1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 1999 - 2018 Intel Corporation. */
3
4/* 80003ES2LAN Gigabit Ethernet Controller (Copper)
5 * 80003ES2LAN Gigabit Ethernet Controller (Serdes)
6 */
7
8#include "e1000.h"
9
10/* A table for the GG82563 cable length where the range is defined
11 * with a lower bound at "index" and the upper bound at
12 * "index + 5".
13 */
14static const u16 e1000_gg82563_cable_length_table[] = {
15	0, 60, 115, 150, 150, 60, 115, 150, 180, 180, 0xFF
16};
17
18#define GG82563_CABLE_LENGTH_TABLE_SIZE \
19		ARRAY_SIZE(e1000_gg82563_cable_length_table)
20
21static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw);
22static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
23static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
24static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw);
25static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw);
26static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw);
27static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex);
28static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
29					   u16 *data);
30static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
31					    u16 data);
32static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw);
33
34/**
35 *  e1000_init_phy_params_80003es2lan - Init ESB2 PHY func ptrs.
36 *  @hw: pointer to the HW structure
37 **/
38static s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw)
39{
40	struct e1000_phy_info *phy = &hw->phy;
41	s32 ret_val;
42
43	if (hw->phy.media_type != e1000_media_type_copper) {
44		phy->type = e1000_phy_none;
45		return 0;
46	} else {
47		phy->ops.power_up = e1000_power_up_phy_copper;
48		phy->ops.power_down = e1000_power_down_phy_copper_80003es2lan;
49	}
50
51	phy->addr = 1;
52	phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
53	phy->reset_delay_us = 100;
54	phy->type = e1000_phy_gg82563;
55
56	/* This can only be done after all function pointers are setup. */
57	ret_val = e1000e_get_phy_id(hw);
58
59	/* Verify phy id */
60	if (phy->id != GG82563_E_PHY_ID)
61		return -E1000_ERR_PHY;
62
63	return ret_val;
64}
65
66/**
67 *  e1000_init_nvm_params_80003es2lan - Init ESB2 NVM func ptrs.
68 *  @hw: pointer to the HW structure
69 **/
70static s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw)
71{
72	struct e1000_nvm_info *nvm = &hw->nvm;
73	u32 eecd = er32(EECD);
74	u16 size;
75
76	nvm->opcode_bits = 8;
77	nvm->delay_usec = 1;
78	switch (nvm->override) {
79	case e1000_nvm_override_spi_large:
80		nvm->page_size = 32;
81		nvm->address_bits = 16;
82		break;
83	case e1000_nvm_override_spi_small:
84		nvm->page_size = 8;
85		nvm->address_bits = 8;
86		break;
87	default:
88		nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
89		nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
90		break;
91	}
92
93	nvm->type = e1000_nvm_eeprom_spi;
94
95	size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
96		     E1000_EECD_SIZE_EX_SHIFT);
97
98	/* Added to a constant, "size" becomes the left-shift value
99	 * for setting word_size.
100	 */
101	size += NVM_WORD_SIZE_BASE_SHIFT;
102
103	/* EEPROM access above 16k is unsupported */
104	if (size > 14)
105		size = 14;
106	nvm->word_size = BIT(size);
107
108	return 0;
109}
110
111/**
112 *  e1000_init_mac_params_80003es2lan - Init ESB2 MAC func ptrs.
113 *  @hw: pointer to the HW structure
114 **/
115static s32 e1000_init_mac_params_80003es2lan(struct e1000_hw *hw)
116{
117	struct e1000_mac_info *mac = &hw->mac;
118
119	/* Set media type and media-dependent function pointers */
120	switch (hw->adapter->pdev->device) {
121	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
122		hw->phy.media_type = e1000_media_type_internal_serdes;
123		mac->ops.check_for_link = e1000e_check_for_serdes_link;
124		mac->ops.setup_physical_interface =
125		    e1000e_setup_fiber_serdes_link;
126		break;
127	default:
128		hw->phy.media_type = e1000_media_type_copper;
129		mac->ops.check_for_link = e1000e_check_for_copper_link;
130		mac->ops.setup_physical_interface =
131		    e1000_setup_copper_link_80003es2lan;
132		break;
133	}
134
135	/* Set mta register count */
136	mac->mta_reg_count = 128;
137	/* Set rar entry count */
138	mac->rar_entry_count = E1000_RAR_ENTRIES;
139	/* FWSM register */
140	mac->has_fwsm = true;
141	/* ARC supported; valid only if manageability features are enabled. */
142	mac->arc_subsystem_valid = !!(er32(FWSM) & E1000_FWSM_MODE_MASK);
143	/* Adaptive IFS not supported */
144	mac->adaptive_ifs = false;
145
146	/* set lan id for port to determine which phy lock to use */
147	hw->mac.ops.set_lan_id(hw);
148
149	return 0;
150}
151
152static s32 e1000_get_variants_80003es2lan(struct e1000_adapter *adapter)
153{
154	struct e1000_hw *hw = &adapter->hw;
155	s32 rc;
156
157	rc = e1000_init_mac_params_80003es2lan(hw);
158	if (rc)
159		return rc;
160
161	rc = e1000_init_nvm_params_80003es2lan(hw);
162	if (rc)
163		return rc;
164
165	rc = e1000_init_phy_params_80003es2lan(hw);
166	if (rc)
167		return rc;
168
169	return 0;
170}
171
172/**
173 *  e1000_acquire_phy_80003es2lan - Acquire rights to access PHY
174 *  @hw: pointer to the HW structure
175 *
176 *  A wrapper to acquire access rights to the correct PHY.
