1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 1999 - 2018 Intel Corporation. */
3
4/* 82571EB Gigabit Ethernet Controller
5 * 82571EB Gigabit Ethernet Controller (Copper)
6 * 82571EB Gigabit Ethernet Controller (Fiber)
7 * 82571EB Dual Port Gigabit Mezzanine Adapter
8 * 82571EB Quad Port Gigabit Mezzanine Adapter
9 * 82571PT Gigabit PT Quad Port Server ExpressModule
10 * 82572EI Gigabit Ethernet Controller (Copper)
11 * 82572EI Gigabit Ethernet Controller (Fiber)
12 * 82572EI Gigabit Ethernet Controller
13 * 82573V Gigabit Ethernet Controller (Copper)
14 * 82573E Gigabit Ethernet Controller (Copper)
15 * 82573L Gigabit Ethernet Controller
16 * 82574L Gigabit Network Connection
17 * 82583V Gigabit Network Connection
18 */
19
20#include "e1000.h"
21
22static s32 e1000_get_phy_id_82571(struct e1000_hw *hw);
23static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw);
24static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw);
25static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw);
26static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
27				      u16 words, u16 *data);
28static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
29static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw);
30static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw);
31static bool e1000_check_mng_mode_82574(struct e1000_hw *hw);
32static s32 e1000_led_on_82574(struct e1000_hw *hw);
33static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw);
34static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw);
35static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw);
36static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw);
37static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw);
38static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active);
39static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active);
40
41/**
42 *  e1000_init_phy_params_82571 - Init PHY func ptrs.
43 *  @hw: pointer to the HW structure
44 **/
45static s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
46{
47	struct e1000_phy_info *phy = &hw->phy;
48	s32 ret_val;
49
50	if (hw->phy.media_type != e1000_media_type_copper) {
51		phy->type = e1000_phy_none;
52		return 0;
53	}
54
55	phy->addr = 1;
56	phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
57	phy->reset_delay_us = 100;
58
59	phy->ops.power_up = e1000_power_up_phy_copper;
60	phy->ops.power_down = e1000_power_down_phy_copper_82571;
61
62	switch (hw->mac.type) {
63	case e1000_82571:
64	case e1000_82572:
65		phy->type = e1000_phy_igp_2;
66		break;
67	case e1000_82573:
68		phy->type = e1000_phy_m88;
69		break;
70	case e1000_82574:
71	case e1000_82583:
72		phy->type = e1000_phy_bm;
73		phy->ops.acquire = e1000_get_hw_semaphore_82574;
74		phy->ops.release = e1000_put_hw_semaphore_82574;
75		phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82574;
76		phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82574;
77		break;
78	default:
79		return -E1000_ERR_PHY;
80	}
81
82	/* This can only be done after all function pointers are setup. */
83	ret_val = e1000_get_phy_id_82571(hw);
84	if (ret_val) {
85		e_dbg("Error getting PHY ID\n");
86		return ret_val;
87	}
88
89	/* Verify phy id */
90	switch (hw->mac.type) {
91	case e1000_82571:
92	case e1000_82572:
93		if (phy->id != IGP01E1000_I_PHY_ID)
94			ret_val = -E1000_ERR_PHY;
95		break;
96	case e1000_82573:
97		if (phy->id != M88E1111_I_PHY_ID)
98			ret_val = -E1000_ERR_PHY;
99		break;
100	case e1000_82574:
101	case e1000_82583:
102		if (phy->id != BME1000_E_PHY_ID_R2)
103			ret_val = -E1000_ERR_PHY;
104		break;
105	default:
106		ret_val = -E1000_ERR_PHY;
107		break;
108	}
109
110	if (ret_val)
111		e_dbg("PHY ID unknown: type = 0x%08x\n", phy->id);
112
113	return ret_val;
114}
115
116/**
117 *  e1000_init_nvm_params_82571 - Init NVM func ptrs.
118 *  @hw: pointer to the HW structure
119 **/
120static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
121{
122	struct e1000_nvm_info *nvm = &hw->nvm;
123	u32 eecd = er32(EECD);
124	u16 size;
125
126	nvm->opcode_bits = 8;
127	nvm->delay_usec = 1;
128	switch (nvm->override) {
129	case e1000_nvm_override_spi_large:
130		nvm->page_size = 32;
131		nvm->address_bits = 16;
132		break;
133	case e1000_nvm_override_spi_small:
134		nvm->page_size = 8;
135		nvm->address_bits = 8;
136		break;
137	default:
138		nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
139		nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
140		break;
141	}
142
143	switch (hw->mac.type) {
144	case e1000_82573:
145	case e1000_82574:
146	case e1000_82583:
147		if (((eecd >> 15) & 0x3) == 0x3) {
148			nvm->type = e1000_nvm_flash_hw;
149			nvm->word_size = 2048;
150			/* Autonomous Flash update bit must be cleared due
151			 * to Flash update issue.
152			 */
153			eecd &= ~E1000_EECD_AUPDEN;
154			ew32(EECD, eecd);
155			break;
156		}
157		fallthrough;
158	default:
159		nvm->type = e1000_nvm_eeprom_spi;
160		size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
161			     E1000_EECD_SIZE_EX_SHIFT);
162		/* Added to a constant, "size" becomes the left-shift value
163		 * for setting word_size.
164		 */
165		size += NVM_WORD_SIZE_BASE_SHIFT;
166
167		/* EEPROM access above 16k is unsupported */
168		if (size > 14)
169			size = 14;
170		nvm->word_size = BIT(size);
171		break;
172	}
173
174	/* Function Pointers */
175	switch (hw->mac.type) {
176	case e1000_82574:
177	case e1000_82583:
178		nvm->ops.acquire = e1000_get_hw_semaphore_82574;
179		nvm->ops.release = e1000_put_hw_semaphore_82574;
180		break;
181	default:
182		break;
183	}
184
185	return 0;
186}
187
188/**
189 *  e1000_init_mac_params_82571 - Init MAC func ptrs.
190 *  @hw: pointer to the HW structure
191 **/
192static s32 e1000_init_mac_params_82571(struct e1000_hw *hw)
193{
194	struct e1000_mac_info *mac = &hw->mac;
195	u32 swsm = 0;
196	u32 swsm2 = 0;
197	bool force_clear_smbi = false;
198
199	/* Set media type and media-dependent function pointers */
200	switch (hw->adapter->pdev->device) {
201	case E1000_DEV_ID_82571EB_FIBER:
202	case E1000_DEV_ID_82572EI_FIBER:
203	case E1000_DEV_ID_82571EB_QUAD_FIBER:
204		hw->phy.media_type = e1000_media_type_fiber;
205		mac->ops.setup_physical_interface =
206		    e1000_setup_fiber_serdes_link_82571;
207		mac->ops.check_for_link = e1000e_check_for_fiber_link;
208		mac->ops.get_link_up_info =
209		    e1000e_get_speed_and_duplex_fiber_serdes;
210		break;
211	case E1000_DEV_ID_82571EB_SERDES:
212	case E1000_DEV_ID_82571EB_SERDES_DUAL:
213	case E1000_DEV_ID_82571EB_SERDES_QUAD:
214	case E1000_DEV_ID_82572EI_SERDES:
215		hw->phy.media_type = e1000_media_type_internal_serdes;
216		mac->ops.setup_physical_interface =
217		    e1000_setup_fiber_serdes_link_82571;
218		mac->ops.check_for_link = e1000_check_for_serdes_link_82571;
219		mac->ops.get_link_up_info =
220		    e1000e_get_speed_and_duplex_fiber_serdes;
221		break;
222	default:
223		hw->phy.media_type = e1000_media_type_copper;
224		mac->ops.setup_physical_interface =
225		    e1000_setup_copper_link_82571;
226		mac->ops.check_for_link = e1000e_check_for_copper_link;
227		mac->ops.get_link_up_info = e1000e_get_speed_and_duplex_copper;
228		break;
229	}
230
231	/* Set mta register count */
232	mac->mta_reg_count = 128;
233	/* Set rar entry count */
234	mac->rar_entry_count = E1000_RAR_ENTRIES;
235	/* Adaptive IFS supported */
236	mac->adaptive_ifs = true;
237
238	/* MAC-specific function pointers */
239	switch (hw->mac.type) {
240	case e1000_82573:
241		mac->ops.set_lan_id = e1000_set_lan_id_single_port;
242		mac->ops.check_mng_mode = e1000e_check_mng_mode_generic;
243		mac->ops.led_on = e1000e_led_on_generic;
244		mac->ops.blink_led = e1000e_blink_led_generic;
245
246		/* FWSM register */
247		mac->has_fwsm = true;
248		/* ARC supported; valid only if manageability features are
249		 * enabled.
