1// SPDX-License-Identifier: GPL-2.0-or-later
2/*  D-Link DL2000-based Gigabit Ethernet Adapter Linux driver */
3/*
4    Copyright (c) 2001, 2002 by D-Link Corporation
5    Written by Edward Peng.<edward_peng@dlink.com.tw>
6    Created 03-May-2001, base on Linux' sundance.c.
7
8*/
9
10#include "dl2k.h"
11#include <linux/dma-mapping.h>
12
13#define dw32(reg, val)	iowrite32(val, ioaddr + (reg))
14#define dw16(reg, val)	iowrite16(val, ioaddr + (reg))
15#define dw8(reg, val)	iowrite8(val, ioaddr + (reg))
16#define dr32(reg)	ioread32(ioaddr + (reg))
17#define dr16(reg)	ioread16(ioaddr + (reg))
18#define dr8(reg)	ioread8(ioaddr + (reg))
19
20#define MAX_UNITS 8
21static int mtu[MAX_UNITS];
22static int vlan[MAX_UNITS];
23static int jumbo[MAX_UNITS];
24static char *media[MAX_UNITS];
25static int tx_flow=-1;
26static int rx_flow=-1;
27static int copy_thresh;
28static int rx_coalesce=10;	/* Rx frame count each interrupt */
29static int rx_timeout=200;	/* Rx DMA wait time in 640ns increments */
30static int tx_coalesce=16;	/* HW xmit count each TxDMAComplete */
31
32
33MODULE_AUTHOR ("Edward Peng");
34MODULE_DESCRIPTION ("D-Link DL2000-based Gigabit Ethernet Adapter");
35MODULE_LICENSE("GPL");
36module_param_array(mtu, int, NULL, 0);
37module_param_array(media, charp, NULL, 0);
38module_param_array(vlan, int, NULL, 0);
39module_param_array(jumbo, int, NULL, 0);
40module_param(tx_flow, int, 0);
41module_param(rx_flow, int, 0);
42module_param(copy_thresh, int, 0);
43module_param(rx_coalesce, int, 0);	/* Rx frame count each interrupt */
44module_param(rx_timeout, int, 0);	/* Rx DMA wait time in 64ns increments */
45module_param(tx_coalesce, int, 0); /* HW xmit count each TxDMAComplete */
46
47
48/* Enable the default interrupts */
49#define DEFAULT_INTR (RxDMAComplete | HostError | IntRequested | TxDMAComplete| \
50       UpdateStats | LinkEvent)
51
52static void dl2k_enable_int(struct netdev_private *np)
53{
54	void __iomem *ioaddr = np->ioaddr;
55
56	dw16(IntEnable, DEFAULT_INTR);
57}
58
59static const int max_intrloop = 50;
60static const int multicast_filter_limit = 0x40;
61
62static int rio_open (struct net_device *dev);
63static void rio_timer (struct timer_list *t);
64static void rio_tx_timeout (struct net_device *dev, unsigned int txqueue);
65static netdev_tx_t start_xmit (struct sk_buff *skb, struct net_device *dev);
66static irqreturn_t rio_interrupt (int irq, void *dev_instance);
67static void rio_free_tx (struct net_device *dev, int irq);
68static void tx_error (struct net_device *dev, int tx_status);
69static int receive_packet (struct net_device *dev);
70static void rio_error (struct net_device *dev, int int_status);
71static void set_multicast (struct net_device *dev);
72static struct net_device_stats *get_stats (struct net_device *dev);
73static int clear_stats (struct net_device *dev);
74static int rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd);
75static int rio_close (struct net_device *dev);
76static int find_miiphy (struct net_device *dev);
77static int parse_eeprom (struct net_device *dev);
78static int read_eeprom (struct netdev_private *, int eep_addr);
79static int mii_wait_link (struct net_device *dev, int wait);
80static int mii_set_media (struct net_device *dev);
81static int mii_get_media (struct net_device *dev);
82static int mii_set_media_pcs (struct net_device *dev);
83static int mii_get_media_pcs (struct net_device *dev);