177 **/
178static s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw)
179{
180	u16 mask;
181
182	mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
183	return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
184}
185
186/**
187 *  e1000_release_phy_80003es2lan - Release rights to access PHY
188 *  @hw: pointer to the HW structure
189 *
190 *  A wrapper to release access rights to the correct PHY.
191 **/
192static void e1000_release_phy_80003es2lan(struct e1000_hw *hw)
193{
194	u16 mask;
195
196	mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
197	e1000_release_swfw_sync_80003es2lan(hw, mask);
198}
199
200/**
201 *  e1000_acquire_mac_csr_80003es2lan - Acquire right to access Kumeran register
202 *  @hw: pointer to the HW structure
203 *
204 *  Acquire the semaphore to access the Kumeran interface.
205 *
206 **/
207static s32 e1000_acquire_mac_csr_80003es2lan(struct e1000_hw *hw)
208{
209	u16 mask;
210
211	mask = E1000_SWFW_CSR_SM;
212
213	return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
214}
215
216/**
217 *  e1000_release_mac_csr_80003es2lan - Release right to access Kumeran Register
218 *  @hw: pointer to the HW structure
219 *
220 *  Release the semaphore used to access the Kumeran interface
221 **/
222static void e1000_release_mac_csr_80003es2lan(struct e1000_hw *hw)
223{
224	u16 mask;
225
226	mask = E1000_SWFW_CSR_SM;
227
228	e1000_release_swfw_sync_80003es2lan(hw, mask);
229}
230
231/**
232 *  e1000_acquire_nvm_80003es2lan - Acquire rights to access NVM
233 *  @hw: pointer to the HW structure
234 *
235 *  Acquire the semaphore to access the EEPROM.
236 **/
237static s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw)
238{
239	s32 ret_val;
240
241	ret_val = e1000_acquire_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
242	if (ret_val)
243		return ret_val;
244
245	ret_val = e1000e_acquire_nvm(hw);
246
247	if (ret_val)
248		e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
249
250	return ret_val;
251}
252
253/**
254 *  e1000_release_nvm_80003es2lan - Relinquish rights to access NVM
255 *  @hw: pointer to the HW structure
256 *
257 *  Release the semaphore used to access the EEPROM.
258 **/
259static void e1000_release_nvm_80003es2lan(struct e1000_hw *hw)
260{
261	e1000e_release_nvm(hw);
262	e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
263}
264
265/**
266 *  e1000_acquire_swfw_sync_80003es2lan - Acquire SW/FW semaphore
267 *  @hw: pointer to the HW structure
268 *  @mask: specifies which semaphore to acquire
269 *
270 *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
271 *  will also specify which port we're acquiring the lock for.
272 **/
273static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
274{
275	u32 swfw_sync;
276	u32 swmask = mask;
277	u32 fwmask = mask << 16;
278	s32 i = 0;
279	s32 timeout = 50;
280
281	while (i < timeout) {
282		if (e1000e_get_hw_semaphore(hw))
283			return -E1000_ERR_SWFW_SYNC;
284
285		swfw_sync = er32(SW_FW_SYNC);
286		if (!(swfw_sync & (fwmask | swmask)))
287			break;
288
289		/* Firmware currently using resource (fwmask)
290		 * or other software thread using resource (swmask)
291		 */
292		e1000e_put_hw_semaphore(hw);
293		mdelay(5);
294		i++;
295	}
296
297	if (i == timeout) {
298		e_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
299		return -E1000_ERR_SWFW_SYNC;
300	}
301
302	swfw_sync |= swmask;
303	ew32(SW_FW_SYNC, swfw_sync);
304
305	e1000e_put_hw_semaphore(hw);
306
307	return 0;
308}
309
310/**
311 *  e1000_release_swfw_sync_80003es2lan - Release SW/FW semaphore
312 *  @hw: pointer to the HW structure
313 *  @mask: specifies which semaphore to acquire
314 *
315 *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
316 *  will also specify which port we're releasing the lock for.
317 **/
318static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
319{
320	u32 swfw_sync;
321
322	while (e1000e_get_hw_semaphore(hw) != 0)
323		; /* Empty */
324
325	swfw_sync = er32(SW_FW_SYNC);
326	swfw_sync &= ~mask;
327	ew32(SW_FW_SYNC, swfw_sync);
328
329	e1000e_put_hw_semaphore(hw);
330}
331
332/**
333 *  e1000_read_phy_reg_gg82563_80003es2lan - Read GG82563 PHY register
334 *  @hw: pointer to the HW structure
335 *  @offset: offset of the register to read
336 *  @data: pointer to the data returned from the operation
337 *
338 *  Read the GG82563 PHY register.
339 **/
340static s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
341						  u32 offset, u16 *data)
342{
343	s32 ret_val;
344	u32 page_select;
345	u16 temp;
346
347	ret_val = e1000_acquire_phy_80003es2lan(hw);
348	if (ret_val)
349		return ret_val;
350
351	/* Select Configuration Page */
352	if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
353		page_select = GG82563_PHY_PAGE_SELECT;
354	} else {
355		/* Use Alternative Page Select register to access
356		 * registers 30 and 31
357		 */
358		page_select = GG82563_PHY_PAGE_SELECT_ALT;
359	}
360
361	temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
362	ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp);
363	if (ret_val) {
364		e1000_release_phy_80003es2lan(hw);
365		return ret_val;
366	}
367
368	if (hw->dev_spec.e80003es2lan.mdic_wa_enable) {
369		/* The "ready" bit in the MDIC register may be incorrectly set
370		 * before the device has completed the "Page Select" MDI
371		 * transaction.  So we wait 200us after each MDI command...
