1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
4 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5 *
6 * Right now, I am very wasteful with the buffers.  I allocate memory
7 * pages and then divide them into 2K frame buffers.  This way I know I
8 * have buffers large enough to hold one frame within one buffer descriptor.
9 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
10 * will be much more memory efficient and will easily handle lots of
11 * small packets.
12 *
13 * Much better multiple PHY support by Magnus Damm.
14 * Copyright (c) 2000 Ericsson Radio Systems AB.
15 *
16 * Support for FEC controller of ColdFire processors.
17 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
18 *
19 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
20 * Copyright (c) 2004-2006 Macq Electronique SA.
21 *
22 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
23 */
24
25#include <linux/module.h>
26#include <linux/kernel.h>
27#include <linux/string.h>
28#include <linux/pm_runtime.h>
29#include <linux/ptrace.h>
30#include <linux/errno.h>
31#include <linux/ioport.h>
32#include <linux/slab.h>
33#include <linux/interrupt.h>
34#include <linux/delay.h>
35#include <linux/netdevice.h>
36#include <linux/etherdevice.h>
37#include <linux/skbuff.h>
38#include <linux/in.h>
39#include <linux/ip.h>
40#include <net/ip.h>
41#include <net/page_pool/helpers.h>
42#include <net/selftests.h>
43#include <net/tso.h>
44#include <linux/tcp.h>
45#include <linux/udp.h>
46#include <linux/icmp.h>
47#include <linux/spinlock.h>
48#include <linux/workqueue.h>
49#include <linux/bitops.h>
50#include <linux/io.h>
51#include <linux/irq.h>
52#include <linux/clk.h>
53#include <linux/crc32.h>
54#include <linux/platform_device.h>
55#include <linux/mdio.h>
56#include <linux/phy.h>
57#include <linux/fec.h>
58#include <linux/of.h>
59#include <linux/of_device.h>
60#include <linux/of_mdio.h>
61#include <linux/of_net.h>
62#include <linux/regulator/consumer.h>
63#include <linux/if_vlan.h>
64#include <linux/pinctrl/consumer.h>
65#include <linux/gpio/consumer.h>
66#include <linux/prefetch.h>
67#include <linux/mfd/syscon.h>
68#include <linux/regmap.h>
69#include <soc/imx/cpuidle.h>
70#include <linux/filter.h>
71#include <linux/bpf.h>
72#include <linux/bpf_trace.h>
73
74#include <asm/cacheflush.h>
75
76#include "fec.h"
77
78static void set_multicast_list(struct net_device *ndev);
79static void fec_enet_itr_coal_set(struct net_device *ndev);
80static int fec_enet_xdp_tx_xmit(struct fec_enet_private *fep,
81				int cpu, struct xdp_buff *xdp,
82				u32 dma_sync_len);
83
84#define DRIVER_NAME	"fec"
85
86static const u16 fec_enet_vlan_pri_to_queue[8] = {0, 0, 1, 1, 1, 2, 2, 2};
87
88/* Pause frame feild and FIFO threshold */
89#define FEC_ENET_FCE	(1 << 5)
90#define FEC_ENET_RSEM_V	0x84
91#define FEC_ENET_RSFL_V	16
92#define FEC_ENET_RAEM_V	0x8
93#define FEC_ENET_RAFL_V	0x8
94#define FEC_ENET_OPD_V	0xFFF0
95#define FEC_MDIO_PM_TIMEOUT  100 /* ms */
96
97#define FEC_ENET_XDP_PASS          0
98#define FEC_ENET_XDP_CONSUMED      BIT(0)
99#define FEC_ENET_XDP_TX            BIT(1)
100#define FEC_ENET_XDP_REDIR         BIT(2)
101
102struct fec_devinfo {
103	u32 quirks;
104};
105
106static const struct fec_devinfo fec_imx25_info = {
107	.quirks = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR |
108		  FEC_QUIRK_HAS_FRREG | FEC_QUIRK_HAS_MDIO_C45,
109};
110
111static const struct fec_devinfo fec_imx27_info = {
112	.quirks = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG |
113		  FEC_QUIRK_HAS_MDIO_C45,
114};
115
116static const struct fec_devinfo fec_imx28_info = {
117	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
118		  FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC |
119		  FEC_QUIRK_HAS_FRREG | FEC_QUIRK_CLEAR_SETUP_MII |
120		  FEC_QUIRK_NO_HARD_RESET | FEC_QUIRK_HAS_MDIO_C45,
121};
122
123static const struct fec_devinfo fec_imx6q_info = {
124	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
125		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
126		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
127		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_CLEAR_SETUP_MII |
128		  FEC_QUIRK_HAS_PMQOS | FEC_QUIRK_HAS_MDIO_C45,
129};
130
131static const struct fec_devinfo fec_mvf600_info = {
132	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC |
133		  FEC_QUIRK_HAS_MDIO_C45,
134};
135
136static const struct fec_devinfo fec_imx6x_info = {
137	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
138		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
139		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
140		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
141		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
142		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
143		  FEC_QUIRK_HAS_MDIO_C45,
144};
145
146static const struct fec_devinfo fec_imx6ul_info = {
147	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
148		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
149		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 |
150		  FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC |
151		  FEC_QUIRK_HAS_COALESCE | FEC_QUIRK_CLEAR_SETUP_MII |
152		  FEC_QUIRK_HAS_MDIO_C45,
153};
154
155static const struct fec_devinfo fec_imx8mq_info = {
156	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
157		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
158		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
159		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
160		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
161		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
162		  FEC_QUIRK_HAS_EEE | FEC_QUIRK_WAKEUP_FROM_INT2 |
163		  FEC_QUIRK_HAS_MDIO_C45,
164};
165
166static const struct fec_devinfo fec_imx8qm_info = {
167	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
168		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
169		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
170		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
171		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
172		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
173		  FEC_QUIRK_DELAYED_CLKS_SUPPORT | FEC_QUIRK_HAS_MDIO_C45,
174};
175
176static const struct fec_devinfo fec_s32v234_info = {
177	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
178		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
179		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
180		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
181		  FEC_QUIRK_HAS_MDIO_C45,
182};
183
184static struct platform_device_id fec_devtype[] = {
185	{
186		/* keep it for coldfire */
187		.name = DRIVER_NAME,
188		.driver_data = 0,
189	}, {
190		.name = "imx25-fec",
191		.driver_data = (kernel_ulong_t)&fec_imx25_info,
192	}, {
193		.name = "imx27-fec",
194		.driver_data = (kernel_ulong_t)&fec_imx27_info,
195	}, {
196		.name = "imx28-fec",
197		.driver_data = (kernel_ulong_t)&fec_imx28_info,
198	}, {
199		.name = "imx6q-fec",
200		.driver_data = (kernel_ulong_t)&fec_imx6q_info,
201	}, {
202		.name = "mvf600-fec",
203		.driver_data = (kernel_ulong_t)&fec_mvf600_info,
204	}, {
205		.name = "imx6sx-fec",
206		.driver_data = (kernel_ulong_t)&fec_imx6x_info,
207	}, {
208		.name = "imx6ul-fec",
209		.driver_data = (kernel_ulong_t)&fec_imx6ul_info,
210	}, {
211		.name = "imx8mq-fec",
212		.driver_data = (kernel_ulong_t)&fec_imx8mq_info,
213	}, {
214		.name = "imx8qm-fec",
215		.driver_data = (kernel_ulong_t)&fec_imx8qm_info,
216	}, {
217		.name = "s32v234-fec",
218		.driver_data = (kernel_ulong_t)&fec_s32v234_info,
219	}, {
220		/* sentinel */
221	}
222};
223MODULE_DEVICE_TABLE(platform, fec_devtype);
224
225enum imx_fec_type {
226	IMX25_FEC = 1,	/* runs on i.mx25/50/53 */
227	IMX27_FEC,	/* runs on i.mx27/35/51 */
228	IMX28_FEC,
229	IMX6Q_FEC,
230	MVF600_FEC,
231	IMX6SX_FEC,
232	IMX6UL_FEC,
233	IMX8MQ_FEC,
234	IMX8QM_FEC,
235	S32V234_FEC,
236};
237
238static const struct of_device_id fec_dt_ids[] = {
239	{ .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
240	{ .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
241	{ .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
242	{ .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
243	{ .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
244	{ .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
245	{ .compatible = "fsl,imx6ul-fec", .data = &fec_devtype[IMX6UL_FEC], },
246	{ .compatible = "fsl,imx8mq-fec", .data = &fec_devtype[IMX8MQ_FEC], },
247	{ .compatible = "fsl,imx8qm-fec", .data = &fec_devtype[IMX8QM_FEC], },
248	{ .compatible = "fsl,s32v234-fec", .data = &fec_devtype[S32V234_FEC], },
249	{ /* sentinel */ }
250};
251MODULE_DEVICE_TABLE(of, fec_dt_ids);
252
253static unsigned char macaddr[ETH_ALEN];
254module_param_array(macaddr, byte, NULL, 0);
255MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
256
257#if defined(CONFIG_M5272)
258/*
259 * Some hardware gets it MAC address out of local flash memory.
260 * if this is non-zero then assume it is the address to get MAC from.
261 */
262#if defined(CONFIG_NETtel)
263#define	FEC_FLASHMAC	0xf0006006
264#elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
265#define	FEC_FLASHMAC	0xf0006000
266#elif defined(CONFIG_CANCam)
267#define	FEC_FLASHMAC	0xf0020000
268#elif defined (CONFIG_M5272C3)
269#define	FEC_FLASHMAC	(0xffe04000 + 4)
270#elif defined(CONFIG_MOD5272)
271#define FEC_FLASHMAC	0xffc0406b
272#else
273#define	FEC_FLASHMAC	0
274#endif
275#endif /* CONFIG_M5272 */
276
277/* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
278 *
279 * 2048 byte skbufs are allocated. However, alignment requirements
280 * varies between FEC variants. Worst case is 64, so round down by 64.
281 */
282#define PKT_MAXBUF_SIZE		(round_down(2048 - 64, 64))
283#define PKT_MINBUF_SIZE		64
284
285/* FEC receive acceleration */
286#define FEC_RACC_IPDIS		(1 << 1)
287#define FEC_RACC_PRODIS		(1 << 2)
288#define FEC_RACC_SHIFT16	BIT(7)
289#define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
290
291/* MIB Control Register */
292#define FEC_MIB_CTRLSTAT_DISABLE	BIT(31)
293
294/*
295 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
296 * size bits. Other FEC hardware does not, so we need to take that into
297 * account when setting it.
298 */
299#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
300    defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
301    defined(CONFIG_ARM64)
302#define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
303#else
304#define	OPT_FRAME_SIZE	0
305#endif
306
307/* FEC MII MMFR bits definition */
308#define FEC_MMFR_ST		(1 << 30)
309#define FEC_MMFR_ST_C45		(0)
310#define FEC_MMFR_OP_READ	(2 << 28)
311#define FEC_MMFR_OP_READ_C45	(3 << 28)
312#define FEC_MMFR_OP_WRITE	(1 << 28)
313#define FEC_MMFR_OP_ADDR_WRITE	(0)
314#define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
315#define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
316#define FEC_MMFR_TA		(2 << 16)
317#define FEC_MMFR_DATA(v)	(v & 0xffff)
318/* FEC ECR bits definition */
319#define FEC_ECR_MAGICEN		(1 << 2)
320#define FEC_ECR_SLEEP		(1 << 3)
321
322#define FEC_MII_TIMEOUT		30000 /* us */
323
324/* Transmitter timeout */
325#define TX_TIMEOUT (2 * HZ)
326
327#define FEC_PAUSE_FLAG_AUTONEG	0x1
328#define FEC_PAUSE_FLAG_ENABLE	0x2
329#define FEC_WOL_HAS_MAGIC_PACKET	(0x1 << 0)
330#define FEC_WOL_FLAG_ENABLE		(0x1 << 1)
331#define FEC_WOL_FLAG_SLEEP_ON		(0x1 << 2)
332
333/* Max number of allowed TCP segments for software TSO */
334#define FEC_MAX_TSO_SEGS	100
335#define FEC_MAX_SKB_DESCS	(FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
336
337#define IS_TSO_HEADER(txq, addr) \
338	((addr >= txq->tso_hdrs_dma) && \
339	(addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
340
341static int mii_cnt;
342
343static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
344					     struct bufdesc_prop *bd)
345{
346	return (bdp >= bd->last) ? bd->base
347			: (struct bufdesc *)(((void *)bdp) + bd->dsize);
348}
349
350static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
351					     struct bufdesc_prop *bd)
352{
353	return (bdp <= bd->base) ? bd->last
354			: (struct bufdesc *)(((void *)bdp) - bd->dsize);
355}
356
357static int fec_enet_get_bd_index(struct bufdesc *bdp,
358				 struct bufdesc_prop *bd)
359{
360	return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
361}
362
363static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
364{
365	int entries;
366
367	entries = (((const char *)txq->dirty_tx -
368			(const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
369
370	return entries >= 0 ? entries : entries + txq->bd.ring_size;
371}
372
373static void swap_buffer(void *bufaddr, int len)
374{
375	int i;
376	unsigned int *buf = bufaddr;
377
378	for (i = 0; i < len; i += 4, buf++)
379		swab32s(buf);
380}
381
382static void fec_dump(struct net_device *ndev)
383{
384	struct fec_enet_private *fep = netdev_priv(ndev);
385	struct bufdesc *bdp;
386	struct fec_enet_priv_tx_q *txq;
387	int index = 0;
388
389	netdev_info(ndev, "TX ring dump\n");
390	pr_info("Nr     SC     addr       len  SKB\n");
391
392	txq = fep->tx_queue[0];
393	bdp = txq->bd.base;
394
395	do {
396		pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
397			index,
398			bdp == txq->bd.cur ? 'S' : ' ',
399			bdp == txq->dirty_tx ? 'H' : ' ',
400			fec16_to_cpu(bdp->cbd_sc),
401			fec32_to_cpu(bdp->cbd_bufaddr),
402			fec16_to_cpu(bdp->cbd_datlen),
403			txq->tx_buf[index].buf_p);
404		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
405		index++;
406	} while (bdp != txq->bd.base);
407}
408
409static inline bool is_ipv4_pkt(struct sk_buff *skb)
410{
411	return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
412}
413
414static int
415fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
416{
417	/* Only run for packets requiring a checksum. */
418	if (skb->ip_summed != CHECKSUM_PARTIAL)
419		return 0;
420
421	if (unlikely(skb_cow_head(skb, 0)))
422		return -1;
423
424	if (is_ipv4_pkt(skb))
425		ip_hdr(skb)->check = 0;
426	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
427
428	return 0;
429}
430
431static int
432fec_enet_create_page_pool(struct fec_enet_private *fep,
433			  struct fec_enet_priv_rx_q *rxq, int size)
434{
435	struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog);
436	struct page_pool_params pp_params = {
437		.order = 0,
438		.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV,
439		.pool_size = size,
440		.nid = dev_to_node(&fep->pdev->dev),
441		.dev = &fep->pdev->dev,
442		.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE,
443		.offset = FEC_ENET_XDP_HEADROOM,
444		.max_len = FEC_ENET_RX_FRSIZE,
445	};
446	int err;
447
448	rxq->page_pool = page_pool_create(&pp_params);
449	if (IS_ERR(rxq->page_pool)) {
450		err = PTR_ERR(rxq->page_pool);
451		rxq->page_pool = NULL;
452		return err;
453	}
454
455	err = xdp_rxq_info_reg(&rxq->xdp_rxq, fep->netdev, rxq->id, 0);
456	if (err < 0)
457		goto err_free_pp;
458
459	err = xdp_rxq_info_reg_mem_model(&rxq->xdp_rxq, MEM_TYPE_PAGE_POOL,
460					 rxq->page_pool);
461	if (err)
462		goto err_unregister_rxq;
463
464	return 0;
465
466err_unregister_rxq:
467	xdp_rxq_info_unreg(&rxq->xdp_rxq);
468err_free_pp:
469	page_pool_destroy(rxq->page_pool);
470	rxq->page_pool = NULL;
471	return err;
472}
473
474static struct bufdesc *
475fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
476			     struct sk_buff *skb,
477			     struct net_device *ndev)
478{
479	struct fec_enet_private *fep = netdev_priv(ndev);
480	struct bufdesc *bdp = txq->bd.cur;
481	struct bufdesc_ex *ebdp;
482	int nr_frags = skb_shinfo(skb)->nr_frags;
483	int frag, frag_len;
484	unsigned short status;
485	unsigned int estatus = 0;
486	skb_frag_t *this_frag;
487	unsigned int index;
488	void *bufaddr;
489	dma_addr_t addr;
490	int i;
491
492	for (frag = 0; frag < nr_frags; frag++) {
493		this_frag = &skb_shinfo(skb)->frags[frag];
494		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
495		ebdp = (struct bufdesc_ex *)bdp;
496
497		status = fec16_to_cpu(bdp->cbd_sc);
498		status &= ~BD_ENET_TX_STATS;
499		status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
500		frag_len = skb_frag_size(&skb_shinfo(skb)->frags[frag]);
501
502		/* Handle the last BD specially */
503		if (frag == nr_frags - 1) {
504			status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
505			if (fep->bufdesc_ex) {
506				estatus |= BD_ENET_TX_INT;
507				if (unlikely(skb_shinfo(skb)->tx_flags &
508					SKBTX_HW_TSTAMP && fep->hwts_tx_en))
509					estatus |= BD_ENET_TX_TS;
510			}
511		}
512
513		if (fep->bufdesc_ex) {
514			if (fep->quirks & FEC_QUIRK_HAS_AVB)
515				estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
516			if (skb->ip_summed == CHECKSUM_PARTIAL)
517				estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
518
519			ebdp->cbd_bdu = 0;
520			ebdp->cbd_esc = cpu_to_fec32(estatus);
521		}
522
523		bufaddr = skb_frag_address(this_frag);
524
525		index = fec_enet_get_bd_index(bdp, &txq->bd);
526		if (((unsigned long) bufaddr) & fep->tx_align ||
527			fep->quirks & FEC_QUIRK_SWAP_FRAME) {
528			memcpy(txq->tx_bounce[index], bufaddr, frag_len);
529			bufaddr = txq->tx_bounce[index];
530
531			if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
532				swap_buffer(bufaddr, frag_len);
533		}
534
535		addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
536				      DMA_TO_DEVICE);
537		if (dma_mapping_error(&fep->pdev->dev, addr)) {
538			if (net_ratelimit())
539				netdev_err(ndev, "Tx DMA memory map failed\n");
540			goto dma_mapping_error;
541		}
542
543		bdp->cbd_bufaddr = cpu_to_fec32(addr);
544		bdp->cbd_datlen = cpu_to_fec16(frag_len);
545		/* Make sure the updates to rest of the descriptor are
546		 * performed before transferring ownership.