84static int mii_read (struct net_device *dev, int phy_addr, int reg_num);
85static int mii_write (struct net_device *dev, int phy_addr, int reg_num,
86		      u16 data);
87
88static const struct ethtool_ops ethtool_ops;
89
90static const struct net_device_ops netdev_ops = {
91	.ndo_open		= rio_open,
92	.ndo_start_xmit	= start_xmit,
93	.ndo_stop		= rio_close,
94	.ndo_get_stats		= get_stats,
95	.ndo_validate_addr	= eth_validate_addr,
96	.ndo_set_mac_address 	= eth_mac_addr,
97	.ndo_set_rx_mode	= set_multicast,
98	.ndo_eth_ioctl		= rio_ioctl,
99	.ndo_tx_timeout		= rio_tx_timeout,
100};
101
102static int
103rio_probe1 (struct pci_dev *pdev, const struct pci_device_id *ent)
104{
105	struct net_device *dev;
106	struct netdev_private *np;
107	static int card_idx;
108	int chip_idx = ent->driver_data;
109	int err, irq;
110	void __iomem *ioaddr;
111	void *ring_space;
112	dma_addr_t ring_dma;
113
114	err = pci_enable_device (pdev);
115	if (err)
116		return err;
117
118	irq = pdev->irq;
119	err = pci_request_regions (pdev, "dl2k");
120	if (err)
121		goto err_out_disable;
122
123	pci_set_master (pdev);
124
125	err = -ENOMEM;
126
127	dev = alloc_etherdev (sizeof (*np));
128	if (!dev)
129		goto err_out_res;
130	SET_NETDEV_DEV(dev, &pdev->dev);
131
132	np = netdev_priv(dev);
133
134	/* IO registers range. */
135	ioaddr = pci_iomap(pdev, 0, 0);
136	if (!ioaddr)
137		goto err_out_dev;
138	np->eeprom_addr = ioaddr;
139
140#ifdef MEM_MAPPING
141	/* MM registers range. */
142	ioaddr = pci_iomap(pdev, 1, 0);
143	if (!ioaddr)
144		goto err_out_iounmap;
145#endif
146	np->ioaddr = ioaddr;
147	np->chip_id = chip_idx;
148	np->pdev = pdev;
149	spin_lock_init (&np->tx_lock);
150	spin_lock_init (&np->rx_lock);
151
152	/* Parse manual configuration */
153	np->an_enable = 1;
154	np->tx_coalesce = 1;
155	if (card_idx < MAX_UNITS) {
156		if (media[card_idx] != NULL) {
157			np->an_enable = 0;
158			if (strcmp (media[card_idx], "auto") == 0 ||
159			    strcmp (media[card_idx], "autosense") == 0 ||
160			    strcmp (media[card_idx], "0") == 0 ) {
161				np->an_enable = 2;
162			} else if (strcmp (media[card_idx], "100mbps_fd") == 0 ||
163			    strcmp (media[card_idx], "4") == 0) {
164				np->speed = 100;
165				np->full_duplex = 1;
166			} else if (strcmp (media[card_idx], "100mbps_hd") == 0 ||
167				   strcmp (media[card_idx], "3") == 0) {
168				np->speed = 100;
169				np->full_duplex = 0;
170			} else if (strcmp (media[card_idx], "10mbps_fd") == 0 ||
171				   strcmp (media[card_idx], "2") == 0) {
172				np->speed = 10;
173				np->full_duplex = 1;
174			} else if (strcmp (media[card_idx], "10mbps_hd") == 0 ||
175				   strcmp (media[card_idx], "1") == 0) {
176				np->speed = 10;
177				np->full_duplex = 0;
178			} else if (strcmp (media[card_idx], "1000mbps_fd") == 0 ||
179				 strcmp (media[card_idx], "6") == 0) {
180				np->speed=1000;
181				np->full_duplex=1;
182			} else if (strcmp (media[card_idx], "1000mbps_hd") == 0 ||
183				 strcmp (media[card_idx], "5") == 0) {
184				np->speed = 1000;
185				np->full_duplex = 0;
186			} else {
187				np->an_enable = 1;
188			}
189		}
190		if (jumbo[card_idx] != 0) {
191			np->jumbo = 1;
192			dev->mtu = MAX_JUMBO;
193		} else {
194			np->jumbo = 0;
195			if (mtu[card_idx] > 0 && mtu[card_idx] < PACKET_SIZE)
196				dev->mtu = mtu[card_idx];
197		}
198		np->vlan = (vlan[card_idx] > 0 && vlan[card_idx] < 4096) ?