372		 */
373		usleep_range(200, 400);
374
375		/* ...and verify the command was successful. */
376		ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp);
377
378		if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
379			e1000_release_phy_80003es2lan(hw);
380			return -E1000_ERR_PHY;
381		}
382
383		usleep_range(200, 400);
384
385		ret_val = e1000e_read_phy_reg_mdic(hw,
386						   MAX_PHY_REG_ADDRESS & offset,
387						   data);
388
389		usleep_range(200, 400);
390	} else {
391		ret_val = e1000e_read_phy_reg_mdic(hw,
392						   MAX_PHY_REG_ADDRESS & offset,
393						   data);
394	}
395
396	e1000_release_phy_80003es2lan(hw);
397
398	return ret_val;
399}
400
401/**
402 *  e1000_write_phy_reg_gg82563_80003es2lan - Write GG82563 PHY register
403 *  @hw: pointer to the HW structure
404 *  @offset: offset of the register to read
405 *  @data: value to write to the register
406 *
407 *  Write to the GG82563 PHY register.
408 **/
409static s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
410						   u32 offset, u16 data)
411{
412	s32 ret_val;
413	u32 page_select;
414	u16 temp;
415
416	ret_val = e1000_acquire_phy_80003es2lan(hw);
417	if (ret_val)
418		return ret_val;
419
420	/* Select Configuration Page */
421	if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
422		page_select = GG82563_PHY_PAGE_SELECT;
423	} else {
424		/* Use Alternative Page Select register to access
425		 * registers 30 and 31
426		 */
427		page_select = GG82563_PHY_PAGE_SELECT_ALT;
428	}
429
430	temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
431	ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp);
432	if (ret_val) {
433		e1000_release_phy_80003es2lan(hw);
434		return ret_val;
435	}
436
437	if (hw->dev_spec.e80003es2lan.mdic_wa_enable) {
438		/* The "ready" bit in the MDIC register may be incorrectly set
439		 * before the device has completed the "Page Select" MDI
440		 * transaction.  So we wait 200us after each MDI command...
441		 */
442		usleep_range(200, 400);
443
444		/* ...and verify the command was successful. */
445		ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp);
446
447		if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
448			e1000_release_phy_80003es2lan(hw);
449			return -E1000_ERR_PHY;
450		}
451
452		usleep_range(200, 400);
453
454		ret_val = e1000e_write_phy_reg_mdic(hw,
455						    MAX_PHY_REG_ADDRESS &
456						    offset, data);
457
458		usleep_range(200, 400);
459	} else {
460		ret_val = e1000e_write_phy_reg_mdic(hw,
461						    MAX_PHY_REG_ADDRESS &
462						    offset, data);
463	}
464
465	e1000_release_phy_80003es2lan(hw);
466
467	return ret_val;
468}
469
470/**
471 *  e1000_write_nvm_80003es2lan - Write to ESB2 NVM
472 *  @hw: pointer to the HW structure
473 *  @offset: offset of the register to read
474 *  @words: number of words to write
475 *  @data: buffer of data to write to the NVM
476 *
477 *  Write "words" of data to the ESB2 NVM.
478 **/
479static s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset,
480				       u16 words, u16 *data)
481{
482	return e1000e_write_nvm_spi(hw, offset, words, data);
483}
484
485/**
486 *  e1000_get_cfg_done_80003es2lan - Wait for configuration to complete
487 *  @hw: pointer to the HW structure
488 *
489 *  Wait a specific amount of time for manageability processes to complete.
490 *  This is a function pointer entry point called by the phy module.
491 **/
492static s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw)
493{
494	s32 timeout = PHY_CFG_TIMEOUT;
495	u32 mask = E1000_NVM_CFG_DONE_PORT_0;
496
497	if (hw->bus.func == 1)
498		mask = E1000_NVM_CFG_DONE_PORT_1;
499
500	while (timeout) {
501		if (er32(EEMNGCTL) & mask)
502			break;
503		usleep_range(1000, 2000);
504		timeout--;
505	}
506	if (!timeout) {
507		e_dbg("MNG configuration cycle has not completed.\n");
508		return -E1000_ERR_RESET;
509	}
510
511	return 0;
512}
513
514/**
515 *  e1000_phy_force_speed_duplex_80003es2lan - Force PHY speed and duplex
516 *  @hw: pointer to the HW structure
517 *
518 *  Force the speed and duplex settings onto the PHY.  This is a
519 *  function pointer entry point called by the phy module.
520 **/
521static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw)
522{
523	s32 ret_val;
524	u16 phy_data;
525	bool link;
526
527	/* Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
528	 * forced whenever speed and duplex are forced.
529	 */
530	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
531	if (ret_val)
532		return ret_val;
533
534	phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_AUTO;
535	ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, phy_data);
536	if (ret_val)
537		return ret_val;
538
539	e_dbg("GG82563 PSCR: %X\n", phy_data);
540
541	ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
542	if (ret_val)
543		return ret_val;
544
545	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
546
547	/* Reset the phy to commit changes. */
548	phy_data |= BMCR_RESET;
549
550	ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
551	if (ret_val)
552		return ret_val;
553
554	udelay(1);
555
556	if (hw->phy.autoneg_wait_to_complete) {
557		e_dbg("Waiting for forced speed/duplex link on GG82563 phy.\n");
558
559		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
560						      100000, &link);
561		if (ret_val)
562			return ret_val;
563
564		if (!link) {
565			/* We didn't get link.
566			 * Reset the DSP and cross our fingers.
567			 */
568			ret_val = e1000e_phy_reset_dsp(hw);
569			if (ret_val)
570				return ret_val;
571		}
572
573		/* Try once more */
574		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
575						      100000, &link);
576		if (ret_val)
577			return ret_val;
578	}
579
580	ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
581	if (ret_val)
582		return ret_val;
583
584	/* Resetting the phy means we need to verify the TX_CLK corresponds
585	 * to the link speed.  10Mbps -> 2.5MHz, else 25MHz.