547		 */
548		wmb();
549		bdp->cbd_sc = cpu_to_fec16(status);
550	}
551
552	return bdp;
553dma_mapping_error:
554	bdp = txq->bd.cur;
555	for (i = 0; i < frag; i++) {
556		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
557		dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
558				 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
559	}
560	return ERR_PTR(-ENOMEM);
561}
562
563static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
564				   struct sk_buff *skb, struct net_device *ndev)
565{
566	struct fec_enet_private *fep = netdev_priv(ndev);
567	int nr_frags = skb_shinfo(skb)->nr_frags;
568	struct bufdesc *bdp, *last_bdp;
569	void *bufaddr;
570	dma_addr_t addr;
571	unsigned short status;
572	unsigned short buflen;
573	unsigned int estatus = 0;
574	unsigned int index;
575	int entries_free;
576
577	entries_free = fec_enet_get_free_txdesc_num(txq);
578	if (entries_free < MAX_SKB_FRAGS + 1) {
579		dev_kfree_skb_any(skb);
580		if (net_ratelimit())
581			netdev_err(ndev, "NOT enough BD for SG!\n");
582		return NETDEV_TX_OK;
583	}
584
585	/* Protocol checksum off-load for TCP and UDP. */
586	if (fec_enet_clear_csum(skb, ndev)) {
587		dev_kfree_skb_any(skb);
588		return NETDEV_TX_OK;
589	}
590
591	/* Fill in a Tx ring entry */
592	bdp = txq->bd.cur;
593	last_bdp = bdp;
594	status = fec16_to_cpu(bdp->cbd_sc);
595	status &= ~BD_ENET_TX_STATS;
596
597	/* Set buffer length and buffer pointer */
598	bufaddr = skb->data;
599	buflen = skb_headlen(skb);
600
601	index = fec_enet_get_bd_index(bdp, &txq->bd);
602	if (((unsigned long) bufaddr) & fep->tx_align ||
603		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
604		memcpy(txq->tx_bounce[index], skb->data, buflen);
605		bufaddr = txq->tx_bounce[index];
606
607		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
608			swap_buffer(bufaddr, buflen);
609	}
610
611	/* Push the data cache so the CPM does not get stale memory data. */
612	addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
613	if (dma_mapping_error(&fep->pdev->dev, addr)) {
614		dev_kfree_skb_any(skb);
615		if (net_ratelimit())
616			netdev_err(ndev, "Tx DMA memory map failed\n");
617		return NETDEV_TX_OK;
618	}
619
620	if (nr_frags) {
621		last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
622		if (IS_ERR(last_bdp)) {
623			dma_unmap_single(&fep->pdev->dev, addr,
624					 buflen, DMA_TO_DEVICE);
625			dev_kfree_skb_any(skb);
626			return NETDEV_TX_OK;
627		}
628	} else {
629		status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
630		if (fep->bufdesc_ex) {
631			estatus = BD_ENET_TX_INT;
632			if (unlikely(skb_shinfo(skb)->tx_flags &
633				SKBTX_HW_TSTAMP && fep->hwts_tx_en))
634				estatus |= BD_ENET_TX_TS;
635		}
636	}
637	bdp->cbd_bufaddr = cpu_to_fec32(addr);
638	bdp->cbd_datlen = cpu_to_fec16(buflen);
639
640	if (fep->bufdesc_ex) {
641
642		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
643
644		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
645			fep->hwts_tx_en))
646			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
647
648		if (fep->quirks & FEC_QUIRK_HAS_AVB)
649			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
650
651		if (skb->ip_summed == CHECKSUM_PARTIAL)
652			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
653
654		ebdp->cbd_bdu = 0;
655		ebdp->cbd_esc = cpu_to_fec32(estatus);
656	}
657
658	index = fec_enet_get_bd_index(last_bdp, &txq->bd);
659	/* Save skb pointer */
660	txq->tx_buf[index].buf_p = skb;
661
662	/* Make sure the updates to rest of the descriptor are performed before
663	 * transferring ownership.
664	 */
665	wmb();
666
667	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
668	 * it's the last BD of the frame, and to put the CRC on the end.
669	 */
670	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
671	bdp->cbd_sc = cpu_to_fec16(status);
672
673	/* If this was the last BD in the ring, start at the beginning again. */
674	bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
675
676	skb_tx_timestamp(skb);
677
678	/* Make sure the update to bdp is performed before txq->bd.cur. */
679	wmb();
680	txq->bd.cur = bdp;
681
682	/* Trigger transmission start */
683	writel(0, txq->bd.reg_desc_active);
684
685	return 0;
686}
687
688static int
689fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
690			  struct net_device *ndev,
691			  struct bufdesc *bdp, int index, char *data,
692			  int size, bool last_tcp, bool is_last)
693{
694	struct fec_enet_private *fep = netdev_priv(ndev);
695	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
696	unsigned short status;
697	unsigned int estatus = 0;
698	dma_addr_t addr;
699
700	status = fec16_to_cpu(bdp->cbd_sc);
701	status &= ~BD_ENET_TX_STATS;
702
703	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
704
705	if (((unsigned long) data) & fep->tx_align ||
706		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
707		memcpy(txq->tx_bounce[index], data, size);
708		data = txq->tx_bounce[index];
709
710		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
711			swap_buffer(data, size);
712	}
713
714	addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
715	if (dma_mapping_error(&fep->pdev->dev, addr)) {
716		dev_kfree_skb_any(skb);
717		if (net_ratelimit())
718			netdev_err(ndev, "Tx DMA memory map failed\n");
719		return NETDEV_TX_OK;
720	}
721
722	bdp->cbd_datlen = cpu_to_fec16(size);
723	bdp->cbd_bufaddr = cpu_to_fec32(addr);
724
725	if (fep->bufdesc_ex) {
726		if (fep->quirks & FEC_QUIRK_HAS_AVB)
727			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
728		if (skb->ip_summed == CHECKSUM_PARTIAL)
729			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
730		ebdp->cbd_bdu = 0;
731		ebdp->cbd_esc = cpu_to_fec32(estatus);
732	}
733
734	/* Handle the last BD specially */
735	if (last_tcp)
736		status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
737	if (is_last) {
738		status |= BD_ENET_TX_INTR;
739		if (fep->bufdesc_ex)
740			ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
741	}
742
743	bdp->cbd_sc = cpu_to_fec16(status);
744
745	return 0;
746}
747
748static int
749fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
750			 struct sk_buff *skb, struct net_device *ndev,
751			 struct bufdesc *bdp, int index)
752{
753	struct fec_enet_private *fep = netdev_priv(ndev);
754	int hdr_len = skb_tcp_all_headers(skb);
755	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
756	void *bufaddr;
757	unsigned long dmabuf;
758	unsigned short status;
759	unsigned int estatus = 0;
760
761	status = fec16_to_cpu(bdp->cbd_sc);
762	status &= ~BD_ENET_TX_STATS;
763	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
764
765	bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
766	dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
767	if (((unsigned long)bufaddr) & fep->tx_align ||
768		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
769		memcpy(txq->tx_bounce[index], skb->data, hdr_len);
770		bufaddr = txq->tx_bounce[index];
771
772		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
773			swap_buffer(bufaddr, hdr_len);
774
775		dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
776					hdr_len, DMA_TO_DEVICE);
777		if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
778			dev_kfree_skb_any(skb);
779			if (net_ratelimit())
780				netdev_err(ndev, "Tx DMA memory map failed\n");
781			return NETDEV_TX_OK;
782		}
783	}
784
785	bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
786	bdp->cbd_datlen = cpu_to_fec16(hdr_len);
787
788	if (fep->bufdesc_ex) {
789		if (fep->quirks & FEC_QUIRK_HAS_AVB)
790			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
791		if (skb->ip_summed == CHECKSUM_PARTIAL)
792			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
793		ebdp->cbd_bdu = 0;
794		ebdp->cbd_esc = cpu_to_fec32(estatus);
795	}
796
797	bdp->cbd_sc = cpu_to_fec16(status);
798
799	return 0;
800}
801
802static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
803				   struct sk_buff *skb,
804				   struct net_device *ndev)
805{
806	struct fec_enet_private *fep = netdev_priv(ndev);
807	int hdr_len, total_len, data_left;
808	struct bufdesc *bdp = txq->bd.cur;
809	struct tso_t tso;
810	unsigned int index = 0;
811	int ret;
812
813	if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
814		dev_kfree_skb_any(skb);
815		if (net_ratelimit())
816			netdev_err(ndev, "NOT enough BD for TSO!\n");
817		return NETDEV_TX_OK;
818	}
819
820	/* Protocol checksum off-load for TCP and UDP. */
821	if (fec_enet_clear_csum(skb, ndev)) {
822		dev_kfree_skb_any(skb);
823		return NETDEV_TX_OK;
824	}
825
826	/* Initialize the TSO handler, and prepare the first payload */
827	hdr_len = tso_start(skb, &tso);
828
829	total_len = skb->len - hdr_len;
830	while (total_len > 0) {
831		char *hdr;
832
833		index = fec_enet_get_bd_index(bdp, &txq->bd);
834		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
835		total_len -= data_left;
836
837		/* prepare packet headers: MAC + IP + TCP */
838		hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
839		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
840		ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
841		if (ret)
842			goto err_release;
843
844		while (data_left > 0) {
845			int size;
846
847			size = min_t(int, tso.size, data_left);
848			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
849			index = fec_enet_get_bd_index(bdp, &txq->bd);
850			ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
851							bdp, index,
852							tso.data, size,
853							size == data_left,
854							total_len == 0);
855			if (ret)
856				goto err_release;
857
858			data_left -= size;
859			tso_build_data(skb, &tso, size);
860		}
861
862		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
863	}
864
865	/* Save skb pointer */
866	txq->tx_buf[index].buf_p = skb;
867
868	skb_tx_timestamp(skb);
869	txq->bd.cur = bdp;
870
871	/* Trigger transmission start */
872	if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
873	    !readl(txq->bd.reg_desc_active) ||
874	    !readl(txq->bd.reg_desc_active) ||
875	    !readl(txq->bd.reg_desc_active) ||
876	    !readl(txq->bd.reg_desc_active))
877		writel(0, txq->bd.reg_desc_active);
878
879	return 0;
880
881err_release:
882	/* TODO: Release all used data descriptors for TSO */
883	return ret;
884}
885
886static netdev_tx_t
887fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
888{
889	struct fec_enet_private *fep = netdev_priv(ndev);
890	int entries_free;
891	unsigned short queue;
892	struct fec_enet_priv_tx_q *txq;
893	struct netdev_queue *nq;
894	int ret;
895
896	queue = skb_get_queue_mapping(skb);
897	txq = fep->tx_queue[queue];
898	nq = netdev_get_tx_queue(ndev, queue);
899
900	if (skb_is_gso(skb))
901		ret = fec_enet_txq_submit_tso(txq, skb, ndev);
902	else
903		ret = fec_enet_txq_submit_skb(txq, skb, ndev);
904	if (ret)
905		return ret;
906
907	entries_free = fec_enet_get_free_txdesc_num(txq);
908	if (entries_free <= txq->tx_stop_threshold)
909		netif_tx_stop_queue(nq);
910
911	return NETDEV_TX_OK;
912}
913
914/* Init RX & TX buffer descriptors
915 */
916static void fec_enet_bd_init(struct net_device *dev)
917{
918	struct fec_enet_private *fep = netdev_priv(dev);
919	struct fec_enet_priv_tx_q *txq;
920	struct fec_enet_priv_rx_q *rxq;
921	struct bufdesc *bdp;
922	unsigned int i;
923	unsigned int q;
924
925	for (q = 0; q < fep->num_rx_queues; q++) {
926		/* Initialize the receive buffer descriptors. */
927		rxq = fep->rx_queue[q];
928		bdp = rxq->bd.base;
929
930		for (i = 0; i < rxq->bd.ring_size; i++) {
931
932			/* Initialize the BD for every fragment in the page. */
933			if (bdp->cbd_bufaddr)
934				bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
935			else
936				bdp->cbd_sc = cpu_to_fec16(0);
937			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
938		}
939
940		/* Set the last buffer to wrap */
941		bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
942		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
943
944		rxq->bd.cur = rxq->bd.base;
945	}
946
947	for (q = 0; q < fep->num_tx_queues; q++) {
948		/* ...and the same for transmit */
949		txq = fep->tx_queue[q];
950		bdp = txq->bd.base;
951		txq->bd.cur = bdp;
952
953		for (i = 0; i < txq->bd.ring_size; i++) {
954			/* Initialize the BD for every fragment in the page. */
955			bdp->cbd_sc = cpu_to_fec16(0);
956			if (txq->tx_buf[i].type == FEC_TXBUF_T_SKB) {
957				if (bdp->cbd_bufaddr &&
958				    !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
959					dma_unmap_single(&fep->pdev->dev,
960							 fec32_to_cpu(bdp->cbd_bufaddr),
961							 fec16_to_cpu(bdp->cbd_datlen),
962							 DMA_TO_DEVICE);
963				if (txq->tx_buf[i].buf_p)
964					dev_kfree_skb_any(txq->tx_buf[i].buf_p);
965			} else if (txq->tx_buf[i].type == FEC_TXBUF_T_XDP_NDO) {
966				if (bdp->cbd_bufaddr)
967					dma_unmap_single(&fep->pdev->dev,
968							 fec32_to_cpu(bdp->cbd_bufaddr),
969							 fec16_to_cpu(bdp->cbd_datlen),
970							 DMA_TO_DEVICE);
971
972				if (txq->tx_buf[i].buf_p)
973					xdp_return_frame(txq->tx_buf[i].buf_p);
974			} else {
975				struct page *page = txq->tx_buf[i].buf_p;
976
977				if (page)
978					page_pool_put_page(page->pp, page, 0, false);
979			}
980
981			txq->tx_buf[i].buf_p = NULL;
982			/* restore default tx buffer type: FEC_TXBUF_T_SKB */
983			txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
984			bdp->cbd_bufaddr = cpu_to_fec32(0);
985			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
986		}
987
988		/* Set the last buffer to wrap */
989		bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
990		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
991		txq->dirty_tx = bdp;
992	}
993}
994
995static void fec_enet_active_rxring(struct net_device *ndev)
996{
997	struct fec_enet_private *fep = netdev_priv(ndev);
998	int i;
999
1000	for (i = 0; i < fep->num_rx_queues; i++)
1001		writel(0, fep->rx_queue[i]->bd.reg_desc_active);
1002}
1003
1004static void fec_enet_enable_ring(struct net_device *ndev)
1005{
1006	struct fec_enet_private *fep = netdev_priv(ndev);
1007	struct fec_enet_priv_tx_q *txq;
1008	struct fec_enet_priv_rx_q *rxq;
1009	int i;
1010
1011	for (i = 0; i < fep->num_rx_queues; i++) {
1012		rxq = fep->rx_queue[i];
1013		writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i));
1014		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
1015
1016		/* enable DMA1/2 */
1017		if (i)
1018			writel(RCMR_MATCHEN | RCMR_CMP(i),
1019			       fep->hwp + FEC_RCMR(i));
1020	}
1021
1022	for (i = 0; i < fep->num_tx_queues; i++) {
1023		txq = fep->tx_queue[i];
1024		writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i));
1025
1026		/* enable DMA1/2 */
1027		if (i)
1028			writel(DMA_CLASS_EN | IDLE_SLOPE(i),
1029			       fep->hwp + FEC_DMA_CFG(i));
1030	}
1031}
1032
1033/*
1034 * This function is called to start or restart the FEC during a link
1035 * change, transmit timeout, or to reconfigure the FEC.  The network
1036 * packet processing for this device must be stopped before this call.
1037 */
1038static void
1039fec_restart(struct net_device *ndev)
1040{
1041	struct fec_enet_private *fep = netdev_priv(ndev);
1042	u32 temp_mac[2];
1043	u32 rcntl = OPT_FRAME_SIZE | 0x04;
1044	u32 ecntl = 0x2; /* ETHEREN */
1045
1046	/* Whack a reset.  We should wait for this.
1047	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1048	 * instead of reset MAC itself.
1049	 */
1050	if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES ||
1051	    ((fep->quirks & FEC_QUIRK_NO_HARD_RESET) && fep->link)) {
1052		writel(0, fep->hwp + FEC_ECNTRL);
1053	} else {
1054		writel(1, fep->hwp + FEC_ECNTRL);
1055		udelay(10);
1056	}
1057
1058	/*
1059	 * enet-mac reset will reset mac address registers too,
1060	 * so need to reconfigure it.
1061	 */
1062	memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
1063	writel((__force u32)cpu_to_be32(temp_mac[0]),
1064	       fep->hwp + FEC_ADDR_LOW);
1065	writel((__force u32)cpu_to_be32(temp_mac[1]),
1066	       fep->hwp + FEC_ADDR_HIGH);
1067
1068	/* Clear any outstanding interrupt, except MDIO. */
1069	writel((0xffffffff & ~FEC_ENET_MII), fep->hwp + FEC_IEVENT);
1070
1071	fec_enet_bd_init(ndev);
1072
1073	fec_enet_enable_ring(ndev);
1074
1075	/* Enable MII mode */
1076	if (fep->full_duplex == DUPLEX_FULL) {
1077		/* FD enable */
1078		writel(0x04, fep->hwp + FEC_X_CNTRL);
1079	} else {
1080		/* No Rcv on Xmit */
1081		rcntl |= 0x02;
1082		writel(0x0, fep->hwp + FEC_X_CNTRL);
1083	}
1084
1085	/* Set MII speed */
1086	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1087
1088#if !defined(CONFIG_M5272)
1089	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
1090		u32 val = readl(fep->hwp + FEC_RACC);
1091
1092		/* align IP header */
1093		val |= FEC_RACC_SHIFT16;
1094		if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
1095			/* set RX checksum */
1096			val |= FEC_RACC_OPTIONS;
1097		else
1098			val &= ~FEC_RACC_OPTIONS;
1099		writel(val, fep->hwp + FEC_RACC);
1100		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL);
1101	}
1102#endif
1103
1104	/*
1105	 * The phy interface and speed need to get configured
1106	 * differently on enet-mac.
1107	 */
1108	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1109		/* Enable flow control and length check */
1110		rcntl |= 0x40000000 | 0x00000020;
1111
1112		/* RGMII, RMII or MII */
1113		if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
1114		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1115		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
1116		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
1117			rcntl |= (1 << 6);
1118		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1119			rcntl |= (1 << 8);
1120		else
1121			rcntl &= ~(1 << 8);
1122
1123		/* 1G, 100M or 10M */
1124		if (ndev->phydev) {
1125			if (ndev->phydev->speed == SPEED_1000)
1126				ecntl |= (1 << 5);
1127			else if (ndev->phydev->speed == SPEED_100)
1128				rcntl &= ~(1 << 9);
1129			else
1130				rcntl |= (1 << 9);
1131		}
1132	} else {
1133#ifdef FEC_MIIGSK_ENR
1134		if (fep->quirks & FEC_QUIRK_USE_GASKET) {
1135			u32 cfgr;
1136			/* disable the gasket and wait */
1137			writel(0, fep->hwp + FEC_MIIGSK_ENR);
1138			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1139				udelay(1);
1140
1141			/*
1142			 * configure the gasket:
1143			 *   RMII, 50 MHz, no loopback, no echo
1144			 *   MII, 25 MHz, no loopback, no echo
1145			 */
1146			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1147				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1148			if (ndev->phydev && ndev->phydev->speed == SPEED_10)
1149				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1150			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1151
1152			/* re-enable the gasket */
1153			writel(2, fep->hwp + FEC_MIIGSK_ENR);
1154		}
1155#endif
1156	}
1157
1158#if !defined(CONFIG_M5272)
1159	/* enable pause frame*/
1160	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1161	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1162	     ndev->phydev && ndev->phydev->pause)) {
1163		rcntl |= FEC_ENET_FCE;
1164
1165		/* set FIFO threshold parameter to reduce overrun */
1166		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1167		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1168		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1169		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1170
1171		/* OPD */
1172		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1173	} else {
1174		rcntl &= ~FEC_ENET_FCE;
1175	}
1176#endif /* !defined(CONFIG_M5272) */
1177
1178	writel(rcntl, fep->hwp + FEC_R_CNTRL);
1179
1180	/* Setup multicast filter. */
1181	set_multicast_list(ndev);
1182#ifndef CONFIG_M5272
1183	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1184	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1185#endif
1186
1187	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1188		/* enable ENET endian swap */
1189		ecntl |= (1 << 8);
1190		/* enable ENET store and forward mode */
1191		writel(1 << 8, fep->hwp + FEC_X_WMRK);
1192	}
1193
1194	if (fep->bufdesc_ex)
1195		ecntl |= (1 << 4);
1196
1197	if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT &&
1198	    fep->rgmii_txc_dly)
1199		ecntl |= FEC_ENET_TXC_DLY;
1200	if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT &&
1201	    fep->rgmii_rxc_dly)
1202		ecntl |= FEC_ENET_RXC_DLY;
1203
1204#ifndef CONFIG_M5272
1205	/* Enable the MIB statistic event counters */
1206	writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1207#endif
1208
1209	/* And last, enable the transmit and receive processing */
1210	writel(ecntl, fep->hwp + FEC_ECNTRL);
1211	fec_enet_active_rxring(ndev);
1212
1213	if (fep->bufdesc_ex)
1214		fec_ptp_start_cyclecounter(ndev);
1215
1216	/* Enable interrupts we wish to service */
1217	if (fep->link)
1218		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1219	else
1220		writel(0, fep->hwp + FEC_IMASK);
1221
1222	/* Init the interrupt coalescing */
1223	if (fep->quirks & FEC_QUIRK_HAS_COALESCE)
1224		fec_enet_itr_coal_set(ndev);
1225}
1226
1227static int fec_enet_ipc_handle_init(struct fec_enet_private *fep)
1228{
1229	if (!(of_machine_is_compatible("fsl,imx8qm") ||
1230	      of_machine_is_compatible("fsl,imx8qxp") ||
1231	      of_machine_is_compatible("fsl,imx8dxl")))
1232		return 0;
1233
1234	return imx_scu_get_handle(&fep->ipc_handle);
1235}
1236
1237static void fec_enet_ipg_stop_set(struct fec_enet_private *fep, bool enabled)
1238{
1239	struct device_node *np = fep->pdev->dev.of_node;
1240	u32 rsrc_id, val;
1241	int idx;
1242
1243	if (!np || !fep->ipc_handle)
1244		return;
1245
1246	idx = of_alias_get_id(np, "ethernet");
1247	if (idx < 0)
1248		idx = 0;
1249	rsrc_id = idx ? IMX_SC_R_ENET_1 : IMX_SC_R_ENET_0;
1250
1251	val = enabled ? 1 : 0;
1252	imx_sc_misc_set_control(fep->ipc_handle, rsrc_id, IMX_SC_C_IPG_STOP, val);
1253}
1254
1255static void fec_enet_stop_mode(struct fec_enet_private *fep, bool enabled)
1256{
1257	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1258	struct fec_stop_mode_gpr *stop_gpr = &fep->stop_gpr;
1259
1260	if (stop_gpr->gpr) {
1261		if (enabled)
1262			regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1263					   BIT(stop_gpr->bit),
1264					   BIT(stop_gpr->bit));
1265		else
1266			regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1267					   BIT(stop_gpr->bit), 0);
1268	} else if (pdata && pdata->sleep_mode_enable) {
1269		pdata->sleep_mode_enable(enabled);
1270	} else {
1271		fec_enet_ipg_stop_set(fep, enabled);
1272	}
1273}
1274
1275static void fec_irqs_disable(struct net_device *ndev)
1276{
1277	struct fec_enet_private *fep = netdev_priv(ndev);
1278
1279	writel(0, fep->hwp + FEC_IMASK);
1280}
1281
1282static void fec_irqs_disable_except_wakeup(struct net_device *ndev)
1283{
1284	struct fec_enet_private *fep = netdev_priv(ndev);
1285
1286	writel(0, fep->hwp + FEC_IMASK);
1287	writel(FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1288}
1289
1290static void
1291fec_stop(struct net_device *ndev)
1292{
1293	struct fec_enet_private *fep = netdev_priv(ndev);
1294	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
1295	u32 val;
1296
1297	/* We cannot expect a graceful transmit stop without link !!! */
1298	if (fep->link) {
1299		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1300		udelay(10);
1301		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1302			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1303	}
1304
1305	/* Whack a reset.  We should wait for this.