199		    vlan[card_idx] : 0;
200		if (rx_coalesce > 0 && rx_timeout > 0) {
201			np->rx_coalesce = rx_coalesce;
202			np->rx_timeout = rx_timeout;
203			np->coalesce = 1;
204		}
205		np->tx_flow = (tx_flow == 0) ? 0 : 1;
206		np->rx_flow = (rx_flow == 0) ? 0 : 1;
207
208		if (tx_coalesce < 1)
209			tx_coalesce = 1;
210		else if (tx_coalesce > TX_RING_SIZE-1)
211			tx_coalesce = TX_RING_SIZE - 1;
212	}
213	dev->netdev_ops = &netdev_ops;
214	dev->watchdog_timeo = TX_TIMEOUT;
215	dev->ethtool_ops = &ethtool_ops;
216#if 0
217	dev->features = NETIF_F_IP_CSUM;
218#endif
219	/* MTU range: 68 - 1536 or 8000 */
220	dev->min_mtu = ETH_MIN_MTU;
221	dev->max_mtu = np->jumbo ? MAX_JUMBO : PACKET_SIZE;
222
223	pci_set_drvdata (pdev, dev);
224
225	ring_space = dma_alloc_coherent(&pdev->dev, TX_TOTAL_SIZE, &ring_dma,
226					GFP_KERNEL);
227	if (!ring_space)
228		goto err_out_iounmap;
229	np->tx_ring = ring_space;
230	np->tx_ring_dma = ring_dma;
231
232	ring_space = dma_alloc_coherent(&pdev->dev, RX_TOTAL_SIZE, &ring_dma,
233					GFP_KERNEL);
234	if (!ring_space)
235		goto err_out_unmap_tx;
236	np->rx_ring = ring_space;
237	np->rx_ring_dma = ring_dma;
238
239	/* Parse eeprom data */
240	parse_eeprom (dev);
241
242	/* Find PHY address */
243	err = find_miiphy (dev);
244	if (err)
245		goto err_out_unmap_rx;
246
247	/* Fiber device? */
248	np->phy_media = (dr16(ASICCtrl) & PhyMedia) ? 1 : 0;
249	np->link_status = 0;
250	/* Set media and reset PHY */
251	if (np->phy_media) {
252		/* default Auto-Negotiation for fiber deivices */
253	 	if (np->an_enable == 2) {
254			np->an_enable = 1;
255		}
256	} else {
257		/* Auto-Negotiation is mandatory for 1000BASE-T,
258		   IEEE 802.3ab Annex 28D page 14 */
259		if (np->speed == 1000)
260			np->an_enable = 1;
261	}
262
263	err = register_netdev (dev);
264	if (err)
265		goto err_out_unmap_rx;
266
267	card_idx++;
268
269	printk (KERN_INFO "%s: %s, %pM, IRQ %d\n",
270		dev->name, np->name, dev->dev_addr, irq);
271	if (tx_coalesce > 1)
272		printk(KERN_INFO "tx_coalesce:\t%d packets\n",
273				tx_coalesce);
274	if (np->coalesce)
275		printk(KERN_INFO
276		       "rx_coalesce:\t%d packets\n"
277		       "rx_timeout: \t%d ns\n",
278				np->rx_coalesce, np->rx_timeout*640);
279	if (np->vlan)
280		printk(KERN_INFO "vlan(id):\t%d\n", np->vlan);
281	return 0;
282
283err_out_unmap_rx:
284	dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, np->rx_ring,
285			  np->rx_ring_dma);
286err_out_unmap_tx:
287	dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, np->tx_ring,
288			  np->tx_ring_dma);
289err_out_iounmap:
290#ifdef MEM_MAPPING
291	pci_iounmap(pdev, np->ioaddr);
292#endif
293	pci_iounmap(pdev, np->eeprom_addr);
294err_out_dev:
295	free_netdev (dev);
296err_out_res:
297	pci_release_regions (pdev);
298err_out_disable:
299	pci_disable_device (pdev);
300	return err;
301}
302
303static int
304find_miiphy (struct net_device *dev)
305{
306	struct netdev_private *np = netdev_priv(dev);
307	int i, phy_found = 0;
308
309	np->phy_addr = 1;
310
311	for (i = 31; i >= 0; i--) {
312		int mii_status = mii_read (dev, i, 1);
313		if (mii_status != 0xffff && mii_status != 0x0000) {
314			np->phy_addr = i;
315			phy_found++;
316		}
317	}
318	if (!phy_found) {
319		printk (KERN_ERR "%s: No MII PHY found!\n", dev->name);
320		return -ENODEV;
321	}
322	return 0;
323}
324