250		 */
251		mac->arc_subsystem_valid = !!(er32(FWSM) &
252					      E1000_FWSM_MODE_MASK);
253		break;
254	case e1000_82574:
255	case e1000_82583:
256		mac->ops.set_lan_id = e1000_set_lan_id_single_port;
257		mac->ops.check_mng_mode = e1000_check_mng_mode_82574;
258		mac->ops.led_on = e1000_led_on_82574;
259		break;
260	default:
261		mac->ops.check_mng_mode = e1000e_check_mng_mode_generic;
262		mac->ops.led_on = e1000e_led_on_generic;
263		mac->ops.blink_led = e1000e_blink_led_generic;
264
265		/* FWSM register */
266		mac->has_fwsm = true;
267		break;
268	}
269
270	/* Ensure that the inter-port SWSM.SMBI lock bit is clear before
271	 * first NVM or PHY access. This should be done for single-port
272	 * devices, and for one port only on dual-port devices so that
273	 * for those devices we can still use the SMBI lock to synchronize
274	 * inter-port accesses to the PHY & NVM.
275	 */
276	switch (hw->mac.type) {
277	case e1000_82571:
278	case e1000_82572:
279		swsm2 = er32(SWSM2);
280
281		if (!(swsm2 & E1000_SWSM2_LOCK)) {
282			/* Only do this for the first interface on this card */
283			ew32(SWSM2, swsm2 | E1000_SWSM2_LOCK);
284			force_clear_smbi = true;
285		} else {
286			force_clear_smbi = false;
287		}
288		break;
289	default:
290		force_clear_smbi = true;
291		break;
292	}
293
294	if (force_clear_smbi) {
295		/* Make sure SWSM.SMBI is clear */
296		swsm = er32(SWSM);
297		if (swsm & E1000_SWSM_SMBI) {
298			/* This bit should not be set on a first interface, and
299			 * indicates that the bootagent or EFI code has
300			 * improperly left this bit enabled
301			 */
302			e_dbg("Please update your 82571 Bootagent\n");
303		}
304		ew32(SWSM, swsm & ~E1000_SWSM_SMBI);
305	}
306
307	/* Initialize device specific counter of SMBI acquisition timeouts. */
308	hw->dev_spec.e82571.smb_counter = 0;
309
310	return 0;
311}
312
313static s32 e1000_get_variants_82571(struct e1000_adapter *adapter)
314{
315	struct e1000_hw *hw = &adapter->hw;
316	static int global_quad_port_a;	/* global port a indication */
317	struct pci_dev *pdev = adapter->pdev;
318	int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1;
319	s32 rc;
320
321	rc = e1000_init_mac_params_82571(hw);
322	if (rc)
323		return rc;
324
325	rc = e1000_init_nvm_params_82571(hw);
326	if (rc)
327		return rc;
328
329	rc = e1000_init_phy_params_82571(hw);
330	if (rc)
331		return rc;
332
333	/* tag quad port adapters first, it's used below */
334	switch (pdev->device) {
335	case E1000_DEV_ID_82571EB_QUAD_COPPER:
336	case E1000_DEV_ID_82571EB_QUAD_FIBER:
337	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
338	case E1000_DEV_ID_82571PT_QUAD_COPPER:
339		adapter->flags |= FLAG_IS_QUAD_PORT;
340		/* mark the first port */
341		if (global_quad_port_a == 0)
342			adapter->flags |= FLAG_IS_QUAD_PORT_A;
343		/* Reset for multiple quad port adapters */
344		global_quad_port_a++;
345		if (global_quad_port_a == 4)
346			global_quad_port_a = 0;
347		break;
348	default:
349		break;
350	}
351
352	switch (adapter->hw.mac.type) {
353	case e1000_82571:
354		/* these dual ports don't have WoL on port B at all */
355		if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) ||
356		     (pdev->device == E1000_DEV_ID_82571EB_SERDES) ||
357		     (pdev->device == E1000_DEV_ID_82571EB_COPPER)) &&
358		    (is_port_b))
359			adapter->flags &= ~FLAG_HAS_WOL;
360		/* quad ports only support WoL on port A */
361		if (adapter->flags & FLAG_IS_QUAD_PORT &&
362		    (!(adapter->flags & FLAG_IS_QUAD_PORT_A)))
363			adapter->flags &= ~FLAG_HAS_WOL;
364		/* Does not support WoL on any port */
365		if (pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD)
366			adapter->flags &= ~FLAG_HAS_WOL;
367		break;
368	case e1000_82573:
369		if (pdev->device == E1000_DEV_ID_82573L) {
370			adapter->flags |= FLAG_HAS_JUMBO_FRAMES;
371			adapter->max_hw_frame_size = DEFAULT_JUMBO;
372		}
373		break;
374	default:
375		break;
376	}
377
378	return 0;
379}
380
381/**
382 *  e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
383 *  @hw: pointer to the HW structure
384 *
385 *  Reads the PHY registers and stores the PHY ID and possibly the PHY
386 *  revision in the hardware structure.
387 **/
388static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
389{
390	struct e1000_phy_info *phy = &hw->phy;
391	s32 ret_val;
392	u16 phy_id = 0;
393
394	switch (hw->mac.type) {
395	case e1000_82571:
396	case e1000_82572:
397		/* The 82571 firmware may still be configuring the PHY.
398		 * In this case, we cannot access the PHY until the
399		 * configuration is done.  So we explicitly set the
400		 * PHY ID.
401		 */
402		phy->id = IGP01E1000_I_PHY_ID;
403		break;
404	case e1000_82573:
405		return e1000e_get_phy_id(hw);
406	case e1000_82574:
407	case e1000_82583:
408		ret_val = e1e_rphy(hw, MII_PHYSID1, &phy_id);
409		if (ret_val)
410			return ret_val;
411
412		phy->id = (u32)(phy_id << 16);
413		usleep_range(20, 40);
414		ret_val = e1e_rphy(hw, MII_PHYSID2, &phy_id);
415		if (ret_val)
416			return ret_val;
417
418		phy->id |= (u32)(phy_id);
419		phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
420		break;
421	default:
422		return -E1000_ERR_PHY;
423	}
424
425	return 0;
426}
427
428/**
429 *  e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
430 *  @hw: pointer to the HW structure
431 *
432 *  Acquire the HW semaphore to access the PHY or NVM
433 **/
434static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
435{
436	u32 swsm;
437	s32 sw_timeout = hw->nvm.word_size + 1;
438	s32 fw_timeout = hw->nvm.word_size + 1;
439	s32 i = 0;
440
441	/* If we have timedout 3 times on trying to acquire
442	 * the inter-port SMBI semaphore, there is old code
443	 * operating on the other port, and it is not
444	 * releasing SMBI. Modify the number of times that
445	 * we try for the semaphore to interwork with this
446	 * older code.
447	 */
448	if (hw->dev_spec.e82571.smb_counter > 2)
449		sw_timeout = 1;
450
451	/* Get the SW semaphore */
452	while (i < sw_timeout) {
453		swsm = er32(SWSM);
454		if (!(swsm & E1000_SWSM_SMBI))
455			break;
456
457		usleep_range(50, 100);
458		i++;
459	}
460
461	if (i == sw_timeout) {
462		e_dbg("Driver can't access device - SMBI bit is set.\n");
463		hw->dev_spec.e82571.smb_counter++;
464	}
465	/* Get the FW semaphore. */
466	for (i = 0; i < fw_timeout; i++) {
467		swsm = er32(SWSM);
468		ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
469
470		/* Semaphore acquired if bit latched */
471		if (er32(SWSM) & E1000_SWSM_SWESMBI)
472			break;
473
474		usleep_range(50, 100);
475	}
476
477	if (i == fw_timeout) {
478		/* Release semaphores */
479		e1000_put_hw_semaphore_82571(hw);
480		e_dbg("Driver can't access the NVM\n");
481		return -E1000_ERR_NVM;
482	}
483
484	return 0;
485}
486
487/**
488 *  e1000_put_hw_semaphore_82571 - Release hardware semaphore
489 *  @hw: pointer to the HW structure
490 *
491 *  Release hardware semaphore used to access the PHY or NVM
492 **/
493static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw)
494{
495	u32 swsm;
496
497	swsm = er32(SWSM);
498	swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
499	ew32(SWSM, swsm);
500}
501
502/**
503 *  e1000_get_hw_semaphore_82573 - Acquire hardware semaphore
504 *  @hw: pointer to the HW structure
505 *
506 *  Acquire the HW semaphore during reset.
507 *
508 **/
509static s32 e1000_get_hw_semaphore_82573(struct e1000_hw *hw)
510{
511	u32 extcnf_ctrl;
512	s32 i = 0;
513
514	extcnf_ctrl = er32(EXTCNF_CTRL);
515	do {
516		extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
517		ew32(EXTCNF_CTRL, extcnf_ctrl);
518		extcnf_ctrl = er32(EXTCNF_CTRL);
519
520		if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
521			break;
522
523		usleep_range(2000, 4000);
524		i++;
525	} while (i < MDIO_OWNERSHIP_TIMEOUT);
526
527	if (i == MDIO_OWNERSHIP_TIMEOUT) {
528		/* Release semaphores */
529		e1000_put_hw_semaphore_82573(hw);
530		e_dbg("Driver can't access the PHY\n");
531		return -E1000_ERR_PHY;
532	}
533
534	return 0;
535}
536
537/**
538 *  e1000_put_hw_semaphore_82573 - Release hardware semaphore
539 *  @hw: pointer to the HW structure
540 *
541 *  Release hardware semaphore used during reset.