1306	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1307	 * instead of reset MAC itself.
1308	 */
1309	if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1310		if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
1311			writel(0, fep->hwp + FEC_ECNTRL);
1312		} else {
1313			writel(1, fep->hwp + FEC_ECNTRL);
1314			udelay(10);
1315		}
1316	} else {
1317		val = readl(fep->hwp + FEC_ECNTRL);
1318		val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1319		writel(val, fep->hwp + FEC_ECNTRL);
1320	}
1321	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1322	writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1323
1324	/* We have to keep ENET enabled to have MII interrupt stay working */
1325	if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1326		!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1327		writel(2, fep->hwp + FEC_ECNTRL);
1328		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1329	}
1330}
1331
1332
1333static void
1334fec_timeout(struct net_device *ndev, unsigned int txqueue)
1335{
1336	struct fec_enet_private *fep = netdev_priv(ndev);
1337
1338	fec_dump(ndev);
1339
1340	ndev->stats.tx_errors++;
1341
1342	schedule_work(&fep->tx_timeout_work);
1343}
1344
1345static void fec_enet_timeout_work(struct work_struct *work)
1346{
1347	struct fec_enet_private *fep =
1348		container_of(work, struct fec_enet_private, tx_timeout_work);
1349	struct net_device *ndev = fep->netdev;
1350
1351	rtnl_lock();
1352	if (netif_device_present(ndev) || netif_running(ndev)) {
1353		napi_disable(&fep->napi);
1354		netif_tx_lock_bh(ndev);
1355		fec_restart(ndev);
1356		netif_tx_wake_all_queues(ndev);
1357		netif_tx_unlock_bh(ndev);
1358		napi_enable(&fep->napi);
1359	}
1360	rtnl_unlock();
1361}
1362
1363static void
1364fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1365	struct skb_shared_hwtstamps *hwtstamps)
1366{
1367	unsigned long flags;
1368	u64 ns;
1369
1370	spin_lock_irqsave(&fep->tmreg_lock, flags);
1371	ns = timecounter_cyc2time(&fep->tc, ts);
1372	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1373
1374	memset(hwtstamps, 0, sizeof(*hwtstamps));
1375	hwtstamps->hwtstamp = ns_to_ktime(ns);
1376}
1377
1378static void
1379fec_enet_tx_queue(struct net_device *ndev, u16 queue_id, int budget)
1380{
1381	struct	fec_enet_private *fep;
1382	struct xdp_frame *xdpf;
1383	struct bufdesc *bdp;
1384	unsigned short status;
1385	struct	sk_buff	*skb;
1386	struct fec_enet_priv_tx_q *txq;
1387	struct netdev_queue *nq;
1388	int	index = 0;
1389	int	entries_free;
1390	struct page *page;
1391	int frame_len;
1392
1393	fep = netdev_priv(ndev);
1394
1395	txq = fep->tx_queue[queue_id];
1396	/* get next bdp of dirty_tx */
1397	nq = netdev_get_tx_queue(ndev, queue_id);
1398	bdp = txq->dirty_tx;
1399
1400	/* get next bdp of dirty_tx */
1401	bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1402
1403	while (bdp != READ_ONCE(txq->bd.cur)) {
1404		/* Order the load of bd.cur and cbd_sc */
1405		rmb();
1406		status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
1407		if (status & BD_ENET_TX_READY)
1408			break;
1409
1410		index = fec_enet_get_bd_index(bdp, &txq->bd);
1411
1412		if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB) {
1413			skb = txq->tx_buf[index].buf_p;
1414			if (bdp->cbd_bufaddr &&
1415			    !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1416				dma_unmap_single(&fep->pdev->dev,
1417						 fec32_to_cpu(bdp->cbd_bufaddr),
1418						 fec16_to_cpu(bdp->cbd_datlen),
1419						 DMA_TO_DEVICE);
1420			bdp->cbd_bufaddr = cpu_to_fec32(0);
1421			if (!skb)
1422				goto tx_buf_done;
1423		} else {
1424			/* Tx processing cannot call any XDP (or page pool) APIs if
1425			 * the "budget" is 0. Because NAPI is called with budget of
1426			 * 0 (such as netpoll) indicates we may be in an IRQ context,
1427			 * however, we can't use the page pool from IRQ context.
1428			 */
1429			if (unlikely(!budget))
1430				break;
1431
1432			if (txq->tx_buf[index].type == FEC_TXBUF_T_XDP_NDO) {
1433				xdpf = txq->tx_buf[index].buf_p;
1434				if (bdp->cbd_bufaddr)
1435					dma_unmap_single(&fep->pdev->dev,
1436							 fec32_to_cpu(bdp->cbd_bufaddr),
1437							 fec16_to_cpu(bdp->cbd_datlen),
1438							 DMA_TO_DEVICE);
1439			} else {
1440				page = txq->tx_buf[index].buf_p;
1441			}
1442
1443			bdp->cbd_bufaddr = cpu_to_fec32(0);
1444			if (unlikely(!txq->tx_buf[index].buf_p)) {
1445				txq->tx_buf[index].type = FEC_TXBUF_T_SKB;
1446				goto tx_buf_done;
1447			}
1448
1449			frame_len = fec16_to_cpu(bdp->cbd_datlen);
1450		}
1451
1452		/* Check for errors. */
1453		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1454				   BD_ENET_TX_RL | BD_ENET_TX_UN |
1455				   BD_ENET_TX_CSL)) {
1456			ndev->stats.tx_errors++;
1457			if (status & BD_ENET_TX_HB)  /* No heartbeat */
1458				ndev->stats.tx_heartbeat_errors++;
1459			if (status & BD_ENET_TX_LC)  /* Late collision */
1460				ndev->stats.tx_window_errors++;
1461			if (status & BD_ENET_TX_RL)  /* Retrans limit */
1462				ndev->stats.tx_aborted_errors++;
1463			if (status & BD_ENET_TX_UN)  /* Underrun */
1464				ndev->stats.tx_fifo_errors++;
1465			if (status & BD_ENET_TX_CSL) /* Carrier lost */
1466				ndev->stats.tx_carrier_errors++;
1467		} else {
1468			ndev->stats.tx_packets++;
1469
1470			if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB)
1471				ndev->stats.tx_bytes += skb->len;
1472			else
1473				ndev->stats.tx_bytes += frame_len;
1474		}
1475
1476		/* Deferred means some collisions occurred during transmit,
1477		 * but we eventually sent the packet OK.
1478		 */
1479		if (status & BD_ENET_TX_DEF)
1480			ndev->stats.collisions++;
1481
1482		if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB) {
1483			/* NOTE: SKBTX_IN_PROGRESS being set does not imply it's we who
1484			 * are to time stamp the packet, so we still need to check time
1485			 * stamping enabled flag.
1486			 */
1487			if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS &&
1488				     fep->hwts_tx_en) && fep->bufdesc_ex) {
1489				struct skb_shared_hwtstamps shhwtstamps;
1490				struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1491
1492				fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
1493				skb_tstamp_tx(skb, &shhwtstamps);
1494			}
1495
1496			/* Free the sk buffer associated with this last transmit */
1497			napi_consume_skb(skb, budget);
1498		} else if (txq->tx_buf[index].type == FEC_TXBUF_T_XDP_NDO) {
1499			xdp_return_frame_rx_napi(xdpf);
1500		} else { /* recycle pages of XDP_TX frames */
1501			/* The dma_sync_size = 0 as XDP_TX has already synced DMA for_device */
1502			page_pool_put_page(page->pp, page, 0, true);
1503		}
1504
1505		txq->tx_buf[index].buf_p = NULL;
1506		/* restore default tx buffer type: FEC_TXBUF_T_SKB */
1507		txq->tx_buf[index].type = FEC_TXBUF_T_SKB;
1508
1509tx_buf_done:
1510		/* Make sure the update to bdp and tx_buf are performed
1511		 * before dirty_tx
1512		 */
1513		wmb();
1514		txq->dirty_tx = bdp;
1515
1516		/* Update pointer to next buffer descriptor to be transmitted */
1517		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1518
1519		/* Since we have freed up a buffer, the ring is no longer full
1520		 */
1521		if (netif_tx_queue_stopped(nq)) {
1522			entries_free = fec_enet_get_free_txdesc_num(txq);
1523			if (entries_free >= txq->tx_wake_threshold)
1524				netif_tx_wake_queue(nq);
1525		}
1526	}
1527
1528	/* ERR006358: Keep the transmitter going */
1529	if (bdp != txq->bd.cur &&
1530	    readl(txq->bd.reg_desc_active) == 0)
1531		writel(0, txq->bd.reg_desc_active);
1532}
1533
1534static void fec_enet_tx(struct net_device *ndev, int budget)
1535{
1536	struct fec_enet_private *fep = netdev_priv(ndev);
1537	int i;
1538
1539	/* Make sure that AVB queues are processed first. */
1540	for (i = fep->num_tx_queues - 1; i >= 0; i--)
1541		fec_enet_tx_queue(ndev, i, budget);
1542}
1543
1544static void fec_enet_update_cbd(struct fec_enet_priv_rx_q *rxq,
1545				struct bufdesc *bdp, int index)
1546{
1547	struct page *new_page;
1548	dma_addr_t phys_addr;
1549
1550	new_page = page_pool_dev_alloc_pages(rxq->page_pool);
1551	WARN_ON(!new_page);
1552	rxq->rx_skb_info[index].page = new_page;
1553
1554	rxq->rx_skb_info[index].offset = FEC_ENET_XDP_HEADROOM;
1555	phys_addr = page_pool_get_dma_addr(new_page) + FEC_ENET_XDP_HEADROOM;
1556	bdp->cbd_bufaddr = cpu_to_fec32(phys_addr);
1557}
1558
1559static u32
1560fec_enet_run_xdp(struct fec_enet_private *fep, struct bpf_prog *prog,
1561		 struct xdp_buff *xdp, struct fec_enet_priv_rx_q *rxq, int cpu)
1562{
1563	unsigned int sync, len = xdp->data_end - xdp->data;
1564	u32 ret = FEC_ENET_XDP_PASS;
1565	struct page *page;
1566	int err;
1567	u32 act;
1568
1569	act = bpf_prog_run_xdp(prog, xdp);
1570
1571	/* Due xdp_adjust_tail and xdp_adjust_head: DMA sync for_device cover
1572	 * max len CPU touch
1573	 */
1574	sync = xdp->data_end - xdp->data;
1575	sync = max(sync, len);
1576
1577	switch (act) {
1578	case XDP_PASS:
1579		rxq->stats[RX_XDP_PASS]++;
1580		ret = FEC_ENET_XDP_PASS;
1581		break;
1582
1583	case XDP_REDIRECT:
1584		rxq->stats[RX_XDP_REDIRECT]++;
1585		err = xdp_do_redirect(fep->netdev, xdp, prog);
1586		if (unlikely(err))
1587			goto xdp_err;
1588
1589		ret = FEC_ENET_XDP_REDIR;
1590		break;
1591
1592	case XDP_TX:
1593		rxq->stats[RX_XDP_TX]++;
1594		err = fec_enet_xdp_tx_xmit(fep, cpu, xdp, sync);
1595		if (unlikely(err)) {
1596			rxq->stats[RX_XDP_TX_ERRORS]++;
1597			goto xdp_err;
1598		}
1599
1600		ret = FEC_ENET_XDP_TX;
1601		break;
1602
1603	default:
1604		bpf_warn_invalid_xdp_action(fep->netdev, prog, act);
1605		fallthrough;
1606
1607	case XDP_ABORTED:
1608		fallthrough;    /* handle aborts by dropping packet */
1609
1610	case XDP_DROP:
1611		rxq->stats[RX_XDP_DROP]++;
1612xdp_err:
1613		ret = FEC_ENET_XDP_CONSUMED;
1614		page = virt_to_head_page(xdp->data);
1615		page_pool_put_page(rxq->page_pool, page, sync, true);
1616		if (act != XDP_DROP)
1617			trace_xdp_exception(fep->netdev, prog, act);
1618		break;
1619	}
1620
1621	return ret;
1622}
1623
1624/* During a receive, the bd_rx.cur points to the current incoming buffer.
1625 * When we update through the ring, if the next incoming buffer has
1626 * not been given to the system, we just set the empty indicator,
1627 * effectively tossing the packet.
1628 */
1629static int
1630fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1631{
1632	struct fec_enet_private *fep = netdev_priv(ndev);
1633	struct fec_enet_priv_rx_q *rxq;
1634	struct bufdesc *bdp;
1635	unsigned short status;
1636	struct  sk_buff *skb;
1637	ushort	pkt_len;
1638	__u8 *data;
1639	int	pkt_received = 0;
1640	struct	bufdesc_ex *ebdp = NULL;
1641	bool	vlan_packet_rcvd = false;
1642	u16	vlan_tag;
1643	int	index = 0;
1644	bool	need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1645	struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog);
1646	u32 ret, xdp_result = FEC_ENET_XDP_PASS;
1647	u32 data_start = FEC_ENET_XDP_HEADROOM;
1648	int cpu = smp_processor_id();
1649	struct xdp_buff xdp;
1650	struct page *page;
1651	u32 sub_len = 4;
1652
1653#if !defined(CONFIG_M5272)
1654	/*If it has the FEC_QUIRK_HAS_RACC quirk property, the bit of
1655	 * FEC_RACC_SHIFT16 is set by default in the probe function.
1656	 */
1657	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
1658		data_start += 2;
1659		sub_len += 2;
1660	}
1661#endif
1662
1663#ifdef CONFIG_M532x
1664	flush_cache_all();
1665#endif
1666	rxq = fep->rx_queue[queue_id];
1667
1668	/* First, grab all of the stats for the incoming packet.
1669	 * These get messed up if we get called due to a busy condition.
1670	 */
1671	bdp = rxq->bd.cur;
1672	xdp_init_buff(&xdp, PAGE_SIZE, &rxq->xdp_rxq);
1673
1674	while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
1675
1676		if (pkt_received >= budget)
1677			break;
1678		pkt_received++;
1679
1680		writel(FEC_ENET_RXF_GET(queue_id), fep->hwp + FEC_IEVENT);
1681
1682		/* Check for errors. */
1683		status ^= BD_ENET_RX_LAST;
1684		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1685			   BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
1686			   BD_ENET_RX_CL)) {
1687			ndev->stats.rx_errors++;
1688			if (status & BD_ENET_RX_OV) {
1689				/* FIFO overrun */
1690				ndev->stats.rx_fifo_errors++;
1691				goto rx_processing_done;
1692			}
1693			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
1694						| BD_ENET_RX_LAST)) {
1695				/* Frame too long or too short. */
1696				ndev->stats.rx_length_errors++;
1697				if (status & BD_ENET_RX_LAST)
1698					netdev_err(ndev, "rcv is not +last\n");
1699			}
1700			if (status & BD_ENET_RX_CR)	/* CRC Error */
1701				ndev->stats.rx_crc_errors++;
1702			/* Report late collisions as a frame error. */
1703			if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
1704				ndev->stats.rx_frame_errors++;
1705			goto rx_processing_done;
1706		}
1707
1708		/* Process the incoming frame. */
1709		ndev->stats.rx_packets++;
1710		pkt_len = fec16_to_cpu(bdp->cbd_datlen);
1711		ndev->stats.rx_bytes += pkt_len;
1712
1713		index = fec_enet_get_bd_index(bdp, &rxq->bd);
1714		page = rxq->rx_skb_info[index].page;
1715		dma_sync_single_for_cpu(&fep->pdev->dev,
1716					fec32_to_cpu(bdp->cbd_bufaddr),
1717					pkt_len,
1718					DMA_FROM_DEVICE);
1719		prefetch(page_address(page));
1720		fec_enet_update_cbd(rxq, bdp, index);
1721
1722		if (xdp_prog) {
1723			xdp_buff_clear_frags_flag(&xdp);
1724			/* subtract 16bit shift and FCS */
1725			xdp_prepare_buff(&xdp, page_address(page),
1726					 data_start, pkt_len - sub_len, false);
1727			ret = fec_enet_run_xdp(fep, xdp_prog, &xdp, rxq, cpu);
1728			xdp_result |= ret;
1729			if (ret != FEC_ENET_XDP_PASS)
1730				goto rx_processing_done;
1731		}
1732
1733		/* The packet length includes FCS, but we don't want to
1734		 * include that when passing upstream as it messes up
1735		 * bridging applications.
1736		 */
1737		skb = build_skb(page_address(page), PAGE_SIZE);
1738		if (unlikely(!skb)) {
1739			page_pool_recycle_direct(rxq->page_pool, page);
1740			ndev->stats.rx_dropped++;
1741
1742			netdev_err_once(ndev, "build_skb failed!\n");
1743			goto rx_processing_done;
1744		}
1745
1746		skb_reserve(skb, data_start);
1747		skb_put(skb, pkt_len - sub_len);
1748		skb_mark_for_recycle(skb);
1749
1750		if (unlikely(need_swap)) {
1751			data = page_address(page) + FEC_ENET_XDP_HEADROOM;
1752			swap_buffer(data, pkt_len);
1753		}
1754		data = skb->data;
1755
1756		/* Extract the enhanced buffer descriptor */
1757		ebdp = NULL;
1758		if (fep->bufdesc_ex)
1759			ebdp = (struct bufdesc_ex *)bdp;
1760
1761		/* If this is a VLAN packet remove the VLAN Tag */
1762		vlan_packet_rcvd = false;
1763		if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1764		    fep->bufdesc_ex &&
1765		    (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) {
1766			/* Push and remove the vlan tag */
1767			struct vlan_hdr *vlan_header =
1768					(struct vlan_hdr *) (data + ETH_HLEN);
1769			vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1770
1771			vlan_packet_rcvd = true;
1772
1773			memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1774			skb_pull(skb, VLAN_HLEN);
1775		}
1776
1777		skb->protocol = eth_type_trans(skb, ndev);
1778
1779		/* Get receive timestamp from the skb */
1780		if (fep->hwts_rx_en && fep->bufdesc_ex)
1781			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
1782					  skb_hwtstamps(skb));
1783
1784		if (fep->bufdesc_ex &&
1785		    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1786			if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
1787				/* don't check it */
1788				skb->ip_summed = CHECKSUM_UNNECESSARY;
1789			} else {
1790				skb_checksum_none_assert(skb);
1791			}
1792		}
1793
1794		/* Handle received VLAN packets */
1795		if (vlan_packet_rcvd)
1796			__vlan_hwaccel_put_tag(skb,
1797					       htons(ETH_P_8021Q),
1798					       vlan_tag);
1799
1800		skb_record_rx_queue(skb, queue_id);
1801		napi_gro_receive(&fep->napi, skb);
1802
1803rx_processing_done:
1804		/* Clear the status flags for this buffer */
1805		status &= ~BD_ENET_RX_STATS;
1806
1807		/* Mark the buffer empty */
1808		status |= BD_ENET_RX_EMPTY;
1809
1810		if (fep->bufdesc_ex) {
1811			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1812
1813			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
1814			ebdp->cbd_prot = 0;
1815			ebdp->cbd_bdu = 0;
1816		}
1817		/* Make sure the updates to rest of the descriptor are
1818		 * performed before transferring ownership.