586	 */
587	phy_data &= ~GG82563_MSCR_TX_CLK_MASK;
588	if (hw->mac.forced_speed_duplex & E1000_ALL_10_SPEED)
589		phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5;
590	else
591		phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25;
592
593	/* In addition, we must re-enable CRS on Tx for both half and full
594	 * duplex.
595	 */
596	phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
597	ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data);
598
599	return ret_val;
600}
601
602/**
603 *  e1000_get_cable_length_80003es2lan - Set approximate cable length
604 *  @hw: pointer to the HW structure
605 *
606 *  Find the approximate cable length as measured by the GG82563 PHY.
607 *  This is a function pointer entry point called by the phy module.
608 **/
609static s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw)
610{
611	struct e1000_phy_info *phy = &hw->phy;
612	s32 ret_val;
613	u16 phy_data, index;
614
615	ret_val = e1e_rphy(hw, GG82563_PHY_DSP_DISTANCE, &phy_data);
616	if (ret_val)
617		return ret_val;
618
619	index = phy_data & GG82563_DSPD_CABLE_LENGTH;
620
621	if (index >= GG82563_CABLE_LENGTH_TABLE_SIZE - 5)
622		return -E1000_ERR_PHY;
623
624	phy->min_cable_length = e1000_gg82563_cable_length_table[index];
625	phy->max_cable_length = e1000_gg82563_cable_length_table[index + 5];
626
627	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
628
629	return 0;
630}
631
632/**
633 *  e1000_get_link_up_info_80003es2lan - Report speed and duplex
634 *  @hw: pointer to the HW structure
635 *  @speed: pointer to speed buffer
636 *  @duplex: pointer to duplex buffer
637 *
638 *  Retrieve the current speed and duplex configuration.
639 **/
640static s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed,
641					      u16 *duplex)
642{
643	s32 ret_val;
644
645	if (hw->phy.media_type == e1000_media_type_copper) {
646		ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
647		hw->phy.ops.cfg_on_link_up(hw);
648	} else {
649		ret_val = e1000e_get_speed_and_duplex_fiber_serdes(hw,
650								   speed,
651								   duplex);
652	}
653
654	return ret_val;
655}
656
657/**
658 *  e1000_reset_hw_80003es2lan - Reset the ESB2 controller
659 *  @hw: pointer to the HW structure
660 *
661 *  Perform a global reset to the ESB2 controller.
662 **/
663static s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw)
664{
665	u32 ctrl;
666	s32 ret_val;
667	u16 kum_reg_data;
668
669	/* Prevent the PCI-E bus from sticking if there is no TLP connection
670	 * on the last TLP read/write transaction when MAC is reset.
671	 */
672	ret_val = e1000e_disable_pcie_master(hw);
673	if (ret_val)
674		e_dbg("PCI-E Master disable polling has failed.\n");
675
676	e_dbg("Masking off all interrupts\n");
677	ew32(IMC, 0xffffffff);
678
679	ew32(RCTL, 0);
680	ew32(TCTL, E1000_TCTL_PSP);
681	e1e_flush();
682
683	usleep_range(10000, 11000);
684
685	ctrl = er32(CTRL);
686
687	ret_val = e1000_acquire_phy_80003es2lan(hw);
688	if (ret_val)
689		return ret_val;
690
691	e_dbg("Issuing a global reset to MAC\n");
692	ew32(CTRL, ctrl | E1000_CTRL_RST);
693	e1000_release_phy_80003es2lan(hw);
694
695	/* Disable IBIST slave mode (far-end loopback) */
696	ret_val =
697	    e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
698					    &kum_reg_data);
699	if (!ret_val) {
700		kum_reg_data |= E1000_KMRNCTRLSTA_IBIST_DISABLE;
701		ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
702						 E1000_KMRNCTRLSTA_INBAND_PARAM,
703						 kum_reg_data);
704		if (ret_val)
705			e_dbg("Error disabling far-end loopback\n");
706	} else {
707		e_dbg("Error disabling far-end loopback\n");
708	}
709
710	ret_val = e1000e_get_auto_rd_done(hw);
711	if (ret_val)
712		/* We don't want to continue accessing MAC registers. */
713		return ret_val;
714
715	/* Clear any pending interrupt events. */
716	ew32(IMC, 0xffffffff);
717	er32(ICR);
718
719	return e1000_check_alt_mac_addr_generic(hw);
720}
721
722/**
723 *  e1000_init_hw_80003es2lan - Initialize the ESB2 controller
724 *  @hw: pointer to the HW structure
725 *
726 *  Initialize the hw bits, LED, VFTA, MTA, link and hw counters.
