1785	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1786	ew32(EXTCNF_CTRL, extcnf_ctrl);
1787
1788	while (timeout) {
1789		extcnf_ctrl = er32(EXTCNF_CTRL);
1790		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1791			break;
1792
1793		mdelay(1);
1794		timeout--;
1795	}
1796
1797	if (!timeout) {
1798		e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1799		      er32(FWSM), extcnf_ctrl);
1800		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1801		ew32(EXTCNF_CTRL, extcnf_ctrl);
1802		ret_val = -E1000_ERR_CONFIG;
1803		goto out;
1804	}
1805
1806out:
1807	if (ret_val)
1808		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1809
1810	return ret_val;
1811}
1812
1813/**
1814 *  e1000_release_swflag_ich8lan - Release software control flag
1815 *  @hw: pointer to the HW structure
1816 *
1817 *  Releases the software control flag for performing PHY and select
1818 *  MAC CSR accesses.
1819 **/
1820static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1821{
1822	u32 extcnf_ctrl;
1823
1824	extcnf_ctrl = er32(EXTCNF_CTRL);
1825
1826	if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1827		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1828		ew32(EXTCNF_CTRL, extcnf_ctrl);
1829	} else {
1830		e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1831	}
1832
1833	clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1834}
1835
1836/**
1837 *  e1000_check_mng_mode_ich8lan - Checks management mode
1838 *  @hw: pointer to the HW structure
1839 *
1840 *  This checks if the adapter has any manageability enabled.
1841 *  This is a function pointer entry point only called by read/write
1842 *  routines for the PHY and NVM parts.
1843 **/
1844static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1845{
1846	u32 fwsm;
1847
1848	fwsm = er32(FWSM);
1849	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1850		((fwsm & E1000_FWSM_MODE_MASK) ==
1851		 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1852}
1853
1854/**
1855 *  e1000_check_mng_mode_pchlan - Checks management mode
1856 *  @hw: pointer to the HW structure
1857 *
1858 *  This checks if the adapter has iAMT enabled.
1859 *  This is a function pointer entry point only called by read/write
1860 *  routines for the PHY and NVM parts.
1861 **/
1862static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1863{
1864	u32 fwsm;
1865
1866	fwsm = er32(FWSM);
1867	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1868	    (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1869}
1870
1871/**
1872 *  e1000_rar_set_pch2lan - Set receive address register
1873 *  @hw: pointer to the HW structure
1874 *  @addr: pointer to the receive address
1875 *  @index: receive address array register
1876 *
1877 *  Sets the receive address array register at index to the address passed
1878 *  in by addr.  For 82579, RAR[0] is the base address register that is to
1879 *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1880 *  Use SHRA[0-3] in place of those reserved for ME.
1881 **/
1882static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1883{
1884	u32 rar_low, rar_high;
1885
1886	/* HW expects these in little endian so we reverse the byte order
1887	 * from network order (big endian) to little endian
1888	 */
1889	rar_low = ((u32)addr[0] |
1890		   ((u32)addr[1] << 8) |
1891		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1892
1893	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1894
1895	/* If MAC address zero, no need to set the AV bit */
1896	if (rar_low || rar_high)
1897		rar_high |= E1000_RAH_AV;
1898
1899	if (index == 0) {
1900		ew32(RAL(index), rar_low);
1901		e1e_flush();
1902		ew32(RAH(index), rar_high);
1903		e1e_flush();
1904		return 0;
1905	}
1906
1907	/* RAR[1-6] are owned by manageability.  Skip those and program the
1908	 * next address into the SHRA register array.
1909	 */
1910	if (index < (u32)(hw->mac.rar_entry_count)) {
1911		s32 ret_val;
1912
1913		ret_val = e1000_acquire_swflag_ich8lan(hw);
1914		if (ret_val)
1915			goto out;
1916
1917		ew32(SHRAL(index - 1), rar_low);
1918		e1e_flush();
1919		ew32(SHRAH(index - 1), rar_high);
1920		e1e_flush();
1921
1922		e1000_release_swflag_ich8lan(hw);
1923
1924		/* verify the register updates */
1925		if ((er32(SHRAL(index - 1)) == rar_low) &&
1926		    (er32(SHRAH(index - 1)) == rar_high))
1927			return 0;
1928
1929		e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1930		      (index - 1), er32(FWSM));
1931	}
1932
1933out:
1934	e_dbg("Failed to write receive address at index %d\n", index);
1935	return -E1000_ERR_CONFIG;
1936}
1937
1938/**
1939 *  e1000_rar_get_count_pch_lpt - Get the number of available SHRA
1940 *  @hw: pointer to the HW structure
1941 *
1942 *  Get the number of available receive registers that the Host can
1943 *  program. SHRA[0-10] are the shared receive address registers
1944 *  that are shared between the Host and manageability engine (ME).
1945 *  ME can reserve any number of addresses and the host needs to be
1946 *  able to tell how many available registers it has access to.
1947 **/
1948static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw)
1949{
1950	u32 wlock_mac;
1951	u32 num_entries;
1952
1953	wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1954	wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1955
1956	switch (wlock_mac) {
1957	case 0:
1958		/* All SHRA[0..10] and RAR[0] available */
1959		num_entries = hw->mac.rar_entry_count;
1960		break;
1961	case 1:
1962		/* Only RAR[0] available */
1963		num_entries = 1;
1964		break;
1965	default:
1966		/* SHRA[0..(wlock_mac - 1)] available + RAR[0] */
1967		num_entries = wlock_mac + 1;
1968		break;
1969	}
1970
1971	return num_entries;
1972}
1973
1974/**
1975 *  e1000_rar_set_pch_lpt - Set receive address registers
1976 *  @hw: pointer to the HW structure
1977 *  @addr: pointer to the receive address
1978 *  @index: receive address array register
1979 *
1980 *  Sets the receive address register array at index to the address passed
1981 *  in by addr. For LPT, RAR[0] is the base address register that is to
1982 *  contain the MAC address. SHRA[0-10] are the shared receive address
1983 *  registers that are shared between the Host and manageability engine (ME).
1984 **/
1985static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1986{
1987	u32 rar_low, rar_high;
1988	u32 wlock_mac;
1989
1990	/* HW expects these in little endian so we reverse the byte order
1991	 * from network order (big endian) to little endian
1992	 */
1993	rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
1994		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1995
1996	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1997
1998	/* If MAC address zero, no need to set the AV bit */
1999	if (rar_low || rar_high)
2000		rar_high |= E1000_RAH_AV;
2001
2002	if (index == 0) {
2003		ew32(RAL(index), rar_low);
2004		e1e_flush();
2005		ew32(RAH(index), rar_high);
2006		e1e_flush();
2007		return 0;
2008	}
2009
2010	/* The manageability engine (ME) can lock certain SHRAR registers that
2011	 * it is using - those registers are unavailable for use.
2012	 */
2013	if (index < hw->mac.rar_entry_count) {
2014		wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
2015		wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
2016
2017		/* Check if all SHRAR registers are locked */
2018		if (wlock_mac == 1)
2019			goto out;
2020
2021		if ((wlock_mac == 0) || (index <= wlock_mac)) {
2022			s32 ret_val;
2023
2024			ret_val = e1000_acquire_swflag_ich8lan(hw);
2025
2026			if (ret_val)
2027				goto out;
2028
2029			ew32(SHRAL_PCH_LPT(index - 1), rar_low);
2030			e1e_flush();
2031			ew32(SHRAH_PCH_LPT(index - 1), rar_high);
2032			e1e_flush();
2033
2034			e1000_release_swflag_ich8lan(hw);
2035
2036			/* verify the register updates */
2037			if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
2038			    (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
2039				return 0;
2040		}
2041	}
2042
2043out:
2044	e_dbg("Failed to write receive address at index %d\n", index);
2045	return -E1000_ERR_CONFIG;
2046}
2047
2048/**
2049 *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
2050 *  @hw: pointer to the HW structure
2051 *
2052 *  Checks if firmware is blocking the reset of the PHY.
2053 *  This is a function pointer entry point only called by
2054 *  reset routines.
2055 **/
2056static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
2057{
2058	bool blocked = false;
2059	int i = 0;
2060
2061	while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) &&
2062	       (i++ < 30))
2063		usleep_range(10000, 11000);
2064	return blocked ? E1000_BLK_PHY_RESET : 0;
2065}
2066
2067/**
2068 *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
2069 *  @hw: pointer to the HW structure
2070 *
2071 *  Assumes semaphore already acquired.
2072 *
2073 **/
2074static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
2075{
2076	u16 phy_data;
2077	u32 strap = er32(STRAP);
2078	u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
2079	    E1000_STRAP_SMT_FREQ_SHIFT;
2080	s32 ret_val;
2081
2082	strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
2083
2084	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
2085	if (ret_val)
2086		return ret_val;
2087
2088	phy_data &= ~HV_SMB_ADDR_MASK;
2089	phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
2090	phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
2091
2092	if (hw->phy.type == e1000_phy_i217) {
2093		/* Restore SMBus frequency */
2094		if (freq--) {
2095			phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
2096			phy_data |= (freq & BIT(0)) <<
2097			    HV_SMB_ADDR_FREQ_LOW_SHIFT;
2098			phy_data |= (freq & BIT(1)) <<
2099			    (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
2100		} else {
2101			e_dbg("Unsupported SMB frequency in PHY\n");
2102		}
2103	}
2104
2105	return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
2106}
2107
2108/**
2109 *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
2110 *  @hw:   pointer to the HW structure
2111 *
2112 *  SW should configure the LCD from the NVM extended configuration region
2113 *  as a workaround for certain parts.
2114 **/
2115static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
2116{
2117	struct e1000_phy_info *phy = &hw->phy;
2118	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
2119	s32 ret_val = 0;
2120	u16 word_addr, reg_data, reg_addr, phy_page = 0;
2121
2122	/* Initialize the PHY from the NVM on ICH platforms.  This
2123	 * is needed due to an issue where the NVM configuration is
2124	 * not properly autoloaded after power transitions.
2125	 * Therefore, after each PHY reset, we will load the
2126	 * configuration data out of the NVM manually.
2127	 */
2128	switch (hw->mac.type) {
2129	case e1000_ich8lan:
2130		if (phy->type != e1000_phy_igp_3)
2131			return ret_val;
2132
2133		if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
2134		    (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
2135			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
2136			break;
2137		}
2138		fallthrough;
2139	case e1000_pchlan:
2140	case e1000_pch2lan:
2141	case e1000_pch_lpt:
2142	case e1000_pch_spt:
2143	case e1000_pch_cnp:
2144	case e1000_pch_tgp:
2145	case e1000_pch_adp:
2146	case e1000_pch_mtp:
2147	case e1000_pch_lnp:
2148	case e1000_pch_ptp:
2149	case e1000_pch_nvp:
2150		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
2151		break;
2152	default:
2153		return ret_val;
2154	}
2155
2156	ret_val = hw->phy.ops.acquire(hw);
2157	if (ret_val)
2158		return ret_val;
2159
2160	data = er32(FEXTNVM);
2161	if (!(data & sw_cfg_mask))
2162		goto release;
2163
2164	/* Make sure HW does not configure LCD from PHY
2165	 * extended configuration before SW configuration
2166	 */
2167	data = er32(EXTCNF_CTRL);
2168	if ((hw->mac.type < e1000_pch2lan) &&
2169	    (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2170		goto release;
2171
2172	cnf_size = er32(EXTCNF_SIZE);
2173	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2174	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2175	if (!cnf_size)
2176		goto release;
2177
2178	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2179	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2180
2181	if (((hw->mac.type == e1000_pchlan) &&
2182	     !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2183	    (hw->mac.type > e1000_pchlan)) {
2184		/* HW configures the SMBus address and LEDs when the
2185		 * OEM and LCD Write Enable bits are set in the NVM.
2186		 * When both NVM bits are cleared, SW will configure
2187		 * them instead.
2188		 */
2189		ret_val = e1000_write_smbus_addr(hw);
2190		if (ret_val)
2191			goto release;
2192
2193		data = er32(LEDCTL);
2194		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2195							(u16)data);
2196		if (ret_val)
2197			goto release;
2198	}
2199
2200	/* Configure LCD from extended configuration region. */
2201
2202	/* cnf_base_addr is in DWORD */
2203	word_addr = (u16)(cnf_base_addr << 1);
2204
2205	for (i = 0; i < cnf_size; i++) {
2206		ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, &reg_data);
2207		if (ret_val)
2208			goto release;
2209
2210		ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
2211					 1, &reg_addr);
2212		if (ret_val)
2213			goto release;
2214
2215		/* Save off the PHY page for future writes. */
2216		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2217			phy_page = reg_data;
2218			continue;
2219		}
2220
2221		reg_addr &= PHY_REG_MASK;
2222		reg_addr |= phy_page;
2223
2224		ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
2225		if (ret_val)
2226			goto release;
2227	}
2228
2229release:
2230	hw->phy.ops.release(hw);
2231	return ret_val;
2232}
2233
2234/**
2235 *  e1000_k1_gig_workaround_hv - K1 Si workaround
2236 *  @hw:   pointer to the HW structure
2237 *  @link: link up bool flag
2238 *
2239 *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2240 *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
2241 *  If link is down, the function will restore the default K1 setting located
2242 *  in the NVM.
2243 **/
2244static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2245{
2246	s32 ret_val = 0;
2247	u16 status_reg = 0;
2248	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2249
2250	if (hw->mac.type != e1000_pchlan)
2251		return 0;
2252
2253	/* Wrap the whole flow with the sw flag */
2254	ret_val = hw->phy.ops.acquire(hw);
2255	if (ret_val)
2256		return ret_val;
2257
2258	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2259	if (link) {
2260		if (hw->phy.type == e1000_phy_82578) {
2261			ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
2262						  &status_reg);
2263			if (ret_val)
2264				goto release;
2265
2266			status_reg &= (BM_CS_STATUS_LINK_UP |
2267				       BM_CS_STATUS_RESOLVED |
2268				       BM_CS_STATUS_SPEED_MASK);
2269
2270			if (status_reg == (BM_CS_STATUS_LINK_UP |
2271					   BM_CS_STATUS_RESOLVED |
2272					   BM_CS_STATUS_SPEED_1000))
2273				k1_enable = false;
2274		}
2275
2276		if (hw->phy.type == e1000_phy_82577) {
2277			ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
2278			if (ret_val)
2279				goto release;
2280
2281			status_reg &= (HV_M_STATUS_LINK_UP |
2282				       HV_M_STATUS_AUTONEG_COMPLETE |
2283				       HV_M_STATUS_SPEED_MASK);
2284
2285			if (status_reg == (HV_M_STATUS_LINK_UP |
2286					   HV_M_STATUS_AUTONEG_COMPLETE |
2287					   HV_M_STATUS_SPEED_1000))
2288				k1_enable = false;
2289		}
2290
2291		/* Link stall fix for link up */
2292		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
2293		if (ret_val)
2294			goto release;
2295
2296	} else {
2297		/* Link stall fix for link down */
2298		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
2299		if (ret_val)
2300			goto release;
2301	}
2302
2303	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2304
2305release:
2306	hw->phy.ops.release(hw);
2307
2308	return ret_val;
2309}
2310
2311/**
2312 *  e1000_configure_k1_ich8lan - Configure K1 power state
2313 *  @hw: pointer to the HW structure
2314 *  @k1_enable: K1 state to configure
2315 *
2316 *  Configure the K1 power state based on the provided parameter.
2317 *  Assumes semaphore already acquired.
2318 *
2319 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2320 **/
2321s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2322{
2323	s32 ret_val;
2324	u32 ctrl_reg = 0;
2325	u32 ctrl_ext = 0;
2326	u32 reg = 0;
2327	u16 kmrn_reg = 0;
2328
2329	ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2330					      &kmrn_reg);
2331	if (ret_val)
2332		return ret_val;
2333
2334	if (k1_enable)
2335		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2336	else
2337		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2338
2339	ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2340					       kmrn_reg);
2341	if (ret_val)
2342		return ret_val;
2343
2344	usleep_range(20, 40);
2345	ctrl_ext = er32(CTRL_EXT);
2346	ctrl_reg = er32(CTRL);
2347
2348	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2349	reg |= E1000_CTRL_FRCSPD;
2350	ew32(CTRL, reg);
2351
2352	ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2353	e1e_flush();
2354	usleep_range(20, 40);
2355	ew32(CTRL, ctrl_reg);
2356	ew32(CTRL_EXT, ctrl_ext);
2357	e1e_flush();
2358	usleep_range(20, 40);
2359
2360	return 0;
2361}
2362
2363/**
2364 *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2365 *  @hw:       pointer to the HW structure
2366 *  @d0_state: boolean if entering d0 or d3 device state
2367 *
2368 *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2369 *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
2370 *  in NVM determines whether HW should configure LPLU and Gbe Disable.