1819		 */
1820		wmb();
1821		bdp->cbd_sc = cpu_to_fec16(status);
1822
1823		/* Update BD pointer to next entry */
1824		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1825
1826		/* Doing this here will keep the FEC running while we process
1827		 * incoming frames.  On a heavily loaded network, we should be
1828		 * able to keep up at the expense of system resources.
1829		 */
1830		writel(0, rxq->bd.reg_desc_active);
1831	}
1832	rxq->bd.cur = bdp;
1833
1834	if (xdp_result & FEC_ENET_XDP_REDIR)
1835		xdp_do_flush_map();
1836
1837	return pkt_received;
1838}
1839
1840static int fec_enet_rx(struct net_device *ndev, int budget)
1841{
1842	struct fec_enet_private *fep = netdev_priv(ndev);
1843	int i, done = 0;
1844
1845	/* Make sure that AVB queues are processed first. */
1846	for (i = fep->num_rx_queues - 1; i >= 0; i--)
1847		done += fec_enet_rx_queue(ndev, budget - done, i);
1848
1849	return done;
1850}
1851
1852static bool fec_enet_collect_events(struct fec_enet_private *fep)
1853{
1854	uint int_events;
1855
1856	int_events = readl(fep->hwp + FEC_IEVENT);
1857
1858	/* Don't clear MDIO events, we poll for those */
1859	int_events &= ~FEC_ENET_MII;
1860
1861	writel(int_events, fep->hwp + FEC_IEVENT);
1862
1863	return int_events != 0;
1864}
1865
1866static irqreturn_t
1867fec_enet_interrupt(int irq, void *dev_id)
1868{
1869	struct net_device *ndev = dev_id;
1870	struct fec_enet_private *fep = netdev_priv(ndev);
1871	irqreturn_t ret = IRQ_NONE;
1872
1873	if (fec_enet_collect_events(fep) && fep->link) {
1874		ret = IRQ_HANDLED;
1875
1876		if (napi_schedule_prep(&fep->napi)) {
1877			/* Disable interrupts */
1878			writel(0, fep->hwp + FEC_IMASK);
1879			__napi_schedule(&fep->napi);
1880		}
1881	}
1882
1883	return ret;
1884}
1885
1886static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1887{
1888	struct net_device *ndev = napi->dev;
1889	struct fec_enet_private *fep = netdev_priv(ndev);
1890	int done = 0;
1891
1892	do {
1893		done += fec_enet_rx(ndev, budget - done);
1894		fec_enet_tx(ndev, budget);
1895	} while ((done < budget) && fec_enet_collect_events(fep));
1896
1897	if (done < budget) {
1898		napi_complete_done(napi, done);
1899		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1900	}
1901
1902	return done;
1903}
1904
1905/* ------------------------------------------------------------------------- */
1906static int fec_get_mac(struct net_device *ndev)
1907{
1908	struct fec_enet_private *fep = netdev_priv(ndev);
1909	unsigned char *iap, tmpaddr[ETH_ALEN];
1910	int ret;
1911
1912	/*
1913	 * try to get mac address in following order:
1914	 *
1915	 * 1) module parameter via kernel command line in form
1916	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1917	 */
1918	iap = macaddr;
1919
1920	/*
1921	 * 2) from device tree data
1922	 */
1923	if (!is_valid_ether_addr(iap)) {
1924		struct device_node *np = fep->pdev->dev.of_node;
1925		if (np) {
1926			ret = of_get_mac_address(np, tmpaddr);
1927			if (!ret)
1928				iap = tmpaddr;
1929			else if (ret == -EPROBE_DEFER)
1930				return ret;
1931		}
1932	}
1933
1934	/*
1935	 * 3) from flash or fuse (via platform data)
1936	 */
1937	if (!is_valid_ether_addr(iap)) {
1938#ifdef CONFIG_M5272
1939		if (FEC_FLASHMAC)
1940			iap = (unsigned char *)FEC_FLASHMAC;
1941#else
1942		struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1943
1944		if (pdata)
1945			iap = (unsigned char *)&pdata->mac;
1946#endif
1947	}
1948
1949	/*
1950	 * 4) FEC mac registers set by bootloader
1951	 */
1952	if (!is_valid_ether_addr(iap)) {
1953		*((__be32 *) &tmpaddr[0]) =
1954			cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1955		*((__be16 *) &tmpaddr[4]) =
1956			cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1957		iap = &tmpaddr[0];
1958	}
1959
1960	/*
1961	 * 5) random mac address
1962	 */
1963	if (!is_valid_ether_addr(iap)) {
1964		/* Report it and use a random ethernet address instead */
1965		dev_err(&fep->pdev->dev, "Invalid MAC address: %pM\n", iap);
1966		eth_hw_addr_random(ndev);
1967		dev_info(&fep->pdev->dev, "Using random MAC address: %pM\n",
1968			 ndev->dev_addr);
1969		return 0;
1970	}
1971
1972	/* Adjust MAC if using macaddr */
1973	eth_hw_addr_gen(ndev, iap, iap == macaddr ? fep->dev_id : 0);
1974
1975	return 0;
1976}
1977
1978/* ------------------------------------------------------------------------- */
1979
1980/*
1981 * Phy section
1982 */
1983static void fec_enet_adjust_link(struct net_device *ndev)
1984{
1985	struct fec_enet_private *fep = netdev_priv(ndev);
1986	struct phy_device *phy_dev = ndev->phydev;
1987	int status_change = 0;
1988
1989	/*
1990	 * If the netdev is down, or is going down, we're not interested
1991	 * in link state events, so just mark our idea of the link as down
1992	 * and ignore the event.
1993	 */
1994	if (!netif_running(ndev) || !netif_device_present(ndev)) {
1995		fep->link = 0;
1996	} else if (phy_dev->link) {
1997		if (!fep->link) {
1998			fep->link = phy_dev->link;
1999			status_change = 1;
2000		}
2001
2002		if (fep->full_duplex != phy_dev->duplex) {
2003			fep->full_duplex = phy_dev->duplex;
2004			status_change = 1;
2005		}
2006
2007		if (phy_dev->speed != fep->speed) {
2008			fep->speed = phy_dev->speed;
2009			status_change = 1;
2010		}
2011
2012		/* if any of the above changed restart the FEC */
2013		if (status_change) {
2014			netif_stop_queue(ndev);
2015			napi_disable(&fep->napi);
2016			netif_tx_lock_bh(ndev);
2017			fec_restart(ndev);
2018			netif_tx_wake_all_queues(ndev);
2019			netif_tx_unlock_bh(ndev);
2020			napi_enable(&fep->napi);
2021		}
2022	} else {
2023		if (fep->link) {
2024			netif_stop_queue(ndev);
2025			napi_disable(&fep->napi);
2026			netif_tx_lock_bh(ndev);
2027			fec_stop(ndev);
2028			netif_tx_unlock_bh(ndev);
2029			napi_enable(&fep->napi);
2030			fep->link = phy_dev->link;
2031			status_change = 1;
2032		}
2033	}
2034
2035	if (status_change)
2036		phy_print_status(phy_dev);
2037}
2038
2039static int fec_enet_mdio_wait(struct fec_enet_private *fep)
2040{
2041	uint ievent;
2042	int ret;
2043
2044	ret = readl_poll_timeout_atomic(fep->hwp + FEC_IEVENT, ievent,
2045					ievent & FEC_ENET_MII, 2, 30000);
2046
2047	if (!ret)
2048		writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
2049
2050	return ret;
2051}
2052
2053static int fec_enet_mdio_read_c22(struct mii_bus *bus, int mii_id, int regnum)
2054{
2055	struct fec_enet_private *fep = bus->priv;
2056	struct device *dev = &fep->pdev->dev;
2057	int ret = 0, frame_start, frame_addr, frame_op;
2058
2059	ret = pm_runtime_resume_and_get(dev);
2060	if (ret < 0)
2061		return ret;
2062
2063	/* C22 read */
2064	frame_op = FEC_MMFR_OP_READ;
2065	frame_start = FEC_MMFR_ST;
2066	frame_addr = regnum;
2067
2068	/* start a read op */
2069	writel(frame_start | frame_op |
2070	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
2071	       FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
2072
2073	/* wait for end of transfer */
2074	ret = fec_enet_mdio_wait(fep);
2075	if (ret) {
2076		netdev_err(fep->netdev, "MDIO read timeout\n");
2077		goto out;
2078	}
2079
2080	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
2081
2082out:
2083	pm_runtime_mark_last_busy(dev);
2084	pm_runtime_put_autosuspend(dev);
2085
2086	return ret;
2087}
2088
2089static int fec_enet_mdio_read_c45(struct mii_bus *bus, int mii_id,
2090				  int devad, int regnum)
2091{
2092	struct fec_enet_private *fep = bus->priv;
2093	struct device *dev = &fep->pdev->dev;
2094	int ret = 0, frame_start, frame_op;
2095
2096	ret = pm_runtime_resume_and_get(dev);
2097	if (ret < 0)
2098		return ret;
2099
2100	frame_start = FEC_MMFR_ST_C45;
2101
2102	/* write address */
2103	writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
2104	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2105	       FEC_MMFR_TA | (regnum & 0xFFFF),
2106	       fep->hwp + FEC_MII_DATA);
2107
2108	/* wait for end of transfer */
2109	ret = fec_enet_mdio_wait(fep);
2110	if (ret) {
2111		netdev_err(fep->netdev, "MDIO address write timeout\n");
2112		goto out;
2113	}
2114
2115	frame_op = FEC_MMFR_OP_READ_C45;
2116
2117	/* start a read op */
2118	writel(frame_start | frame_op |
2119	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2120	       FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
2121
2122	/* wait for end of transfer */
2123	ret = fec_enet_mdio_wait(fep);
2124	if (ret) {
2125		netdev_err(fep->netdev, "MDIO read timeout\n");
2126		goto out;
2127	}
2128
2129	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
2130
2131out:
2132	pm_runtime_mark_last_busy(dev);
2133	pm_runtime_put_autosuspend(dev);
2134
2135	return ret;
2136}
2137
2138static int fec_enet_mdio_write_c22(struct mii_bus *bus, int mii_id, int regnum,
2139				   u16 value)
2140{
2141	struct fec_enet_private *fep = bus->priv;
2142	struct device *dev = &fep->pdev->dev;
2143	int ret, frame_start, frame_addr;
2144
2145	ret = pm_runtime_resume_and_get(dev);
2146	if (ret < 0)
2147		return ret;
2148
2149	/* C22 write */
2150	frame_start = FEC_MMFR_ST;
2151	frame_addr = regnum;
2152
2153	/* start a write op */
2154	writel(frame_start | FEC_MMFR_OP_WRITE |
2155	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
2156	       FEC_MMFR_TA | FEC_MMFR_DATA(value),
2157	       fep->hwp + FEC_MII_DATA);
2158
2159	/* wait for end of transfer */
2160	ret = fec_enet_mdio_wait(fep);
2161	if (ret)
2162		netdev_err(fep->netdev, "MDIO write timeout\n");
2163
2164	pm_runtime_mark_last_busy(dev);
2165	pm_runtime_put_autosuspend(dev);
2166
2167	return ret;
2168}
2169
2170static int fec_enet_mdio_write_c45(struct mii_bus *bus, int mii_id,
2171				   int devad, int regnum, u16 value)
2172{
2173	struct fec_enet_private *fep = bus->priv;
2174	struct device *dev = &fep->pdev->dev;
2175	int ret, frame_start;
2176
2177	ret = pm_runtime_resume_and_get(dev);
2178	if (ret < 0)
2179		return ret;
2180
2181	frame_start = FEC_MMFR_ST_C45;
2182
2183	/* write address */
2184	writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
2185	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2186	       FEC_MMFR_TA | (regnum & 0xFFFF),
2187	       fep->hwp + FEC_MII_DATA);
2188
2189	/* wait for end of transfer */
2190	ret = fec_enet_mdio_wait(fep);
2191	if (ret) {
2192		netdev_err(fep->netdev, "MDIO address write timeout\n");
2193		goto out;
2194	}
2195
2196	/* start a write op */
2197	writel(frame_start | FEC_MMFR_OP_WRITE |
2198	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2199	       FEC_MMFR_TA | FEC_MMFR_DATA(value),
2200	       fep->hwp + FEC_MII_DATA);
2201
2202	/* wait for end of transfer */
2203	ret = fec_enet_mdio_wait(fep);
2204	if (ret)
2205		netdev_err(fep->netdev, "MDIO write timeout\n");
2206
2207out:
2208	pm_runtime_mark_last_busy(dev);
2209	pm_runtime_put_autosuspend(dev);
2210
2211	return ret;
2212}
2213
2214static void fec_enet_phy_reset_after_clk_enable(struct net_device *ndev)
2215{
2216	struct fec_enet_private *fep = netdev_priv(ndev);
2217	struct phy_device *phy_dev = ndev->phydev;
2218
2219	if (phy_dev) {
2220		phy_reset_after_clk_enable(phy_dev);
2221	} else if (fep->phy_node) {
2222		/*
2223		 * If the PHY still is not bound to the MAC, but there is
2224		 * OF PHY node and a matching PHY device instance already,
2225		 * use the OF PHY node to obtain the PHY device instance,
2226		 * and then use that PHY device instance when triggering
2227		 * the PHY reset.
2228		 */
2229		phy_dev = of_phy_find_device(fep->phy_node);
2230		phy_reset_after_clk_enable(phy_dev);
2231		put_device(&phy_dev->mdio.dev);
2232	}
2233}
2234
2235static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
2236{
2237	struct fec_enet_private *fep = netdev_priv(ndev);
2238	int ret;
2239
2240	if (enable) {
2241		ret = clk_prepare_enable(fep->clk_enet_out);
2242		if (ret)
2243			return ret;
2244
2245		if (fep->clk_ptp) {
2246			mutex_lock(&fep->ptp_clk_mutex);
2247			ret = clk_prepare_enable(fep->clk_ptp);
2248			if (ret) {
2249				mutex_unlock(&fep->ptp_clk_mutex);
2250				goto failed_clk_ptp;
2251			} else {
2252				fep->ptp_clk_on = true;
2253			}
2254			mutex_unlock(&fep->ptp_clk_mutex);
2255		}
2256
2257		ret = clk_prepare_enable(fep->clk_ref);
2258		if (ret)
2259			goto failed_clk_ref;
2260
2261		ret = clk_prepare_enable(fep->clk_2x_txclk);
2262		if (ret)
2263			goto failed_clk_2x_txclk;
2264
2265		fec_enet_phy_reset_after_clk_enable(ndev);
2266	} else {
2267		clk_disable_unprepare(fep->clk_enet_out);
2268		if (fep->clk_ptp) {
2269			mutex_lock(&fep->ptp_clk_mutex);
2270			clk_disable_unprepare(fep->clk_ptp);
2271			fep->ptp_clk_on = false;
2272			mutex_unlock(&fep->ptp_clk_mutex);
2273		}
2274		clk_disable_unprepare(fep->clk_ref);
2275		clk_disable_unprepare(fep->clk_2x_txclk);
2276	}
2277
2278	return 0;
2279
2280failed_clk_2x_txclk:
2281	if (fep->clk_ref)
2282		clk_disable_unprepare(fep->clk_ref);
2283failed_clk_ref:
2284	if (fep->clk_ptp) {
2285		mutex_lock(&fep->ptp_clk_mutex);
2286		clk_disable_unprepare(fep->clk_ptp);
2287		fep->ptp_clk_on = false;
2288		mutex_unlock(&fep->ptp_clk_mutex);
2289	}
2290failed_clk_ptp:
2291	clk_disable_unprepare(fep->clk_enet_out);
2292
2293	return ret;
2294}
2295
2296static int fec_enet_parse_rgmii_delay(struct fec_enet_private *fep,
2297				      struct device_node *np)
2298{
2299	u32 rgmii_tx_delay, rgmii_rx_delay;
2300
2301	/* For rgmii tx internal delay, valid values are 0ps and 2000ps */
2302	if (!of_property_read_u32(np, "tx-internal-delay-ps", &rgmii_tx_delay)) {
2303		if (rgmii_tx_delay != 0 && rgmii_tx_delay != 2000) {
2304			dev_err(&fep->pdev->dev, "The only allowed RGMII TX delay values are: 0ps, 2000ps");
2305			return -EINVAL;
2306		} else if (rgmii_tx_delay == 2000) {
2307			fep->rgmii_txc_dly = true;
2308		}
2309	}
2310
2311	/* For rgmii rx internal delay, valid values are 0ps and 2000ps */
2312	if (!of_property_read_u32(np, "rx-internal-delay-ps", &rgmii_rx_delay)) {
2313		if (rgmii_rx_delay != 0 && rgmii_rx_delay != 2000) {
2314			dev_err(&fep->pdev->dev, "The only allowed RGMII RX delay values are: 0ps, 2000ps");
2315			return -EINVAL;
2316		} else if (rgmii_rx_delay == 2000) {
2317			fep->rgmii_rxc_dly = true;
2318		}
2319	}
2320
2321	return 0;
2322}
2323
2324static int fec_enet_mii_probe(struct net_device *ndev)
2325{
2326	struct fec_enet_private *fep = netdev_priv(ndev);
2327	struct phy_device *phy_dev = NULL;
2328	char mdio_bus_id[MII_BUS_ID_SIZE];
2329	char phy_name[MII_BUS_ID_SIZE + 3];
2330	int phy_id;
2331	int dev_id = fep->dev_id;
2332
2333	if (fep->phy_node) {
2334		phy_dev = of_phy_connect(ndev, fep->phy_node,
2335					 &fec_enet_adjust_link, 0,
2336					 fep->phy_interface);
2337		if (!phy_dev) {
2338			netdev_err(ndev, "Unable to connect to phy\n");
2339			return -ENODEV;
2340		}
2341	} else {
2342		/* check for attached phy */
2343		for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
2344			if (!mdiobus_is_registered_device(fep->mii_bus, phy_id))
2345				continue;
2346			if (dev_id--)
2347				continue;
2348			strscpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
2349			break;
2350		}
2351
2352		if (phy_id >= PHY_MAX_ADDR) {
2353			netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
2354			strscpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
2355			phy_id = 0;
2356		}
2357
2358		snprintf(phy_name, sizeof(phy_name),
2359			 PHY_ID_FMT, mdio_bus_id, phy_id);
2360		phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
2361				      fep->phy_interface);
2362	}
2363
2364	if (IS_ERR(phy_dev)) {
2365		netdev_err(ndev, "could not attach to PHY\n");
2366		return PTR_ERR(phy_dev);
2367	}
2368
2369	/* mask with MAC supported features */
2370	if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
2371		phy_set_max_speed(phy_dev, 1000);
2372		phy_remove_link_mode(phy_dev,
2373				     ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
2374#if !defined(CONFIG_M5272)
2375		phy_support_sym_pause(phy_dev);
2376#endif
2377	}
2378	else
2379		phy_set_max_speed(phy_dev, 100);
2380
2381	fep->link = 0;
2382	fep->full_duplex = 0;
2383
2384	phy_dev->mac_managed_pm = true;
2385
2386	phy_attached_info(phy_dev);
2387
2388	return 0;
2389}
2390
2391static int fec_enet_mii_init(struct platform_device *pdev)
2392{
2393	static struct mii_bus *fec0_mii_bus;
2394	struct net_device *ndev = platform_get_drvdata(pdev);
2395	struct fec_enet_private *fep = netdev_priv(ndev);
2396	bool suppress_preamble = false;
2397	struct device_node *node;
2398	int err = -ENXIO;
2399	u32 mii_speed, holdtime;
2400	u32 bus_freq;
2401
2402	/*
2403	 * The i.MX28 dual fec interfaces are not equal.