542 *
543 **/
544static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw)
545{
546	u32 extcnf_ctrl;
547
548	extcnf_ctrl = er32(EXTCNF_CTRL);
549	extcnf_ctrl &= ~E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
550	ew32(EXTCNF_CTRL, extcnf_ctrl);
551}
552
553static DEFINE_MUTEX(swflag_mutex);
554
555/**
556 *  e1000_get_hw_semaphore_82574 - Acquire hardware semaphore
557 *  @hw: pointer to the HW structure
558 *
559 *  Acquire the HW semaphore to access the PHY or NVM.
560 *
561 **/
562static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw)
563{
564	s32 ret_val;
565
566	mutex_lock(&swflag_mutex);
567	ret_val = e1000_get_hw_semaphore_82573(hw);
568	if (ret_val)
569		mutex_unlock(&swflag_mutex);
570	return ret_val;
571}
572
573/**
574 *  e1000_put_hw_semaphore_82574 - Release hardware semaphore
575 *  @hw: pointer to the HW structure
576 *
577 *  Release hardware semaphore used to access the PHY or NVM
578 *
579 **/
580static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw)
581{
582	e1000_put_hw_semaphore_82573(hw);
583	mutex_unlock(&swflag_mutex);
584}
585
586/**
587 *  e1000_set_d0_lplu_state_82574 - Set Low Power Linkup D0 state
588 *  @hw: pointer to the HW structure
589 *  @active: true to enable LPLU, false to disable
590 *
591 *  Sets the LPLU D0 state according to the active flag.
592 *  LPLU will not be activated unless the
593 *  device autonegotiation advertisement meets standards of
594 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
595 *  This is a function pointer entry point only called by
596 *  PHY setup routines.
597 **/
598static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active)
599{
600	u32 data = er32(POEMB);
601
602	if (active)
603		data |= E1000_PHY_CTRL_D0A_LPLU;
604	else
605		data &= ~E1000_PHY_CTRL_D0A_LPLU;
606
607	ew32(POEMB, data);
608	return 0;
609}
610
611/**
612 *  e1000_set_d3_lplu_state_82574 - Sets low power link up state for D3
613 *  @hw: pointer to the HW structure
614 *  @active: boolean used to enable/disable lplu
615 *
616 *  The low power link up (lplu) state is set to the power management level D3
617 *  when active is true, else clear lplu for D3. LPLU
618 *  is used during Dx states where the power conservation is most important.
619 *  During driver activity, SmartSpeed should be enabled so performance is
620 *  maintained.
621 **/
622static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active)
623{
624	u32 data = er32(POEMB);
625
626	if (!active) {
627		data &= ~E1000_PHY_CTRL_NOND0A_LPLU;
628	} else if ((hw->phy.autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
629		   (hw->phy.autoneg_advertised == E1000_ALL_NOT_GIG) ||
630		   (hw->phy.autoneg_advertised == E1000_ALL_10_SPEED)) {
631		data |= E1000_PHY_CTRL_NOND0A_LPLU;
632	}
633
634	ew32(POEMB, data);
635	return 0;
636}
637
638/**
639 *  e1000_acquire_nvm_82571 - Request for access to the EEPROM
640 *  @hw: pointer to the HW structure
641 *
642 *  To gain access to the EEPROM, first we must obtain a hardware semaphore.
643 *  Then for non-82573 hardware, set the EEPROM access request bit and wait
644 *  for EEPROM access grant bit.  If the access grant bit is not set, release
645 *  hardware semaphore.
646 **/
647static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
648{
649	s32 ret_val;
650
651	ret_val = e1000_get_hw_semaphore_82571(hw);
652	if (ret_val)
653		return ret_val;
654
655	switch (hw->mac.type) {
656	case e1000_82573:
657		break;
658	default:
659		ret_val = e1000e_acquire_nvm(hw);
660		break;
661	}
662
663	if (ret_val)
664		e1000_put_hw_semaphore_82571(hw);
665
666	return ret_val;
667}
668
669/**
670 *  e1000_release_nvm_82571 - Release exclusive access to EEPROM
671 *  @hw: pointer to the HW structure
672 *
673 *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
674 **/
675static void e1000_release_nvm_82571(struct e1000_hw *hw)
676{
677	e1000e_release_nvm(hw);
678	e1000_put_hw_semaphore_82571(hw);
679}
680
681/**
682 *  e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
683 *  @hw: pointer to the HW structure
684 *  @offset: offset within the EEPROM to be written to
685 *  @words: number of words to write
686 *  @data: 16 bit word(s) to be written to the EEPROM
687 *
688 *  For non-82573 silicon, write data to EEPROM at offset using SPI interface.
689 *
690 *  If e1000e_update_nvm_checksum is not called after this function, the
691 *  EEPROM will most likely contain an invalid checksum.
692 **/
693static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
694				 u16 *data)
695{
696	s32 ret_val;
697
698	switch (hw->mac.type) {
699	case e1000_82573:
700	case e1000_82574:
701	case e1000_82583:
702		ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data);
703		break;
704	case e1000_82571:
705	case e1000_82572:
706		ret_val = e1000e_write_nvm_spi(hw, offset, words, data);
707		break;
708	default:
709		ret_val = -E1000_ERR_NVM;
710		break;
711	}
712
713	return ret_val;
714}
715
716/**
717 *  e1000_update_nvm_checksum_82571 - Update EEPROM checksum
718 *  @hw: pointer to the HW structure
719 *
720 *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
721 *  up to the checksum.  Then calculates the EEPROM checksum and writes the
722 *  value to the EEPROM.
723 **/
724static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
725{
726	u32 eecd;
727	s32 ret_val;
728	u16 i;
729
730	ret_val = e1000e_update_nvm_checksum_generic(hw);
731	if (ret_val)
732		return ret_val;
733
734	/* If our nvm is an EEPROM, then we're done
735	 * otherwise, commit the checksum to the flash NVM.
736	 */
737	if (hw->nvm.type != e1000_nvm_flash_hw)
738		return 0;
739
740	/* Check for pending operations. */
741	for (i = 0; i < E1000_FLASH_UPDATES; i++) {
742		usleep_range(1000, 2000);
743		if (!(er32(EECD) & E1000_EECD_FLUPD))
744			break;
745	}
746
747	if (i == E1000_FLASH_UPDATES)
748		return -E1000_ERR_NVM;
749
750	/* Reset the firmware if using STM opcode. */
751	if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) {
752		/* The enabling of and the actual reset must be done
753		 * in two write cycles.
754		 */
755		ew32(HICR, E1000_HICR_FW_RESET_ENABLE);
756		e1e_flush();
757		ew32(HICR, E1000_HICR_FW_RESET);
758	}
759
760	/* Commit the write to flash */
761	eecd = er32(EECD) | E1000_EECD_FLUPD;
762	ew32(EECD, eecd);
763
764	for (i = 0; i < E1000_FLASH_UPDATES; i++) {
765		usleep_range(1000, 2000);
766		if (!(er32(EECD) & E1000_EECD_FLUPD))
767			break;
768	}
769
770	if (i == E1000_FLASH_UPDATES)
771		return -E1000_ERR_NVM;
772
773	return 0;
774}
775
776/**
777 *  e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
778 *  @hw: pointer to the HW structure
779 *
780 *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
781 *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
782 **/
783static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
784{
785	if (hw->nvm.type == e1000_nvm_flash_hw)
786		e1000_fix_nvm_checksum_82571(hw);
787
788	return e1000e_validate_nvm_checksum_generic(hw);
789}
790
791/**
792 *  e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
793 *  @hw: pointer to the HW structure
794 *  @offset: offset within the EEPROM to be written to
795 *  @words: number of words to write
796 *  @data: 16 bit word(s) to be written to the EEPROM
797 *
798 *  After checking for invalid values, poll the EEPROM to ensure the previous
799 *  command has completed before trying to write the next word.  After write
800 *  poll for completion.
801 *
802 *  If e1000e_update_nvm_checksum is not called after this function, the
803 *  EEPROM will most likely contain an invalid checksum.
804 **/
805static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
806				      u16 words, u16 *data)
807{
808	struct e1000_nvm_info *nvm = &hw->nvm;
809	u32 i, eewr = 0;
810	s32 ret_val = 0;
811
812	/* A check for invalid values:  offset too large, too many words,
813	 * and not enough words.
814	 */
815	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
816	    (words == 0)) {
817		e_dbg("nvm parameter(s) out of bounds\n");
818		return -E1000_ERR_NVM;
819	}
820
821	for (i = 0; i < words; i++) {
822		eewr = ((data[i] << E1000_NVM_RW_REG_DATA) |
823			((offset + i) << E1000_NVM_RW_ADDR_SHIFT) |
824			E1000_NVM_RW_REG_START);
825
826		ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
827		if (ret_val)
828			break;
829
830		ew32(EEWR, eewr);
831
832		ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
833		if (ret_val)
834			break;
835	}
836
837	return ret_val;
838}
839
840/**
841 *  e1000_get_cfg_done_82571 - Poll for configuration done
842 *  @hw: pointer to the HW structure
843 *
844 *  Reads the management control register for the config done bit to be set.