2371 **/
2372static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2373{
2374	s32 ret_val = 0;
2375	u32 mac_reg;
2376	u16 oem_reg;
2377
2378	if (hw->mac.type < e1000_pchlan)
2379		return ret_val;
2380
2381	ret_val = hw->phy.ops.acquire(hw);
2382	if (ret_val)
2383		return ret_val;
2384
2385	if (hw->mac.type == e1000_pchlan) {
2386		mac_reg = er32(EXTCNF_CTRL);
2387		if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2388			goto release;
2389	}
2390
2391	mac_reg = er32(FEXTNVM);
2392	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2393		goto release;
2394
2395	mac_reg = er32(PHY_CTRL);
2396
2397	ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
2398	if (ret_val)
2399		goto release;
2400
2401	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2402
2403	if (d0_state) {
2404		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2405			oem_reg |= HV_OEM_BITS_GBE_DIS;
2406
2407		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2408			oem_reg |= HV_OEM_BITS_LPLU;
2409	} else {
2410		if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2411			       E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2412			oem_reg |= HV_OEM_BITS_GBE_DIS;
2413
2414		if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2415			       E1000_PHY_CTRL_NOND0A_LPLU))
2416			oem_reg |= HV_OEM_BITS_LPLU;
2417	}
2418
2419	/* Set Restart auto-neg to activate the bits */
2420	if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2421	    !hw->phy.ops.check_reset_block(hw))
2422		oem_reg |= HV_OEM_BITS_RESTART_AN;
2423
2424	ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
2425
2426release:
2427	hw->phy.ops.release(hw);
2428
2429	return ret_val;
2430}
2431
2432/**
2433 *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2434 *  @hw:   pointer to the HW structure
2435 **/
2436static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2437{
2438	s32 ret_val;
2439	u16 data;
2440
2441	ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
2442	if (ret_val)
2443		return ret_val;
2444
2445	data |= HV_KMRN_MDIO_SLOW;
2446
2447	ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
2448
2449	return ret_val;
2450}
2451
2452/**
2453 *  e1000_hv_phy_workarounds_ich8lan - apply PHY workarounds
2454 *  @hw: pointer to the HW structure
2455 *
2456 *  A series of PHY workarounds to be done after every PHY reset.
2457 **/
2458static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2459{
2460	s32 ret_val = 0;
2461	u16 phy_data;
2462
2463	if (hw->mac.type != e1000_pchlan)
2464		return 0;
2465
2466	/* Set MDIO slow mode before any other MDIO access */
2467	if (hw->phy.type == e1000_phy_82577) {
2468		ret_val = e1000_set_mdio_slow_mode_hv(hw);
2469		if (ret_val)
2470			return ret_val;
2471	}
2472
2473	if (((hw->phy.type == e1000_phy_82577) &&
2474	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2475	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2476		/* Disable generation of early preamble */
2477		ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
2478		if (ret_val)
2479			return ret_val;
2480
2481		/* Preamble tuning for SSC */
2482		ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
2483		if (ret_val)
2484			return ret_val;
2485	}
2486
2487	if (hw->phy.type == e1000_phy_82578) {
2488		/* Return registers to default by doing a soft reset then
2489		 * writing 0x3140 to the control register.
2490		 */
2491		if (hw->phy.revision < 2) {
2492			e1000e_phy_sw_reset(hw);
2493			ret_val = e1e_wphy(hw, MII_BMCR, 0x3140);
2494			if (ret_val)
2495				return ret_val;
2496		}
2497	}
2498
2499	/* Select page 0 */
2500	ret_val = hw->phy.ops.acquire(hw);
2501	if (ret_val)
2502		return ret_val;
2503
2504	hw->phy.addr = 1;
2505	ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2506	hw->phy.ops.release(hw);
2507	if (ret_val)
2508		return ret_val;
2509
2510	/* Configure the K1 Si workaround during phy reset assuming there is
2511	 * link so that it disables K1 if link is in 1Gbps.
2512	 */
2513	ret_val = e1000_k1_gig_workaround_hv(hw, true);
2514	if (ret_val)
2515		return ret_val;
2516
2517	/* Workaround for link disconnects on a busy hub in half duplex */
2518	ret_val = hw->phy.ops.acquire(hw);
2519	if (ret_val)
2520		return ret_val;
2521	ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2522	if (ret_val)
2523		goto release;
2524	ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
2525	if (ret_val)
2526		goto release;
2527
2528	/* set MSE higher to enable link to stay up when noise is high */
2529	ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2530release:
2531	hw->phy.ops.release(hw);
2532
2533	return ret_val;
2534}
2535
2536/**
2537 *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2538 *  @hw:   pointer to the HW structure
2539 **/
2540void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2541{
2542	u32 mac_reg;
2543	u16 i, phy_reg = 0;
2544	s32 ret_val;
2545
2546	ret_val = hw->phy.ops.acquire(hw);
2547	if (ret_val)
2548		return;
2549	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2550	if (ret_val)
2551		goto release;
2552
2553	/* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2554	for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2555		mac_reg = er32(RAL(i));
2556		hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2557					   (u16)(mac_reg & 0xFFFF));
2558		hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2559					   (u16)((mac_reg >> 16) & 0xFFFF));
2560
2561		mac_reg = er32(RAH(i));
2562		hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2563					   (u16)(mac_reg & 0xFFFF));
2564		hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2565					   (u16)((mac_reg & E1000_RAH_AV)
2566						 >> 16));
2567	}
2568
2569	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2570
2571release:
2572	hw->phy.ops.release(hw);
2573}
2574
2575/**
2576 *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2577 *  with 82579 PHY
2578 *  @hw: pointer to the HW structure
2579 *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
2580 **/
2581s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2582{
2583	s32 ret_val = 0;
2584	u16 phy_reg, data;
2585	u32 mac_reg;
2586	u16 i;
2587
2588	if (hw->mac.type < e1000_pch2lan)
2589		return 0;
2590
2591	/* disable Rx path while enabling/disabling workaround */
2592	e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
2593	ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | BIT(14));
2594	if (ret_val)
2595		return ret_val;
2596
2597	if (enable) {
2598		/* Write Rx addresses (rar_entry_count for RAL/H, and
2599		 * SHRAL/H) and initial CRC values to the MAC
2600		 */
2601		for (i = 0; i < hw->mac.rar_entry_count; i++) {
2602			u8 mac_addr[ETH_ALEN] = { 0 };
2603			u32 addr_high, addr_low;
2604
2605			addr_high = er32(RAH(i));
2606			if (!(addr_high & E1000_RAH_AV))
2607				continue;
2608			addr_low = er32(RAL(i));
2609			mac_addr[0] = (addr_low & 0xFF);
2610			mac_addr[1] = ((addr_low >> 8) & 0xFF);
2611			mac_addr[2] = ((addr_low >> 16) & 0xFF);
2612			mac_addr[3] = ((addr_low >> 24) & 0xFF);
2613			mac_addr[4] = (addr_high & 0xFF);
2614			mac_addr[5] = ((addr_high >> 8) & 0xFF);
2615
2616			ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
2617		}
2618
2619		/* Write Rx addresses to the PHY */
2620		e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2621
2622		/* Enable jumbo frame workaround in the MAC */
2623		mac_reg = er32(FFLT_DBG);
2624		mac_reg &= ~BIT(14);
2625		mac_reg |= (7 << 15);
2626		ew32(FFLT_DBG, mac_reg);
2627
2628		mac_reg = er32(RCTL);
2629		mac_reg |= E1000_RCTL_SECRC;
2630		ew32(RCTL, mac_reg);
2631
2632		ret_val = e1000e_read_kmrn_reg(hw,
2633					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2634					       &data);
2635		if (ret_val)
2636			return ret_val;
2637		ret_val = e1000e_write_kmrn_reg(hw,
2638						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2639						data | BIT(0));
2640		if (ret_val)
2641			return ret_val;
2642		ret_val = e1000e_read_kmrn_reg(hw,
2643					       E1000_KMRNCTRLSTA_HD_CTRL,
2644					       &data);
2645		if (ret_val)
2646			return ret_val;
2647		data &= ~(0xF << 8);
2648		data |= (0xB << 8);
2649		ret_val = e1000e_write_kmrn_reg(hw,
2650						E1000_KMRNCTRLSTA_HD_CTRL,
2651						data);
2652		if (ret_val)
2653			return ret_val;
2654
2655		/* Enable jumbo frame workaround in the PHY */
2656		e1e_rphy(hw, PHY_REG(769, 23), &data);
2657		data &= ~(0x7F << 5);
2658		data |= (0x37 << 5);
2659		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2660		if (ret_val)
2661			return ret_val;
2662		e1e_rphy(hw, PHY_REG(769, 16), &data);
2663		data &= ~BIT(13);
2664		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2665		if (ret_val)
2666			return ret_val;
2667		e1e_rphy(hw, PHY_REG(776, 20), &data);
2668		data &= ~(0x3FF << 2);
2669		data |= (E1000_TX_PTR_GAP << 2);
2670		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2671		if (ret_val)
2672			return ret_val;
2673		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
2674		if (ret_val)
2675			return ret_val;
2676		e1e_rphy(hw, HV_PM_CTRL, &data);
2677		ret_val = e1e_wphy(hw, HV_PM_CTRL, data | BIT(10));
2678		if (ret_val)
2679			return ret_val;
2680	} else {
2681		/* Write MAC register values back to h/w defaults */
2682		mac_reg = er32(FFLT_DBG);
2683		mac_reg &= ~(0xF << 14);
2684		ew32(FFLT_DBG, mac_reg);
2685
2686		mac_reg = er32(RCTL);
2687		mac_reg &= ~E1000_RCTL_SECRC;
2688		ew32(RCTL, mac_reg);
2689
2690		ret_val = e1000e_read_kmrn_reg(hw,
2691					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2692					       &data);
2693		if (ret_val)
2694			return ret_val;
2695		ret_val = e1000e_write_kmrn_reg(hw,
2696						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2697						data & ~BIT(0));
2698		if (ret_val)
2699			return ret_val;
2700		ret_val = e1000e_read_kmrn_reg(hw,
2701					       E1000_KMRNCTRLSTA_HD_CTRL,
2702					       &data);
2703		if (ret_val)
2704			return ret_val;
2705		data &= ~(0xF << 8);
2706		data |= (0xB << 8);
2707		ret_val = e1000e_write_kmrn_reg(hw,
2708						E1000_KMRNCTRLSTA_HD_CTRL,
2709						data);
2710		if (ret_val)
2711			return ret_val;
2712
2713		/* Write PHY register values back to h/w defaults */
2714		e1e_rphy(hw, PHY_REG(769, 23), &data);
2715		data &= ~(0x7F << 5);
2716		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2717		if (ret_val)
2718			return ret_val;
2719		e1e_rphy(hw, PHY_REG(769, 16), &data);
2720		data |= BIT(13);
2721		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2722		if (ret_val)
2723			return ret_val;
2724		e1e_rphy(hw, PHY_REG(776, 20), &data);
2725		data &= ~(0x3FF << 2);
2726		data |= (0x8 << 2);
2727		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2728		if (ret_val)
2729			return ret_val;
2730		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
2731		if (ret_val)
2732			return ret_val;
2733		e1e_rphy(hw, HV_PM_CTRL, &data);
2734		ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~BIT(10));
2735		if (ret_val)
2736			return ret_val;
2737	}
2738
2739	/* re-enable Rx path after enabling/disabling workaround */
2740	return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~BIT(14));
2741}
2742
2743/**
2744 *  e1000_lv_phy_workarounds_ich8lan - apply ich8 specific workarounds
2745 *  @hw: pointer to the HW structure
2746 *
2747 *  A series of PHY workarounds to be done after every PHY reset.
2748 **/
2749static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2750{
2751	s32 ret_val = 0;
2752
2753	if (hw->mac.type != e1000_pch2lan)
2754		return 0;
2755
2756	/* Set MDIO slow mode before any other MDIO access */
2757	ret_val = e1000_set_mdio_slow_mode_hv(hw);
2758	if (ret_val)
2759		return ret_val;
2760
2761	ret_val = hw->phy.ops.acquire(hw);
2762	if (ret_val)
2763		return ret_val;
2764	/* set MSE higher to enable link to stay up when noise is high */
2765	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2766	if (ret_val)
2767		goto release;
2768	/* drop link after 5 times MSE threshold was reached */
2769	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2770release:
2771	hw->phy.ops.release(hw);
2772
2773	return ret_val;
2774}
2775
2776/**
2777 *  e1000_k1_workaround_lv - K1 Si workaround
2778 *  @hw:   pointer to the HW structure
2779 *
2780 *  Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2781 *  Disable K1 in 1000Mbps and 100Mbps
2782 **/
2783static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2784{
2785	s32 ret_val = 0;
2786	u16 status_reg = 0;
2787
2788	if (hw->mac.type != e1000_pch2lan)
2789		return 0;
2790
2791	/* Set K1 beacon duration based on 10Mbs speed */
2792	ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2793	if (ret_val)
2794		return ret_val;
2795
2796	if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2797	    == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2798		if (status_reg &
2799		    (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
2800			u16 pm_phy_reg;
2801
2802			/* LV 1G/100 Packet drop issue wa  */
2803			ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2804			if (ret_val)
2805				return ret_val;
2806			pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
2807			ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2808			if (ret_val)
2809				return ret_val;
2810		} else {
2811			u32 mac_reg;
2812
2813			mac_reg = er32(FEXTNVM4);
2814			mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2815			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2816			ew32(FEXTNVM4, mac_reg);
2817		}
2818	}
2819
2820	return ret_val;
2821}
2822
2823/**
2824 *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2825 *  @hw:   pointer to the HW structure
2826 *  @gate: boolean set to true to gate, false to ungate
2827 *
2828 *  Gate/ungate the automatic PHY configuration via hardware; perform
2829 *  the configuration via software instead.
2830 **/
2831static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2832{
2833	u32 extcnf_ctrl;
2834
2835	if (hw->mac.type < e1000_pch2lan)
2836		return;
2837
2838	extcnf_ctrl = er32(EXTCNF_CTRL);
2839
2840	if (gate)
2841		extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2842	else
2843		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2844
2845	ew32(EXTCNF_CTRL, extcnf_ctrl);
2846}
2847
2848/**
2849 *  e1000_lan_init_done_ich8lan - Check for PHY config completion
2850 *  @hw: pointer to the HW structure
2851 *
2852 *  Check the appropriate indication the MAC has finished configuring the
2853 *  PHY after a software reset.
2854 **/
2855static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2856{
2857	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2858
2859	/* Wait for basic configuration completes before proceeding */
2860	do {
2861		data = er32(STATUS);
2862		data &= E1000_STATUS_LAN_INIT_DONE;
2863		usleep_range(100, 200);
2864	} while ((!data) && --loop);
2865
2866	/* If basic configuration is incomplete before the above loop
2867	 * count reaches 0, loading the configuration from NVM will
2868	 * leave the PHY in a bad state possibly resulting in no link.
2869	 */
2870	if (loop == 0)
2871		e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2872
2873	/* Clear the Init Done bit for the next init event */
2874	data = er32(STATUS);
2875	data &= ~E1000_STATUS_LAN_INIT_DONE;
2876	ew32(STATUS, data);
2877}
2878
2879/**
2880 *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2881 *  @hw: pointer to the HW structure
2882 **/
2883static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2884{
2885	s32 ret_val = 0;
2886	u16 reg;
2887
2888	if (hw->phy.ops.check_reset_block(hw))
2889		return 0;
2890
2891	/* Allow time for h/w to get to quiescent state after reset */
2892	usleep_range(10000, 11000);
2893
2894	/* Perform any necessary post-reset workarounds */
2895	switch (hw->mac.type) {
2896	case e1000_pchlan:
2897		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2898		if (ret_val)
2899			return ret_val;
2900		break;
2901	case e1000_pch2lan:
2902		ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2903		if (ret_val)
2904			return ret_val;
2905		break;
2906	default:
2907		break;
2908	}
2909
2910	/* Clear the host wakeup bit after lcd reset */
2911	if (hw->mac.type >= e1000_pchlan) {
2912		e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
2913		reg &= ~BM_WUC_HOST_WU_BIT;
2914		e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2915	}
2916
2917	/* Configure the LCD with the extended configuration region in NVM */
2918	ret_val = e1000_sw_lcd_config_ich8lan(hw);
2919	if (ret_val)
2920		return ret_val;
2921
2922	/* Configure the LCD with the OEM bits in NVM */
2923	ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2924
2925	if (hw->mac.type == e1000_pch2lan) {
2926		/* Ungate automatic PHY configuration on non-managed 82579 */
2927		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2928			usleep_range(10000, 11000);
2929			e1000_gate_hw_phy_config_ich8lan(hw, false);
2930		}
2931
2932		/* Set EEE LPI Update Timer to 200usec */
2933		ret_val = hw->phy.ops.acquire(hw);
2934		if (ret_val)
2935			return ret_val;
2936		ret_val = e1000_write_emi_reg_locked(hw,
2937						     I82579_LPI_UPDATE_TIMER,
2938						     0x1387);
2939		hw->phy.ops.release(hw);
2940	}
2941
2942	return ret_val;
2943}
2944
2945/**
2946 *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2947 *  @hw: pointer to the HW structure
2948 *
2949 *  Resets the PHY
2950 *  This is a function pointer entry point called by drivers
2951 *  or other shared routines.