2404	 * Here are the differences:
2405	 *
2406	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
2407	 *  - fec0 acts as the 1588 time master while fec1 is slave
2408	 *  - external phys can only be configured by fec0
2409	 *
2410	 * That is to say fec1 can not work independently. It only works
2411	 * when fec0 is working. The reason behind this design is that the
2412	 * second interface is added primarily for Switch mode.
2413	 *
2414	 * Because of the last point above, both phys are attached on fec0
2415	 * mdio interface in board design, and need to be configured by
2416	 * fec0 mii_bus.
2417	 */
2418	if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
2419		/* fec1 uses fec0 mii_bus */
2420		if (mii_cnt && fec0_mii_bus) {
2421			fep->mii_bus = fec0_mii_bus;
2422			mii_cnt++;
2423			return 0;
2424		}
2425		return -ENOENT;
2426	}
2427
2428	bus_freq = 2500000; /* 2.5MHz by default */
2429	node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2430	if (node) {
2431		of_property_read_u32(node, "clock-frequency", &bus_freq);
2432		suppress_preamble = of_property_read_bool(node,
2433							  "suppress-preamble");
2434	}
2435
2436	/*
2437	 * Set MII speed (= clk_get_rate() / 2 * phy_speed)
2438	 *
2439	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
2440	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
2441	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
2442	 * document.
2443	 */
2444	mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), bus_freq * 2);
2445	if (fep->quirks & FEC_QUIRK_ENET_MAC)
2446		mii_speed--;
2447	if (mii_speed > 63) {
2448		dev_err(&pdev->dev,
2449			"fec clock (%lu) too fast to get right mii speed\n",
2450			clk_get_rate(fep->clk_ipg));
2451		err = -EINVAL;
2452		goto err_out;
2453	}
2454
2455	/*
2456	 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2457	 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2458	 * versions are RAZ there, so just ignore the difference and write the
2459	 * register always.
2460	 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2461	 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2462	 * output.
2463	 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2464	 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2465	 * holdtime cannot result in a value greater than 3.
2466	 */
2467	holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2468
2469	fep->phy_speed = mii_speed << 1 | holdtime << 8;
2470
2471	if (suppress_preamble)
2472		fep->phy_speed |= BIT(7);
2473
2474	if (fep->quirks & FEC_QUIRK_CLEAR_SETUP_MII) {
2475		/* Clear MMFR to avoid to generate MII event by writing MSCR.
2476		 * MII event generation condition:
2477		 * - writing MSCR:
2478		 *	- mmfr[31:0]_not_zero & mscr[7:0]_is_zero &
2479		 *	  mscr_reg_data_in[7:0] != 0
2480		 * - writing MMFR:
2481		 *	- mscr[7:0]_not_zero
2482		 */
2483		writel(0, fep->hwp + FEC_MII_DATA);
2484	}
2485
2486	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2487
2488	/* Clear any pending transaction complete indication */
2489	writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
2490
2491	fep->mii_bus = mdiobus_alloc();
2492	if (fep->mii_bus == NULL) {
2493		err = -ENOMEM;
2494		goto err_out;
2495	}
2496
2497	fep->mii_bus->name = "fec_enet_mii_bus";
2498	fep->mii_bus->read = fec_enet_mdio_read_c22;
2499	fep->mii_bus->write = fec_enet_mdio_write_c22;
2500	if (fep->quirks & FEC_QUIRK_HAS_MDIO_C45) {
2501		fep->mii_bus->read_c45 = fec_enet_mdio_read_c45;
2502		fep->mii_bus->write_c45 = fec_enet_mdio_write_c45;
2503	}
2504	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2505		pdev->name, fep->dev_id + 1);
2506	fep->mii_bus->priv = fep;
2507	fep->mii_bus->parent = &pdev->dev;
2508
2509	err = of_mdiobus_register(fep->mii_bus, node);
2510	if (err)
2511		goto err_out_free_mdiobus;
2512	of_node_put(node);
2513
2514	mii_cnt++;
2515
2516	/* save fec0 mii_bus */
2517	if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2518		fec0_mii_bus = fep->mii_bus;
2519
2520	return 0;
2521
2522err_out_free_mdiobus:
2523	mdiobus_free(fep->mii_bus);
2524err_out:
2525	of_node_put(node);
2526	return err;
2527}
2528
2529static void fec_enet_mii_remove(struct fec_enet_private *fep)
2530{
2531	if (--mii_cnt == 0) {
2532		mdiobus_unregister(fep->mii_bus);
2533		mdiobus_free(fep->mii_bus);
2534	}
2535}
2536
2537static void fec_enet_get_drvinfo(struct net_device *ndev,
2538				 struct ethtool_drvinfo *info)
2539{
2540	struct fec_enet_private *fep = netdev_priv(ndev);
2541
2542	strscpy(info->driver, fep->pdev->dev.driver->name,
2543		sizeof(info->driver));
2544	strscpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2545}
2546
2547static int fec_enet_get_regs_len(struct net_device *ndev)
2548{
2549	struct fec_enet_private *fep = netdev_priv(ndev);
2550	struct resource *r;
2551	int s = 0;
2552
2553	r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2554	if (r)
2555		s = resource_size(r);
2556
2557	return s;
2558}
2559
2560/* List of registers that can be safety be read to dump them with ethtool */
2561#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2562	defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2563	defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2564static __u32 fec_enet_register_version = 2;
2565static u32 fec_enet_register_offset[] = {
2566	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2567	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2568	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2569	FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2570	FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2571	FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2572	FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2573	FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2574	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2575	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2576	FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2577	FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2578	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2579	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2580	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2581	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2582	RMON_T_P_GTE2048, RMON_T_OCTETS,
2583	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2584	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2585	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2586	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2587	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2588	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2589	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2590	RMON_R_P_GTE2048, RMON_R_OCTETS,
2591	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2592	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2593};
2594/* for i.MX6ul */
2595static u32 fec_enet_register_offset_6ul[] = {
2596	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2597	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2598	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_RXIC0,
2599	FEC_HASH_TABLE_HIGH, FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH,
2600	FEC_GRP_HASH_TABLE_LOW, FEC_X_WMRK, FEC_R_DES_START_0,
2601	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2602	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC,
2603	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2604	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2605	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2606	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2607	RMON_T_P_GTE2048, RMON_T_OCTETS,
2608	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2609	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2610	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2611	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2612	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2613	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2614	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2615	RMON_R_P_GTE2048, RMON_R_OCTETS,
2616	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2617	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2618};
2619#else
2620static __u32 fec_enet_register_version = 1;
2621static u32 fec_enet_register_offset[] = {
2622	FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2623	FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2624	FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2625	FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2626	FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2627	FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2628	FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2629	FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2630	FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2631};
2632#endif
2633
2634static void fec_enet_get_regs(struct net_device *ndev,
2635			      struct ethtool_regs *regs, void *regbuf)
2636{
2637	struct fec_enet_private *fep = netdev_priv(ndev);
2638	u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2639	struct device *dev = &fep->pdev->dev;
2640	u32 *buf = (u32 *)regbuf;
2641	u32 i, off;
2642	int ret;
2643#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2644	defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2645	defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2646	u32 *reg_list;
2647	u32 reg_cnt;
2648
2649	if (!of_machine_is_compatible("fsl,imx6ul")) {
2650		reg_list = fec_enet_register_offset;
2651		reg_cnt = ARRAY_SIZE(fec_enet_register_offset);
2652	} else {
2653		reg_list = fec_enet_register_offset_6ul;
2654		reg_cnt = ARRAY_SIZE(fec_enet_register_offset_6ul);
2655	}
2656#else
2657	/* coldfire */
2658	static u32 *reg_list = fec_enet_register_offset;
2659	static const u32 reg_cnt = ARRAY_SIZE(fec_enet_register_offset);
2660#endif
2661	ret = pm_runtime_resume_and_get(dev);
2662	if (ret < 0)
2663		return;
2664
2665	regs->version = fec_enet_register_version;
2666
2667	memset(buf, 0, regs->len);
2668
2669	for (i = 0; i < reg_cnt; i++) {
2670		off = reg_list[i];
2671
2672		if ((off == FEC_R_BOUND || off == FEC_R_FSTART) &&
2673		    !(fep->quirks & FEC_QUIRK_HAS_FRREG))
2674			continue;
2675
2676		off >>= 2;
2677		buf[off] = readl(&theregs[off]);
2678	}
2679
2680	pm_runtime_mark_last_busy(dev);
2681	pm_runtime_put_autosuspend(dev);
2682}
2683
2684static int fec_enet_get_ts_info(struct net_device *ndev,
2685				struct ethtool_ts_info *info)
2686{
2687	struct fec_enet_private *fep = netdev_priv(ndev);
2688
2689	if (fep->bufdesc_ex) {
2690
2691		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2692					SOF_TIMESTAMPING_RX_SOFTWARE |
2693					SOF_TIMESTAMPING_SOFTWARE |
2694					SOF_TIMESTAMPING_TX_HARDWARE |
2695					SOF_TIMESTAMPING_RX_HARDWARE |
2696					SOF_TIMESTAMPING_RAW_HARDWARE;
2697		if (fep->ptp_clock)
2698			info->phc_index = ptp_clock_index(fep->ptp_clock);
2699		else
2700			info->phc_index = -1;
2701
2702		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2703				 (1 << HWTSTAMP_TX_ON);
2704
2705		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2706				   (1 << HWTSTAMP_FILTER_ALL);
2707		return 0;
2708	} else {
2709		return ethtool_op_get_ts_info(ndev, info);
2710	}
2711}
2712
2713#if !defined(CONFIG_M5272)
2714
2715static void fec_enet_get_pauseparam(struct net_device *ndev,
2716				    struct ethtool_pauseparam *pause)
2717{
2718	struct fec_enet_private *fep = netdev_priv(ndev);
2719
2720	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2721	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2722	pause->rx_pause = pause->tx_pause;
2723}
2724
2725static int fec_enet_set_pauseparam(struct net_device *ndev,
2726				   struct ethtool_pauseparam *pause)
2727{
2728	struct fec_enet_private *fep = netdev_priv(ndev);
2729
2730	if (!ndev->phydev)
2731		return -ENODEV;
2732
2733	if (pause->tx_pause != pause->rx_pause) {
2734		netdev_info(ndev,
2735			"hardware only support enable/disable both tx and rx");
2736		return -EINVAL;
2737	}
2738
2739	fep->pause_flag = 0;
2740
2741	/* tx pause must be same as rx pause */
2742	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2743	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2744
2745	phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause,
2746			  pause->autoneg);
2747
2748	if (pause->autoneg) {
2749		if (netif_running(ndev))
2750			fec_stop(ndev);
2751		phy_start_aneg(ndev->phydev);
2752	}
2753	if (netif_running(ndev)) {
2754		napi_disable(&fep->napi);
2755		netif_tx_lock_bh(ndev);
2756		fec_restart(ndev);
2757		netif_tx_wake_all_queues(ndev);
2758		netif_tx_unlock_bh(ndev);
2759		napi_enable(&fep->napi);
2760	}
2761
2762	return 0;
2763}
2764
2765static const struct fec_stat {
2766	char name[ETH_GSTRING_LEN];
2767	u16 offset;
2768} fec_stats[] = {
2769	/* RMON TX */
2770	{ "tx_dropped", RMON_T_DROP },
2771	{ "tx_packets", RMON_T_PACKETS },
2772	{ "tx_broadcast", RMON_T_BC_PKT },
2773	{ "tx_multicast", RMON_T_MC_PKT },
2774	{ "tx_crc_errors", RMON_T_CRC_ALIGN },
2775	{ "tx_undersize", RMON_T_UNDERSIZE },
2776	{ "tx_oversize", RMON_T_OVERSIZE },
2777	{ "tx_fragment", RMON_T_FRAG },
2778	{ "tx_jabber", RMON_T_JAB },
2779	{ "tx_collision", RMON_T_COL },
2780	{ "tx_64byte", RMON_T_P64 },
2781	{ "tx_65to127byte", RMON_T_P65TO127 },
2782	{ "tx_128to255byte", RMON_T_P128TO255 },
2783	{ "tx_256to511byte", RMON_T_P256TO511 },
2784	{ "tx_512to1023byte", RMON_T_P512TO1023 },
2785	{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
2786	{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
2787	{ "tx_octets", RMON_T_OCTETS },
2788
2789	/* IEEE TX */
2790	{ "IEEE_tx_drop", IEEE_T_DROP },
2791	{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2792	{ "IEEE_tx_1col", IEEE_T_1COL },
2793	{ "IEEE_tx_mcol", IEEE_T_MCOL },
2794	{ "IEEE_tx_def", IEEE_T_DEF },
2795	{ "IEEE_tx_lcol", IEEE_T_LCOL },
2796	{ "IEEE_tx_excol", IEEE_T_EXCOL },
2797	{ "IEEE_tx_macerr", IEEE_T_MACERR },
2798	{ "IEEE_tx_cserr", IEEE_T_CSERR },
2799	{ "IEEE_tx_sqe", IEEE_T_SQE },
2800	{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2801	{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2802
2803	/* RMON RX */
2804	{ "rx_packets", RMON_R_PACKETS },
2805	{ "rx_broadcast", RMON_R_BC_PKT },
2806	{ "rx_multicast", RMON_R_MC_PKT },
2807	{ "rx_crc_errors", RMON_R_CRC_ALIGN },
2808	{ "rx_undersize", RMON_R_UNDERSIZE },
2809	{ "rx_oversize", RMON_R_OVERSIZE },
2810	{ "rx_fragment", RMON_R_FRAG },
2811	{ "rx_jabber", RMON_R_JAB },
2812	{ "rx_64byte", RMON_R_P64 },
2813	{ "rx_65to127byte", RMON_R_P65TO127 },
2814	{ "rx_128to255byte", RMON_R_P128TO255 },
2815	{ "rx_256to511byte", RMON_R_P256TO511 },
2816	{ "rx_512to1023byte", RMON_R_P512TO1023 },
2817	{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
2818	{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
2819	{ "rx_octets", RMON_R_OCTETS },
2820
2821	/* IEEE RX */
2822	{ "IEEE_rx_drop", IEEE_R_DROP },
2823	{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2824	{ "IEEE_rx_crc", IEEE_R_CRC },
2825	{ "IEEE_rx_align", IEEE_R_ALIGN },
2826	{ "IEEE_rx_macerr", IEEE_R_MACERR },
2827	{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2828	{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2829};
2830
2831#define FEC_STATS_SIZE		(ARRAY_SIZE(fec_stats) * sizeof(u64))
2832
2833static const char *fec_xdp_stat_strs[XDP_STATS_TOTAL] = {
2834	"rx_xdp_redirect",           /* RX_XDP_REDIRECT = 0, */
2835	"rx_xdp_pass",               /* RX_XDP_PASS, */
2836	"rx_xdp_drop",               /* RX_XDP_DROP, */
2837	"rx_xdp_tx",                 /* RX_XDP_TX, */
2838	"rx_xdp_tx_errors",          /* RX_XDP_TX_ERRORS, */
2839	"tx_xdp_xmit",               /* TX_XDP_XMIT, */
2840	"tx_xdp_xmit_errors",        /* TX_XDP_XMIT_ERRORS, */
2841};
2842
2843static void fec_enet_update_ethtool_stats(struct net_device *dev)
2844{
2845	struct fec_enet_private *fep = netdev_priv(dev);
2846	int i;
2847
2848	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2849		fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset);
2850}
2851
2852static void fec_enet_get_xdp_stats(struct fec_enet_private *fep, u64 *data)
2853{
2854	u64 xdp_stats[XDP_STATS_TOTAL] = { 0 };
2855	struct fec_enet_priv_rx_q *rxq;
2856	int i, j;
2857
2858	for (i = fep->num_rx_queues - 1; i >= 0; i--) {
2859		rxq = fep->rx_queue[i];
2860
2861		for (j = 0; j < XDP_STATS_TOTAL; j++)
2862			xdp_stats[j] += rxq->stats[j];
2863	}
2864
2865	memcpy(data, xdp_stats, sizeof(xdp_stats));
2866}
2867
2868static void fec_enet_page_pool_stats(struct fec_enet_private *fep, u64 *data)
2869{
2870#ifdef CONFIG_PAGE_POOL_STATS
2871	struct page_pool_stats stats = {};
2872	struct fec_enet_priv_rx_q *rxq;
2873	int i;
2874
2875	for (i = fep->num_rx_queues - 1; i >= 0; i--) {
2876		rxq = fep->rx_queue[i];
2877
2878		if (!rxq->page_pool)
2879			continue;
2880
2881		page_pool_get_stats(rxq->page_pool, &stats);
2882	}
2883
2884	page_pool_ethtool_stats_get(data, &stats);
2885#endif
2886}
2887
2888static void fec_enet_get_ethtool_stats(struct net_device *dev,
2889				       struct ethtool_stats *stats, u64 *data)
2890{
2891	struct fec_enet_private *fep = netdev_priv(dev);
2892
2893	if (netif_running(dev))
2894		fec_enet_update_ethtool_stats(dev);
2895
2896	memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE);
2897	data += FEC_STATS_SIZE / sizeof(u64);
2898
2899	fec_enet_get_xdp_stats(fep, data);
2900	data += XDP_STATS_TOTAL;
2901
2902	fec_enet_page_pool_stats(fep, data);
2903}
2904
2905static void fec_enet_get_strings(struct net_device *netdev,
2906	u32 stringset, u8 *data)
2907{
2908	int i;
2909	switch (stringset) {
2910	case ETH_SS_STATS:
2911		for (i = 0; i < ARRAY_SIZE(fec_stats); i++) {
2912			memcpy(data, fec_stats[i].name, ETH_GSTRING_LEN);
2913			data += ETH_GSTRING_LEN;
2914		}
2915		for (i = 0; i < ARRAY_SIZE(fec_xdp_stat_strs); i++) {
2916			strncpy(data, fec_xdp_stat_strs[i], ETH_GSTRING_LEN);
2917			data += ETH_GSTRING_LEN;
2918		}
2919		page_pool_ethtool_stats_get_strings(data);
2920
2921		break;
2922	case ETH_SS_TEST:
2923		net_selftest_get_strings(data);
2924		break;
2925	}
2926}
2927
2928static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2929{
2930	int count;
2931
2932	switch (sset) {
2933	case ETH_SS_STATS:
2934		count = ARRAY_SIZE(fec_stats) + XDP_STATS_TOTAL;
2935		count += page_pool_ethtool_stats_get_count();
2936		return count;
2937
2938	case ETH_SS_TEST:
2939		return net_selftest_get_count();
2940	default:
2941		return -EOPNOTSUPP;
2942	}
2943}
2944
2945static void fec_enet_clear_ethtool_stats(struct net_device *dev)
2946{
2947	struct fec_enet_private *fep = netdev_priv(dev);
2948	struct fec_enet_priv_rx_q *rxq;
2949	int i, j;
2950
2951	/* Disable MIB statistics counters */
2952	writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT);
2953
2954	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2955		writel(0, fep->hwp + fec_stats[i].offset);
2956
2957	for (i = fep->num_rx_queues - 1; i >= 0; i--) {
2958		rxq = fep->rx_queue[i];
2959		for (j = 0; j < XDP_STATS_TOTAL; j++)
2960			rxq->stats[j] = 0;
2961	}
2962
2963	/* Don't disable MIB statistics counters */
2964	writel(0, fep->hwp + FEC_MIB_CTRLSTAT);
2965}
2966
2967#else	/* !defined(CONFIG_M5272) */
2968#define FEC_STATS_SIZE	0
2969static inline void fec_enet_update_ethtool_stats(struct net_device *dev)
2970{
2971}
2972
2973static inline void fec_enet_clear_ethtool_stats(struct net_device *dev)
2974{
2975}
2976#endif /* !defined(CONFIG_M5272) */
2977
2978/* ITR clock source is enet system clock (clk_ahb).