727 **/
728static s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw)
729{
730	struct e1000_mac_info *mac = &hw->mac;
731	u32 reg_data;
732	s32 ret_val;
733	u16 kum_reg_data;
734	u16 i;
735
736	e1000_initialize_hw_bits_80003es2lan(hw);
737
738	/* Initialize identification LED */
739	ret_val = mac->ops.id_led_init(hw);
740	/* An error is not fatal and we should not stop init due to this */
741	if (ret_val)
742		e_dbg("Error initializing identification LED\n");
743
744	/* Disabling VLAN filtering */
745	e_dbg("Initializing the IEEE VLAN\n");
746	mac->ops.clear_vfta(hw);
747
748	/* Setup the receive address. */
749	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
750
751	/* Zero out the Multicast HASH table */
752	e_dbg("Zeroing the MTA\n");
753	for (i = 0; i < mac->mta_reg_count; i++)
754		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
755
756	/* Setup link and flow control */
757	ret_val = mac->ops.setup_link(hw);
758	if (ret_val)
759		return ret_val;
760
761	/* Disable IBIST slave mode (far-end loopback) */
762	ret_val =
763	    e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
764					    &kum_reg_data);
765	if (!ret_val) {
766		kum_reg_data |= E1000_KMRNCTRLSTA_IBIST_DISABLE;
767		ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
768						 E1000_KMRNCTRLSTA_INBAND_PARAM,
769						 kum_reg_data);
770		if (ret_val)
771			e_dbg("Error disabling far-end loopback\n");
772	} else {
773		e_dbg("Error disabling far-end loopback\n");
774	}
775
776	/* Set the transmit descriptor write-back policy */
777	reg_data = er32(TXDCTL(0));
778	reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
779		    E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
780	ew32(TXDCTL(0), reg_data);
781
782	/* ...for both queues. */
783	reg_data = er32(TXDCTL(1));
784	reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
785		    E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
786	ew32(TXDCTL(1), reg_data);
787
788	/* Enable retransmit on late collisions */
789	reg_data = er32(TCTL);
790	reg_data |= E1000_TCTL_RTLC;
791	ew32(TCTL, reg_data);
792
793	/* Configure Gigabit Carry Extend Padding */
794	reg_data = er32(TCTL_EXT);
795	reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
796	reg_data |= DEFAULT_TCTL_EXT_GCEX_80003ES2LAN;
797	ew32(TCTL_EXT, reg_data);
798
799	/* Configure Transmit Inter-Packet Gap */
800	reg_data = er32(TIPG);
801	reg_data &= ~E1000_TIPG_IPGT_MASK;
802	reg_data |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
803	ew32(TIPG, reg_data);
804
805	reg_data = E1000_READ_REG_ARRAY(hw, E1000_FFLT, 0x0001);
806	reg_data &= ~0x00100000;
807	E1000_WRITE_REG_ARRAY(hw, E1000_FFLT, 0x0001, reg_data);
808
809	/* default to true to enable the MDIC W/A */
810	hw->dev_spec.e80003es2lan.mdic_wa_enable = true;
811
812	ret_val =
813	    e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_OFFSET >>
814					    E1000_KMRNCTRLSTA_OFFSET_SHIFT, &i);
815	if (!ret_val) {
816		if ((i & E1000_KMRNCTRLSTA_OPMODE_MASK) ==
817		    E1000_KMRNCTRLSTA_OPMODE_INBAND_MDIO)
818			hw->dev_spec.e80003es2lan.mdic_wa_enable = false;
819	}
820
821	/* Clear all of the statistics registers (clear on read).  It is
822	 * important that we do this after we have tried to establish link
823	 * because the symbol error count will increment wildly if there
824	 * is no link.
825	 */
826	e1000_clear_hw_cntrs_80003es2lan(hw);
827
828	return ret_val;
829}
830
831/**
832 *  e1000_initialize_hw_bits_80003es2lan - Init hw bits of ESB2
833 *  @hw: pointer to the HW structure
834 *
835 *  Initializes required hardware-dependent bits needed for normal operation.
836 **/
837static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw)
838{
839	u32 reg;
840
841	/* Transmit Descriptor Control 0 */
842	reg = er32(TXDCTL(0));
843	reg |= BIT(22);
844	ew32(TXDCTL(0), reg);
845
846	/* Transmit Descriptor Control 1 */
847	reg = er32(TXDCTL(1));
848	reg |= BIT(22);
849	ew32(TXDCTL(1), reg);
850
851	/* Transmit Arbitration Control 0 */
852	reg = er32(TARC(0));
853	reg &= ~(0xF << 27);	/* 30:27 */
854	if (hw->phy.media_type != e1000_media_type_copper)
855		reg &= ~BIT(20);
856	ew32(TARC(0), reg);
857
858	/* Transmit Arbitration Control 1 */
859	reg = er32(TARC(1));
860	if (er32(TCTL) & E1000_TCTL_MULR)
861		reg &= ~BIT(28);
862	else
863		reg |= BIT(28);
864	ew32(TARC(1), reg);
865
866	/* Disable IPv6 extension header parsing because some malformed
867	 * IPv6 headers can hang the Rx.
868	 */
869	reg = er32(RFCTL);
870	reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
871	ew32(RFCTL, reg);
872}
873
874/**
875 *  e1000_copper_link_setup_gg82563_80003es2lan - Configure GG82563 Link
876 *  @hw: pointer to the HW structure
877 *
878 *  Setup some GG82563 PHY registers for obtaining link
879 **/
880static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
881{
882	struct e1000_phy_info *phy = &hw->phy;
883	s32 ret_val;
884	u32 reg;
885	u16 data;
886
887	ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &data);
888	if (ret_val)
889		return ret_val;
890
891	data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
892	/* Use 25MHz for both link down and 1000Base-T for Tx clock. */
893	data |= GG82563_MSCR_TX_CLK_1000MBPS_25;
894
895	ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, data);
896	if (ret_val)
897		return ret_val;
898
899	/* Options:
900	 *   MDI/MDI-X = 0 (default)
901	 *   0 - Auto for all speeds
902	 *   1 - MDI mode
903	 *   2 - MDI-X mode
904	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
905	 */
906	ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL, &data);
907	if (ret_val)
908		return ret_val;
909
910	data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
911
912	switch (phy->mdix) {
913	case 1:
914		data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
915		break;
916	case 2:
917		data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
918		break;
919	case 0:
920	default:
921		data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
922		break;
923	}
924
925	/* Options:
926	 *   disable_polarity_correction = 0 (default)
927	 *       Automatic Correction for Reversed Cable Polarity
928	 *   0 - Disabled
929	 *   1 - Enabled
930	 */
931	data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
932	if (phy->disable_polarity_correction)
933		data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
934
935	ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, data);
936	if (ret_val)
937		return ret_val;
938
939	/* SW Reset the PHY so all changes take effect */
940	ret_val = hw->phy.ops.commit(hw);
941	if (ret_val) {
942		e_dbg("Error Resetting the PHY\n");
943		return ret_val;
944	}
945
946	/* Bypass Rx and Tx FIFO's */
947	reg = E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL;
948	data = (E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS |
949		E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS);
950	ret_val = e1000_write_kmrn_reg_80003es2lan(hw, reg, data);
951	if (ret_val)
952		return ret_val;
953
954	reg = E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE;
955	ret_val = e1000_read_kmrn_reg_80003es2lan(hw, reg, &data);
956	if (ret_val)
957		return ret_val;
958	data |= E1000_KMRNCTRLSTA_OPMODE_E_IDLE;
959	ret_val = e1000_write_kmrn_reg_80003es2lan(hw, reg, data);
960	if (ret_val)
961		return ret_val;
962
963	ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL_2, &data);
964	if (ret_val)
965		return ret_val;
966
967	data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
968	ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL_2, data);
969	if (ret_val)
970		return ret_val;
971
972	reg = er32(CTRL_EXT);
973	reg &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
974	ew32(CTRL_EXT, reg);
975
976	ret_val = e1e_rphy(hw, GG82563_PHY_PWR_MGMT_CTRL, &data);
977	if (ret_val)
978		return ret_val;
979
980	/* Do not init these registers when the HW is in IAMT mode, since the
981	 * firmware will have already initialized them.  We only initialize
982	 * them if the HW is not in IAMT mode.