2952 **/
2953static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2954{
2955	s32 ret_val = 0;
2956
2957	/* Gate automatic PHY configuration by hardware on non-managed 82579 */
2958	if ((hw->mac.type == e1000_pch2lan) &&
2959	    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
2960		e1000_gate_hw_phy_config_ich8lan(hw, true);
2961
2962	ret_val = e1000e_phy_hw_reset_generic(hw);
2963	if (ret_val)
2964		return ret_val;
2965
2966	return e1000_post_phy_reset_ich8lan(hw);
2967}
2968
2969/**
2970 *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2971 *  @hw: pointer to the HW structure
2972 *  @active: true to enable LPLU, false to disable
2973 *
2974 *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
2975 *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2976 *  the phy speed. This function will manually set the LPLU bit and restart
2977 *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
2978 *  since it configures the same bit.
2979 **/
2980static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2981{
2982	s32 ret_val;
2983	u16 oem_reg;
2984
2985	ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
2986	if (ret_val)
2987		return ret_val;
2988
2989	if (active)
2990		oem_reg |= HV_OEM_BITS_LPLU;
2991	else
2992		oem_reg &= ~HV_OEM_BITS_LPLU;
2993
2994	if (!hw->phy.ops.check_reset_block(hw))
2995		oem_reg |= HV_OEM_BITS_RESTART_AN;
2996
2997	return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
2998}
2999
3000/**
3001 *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
3002 *  @hw: pointer to the HW structure
3003 *  @active: true to enable LPLU, false to disable
3004 *
3005 *  Sets the LPLU D0 state according to the active flag.  When
3006 *  activating LPLU this function also disables smart speed
3007 *  and vice versa.  LPLU will not be activated unless the
3008 *  device autonegotiation advertisement meets standards of
3009 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3010 *  This is a function pointer entry point only called by
3011 *  PHY setup routines.
3012 **/
3013static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3014{
3015	struct e1000_phy_info *phy = &hw->phy;
3016	u32 phy_ctrl;
3017	s32 ret_val = 0;
3018	u16 data;
3019
3020	if (phy->type == e1000_phy_ife)
3021		return 0;
3022
3023	phy_ctrl = er32(PHY_CTRL);
3024
3025	if (active) {
3026		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
3027		ew32(PHY_CTRL, phy_ctrl);
3028
3029		if (phy->type != e1000_phy_igp_3)
3030			return 0;
3031
3032		/* Call gig speed drop workaround on LPLU before accessing
3033		 * any PHY registers
3034		 */
3035		if (hw->mac.type == e1000_ich8lan)
3036			e1000e_gig_downshift_workaround_ich8lan(hw);
3037
3038		/* When LPLU is enabled, we should disable SmartSpeed */
3039		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3040		if (ret_val)
3041			return ret_val;
3042		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3043		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3044		if (ret_val)
3045			return ret_val;
3046	} else {
3047		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
3048		ew32(PHY_CTRL, phy_ctrl);
3049
3050		if (phy->type != e1000_phy_igp_3)
3051			return 0;
3052
3053		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3054		 * during Dx states where the power conservation is most
3055		 * important.  During driver activity we should enable
3056		 * SmartSpeed, so performance is maintained.
3057		 */
3058		if (phy->smart_speed == e1000_smart_speed_on) {
3059			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3060					   &data);
3061			if (ret_val)
3062				return ret_val;
3063
3064			data |= IGP01E1000_PSCFR_SMART_SPEED;
3065			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3066					   data);
3067			if (ret_val)
3068				return ret_val;
3069		} else if (phy->smart_speed == e1000_smart_speed_off) {
3070			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3071					   &data);
3072			if (ret_val)
3073				return ret_val;
3074
3075			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3076			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3077					   data);
3078			if (ret_val)
3079				return ret_val;
3080		}
3081	}
3082
3083	return 0;
3084}
3085
3086/**
3087 *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
3088 *  @hw: pointer to the HW structure
3089 *  @active: true to enable LPLU, false to disable
3090 *
3091 *  Sets the LPLU D3 state according to the active flag.  When
3092 *  activating LPLU this function also disables smart speed
3093 *  and vice versa.  LPLU will not be activated unless the
3094 *  device autonegotiation advertisement meets standards of
3095 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3096 *  This is a function pointer entry point only called by
3097 *  PHY setup routines.
3098 **/
3099static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3100{
3101	struct e1000_phy_info *phy = &hw->phy;
3102	u32 phy_ctrl;
3103	s32 ret_val = 0;
3104	u16 data;
3105
3106	phy_ctrl = er32(PHY_CTRL);
3107
3108	if (!active) {
3109		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
3110		ew32(PHY_CTRL, phy_ctrl);
3111
3112		if (phy->type != e1000_phy_igp_3)
3113			return 0;
3114
3115		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3116		 * during Dx states where the power conservation is most
3117		 * important.  During driver activity we should enable
3118		 * SmartSpeed, so performance is maintained.
3119		 */
3120		if (phy->smart_speed == e1000_smart_speed_on) {
3121			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3122					   &data);
3123			if (ret_val)
3124				return ret_val;
3125
3126			data |= IGP01E1000_PSCFR_SMART_SPEED;
3127			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3128					   data);
3129			if (ret_val)
3130				return ret_val;
3131		} else if (phy->smart_speed == e1000_smart_speed_off) {
3132			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3133					   &data);
3134			if (ret_val)
3135				return ret_val;
3136
3137			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3138			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3139					   data);
3140			if (ret_val)
3141				return ret_val;
3142		}
3143	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
3144		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
3145		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
3146		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
3147		ew32(PHY_CTRL, phy_ctrl);
3148
3149		if (phy->type != e1000_phy_igp_3)
3150			return 0;
3151
3152		/* Call gig speed drop workaround on LPLU before accessing
3153		 * any PHY registers
3154		 */
3155		if (hw->mac.type == e1000_ich8lan)
3156			e1000e_gig_downshift_workaround_ich8lan(hw);
3157
3158		/* When LPLU is enabled, we should disable SmartSpeed */
3159		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3160		if (ret_val)
3161			return ret_val;
3162
3163		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3164		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3165	}
3166
3167	return ret_val;
3168}
3169
3170/**
3171 *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3172 *  @hw: pointer to the HW structure
3173 *  @bank:  pointer to the variable that returns the active bank
3174 *
3175 *  Reads signature byte from the NVM using the flash access registers.
3176 *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3177 **/
3178static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3179{
3180	u32 eecd;
3181	struct e1000_nvm_info *nvm = &hw->nvm;
3182	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3183	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3184	u32 nvm_dword = 0;
3185	u8 sig_byte = 0;
3186	s32 ret_val;
3187
3188	switch (hw->mac.type) {
3189	case e1000_pch_spt:
3190	case e1000_pch_cnp:
3191	case e1000_pch_tgp:
3192	case e1000_pch_adp:
3193	case e1000_pch_mtp:
3194	case e1000_pch_lnp:
3195	case e1000_pch_ptp:
3196	case e1000_pch_nvp:
3197		bank1_offset = nvm->flash_bank_size;
3198		act_offset = E1000_ICH_NVM_SIG_WORD;
3199
3200		/* set bank to 0 in case flash read fails */
3201		*bank = 0;
3202
3203		/* Check bank 0 */
3204		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset,
3205							 &nvm_dword);
3206		if (ret_val)
3207			return ret_val;
3208		sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3209		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3210		    E1000_ICH_NVM_SIG_VALUE) {
3211			*bank = 0;
3212			return 0;
3213		}
3214
3215		/* Check bank 1 */
3216		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset +
3217							 bank1_offset,
3218							 &nvm_dword);
3219		if (ret_val)
3220			return ret_val;
3221		sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3222		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3223		    E1000_ICH_NVM_SIG_VALUE) {
3224			*bank = 1;
3225			return 0;
3226		}
3227
3228		e_dbg("ERROR: No valid NVM bank present\n");
3229		return -E1000_ERR_NVM;
3230	case e1000_ich8lan:
3231	case e1000_ich9lan:
3232		eecd = er32(EECD);
3233		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3234		    E1000_EECD_SEC1VAL_VALID_MASK) {
3235			if (eecd & E1000_EECD_SEC1VAL)
3236				*bank = 1;
3237			else
3238				*bank = 0;
3239
3240			return 0;
3241		}
3242		e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3243		fallthrough;
3244	default:
3245		/* set bank to 0 in case flash read fails */
3246		*bank = 0;
3247
3248		/* Check bank 0 */
3249		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
3250							&sig_byte);
3251		if (ret_val)
3252			return ret_val;
3253		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3254		    E1000_ICH_NVM_SIG_VALUE) {
3255			*bank = 0;
3256			return 0;
3257		}
3258
3259		/* Check bank 1 */
3260		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3261							bank1_offset,
3262							&sig_byte);
3263		if (ret_val)
3264			return ret_val;
3265		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3266		    E1000_ICH_NVM_SIG_VALUE) {
3267			*bank = 1;
3268			return 0;
3269		}
3270
3271		e_dbg("ERROR: No valid NVM bank present\n");
3272		return -E1000_ERR_NVM;
3273	}
3274}
3275
3276/**
3277 *  e1000_read_nvm_spt - NVM access for SPT
3278 *  @hw: pointer to the HW structure
3279 *  @offset: The offset (in bytes) of the word(s) to read.
3280 *  @words: Size of data to read in words.
3281 *  @data: pointer to the word(s) to read at offset.
3282 *
3283 *  Reads a word(s) from the NVM
3284 **/
3285static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
3286			      u16 *data)
3287{
3288	struct e1000_nvm_info *nvm = &hw->nvm;
3289	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3290	u32 act_offset;
3291	s32 ret_val = 0;
3292	u32 bank = 0;
3293	u32 dword = 0;
3294	u16 offset_to_read;
3295	u16 i;
3296
3297	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3298	    (words == 0)) {
3299		e_dbg("nvm parameter(s) out of bounds\n");
3300		ret_val = -E1000_ERR_NVM;
3301		goto out;
3302	}
3303
3304	nvm->ops.acquire(hw);
3305
3306	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3307	if (ret_val) {
3308		e_dbg("Could not detect valid bank, assuming bank 0\n");
3309		bank = 0;
3310	}
3311
3312	act_offset = (bank) ? nvm->flash_bank_size : 0;
3313	act_offset += offset;
3314
3315	ret_val = 0;
3316
3317	for (i = 0; i < words; i += 2) {
3318		if (words - i == 1) {
3319			if (dev_spec->shadow_ram[offset + i].modified) {
3320				data[i] =
3321				    dev_spec->shadow_ram[offset + i].value;
3322			} else {
3323				offset_to_read = act_offset + i -
3324				    ((act_offset + i) % 2);
3325				ret_val =
3326				  e1000_read_flash_dword_ich8lan(hw,
3327								 offset_to_read,
3328								 &dword);
3329				if (ret_val)
3330					break;
3331				if ((act_offset + i) % 2 == 0)
3332					data[i] = (u16)(dword & 0xFFFF);
3333				else
3334					data[i] = (u16)((dword >> 16) & 0xFFFF);
3335			}
3336		} else {
3337			offset_to_read = act_offset + i;
3338			if (!(dev_spec->shadow_ram[offset + i].modified) ||
3339			    !(dev_spec->shadow_ram[offset + i + 1].modified)) {
3340				ret_val =
3341				  e1000_read_flash_dword_ich8lan(hw,
3342								 offset_to_read,
3343								 &dword);
3344				if (ret_val)
3345					break;
3346			}
3347			if (dev_spec->shadow_ram[offset + i].modified)
3348				data[i] =
3349				    dev_spec->shadow_ram[offset + i].value;
3350			else
3351				data[i] = (u16)(dword & 0xFFFF);
3352			if (dev_spec->shadow_ram[offset + i].modified)
3353				data[i + 1] =
3354				    dev_spec->shadow_ram[offset + i + 1].value;
3355			else
3356				data[i + 1] = (u16)(dword >> 16 & 0xFFFF);
3357		}
3358	}
3359
3360	nvm->ops.release(hw);
3361
3362out:
3363	if (ret_val)
3364		e_dbg("NVM read error: %d\n", ret_val);
3365
3366	return ret_val;
3367}
3368
3369/**
3370 *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
3371 *  @hw: pointer to the HW structure
3372 *  @offset: The offset (in bytes) of the word(s) to read.
3373 *  @words: Size of data to read in words
3374 *  @data: Pointer to the word(s) to read at offset.
3375 *
3376 *  Reads a word(s) from the NVM using the flash access registers.
3377 **/
3378static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3379				  u16 *data)
3380{
3381	struct e1000_nvm_info *nvm = &hw->nvm;
3382	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3383	u32 act_offset;
3384	s32 ret_val = 0;
3385	u32 bank = 0;
3386	u16 i, word;
3387
3388	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3389	    (words == 0)) {
3390		e_dbg("nvm parameter(s) out of bounds\n");
3391		ret_val = -E1000_ERR_NVM;
3392		goto out;
3393	}
3394
3395	nvm->ops.acquire(hw);
3396
3397	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3398	if (ret_val) {
3399		e_dbg("Could not detect valid bank, assuming bank 0\n");
3400		bank = 0;
3401	}
3402
3403	act_offset = (bank) ? nvm->flash_bank_size : 0;
3404	act_offset += offset;
3405
3406	ret_val = 0;
3407	for (i = 0; i < words; i++) {
3408		if (dev_spec->shadow_ram[offset + i].modified) {
3409			data[i] = dev_spec->shadow_ram[offset + i].value;
3410		} else {
3411			ret_val = e1000_read_flash_word_ich8lan(hw,
3412								act_offset + i,
3413								&word);
3414			if (ret_val)
3415				break;
3416			data[i] = word;
3417		}
3418	}
3419
3420	nvm->ops.release(hw);
3421
3422out:
3423	if (ret_val)
3424		e_dbg("NVM read error: %d\n", ret_val);
3425
3426	return ret_val;
3427}
3428
3429/**
3430 *  e1000_flash_cycle_init_ich8lan - Initialize flash
3431 *  @hw: pointer to the HW structure
3432 *
3433 *  This function does initial flash setup so that a new read/write/erase cycle
3434 *  can be started.
3435 **/
3436static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3437{
3438	union ich8_hws_flash_status hsfsts;
3439	s32 ret_val = -E1000_ERR_NVM;
3440
3441	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3442
3443	/* Check if the flash descriptor is valid */
3444	if (!hsfsts.hsf_status.fldesvalid) {
3445		e_dbg("Flash descriptor invalid.  SW Sequencing must be used.\n");
3446		return -E1000_ERR_NVM;
3447	}
3448
3449	/* Clear FCERR and DAEL in hw status by writing 1 */
3450	hsfsts.hsf_status.flcerr = 1;
3451	hsfsts.hsf_status.dael = 1;
3452	if (hw->mac.type >= e1000_pch_spt)
3453		ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3454	else
3455		ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3456
3457	/* Either we should have a hardware SPI cycle in progress
3458	 * bit to check against, in order to start a new cycle or
3459	 * FDONE bit should be changed in the hardware so that it
3460	 * is 1 after hardware reset, which can then be used as an
3461	 * indication whether a cycle is in progress or has been
3462	 * completed.
3463	 */
3464
3465	if (!hsfsts.hsf_status.flcinprog) {
3466		/* There is no cycle running at present,
3467		 * so we can start a cycle.
3468		 * Begin by setting Flash Cycle Done.
3469		 */
3470		hsfsts.hsf_status.flcdone = 1;
3471		if (hw->mac.type >= e1000_pch_spt)
3472			ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3473		else
3474			ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3475		ret_val = 0;
3476	} else {
3477		s32 i;
3478
3479		/* Otherwise poll for sometime so the current
3480		 * cycle has a chance to end before giving up.
3481		 */
3482		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3483			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3484			if (!hsfsts.hsf_status.flcinprog) {
3485				ret_val = 0;
3486				break;
3487			}
3488			udelay(1);
3489		}
3490		if (!ret_val) {
3491			/* Successful in waiting for previous cycle to timeout,
3492			 * now set the Flash Cycle Done.
3493			 */
3494			hsfsts.hsf_status.flcdone = 1;
3495			if (hw->mac.type >= e1000_pch_spt)
3496				ew32flash(ICH_FLASH_HSFSTS,
3497					  hsfsts.regval & 0xFFFF);
3498			else
3499				ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3500		} else {
3501			e_dbg("Flash controller busy, cannot get access\n");
3502		}
3503	}
3504
3505	return ret_val;
3506}
3507
3508/**
3509 *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3510 *  @hw: pointer to the HW structure
3511 *  @timeout: maximum time to wait for completion
3512 *
3513 *  This function starts a flash cycle and waits for its completion.