2979 * TCTT unit is cycle_ns * 64 cycle
2980 * So, the ICTT value = X us / (cycle_ns * 64)
2981 */
2982static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
2983{
2984	struct fec_enet_private *fep = netdev_priv(ndev);
2985
2986	return us * (fep->itr_clk_rate / 64000) / 1000;
2987}
2988
2989/* Set threshold for interrupt coalescing */
2990static void fec_enet_itr_coal_set(struct net_device *ndev)
2991{
2992	struct fec_enet_private *fep = netdev_priv(ndev);
2993	int rx_itr, tx_itr;
2994
2995	/* Must be greater than zero to avoid unpredictable behavior */
2996	if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
2997	    !fep->tx_time_itr || !fep->tx_pkts_itr)
2998		return;
2999
3000	/* Select enet system clock as Interrupt Coalescing
3001	 * timer Clock Source
3002	 */
3003	rx_itr = FEC_ITR_CLK_SEL;
3004	tx_itr = FEC_ITR_CLK_SEL;
3005
3006	/* set ICFT and ICTT */
3007	rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
3008	rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
3009	tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
3010	tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
3011
3012	rx_itr |= FEC_ITR_EN;
3013	tx_itr |= FEC_ITR_EN;
3014
3015	writel(tx_itr, fep->hwp + FEC_TXIC0);
3016	writel(rx_itr, fep->hwp + FEC_RXIC0);
3017	if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
3018		writel(tx_itr, fep->hwp + FEC_TXIC1);
3019		writel(rx_itr, fep->hwp + FEC_RXIC1);
3020		writel(tx_itr, fep->hwp + FEC_TXIC2);
3021		writel(rx_itr, fep->hwp + FEC_RXIC2);
3022	}
3023}
3024
3025static int fec_enet_get_coalesce(struct net_device *ndev,
3026				 struct ethtool_coalesce *ec,
3027				 struct kernel_ethtool_coalesce *kernel_coal,
3028				 struct netlink_ext_ack *extack)
3029{
3030	struct fec_enet_private *fep = netdev_priv(ndev);
3031
3032	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
3033		return -EOPNOTSUPP;
3034
3035	ec->rx_coalesce_usecs = fep->rx_time_itr;
3036	ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
3037
3038	ec->tx_coalesce_usecs = fep->tx_time_itr;
3039	ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
3040
3041	return 0;
3042}
3043
3044static int fec_enet_set_coalesce(struct net_device *ndev,
3045				 struct ethtool_coalesce *ec,
3046				 struct kernel_ethtool_coalesce *kernel_coal,
3047				 struct netlink_ext_ack *extack)
3048{
3049	struct fec_enet_private *fep = netdev_priv(ndev);
3050	struct device *dev = &fep->pdev->dev;
3051	unsigned int cycle;
3052
3053	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
3054		return -EOPNOTSUPP;
3055
3056	if (ec->rx_max_coalesced_frames > 255) {
3057		dev_err(dev, "Rx coalesced frames exceed hardware limitation\n");
3058		return -EINVAL;
3059	}
3060
3061	if (ec->tx_max_coalesced_frames > 255) {
3062		dev_err(dev, "Tx coalesced frame exceed hardware limitation\n");
3063		return -EINVAL;
3064	}
3065
3066	cycle = fec_enet_us_to_itr_clock(ndev, ec->rx_coalesce_usecs);
3067	if (cycle > 0xFFFF) {
3068		dev_err(dev, "Rx coalesced usec exceed hardware limitation\n");
3069		return -EINVAL;
3070	}
3071
3072	cycle = fec_enet_us_to_itr_clock(ndev, ec->tx_coalesce_usecs);
3073	if (cycle > 0xFFFF) {
3074		dev_err(dev, "Tx coalesced usec exceed hardware limitation\n");
3075		return -EINVAL;
3076	}
3077
3078	fep->rx_time_itr = ec->rx_coalesce_usecs;
3079	fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
3080
3081	fep->tx_time_itr = ec->tx_coalesce_usecs;
3082	fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
3083
3084	fec_enet_itr_coal_set(ndev);
3085
3086	return 0;
3087}
3088
3089/* LPI Sleep Ts count base on tx clk (clk_ref).
3090 * The lpi sleep cnt value = X us / (cycle_ns).
3091 */
3092static int fec_enet_us_to_tx_cycle(struct net_device *ndev, int us)
3093{
3094	struct fec_enet_private *fep = netdev_priv(ndev);
3095
3096	return us * (fep->clk_ref_rate / 1000) / 1000;
3097}
3098
3099static int fec_enet_eee_mode_set(struct net_device *ndev, bool enable)
3100{
3101	struct fec_enet_private *fep = netdev_priv(ndev);
3102	struct ethtool_eee *p = &fep->eee;
3103	unsigned int sleep_cycle, wake_cycle;
3104	int ret = 0;
3105
3106	if (enable) {
3107		ret = phy_init_eee(ndev->phydev, false);
3108		if (ret)
3109			return ret;
3110
3111		sleep_cycle = fec_enet_us_to_tx_cycle(ndev, p->tx_lpi_timer);
3112		wake_cycle = sleep_cycle;
3113	} else {
3114		sleep_cycle = 0;
3115		wake_cycle = 0;
3116	}
3117
3118	p->tx_lpi_enabled = enable;
3119	p->eee_enabled = enable;
3120	p->eee_active = enable;
3121
3122	writel(sleep_cycle, fep->hwp + FEC_LPI_SLEEP);
3123	writel(wake_cycle, fep->hwp + FEC_LPI_WAKE);
3124
3125	return 0;
3126}
3127
3128static int
3129fec_enet_get_eee(struct net_device *ndev, struct ethtool_eee *edata)
3130{
3131	struct fec_enet_private *fep = netdev_priv(ndev);
3132	struct ethtool_eee *p = &fep->eee;
3133
3134	if (!(fep->quirks & FEC_QUIRK_HAS_EEE))
3135		return -EOPNOTSUPP;
3136
3137	if (!netif_running(ndev))
3138		return -ENETDOWN;
3139
3140	edata->eee_enabled = p->eee_enabled;
3141	edata->eee_active = p->eee_active;
3142	edata->tx_lpi_timer = p->tx_lpi_timer;
3143	edata->tx_lpi_enabled = p->tx_lpi_enabled;
3144
3145	return phy_ethtool_get_eee(ndev->phydev, edata);
3146}
3147
3148static int
3149fec_enet_set_eee(struct net_device *ndev, struct ethtool_eee *edata)
3150{
3151	struct fec_enet_private *fep = netdev_priv(ndev);
3152	struct ethtool_eee *p = &fep->eee;
3153	int ret = 0;
3154
3155	if (!(fep->quirks & FEC_QUIRK_HAS_EEE))
3156		return -EOPNOTSUPP;
3157
3158	if (!netif_running(ndev))
3159		return -ENETDOWN;
3160
3161	p->tx_lpi_timer = edata->tx_lpi_timer;
3162
3163	if (!edata->eee_enabled || !edata->tx_lpi_enabled ||
3164	    !edata->tx_lpi_timer)
3165		ret = fec_enet_eee_mode_set(ndev, false);
3166	else
3167		ret = fec_enet_eee_mode_set(ndev, true);
3168
3169	if (ret)
3170		return ret;
3171
3172	return phy_ethtool_set_eee(ndev->phydev, edata);
3173}
3174
3175static void
3176fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
3177{
3178	struct fec_enet_private *fep = netdev_priv(ndev);
3179
3180	if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
3181		wol->supported = WAKE_MAGIC;
3182		wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
3183	} else {
3184		wol->supported = wol->wolopts = 0;
3185	}
3186}
3187
3188static int
3189fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
3190{
3191	struct fec_enet_private *fep = netdev_priv(ndev);
3192
3193	if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
3194		return -EINVAL;
3195
3196	if (wol->wolopts & ~WAKE_MAGIC)
3197		return -EINVAL;
3198
3199	device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
3200	if (device_may_wakeup(&ndev->dev))
3201		fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
3202	else
3203		fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
3204
3205	return 0;
3206}
3207
3208static const struct ethtool_ops fec_enet_ethtool_ops = {
3209	.supported_coalesce_params = ETHTOOL_COALESCE_USECS |
3210				     ETHTOOL_COALESCE_MAX_FRAMES,
3211	.get_drvinfo		= fec_enet_get_drvinfo,
3212	.get_regs_len		= fec_enet_get_regs_len,
3213	.get_regs		= fec_enet_get_regs,
3214	.nway_reset		= phy_ethtool_nway_reset,
3215	.get_link		= ethtool_op_get_link,
3216	.get_coalesce		= fec_enet_get_coalesce,
3217	.set_coalesce		= fec_enet_set_coalesce,
3218#ifndef CONFIG_M5272
3219	.get_pauseparam		= fec_enet_get_pauseparam,
3220	.set_pauseparam		= fec_enet_set_pauseparam,
3221	.get_strings		= fec_enet_get_strings,
3222	.get_ethtool_stats	= fec_enet_get_ethtool_stats,
3223	.get_sset_count		= fec_enet_get_sset_count,
3224#endif
3225	.get_ts_info		= fec_enet_get_ts_info,
3226	.get_wol		= fec_enet_get_wol,
3227	.set_wol		= fec_enet_set_wol,
3228	.get_eee		= fec_enet_get_eee,
3229	.set_eee		= fec_enet_set_eee,
3230	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
3231	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
3232	.self_test		= net_selftest,
3233};
3234
3235static void fec_enet_free_buffers(struct net_device *ndev)
3236{
3237	struct fec_enet_private *fep = netdev_priv(ndev);
3238	unsigned int i;
3239	struct fec_enet_priv_tx_q *txq;
3240	struct fec_enet_priv_rx_q *rxq;
3241	unsigned int q;
3242
3243	for (q = 0; q < fep->num_rx_queues; q++) {
3244		rxq = fep->rx_queue[q];
3245		for (i = 0; i < rxq->bd.ring_size; i++)
3246			page_pool_put_full_page(rxq->page_pool, rxq->rx_skb_info[i].page, false);
3247
3248		for (i = 0; i < XDP_STATS_TOTAL; i++)
3249			rxq->stats[i] = 0;
3250
3251		if (xdp_rxq_info_is_reg(&rxq->xdp_rxq))
3252			xdp_rxq_info_unreg(&rxq->xdp_rxq);
3253		page_pool_destroy(rxq->page_pool);
3254		rxq->page_pool = NULL;
3255	}
3256
3257	for (q = 0; q < fep->num_tx_queues; q++) {
3258		txq = fep->tx_queue[q];
3259		for (i = 0; i < txq->bd.ring_size; i++) {
3260			kfree(txq->tx_bounce[i]);
3261			txq->tx_bounce[i] = NULL;
3262
3263			if (!txq->tx_buf[i].buf_p) {
3264				txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
3265				continue;
3266			}
3267
3268			if (txq->tx_buf[i].type == FEC_TXBUF_T_SKB) {
3269				dev_kfree_skb(txq->tx_buf[i].buf_p);
3270			} else if (txq->tx_buf[i].type == FEC_TXBUF_T_XDP_NDO) {
3271				xdp_return_frame(txq->tx_buf[i].buf_p);
3272			} else {
3273				struct page *page = txq->tx_buf[i].buf_p;
3274
3275				page_pool_put_page(page->pp, page, 0, false);
3276			}
3277
3278			txq->tx_buf[i].buf_p = NULL;
3279			txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
3280		}
3281	}
3282}
3283
3284static void fec_enet_free_queue(struct net_device *ndev)
3285{
3286	struct fec_enet_private *fep = netdev_priv(ndev);
3287	int i;
3288	struct fec_enet_priv_tx_q *txq;
3289
3290	for (i = 0; i < fep->num_tx_queues; i++)
3291		if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
3292			txq = fep->tx_queue[i];
3293			dma_free_coherent(&fep->pdev->dev,
3294					  txq->bd.ring_size * TSO_HEADER_SIZE,
3295					  txq->tso_hdrs,
3296					  txq->tso_hdrs_dma);
3297		}
3298
3299	for (i = 0; i < fep->num_rx_queues; i++)
3300		kfree(fep->rx_queue[i]);
3301	for (i = 0; i < fep->num_tx_queues; i++)
3302		kfree(fep->tx_queue[i]);
3303}
3304
3305static int fec_enet_alloc_queue(struct net_device *ndev)
3306{
3307	struct fec_enet_private *fep = netdev_priv(ndev);
3308	int i;
3309	int ret = 0;
3310	struct fec_enet_priv_tx_q *txq;
3311
3312	for (i = 0; i < fep->num_tx_queues; i++) {
3313		txq = kzalloc(sizeof(*txq), GFP_KERNEL);
3314		if (!txq) {
3315			ret = -ENOMEM;
3316			goto alloc_failed;
3317		}
3318
3319		fep->tx_queue[i] = txq;
3320		txq->bd.ring_size = TX_RING_SIZE;
3321		fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
3322
3323		txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
3324		txq->tx_wake_threshold = FEC_MAX_SKB_DESCS + 2 * MAX_SKB_FRAGS;
3325
3326		txq->tso_hdrs = dma_alloc_coherent(&fep->pdev->dev,
3327					txq->bd.ring_size * TSO_HEADER_SIZE,
3328					&txq->tso_hdrs_dma,
3329					GFP_KERNEL);
3330		if (!txq->tso_hdrs) {
3331			ret = -ENOMEM;
3332			goto alloc_failed;
3333		}
3334	}
3335
3336	for (i = 0; i < fep->num_rx_queues; i++) {
3337		fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
3338					   GFP_KERNEL);
3339		if (!fep->rx_queue[i]) {
3340			ret = -ENOMEM;
3341			goto alloc_failed;
3342		}
3343
3344		fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
3345		fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
3346	}
3347	return ret;
3348
3349alloc_failed:
3350	fec_enet_free_queue(ndev);
3351	return ret;
3352}
3353
3354static int
3355fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
3356{
3357	struct fec_enet_private *fep = netdev_priv(ndev);
3358	struct fec_enet_priv_rx_q *rxq;
3359	dma_addr_t phys_addr;
3360	struct bufdesc	*bdp;
3361	struct page *page;
3362	int i, err;
3363
3364	rxq = fep->rx_queue[queue];
3365	bdp = rxq->bd.base;
3366
3367	err = fec_enet_create_page_pool(fep, rxq, rxq->bd.ring_size);
3368	if (err < 0) {
3369		netdev_err(ndev, "%s failed queue %d (%d)\n", __func__, queue, err);
3370		return err;
3371	}
3372
3373	for (i = 0; i < rxq->bd.ring_size; i++) {
3374		page = page_pool_dev_alloc_pages(rxq->page_pool);
3375		if (!page)
3376			goto err_alloc;
3377
3378		phys_addr = page_pool_get_dma_addr(page) + FEC_ENET_XDP_HEADROOM;
3379		bdp->cbd_bufaddr = cpu_to_fec32(phys_addr);
3380
3381		rxq->rx_skb_info[i].page = page;
3382		rxq->rx_skb_info[i].offset = FEC_ENET_XDP_HEADROOM;
3383		bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
3384
3385		if (fep->bufdesc_ex) {
3386			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3387			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
3388		}
3389
3390		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
3391	}
3392
3393	/* Set the last buffer to wrap. */
3394	bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
3395	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
3396	return 0;
3397
3398 err_alloc:
3399	fec_enet_free_buffers(ndev);
3400	return -ENOMEM;
3401}
3402
3403static int
3404fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
3405{
3406	struct fec_enet_private *fep = netdev_priv(ndev);
3407	unsigned int i;
3408	struct bufdesc  *bdp;
3409	struct fec_enet_priv_tx_q *txq;
3410
3411	txq = fep->tx_queue[queue];
3412	bdp = txq->bd.base;
3413	for (i = 0; i < txq->bd.ring_size; i++) {
3414		txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
3415		if (!txq->tx_bounce[i])
3416			goto err_alloc;
3417
3418		bdp->cbd_sc = cpu_to_fec16(0);
3419		bdp->cbd_bufaddr = cpu_to_fec32(0);
3420
3421		if (fep->bufdesc_ex) {
3422			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3423			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
3424		}
3425
3426		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
3427	}
3428
3429	/* Set the last buffer to wrap. */
3430	bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
3431	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
3432
3433	return 0;
3434
3435 err_alloc:
3436	fec_enet_free_buffers(ndev);
3437	return -ENOMEM;
3438}
3439
3440static int fec_enet_alloc_buffers(struct net_device *ndev)
3441{
3442	struct fec_enet_private *fep = netdev_priv(ndev);
3443	unsigned int i;
3444
3445	for (i = 0; i < fep->num_rx_queues; i++)
3446		if (fec_enet_alloc_rxq_buffers(ndev, i))
3447			return -ENOMEM;
3448
3449	for (i = 0; i < fep->num_tx_queues; i++)
3450		if (fec_enet_alloc_txq_buffers(ndev, i))
3451			return -ENOMEM;
3452	return 0;
3453}
3454
3455static int
3456fec_enet_open(struct net_device *ndev)
3457{
3458	struct fec_enet_private *fep = netdev_priv(ndev);
3459	int ret;
3460	bool reset_again;
3461
3462	ret = pm_runtime_resume_and_get(&fep->pdev->dev);
3463	if (ret < 0)
3464		return ret;
3465
3466	pinctrl_pm_select_default_state(&fep->pdev->dev);
3467	ret = fec_enet_clk_enable(ndev, true);
3468	if (ret)
3469		goto clk_enable;
3470
3471	/* During the first fec_enet_open call the PHY isn't probed at this
3472	 * point. Therefore the phy_reset_after_clk_enable() call within
3473	 * fec_enet_clk_enable() fails. As we need this reset in order to be
3474	 * sure the PHY is working correctly we check if we need to reset again
3475	 * later when the PHY is probed
3476	 */
3477	if (ndev->phydev && ndev->phydev->drv)
3478		reset_again = false;
3479	else
3480		reset_again = true;
3481
3482	/* I should reset the ring buffers here, but I don't yet know
3483	 * a simple way to do that.
3484	 */
3485
3486	ret = fec_enet_alloc_buffers(ndev);
3487	if (ret)
3488		goto err_enet_alloc;
3489
3490	/* Init MAC prior to mii bus probe */
3491	fec_restart(ndev);
3492
3493	/* Call phy_reset_after_clk_enable() again if it failed during
3494	 * phy_reset_after_clk_enable() before because the PHY wasn't probed.
3495	 */
3496	if (reset_again)
3497		fec_enet_phy_reset_after_clk_enable(ndev);
3498
3499	/* Probe and connect to PHY when open the interface */
3500	ret = fec_enet_mii_probe(ndev);
3501	if (ret)
3502		goto err_enet_mii_probe;
3503
3504	if (fep->quirks & FEC_QUIRK_ERR006687)
3505		imx6q_cpuidle_fec_irqs_used();
3506
3507	if (fep->quirks & FEC_QUIRK_HAS_PMQOS)
3508		cpu_latency_qos_add_request(&fep->pm_qos_req, 0);
3509
3510	napi_enable(&fep->napi);
3511	phy_start(ndev->phydev);
3512	netif_tx_start_all_queues(ndev);
3513
3514	device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
3515				 FEC_WOL_FLAG_ENABLE);
3516
3517	return 0;
3518
3519err_enet_mii_probe:
3520	fec_enet_free_buffers(ndev);
3521err_enet_alloc:
3522	fec_enet_clk_enable(ndev, false);
3523clk_enable:
3524	pm_runtime_mark_last_busy(&fep->pdev->dev);
3525	pm_runtime_put_autosuspend(&fep->pdev->dev);
3526	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3527	return ret;
3528}
3529
3530static int
3531fec_enet_close(struct net_device *ndev)
3532{
3533	struct fec_enet_private *fep = netdev_priv(ndev);
3534
3535	phy_stop(ndev->phydev);
3536
3537	if (netif_device_present(ndev)) {
3538		napi_disable(&fep->napi);
3539		netif_tx_disable(ndev);
3540		fec_stop(ndev);
3541	}
3542
3543	phy_disconnect(ndev->phydev);
3544
3545	if (fep->quirks & FEC_QUIRK_ERR006687)
3546		imx6q_cpuidle_fec_irqs_unused();
3547
3548	fec_enet_update_ethtool_stats(ndev);
3549
3550	fec_enet_clk_enable(ndev, false);
3551	if (fep->quirks & FEC_QUIRK_HAS_PMQOS)
3552		cpu_latency_qos_remove_request(&fep->pm_qos_req);
3553
3554	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3555	pm_runtime_mark_last_busy(&fep->pdev->dev);
3556	pm_runtime_put_autosuspend(&fep->pdev->dev);
3557
3558	fec_enet_free_buffers(ndev);
3559
3560	return 0;
3561}
3562
3563/* Set or clear the multicast filter for this adaptor.
3564 * Skeleton taken from sunlance driver.