983	 */
984	if (!hw->mac.ops.check_mng_mode(hw)) {
985		/* Enable Electrical Idle on the PHY */
986		data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
987		ret_val = e1e_wphy(hw, GG82563_PHY_PWR_MGMT_CTRL, data);
988		if (ret_val)
989			return ret_val;
990
991		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &data);
992		if (ret_val)
993			return ret_val;
994
995		data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
996		ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, data);
997		if (ret_val)
998			return ret_val;
999	}
1000
1001	/* Workaround: Disable padding in Kumeran interface in the MAC
1002	 * and in the PHY to avoid CRC errors.
1003	 */
1004	ret_val = e1e_rphy(hw, GG82563_PHY_INBAND_CTRL, &data);
1005	if (ret_val)
1006		return ret_val;
1007
1008	data |= GG82563_ICR_DIS_PADDING;
1009	ret_val = e1e_wphy(hw, GG82563_PHY_INBAND_CTRL, data);
1010	if (ret_val)
1011		return ret_val;
1012
1013	return 0;
1014}
1015
1016/**
1017 *  e1000_setup_copper_link_80003es2lan - Setup Copper Link for ESB2
1018 *  @hw: pointer to the HW structure
1019 *
1020 *  Essentially a wrapper for setting up all things "copper" related.
1021 *  This is a function pointer entry point called by the mac module.
1022 **/
1023static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw)
1024{
1025	u32 ctrl;
1026	s32 ret_val;
1027	u16 reg_data;
1028
1029	ctrl = er32(CTRL);
1030	ctrl |= E1000_CTRL_SLU;
1031	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1032	ew32(CTRL, ctrl);
1033
1034	/* Set the mac to wait the maximum time between each
1035	 * iteration and increase the max iterations when
1036	 * polling the phy; this fixes erroneous timeouts at 10Mbps.
1037	 */
1038	ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 4),
1039						   0xFFFF);
1040	if (ret_val)
1041		return ret_val;
1042	ret_val = e1000_read_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
1043						  &reg_data);
1044	if (ret_val)
1045		return ret_val;
1046	reg_data |= 0x3F;
1047	ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
1048						   reg_data);
1049	if (ret_val)
1050		return ret_val;
1051	ret_val =
1052	    e1000_read_kmrn_reg_80003es2lan(hw,
1053					    E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
1054					    &reg_data);
1055	if (ret_val)
1056		return ret_val;
1057	reg_data |= E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING;
1058	ret_val =
1059	    e1000_write_kmrn_reg_80003es2lan(hw,
1060					     E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
1061					     reg_data);
1062	if (ret_val)
1063		return ret_val;
1064
1065	ret_val = e1000_copper_link_setup_gg82563_80003es2lan(hw);
1066	if (ret_val)
1067		return ret_val;
1068
1069	return e1000e_setup_copper_link(hw);
1070}
1071
1072/**
1073 *  e1000_cfg_on_link_up_80003es2lan - es2 link configuration after link-up
1074 *  @hw: pointer to the HW structure
1075 *
1076 *  Configure the KMRN interface by applying last minute quirks for
1077 *  10/100 operation.
1078 **/
1079static s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw)
1080{
1081	s32 ret_val = 0;
1082	u16 speed;
1083	u16 duplex;
1084
1085	if (hw->phy.media_type == e1000_media_type_copper) {
1086		ret_val = e1000e_get_speed_and_duplex_copper(hw, &speed,
1087							     &duplex);
1088		if (ret_val)
1089			return ret_val;
1090
1091		if (speed == SPEED_1000)
1092			ret_val = e1000_cfg_kmrn_1000_80003es2lan(hw);
1093		else
1094			ret_val = e1000_cfg_kmrn_10_100_80003es2lan(hw, duplex);
1095	}
1096
1097	return ret_val;
1098}
1099
1100/**
1101 *  e1000_cfg_kmrn_10_100_80003es2lan - Apply "quirks" for 10/100 operation
1102 *  @hw: pointer to the HW structure
1103 *  @duplex: current duplex setting
1104 *
1105 *  Configure the KMRN interface by applying last minute quirks for
1106 *  10/100 operation.