3514 **/
3515static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3516{
3517	union ich8_hws_flash_ctrl hsflctl;
3518	union ich8_hws_flash_status hsfsts;
3519	u32 i = 0;
3520
3521	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3522	if (hw->mac.type >= e1000_pch_spt)
3523		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3524	else
3525		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3526	hsflctl.hsf_ctrl.flcgo = 1;
3527
3528	if (hw->mac.type >= e1000_pch_spt)
3529		ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
3530	else
3531		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3532
3533	/* wait till FDONE bit is set to 1 */
3534	do {
3535		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3536		if (hsfsts.hsf_status.flcdone)
3537			break;
3538		udelay(1);
3539	} while (i++ < timeout);
3540
3541	if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3542		return 0;
3543
3544	return -E1000_ERR_NVM;
3545}
3546
3547/**
3548 *  e1000_read_flash_dword_ich8lan - Read dword from flash
3549 *  @hw: pointer to the HW structure
3550 *  @offset: offset to data location
3551 *  @data: pointer to the location for storing the data
3552 *
3553 *  Reads the flash dword at offset into data.  Offset is converted
3554 *  to bytes before read.
3555 **/
3556static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset,
3557					  u32 *data)
3558{
3559	/* Must convert word offset into bytes. */
3560	offset <<= 1;
3561	return e1000_read_flash_data32_ich8lan(hw, offset, data);
3562}
3563
3564/**
3565 *  e1000_read_flash_word_ich8lan - Read word from flash
3566 *  @hw: pointer to the HW structure
3567 *  @offset: offset to data location
3568 *  @data: pointer to the location for storing the data
3569 *
3570 *  Reads the flash word at offset into data.  Offset is converted
3571 *  to bytes before read.
3572 **/
3573static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3574					 u16 *data)
3575{
3576	/* Must convert offset into bytes. */
3577	offset <<= 1;
3578
3579	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3580}
3581
3582/**
3583 *  e1000_read_flash_byte_ich8lan - Read byte from flash
3584 *  @hw: pointer to the HW structure
3585 *  @offset: The offset of the byte to read.
3586 *  @data: Pointer to a byte to store the value read.
3587 *
3588 *  Reads a single byte from the NVM using the flash access registers.
3589 **/
3590static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3591					 u8 *data)
3592{
3593	s32 ret_val;
3594	u16 word = 0;
3595
3596	/* In SPT, only 32 bits access is supported,
3597	 * so this function should not be called.
3598	 */
3599	if (hw->mac.type >= e1000_pch_spt)
3600		return -E1000_ERR_NVM;
3601	else
3602		ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3603
3604	if (ret_val)
3605		return ret_val;
3606
3607	*data = (u8)word;
3608
3609	return 0;
3610}
3611
3612/**
3613 *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
3614 *  @hw: pointer to the HW structure
3615 *  @offset: The offset (in bytes) of the byte or word to read.
3616 *  @size: Size of data to read, 1=byte 2=word
3617 *  @data: Pointer to the word to store the value read.
3618 *
3619 *  Reads a byte or word from the NVM using the flash access registers.
3620 **/
3621static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3622					 u8 size, u16 *data)
3623{
3624	union ich8_hws_flash_status hsfsts;
3625	union ich8_hws_flash_ctrl hsflctl;
3626	u32 flash_linear_addr;
3627	u32 flash_data = 0;
3628	s32 ret_val = -E1000_ERR_NVM;
3629	u8 count = 0;
3630
3631	if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3632		return -E1000_ERR_NVM;
3633
3634	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3635			     hw->nvm.flash_base_addr);
3636
3637	do {
3638		udelay(1);
3639		/* Steps */
3640		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3641		if (ret_val)
3642			break;
3643
3644		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3645		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3646		hsflctl.hsf_ctrl.fldbcount = size - 1;
3647		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3648		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3649
3650		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3651
3652		ret_val =
3653		    e1000_flash_cycle_ich8lan(hw,
3654					      ICH_FLASH_READ_COMMAND_TIMEOUT);
3655
3656		/* Check if FCERR is set to 1, if set to 1, clear it
3657		 * and try the whole sequence a few more times, else
3658		 * read in (shift in) the Flash Data0, the order is
3659		 * least significant byte first msb to lsb
3660		 */
3661		if (!ret_val) {
3662			flash_data = er32flash(ICH_FLASH_FDATA0);
3663			if (size == 1)
3664				*data = (u8)(flash_data & 0x000000FF);
3665			else if (size == 2)
3666				*data = (u16)(flash_data & 0x0000FFFF);
3667			break;
3668		} else {
3669			/* If we've gotten here, then things are probably
3670			 * completely hosed, but if the error condition is
3671			 * detected, it won't hurt to give it another try...
3672			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3673			 */
3674			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3675			if (hsfsts.hsf_status.flcerr) {
3676				/* Repeat for some time before giving up. */
3677				continue;
3678			} else if (!hsfsts.hsf_status.flcdone) {
3679				e_dbg("Timeout error - flash cycle did not complete.\n");
3680				break;
3681			}
3682		}
3683	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3684
3685	return ret_val;
3686}
3687
3688/**
3689 *  e1000_read_flash_data32_ich8lan - Read dword from NVM
3690 *  @hw: pointer to the HW structure
3691 *  @offset: The offset (in bytes) of the dword to read.
3692 *  @data: Pointer to the dword to store the value read.
3693 *
3694 *  Reads a byte or word from the NVM using the flash access registers.
3695 **/
3696
3697static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
3698					   u32 *data)
3699{
3700	union ich8_hws_flash_status hsfsts;
3701	union ich8_hws_flash_ctrl hsflctl;
3702	u32 flash_linear_addr;
3703	s32 ret_val = -E1000_ERR_NVM;
3704	u8 count = 0;
3705
3706	if (offset > ICH_FLASH_LINEAR_ADDR_MASK || hw->mac.type < e1000_pch_spt)
3707		return -E1000_ERR_NVM;
3708	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3709			     hw->nvm.flash_base_addr);
3710
3711	do {
3712		udelay(1);
3713		/* Steps */
3714		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3715		if (ret_val)
3716			break;
3717		/* In SPT, This register is in Lan memory space, not flash.
3718		 * Therefore, only 32 bit access is supported
3719		 */
3720		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3721
3722		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3723		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
3724		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3725		/* In SPT, This register is in Lan memory space, not flash.
3726		 * Therefore, only 32 bit access is supported
3727		 */
3728		ew32flash(ICH_FLASH_HSFSTS, (u32)hsflctl.regval << 16);
3729		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3730
3731		ret_val =
3732		   e1000_flash_cycle_ich8lan(hw,
3733					     ICH_FLASH_READ_COMMAND_TIMEOUT);
3734
3735		/* Check if FCERR is set to 1, if set to 1, clear it
3736		 * and try the whole sequence a few more times, else
3737		 * read in (shift in) the Flash Data0, the order is
3738		 * least significant byte first msb to lsb
3739		 */
3740		if (!ret_val) {
3741			*data = er32flash(ICH_FLASH_FDATA0);
3742			break;
3743		} else {
3744			/* If we've gotten here, then things are probably
3745			 * completely hosed, but if the error condition is
3746			 * detected, it won't hurt to give it another try...
3747			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3748			 */
3749			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3750			if (hsfsts.hsf_status.flcerr) {
3751				/* Repeat for some time before giving up. */
3752				continue;
3753			} else if (!hsfsts.hsf_status.flcdone) {
3754				e_dbg("Timeout error - flash cycle did not complete.\n");
3755				break;
3756			}
3757		}
3758	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3759
3760	return ret_val;
3761}
3762
3763/**
3764 *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
3765 *  @hw: pointer to the HW structure
3766 *  @offset: The offset (in bytes) of the word(s) to write.
3767 *  @words: Size of data to write in words
3768 *  @data: Pointer to the word(s) to write at offset.
3769 *
3770 *  Writes a byte or word to the NVM using the flash access registers.
3771 **/
3772static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3773				   u16 *data)
3774{
3775	struct e1000_nvm_info *nvm = &hw->nvm;
3776	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3777	u16 i;
3778
3779	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3780	    (words == 0)) {
3781		e_dbg("nvm parameter(s) out of bounds\n");
3782		return -E1000_ERR_NVM;
3783	}
3784
3785	nvm->ops.acquire(hw);
3786
3787	for (i = 0; i < words; i++) {
3788		dev_spec->shadow_ram[offset + i].modified = true;
3789		dev_spec->shadow_ram[offset + i].value = data[i];
3790	}
3791
3792	nvm->ops.release(hw);
3793
3794	return 0;
3795}
3796
3797/**
3798 *  e1000_update_nvm_checksum_spt - Update the checksum for NVM
3799 *  @hw: pointer to the HW structure
3800 *
3801 *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3802 *  which writes the checksum to the shadow ram.  The changes in the shadow
3803 *  ram are then committed to the EEPROM by processing each bank at a time
3804 *  checking for the modified bit and writing only the pending changes.
3805 *  After a successful commit, the shadow ram is cleared and is ready for
3806 *  future writes.
3807 **/
3808static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw)
3809{
3810	struct e1000_nvm_info *nvm = &hw->nvm;
3811	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3812	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3813	s32 ret_val;
3814	u32 dword = 0;
3815
3816	ret_val = e1000e_update_nvm_checksum_generic(hw);
3817	if (ret_val)
3818		goto out;
3819
3820	if (nvm->type != e1000_nvm_flash_sw)
3821		goto out;
3822
3823	nvm->ops.acquire(hw);
3824
3825	/* We're writing to the opposite bank so if we're on bank 1,
3826	 * write to bank 0 etc.  We also need to erase the segment that
3827	 * is going to be written
3828	 */
3829	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3830	if (ret_val) {
3831		e_dbg("Could not detect valid bank, assuming bank 0\n");
3832		bank = 0;
3833	}
3834
3835	if (bank == 0) {
3836		new_bank_offset = nvm->flash_bank_size;
3837		old_bank_offset = 0;
3838		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3839		if (ret_val)
3840			goto release;
3841	} else {
3842		old_bank_offset = nvm->flash_bank_size;
3843		new_bank_offset = 0;
3844		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3845		if (ret_val)
3846			goto release;
3847	}
3848	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i += 2) {
3849		/* Determine whether to write the value stored
3850		 * in the other NVM bank or a modified value stored
3851		 * in the shadow RAM
3852		 */
3853		ret_val = e1000_read_flash_dword_ich8lan(hw,
3854							 i + old_bank_offset,
3855							 &dword);
3856
3857		if (dev_spec->shadow_ram[i].modified) {
3858			dword &= 0xffff0000;
3859			dword |= (dev_spec->shadow_ram[i].value & 0xffff);
3860		}
3861		if (dev_spec->shadow_ram[i + 1].modified) {
3862			dword &= 0x0000ffff;
3863			dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff)
3864				  << 16);
3865		}
3866		if (ret_val)
3867			break;
3868
3869		/* If the word is 0x13, then make sure the signature bits
3870		 * (15:14) are 11b until the commit has completed.
3871		 * This will allow us to write 10b which indicates the
3872		 * signature is valid.  We want to do this after the write
3873		 * has completed so that we don't mark the segment valid
3874		 * while the write is still in progress
3875		 */
3876		if (i == E1000_ICH_NVM_SIG_WORD - 1)
3877			dword |= E1000_ICH_NVM_SIG_MASK << 16;
3878
3879		/* Convert offset to bytes. */
3880		act_offset = (i + new_bank_offset) << 1;
3881
3882		usleep_range(100, 200);
3883
3884		/* Write the data to the new bank. Offset in words */
3885		act_offset = i + new_bank_offset;
3886		ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset,
3887								dword);
3888		if (ret_val)
3889			break;
3890	}
3891
3892	/* Don't bother writing the segment valid bits if sector
3893	 * programming failed.
3894	 */
3895	if (ret_val) {
3896		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3897		e_dbg("Flash commit failed.\n");
3898		goto release;
3899	}
3900
3901	/* Finally validate the new segment by setting bit 15:14
3902	 * to 10b in word 0x13 , this can be done without an
3903	 * erase as well since these bits are 11 to start with
3904	 * and we need to change bit 14 to 0b
3905	 */
3906	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3907
3908	/*offset in words but we read dword */
3909	--act_offset;
3910	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3911
3912	if (ret_val)
3913		goto release;
3914
3915	dword &= 0xBFFFFFFF;
3916	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3917
3918	if (ret_val)
3919		goto release;
3920
3921	/* offset in words but we read dword */
3922	act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1;
3923	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3924
3925	if (ret_val)
3926		goto release;
3927
3928	dword &= 0x00FFFFFF;
3929	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3930
3931	if (ret_val)
3932		goto release;
3933
3934	/* Great!  Everything worked, we can now clear the cached entries. */
3935	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3936		dev_spec->shadow_ram[i].modified = false;
3937		dev_spec->shadow_ram[i].value = 0xFFFF;
3938	}
3939
3940release:
3941	nvm->ops.release(hw);
3942
3943	/* Reload the EEPROM, or else modifications will not appear
3944	 * until after the next adapter reset.
3945	 */
3946	if (!ret_val) {
3947		nvm->ops.reload(hw);
3948		usleep_range(10000, 11000);
3949	}
3950
3951out:
3952	if (ret_val)
3953		e_dbg("NVM update error: %d\n", ret_val);
3954
3955	return ret_val;
3956}
3957
3958/**
3959 *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
3960 *  @hw: pointer to the HW structure
3961 *
3962 *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3963 *  which writes the checksum to the shadow ram.  The changes in the shadow
3964 *  ram are then committed to the EEPROM by processing each bank at a time
3965 *  checking for the modified bit and writing only the pending changes.
3966 *  After a successful commit, the shadow ram is cleared and is ready for
3967 *  future writes.
3968 **/
3969static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
3970{
3971	struct e1000_nvm_info *nvm = &hw->nvm;
3972	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3973	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3974	s32 ret_val;
3975	u16 data = 0;
3976
3977	ret_val = e1000e_update_nvm_checksum_generic(hw);
3978	if (ret_val)
3979		goto out;
3980
3981	if (nvm->type != e1000_nvm_flash_sw)
3982		goto out;
3983
3984	nvm->ops.acquire(hw);
3985
3986	/* We're writing to the opposite bank so if we're on bank 1,
3987	 * write to bank 0 etc.  We also need to erase the segment that
3988	 * is going to be written
3989	 */
3990	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3991	if (ret_val) {
3992		e_dbg("Could not detect valid bank, assuming bank 0\n");
3993		bank = 0;
3994	}
3995
3996	if (bank == 0) {
3997		new_bank_offset = nvm->flash_bank_size;
3998		old_bank_offset = 0;
3999		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
4000		if (ret_val)
4001			goto release;
4002	} else {
4003		old_bank_offset = nvm->flash_bank_size;
4004		new_bank_offset = 0;
4005		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
4006		if (ret_val)
4007			goto release;
4008	}
4009	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
4010		if (dev_spec->shadow_ram[i].modified) {
4011			data = dev_spec->shadow_ram[i].value;
4012		} else {
4013			ret_val = e1000_read_flash_word_ich8lan(hw, i +
4014								old_bank_offset,
4015								&data);
4016			if (ret_val)
4017				break;
4018		}
4019
4020		/* If the word is 0x13, then make sure the signature bits
4021		 * (15:14) are 11b until the commit has completed.
4022		 * This will allow us to write 10b which indicates the
4023		 * signature is valid.  We want to do this after the write
4024		 * has completed so that we don't mark the segment valid
4025		 * while the write is still in progress
4026		 */
4027		if (i == E1000_ICH_NVM_SIG_WORD)
4028			data |= E1000_ICH_NVM_SIG_MASK;
4029
4030		/* Convert offset to bytes. */
4031		act_offset = (i + new_bank_offset) << 1;
4032
4033		usleep_range(100, 200);
4034		/* Write the bytes to the new bank. */
4035		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4036							       act_offset,
4037							       (u8)data);
4038		if (ret_val)
4039			break;
4040
4041		usleep_range(100, 200);
4042		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4043							       act_offset + 1,
4044							       (u8)(data >> 8));
4045		if (ret_val)
4046			break;
4047	}
4048
4049	/* Don't bother writing the segment valid bits if sector
4050	 * programming failed.
4051	 */
4052	if (ret_val) {
4053		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
4054		e_dbg("Flash commit failed.\n");
4055		goto release;
4056	}
4057
4058	/* Finally validate the new segment by setting bit 15:14
4059	 * to 10b in word 0x13 , this can be done without an
4060	 * erase as well since these bits are 11 to start with
4061	 * and we need to change bit 14 to 0b
4062	 */
4063	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
4064	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
4065	if (ret_val)
4066		goto release;
4067
4068	data &= 0xBFFF;
4069	ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4070						       act_offset * 2 + 1,
4071						       (u8)(data >> 8));
4072	if (ret_val)
4073		goto release;
4074
4075	/* And invalidate the previously valid segment by setting
4076	 * its signature word (0x13) high_byte to 0b. This can be
4077	 * done without an erase because flash erase sets all bits
4078	 * to 1's. We can write 1's to 0's without an erase
4079	 */
4080	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
4081	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
4082	if (ret_val)
4083		goto release;
4084
4085	/* Great!  Everything worked, we can now clear the cached entries. */
4086	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
4087		dev_spec->shadow_ram[i].modified = false;
4088		dev_spec->shadow_ram[i].value = 0xFFFF;
4089	}
4090
4091release:
4092	nvm->ops.release(hw);
4093
4094	/* Reload the EEPROM, or else modifications will not appear
4095	 * until after the next adapter reset.