325static int
326parse_eeprom (struct net_device *dev)
327{
328	struct netdev_private *np = netdev_priv(dev);
329	void __iomem *ioaddr = np->ioaddr;
330	int i, j;
331	u8 sromdata[256];
332	u8 *psib;
333	u32 crc;
334	PSROM_t psrom = (PSROM_t) sromdata;
335
336	int cid, next;
337
338	for (i = 0; i < 128; i++)
339		((__le16 *) sromdata)[i] = cpu_to_le16(read_eeprom(np, i));
340
341	if (np->pdev->vendor == PCI_VENDOR_ID_DLINK) {	/* D-Link Only */
342		/* Check CRC */
343		crc = ~ether_crc_le (256 - 4, sromdata);
344		if (psrom->crc != cpu_to_le32(crc)) {
345			printk (KERN_ERR "%s: EEPROM data CRC error.\n",
346					dev->name);
347			return -1;
348		}
349	}
350
351	/* Set MAC address */
352	eth_hw_addr_set(dev, psrom->mac_addr);
353
354	if (np->chip_id == CHIP_IP1000A) {
355		np->led_mode = psrom->led_mode;
356		return 0;
357	}
358
359	if (np->pdev->vendor != PCI_VENDOR_ID_DLINK) {
360		return 0;
361	}
362
363	/* Parse Software Information Block */
364	i = 0x30;
365	psib = (u8 *) sromdata;
366	do {
367		cid = psib[i++];
368		next = psib[i++];
369		if ((cid == 0 && next == 0) || (cid == 0xff && next == 0xff)) {
370			printk (KERN_ERR "Cell data error\n");
371			return -1;
372		}
373		switch (cid) {
374		case 0:	/* Format version */
375			break;
376		case 1:	/* End of cell */
377			return 0;
378		case 2:	/* Duplex Polarity */
379			np->duplex_polarity = psib[i];
380			dw8(PhyCtrl, dr8(PhyCtrl) | psib[i]);
381			break;
382		case 3:	/* Wake Polarity */
383			np->wake_polarity = psib[i];
384			break;
385		case 9:	/* Adapter description */
386			j = (next - i > 255) ? 255 : next - i;
387			memcpy (np->name, &(psib[i]), j);
388			break;
389		case 4:
390		case 5:
391		case 6:
392		case 7:
393		case 8:	/* Reversed */
394			break;
395		default:	/* Unknown cell */
396			return -1;
397		}
398		i = next;
399	} while (1);
400
401	return 0;
402}
403
404static void rio_set_led_mode(struct net_device *dev)
405{
406	struct netdev_private *np = netdev_priv(dev);
407	void __iomem *ioaddr = np->ioaddr;
408	u32 mode;
409
410	if (np->chip_id != CHIP_IP1000A)
411		return;
412
413	mode = dr32(ASICCtrl);
414	mode &= ~(IPG_AC_LED_MODE_BIT_1 | IPG_AC_LED_MODE | IPG_AC_LED_SPEED);
415
416	if (np->led_mode & 0x01)
417		mode |= IPG_AC_LED_MODE;
418	if (np->led_mode & 0x02)
419		mode |= IPG_AC_LED_MODE_BIT_1;
420	if (np->led_mode & 0x08)
421		mode |= IPG_AC_LED_SPEED;
422
423	dw32(ASICCtrl, mode);
424}
425
426static inline dma_addr_t desc_to_dma(struct netdev_desc *desc)
427{
428	return le64_to_cpu(desc->fraginfo) & DMA_BIT_MASK(48);
429}
430
431static void free_list(struct net_device *dev)
432{
433	struct netdev_private *np = netdev_priv(dev);
434	struct sk_buff *skb;
435	int i;
436
437	/* Free all the skbuffs in the queue. */
438	for (i = 0; i < RX_RING_SIZE; i++) {
439		skb = np->rx_skbuff[i];
440		if (skb) {
441			dma_unmap_single(&np->pdev->dev,
442					 desc_to_dma(&np->rx_ring[i]),
443					 skb->len, DMA_FROM_DEVICE);
444			dev_kfree_skb(skb);
445			np->rx_skbuff[i] = NULL;
446		}
447		np->rx_ring[i].status = 0;
448		np->rx_ring[i].fraginfo = 0;
449	}
450	for (i = 0; i < TX_RING_SIZE; i++) {
451		skb = np->tx_skbuff[i];
452		if (skb) {
453			dma_unmap_single(&np->pdev->dev,
454					 desc_to_dma(&np->tx_ring[i]),
455					 skb->len, DMA_TO_DEVICE);
456			dev_kfree_skb(skb);
457			np->tx_skbuff[i] = NULL;
458		}