845 **/
846static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
847{
848	s32 timeout = PHY_CFG_TIMEOUT;
849
850	while (timeout) {
851		if (er32(EEMNGCTL) & E1000_NVM_CFG_DONE_PORT_0)
852			break;
853		usleep_range(1000, 2000);
854		timeout--;
855	}
856	if (!timeout) {
857		e_dbg("MNG configuration cycle has not completed.\n");
858		return -E1000_ERR_RESET;
859	}
860
861	return 0;
862}
863
864/**
865 *  e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
866 *  @hw: pointer to the HW structure
867 *  @active: true to enable LPLU, false to disable
868 *
869 *  Sets the LPLU D0 state according to the active flag.  When activating LPLU
870 *  this function also disables smart speed and vice versa.  LPLU will not be
871 *  activated unless the device autonegotiation advertisement meets standards
872 *  of either 10 or 10/100 or 10/100/1000 at all duplexes.  This is a function
873 *  pointer entry point only called by PHY setup routines.
874 **/
875static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
876{
877	struct e1000_phy_info *phy = &hw->phy;
878	s32 ret_val;
879	u16 data;
880
881	ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
882	if (ret_val)
883		return ret_val;
884
885	if (active) {
886		data |= IGP02E1000_PM_D0_LPLU;
887		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
888		if (ret_val)
889			return ret_val;
890
891		/* When LPLU is enabled, we should disable SmartSpeed */
892		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
893		if (ret_val)
894			return ret_val;
895		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
896		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
897		if (ret_val)
898			return ret_val;
899	} else {
900		data &= ~IGP02E1000_PM_D0_LPLU;
901		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
902		if (ret_val)
903			return ret_val;
904		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
905		 * during Dx states where the power conservation is most
906		 * important.  During driver activity we should enable
907		 * SmartSpeed, so performance is maintained.
908		 */
909		if (phy->smart_speed == e1000_smart_speed_on) {
910			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
911					   &data);
912			if (ret_val)
913				return ret_val;
914
915			data |= IGP01E1000_PSCFR_SMART_SPEED;
916			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
917					   data);
918			if (ret_val)
919				return ret_val;
920		} else if (phy->smart_speed == e1000_smart_speed_off) {
921			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
922					   &data);
923			if (ret_val)
924				return ret_val;
925
926			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
927			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
928					   data);
929			if (ret_val)
930				return ret_val;
931		}
932	}
933
934	return 0;
935}
936
937/**
938 *  e1000_reset_hw_82571 - Reset hardware
939 *  @hw: pointer to the HW structure
940 *
941 *  This resets the hardware into a known state.
942 **/
943static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
944{
945	u32 ctrl, ctrl_ext, eecd, tctl;
946	s32 ret_val;
947
948	/* Prevent the PCI-E bus from sticking if there is no TLP connection
949	 * on the last TLP read/write transaction when MAC is reset.
950	 */
951	ret_val = e1000e_disable_pcie_master(hw);
952	if (ret_val)
953		e_dbg("PCI-E Master disable polling has failed.\n");
954
955	e_dbg("Masking off all interrupts\n");
956	ew32(IMC, 0xffffffff);
957
958	ew32(RCTL, 0);
959	tctl = er32(TCTL);
960	tctl &= ~E1000_TCTL_EN;
961	ew32(TCTL, tctl);
962	e1e_flush();
963
964	usleep_range(10000, 11000);
965
966	/* Must acquire the MDIO ownership before MAC reset.
967	 * Ownership defaults to firmware after a reset.
968	 */
969	switch (hw->mac.type) {
970	case e1000_82573:
971		ret_val = e1000_get_hw_semaphore_82573(hw);
972		break;
973	case e1000_82574:
974	case e1000_82583:
975		ret_val = e1000_get_hw_semaphore_82574(hw);
976		break;
977	default:
978		break;
979	}
980
981	ctrl = er32(CTRL);
982
983	e_dbg("Issuing a global reset to MAC\n");
984	ew32(CTRL, ctrl | E1000_CTRL_RST);
985
986	/* Must release MDIO ownership and mutex after MAC reset. */
987	switch (hw->mac.type) {
988	case e1000_82573:
989		/* Release mutex only if the hw semaphore is acquired */
990		if (!ret_val)
991			e1000_put_hw_semaphore_82573(hw);
992		break;
993	case e1000_82574:
994	case e1000_82583:
995		/* Release mutex only if the hw semaphore is acquired */
996		if (!ret_val)
997			e1000_put_hw_semaphore_82574(hw);
998		break;
999	default:
1000		break;
1001	}
1002
1003	if (hw->nvm.type == e1000_nvm_flash_hw) {
1004		usleep_range(10, 20);
1005		ctrl_ext = er32(CTRL_EXT);
1006		ctrl_ext |= E1000_CTRL_EXT_EE_RST;
1007		ew32(CTRL_EXT, ctrl_ext);
1008		e1e_flush();
1009	}
1010
1011	ret_val = e1000e_get_auto_rd_done(hw);
1012	if (ret_val)
1013		/* We don't want to continue accessing MAC registers. */
1014		return ret_val;
1015
1016	/* Phy configuration from NVM just starts after EECD_AUTO_RD is set.
1017	 * Need to wait for Phy configuration completion before accessing
1018	 * NVM and Phy.
1019	 */
1020
1021	switch (hw->mac.type) {
1022	case e1000_82571:
1023	case e1000_82572:
1024		/* REQ and GNT bits need to be cleared when using AUTO_RD
1025		 * to access the EEPROM.
1026		 */
1027		eecd = er32(EECD);
1028		eecd &= ~(E1000_EECD_REQ | E1000_EECD_GNT);
1029		ew32(EECD, eecd);
1030		break;
1031	case e1000_82573:
1032	case e1000_82574:
1033	case e1000_82583:
1034		msleep(25);
1035		break;
1036	default:
1037		break;
1038	}
1039
1040	/* Clear any pending interrupt events. */
1041	ew32(IMC, 0xffffffff);
1042	er32(ICR);
1043
1044	if (hw->mac.type == e1000_82571) {
1045		/* Install any alternate MAC address into RAR0 */
1046		ret_val = e1000_check_alt_mac_addr_generic(hw);
1047		if (ret_val)
1048			return ret_val;
1049
1050		e1000e_set_laa_state_82571(hw, true);
1051	}
1052
1053	/* Reinitialize the 82571 serdes link state machine */
1054	if (hw->phy.media_type == e1000_media_type_internal_serdes)
1055		hw->mac.serdes_link_state = e1000_serdes_link_down;
1056
1057	return 0;
1058}
1059
1060/**
1061 *  e1000_init_hw_82571 - Initialize hardware
1062 *  @hw: pointer to the HW structure
1063 *
1064 *  This inits the hardware readying it for operation.
1065 **/
1066static s32 e1000_init_hw_82571(struct e1000_hw *hw)
1067{
1068	struct e1000_mac_info *mac = &hw->mac;
1069	u32 reg_data;
1070	s32 ret_val;
1071	u16 i, rar_count = mac->rar_entry_count;
1072
1073	e1000_initialize_hw_bits_82571(hw);
1074
1075	/* Initialize identification LED */
1076	ret_val = mac->ops.id_led_init(hw);
1077	/* An error is not fatal and we should not stop init due to this */
1078	if (ret_val)
1079		e_dbg("Error initializing identification LED\n");
1080
1081	/* Disabling VLAN filtering */
1082	e_dbg("Initializing the IEEE VLAN\n");
1083	mac->ops.clear_vfta(hw);
1084
1085	/* Setup the receive address.
1086	 * If, however, a locally administered address was assigned to the
1087	 * 82571, we must reserve a RAR for it to work around an issue where
1088	 * resetting one port will reload the MAC on the other port.
1089	 */
1090	if (e1000e_get_laa_state_82571(hw))
1091		rar_count--;
1092	e1000e_init_rx_addrs(hw, rar_count);
1093
1094	/* Zero out the Multicast HASH table */
1095	e_dbg("Zeroing the MTA\n");
1096	for (i = 0; i < mac->mta_reg_count; i++)
1097		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
1098
1099	/* Setup link and flow control */
1100	ret_val = mac->ops.setup_link(hw);
1101
1102	/* Set the transmit descriptor write-back policy */
1103	reg_data = er32(TXDCTL(0));
1104	reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
1105		    E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
1106	ew32(TXDCTL(0), reg_data);
1107
1108	/* ...for both queues. */
1109	switch (mac->type) {
1110	case e1000_82573:
1111		e1000e_enable_tx_pkt_filtering(hw);
1112		fallthrough;
1113	case e1000_82574:
1114	case e1000_82583:
1115		reg_data = er32(GCR);
1116		reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
1117		ew32(GCR, reg_data);
1118		break;
1119	default:
1120		reg_data = er32(TXDCTL(1));
1121		reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
1122			    E1000_TXDCTL_FULL_TX_DESC_WB |
1123			    E1000_TXDCTL_COUNT_DESC);
1124		ew32(TXDCTL(1), reg_data);
1125		break;
1126	}
1127
1128	/* Clear all of the statistics registers (clear on read).  It is
1129	 * important that we do this after we have tried to establish link
1130	 * because the symbol error count will increment wildly if there
1131	 * is no link.