4096	 */
4097	if (!ret_val) {
4098		nvm->ops.reload(hw);
4099		usleep_range(10000, 11000);
4100	}
4101
4102out:
4103	if (ret_val)
4104		e_dbg("NVM update error: %d\n", ret_val);
4105
4106	return ret_val;
4107}
4108
4109/**
4110 *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
4111 *  @hw: pointer to the HW structure
4112 *
4113 *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
4114 *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
4115 *  calculated, in which case we need to calculate the checksum and set bit 6.
4116 **/
4117static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
4118{
4119	s32 ret_val;
4120	u16 data;
4121	u16 word;
4122	u16 valid_csum_mask;
4123
4124	/* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
4125	 * the checksum needs to be fixed.  This bit is an indication that
4126	 * the NVM was prepared by OEM software and did not calculate
4127	 * the checksum...a likely scenario.
4128	 */
4129	switch (hw->mac.type) {
4130	case e1000_pch_lpt:
4131	case e1000_pch_spt:
4132	case e1000_pch_cnp:
4133	case e1000_pch_tgp:
4134	case e1000_pch_adp:
4135	case e1000_pch_mtp:
4136	case e1000_pch_lnp:
4137	case e1000_pch_ptp:
4138	case e1000_pch_nvp:
4139		word = NVM_COMPAT;
4140		valid_csum_mask = NVM_COMPAT_VALID_CSUM;
4141		break;
4142	default:
4143		word = NVM_FUTURE_INIT_WORD1;
4144		valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
4145		break;
4146	}
4147
4148	ret_val = e1000_read_nvm(hw, word, 1, &data);
4149	if (ret_val)
4150		return ret_val;
4151
4152	if (!(data & valid_csum_mask)) {
4153		e_dbg("NVM Checksum valid bit not set\n");
4154
4155		if (hw->mac.type < e1000_pch_tgp) {
4156			data |= valid_csum_mask;
4157			ret_val = e1000_write_nvm(hw, word, 1, &data);
4158			if (ret_val)
4159				return ret_val;
4160			ret_val = e1000e_update_nvm_checksum(hw);
4161			if (ret_val)
4162				return ret_val;
4163		}
4164	}
4165
4166	return e1000e_validate_nvm_checksum_generic(hw);
4167}
4168
4169/**
4170 *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
4171 *  @hw: pointer to the HW structure
4172 *
4173 *  To prevent malicious write/erase of the NVM, set it to be read-only
4174 *  so that the hardware ignores all write/erase cycles of the NVM via
4175 *  the flash control registers.  The shadow-ram copy of the NVM will
4176 *  still be updated, however any updates to this copy will not stick
4177 *  across driver reloads.
4178 **/
4179void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
4180{
4181	struct e1000_nvm_info *nvm = &hw->nvm;
4182	union ich8_flash_protected_range pr0;
4183	union ich8_hws_flash_status hsfsts;
4184	u32 gfpreg;
4185
4186	nvm->ops.acquire(hw);
4187
4188	gfpreg = er32flash(ICH_FLASH_GFPREG);
4189
4190	/* Write-protect GbE Sector of NVM */
4191	pr0.regval = er32flash(ICH_FLASH_PR0);
4192	pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
4193	pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
4194	pr0.range.wpe = true;
4195	ew32flash(ICH_FLASH_PR0, pr0.regval);
4196
4197	/* Lock down a subset of GbE Flash Control Registers, e.g.
4198	 * PR0 to prevent the write-protection from being lifted.
4199	 * Once FLOCKDN is set, the registers protected by it cannot
4200	 * be written until FLOCKDN is cleared by a hardware reset.
4201	 */
4202	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4203	hsfsts.hsf_status.flockdn = true;
4204	ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
4205
4206	nvm->ops.release(hw);
4207}
4208
4209/**
4210 *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
4211 *  @hw: pointer to the HW structure
4212 *  @offset: The offset (in bytes) of the byte/word to read.
4213 *  @size: Size of data to read, 1=byte 2=word
4214 *  @data: The byte(s) to write to the NVM.
4215 *
4216 *  Writes one/two bytes to the NVM using the flash access registers.
4217 **/
4218static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
4219					  u8 size, u16 data)
4220{
4221	union ich8_hws_flash_status hsfsts;
4222	union ich8_hws_flash_ctrl hsflctl;
4223	u32 flash_linear_addr;
4224	u32 flash_data = 0;
4225	s32 ret_val;
4226	u8 count = 0;
4227
4228	if (hw->mac.type >= e1000_pch_spt) {
4229		if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4230			return -E1000_ERR_NVM;
4231	} else {
4232		if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4233			return -E1000_ERR_NVM;
4234	}
4235
4236	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4237			     hw->nvm.flash_base_addr);
4238
4239	do {
4240		udelay(1);
4241		/* Steps */
4242		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4243		if (ret_val)
4244			break;
4245		/* In SPT, This register is in Lan memory space, not
4246		 * flash.  Therefore, only 32 bit access is supported
4247		 */
4248		if (hw->mac.type >= e1000_pch_spt)
4249			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
4250		else
4251			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4252
4253		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
4254		hsflctl.hsf_ctrl.fldbcount = size - 1;
4255		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4256		/* In SPT, This register is in Lan memory space,
4257		 * not flash.  Therefore, only 32 bit access is
4258		 * supported
4259		 */
4260		if (hw->mac.type >= e1000_pch_spt)
4261			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4262		else
4263			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4264
4265		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4266
4267		if (size == 1)
4268			flash_data = (u32)data & 0x00FF;
4269		else
4270			flash_data = (u32)data;
4271
4272		ew32flash(ICH_FLASH_FDATA0, flash_data);
4273
4274		/* check if FCERR is set to 1 , if set to 1, clear it
4275		 * and try the whole sequence a few more times else done
4276		 */
4277		ret_val =
4278		    e1000_flash_cycle_ich8lan(hw,
4279					      ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4280		if (!ret_val)
4281			break;
4282
4283		/* If we're here, then things are most likely
4284		 * completely hosed, but if the error condition
4285		 * is detected, it won't hurt to give it another
4286		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4287		 */
4288		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4289		if (hsfsts.hsf_status.flcerr)
4290			/* Repeat for some time before giving up. */
4291			continue;
4292		if (!hsfsts.hsf_status.flcdone) {
4293			e_dbg("Timeout error - flash cycle did not complete.\n");
4294			break;
4295		}
4296	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4297
4298	return ret_val;
4299}
4300
4301/**
4302*  e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM
4303*  @hw: pointer to the HW structure
4304*  @offset: The offset (in bytes) of the dwords to read.
4305*  @data: The 4 bytes to write to the NVM.
4306*
4307*  Writes one/two/four bytes to the NVM using the flash access registers.
4308**/
4309static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
4310					    u32 data)
4311{
4312	union ich8_hws_flash_status hsfsts;
4313	union ich8_hws_flash_ctrl hsflctl;
4314	u32 flash_linear_addr;
4315	s32 ret_val;
4316	u8 count = 0;
4317
4318	if (hw->mac.type >= e1000_pch_spt) {
4319		if (offset > ICH_FLASH_LINEAR_ADDR_MASK)
4320			return -E1000_ERR_NVM;
4321	}
4322	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4323			     hw->nvm.flash_base_addr);
4324	do {
4325		udelay(1);
4326		/* Steps */
4327		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4328		if (ret_val)
4329			break;
4330
4331		/* In SPT, This register is in Lan memory space, not
4332		 * flash.  Therefore, only 32 bit access is supported
4333		 */
4334		if (hw->mac.type >= e1000_pch_spt)
4335			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS)
4336			    >> 16;
4337		else
4338			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4339
4340		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
4341		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4342
4343		/* In SPT, This register is in Lan memory space,
4344		 * not flash.  Therefore, only 32 bit access is
4345		 * supported
4346		 */
4347		if (hw->mac.type >= e1000_pch_spt)
4348			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4349		else
4350			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4351
4352		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4353
4354		ew32flash(ICH_FLASH_FDATA0, data);
4355
4356		/* check if FCERR is set to 1 , if set to 1, clear it
4357		 * and try the whole sequence a few more times else done
4358		 */
4359		ret_val =
4360		   e1000_flash_cycle_ich8lan(hw,
4361					     ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4362
4363		if (!ret_val)
4364			break;
4365
4366		/* If we're here, then things are most likely
4367		 * completely hosed, but if the error condition
4368		 * is detected, it won't hurt to give it another
4369		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4370		 */
4371		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4372
4373		if (hsfsts.hsf_status.flcerr)
4374			/* Repeat for some time before giving up. */
4375			continue;
4376		if (!hsfsts.hsf_status.flcdone) {
4377			e_dbg("Timeout error - flash cycle did not complete.\n");
4378			break;
4379		}
4380	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4381
4382	return ret_val;
4383}
4384
4385/**
4386 *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
4387 *  @hw: pointer to the HW structure
4388 *  @offset: The index of the byte to read.
4389 *  @data: The byte to write to the NVM.
4390 *
4391 *  Writes a single byte to the NVM using the flash access registers.
4392 **/
4393static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
4394					  u8 data)
4395{
4396	u16 word = (u16)data;
4397
4398	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
4399}
4400
4401/**
4402*  e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM
4403*  @hw: pointer to the HW structure
4404*  @offset: The offset of the word to write.
4405*  @dword: The dword to write to the NVM.
4406*
4407*  Writes a single dword to the NVM using the flash access registers.
4408*  Goes through a retry algorithm before giving up.
4409**/
4410static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
4411						 u32 offset, u32 dword)
4412{
4413	s32 ret_val;
4414	u16 program_retries;
4415
4416	/* Must convert word offset into bytes. */
4417	offset <<= 1;
4418	ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4419
4420	if (!ret_val)
4421		return ret_val;
4422	for (program_retries = 0; program_retries < 100; program_retries++) {
4423		e_dbg("Retrying Byte %8.8X at offset %u\n", dword, offset);
4424		usleep_range(100, 200);
4425		ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4426		if (!ret_val)
4427			break;
4428	}
4429	if (program_retries == 100)
4430		return -E1000_ERR_NVM;
4431
4432	return 0;
4433}
4434
4435/**
4436 *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
4437 *  @hw: pointer to the HW structure
4438 *  @offset: The offset of the byte to write.
4439 *  @byte: The byte to write to the NVM.
4440 *
4441 *  Writes a single byte to the NVM using the flash access registers.
4442 *  Goes through a retry algorithm before giving up.
4443 **/
4444static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
4445						u32 offset, u8 byte)
4446{
4447	s32 ret_val;
4448	u16 program_retries;
4449
4450	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4451	if (!ret_val)
4452		return ret_val;
4453
4454	for (program_retries = 0; program_retries < 100; program_retries++) {
4455		e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
4456		usleep_range(100, 200);
4457		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4458		if (!ret_val)
4459			break;
4460	}
4461	if (program_retries == 100)
4462		return -E1000_ERR_NVM;
4463
4464	return 0;
4465}
4466
4467/**
4468 *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
4469 *  @hw: pointer to the HW structure
4470 *  @bank: 0 for first bank, 1 for second bank, etc.
4471 *
4472 *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
4473 *  bank N is 4096 * N + flash_reg_addr.
4474 **/
4475static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
4476{
4477	struct e1000_nvm_info *nvm = &hw->nvm;
4478	union ich8_hws_flash_status hsfsts;
4479	union ich8_hws_flash_ctrl hsflctl;
4480	u32 flash_linear_addr;
4481	/* bank size is in 16bit words - adjust to bytes */
4482	u32 flash_bank_size = nvm->flash_bank_size * 2;
4483	s32 ret_val;
4484	s32 count = 0;
4485	s32 j, iteration, sector_size;
4486
4487	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4488
4489	/* Determine HW Sector size: Read BERASE bits of hw flash status
4490	 * register
4491	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
4492	 *     consecutive sectors.  The start index for the nth Hw sector
4493	 *     can be calculated as = bank * 4096 + n * 256
4494	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
4495	 *     The start index for the nth Hw sector can be calculated
4496	 *     as = bank * 4096
4497	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
4498	 *     (ich9 only, otherwise error condition)
4499	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
4500	 */
4501	switch (hsfsts.hsf_status.berasesz) {
4502	case 0:
4503		/* Hw sector size 256 */
4504		sector_size = ICH_FLASH_SEG_SIZE_256;
4505		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
4506		break;
4507	case 1:
4508		sector_size = ICH_FLASH_SEG_SIZE_4K;
4509		iteration = 1;
4510		break;
4511	case 2:
4512		sector_size = ICH_FLASH_SEG_SIZE_8K;
4513		iteration = 1;
4514		break;
4515	case 3:
4516		sector_size = ICH_FLASH_SEG_SIZE_64K;
4517		iteration = 1;
4518		break;
4519	default:
4520		return -E1000_ERR_NVM;
4521	}
4522
4523	/* Start with the base address, then add the sector offset. */
4524	flash_linear_addr = hw->nvm.flash_base_addr;
4525	flash_linear_addr += (bank) ? flash_bank_size : 0;
4526
4527	for (j = 0; j < iteration; j++) {
4528		do {
4529			u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
4530
4531			/* Steps */
4532			ret_val = e1000_flash_cycle_init_ich8lan(hw);
4533			if (ret_val)
4534				return ret_val;
4535
4536			/* Write a value 11 (block Erase) in Flash
4537			 * Cycle field in hw flash control
4538			 */
4539			if (hw->mac.type >= e1000_pch_spt)
4540				hsflctl.regval =
4541				    er32flash(ICH_FLASH_HSFSTS) >> 16;
4542			else
4543				hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4544
4545			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
4546			if (hw->mac.type >= e1000_pch_spt)
4547				ew32flash(ICH_FLASH_HSFSTS,
4548					  hsflctl.regval << 16);
4549			else
4550				ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4551
4552			/* Write the last 24 bits of an index within the
4553			 * block into Flash Linear address field in Flash
4554			 * Address.
4555			 */
4556			flash_linear_addr += (j * sector_size);
4557			ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4558
4559			ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
4560			if (!ret_val)
4561				break;
4562
4563			/* Check if FCERR is set to 1.  If 1,
4564			 * clear it and try the whole sequence
4565			 * a few more times else Done
4566			 */
4567			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4568			if (hsfsts.hsf_status.flcerr)
4569				/* repeat for some time before giving up */
4570				continue;
4571			else if (!hsfsts.hsf_status.flcdone)
4572				return ret_val;
4573		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4574	}
4575
4576	return 0;
4577}
4578
4579/**
4580 *  e1000_valid_led_default_ich8lan - Set the default LED settings
4581 *  @hw: pointer to the HW structure
4582 *  @data: Pointer to the LED settings
4583 *
4584 *  Reads the LED default settings from the NVM to data.  If the NVM LED
4585 *  settings is all 0's or F's, set the LED default to a valid LED default
4586 *  setting.
4587 **/
4588static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4589{
4590	s32 ret_val;
4591
4592	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
4593	if (ret_val) {
4594		e_dbg("NVM Read Error\n");
4595		return ret_val;
4596	}
4597
4598	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
4599		*data = ID_LED_DEFAULT_ICH8LAN;
4600
4601	return 0;
4602}
4603
4604/**
4605 *  e1000_id_led_init_pchlan - store LED configurations
4606 *  @hw: pointer to the HW structure
4607 *
4608 *  PCH does not control LEDs via the LEDCTL register, rather it uses
4609 *  the PHY LED configuration register.
4610 *
4611 *  PCH also does not have an "always on" or "always off" mode which
4612 *  complicates the ID feature.  Instead of using the "on" mode to indicate
4613 *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
4614 *  use "link_up" mode.  The LEDs will still ID on request if there is no
4615 *  link based on logic in e1000_led_[on|off]_pchlan().