1107 **/
1108static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex)
1109{
1110	s32 ret_val;
1111	u32 tipg;
1112	u32 i = 0;
1113	u16 reg_data, reg_data2;
1114
1115	reg_data = E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT;
1116	ret_val =
1117	    e1000_write_kmrn_reg_80003es2lan(hw,
1118					     E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
1119					     reg_data);
1120	if (ret_val)
1121		return ret_val;
1122
1123	/* Configure Transmit Inter-Packet Gap */
1124	tipg = er32(TIPG);
1125	tipg &= ~E1000_TIPG_IPGT_MASK;
1126	tipg |= DEFAULT_TIPG_IPGT_10_100_80003ES2LAN;
1127	ew32(TIPG, tipg);
1128
1129	do {
1130		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
1131		if (ret_val)
1132			return ret_val;
1133
1134		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data2);
1135		if (ret_val)
1136			return ret_val;
1137		i++;
1138	} while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
1139
1140	if (duplex == HALF_DUPLEX)
1141		reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
1142	else
1143		reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1144
1145	return e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1146}
1147
1148/**
1149 *  e1000_cfg_kmrn_1000_80003es2lan - Apply "quirks" for gigabit operation
1150 *  @hw: pointer to the HW structure
1151 *
1152 *  Configure the KMRN interface by applying last minute quirks for
1153 *  gigabit operation.
1154 **/
1155static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw)
1156{
1157	s32 ret_val;
1158	u16 reg_data, reg_data2;
1159	u32 tipg;
1160	u32 i = 0;
1161
1162	reg_data = E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT;
1163	ret_val =
1164	    e1000_write_kmrn_reg_80003es2lan(hw,
1165					     E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
1166					     reg_data);
1167	if (ret_val)
1168		return ret_val;
1169
1170	/* Configure Transmit Inter-Packet Gap */
1171	tipg = er32(TIPG);
1172	tipg &= ~E1000_TIPG_IPGT_MASK;
1173	tipg |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
1174	ew32(TIPG, tipg);
1175
1176	do {
1177		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
1178		if (ret_val)
1179			return ret_val;
1180
1181		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data2);
1182		if (ret_val)
1183			return ret_val;
1184		i++;
1185	} while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
1186
1187	reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1188
1189	return e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1190}
1191
1192/**
1193 *  e1000_read_kmrn_reg_80003es2lan - Read kumeran register
1194 *  @hw: pointer to the HW structure
1195 *  @offset: register offset to be read
1196 *  @data: pointer to the read data
1197 *
1198 *  Acquire semaphore, then read the PHY register at offset
1199 *  using the kumeran interface.  The information retrieved is stored in data.
1200 *  Release the semaphore before exiting.
1201 **/
1202static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
1203					   u16 *data)
1204{
1205	u32 kmrnctrlsta;
1206	s32 ret_val;
1207
1208	ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
1209	if (ret_val)
1210		return ret_val;
1211
1212	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
1213		       E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
1214	ew32(KMRNCTRLSTA, kmrnctrlsta);
1215	e1e_flush();
1216
1217	udelay(2);
1218
1219	kmrnctrlsta = er32(KMRNCTRLSTA);
1220	*data = (u16)kmrnctrlsta;
1221
1222	e1000_release_mac_csr_80003es2lan(hw);
1223
1224	return ret_val;
1225}
1226
1227/**
1228 *  e1000_write_kmrn_reg_80003es2lan - Write kumeran register
1229 *  @hw: pointer to the HW structure
1230 *  @offset: register offset to write to
1231 *  @data: data to write at register offset
1232 *
1233 *  Acquire semaphore, then write the data to PHY register
1234 *  at the offset using the kumeran interface.  Release semaphore
1235 *  before exiting.
1236 **/
1237static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
1238					    u16 data)
1239{
1240	u32 kmrnctrlsta;
1241	s32 ret_val;
1242
1243	ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
1244	if (ret_val)
1245		return ret_val;
1246
1247	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
1248		       E1000_KMRNCTRLSTA_OFFSET) | data;
1249	ew32(KMRNCTRLSTA, kmrnctrlsta);
1250	e1e_flush();
1251
1252	udelay(2);
1253
1254	e1000_release_mac_csr_80003es2lan(hw);
1255
1256	return ret_val;
1257}
1258
1259/**
1260 *  e1000_read_mac_addr_80003es2lan - Read device MAC address
1261 *  @hw: pointer to the HW structure
1262 **/
1263static s32 e1000_read_mac_addr_80003es2lan(struct e1000_hw *hw)
1264{
1265	s32 ret_val;
1266
1267	/* If there's an alternate MAC address place it in RAR0
1268	 * so that it will override the Si installed default perm
1269	 * address.
1270	 */
1271	ret_val = e1000_check_alt_mac_addr_generic(hw);
1272	if (ret_val)
1273		return ret_val;
1274
1275	return e1000_read_mac_addr_generic(hw);
1276}
1277
1278/**
1279 * e1000_power_down_phy_copper_80003es2lan - Remove link during PHY power down
1280 * @hw: pointer to the HW structure
1281 *
1282 * In the case of a PHY power down to save power, or to turn off link during a
1283 * driver unload, or wake on lan is not enabled, remove the link.
1284 **/
1285static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw)
1286{
1287	/* If the management interface is not enabled, then power down */
1288	if (!(hw->mac.ops.check_mng_mode(hw) ||
1289	      hw->phy.ops.check_reset_block(hw)))
1290		e1000_power_down_phy_copper(hw);
1291}
1292
1293/**
1294 *  e1000_clear_hw_cntrs_80003es2lan - Clear device specific hardware counters
1295 *  @hw: pointer to the HW structure
1296 *
1297 *  Clears the hardware counters by reading the counter registers.