1132	 */
1133	e1000_clear_hw_cntrs_82571(hw);
1134
1135	return ret_val;
1136}
1137
1138/**
1139 *  e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
1140 *  @hw: pointer to the HW structure
1141 *
1142 *  Initializes required hardware-dependent bits needed for normal operation.
1143 **/
1144static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
1145{
1146	u32 reg;
1147
1148	/* Transmit Descriptor Control 0 */
1149	reg = er32(TXDCTL(0));
1150	reg |= BIT(22);
1151	ew32(TXDCTL(0), reg);
1152
1153	/* Transmit Descriptor Control 1 */
1154	reg = er32(TXDCTL(1));
1155	reg |= BIT(22);
1156	ew32(TXDCTL(1), reg);
1157
1158	/* Transmit Arbitration Control 0 */
1159	reg = er32(TARC(0));
1160	reg &= ~(0xF << 27);	/* 30:27 */
1161	switch (hw->mac.type) {
1162	case e1000_82571:
1163	case e1000_82572:
1164		reg |= BIT(23) | BIT(24) | BIT(25) | BIT(26);
1165		break;
1166	case e1000_82574:
1167	case e1000_82583:
1168		reg |= BIT(26);
1169		break;
1170	default:
1171		break;
1172	}
1173	ew32(TARC(0), reg);
1174
1175	/* Transmit Arbitration Control 1 */
1176	reg = er32(TARC(1));
1177	switch (hw->mac.type) {
1178	case e1000_82571:
1179	case e1000_82572:
1180		reg &= ~(BIT(29) | BIT(30));
1181		reg |= BIT(22) | BIT(24) | BIT(25) | BIT(26);
1182		if (er32(TCTL) & E1000_TCTL_MULR)
1183			reg &= ~BIT(28);
1184		else
1185			reg |= BIT(28);
1186		ew32(TARC(1), reg);
1187		break;
1188	default:
1189		break;
1190	}
1191
1192	/* Device Control */
1193	switch (hw->mac.type) {
1194	case e1000_82573:
1195	case e1000_82574:
1196	case e1000_82583:
1197		reg = er32(CTRL);
1198		reg &= ~BIT(29);
1199		ew32(CTRL, reg);
1200		break;
1201	default:
1202		break;
1203	}
1204
1205	/* Extended Device Control */
1206	switch (hw->mac.type) {
1207	case e1000_82573:
1208	case e1000_82574:
1209	case e1000_82583:
1210		reg = er32(CTRL_EXT);
1211		reg &= ~BIT(23);
1212		reg |= BIT(22);
1213		ew32(CTRL_EXT, reg);
1214		break;
1215	default:
1216		break;
1217	}
1218
1219	if (hw->mac.type == e1000_82571) {
1220		reg = er32(PBA_ECC);
1221		reg |= E1000_PBA_ECC_CORR_EN;
1222		ew32(PBA_ECC, reg);
1223	}
1224
1225	/* Workaround for hardware errata.
1226	 * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572
1227	 */
1228	if ((hw->mac.type == e1000_82571) || (hw->mac.type == e1000_82572)) {
1229		reg = er32(CTRL_EXT);
1230		reg &= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN;
1231		ew32(CTRL_EXT, reg);
1232	}
1233
1234	/* Disable IPv6 extension header parsing because some malformed
1235	 * IPv6 headers can hang the Rx.
1236	 */
1237	if (hw->mac.type <= e1000_82573) {
1238		reg = er32(RFCTL);
1239		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
1240		ew32(RFCTL, reg);
1241	}
1242
1243	/* PCI-Ex Control Registers */
1244	switch (hw->mac.type) {
1245	case e1000_82574:
1246	case e1000_82583:
1247		reg = er32(GCR);
1248		reg |= BIT(22);
1249		ew32(GCR, reg);
1250
1251		/* Workaround for hardware errata.
1252		 * apply workaround for hardware errata documented in errata
1253		 * docs Fixes issue where some error prone or unreliable PCIe
1254		 * completions are occurring, particularly with ASPM enabled.
1255		 * Without fix, issue can cause Tx timeouts.
1256		 */
1257		reg = er32(GCR2);
1258		reg |= 1;
1259		ew32(GCR2, reg);
1260		break;
1261	default:
1262		break;
1263	}
1264}
1265
1266/**
1267 *  e1000_clear_vfta_82571 - Clear VLAN filter table
1268 *  @hw: pointer to the HW structure
1269 *
1270 *  Clears the register array which contains the VLAN filter table by
1271 *  setting all the values to 0.
1272 **/
1273static void e1000_clear_vfta_82571(struct e1000_hw *hw)
1274{
1275	u32 offset;
1276	u32 vfta_value = 0;
1277	u32 vfta_offset = 0;
1278	u32 vfta_bit_in_reg = 0;
1279
1280	switch (hw->mac.type) {
1281	case e1000_82573:
1282	case e1000_82574:
1283	case e1000_82583:
1284		if (hw->mng_cookie.vlan_id != 0) {
1285			/* The VFTA is a 4096b bit-field, each identifying
1286			 * a single VLAN ID.  The following operations
1287			 * determine which 32b entry (i.e. offset) into the
1288			 * array we want to set the VLAN ID (i.e. bit) of
1289			 * the manageability unit.
1290			 */
1291			vfta_offset = (hw->mng_cookie.vlan_id >>
1292				       E1000_VFTA_ENTRY_SHIFT) &
1293			    E1000_VFTA_ENTRY_MASK;
1294			vfta_bit_in_reg =
1295			    BIT(hw->mng_cookie.vlan_id &
1296				E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
1297		}
1298		break;
1299	default:
1300		break;
1301	}
1302	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
1303		/* If the offset we want to clear is the same offset of the
1304		 * manageability VLAN ID, then clear all bits except that of
1305		 * the manageability unit.
1306		 */
1307		vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
1308		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value);
1309		e1e_flush();
1310	}
1311}
1312
1313/**
1314 *  e1000_check_mng_mode_82574 - Check manageability is enabled
1315 *  @hw: pointer to the HW structure
1316 *
1317 *  Reads the NVM Initialization Control Word 2 and returns true
1318 *  (>0) if any manageability is enabled, else false (0).
1319 **/
1320static bool e1000_check_mng_mode_82574(struct e1000_hw *hw)
1321{
1322	u16 data;
1323
1324	e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data);
1325	return (data & E1000_NVM_INIT_CTRL2_MNGM) != 0;
1326}
1327
1328/**
1329 *  e1000_led_on_82574 - Turn LED on
1330 *  @hw: pointer to the HW structure
1331 *
1332 *  Turn LED on.
1333 **/
1334static s32 e1000_led_on_82574(struct e1000_hw *hw)
1335{
1336	u32 ctrl;
1337	u32 i;
1338
1339	ctrl = hw->mac.ledctl_mode2;
1340	if (!(E1000_STATUS_LU & er32(STATUS))) {
1341		/* If no link, then turn LED on by setting the invert bit
1342		 * for each LED that's "on" (0x0E) in ledctl_mode2.
1343		 */
1344		for (i = 0; i < 4; i++)
1345			if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1346			    E1000_LEDCTL_MODE_LED_ON)
1347				ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8));
1348	}
1349	ew32(LEDCTL, ctrl);
1350
1351	return 0;
1352}
1353
1354/**
1355 *  e1000_check_phy_82574 - check 82574 phy hung state
1356 *  @hw: pointer to the HW structure
1357 *
1358 *  Returns whether phy is hung or not
1359 **/
1360bool e1000_check_phy_82574(struct e1000_hw *hw)
1361{
1362	u16 status_1kbt = 0;
1363	u16 receive_errors = 0;
1364	s32 ret_val;
1365
1366	/* Read PHY Receive Error counter first, if its is max - all F's then
1367	 * read the Base1000T status register If both are max then PHY is hung.
1368	 */
1369	ret_val = e1e_rphy(hw, E1000_RECEIVE_ERROR_COUNTER, &receive_errors);
1370	if (ret_val)
1371		return false;
1372	if (receive_errors == E1000_RECEIVE_ERROR_MAX) {
1373		ret_val = e1e_rphy(hw, E1000_BASE1000T_STATUS, &status_1kbt);
1374		if (ret_val)
1375			return false;
1376		if ((status_1kbt & E1000_IDLE_ERROR_COUNT_MASK) ==
1377		    E1000_IDLE_ERROR_COUNT_MASK)
1378			return true;
1379	}
1380
1381	return false;
1382}
1383
1384/**
1385 *  e1000_setup_link_82571 - Setup flow control and link settings
1386 *  @hw: pointer to the HW structure
1387 *
1388 *  Determines which flow control settings to use, then configures flow
1389 *  control.  Calls the appropriate media-specific link configuration
1390 *  function.  Assuming the adapter has a valid link partner, a valid link
1391 *  should be established.  Assumes the hardware has previously been reset
1392 *  and the transmitter and receiver are not enabled.