4616 **/
4617static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4618{
4619	struct e1000_mac_info *mac = &hw->mac;
4620	s32 ret_val;
4621	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4622	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4623	u16 data, i, temp, shift;
4624
4625	/* Get default ID LED modes */
4626	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4627	if (ret_val)
4628		return ret_val;
4629
4630	mac->ledctl_default = er32(LEDCTL);
4631	mac->ledctl_mode1 = mac->ledctl_default;
4632	mac->ledctl_mode2 = mac->ledctl_default;
4633
4634	for (i = 0; i < 4; i++) {
4635		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4636		shift = (i * 5);
4637		switch (temp) {
4638		case ID_LED_ON1_DEF2:
4639		case ID_LED_ON1_ON2:
4640		case ID_LED_ON1_OFF2:
4641			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4642			mac->ledctl_mode1 |= (ledctl_on << shift);
4643			break;
4644		case ID_LED_OFF1_DEF2:
4645		case ID_LED_OFF1_ON2:
4646		case ID_LED_OFF1_OFF2:
4647			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4648			mac->ledctl_mode1 |= (ledctl_off << shift);
4649			break;
4650		default:
4651			/* Do nothing */
4652			break;
4653		}
4654		switch (temp) {
4655		case ID_LED_DEF1_ON2:
4656		case ID_LED_ON1_ON2:
4657		case ID_LED_OFF1_ON2:
4658			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4659			mac->ledctl_mode2 |= (ledctl_on << shift);
4660			break;
4661		case ID_LED_DEF1_OFF2:
4662		case ID_LED_ON1_OFF2:
4663		case ID_LED_OFF1_OFF2:
4664			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4665			mac->ledctl_mode2 |= (ledctl_off << shift);
4666			break;
4667		default:
4668			/* Do nothing */
4669			break;
4670		}
4671	}
4672
4673	return 0;
4674}
4675
4676/**
4677 *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4678 *  @hw: pointer to the HW structure
4679 *
4680 *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4681 *  register, so the bus width is hard coded.
4682 **/
4683static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4684{
4685	struct e1000_bus_info *bus = &hw->bus;
4686	s32 ret_val;
4687
4688	ret_val = e1000e_get_bus_info_pcie(hw);
4689
4690	/* ICH devices are "PCI Express"-ish.  They have
4691	 * a configuration space, but do not contain
4692	 * PCI Express Capability registers, so bus width
4693	 * must be hardcoded.
4694	 */
4695	if (bus->width == e1000_bus_width_unknown)
4696		bus->width = e1000_bus_width_pcie_x1;
4697
4698	return ret_val;
4699}
4700
4701/**
4702 *  e1000_reset_hw_ich8lan - Reset the hardware
4703 *  @hw: pointer to the HW structure
4704 *
4705 *  Does a full reset of the hardware which includes a reset of the PHY and
4706 *  MAC.
4707 **/
4708static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4709{
4710	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4711	u16 kum_cfg;
4712	u32 ctrl, reg;
4713	s32 ret_val;
4714
4715	/* Prevent the PCI-E bus from sticking if there is no TLP connection
4716	 * on the last TLP read/write transaction when MAC is reset.
4717	 */
4718	ret_val = e1000e_disable_pcie_master(hw);
4719	if (ret_val)
4720		e_dbg("PCI-E Master disable polling has failed.\n");
4721
4722	e_dbg("Masking off all interrupts\n");
4723	ew32(IMC, 0xffffffff);
4724
4725	/* Disable the Transmit and Receive units.  Then delay to allow
4726	 * any pending transactions to complete before we hit the MAC
4727	 * with the global reset.
4728	 */
4729	ew32(RCTL, 0);
4730	ew32(TCTL, E1000_TCTL_PSP);
4731	e1e_flush();
4732
4733	usleep_range(10000, 11000);
4734
4735	/* Workaround for ICH8 bit corruption issue in FIFO memory */
4736	if (hw->mac.type == e1000_ich8lan) {
4737		/* Set Tx and Rx buffer allocation to 8k apiece. */
4738		ew32(PBA, E1000_PBA_8K);
4739		/* Set Packet Buffer Size to 16k. */
4740		ew32(PBS, E1000_PBS_16K);
4741	}
4742
4743	if (hw->mac.type == e1000_pchlan) {
4744		/* Save the NVM K1 bit setting */
4745		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
4746		if (ret_val)
4747			return ret_val;
4748
4749		if (kum_cfg & E1000_NVM_K1_ENABLE)
4750			dev_spec->nvm_k1_enabled = true;
4751		else
4752			dev_spec->nvm_k1_enabled = false;
4753	}
4754
4755	ctrl = er32(CTRL);
4756
4757	if (!hw->phy.ops.check_reset_block(hw)) {
4758		/* Full-chip reset requires MAC and PHY reset at the same
4759		 * time to make sure the interface between MAC and the
4760		 * external PHY is reset.
4761		 */
4762		ctrl |= E1000_CTRL_PHY_RST;
4763
4764		/* Gate automatic PHY configuration by hardware on
4765		 * non-managed 82579
4766		 */
4767		if ((hw->mac.type == e1000_pch2lan) &&
4768		    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
4769			e1000_gate_hw_phy_config_ich8lan(hw, true);
4770	}
4771	ret_val = e1000_acquire_swflag_ich8lan(hw);
4772	e_dbg("Issuing a global reset to ich8lan\n");
4773	ew32(CTRL, (ctrl | E1000_CTRL_RST));
4774	/* cannot issue a flush here because it hangs the hardware */
4775	msleep(20);
4776
4777	/* Set Phy Config Counter to 50msec */
4778	if (hw->mac.type == e1000_pch2lan) {
4779		reg = er32(FEXTNVM3);
4780		reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
4781		reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
4782		ew32(FEXTNVM3, reg);
4783	}
4784
4785	if (!ret_val)
4786		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
4787
4788	if (ctrl & E1000_CTRL_PHY_RST) {
4789		ret_val = hw->phy.ops.get_cfg_done(hw);
4790		if (ret_val)
4791			return ret_val;
4792
4793		ret_val = e1000_post_phy_reset_ich8lan(hw);
4794		if (ret_val)
4795			return ret_val;
4796	}
4797
4798	/* For PCH, this write will make sure that any noise
4799	 * will be detected as a CRC error and be dropped rather than show up
4800	 * as a bad packet to the DMA engine.
4801	 */
4802	if (hw->mac.type == e1000_pchlan)
4803		ew32(CRC_OFFSET, 0x65656565);
4804
4805	ew32(IMC, 0xffffffff);
4806	er32(ICR);
4807
4808	reg = er32(KABGTXD);
4809	reg |= E1000_KABGTXD_BGSQLBIAS;
4810	ew32(KABGTXD, reg);
4811
4812	return 0;
4813}
4814
4815/**
4816 *  e1000_init_hw_ich8lan - Initialize the hardware
4817 *  @hw: pointer to the HW structure
4818 *
4819 *  Prepares the hardware for transmit and receive by doing the following:
4820 *   - initialize hardware bits
4821 *   - initialize LED identification
4822 *   - setup receive address registers
4823 *   - setup flow control
4824 *   - setup transmit descriptors
4825 *   - clear statistics
4826 **/
4827static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
4828{
4829	struct e1000_mac_info *mac = &hw->mac;
4830	u32 ctrl_ext, txdctl, snoop, fflt_dbg;
4831	s32 ret_val;
4832	u16 i;
4833
4834	e1000_initialize_hw_bits_ich8lan(hw);
4835
4836	/* Initialize identification LED */
4837	ret_val = mac->ops.id_led_init(hw);
4838	/* An error is not fatal and we should not stop init due to this */
4839	if (ret_val)
4840		e_dbg("Error initializing identification LED\n");
4841
4842	/* Setup the receive address. */
4843	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
4844
4845	/* Zero out the Multicast HASH table */
4846	e_dbg("Zeroing the MTA\n");
4847	for (i = 0; i < mac->mta_reg_count; i++)
4848		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
4849
4850	/* The 82578 Rx buffer will stall if wakeup is enabled in host and
4851	 * the ME.  Disable wakeup by clearing the host wakeup bit.
4852	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
4853	 */
4854	if (hw->phy.type == e1000_phy_82578) {
4855		e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
4856		i &= ~BM_WUC_HOST_WU_BIT;
4857		e1e_wphy(hw, BM_PORT_GEN_CFG, i);
4858		ret_val = e1000_phy_hw_reset_ich8lan(hw);
4859		if (ret_val)
4860			return ret_val;
4861	}
4862
4863	/* Setup link and flow control */
4864	ret_val = mac->ops.setup_link(hw);
4865
4866	/* Set the transmit descriptor write-back policy for both queues */
4867	txdctl = er32(TXDCTL(0));
4868	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4869		  E1000_TXDCTL_FULL_TX_DESC_WB);
4870	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4871		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4872	ew32(TXDCTL(0), txdctl);
4873	txdctl = er32(TXDCTL(1));
4874	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4875		  E1000_TXDCTL_FULL_TX_DESC_WB);
4876	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4877		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4878	ew32(TXDCTL(1), txdctl);
4879
4880	/* ICH8 has opposite polarity of no_snoop bits.
4881	 * By default, we should use snoop behavior.
4882	 */
4883	if (mac->type == e1000_ich8lan)
4884		snoop = PCIE_ICH8_SNOOP_ALL;
4885	else
4886		snoop = (u32)~(PCIE_NO_SNOOP_ALL);
4887	e1000e_set_pcie_no_snoop(hw, snoop);
4888
4889	/* Enable workaround for packet loss issue on TGP PCH
4890	 * Do not gate DMA clock from the modPHY block
4891	 */
4892	if (mac->type >= e1000_pch_tgp) {
4893		fflt_dbg = er32(FFLT_DBG);
4894		fflt_dbg |= E1000_FFLT_DBG_DONT_GATE_WAKE_DMA_CLK;
4895		ew32(FFLT_DBG, fflt_dbg);
4896	}
4897
4898	ctrl_ext = er32(CTRL_EXT);
4899	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
4900	ew32(CTRL_EXT, ctrl_ext);
4901
4902	/* Clear all of the statistics registers (clear on read).  It is
4903	 * important that we do this after we have tried to establish link
4904	 * because the symbol error count will increment wildly if there
4905	 * is no link.
4906	 */
4907	e1000_clear_hw_cntrs_ich8lan(hw);
4908
4909	return ret_val;
4910}
4911
4912/**
4913 *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
4914 *  @hw: pointer to the HW structure
4915 *
4916 *  Sets/Clears required hardware bits necessary for correctly setting up the
4917 *  hardware for transmit and receive.
4918 **/
4919static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
4920{
4921	u32 reg;
4922
4923	/* Extended Device Control */
4924	reg = er32(CTRL_EXT);
4925	reg |= BIT(22);
4926	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
4927	if (hw->mac.type >= e1000_pchlan)
4928		reg |= E1000_CTRL_EXT_PHYPDEN;
4929	ew32(CTRL_EXT, reg);
4930
4931	/* Transmit Descriptor Control 0 */
4932	reg = er32(TXDCTL(0));
4933	reg |= BIT(22);
4934	ew32(TXDCTL(0), reg);
4935
4936	/* Transmit Descriptor Control 1 */
4937	reg = er32(TXDCTL(1));
4938	reg |= BIT(22);
4939	ew32(TXDCTL(1), reg);
4940
4941	/* Transmit Arbitration Control 0 */
4942	reg = er32(TARC(0));
4943	if (hw->mac.type == e1000_ich8lan)
4944		reg |= BIT(28) | BIT(29);
4945	reg |= BIT(23) | BIT(24) | BIT(26) | BIT(27);
4946	ew32(TARC(0), reg);
4947
4948	/* Transmit Arbitration Control 1 */
4949	reg = er32(TARC(1));
4950	if (er32(TCTL) & E1000_TCTL_MULR)
4951		reg &= ~BIT(28);
4952	else
4953		reg |= BIT(28);
4954	reg |= BIT(24) | BIT(26) | BIT(30);
4955	ew32(TARC(1), reg);
4956
4957	/* Device Status */
4958	if (hw->mac.type == e1000_ich8lan) {
4959		reg = er32(STATUS);
4960		reg &= ~BIT(31);
4961		ew32(STATUS, reg);
4962	}
4963
4964	/* work-around descriptor data corruption issue during nfs v2 udp
4965	 * traffic, just disable the nfs filtering capability
4966	 */
4967	reg = er32(RFCTL);
4968	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
4969
4970	/* Disable IPv6 extension header parsing because some malformed
4971	 * IPv6 headers can hang the Rx.
4972	 */
4973	if (hw->mac.type == e1000_ich8lan)
4974		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
4975	ew32(RFCTL, reg);
4976
4977	/* Enable ECC on Lynxpoint */
4978	if (hw->mac.type >= e1000_pch_lpt) {
4979		reg = er32(PBECCSTS);
4980		reg |= E1000_PBECCSTS_ECC_ENABLE;
4981		ew32(PBECCSTS, reg);
4982
4983		reg = er32(CTRL);
4984		reg |= E1000_CTRL_MEHE;
4985		ew32(CTRL, reg);
4986	}
4987}
4988
4989/**
4990 *  e1000_setup_link_ich8lan - Setup flow control and link settings
4991 *  @hw: pointer to the HW structure
4992 *
4993 *  Determines which flow control settings to use, then configures flow
4994 *  control.  Calls the appropriate media-specific link configuration
4995 *  function.  Assuming the adapter has a valid link partner, a valid link
4996 *  should be established.  Assumes the hardware has previously been reset
4997 *  and the transmitter and receiver are not enabled.
4998 **/
4999static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
5000{
5001	s32 ret_val;
5002
5003	if (hw->phy.ops.check_reset_block(hw))
5004		return 0;
5005
5006	/* ICH parts do not have a word in the NVM to determine
5007	 * the default flow control setting, so we explicitly
5008	 * set it to full.
5009	 */
5010	if (hw->fc.requested_mode == e1000_fc_default) {
5011		/* Workaround h/w hang when Tx flow control enabled */
5012		if (hw->mac.type == e1000_pchlan)
5013			hw->fc.requested_mode = e1000_fc_rx_pause;
5014		else
5015			hw->fc.requested_mode = e1000_fc_full;
5016	}
5017
5018	/* Save off the requested flow control mode for use later.  Depending
5019	 * on the link partner's capabilities, we may or may not use this mode.
5020	 */
5021	hw->fc.current_mode = hw->fc.requested_mode;
5022
5023	e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
5024
5025	/* Continue to configure the copper link. */
5026	ret_val = hw->mac.ops.setup_physical_interface(hw);
5027	if (ret_val)
5028		return ret_val;
5029
5030	ew32(FCTTV, hw->fc.pause_time);
5031	if ((hw->phy.type == e1000_phy_82578) ||
5032	    (hw->phy.type == e1000_phy_82579) ||
5033	    (hw->phy.type == e1000_phy_i217) ||
5034	    (hw->phy.type == e1000_phy_82577)) {
5035		ew32(FCRTV_PCH, hw->fc.refresh_time);
5036
5037		ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
5038				   hw->fc.pause_time);
5039		if (ret_val)
5040			return ret_val;
5041	}
5042
5043	return e1000e_set_fc_watermarks(hw);
5044}
5045
5046/**
5047 *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
5048 *  @hw: pointer to the HW structure
5049 *
5050 *  Configures the kumeran interface to the PHY to wait the appropriate time
5051 *  when polling the PHY, then call the generic setup_copper_link to finish
5052 *  configuring the copper link.
5053 **/
5054static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
5055{
5056	u32 ctrl;
5057	s32 ret_val;
5058	u16 reg_data;
5059
5060	ctrl = er32(CTRL);
5061	ctrl |= E1000_CTRL_SLU;
5062	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5063	ew32(CTRL, ctrl);
5064
5065	/* Set the mac to wait the maximum time between each iteration
5066	 * and increase the max iterations when polling the phy;
5067	 * this fixes erroneous timeouts at 10Mbps.
5068	 */
5069	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
5070	if (ret_val)
5071		return ret_val;
5072	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5073				       &reg_data);
5074	if (ret_val)
5075		return ret_val;
5076	reg_data |= 0x3F;
5077	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5078					reg_data);
5079	if (ret_val)
5080		return ret_val;
5081
5082	switch (hw->phy.type) {
5083	case e1000_phy_igp_3:
5084		ret_val = e1000e_copper_link_setup_igp(hw);
5085		if (ret_val)
5086			return ret_val;
5087		break;
5088	case e1000_phy_bm:
5089	case e1000_phy_82578:
5090		ret_val = e1000e_copper_link_setup_m88(hw);
5091		if (ret_val)
5092			return ret_val;
5093		break;
5094	case e1000_phy_82577:
5095	case e1000_phy_82579:
5096		ret_val = e1000_copper_link_setup_82577(hw);
5097		if (ret_val)
5098			return ret_val;
5099		break;
5100	case e1000_phy_ife:
5101		ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
5102		if (ret_val)
5103			return ret_val;
5104
5105		reg_data &= ~IFE_PMC_AUTO_MDIX;
5106
5107		switch (hw->phy.mdix) {
5108		case 1:
5109			reg_data &= ~IFE_PMC_FORCE_MDIX;
5110			break;
5111		case 2:
5112			reg_data |= IFE_PMC_FORCE_MDIX;
5113			break;
5114		case 0:
5115		default:
5116			reg_data |= IFE_PMC_AUTO_MDIX;
5117			break;
5118		}
5119		ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
5120		if (ret_val)
5121			return ret_val;
5122		break;
5123	default:
5124		break;
5125	}
5126
5127	return e1000e_setup_copper_link(hw);
5128}
5129
5130/**
5131 *  e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
5132 *  @hw: pointer to the HW structure
5133 *
5134 *  Calls the PHY specific link setup function and then calls the
5135 *  generic setup_copper_link to finish configuring the link for
5136 *  Lynxpoint PCH devices
5137 **/
5138static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
5139{
5140	u32 ctrl;
5141	s32 ret_val;
5142
5143	ctrl = er32(CTRL);
5144	ctrl |= E1000_CTRL_SLU;
5145	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5146	ew32(CTRL, ctrl);
5147
5148	ret_val = e1000_copper_link_setup_82577(hw);
5149	if (ret_val)
5150		return ret_val;
5151
5152	return e1000e_setup_copper_link(hw);
5153}
5154
5155/**
5156 *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
5157 *  @hw: pointer to the HW structure
5158 *  @speed: pointer to store current link speed
5159 *  @duplex: pointer to store the current link duplex
5160 *
5161 *  Calls the generic get_speed_and_duplex to retrieve the current link
5162 *  information and then calls the Kumeran lock loss workaround for links at
5163 *  gigabit speeds.