1298 **/
1299static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw)
1300{
1301	e1000e_clear_hw_cntrs_base(hw);
1302
1303	er32(PRC64);
1304	er32(PRC127);
1305	er32(PRC255);
1306	er32(PRC511);
1307	er32(PRC1023);
1308	er32(PRC1522);
1309	er32(PTC64);
1310	er32(PTC127);
1311	er32(PTC255);
1312	er32(PTC511);
1313	er32(PTC1023);
1314	er32(PTC1522);
1315
1316	er32(ALGNERRC);
1317	er32(RXERRC);
1318	er32(TNCRS);
1319	er32(CEXTERR);
1320	er32(TSCTC);
1321	er32(TSCTFC);
1322
1323	er32(MGTPRC);
1324	er32(MGTPDC);
1325	er32(MGTPTC);
1326
1327	er32(IAC);
1328	er32(ICRXOC);
1329
1330	er32(ICRXPTC);
1331	er32(ICRXATC);
1332	er32(ICTXPTC);
1333	er32(ICTXATC);
1334	er32(ICTXQEC);
1335	er32(ICTXQMTC);
1336	er32(ICRXDMTC);
1337}
1338
1339static const struct e1000_mac_operations es2_mac_ops = {
1340	.read_mac_addr		= e1000_read_mac_addr_80003es2lan,
1341	.id_led_init		= e1000e_id_led_init_generic,
1342	.blink_led		= e1000e_blink_led_generic,
1343	.check_mng_mode		= e1000e_check_mng_mode_generic,
1344	/* check_for_link dependent on media type */
1345	.cleanup_led		= e1000e_cleanup_led_generic,
1346	.clear_hw_cntrs		= e1000_clear_hw_cntrs_80003es2lan,
1347	.get_bus_info		= e1000e_get_bus_info_pcie,
1348	.set_lan_id		= e1000_set_lan_id_multi_port_pcie,
1349	.get_link_up_info	= e1000_get_link_up_info_80003es2lan,
1350	.led_on			= e1000e_led_on_generic,
1351	.led_off		= e1000e_led_off_generic,
1352	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
1353	.write_vfta		= e1000_write_vfta_generic,
1354	.clear_vfta		= e1000_clear_vfta_generic,
1355	.reset_hw		= e1000_reset_hw_80003es2lan,
1356	.init_hw		= e1000_init_hw_80003es2lan,
1357	.setup_link		= e1000e_setup_link_generic,
1358	/* setup_physical_interface dependent on media type */
1359	.setup_led		= e1000e_setup_led_generic,
1360	.config_collision_dist	= e1000e_config_collision_dist_generic,
1361	.rar_set		= e1000e_rar_set_generic,
1362	.rar_get_count		= e1000e_rar_get_count_generic,
1363};
1364
1365static const struct e1000_phy_operations es2_phy_ops = {
1366	.acquire		= e1000_acquire_phy_80003es2lan,
1367	.check_polarity		= e1000_check_polarity_m88,
1368	.check_reset_block	= e1000e_check_reset_block_generic,
1369	.commit			= e1000e_phy_sw_reset,
1370	.force_speed_duplex	= e1000_phy_force_speed_duplex_80003es2lan,
1371	.get_cfg_done		= e1000_get_cfg_done_80003es2lan,
1372	.get_cable_length	= e1000_get_cable_length_80003es2lan,
1373	.get_info		= e1000e_get_phy_info_m88,
1374	.read_reg		= e1000_read_phy_reg_gg82563_80003es2lan,
1375	.release		= e1000_release_phy_80003es2lan,
1376	.reset			= e1000e_phy_hw_reset_generic,
1377	.set_d0_lplu_state	= NULL,
1378	.set_d3_lplu_state	= e1000e_set_d3_lplu_state,
1379	.write_reg		= e1000_write_phy_reg_gg82563_80003es2lan,
1380	.cfg_on_link_up		= e1000_cfg_on_link_up_80003es2lan,
1381};
1382
1383static const struct e1000_nvm_operations es2_nvm_ops = {
1384	.acquire		= e1000_acquire_nvm_80003es2lan,
1385	.read			= e1000e_read_nvm_eerd,
1386	.release		= e1000_release_nvm_80003es2lan,
1387	.reload			= e1000e_reload_nvm_generic,
1388	.update			= e1000e_update_nvm_checksum_generic,
1389	.valid_led_default	= e1000e_valid_led_default,
1390	.validate		= e1000e_validate_nvm_checksum_generic,
1391	.write			= e1000_write_nvm_80003es2lan,
1392};
1393
1394const struct e1000_info e1000_es2_info = {
1395	.mac			= e1000_80003es2lan,
1396	.flags			= FLAG_HAS_HW_VLAN_FILTER
1397				  | FLAG_HAS_JUMBO_FRAMES
1398				  | FLAG_HAS_WOL
1399				  | FLAG_APME_IN_CTRL3
1400				  | FLAG_HAS_CTRLEXT_ON_LOAD
1401				  | FLAG_RX_NEEDS_RESTART /* errata */
1402				  | FLAG_TARC_SET_BIT_ZERO /* errata */
1403				  | FLAG_APME_CHECK_PORT_B
1404				  | FLAG_DISABLE_FC_PAUSE_TIME, /* errata */
1405	.flags2			= FLAG2_DMA_BURST,
1406	.pba			= 38,
1407	.max_hw_frame_size	= DEFAULT_JUMBO,
1408	.get_variants		= e1000_get_variants_80003es2lan,
1409	.mac_ops		= &es2_mac_ops,
1410	.phy_ops		= &es2_phy_ops,
1411	.nvm_ops		= &es2_nvm_ops,
1412};
1413