1393 **/
1394static s32 e1000_setup_link_82571(struct e1000_hw *hw)
1395{
1396	/* 82573 does not have a word in the NVM to determine
1397	 * the default flow control setting, so we explicitly
1398	 * set it to full.
1399	 */
1400	switch (hw->mac.type) {
1401	case e1000_82573:
1402	case e1000_82574:
1403	case e1000_82583:
1404		if (hw->fc.requested_mode == e1000_fc_default)
1405			hw->fc.requested_mode = e1000_fc_full;
1406		break;
1407	default:
1408		break;
1409	}
1410
1411	return e1000e_setup_link_generic(hw);
1412}
1413
1414/**
1415 *  e1000_setup_copper_link_82571 - Configure copper link settings
1416 *  @hw: pointer to the HW structure
1417 *
1418 *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1419 *  for link, once link is established calls to configure collision distance
1420 *  and flow control are called.
1421 **/
1422static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
1423{
1424	u32 ctrl;
1425	s32 ret_val;
1426
1427	ctrl = er32(CTRL);
1428	ctrl |= E1000_CTRL_SLU;
1429	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1430	ew32(CTRL, ctrl);
1431
1432	switch (hw->phy.type) {
1433	case e1000_phy_m88:
1434	case e1000_phy_bm:
1435		ret_val = e1000e_copper_link_setup_m88(hw);
1436		break;
1437	case e1000_phy_igp_2:
1438		ret_val = e1000e_copper_link_setup_igp(hw);
1439		break;
1440	default:
1441		return -E1000_ERR_PHY;
1442	}
1443
1444	if (ret_val)
1445		return ret_val;
1446
1447	return e1000e_setup_copper_link(hw);
1448}
1449
1450/**
1451 *  e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
1452 *  @hw: pointer to the HW structure
1453 *
1454 *  Configures collision distance and flow control for fiber and serdes links.
1455 *  Upon successful setup, poll for link.
1456 **/
1457static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
1458{
1459	switch (hw->mac.type) {
1460	case e1000_82571:
1461	case e1000_82572:
1462		/* If SerDes loopback mode is entered, there is no form
1463		 * of reset to take the adapter out of that mode.  So we
1464		 * have to explicitly take the adapter out of loopback
1465		 * mode.  This prevents drivers from twiddling their thumbs
1466		 * if another tool failed to take it out of loopback mode.
1467		 */
1468		ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1469		break;
1470	default:
1471		break;
1472	}
1473
1474	return e1000e_setup_fiber_serdes_link(hw);
1475}
1476
1477/**
1478 *  e1000_check_for_serdes_link_82571 - Check for link (Serdes)
1479 *  @hw: pointer to the HW structure
1480 *
1481 *  Reports the link state as up or down.
1482 *
1483 *  If autonegotiation is supported by the link partner, the link state is
1484 *  determined by the result of autonegotiation. This is the most likely case.
1485 *  If autonegotiation is not supported by the link partner, and the link
1486 *  has a valid signal, force the link up.
1487 *
1488 *  The link state is represented internally here by 4 states:
1489 *
1490 *  1) down
1491 *  2) autoneg_progress
1492 *  3) autoneg_complete (the link successfully autonegotiated)
1493 *  4) forced_up (the link has been forced up, it did not autonegotiate)
1494 *
1495 **/
1496static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw)
1497{
1498	struct e1000_mac_info *mac = &hw->mac;
1499	u32 rxcw;
1500	u32 ctrl;
1501	u32 status;
1502	u32 txcw;
1503	u32 i;
1504	s32 ret_val = 0;
1505
1506	ctrl = er32(CTRL);
1507	status = er32(STATUS);
1508	er32(RXCW);
1509	/* SYNCH bit and IV bit are sticky */
1510	usleep_range(10, 20);
1511	rxcw = er32(RXCW);
1512
1513	if ((rxcw & E1000_RXCW_SYNCH) && !(rxcw & E1000_RXCW_IV)) {
1514		/* Receiver is synchronized with no invalid bits.  */
1515		switch (mac->serdes_link_state) {
1516		case e1000_serdes_link_autoneg_complete:
1517			if (!(status & E1000_STATUS_LU)) {
1518				/* We have lost link, retry autoneg before
1519				 * reporting link failure
1520				 */
1521				mac->serdes_link_state =
1522				    e1000_serdes_link_autoneg_progress;
1523				mac->serdes_has_link = false;
1524				e_dbg("AN_UP     -> AN_PROG\n");
1525			} else {
1526				mac->serdes_has_link = true;
1527			}
1528			break;
1529
1530		case e1000_serdes_link_forced_up:
1531			/* If we are receiving /C/ ordered sets, re-enable
1532			 * auto-negotiation in the TXCW register and disable
1533			 * forced link in the Device Control register in an
1534			 * attempt to auto-negotiate with our link partner.
1535			 */
1536			if (rxcw & E1000_RXCW_C) {
1537				/* Enable autoneg, and unforce link up */
1538				ew32(TXCW, mac->txcw);
1539				ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
1540				mac->serdes_link_state =
1541				    e1000_serdes_link_autoneg_progress;
1542				mac->serdes_has_link = false;
1543				e_dbg("FORCED_UP -> AN_PROG\n");
1544			} else {
1545				mac->serdes_has_link = true;
1546			}
1547			break;
1548
1549		case e1000_serdes_link_autoneg_progress:
1550			if (rxcw & E1000_RXCW_C) {
1551				/* We received /C/ ordered sets, meaning the
1552				 * link partner has autonegotiated, and we can
1553				 * trust the Link Up (LU) status bit.
1554				 */
1555				if (status & E1000_STATUS_LU) {
1556					mac->serdes_link_state =
1557					    e1000_serdes_link_autoneg_complete;
1558					e_dbg("AN_PROG   -> AN_UP\n");
1559					mac->serdes_has_link = true;
1560				} else {
1561					/* Autoneg completed, but failed. */
1562					mac->serdes_link_state =
1563					    e1000_serdes_link_down;
1564					e_dbg("AN_PROG   -> DOWN\n");
1565				}
1566			} else {
1567				/* The link partner did not autoneg.
1568				 * Force link up and full duplex, and change
1569				 * state to forced.
1570				 */
1571				ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
1572				ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
1573				ew32(CTRL, ctrl);
1574
1575				/* Configure Flow Control after link up. */
1576				ret_val = e1000e_config_fc_after_link_up(hw);
1577				if (ret_val) {
1578					e_dbg("Error config flow control\n");
1579					break;
1580				}
1581				mac->serdes_link_state =
1582				    e1000_serdes_link_forced_up;
1583				mac->serdes_has_link = true;
1584				e_dbg("AN_PROG   -> FORCED_UP\n");
1585			}
1586			break;
1587
1588		case e1000_serdes_link_down:
1589		default:
1590			/* The link was down but the receiver has now gained
1591			 * valid sync, so lets see if we can bring the link
1592			 * up.
1593			 */
1594			ew32(TXCW, mac->txcw);
1595			ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
1596			mac->serdes_link_state =
1597			    e1000_serdes_link_autoneg_progress;
1598			mac->serdes_has_link = false;
1599			e_dbg("DOWN      -> AN_PROG\n");
1600			break;
1601		}
1602	} else {
1603		if (!(rxcw & E1000_RXCW_SYNCH)) {
1604			mac->serdes_has_link = false;
1605			mac->serdes_link_state = e1000_serdes_link_down;
1606			e_dbg("ANYSTATE  -> DOWN\n");
1607		} else {
1608			/* Check several times, if SYNCH bit and CONFIG
1609			 * bit both are consistently 1 then simply ignore
1610			 * the IV bit and restart Autoneg
1611			 */
1612			for (i = 0; i < AN_RETRY_COUNT; i++) {
1613				usleep_range(10, 20);
1614				rxcw = er32(RXCW);
1615				if ((rxcw & E1000_RXCW_SYNCH) &&
1616				    (rxcw & E1000_RXCW_C))
1617					continue;
1618
1619				if (rxcw & E1000_RXCW_IV) {
1620					mac->serdes_has_link = false;
1621					mac->serdes_link_state =
1622					    e1000_serdes_link_down;
1623					e_dbg("ANYSTATE  -> DOWN\n");
1624					break;
1625				}
1626			}
1627
1628			if (i == AN_RETRY_COUNT) {
1629				txcw = er32(TXCW);
1630				txcw |= E1000_TXCW_ANE;
1631				ew32(TXCW, txcw);
1632				mac->serdes_link_state =
1633				    e1000_serdes_link_autoneg_progress;
1634				mac->serdes_has_link = false;
1635				e_dbg("ANYSTATE  -> AN_PROG\n");
1636			}
1637		}
1638	}
1639
1640	return ret_val;
1641}
1642
1643/**
1644 *  e1000_valid_led_default_82571 - Verify a valid default LED config
1645 *  @hw: pointer to the HW structure
1646 *  @data: pointer to the NVM (EEPROM)
1647 *
1648 *  Read the EEPROM for the current default LED configuration.  If the
1649 *  LED configuration is not valid, set to a valid LED configuration.