5164 **/
5165static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
5166					  u16 *duplex)
5167{
5168	s32 ret_val;
5169
5170	ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
5171	if (ret_val)
5172		return ret_val;
5173
5174	if ((hw->mac.type == e1000_ich8lan) &&
5175	    (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
5176		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
5177	}
5178
5179	return ret_val;
5180}
5181
5182/**
5183 *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
5184 *  @hw: pointer to the HW structure
5185 *
5186 *  Work-around for 82566 Kumeran PCS lock loss:
5187 *  On link status change (i.e. PCI reset, speed change) and link is up and
5188 *  speed is gigabit-
5189 *    0) if workaround is optionally disabled do nothing
5190 *    1) wait 1ms for Kumeran link to come up
5191 *    2) check Kumeran Diagnostic register PCS lock loss bit
5192 *    3) if not set the link is locked (all is good), otherwise...
5193 *    4) reset the PHY
5194 *    5) repeat up to 10 times
5195 *  Note: this is only called for IGP3 copper when speed is 1gb.
5196 **/
5197static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
5198{
5199	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5200	u32 phy_ctrl;
5201	s32 ret_val;
5202	u16 i, data;
5203	bool link;
5204
5205	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
5206		return 0;
5207
5208	/* Make sure link is up before proceeding.  If not just return.
5209	 * Attempting this while link is negotiating fouled up link
5210	 * stability
5211	 */
5212	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
5213	if (!link)
5214		return 0;
5215
5216	for (i = 0; i < 10; i++) {
5217		/* read once to clear */
5218		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5219		if (ret_val)
5220			return ret_val;
5221		/* and again to get new status */
5222		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5223		if (ret_val)
5224			return ret_val;
5225
5226		/* check for PCS lock */
5227		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
5228			return 0;
5229
5230		/* Issue PHY reset */
5231		e1000_phy_hw_reset(hw);
5232		mdelay(5);
5233	}
5234	/* Disable GigE link negotiation */
5235	phy_ctrl = er32(PHY_CTRL);
5236	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
5237		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5238	ew32(PHY_CTRL, phy_ctrl);
5239
5240	/* Call gig speed drop workaround on Gig disable before accessing
5241	 * any PHY registers
5242	 */
5243	e1000e_gig_downshift_workaround_ich8lan(hw);
5244
5245	/* unable to acquire PCS lock */
5246	return -E1000_ERR_PHY;
5247}
5248
5249/**
5250 *  e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
5251 *  @hw: pointer to the HW structure
5252 *  @state: boolean value used to set the current Kumeran workaround state
5253 *
5254 *  If ICH8, set the current Kumeran workaround state (enabled - true
5255 *  /disabled - false).
5256 **/
5257void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
5258						  bool state)
5259{
5260	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5261
5262	if (hw->mac.type != e1000_ich8lan) {
5263		e_dbg("Workaround applies to ICH8 only.\n");
5264		return;
5265	}
5266
5267	dev_spec->kmrn_lock_loss_workaround_enabled = state;
5268}
5269
5270/**
5271 *  e1000e_igp3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
5272 *  @hw: pointer to the HW structure
5273 *
5274 *  Workaround for 82566 power-down on D3 entry:
5275 *    1) disable gigabit link
5276 *    2) write VR power-down enable
5277 *    3) read it back
5278 *  Continue if successful, else issue LCD reset and repeat
5279 **/
5280void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
5281{
5282	u32 reg;
5283	u16 data;
5284	u8 retry = 0;
5285
5286	if (hw->phy.type != e1000_phy_igp_3)
5287		return;
5288
5289	/* Try the workaround twice (if needed) */
5290	do {
5291		/* Disable link */
5292		reg = er32(PHY_CTRL);
5293		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
5294			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5295		ew32(PHY_CTRL, reg);
5296
5297		/* Call gig speed drop workaround on Gig disable before
5298		 * accessing any PHY registers
5299		 */
5300		if (hw->mac.type == e1000_ich8lan)
5301			e1000e_gig_downshift_workaround_ich8lan(hw);
5302
5303		/* Write VR power-down enable */
5304		e1e_rphy(hw, IGP3_VR_CTRL, &data);
5305		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5306		e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
5307
5308		/* Read it back and test */
5309		e1e_rphy(hw, IGP3_VR_CTRL, &data);
5310		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5311		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
5312			break;
5313
5314		/* Issue PHY reset and repeat at most one more time */
5315		reg = er32(CTRL);
5316		ew32(CTRL, reg | E1000_CTRL_PHY_RST);
5317		retry++;
5318	} while (retry);
5319}
5320
5321/**
5322 *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
5323 *  @hw: pointer to the HW structure
5324 *
5325 *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
5326 *  LPLU, Gig disable, MDIC PHY reset):
5327 *    1) Set Kumeran Near-end loopback
5328 *    2) Clear Kumeran Near-end loopback
5329 *  Should only be called for ICH8[m] devices with any 1G Phy.
5330 **/
5331void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
5332{
5333	s32 ret_val;
5334	u16 reg_data;
5335
5336	if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
5337		return;
5338
5339	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5340				       &reg_data);
5341	if (ret_val)
5342		return;
5343	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
5344	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5345					reg_data);
5346	if (ret_val)
5347		return;
5348	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
5349	e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data);
5350}
5351
5352/**
5353 *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
5354 *  @hw: pointer to the HW structure
5355 *
5356 *  During S0 to Sx transition, it is possible the link remains at gig
5357 *  instead of negotiating to a lower speed.  Before going to Sx, set
5358 *  'Gig Disable' to force link speed negotiation to a lower speed based on
5359 *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
5360 *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
5361 *  needs to be written.
5362 *  Parts that support (and are linked to a partner which support) EEE in
5363 *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
5364 *  than 10Mbps w/o EEE.
5365 **/
5366void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
5367{
5368	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5369	u32 phy_ctrl;
5370	s32 ret_val;
5371
5372	phy_ctrl = er32(PHY_CTRL);
5373	phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
5374
5375	if (hw->phy.type == e1000_phy_i217) {
5376		u16 phy_reg, device_id = hw->adapter->pdev->device;
5377
5378		if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
5379		    (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
5380		    (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
5381		    (device_id == E1000_DEV_ID_PCH_I218_V3) ||
5382		    (hw->mac.type >= e1000_pch_spt)) {
5383			u32 fextnvm6 = er32(FEXTNVM6);
5384
5385			ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
5386		}
5387
5388		ret_val = hw->phy.ops.acquire(hw);
5389		if (ret_val)
5390			goto out;
5391
5392		if (!dev_spec->eee_disable) {
5393			u16 eee_advert;
5394
5395			ret_val =
5396			    e1000_read_emi_reg_locked(hw,
5397						      I217_EEE_ADVERTISEMENT,
5398						      &eee_advert);
5399			if (ret_val)
5400				goto release;
5401
5402			/* Disable LPLU if both link partners support 100BaseT
5403			 * EEE and 100Full is advertised on both ends of the
5404			 * link, and enable Auto Enable LPI since there will
5405			 * be no driver to enable LPI while in Sx.
5406			 */
5407			if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
5408			    (dev_spec->eee_lp_ability &
5409			     I82579_EEE_100_SUPPORTED) &&
5410			    (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
5411				phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
5412					      E1000_PHY_CTRL_NOND0A_LPLU);
5413
5414				/* Set Auto Enable LPI after link up */
5415				e1e_rphy_locked(hw,
5416						I217_LPI_GPIO_CTRL, &phy_reg);
5417				phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5418				e1e_wphy_locked(hw,
5419						I217_LPI_GPIO_CTRL, phy_reg);
5420			}
5421		}
5422
5423		/* For i217 Intel Rapid Start Technology support,
5424		 * when the system is going into Sx and no manageability engine
5425		 * is present, the driver must configure proxy to reset only on
5426		 * power good.  LPI (Low Power Idle) state must also reset only
5427		 * on power good, as well as the MTA (Multicast table array).
5428		 * The SMBus release must also be disabled on LCD reset.
5429		 */
5430		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5431			/* Enable proxy to reset only on power good. */
5432			e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
5433			phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
5434			e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
5435
5436			/* Set bit enable LPI (EEE) to reset only on
5437			 * power good.
5438			 */
5439			e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
5440			phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
5441			e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
5442
5443			/* Disable the SMB release on LCD reset. */
5444			e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5445			phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
5446			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5447		}
5448
5449		/* Enable MTA to reset for Intel Rapid Start Technology
5450		 * Support
5451		 */
5452		e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5453		phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
5454		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5455
5456release:
5457		hw->phy.ops.release(hw);
5458	}
5459out:
5460	ew32(PHY_CTRL, phy_ctrl);
5461
5462	if (hw->mac.type == e1000_ich8lan)
5463		e1000e_gig_downshift_workaround_ich8lan(hw);
5464
5465	if (hw->mac.type >= e1000_pchlan) {
5466		e1000_oem_bits_config_ich8lan(hw, false);
5467
5468		/* Reset PHY to activate OEM bits on 82577/8 */
5469		if (hw->mac.type == e1000_pchlan)
5470			e1000e_phy_hw_reset_generic(hw);
5471
5472		ret_val = hw->phy.ops.acquire(hw);
5473		if (ret_val)
5474			return;
5475		e1000_write_smbus_addr(hw);
5476		hw->phy.ops.release(hw);
5477	}
5478}
5479
5480/**
5481 *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
5482 *  @hw: pointer to the HW structure
5483 *
5484 *  During Sx to S0 transitions on non-managed devices or managed devices
5485 *  on which PHY resets are not blocked, if the PHY registers cannot be
5486 *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
5487 *  the PHY.
5488 *  On i217, setup Intel Rapid Start Technology.
5489 **/
5490void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
5491{
5492	s32 ret_val;
5493
5494	if (hw->mac.type < e1000_pch2lan)
5495		return;
5496
5497	ret_val = e1000_init_phy_workarounds_pchlan(hw);
5498	if (ret_val) {
5499		e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
5500		return;
5501	}
5502
5503	/* For i217 Intel Rapid Start Technology support when the system
5504	 * is transitioning from Sx and no manageability engine is present
5505	 * configure SMBus to restore on reset, disable proxy, and enable
5506	 * the reset on MTA (Multicast table array).
5507	 */
5508	if (hw->phy.type == e1000_phy_i217) {
5509		u16 phy_reg;
5510
5511		ret_val = hw->phy.ops.acquire(hw);
5512		if (ret_val) {
5513			e_dbg("Failed to setup iRST\n");
5514			return;
5515		}
5516
5517		/* Clear Auto Enable LPI after link up */
5518		e1e_rphy_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
5519		phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5520		e1e_wphy_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
5521
5522		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5523			/* Restore clear on SMB if no manageability engine
5524			 * is present
5525			 */
5526			ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5527			if (ret_val)
5528				goto release;
5529			phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5530			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5531
5532			/* Disable Proxy */
5533			e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
5534		}
5535		/* Enable reset on MTA */
5536		ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5537		if (ret_val)
5538			goto release;
5539		phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5540		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5541release:
5542		if (ret_val)
5543			e_dbg("Error %d in resume workarounds\n", ret_val);
5544		hw->phy.ops.release(hw);
5545	}
5546}
5547
5548/**
5549 *  e1000_cleanup_led_ich8lan - Restore the default LED operation
5550 *  @hw: pointer to the HW structure
5551 *
5552 *  Return the LED back to the default configuration.
5553 **/
5554static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5555{
5556	if (hw->phy.type == e1000_phy_ife)
5557		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
5558
5559	ew32(LEDCTL, hw->mac.ledctl_default);
5560	return 0;
5561}
5562
5563/**
5564 *  e1000_led_on_ich8lan - Turn LEDs on
5565 *  @hw: pointer to the HW structure
5566 *
5567 *  Turn on the LEDs.
5568 **/
5569static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5570{
5571	if (hw->phy.type == e1000_phy_ife)
5572		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5573				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5574
5575	ew32(LEDCTL, hw->mac.ledctl_mode2);
5576	return 0;
5577}
5578
5579/**
5580 *  e1000_led_off_ich8lan - Turn LEDs off
5581 *  @hw: pointer to the HW structure
5582 *
5583 *  Turn off the LEDs.
5584 **/
5585static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5586{
5587	if (hw->phy.type == e1000_phy_ife)
5588		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5589				(IFE_PSCL_PROBE_MODE |
5590				 IFE_PSCL_PROBE_LEDS_OFF));
5591
5592	ew32(LEDCTL, hw->mac.ledctl_mode1);
5593	return 0;
5594}
5595
5596/**
5597 *  e1000_setup_led_pchlan - Configures SW controllable LED
5598 *  @hw: pointer to the HW structure
5599 *
5600 *  This prepares the SW controllable LED for use.
5601 **/
5602static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5603{
5604	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
5605}
5606
5607/**
5608 *  e1000_cleanup_led_pchlan - Restore the default LED operation
5609 *  @hw: pointer to the HW structure
5610 *
5611 *  Return the LED back to the default configuration.
5612 **/
5613static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5614{
5615	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
5616}
5617
5618/**
5619 *  e1000_led_on_pchlan - Turn LEDs on
5620 *  @hw: pointer to the HW structure
5621 *
5622 *  Turn on the LEDs.
5623 **/
5624static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5625{
5626	u16 data = (u16)hw->mac.ledctl_mode2;
5627	u32 i, led;
5628
5629	/* If no link, then turn LED on by setting the invert bit
5630	 * for each LED that's mode is "link_up" in ledctl_mode2.
5631	 */
5632	if (!(er32(STATUS) & E1000_STATUS_LU)) {
5633		for (i = 0; i < 3; i++) {
5634			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5635			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5636			    E1000_LEDCTL_MODE_LINK_UP)
5637				continue;
5638			if (led & E1000_PHY_LED0_IVRT)
5639				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5640			else
5641				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5642		}
5643	}
5644
5645	return e1e_wphy(hw, HV_LED_CONFIG, data);
5646}
5647
5648/**
5649 *  e1000_led_off_pchlan - Turn LEDs off
5650 *  @hw: pointer to the HW structure
5651 *
5652 *  Turn off the LEDs.
5653 **/
5654static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5655{
5656	u16 data = (u16)hw->mac.ledctl_mode1;
5657	u32 i, led;
5658
5659	/* If no link, then turn LED off by clearing the invert bit
5660	 * for each LED that's mode is "link_up" in ledctl_mode1.
5661	 */
5662	if (!(er32(STATUS) & E1000_STATUS_LU)) {
5663		for (i = 0; i < 3; i++) {
5664			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5665			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5666			    E1000_LEDCTL_MODE_LINK_UP)
5667				continue;
5668			if (led & E1000_PHY_LED0_IVRT)
5669				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5670			else
5671				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5672		}
5673	}
5674
5675	return e1e_wphy(hw, HV_LED_CONFIG, data);
5676}
5677
5678/**
5679 *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
5680 *  @hw: pointer to the HW structure
5681 *
5682 *  Read appropriate register for the config done bit for completion status
5683 *  and configure the PHY through s/w for EEPROM-less parts.
5684 *
5685 *  NOTE: some silicon which is EEPROM-less will fail trying to read the
5686 *  config done bit, so only an error is logged and continues.  If we were
5687 *  to return with error, EEPROM-less silicon would not be able to be reset
5688 *  or change link.
5689 **/
5690static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
5691{
5692	s32 ret_val = 0;
5693	u32 bank = 0;
5694	u32 status;
5695
5696	e1000e_get_cfg_done_generic(hw);
5697
5698	/* Wait for indication from h/w that it has completed basic config */
5699	if (hw->mac.type >= e1000_ich10lan) {
5700		e1000_lan_init_done_ich8lan(hw);
5701	} else {
5702		ret_val = e1000e_get_auto_rd_done(hw);
5703		if (ret_val) {
5704			/* When auto config read does not complete, do not
5705			 * return with an error. This can happen in situations
5706			 * where there is no eeprom and prevents getting link.