3565 * The CPM Ethernet implementation allows Multicast as well as individual
3566 * MAC address filtering.  Some of the drivers check to make sure it is
3567 * a group multicast address, and discard those that are not.  I guess I
3568 * will do the same for now, but just remove the test if you want
3569 * individual filtering as well (do the upper net layers want or support
3570 * this kind of feature?).
3571 */
3572
3573#define FEC_HASH_BITS	6		/* #bits in hash */
3574
3575static void set_multicast_list(struct net_device *ndev)
3576{
3577	struct fec_enet_private *fep = netdev_priv(ndev);
3578	struct netdev_hw_addr *ha;
3579	unsigned int crc, tmp;
3580	unsigned char hash;
3581	unsigned int hash_high = 0, hash_low = 0;
3582
3583	if (ndev->flags & IFF_PROMISC) {
3584		tmp = readl(fep->hwp + FEC_R_CNTRL);
3585		tmp |= 0x8;
3586		writel(tmp, fep->hwp + FEC_R_CNTRL);
3587		return;
3588	}
3589
3590	tmp = readl(fep->hwp + FEC_R_CNTRL);
3591	tmp &= ~0x8;
3592	writel(tmp, fep->hwp + FEC_R_CNTRL);
3593
3594	if (ndev->flags & IFF_ALLMULTI) {
3595		/* Catch all multicast addresses, so set the
3596		 * filter to all 1's
3597		 */
3598		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3599		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3600
3601		return;
3602	}
3603
3604	/* Add the addresses in hash register */
3605	netdev_for_each_mc_addr(ha, ndev) {
3606		/* calculate crc32 value of mac address */
3607		crc = ether_crc_le(ndev->addr_len, ha->addr);
3608
3609		/* only upper 6 bits (FEC_HASH_BITS) are used
3610		 * which point to specific bit in the hash registers
3611		 */
3612		hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f;
3613
3614		if (hash > 31)
3615			hash_high |= 1 << (hash - 32);
3616		else
3617			hash_low |= 1 << hash;
3618	}
3619
3620	writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3621	writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3622}
3623
3624/* Set a MAC change in hardware. */
3625static int
3626fec_set_mac_address(struct net_device *ndev, void *p)
3627{
3628	struct fec_enet_private *fep = netdev_priv(ndev);
3629	struct sockaddr *addr = p;
3630
3631	if (addr) {
3632		if (!is_valid_ether_addr(addr->sa_data))
3633			return -EADDRNOTAVAIL;
3634		eth_hw_addr_set(ndev, addr->sa_data);
3635	}
3636
3637	/* Add netif status check here to avoid system hang in below case:
3638	 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
3639	 * After ethx down, fec all clocks are gated off and then register
3640	 * access causes system hang.
3641	 */
3642	if (!netif_running(ndev))
3643		return 0;
3644
3645	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
3646		(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
3647		fep->hwp + FEC_ADDR_LOW);
3648	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
3649		fep->hwp + FEC_ADDR_HIGH);
3650	return 0;
3651}
3652
3653#ifdef CONFIG_NET_POLL_CONTROLLER
3654/**
3655 * fec_poll_controller - FEC Poll controller function
3656 * @dev: The FEC network adapter
3657 *
3658 * Polled functionality used by netconsole and others in non interrupt mode
3659 *
3660 */
3661static void fec_poll_controller(struct net_device *dev)
3662{
3663	int i;
3664	struct fec_enet_private *fep = netdev_priv(dev);
3665
3666	for (i = 0; i < FEC_IRQ_NUM; i++) {
3667		if (fep->irq[i] > 0) {
3668			disable_irq(fep->irq[i]);
3669			fec_enet_interrupt(fep->irq[i], dev);
3670			enable_irq(fep->irq[i]);
3671		}
3672	}
3673}
3674#endif
3675
3676static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3677	netdev_features_t features)
3678{
3679	struct fec_enet_private *fep = netdev_priv(netdev);
3680	netdev_features_t changed = features ^ netdev->features;
3681
3682	netdev->features = features;
3683
3684	/* Receive checksum has been changed */
3685	if (changed & NETIF_F_RXCSUM) {
3686		if (features & NETIF_F_RXCSUM)
3687			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3688		else
3689			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3690	}
3691}
3692
3693static int fec_set_features(struct net_device *netdev,
3694	netdev_features_t features)
3695{
3696	struct fec_enet_private *fep = netdev_priv(netdev);
3697	netdev_features_t changed = features ^ netdev->features;
3698
3699	if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
3700		napi_disable(&fep->napi);
3701		netif_tx_lock_bh(netdev);
3702		fec_stop(netdev);
3703		fec_enet_set_netdev_features(netdev, features);
3704		fec_restart(netdev);
3705		netif_tx_wake_all_queues(netdev);
3706		netif_tx_unlock_bh(netdev);
3707		napi_enable(&fep->napi);
3708	} else {
3709		fec_enet_set_netdev_features(netdev, features);
3710	}
3711
3712	return 0;
3713}
3714
3715static u16 fec_enet_select_queue(struct net_device *ndev, struct sk_buff *skb,
3716				 struct net_device *sb_dev)
3717{
3718	struct fec_enet_private *fep = netdev_priv(ndev);
3719	u16 vlan_tag = 0;
3720
3721	if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
3722		return netdev_pick_tx(ndev, skb, NULL);
3723
3724	/* VLAN is present in the payload.*/
3725	if (eth_type_vlan(skb->protocol)) {
3726		struct vlan_ethhdr *vhdr = skb_vlan_eth_hdr(skb);
3727
3728		vlan_tag = ntohs(vhdr->h_vlan_TCI);
3729	/*  VLAN is present in the skb but not yet pushed in the payload.*/
3730	} else if (skb_vlan_tag_present(skb)) {
3731		vlan_tag = skb->vlan_tci;
3732	} else {
3733		return vlan_tag;
3734	}
3735
3736	return fec_enet_vlan_pri_to_queue[vlan_tag >> 13];
3737}
3738
3739static int fec_enet_bpf(struct net_device *dev, struct netdev_bpf *bpf)
3740{
3741	struct fec_enet_private *fep = netdev_priv(dev);
3742	bool is_run = netif_running(dev);
3743	struct bpf_prog *old_prog;
3744
3745	switch (bpf->command) {
3746	case XDP_SETUP_PROG:
3747		/* No need to support the SoCs that require to
3748		 * do the frame swap because the performance wouldn't be
3749		 * better than the skb mode.
3750		 */
3751		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
3752			return -EOPNOTSUPP;
3753
3754		if (!bpf->prog)
3755			xdp_features_clear_redirect_target(dev);
3756
3757		if (is_run) {
3758			napi_disable(&fep->napi);
3759			netif_tx_disable(dev);
3760		}
3761
3762		old_prog = xchg(&fep->xdp_prog, bpf->prog);
3763		if (old_prog)
3764			bpf_prog_put(old_prog);
3765
3766		fec_restart(dev);
3767
3768		if (is_run) {
3769			napi_enable(&fep->napi);
3770			netif_tx_start_all_queues(dev);
3771		}
3772
3773		if (bpf->prog)
3774			xdp_features_set_redirect_target(dev, false);
3775
3776		return 0;
3777
3778	case XDP_SETUP_XSK_POOL:
3779		return -EOPNOTSUPP;
3780
3781	default:
3782		return -EOPNOTSUPP;
3783	}
3784}
3785
3786static int
3787fec_enet_xdp_get_tx_queue(struct fec_enet_private *fep, int index)
3788{
3789	if (unlikely(index < 0))
3790		return 0;
3791
3792	return (index % fep->num_tx_queues);
3793}
3794
3795static int fec_enet_txq_xmit_frame(struct fec_enet_private *fep,
3796				   struct fec_enet_priv_tx_q *txq,
3797				   void *frame, u32 dma_sync_len,
3798				   bool ndo_xmit)
3799{
3800	unsigned int index, status, estatus;
3801	struct bufdesc *bdp;
3802	dma_addr_t dma_addr;
3803	int entries_free;
3804	u16 frame_len;
3805
3806	entries_free = fec_enet_get_free_txdesc_num(txq);
3807	if (entries_free < MAX_SKB_FRAGS + 1) {
3808		netdev_err_once(fep->netdev, "NOT enough BD for SG!\n");
3809		return -EBUSY;
3810	}
3811
3812	/* Fill in a Tx ring entry */
3813	bdp = txq->bd.cur;
3814	status = fec16_to_cpu(bdp->cbd_sc);
3815	status &= ~BD_ENET_TX_STATS;
3816
3817	index = fec_enet_get_bd_index(bdp, &txq->bd);
3818
3819	if (ndo_xmit) {
3820		struct xdp_frame *xdpf = frame;
3821
3822		dma_addr = dma_map_single(&fep->pdev->dev, xdpf->data,
3823					  xdpf->len, DMA_TO_DEVICE);
3824		if (dma_mapping_error(&fep->pdev->dev, dma_addr))
3825			return -ENOMEM;
3826
3827		frame_len = xdpf->len;
3828		txq->tx_buf[index].buf_p = xdpf;
3829		txq->tx_buf[index].type = FEC_TXBUF_T_XDP_NDO;
3830	} else {
3831		struct xdp_buff *xdpb = frame;
3832		struct page *page;
3833
3834		page = virt_to_page(xdpb->data);
3835		dma_addr = page_pool_get_dma_addr(page) +
3836			   (xdpb->data - xdpb->data_hard_start);
3837		dma_sync_single_for_device(&fep->pdev->dev, dma_addr,
3838					   dma_sync_len, DMA_BIDIRECTIONAL);
3839		frame_len = xdpb->data_end - xdpb->data;
3840		txq->tx_buf[index].buf_p = page;
3841		txq->tx_buf[index].type = FEC_TXBUF_T_XDP_TX;
3842	}
3843
3844	status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
3845	if (fep->bufdesc_ex)
3846		estatus = BD_ENET_TX_INT;
3847
3848	bdp->cbd_bufaddr = cpu_to_fec32(dma_addr);
3849	bdp->cbd_datlen = cpu_to_fec16(frame_len);
3850
3851	if (fep->bufdesc_ex) {
3852		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3853
3854		if (fep->quirks & FEC_QUIRK_HAS_AVB)
3855			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
3856
3857		ebdp->cbd_bdu = 0;
3858		ebdp->cbd_esc = cpu_to_fec32(estatus);
3859	}
3860
3861	/* Make sure the updates to rest of the descriptor are performed before
3862	 * transferring ownership.
3863	 */
3864	dma_wmb();
3865
3866	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
3867	 * it's the last BD of the frame, and to put the CRC on the end.
3868	 */
3869	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
3870	bdp->cbd_sc = cpu_to_fec16(status);
3871
3872	/* If this was the last BD in the ring, start at the beginning again. */
3873	bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
3874
3875	/* Make sure the update to bdp are performed before txq->bd.cur. */
3876	dma_wmb();
3877
3878	txq->bd.cur = bdp;
3879
3880	/* Trigger transmission start */
3881	writel(0, txq->bd.reg_desc_active);
3882
3883	return 0;
3884}
3885
3886static int fec_enet_xdp_tx_xmit(struct fec_enet_private *fep,
3887				int cpu, struct xdp_buff *xdp,
3888				u32 dma_sync_len)
3889{
3890	struct fec_enet_priv_tx_q *txq;
3891	struct netdev_queue *nq;
3892	int queue, ret;
3893
3894	queue = fec_enet_xdp_get_tx_queue(fep, cpu);
3895	txq = fep->tx_queue[queue];
3896	nq = netdev_get_tx_queue(fep->netdev, queue);
3897
3898	__netif_tx_lock(nq, cpu);
3899
3900	/* Avoid tx timeout as XDP shares the queue with kernel stack */
3901	txq_trans_cond_update(nq);
3902	ret = fec_enet_txq_xmit_frame(fep, txq, xdp, dma_sync_len, false);
3903
3904	__netif_tx_unlock(nq);
3905
3906	return ret;
3907}
3908
3909static int fec_enet_xdp_xmit(struct net_device *dev,
3910			     int num_frames,
3911			     struct xdp_frame **frames,
3912			     u32 flags)
3913{
3914	struct fec_enet_private *fep = netdev_priv(dev);
3915	struct fec_enet_priv_tx_q *txq;
3916	int cpu = smp_processor_id();
3917	unsigned int sent_frames = 0;
3918	struct netdev_queue *nq;
3919	unsigned int queue;
3920	int i;
3921
3922	queue = fec_enet_xdp_get_tx_queue(fep, cpu);
3923	txq = fep->tx_queue[queue];
3924	nq = netdev_get_tx_queue(fep->netdev, queue);
3925
3926	__netif_tx_lock(nq, cpu);
3927
3928	/* Avoid tx timeout as XDP shares the queue with kernel stack */
3929	txq_trans_cond_update(nq);
3930	for (i = 0; i < num_frames; i++) {
3931		if (fec_enet_txq_xmit_frame(fep, txq, frames[i], 0, true) < 0)
3932			break;
3933		sent_frames++;
3934	}
3935
3936	__netif_tx_unlock(nq);
3937
3938	return sent_frames;
3939}
3940
3941static int fec_hwtstamp_get(struct net_device *ndev,
3942			    struct kernel_hwtstamp_config *config)
3943{
3944	struct fec_enet_private *fep = netdev_priv(ndev);
3945
3946	if (!netif_running(ndev))
3947		return -EINVAL;
3948
3949	if (!fep->bufdesc_ex)
3950		return -EOPNOTSUPP;
3951
3952	fec_ptp_get(ndev, config);
3953
3954	return 0;
3955}
3956
3957static int fec_hwtstamp_set(struct net_device *ndev,
3958			    struct kernel_hwtstamp_config *config,
3959			    struct netlink_ext_ack *extack)
3960{
3961	struct fec_enet_private *fep = netdev_priv(ndev);
3962
3963	if (!netif_running(ndev))
3964		return -EINVAL;
3965
3966	if (!fep->bufdesc_ex)
3967		return -EOPNOTSUPP;
3968
3969	return fec_ptp_set(ndev, config, extack);
3970}
3971
3972static const struct net_device_ops fec_netdev_ops = {
3973	.ndo_open		= fec_enet_open,
3974	.ndo_stop		= fec_enet_close,
3975	.ndo_start_xmit		= fec_enet_start_xmit,
3976	.ndo_select_queue       = fec_enet_select_queue,
3977	.ndo_set_rx_mode	= set_multicast_list,
3978	.ndo_validate_addr	= eth_validate_addr,
3979	.ndo_tx_timeout		= fec_timeout,
3980	.ndo_set_mac_address	= fec_set_mac_address,
3981	.ndo_eth_ioctl		= phy_do_ioctl_running,
3982#ifdef CONFIG_NET_POLL_CONTROLLER
3983	.ndo_poll_controller	= fec_poll_controller,
3984#endif
3985	.ndo_set_features	= fec_set_features,
3986	.ndo_bpf		= fec_enet_bpf,
3987	.ndo_xdp_xmit		= fec_enet_xdp_xmit,
3988	.ndo_hwtstamp_get	= fec_hwtstamp_get,
3989	.ndo_hwtstamp_set	= fec_hwtstamp_set,
3990};
3991
3992static const unsigned short offset_des_active_rxq[] = {
3993	FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
3994};
3995
3996static const unsigned short offset_des_active_txq[] = {
3997	FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
3998};
3999
4000 /*
4001  * XXX:  We need to clean up on failure exits here.
4002  *
4003  */
4004static int fec_enet_init(struct net_device *ndev)
4005{
4006	struct fec_enet_private *fep = netdev_priv(ndev);
4007	struct bufdesc *cbd_base;
4008	dma_addr_t bd_dma;
4009	int bd_size;
4010	unsigned int i;
4011	unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
4012			sizeof(struct bufdesc);
4013	unsigned dsize_log2 = __fls(dsize);
4014	int ret;
4015
4016	WARN_ON(dsize != (1 << dsize_log2));
4017#if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
4018	fep->rx_align = 0xf;
4019	fep->tx_align = 0xf;
4020#else
4021	fep->rx_align = 0x3;
4022	fep->tx_align = 0x3;
4023#endif
4024	fep->rx_pkts_itr = FEC_ITR_ICFT_DEFAULT;
4025	fep->tx_pkts_itr = FEC_ITR_ICFT_DEFAULT;
4026	fep->rx_time_itr = FEC_ITR_ICTT_DEFAULT;
4027	fep->tx_time_itr = FEC_ITR_ICTT_DEFAULT;
4028
4029	/* Check mask of the streaming and coherent API */
4030	ret = dma_set_mask_and_coherent(&fep->pdev->dev, DMA_BIT_MASK(32));
4031	if (ret < 0) {
4032		dev_warn(&fep->pdev->dev, "No suitable DMA available\n");
4033		return ret;
4034	}
4035
4036	ret = fec_enet_alloc_queue(ndev);
4037	if (ret)
4038		return ret;
4039
4040	bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
4041
4042	/* Allocate memory for buffer descriptors. */
4043	cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma,
4044				       GFP_KERNEL);
4045	if (!cbd_base) {
4046		ret = -ENOMEM;
4047		goto free_queue_mem;
4048	}
4049
4050	/* Get the Ethernet address */
4051	ret = fec_get_mac(ndev);
4052	if (ret)
4053		goto free_queue_mem;
4054
4055	/* Set receive and transmit descriptor base. */
4056	for (i = 0; i < fep->num_rx_queues; i++) {
4057		struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
4058		unsigned size = dsize * rxq->bd.ring_size;
4059
4060		rxq->bd.qid = i;
4061		rxq->bd.base = cbd_base;
4062		rxq->bd.cur = cbd_base;
4063		rxq->bd.dma = bd_dma;
4064		rxq->bd.dsize = dsize;
4065		rxq->bd.dsize_log2 = dsize_log2;
4066		rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
4067		bd_dma += size;
4068		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
4069		rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
4070	}
4071
4072	for (i = 0; i < fep->num_tx_queues; i++) {
4073		struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
4074		unsigned size = dsize * txq->bd.ring_size;
4075
4076		txq->bd.qid = i;
4077		txq->bd.base = cbd_base;
4078		txq->bd.cur = cbd_base;
4079		txq->bd.dma = bd_dma;
4080		txq->bd.dsize = dsize;
4081		txq->bd.dsize_log2 = dsize_log2;
4082		txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
4083		bd_dma += size;
4084		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
4085		txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
4086	}
4087
4088
4089	/* The FEC Ethernet specific entries in the device structure */
4090	ndev->watchdog_timeo = TX_TIMEOUT;
4091	ndev->netdev_ops = &fec_netdev_ops;
4092	ndev->ethtool_ops = &fec_enet_ethtool_ops;
4093
4094	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
4095	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi);
4096
4097	if (fep->quirks & FEC_QUIRK_HAS_VLAN)
4098		/* enable hw VLAN support */
4099		ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
4100
4101	if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
4102		netif_set_tso_max_segs(ndev, FEC_MAX_TSO_SEGS);
4103
4104		/* enable hw accelerator */
4105		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
4106				| NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
4107		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
4108	}
4109
4110	if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
4111		fep->tx_align = 0;
4112		fep->rx_align = 0x3f;
4113	}
4114
4115	ndev->hw_features = ndev->features;
4116
4117	if (!(fep->quirks & FEC_QUIRK_SWAP_FRAME))
4118		ndev->xdp_features = NETDEV_XDP_ACT_BASIC |
4119				     NETDEV_XDP_ACT_REDIRECT;
4120
4121	fec_restart(ndev);
4122
4123	if (fep->quirks & FEC_QUIRK_MIB_CLEAR)
4124		fec_enet_clear_ethtool_stats(ndev);
4125	else
4126		fec_enet_update_ethtool_stats(ndev);
4127
4128	return 0;
4129
4130free_queue_mem:
4131	fec_enet_free_queue(ndev);
4132	return ret;
4133}
4134
4135#ifdef CONFIG_OF
4136static int fec_reset_phy(struct platform_device *pdev)
4137{
4138	struct gpio_desc *phy_reset;
4139	int msec = 1, phy_post_delay = 0;
4140	struct device_node *np = pdev->dev.of_node;
4141	int err;
4142
4143	if (!np)
4144		return 0;
4145
4146	err = of_property_read_u32(np, "phy-reset-duration", &msec);
4147	/* A sane reset duration should not be longer than 1s */
4148	if (!err && msec > 1000)
4149		msec = 1;
4150
4151	err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay);
4152	/* valid reset duration should be less than 1s */
4153	if (!err && phy_post_delay > 1000)
4154		return -EINVAL;
4155
4156	phy_reset = devm_gpiod_get_optional(&pdev->dev, "phy-reset",
4157					    GPIOD_OUT_HIGH);
4158	if (IS_ERR(phy_reset))
4159		return dev_err_probe(&pdev->dev, PTR_ERR(phy_reset),
4160				     "failed to get phy-reset-gpios\n");
4161
4162	if (!phy_reset)
4163		return 0;
4164
4165	if (msec > 20)
4166		msleep(msec);
4167	else
4168		usleep_range(msec * 1000, msec * 1000 + 1000);
4169
4170	gpiod_set_value_cansleep(phy_reset, 0);
4171
4172	if (!phy_post_delay)
4173		return 0;
4174
4175	if (phy_post_delay > 20)
4176		msleep(phy_post_delay);
4177	else
4178		usleep_range(phy_post_delay * 1000,
4179			     phy_post_delay * 1000 + 1000);
4180
4181	return 0;
4182}
4183#else /* CONFIG_OF */
4184static int fec_reset_phy(struct platform_device *pdev)
4185{
4186	/*
4187	 * In case of platform probe, the reset has been done
4188	 * by machine code.