1650 **/
1651static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
1652{
1653	s32 ret_val;
1654
1655	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1656	if (ret_val) {
1657		e_dbg("NVM Read Error\n");
1658		return ret_val;
1659	}
1660
1661	switch (hw->mac.type) {
1662	case e1000_82573:
1663	case e1000_82574:
1664	case e1000_82583:
1665		if (*data == ID_LED_RESERVED_F746)
1666			*data = ID_LED_DEFAULT_82573;
1667		break;
1668	default:
1669		if (*data == ID_LED_RESERVED_0000 ||
1670		    *data == ID_LED_RESERVED_FFFF)
1671			*data = ID_LED_DEFAULT;
1672		break;
1673	}
1674
1675	return 0;
1676}
1677
1678/**
1679 *  e1000e_get_laa_state_82571 - Get locally administered address state
1680 *  @hw: pointer to the HW structure
1681 *
1682 *  Retrieve and return the current locally administered address state.
1683 **/
1684bool e1000e_get_laa_state_82571(struct e1000_hw *hw)
1685{
1686	if (hw->mac.type != e1000_82571)
1687		return false;
1688
1689	return hw->dev_spec.e82571.laa_is_present;
1690}
1691
1692/**
1693 *  e1000e_set_laa_state_82571 - Set locally administered address state
1694 *  @hw: pointer to the HW structure
1695 *  @state: enable/disable locally administered address
1696 *
1697 *  Enable/Disable the current locally administered address state.
1698 **/
1699void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state)
1700{
1701	if (hw->mac.type != e1000_82571)
1702		return;
1703
1704	hw->dev_spec.e82571.laa_is_present = state;
1705
1706	/* If workaround is activated... */
1707	if (state)
1708		/* Hold a copy of the LAA in RAR[14] This is done so that
1709		 * between the time RAR[0] gets clobbered and the time it
1710		 * gets fixed, the actual LAA is in one of the RARs and no
1711		 * incoming packets directed to this port are dropped.
1712		 * Eventually the LAA will be in RAR[0] and RAR[14].
1713		 */
1714		hw->mac.ops.rar_set(hw, hw->mac.addr,
1715				    hw->mac.rar_entry_count - 1);
1716}
1717
1718/**
1719 *  e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
1720 *  @hw: pointer to the HW structure
1721 *
1722 *  Verifies that the EEPROM has completed the update.  After updating the
1723 *  EEPROM, we need to check bit 15 in work 0x23 for the checksum fix.  If
1724 *  the checksum fix is not implemented, we need to set the bit and update
1725 *  the checksum.  Otherwise, if bit 15 is set and the checksum is incorrect,
1726 *  we need to return bad checksum.
1727 **/
1728static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
1729{
1730	struct e1000_nvm_info *nvm = &hw->nvm;
1731	s32 ret_val;
1732	u16 data;
1733
1734	if (nvm->type != e1000_nvm_flash_hw)
1735		return 0;
1736
1737	/* Check bit 4 of word 10h.  If it is 0, firmware is done updating
1738	 * 10h-12h.  Checksum may need to be fixed.
1739	 */
1740	ret_val = e1000_read_nvm(hw, 0x10, 1, &data);
1741	if (ret_val)
1742		return ret_val;
1743
1744	if (!(data & 0x10)) {
1745		/* Read 0x23 and check bit 15.  This bit is a 1
1746		 * when the checksum has already been fixed.  If
1747		 * the checksum is still wrong and this bit is a
1748		 * 1, we need to return bad checksum.  Otherwise,
1749		 * we need to set this bit to a 1 and update the
1750		 * checksum.
1751		 */
1752		ret_val = e1000_read_nvm(hw, 0x23, 1, &data);
1753		if (ret_val)
1754			return ret_val;
1755
1756		if (!(data & 0x8000)) {
1757			data |= 0x8000;
1758			ret_val = e1000_write_nvm(hw, 0x23, 1, &data);
1759			if (ret_val)
1760				return ret_val;
1761			ret_val = e1000e_update_nvm_checksum(hw);
1762			if (ret_val)
1763				return ret_val;
1764		}
1765	}
1766
1767	return 0;
1768}
1769
1770/**
1771 *  e1000_read_mac_addr_82571 - Read device MAC address
1772 *  @hw: pointer to the HW structure
1773 **/
1774static s32 e1000_read_mac_addr_82571(struct e1000_hw *hw)
1775{
1776	if (hw->mac.type == e1000_82571) {
1777		s32 ret_val;
1778
1779		/* If there's an alternate MAC address place it in RAR0
1780		 * so that it will override the Si installed default perm
1781		 * address.
1782		 */
1783		ret_val = e1000_check_alt_mac_addr_generic(hw);
1784		if (ret_val)
1785			return ret_val;
1786	}
1787
1788	return e1000_read_mac_addr_generic(hw);
1789}
1790
1791/**
1792 * e1000_power_down_phy_copper_82571 - Remove link during PHY power down
1793 * @hw: pointer to the HW structure
1794 *
1795 * In the case of a PHY power down to save power, or to turn off link during a
1796 * driver unload, or wake on lan is not enabled, remove the link.
1797 **/
1798static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw)
1799{
1800	struct e1000_phy_info *phy = &hw->phy;
1801	struct e1000_mac_info *mac = &hw->mac;
1802
1803	if (!phy->ops.check_reset_block)
1804		return;
1805
1806	/* If the management interface is not enabled, then power down */
1807	if (!(mac->ops.check_mng_mode(hw) || phy->ops.check_reset_block(hw)))
1808		e1000_power_down_phy_copper(hw);
1809}
1810
1811/**
1812 *  e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
1813 *  @hw: pointer to the HW structure
1814 *
1815 *  Clears the hardware counters by reading the counter registers.
1816 **/
1817static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw)
1818{
1819	e1000e_clear_hw_cntrs_base(hw);
1820
1821	er32(PRC64);
1822	er32(PRC127);
1823	er32(PRC255);
1824	er32(PRC511);
1825	er32(PRC1023);
1826	er32(PRC1522);
1827	er32(PTC64);
1828	er32(PTC127);
1829	er32(PTC255);
1830	er32(PTC511);
1831	er32(PTC1023);
1832	er32(PTC1522);
1833
1834	er32(ALGNERRC);
1835	er32(RXERRC);
1836	er32(TNCRS);
1837	er32(CEXTERR);
1838	er32(TSCTC);
1839	er32(TSCTFC);
1840
1841	er32(MGTPRC);
1842	er32(MGTPDC);
1843	er32(MGTPTC);
1844
1845	er32(IAC);
1846	er32(ICRXOC);
1847
1848	er32(ICRXPTC);
1849	er32(ICRXATC);
1850	er32(ICTXPTC);
1851	er32(ICTXATC);
1852	er32(ICTXQEC);
1853	er32(ICTXQMTC);
1854	er32(ICRXDMTC);
1855}
1856
1857static const struct e1000_mac_operations e82571_mac_ops = {
1858	/* .check_mng_mode: mac type dependent */
1859	/* .check_for_link: media type dependent */
1860	.id_led_init		= e1000e_id_led_init_generic,
1861	.cleanup_led		= e1000e_cleanup_led_generic,
1862	.clear_hw_cntrs		= e1000_clear_hw_cntrs_82571,
1863	.get_bus_info		= e1000e_get_bus_info_pcie,
1864	.set_lan_id		= e1000_set_lan_id_multi_port_pcie,
1865	/* .get_link_up_info: media type dependent */
1866	/* .led_on: mac type dependent */
1867	.led_off		= e1000e_led_off_generic,
1868	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
1869	.write_vfta		= e1000_write_vfta_generic,
1870	.clear_vfta		= e1000_clear_vfta_82571,
1871	.reset_hw		= e1000_reset_hw_82571,
1872	.init_hw		= e1000_init_hw_82571,