5707			 */
5708			e_dbg("Auto Read Done did not complete\n");
5709			ret_val = 0;
5710		}
5711	}
5712
5713	/* Clear PHY Reset Asserted bit */
5714	status = er32(STATUS);
5715	if (status & E1000_STATUS_PHYRA)
5716		ew32(STATUS, status & ~E1000_STATUS_PHYRA);
5717	else
5718		e_dbg("PHY Reset Asserted not set - needs delay\n");
5719
5720	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
5721	if (hw->mac.type <= e1000_ich9lan) {
5722		if (!(er32(EECD) & E1000_EECD_PRES) &&
5723		    (hw->phy.type == e1000_phy_igp_3)) {
5724			e1000e_phy_init_script_igp3(hw);
5725		}
5726	} else {
5727		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
5728			/* Maybe we should do a basic PHY config */
5729			e_dbg("EEPROM not present\n");
5730			ret_val = -E1000_ERR_CONFIG;
5731		}
5732	}
5733
5734	return ret_val;
5735}
5736
5737/**
5738 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
5739 * @hw: pointer to the HW structure
5740 *
5741 * In the case of a PHY power down to save power, or to turn off link during a
5742 * driver unload, or wake on lan is not enabled, remove the link.
5743 **/
5744static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
5745{
5746	/* If the management interface is not enabled, then power down */
5747	if (!(hw->mac.ops.check_mng_mode(hw) ||
5748	      hw->phy.ops.check_reset_block(hw)))
5749		e1000_power_down_phy_copper(hw);
5750}
5751
5752/**
5753 *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
5754 *  @hw: pointer to the HW structure
5755 *
5756 *  Clears hardware counters specific to the silicon family and calls
5757 *  clear_hw_cntrs_generic to clear all general purpose counters.
5758 **/
5759static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
5760{
5761	u16 phy_data;
5762	s32 ret_val;
5763
5764	e1000e_clear_hw_cntrs_base(hw);
5765
5766	er32(ALGNERRC);
5767	er32(RXERRC);
5768	er32(TNCRS);
5769	er32(CEXTERR);
5770	er32(TSCTC);
5771	er32(TSCTFC);
5772
5773	er32(MGTPRC);
5774	er32(MGTPDC);
5775	er32(MGTPTC);
5776
5777	er32(IAC);
5778	er32(ICRXOC);
5779
5780	/* Clear PHY statistics registers */
5781	if ((hw->phy.type == e1000_phy_82578) ||
5782	    (hw->phy.type == e1000_phy_82579) ||
5783	    (hw->phy.type == e1000_phy_i217) ||
5784	    (hw->phy.type == e1000_phy_82577)) {
5785		ret_val = hw->phy.ops.acquire(hw);
5786		if (ret_val)
5787			return;
5788		ret_val = hw->phy.ops.set_page(hw,
5789					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
5790		if (ret_val)
5791			goto release;
5792		hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
5793		hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
5794		hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
5795		hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
5796		hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
5797		hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
5798		hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
5799		hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
5800		hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
5801		hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
5802		hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
5803		hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
5804		hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
5805		hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
5806release:
5807		hw->phy.ops.release(hw);
5808	}
5809}
5810
5811static const struct e1000_mac_operations ich8_mac_ops = {
5812	/* check_mng_mode dependent on mac type */
5813	.check_for_link		= e1000_check_for_copper_link_ich8lan,
5814	/* cleanup_led dependent on mac type */
5815	.clear_hw_cntrs		= e1000_clear_hw_cntrs_ich8lan,
5816	.get_bus_info		= e1000_get_bus_info_ich8lan,
5817	.set_lan_id		= e1000_set_lan_id_single_port,
5818	.get_link_up_info	= e1000_get_link_up_info_ich8lan,
5819	/* led_on dependent on mac type */
5820	/* led_off dependent on mac type */
5821	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
5822	.reset_hw		= e1000_reset_hw_ich8lan,
5823	.init_hw		= e1000_init_hw_ich8lan,
5824	.setup_link		= e1000_setup_link_ich8lan,
5825	.setup_physical_interface = e1000_setup_copper_link_ich8lan,
5826	/* id_led_init dependent on mac type */
5827	.config_collision_dist	= e1000e_config_collision_dist_generic,
5828	.rar_set		= e1000e_rar_set_generic,
5829	.rar_get_count		= e1000e_rar_get_count_generic,
5830};
5831
5832static const struct e1000_phy_operations ich8_phy_ops = {
5833	.acquire		= e1000_acquire_swflag_ich8lan,
5834	.check_reset_block	= e1000_check_reset_block_ich8lan,
5835	.commit			= NULL,
5836	.get_cfg_done		= e1000_get_cfg_done_ich8lan,
5837	.get_cable_length	= e1000e_get_cable_length_igp_2,
5838	.read_reg		= e1000e_read_phy_reg_igp,
5839	.release		= e1000_release_swflag_ich8lan,
5840	.reset			= e1000_phy_hw_reset_ich8lan,
5841	.set_d0_lplu_state	= e1000_set_d0_lplu_state_ich8lan,
5842	.set_d3_lplu_state	= e1000_set_d3_lplu_state_ich8lan,
5843	.write_reg		= e1000e_write_phy_reg_igp,
5844};
5845
5846static const struct e1000_nvm_operations ich8_nvm_ops = {
5847	.acquire		= e1000_acquire_nvm_ich8lan,
5848	.read			= e1000_read_nvm_ich8lan,
5849	.release		= e1000_release_nvm_ich8lan,
5850	.reload			= e1000e_reload_nvm_generic,
5851	.update			= e1000_update_nvm_checksum_ich8lan,
5852	.valid_led_default	= e1000_valid_led_default_ich8lan,
5853	.validate		= e1000_validate_nvm_checksum_ich8lan,
5854	.write			= e1000_write_nvm_ich8lan,
5855};
5856
5857static const struct e1000_nvm_operations spt_nvm_ops = {
5858	.acquire		= e1000_acquire_nvm_ich8lan,
5859	.release		= e1000_release_nvm_ich8lan,
5860	.read			= e1000_read_nvm_spt,
5861	.update			= e1000_update_nvm_checksum_spt,
5862	.reload			= e1000e_reload_nvm_generic,
5863	.valid_led_default	= e1000_valid_led_default_ich8lan,
5864	.validate		= e1000_validate_nvm_checksum_ich8lan,
5865	.write			= e1000_write_nvm_ich8lan,
5866};
5867
5868const struct e1000_info e1000_ich8_info = {
5869	.mac			= e1000_ich8lan,
5870	.flags			= FLAG_HAS_WOL
5871				  | FLAG_IS_ICH
5872				  | FLAG_HAS_CTRLEXT_ON_LOAD
5873				  | FLAG_HAS_AMT
5874				  | FLAG_HAS_FLASH
5875				  | FLAG_APME_IN_WUC,
5876	.pba			= 8,
5877	.max_hw_frame_size	= VLAN_ETH_FRAME_LEN + ETH_FCS_LEN,
5878	.get_variants		= e1000_get_variants_ich8lan,
5879	.mac_ops		= &ich8_mac_ops,
5880	.phy_ops		= &ich8_phy_ops,
5881	.nvm_ops		= &ich8_nvm_ops,
5882};
5883
5884const struct e1000_info e1000_ich9_info = {
5885	.mac			= e1000_ich9lan,
5886	.flags			= FLAG_HAS_JUMBO_FRAMES
5887				  | FLAG_IS_ICH
5888				  | FLAG_HAS_WOL
5889				  | FLAG_HAS_CTRLEXT_ON_LOAD
5890				  | FLAG_HAS_AMT
5891				  | FLAG_HAS_FLASH
5892				  | FLAG_APME_IN_WUC,
5893	.pba			= 18,
5894	.max_hw_frame_size	= DEFAULT_JUMBO,
5895	.get_variants		= e1000_get_variants_ich8lan,
5896	.mac_ops		= &ich8_mac_ops,
5897	.phy_ops		= &ich8_phy_ops,
5898	.nvm_ops		= &ich8_nvm_ops,
5899};
5900
5901const struct e1000_info e1000_ich10_info = {
5902	.mac			= e1000_ich10lan,
5903	.flags			= FLAG_HAS_JUMBO_FRAMES
5904				  | FLAG_IS_ICH
5905				  | FLAG_HAS_WOL
5906				  | FLAG_HAS_CTRLEXT_ON_LOAD
5907				  | FLAG_HAS_AMT
5908				  | FLAG_HAS_FLASH
5909				  | FLAG_APME_IN_WUC,
5910	.pba			= 18,
5911	.max_hw_frame_size	= DEFAULT_JUMBO,
5912	.get_variants		= e1000_get_variants_ich8lan,
5913	.mac_ops		= &ich8_mac_ops,
5914	.phy_ops		= &ich8_phy_ops,
5915	.nvm_ops		= &ich8_nvm_ops,
5916};
5917
5918const struct e1000_info e1000_pch_info = {
5919	.mac			= e1000_pchlan,
5920	.flags			= FLAG_IS_ICH
5921				  | FLAG_HAS_WOL
5922				  | FLAG_HAS_CTRLEXT_ON_LOAD
5923				  | FLAG_HAS_AMT
5924				  | FLAG_HAS_FLASH
5925				  | FLAG_HAS_JUMBO_FRAMES
5926				  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
5927				  | FLAG_APME_IN_WUC,
5928	.flags2			= FLAG2_HAS_PHY_STATS,
5929	.pba			= 26,
5930	.max_hw_frame_size	= 4096,
5931	.get_variants		= e1000_get_variants_ich8lan,
5932	.mac_ops		= &ich8_mac_ops,
5933	.phy_ops		= &ich8_phy_ops,
5934	.nvm_ops		= &ich8_nvm_ops,
5935};
5936
5937const struct e1000_info e1000_pch2_info = {
5938	.mac			= e1000_pch2lan,
5939	.flags			= FLAG_IS_ICH
5940				  | FLAG_HAS_WOL
5941				  | FLAG_HAS_HW_TIMESTAMP
5942				  | FLAG_HAS_CTRLEXT_ON_LOAD
5943				  | FLAG_HAS_AMT
5944				  | FLAG_HAS_FLASH
5945				  | FLAG_HAS_JUMBO_FRAMES
5946				  | FLAG_APME_IN_WUC,
5947	.flags2			= FLAG2_HAS_PHY_STATS
5948				  | FLAG2_HAS_EEE
5949				  | FLAG2_CHECK_SYSTIM_OVERFLOW,
5950	.pba			= 26,
5951	.max_hw_frame_size	= 9022,
5952	.get_variants		= e1000_get_variants_ich8lan,
5953	.mac_ops		= &ich8_mac_ops,
5954	.phy_ops		= &ich8_phy_ops,
5955	.nvm_ops		= &ich8_nvm_ops,
5956};
5957
5958const struct e1000_info e1000_pch_lpt_info = {
5959	.mac			= e1000_pch_lpt,
5960	.flags			= FLAG_IS_ICH
5961				  | FLAG_HAS_WOL
5962				  | FLAG_HAS_HW_TIMESTAMP
5963				  | FLAG_HAS_CTRLEXT_ON_LOAD
5964				  | FLAG_HAS_AMT
5965				  | FLAG_HAS_FLASH
5966				  | FLAG_HAS_JUMBO_FRAMES
5967				  | FLAG_APME_IN_WUC,
5968	.flags2			= FLAG2_HAS_PHY_STATS
5969				  | FLAG2_HAS_EEE
5970				  | FLAG2_CHECK_SYSTIM_OVERFLOW,
5971	.pba			= 26,
5972	.max_hw_frame_size	= 9022,
5973	.get_variants		= e1000_get_variants_ich8lan,
5974	.mac_ops		= &ich8_mac_ops,
5975	.phy_ops		= &ich8_phy_ops,
5976	.nvm_ops		= &ich8_nvm_ops,
5977};
5978
5979const struct e1000_info e1000_pch_spt_info = {
5980	.mac			= e1000_pch_spt,
5981	.flags			= FLAG_IS_ICH
5982				  | FLAG_HAS_WOL
5983				  | FLAG_HAS_HW_TIMESTAMP
5984				  | FLAG_HAS_CTRLEXT_ON_LOAD
5985				  | FLAG_HAS_AMT
5986				  | FLAG_HAS_FLASH
5987				  | FLAG_HAS_JUMBO_FRAMES
5988				  | FLAG_APME_IN_WUC,
5989	.flags2			= FLAG2_HAS_PHY_STATS
5990				  | FLAG2_HAS_EEE,
5991	.pba			= 26,
5992	.max_hw_frame_size	= 9022,
5993	.get_variants		= e1000_get_variants_ich8lan,
5994	.mac_ops		= &ich8_mac_ops,
5995	.phy_ops		= &ich8_phy_ops,
5996	.nvm_ops		= &spt_nvm_ops,
5997};
5998
5999const struct e1000_info e1000_pch_cnp_info = {
6000	.mac			= e1000_pch_cnp,
6001	.flags			= FLAG_IS_ICH
6002				  | FLAG_HAS_WOL
6003				  | FLAG_HAS_HW_TIMESTAMP
6004				  | FLAG_HAS_CTRLEXT_ON_LOAD
6005				  | FLAG_HAS_AMT
6006				  | FLAG_HAS_FLASH
6007				  | FLAG_HAS_JUMBO_FRAMES
6008				  | FLAG_APME_IN_WUC,
6009	.flags2			= FLAG2_HAS_PHY_STATS
6010				  | FLAG2_HAS_EEE,
6011	.pba			= 26,
6012	.max_hw_frame_size	= 9022,
6013	.get_variants		= e1000_get_variants_ich8lan,
6014	.mac_ops		= &ich8_mac_ops,
6015	.phy_ops		= &ich8_phy_ops,
6016	.nvm_ops		= &spt_nvm_ops,
6017};
6018
6019const struct e1000_info e1000_pch_tgp_info = {
6020	.mac			= e1000_pch_tgp,
6021	.flags			= FLAG_IS_ICH
6022				  | FLAG_HAS_WOL
6023				  | FLAG_HAS_HW_TIMESTAMP
6024				  | FLAG_HAS_CTRLEXT_ON_LOAD
6025				  | FLAG_HAS_AMT
6026				  | FLAG_HAS_FLASH
6027				  | FLAG_HAS_JUMBO_FRAMES
6028				  | FLAG_APME_IN_WUC,
6029	.flags2			= FLAG2_HAS_PHY_STATS
6030				  | FLAG2_HAS_EEE,
6031	.pba			= 26,
6032	.max_hw_frame_size	= 9022,
6033	.get_variants		= e1000_get_variants_ich8lan,
6034	.mac_ops		= &ich8_mac_ops,
6035	.phy_ops		= &ich8_phy_ops,
6036	.nvm_ops		= &spt_nvm_ops,
6037};
6038
6039const struct e1000_info e1000_pch_adp_info = {
6040	.mac			= e1000_pch_adp,
6041	.flags			= FLAG_IS_ICH
6042				  | FLAG_HAS_WOL
6043				  | FLAG_HAS_HW_TIMESTAMP
6044				  | FLAG_HAS_CTRLEXT_ON_LOAD
6045				  | FLAG_HAS_AMT
6046				  | FLAG_HAS_FLASH
6047				  | FLAG_HAS_JUMBO_FRAMES
6048				  | FLAG_APME_IN_WUC,
6049	.flags2			= FLAG2_HAS_PHY_STATS
6050				  | FLAG2_HAS_EEE,
6051	.pba			= 26,
6052	.max_hw_frame_size	= 9022,
6053	.get_variants		= e1000_get_variants_ich8lan,
6054	.mac_ops		= &ich8_mac_ops,
6055	.phy_ops		= &ich8_phy_ops,
6056	.nvm_ops		= &spt_nvm_ops,
6057};
6058
6059const struct e1000_info e1000_pch_mtp_info = {
6060	.mac			= e1000_pch_mtp,
6061	.flags			= FLAG_IS_ICH
6062				  | FLAG_HAS_WOL
6063				  | FLAG_HAS_HW_TIMESTAMP
6064				  | FLAG_HAS_CTRLEXT_ON_LOAD
6065				  | FLAG_HAS_AMT
6066				  | FLAG_HAS_FLASH
6067				  | FLAG_HAS_JUMBO_FRAMES
6068				  | FLAG_APME_IN_WUC,
6069	.flags2			= FLAG2_HAS_PHY_STATS
6070				  | FLAG2_HAS_EEE,
6071	.pba			= 26,
6072	.max_hw_frame_size	= 9022,
6073	.get_variants		= e1000_get_variants_ich8lan,
6074	.mac_ops		= &ich8_mac_ops,
6075	.phy_ops		= &ich8_phy_ops,
6076	.nvm_ops		= &spt_nvm_ops,
6077};
6078