4189	 */
4190	return 0;
4191}
4192#endif /* CONFIG_OF */
4193
4194static void
4195fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
4196{
4197	struct device_node *np = pdev->dev.of_node;
4198
4199	*num_tx = *num_rx = 1;
4200
4201	if (!np || !of_device_is_available(np))
4202		return;
4203
4204	/* parse the num of tx and rx queues */
4205	of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
4206
4207	of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
4208
4209	if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
4210		dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
4211			 *num_tx);
4212		*num_tx = 1;
4213		return;
4214	}
4215
4216	if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
4217		dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
4218			 *num_rx);
4219		*num_rx = 1;
4220		return;
4221	}
4222
4223}
4224
4225static int fec_enet_get_irq_cnt(struct platform_device *pdev)
4226{
4227	int irq_cnt = platform_irq_count(pdev);
4228
4229	if (irq_cnt > FEC_IRQ_NUM)
4230		irq_cnt = FEC_IRQ_NUM;	/* last for pps */
4231	else if (irq_cnt == 2)
4232		irq_cnt = 1;	/* last for pps */
4233	else if (irq_cnt <= 0)
4234		irq_cnt = 1;	/* At least 1 irq is needed */
4235	return irq_cnt;
4236}
4237
4238static void fec_enet_get_wakeup_irq(struct platform_device *pdev)
4239{
4240	struct net_device *ndev = platform_get_drvdata(pdev);
4241	struct fec_enet_private *fep = netdev_priv(ndev);
4242
4243	if (fep->quirks & FEC_QUIRK_WAKEUP_FROM_INT2)
4244		fep->wake_irq = fep->irq[2];
4245	else
4246		fep->wake_irq = fep->irq[0];
4247}
4248
4249static int fec_enet_init_stop_mode(struct fec_enet_private *fep,
4250				   struct device_node *np)
4251{
4252	struct device_node *gpr_np;
4253	u32 out_val[3];
4254	int ret = 0;
4255
4256	gpr_np = of_parse_phandle(np, "fsl,stop-mode", 0);
4257	if (!gpr_np)
4258		return 0;
4259
4260	ret = of_property_read_u32_array(np, "fsl,stop-mode", out_val,
4261					 ARRAY_SIZE(out_val));
4262	if (ret) {
4263		dev_dbg(&fep->pdev->dev, "no stop mode property\n");
4264		goto out;
4265	}
4266
4267	fep->stop_gpr.gpr = syscon_node_to_regmap(gpr_np);
4268	if (IS_ERR(fep->stop_gpr.gpr)) {
4269		dev_err(&fep->pdev->dev, "could not find gpr regmap\n");
4270		ret = PTR_ERR(fep->stop_gpr.gpr);
4271		fep->stop_gpr.gpr = NULL;
4272		goto out;
4273	}
4274
4275	fep->stop_gpr.reg = out_val[1];
4276	fep->stop_gpr.bit = out_val[2];
4277
4278out:
4279	of_node_put(gpr_np);
4280
4281	return ret;
4282}
4283
4284static int
4285fec_probe(struct platform_device *pdev)
4286{
4287	struct fec_enet_private *fep;
4288	struct fec_platform_data *pdata;
4289	phy_interface_t interface;
4290	struct net_device *ndev;
4291	int i, irq, ret = 0;
4292	const struct of_device_id *of_id;
4293	static int dev_id;
4294	struct device_node *np = pdev->dev.of_node, *phy_node;
4295	int num_tx_qs;
4296	int num_rx_qs;
4297	char irq_name[8];
4298	int irq_cnt;
4299	struct fec_devinfo *dev_info;
4300
4301	fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
4302
4303	/* Init network device */
4304	ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) +
4305				  FEC_STATS_SIZE, num_tx_qs, num_rx_qs);
4306	if (!ndev)
4307		return -ENOMEM;
4308
4309	SET_NETDEV_DEV(ndev, &pdev->dev);
4310
4311	/* setup board info structure */
4312	fep = netdev_priv(ndev);
4313
4314	of_id = of_match_device(fec_dt_ids, &pdev->dev);
4315	if (of_id)
4316		pdev->id_entry = of_id->data;
4317	dev_info = (struct fec_devinfo *)pdev->id_entry->driver_data;
4318	if (dev_info)
4319		fep->quirks = dev_info->quirks;
4320
4321	fep->netdev = ndev;
4322	fep->num_rx_queues = num_rx_qs;
4323	fep->num_tx_queues = num_tx_qs;
4324
4325#if !defined(CONFIG_M5272)
4326	/* default enable pause frame auto negotiation */
4327	if (fep->quirks & FEC_QUIRK_HAS_GBIT)
4328		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
4329#endif
4330
4331	/* Select default pin state */
4332	pinctrl_pm_select_default_state(&pdev->dev);
4333
4334	fep->hwp = devm_platform_ioremap_resource(pdev, 0);
4335	if (IS_ERR(fep->hwp)) {
4336		ret = PTR_ERR(fep->hwp);
4337		goto failed_ioremap;
4338	}
4339
4340	fep->pdev = pdev;
4341	fep->dev_id = dev_id++;
4342
4343	platform_set_drvdata(pdev, ndev);
4344
4345	if ((of_machine_is_compatible("fsl,imx6q") ||
4346	     of_machine_is_compatible("fsl,imx6dl")) &&
4347	    !of_property_read_bool(np, "fsl,err006687-workaround-present"))
4348		fep->quirks |= FEC_QUIRK_ERR006687;
4349
4350	ret = fec_enet_ipc_handle_init(fep);
4351	if (ret)
4352		goto failed_ipc_init;
4353
4354	if (of_property_read_bool(np, "fsl,magic-packet"))
4355		fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
4356
4357	ret = fec_enet_init_stop_mode(fep, np);
4358	if (ret)
4359		goto failed_stop_mode;
4360
4361	phy_node = of_parse_phandle(np, "phy-handle", 0);
4362	if (!phy_node && of_phy_is_fixed_link(np)) {
4363		ret = of_phy_register_fixed_link(np);
4364		if (ret < 0) {
4365			dev_err(&pdev->dev,
4366				"broken fixed-link specification\n");
4367			goto failed_phy;
4368		}
4369		phy_node = of_node_get(np);
4370	}
4371	fep->phy_node = phy_node;
4372
4373	ret = of_get_phy_mode(pdev->dev.of_node, &interface);
4374	if (ret) {
4375		pdata = dev_get_platdata(&pdev->dev);
4376		if (pdata)
4377			fep->phy_interface = pdata->phy;
4378		else
4379			fep->phy_interface = PHY_INTERFACE_MODE_MII;
4380	} else {
4381		fep->phy_interface = interface;
4382	}
4383
4384	ret = fec_enet_parse_rgmii_delay(fep, np);
4385	if (ret)
4386		goto failed_rgmii_delay;
4387
4388	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
4389	if (IS_ERR(fep->clk_ipg)) {
4390		ret = PTR_ERR(fep->clk_ipg);
4391		goto failed_clk;
4392	}
4393
4394	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
4395	if (IS_ERR(fep->clk_ahb)) {
4396		ret = PTR_ERR(fep->clk_ahb);
4397		goto failed_clk;
4398	}
4399
4400	fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
4401
4402	/* enet_out is optional, depends on board */
4403	fep->clk_enet_out = devm_clk_get_optional(&pdev->dev, "enet_out");
4404	if (IS_ERR(fep->clk_enet_out)) {
4405		ret = PTR_ERR(fep->clk_enet_out);
4406		goto failed_clk;
4407	}
4408
4409	fep->ptp_clk_on = false;
4410	mutex_init(&fep->ptp_clk_mutex);
4411
4412	/* clk_ref is optional, depends on board */
4413	fep->clk_ref = devm_clk_get_optional(&pdev->dev, "enet_clk_ref");
4414	if (IS_ERR(fep->clk_ref)) {
4415		ret = PTR_ERR(fep->clk_ref);
4416		goto failed_clk;
4417	}
4418	fep->clk_ref_rate = clk_get_rate(fep->clk_ref);
4419
4420	/* clk_2x_txclk is optional, depends on board */
4421	if (fep->rgmii_txc_dly || fep->rgmii_rxc_dly) {
4422		fep->clk_2x_txclk = devm_clk_get(&pdev->dev, "enet_2x_txclk");
4423		if (IS_ERR(fep->clk_2x_txclk))
4424			fep->clk_2x_txclk = NULL;
4425	}
4426
4427	fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
4428	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
4429	if (IS_ERR(fep->clk_ptp)) {
4430		fep->clk_ptp = NULL;
4431		fep->bufdesc_ex = false;
4432	}
4433
4434	ret = fec_enet_clk_enable(ndev, true);
4435	if (ret)
4436		goto failed_clk;
4437
4438	ret = clk_prepare_enable(fep->clk_ipg);
4439	if (ret)
4440		goto failed_clk_ipg;
4441	ret = clk_prepare_enable(fep->clk_ahb);
4442	if (ret)
4443		goto failed_clk_ahb;
4444
4445	fep->reg_phy = devm_regulator_get_optional(&pdev->dev, "phy");
4446	if (!IS_ERR(fep->reg_phy)) {
4447		ret = regulator_enable(fep->reg_phy);
4448		if (ret) {
4449			dev_err(&pdev->dev,
4450				"Failed to enable phy regulator: %d\n", ret);
4451			goto failed_regulator;
4452		}
4453	} else {
4454		if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) {
4455			ret = -EPROBE_DEFER;
4456			goto failed_regulator;
4457		}
4458		fep->reg_phy = NULL;
4459	}
4460
4461	pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
4462	pm_runtime_use_autosuspend(&pdev->dev);
4463	pm_runtime_get_noresume(&pdev->dev);
4464	pm_runtime_set_active(&pdev->dev);
4465	pm_runtime_enable(&pdev->dev);
4466
4467	ret = fec_reset_phy(pdev);
4468	if (ret)
4469		goto failed_reset;
4470
4471	irq_cnt = fec_enet_get_irq_cnt(pdev);
4472	if (fep->bufdesc_ex)
4473		fec_ptp_init(pdev, irq_cnt);
4474
4475	ret = fec_enet_init(ndev);
4476	if (ret)
4477		goto failed_init;
4478
4479	for (i = 0; i < irq_cnt; i++) {
4480		snprintf(irq_name, sizeof(irq_name), "int%d", i);
4481		irq = platform_get_irq_byname_optional(pdev, irq_name);
4482		if (irq < 0)
4483			irq = platform_get_irq(pdev, i);
4484		if (irq < 0) {
4485			ret = irq;
4486			goto failed_irq;
4487		}
4488		ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
4489				       0, pdev->name, ndev);
4490		if (ret)
4491			goto failed_irq;
4492
4493		fep->irq[i] = irq;
4494	}
4495
4496	/* Decide which interrupt line is wakeup capable */
4497	fec_enet_get_wakeup_irq(pdev);
4498
4499	ret = fec_enet_mii_init(pdev);
4500	if (ret)
4501		goto failed_mii_init;
4502
4503	/* Carrier starts down, phylib will bring it up */
4504	netif_carrier_off(ndev);
4505	fec_enet_clk_enable(ndev, false);
4506	pinctrl_pm_select_sleep_state(&pdev->dev);
4507
4508	ndev->max_mtu = PKT_MAXBUF_SIZE - ETH_HLEN - ETH_FCS_LEN;
4509
4510	ret = register_netdev(ndev);
4511	if (ret)
4512		goto failed_register;
4513
4514	device_init_wakeup(&ndev->dev, fep->wol_flag &
4515			   FEC_WOL_HAS_MAGIC_PACKET);
4516
4517	if (fep->bufdesc_ex && fep->ptp_clock)
4518		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
4519
4520	INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
4521
4522	pm_runtime_mark_last_busy(&pdev->dev);
4523	pm_runtime_put_autosuspend(&pdev->dev);
4524
4525	return 0;
4526
4527failed_register:
4528	fec_enet_mii_remove(fep);
4529failed_mii_init:
4530failed_irq:
4531failed_init:
4532	fec_ptp_stop(pdev);
4533failed_reset:
4534	pm_runtime_put_noidle(&pdev->dev);
4535	pm_runtime_disable(&pdev->dev);
4536	if (fep->reg_phy)
4537		regulator_disable(fep->reg_phy);
4538failed_regulator:
4539	clk_disable_unprepare(fep->clk_ahb);
4540failed_clk_ahb:
4541	clk_disable_unprepare(fep->clk_ipg);
4542failed_clk_ipg:
4543	fec_enet_clk_enable(ndev, false);
4544failed_clk:
4545failed_rgmii_delay:
4546	if (of_phy_is_fixed_link(np))
4547		of_phy_deregister_fixed_link(np);
4548	of_node_put(phy_node);
4549failed_stop_mode:
4550failed_ipc_init:
4551failed_phy:
4552	dev_id--;
4553failed_ioremap:
4554	free_netdev(ndev);
4555
4556	return ret;
4557}
4558
4559static void
4560fec_drv_remove(struct platform_device *pdev)
4561{
4562	struct net_device *ndev = platform_get_drvdata(pdev);
4563	struct fec_enet_private *fep = netdev_priv(ndev);
4564	struct device_node *np = pdev->dev.of_node;
4565	int ret;
4566
4567	ret = pm_runtime_get_sync(&pdev->dev);
4568	if (ret < 0)
4569		dev_err(&pdev->dev,
4570			"Failed to resume device in remove callback (%pe)\n",
4571			ERR_PTR(ret));
4572
4573	cancel_work_sync(&fep->tx_timeout_work);
4574	fec_ptp_stop(pdev);
4575	unregister_netdev(ndev);
4576	fec_enet_mii_remove(fep);
4577	if (fep->reg_phy)
4578		regulator_disable(fep->reg_phy);
4579
4580	if (of_phy_is_fixed_link(np))
4581		of_phy_deregister_fixed_link(np);
4582	of_node_put(fep->phy_node);
4583
4584	/* After pm_runtime_get_sync() failed, the clks are still off, so skip
4585	 * disabling them again.
4586	 */
4587	if (ret >= 0) {
4588		clk_disable_unprepare(fep->clk_ahb);
4589		clk_disable_unprepare(fep->clk_ipg);
4590	}
4591	pm_runtime_put_noidle(&pdev->dev);
4592	pm_runtime_disable(&pdev->dev);
4593
4594	free_netdev(ndev);
4595}
4596
4597static int __maybe_unused fec_suspend(struct device *dev)
4598{
4599	struct net_device *ndev = dev_get_drvdata(dev);
4600	struct fec_enet_private *fep = netdev_priv(ndev);
4601	int ret;
4602
4603	rtnl_lock();
4604	if (netif_running(ndev)) {
4605		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
4606			fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
4607		phy_stop(ndev->phydev);
4608		napi_disable(&fep->napi);
4609		netif_tx_lock_bh(ndev);
4610		netif_device_detach(ndev);
4611		netif_tx_unlock_bh(ndev);
4612		fec_stop(ndev);
4613		if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
4614			fec_irqs_disable(ndev);
4615			pinctrl_pm_select_sleep_state(&fep->pdev->dev);
4616		} else {
4617			fec_irqs_disable_except_wakeup(ndev);
4618			if (fep->wake_irq > 0) {
4619				disable_irq(fep->wake_irq);
4620				enable_irq_wake(fep->wake_irq);
4621			}
4622			fec_enet_stop_mode(fep, true);
4623		}
4624		/* It's safe to disable clocks since interrupts are masked */
4625		fec_enet_clk_enable(ndev, false);
4626
4627		fep->rpm_active = !pm_runtime_status_suspended(dev);
4628		if (fep->rpm_active) {
4629			ret = pm_runtime_force_suspend(dev);
4630			if (ret < 0) {
4631				rtnl_unlock();
4632				return ret;
4633			}
4634		}
4635	}
4636	rtnl_unlock();
4637
4638	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
4639		regulator_disable(fep->reg_phy);
4640
4641	/* SOC supply clock to phy, when clock is disabled, phy link down
4642	 * SOC control phy regulator, when regulator is disabled, phy link down
4643	 */
4644	if (fep->clk_enet_out || fep->reg_phy)
4645		fep->link = 0;
4646
4647	return 0;
4648}
4649
4650static int __maybe_unused fec_resume(struct device *dev)
4651{
4652	struct net_device *ndev = dev_get_drvdata(dev);
4653	struct fec_enet_private *fep = netdev_priv(ndev);
4654	int ret;
4655	int val;
4656
4657	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
4658		ret = regulator_enable(fep->reg_phy);
4659		if (ret)
4660			return ret;
4661	}
4662
4663	rtnl_lock();
4664	if (netif_running(ndev)) {
4665		if (fep->rpm_active)
4666			pm_runtime_force_resume(dev);
4667
4668		ret = fec_enet_clk_enable(ndev, true);
4669		if (ret) {
4670			rtnl_unlock();
4671			goto failed_clk;
4672		}
4673		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
4674			fec_enet_stop_mode(fep, false);
4675			if (fep->wake_irq) {
4676				disable_irq_wake(fep->wake_irq);
4677				enable_irq(fep->wake_irq);
4678			}
4679
4680			val = readl(fep->hwp + FEC_ECNTRL);
4681			val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
4682			writel(val, fep->hwp + FEC_ECNTRL);
4683			fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
4684		} else {
4685			pinctrl_pm_select_default_state(&fep->pdev->dev);
4686		}
4687		fec_restart(ndev);
4688		netif_tx_lock_bh(ndev);
4689		netif_device_attach(ndev);
4690		netif_tx_unlock_bh(ndev);
4691		napi_enable(&fep->napi);
4692		phy_init_hw(ndev->phydev);
4693		phy_start(ndev->phydev);
4694	}
4695	rtnl_unlock();
4696
4697	return 0;
4698
4699failed_clk:
4700	if (fep->reg_phy)
4701		regulator_disable(fep->reg_phy);
4702	return ret;
4703}
4704
4705static int __maybe_unused fec_runtime_suspend(struct device *dev)
4706{
4707	struct net_device *ndev = dev_get_drvdata(dev);
4708	struct fec_enet_private *fep = netdev_priv(ndev);
4709
4710	clk_disable_unprepare(fep->clk_ahb);
4711	clk_disable_unprepare(fep->clk_ipg);
4712
4713	return 0;
4714}
4715
4716static int __maybe_unused fec_runtime_resume(struct device *dev)
4717{
4718	struct net_device *ndev = dev_get_drvdata(dev);
4719	struct fec_enet_private *fep = netdev_priv(ndev);
4720	int ret;
4721
4722	ret = clk_prepare_enable(fep->clk_ahb);
4723	if (ret)
4724		return ret;
4725	ret = clk_prepare_enable(fep->clk_ipg);
4726	if (ret)
4727		goto failed_clk_ipg;
4728
4729	return 0;
4730
4731failed_clk_ipg:
4732	clk_disable_unprepare(fep->clk_ahb);
4733	return ret;
4734}
4735
4736static const struct dev_pm_ops fec_pm_ops = {
4737	SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
4738	SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
4739};
4740
4741static struct platform_driver fec_driver = {
4742	.driver	= {
4743		.name	= DRIVER_NAME,
4744		.pm	= &fec_pm_ops,
4745		.of_match_table = fec_dt_ids,
4746		.suppress_bind_attrs = true,
4747	},
4748	.id_table = fec_devtype,
4749	.probe	= fec_probe,
4750	.remove_new = fec_drv_remove,
4751};
4752
4753module_platform_driver(fec_driver);
4754
4755MODULE_LICENSE("GPL");
4756