1873	.setup_link		= e1000_setup_link_82571,
1874	/* .setup_physical_interface: media type dependent */
1875	.setup_led		= e1000e_setup_led_generic,
1876	.config_collision_dist	= e1000e_config_collision_dist_generic,
1877	.read_mac_addr		= e1000_read_mac_addr_82571,
1878	.rar_set		= e1000e_rar_set_generic,
1879	.rar_get_count		= e1000e_rar_get_count_generic,
1880};
1881
1882static const struct e1000_phy_operations e82_phy_ops_igp = {
1883	.acquire		= e1000_get_hw_semaphore_82571,
1884	.check_polarity		= e1000_check_polarity_igp,
1885	.check_reset_block	= e1000e_check_reset_block_generic,
1886	.commit			= NULL,
1887	.force_speed_duplex	= e1000e_phy_force_speed_duplex_igp,
1888	.get_cfg_done		= e1000_get_cfg_done_82571,
1889	.get_cable_length	= e1000e_get_cable_length_igp_2,
1890	.get_info		= e1000e_get_phy_info_igp,
1891	.read_reg		= e1000e_read_phy_reg_igp,
1892	.release		= e1000_put_hw_semaphore_82571,
1893	.reset			= e1000e_phy_hw_reset_generic,
1894	.set_d0_lplu_state	= e1000_set_d0_lplu_state_82571,
1895	.set_d3_lplu_state	= e1000e_set_d3_lplu_state,
1896	.write_reg		= e1000e_write_phy_reg_igp,
1897	.cfg_on_link_up		= NULL,
1898};
1899
1900static const struct e1000_phy_operations e82_phy_ops_m88 = {
1901	.acquire		= e1000_get_hw_semaphore_82571,
1902	.check_polarity		= e1000_check_polarity_m88,
1903	.check_reset_block	= e1000e_check_reset_block_generic,
1904	.commit			= e1000e_phy_sw_reset,
1905	.force_speed_duplex	= e1000e_phy_force_speed_duplex_m88,
1906	.get_cfg_done		= e1000e_get_cfg_done_generic,
1907	.get_cable_length	= e1000e_get_cable_length_m88,
1908	.get_info		= e1000e_get_phy_info_m88,
1909	.read_reg		= e1000e_read_phy_reg_m88,
1910	.release		= e1000_put_hw_semaphore_82571,
1911	.reset			= e1000e_phy_hw_reset_generic,
1912	.set_d0_lplu_state	= e1000_set_d0_lplu_state_82571,
1913	.set_d3_lplu_state	= e1000e_set_d3_lplu_state,
1914	.write_reg		= e1000e_write_phy_reg_m88,
1915	.cfg_on_link_up		= NULL,
1916};
1917
1918static const struct e1000_phy_operations e82_phy_ops_bm = {
1919	.acquire		= e1000_get_hw_semaphore_82571,
1920	.check_polarity		= e1000_check_polarity_m88,
1921	.check_reset_block	= e1000e_check_reset_block_generic,
1922	.commit			= e1000e_phy_sw_reset,
1923	.force_speed_duplex	= e1000e_phy_force_speed_duplex_m88,
1924	.get_cfg_done		= e1000e_get_cfg_done_generic,
1925	.get_cable_length	= e1000e_get_cable_length_m88,
1926	.get_info		= e1000e_get_phy_info_m88,
1927	.read_reg		= e1000e_read_phy_reg_bm2,
1928	.release		= e1000_put_hw_semaphore_82571,
1929	.reset			= e1000e_phy_hw_reset_generic,
1930	.set_d0_lplu_state	= e1000_set_d0_lplu_state_82571,
1931	.set_d3_lplu_state	= e1000e_set_d3_lplu_state,
1932	.write_reg		= e1000e_write_phy_reg_bm2,
1933	.cfg_on_link_up		= NULL,
1934};
1935
1936static const struct e1000_nvm_operations e82571_nvm_ops = {
1937	.acquire		= e1000_acquire_nvm_82571,
1938	.read			= e1000e_read_nvm_eerd,
1939	.release		= e1000_release_nvm_82571,
1940	.reload			= e1000e_reload_nvm_generic,
1941	.update			= e1000_update_nvm_checksum_82571,
1942	.valid_led_default	= e1000_valid_led_default_82571,
1943	.validate		= e1000_validate_nvm_checksum_82571,
1944	.write			= e1000_write_nvm_82571,
1945};
1946
1947const struct e1000_info e1000_82571_info = {
1948	.mac			= e1000_82571,
1949	.flags			= FLAG_HAS_HW_VLAN_FILTER
1950				  | FLAG_HAS_JUMBO_FRAMES
1951				  | FLAG_HAS_WOL
1952				  | FLAG_APME_IN_CTRL3
1953				  | FLAG_HAS_CTRLEXT_ON_LOAD
1954				  | FLAG_HAS_SMART_POWER_DOWN
1955				  | FLAG_RESET_OVERWRITES_LAA /* errata */
1956				  | FLAG_TARC_SPEED_MODE_BIT /* errata */
1957				  | FLAG_APME_CHECK_PORT_B,
1958	.flags2			= FLAG2_DISABLE_ASPM_L1 /* errata 13 */
1959				  | FLAG2_DMA_BURST,
1960	.pba			= 38,
1961	.max_hw_frame_size	= DEFAULT_JUMBO,
1962	.get_variants		= e1000_get_variants_82571,
1963	.mac_ops		= &e82571_mac_ops,
1964	.phy_ops		= &e82_phy_ops_igp,
1965	.nvm_ops		= &e82571_nvm_ops,
1966};
1967
1968const struct e1000_info e1000_82572_info = {
1969	.mac			= e1000_82572,
1970	.flags			= FLAG_HAS_HW_VLAN_FILTER
1971				  | FLAG_HAS_JUMBO_FRAMES
1972				  | FLAG_HAS_WOL
1973				  | FLAG_APME_IN_CTRL3
1974				  | FLAG_HAS_CTRLEXT_ON_LOAD
1975				  | FLAG_TARC_SPEED_MODE_BIT, /* errata */
1976	.flags2			= FLAG2_DISABLE_ASPM_L1 /* errata 13 */
1977				  | FLAG2_DMA_BURST,
1978	.pba			= 38,
1979	.max_hw_frame_size	= DEFAULT_JUMBO,
1980	.get_variants		= e1000_get_variants_82571,
1981	.mac_ops		= &e82571_mac_ops,
1982	.phy_ops		= &e82_phy_ops_igp,
1983	.nvm_ops		= &e82571_nvm_ops,
1984};
1985
1986const struct e1000_info e1000_82573_info = {
1987	.mac			= e1000_82573,
1988	.flags			= FLAG_HAS_HW_VLAN_FILTER
1989				  | FLAG_HAS_WOL
1990				  | FLAG_APME_IN_CTRL3
1991				  | FLAG_HAS_SMART_POWER_DOWN
1992				  | FLAG_HAS_AMT
1993				  | FLAG_HAS_SWSM_ON_LOAD,
1994	.flags2			= FLAG2_DISABLE_ASPM_L1
1995				  | FLAG2_DISABLE_ASPM_L0S,
1996	.pba			= 20,
1997	.max_hw_frame_size	= VLAN_ETH_FRAME_LEN + ETH_FCS_LEN,
1998	.get_variants		= e1000_get_variants_82571,
1999	.mac_ops		= &e82571_mac_ops,
2000	.phy_ops		= &e82_phy_ops_m88,
2001	.nvm_ops		= &e82571_nvm_ops,
2002};
2003
2004const struct e1000_info e1000_82574_info = {
2005	.mac			= e1000_82574,
2006	.flags			= FLAG_HAS_HW_VLAN_FILTER
2007				  | FLAG_HAS_MSIX
2008				  | FLAG_HAS_JUMBO_FRAMES
2009				  | FLAG_HAS_WOL
2010				  | FLAG_HAS_HW_TIMESTAMP
2011				  | FLAG_APME_IN_CTRL3
2012				  | FLAG_HAS_SMART_POWER_DOWN
2013				  | FLAG_HAS_AMT
2014				  | FLAG_HAS_CTRLEXT_ON_LOAD,
2015	.flags2			 = FLAG2_CHECK_PHY_HANG
2016				  | FLAG2_DISABLE_ASPM_L0S
2017				  | FLAG2_DISABLE_ASPM_L1
2018				  | FLAG2_NO_DISABLE_RX
2019				  | FLAG2_DMA_BURST
2020				  | FLAG2_CHECK_SYSTIM_OVERFLOW,
2021	.pba			= 32,
2022	.max_hw_frame_size	= DEFAULT_JUMBO,
2023	.get_variants		= e1000_get_variants_82571,
2024	.mac_ops		= &e82571_mac_ops,
2025	.phy_ops		= &e82_phy_ops_bm,
2026	.nvm_ops		= &e82571_nvm_ops,
2027};
2028
2029const struct e1000_info e1000_82583_info = {
2030	.mac			= e1000_82583,
2031	.flags			= FLAG_HAS_HW_VLAN_FILTER
2032				  | FLAG_HAS_WOL
2033				  | FLAG_HAS_HW_TIMESTAMP
2034				  | FLAG_APME_IN_CTRL3
2035				  | FLAG_HAS_SMART_POWER_DOWN
2036				  | FLAG_HAS_AMT
2037				  | FLAG_HAS_JUMBO_FRAMES
2038				  | FLAG_HAS_CTRLEXT_ON_LOAD,
2039	.flags2			= FLAG2_DISABLE_ASPM_L0S
2040				  | FLAG2_DISABLE_ASPM_L1
2041				  | FLAG2_NO_DISABLE_RX
2042				  | FLAG2_CHECK_SYSTIM_OVERFLOW,
2043	.pba			= 32,
2044	.max_hw_frame_size	= DEFAULT_JUMBO,
2045	.get_variants		= e1000_get_variants_82571,
2046	.mac_ops		= &e82571_mac_ops,
2047	.phy_ops		= &e82_phy_ops_bm,
2048	.nvm_ops		= &e82571_nvm_ops,
2049};
2050