459	}
460}
461
462static void rio_reset_ring(struct netdev_private *np)
463{
464	int i;
465
466	np->cur_rx = 0;
467	np->cur_tx = 0;
468	np->old_rx = 0;
469	np->old_tx = 0;
470
471	for (i = 0; i < TX_RING_SIZE; i++)
472		np->tx_ring[i].status = cpu_to_le64(TFDDone);
473
474	for (i = 0; i < RX_RING_SIZE; i++)
475		np->rx_ring[i].status = 0;
476}
477
478 /* allocate and initialize Tx and Rx descriptors */
479static int alloc_list(struct net_device *dev)
480{
481	struct netdev_private *np = netdev_priv(dev);
482	int i;
483
484	rio_reset_ring(np);
485	np->rx_buf_sz = (dev->mtu <= 1500 ? PACKET_SIZE : dev->mtu + 32);
486
487	/* Initialize Tx descriptors, TFDListPtr leaves in start_xmit(). */
488	for (i = 0; i < TX_RING_SIZE; i++) {
489		np->tx_skbuff[i] = NULL;
490		np->tx_ring[i].next_desc = cpu_to_le64(np->tx_ring_dma +
491					      ((i + 1) % TX_RING_SIZE) *
492					      sizeof(struct netdev_desc));
493	}
494
495	/* Initialize Rx descriptors & allocate buffers */
496	for (i = 0; i < RX_RING_SIZE; i++) {
497		/* Allocated fixed size of skbuff */
498		struct sk_buff *skb;
499
500		skb = netdev_alloc_skb_ip_align(dev, np->rx_buf_sz);
501		np->rx_skbuff[i] = skb;
502		if (!skb) {
503			free_list(dev);
504			return -ENOMEM;
505		}
506
507		np->rx_ring[i].next_desc = cpu_to_le64(np->rx_ring_dma +
508						((i + 1) % RX_RING_SIZE) *
509						sizeof(struct netdev_desc));
510		/* Rubicon now supports 40 bits of addressing space. */
511		np->rx_ring[i].fraginfo =
512		    cpu_to_le64(dma_map_single(&np->pdev->dev, skb->data,
513					       np->rx_buf_sz, DMA_FROM_DEVICE));
514		np->rx_ring[i].fraginfo |= cpu_to_le64((u64)np->rx_buf_sz << 48);
515	}
516
517	return 0;
518}
519
520static void rio_hw_init(struct net_device *dev)
521{
522	struct netdev_private *np = netdev_priv(dev);
523	void __iomem *ioaddr = np->ioaddr;
524	int i;
525	u16 macctrl;
526
527	/* Reset all logic functions */
528	dw16(ASICCtrl + 2,
529	     GlobalReset | DMAReset | FIFOReset | NetworkReset | HostReset);
530	mdelay(10);
531
532	rio_set_led_mode(dev);
533
534	/* DebugCtrl bit 4, 5, 9 must set */
535	dw32(DebugCtrl, dr32(DebugCtrl) | 0x0230);
536
537	if (np->chip_id == CHIP_IP1000A &&
538	    (np->pdev->revision == 0x40 || np->pdev->revision == 0x41)) {
539		/* PHY magic taken from ipg driver, undocumented registers */
540		mii_write(dev, np->phy_addr, 31, 0x0001);
541		mii_write(dev, np->phy_addr, 27, 0x01e0);
542		mii_write(dev, np->phy_addr, 31, 0x0002);
543		mii_write(dev, np->phy_addr, 27, 0xeb8e);
544		mii_write(dev, np->phy_addr, 31, 0x0000);
545		mii_write(dev, np->phy_addr, 30, 0x005e);
546		/* advertise 1000BASE-T half & full duplex, prefer MASTER */
547		mii_write(dev, np->phy_addr, MII_CTRL1000, 0x0700);
548	}
549
550	if (np->phy_media)
551		mii_set_media_pcs(dev);
552	else
553		mii_set_media(dev);
554
555	/* Jumbo frame */
556	if (np->jumbo != 0)
557		dw16(MaxFrameSize, MAX_JUMBO+14);
558
559	/* Set RFDListPtr */
560	dw32(RFDListPtr0, np->rx_ring_dma);
561	dw32(RFDListPtr1, 0);
562
563	/* Set station address */
564	/* 16 or 32-bit access is required by TC9020 datasheet but 8-bit works
565	 * too. However, it doesn't work on IP1000A so we use 16-bit access.
566	 */
567	for (i = 0; i < 3; i++)
568		dw16(StationAddr0 + 2 * i,
569		     cpu_to_le16(((const u16 *)dev->dev_addr)[i]));
570
571	set_multicast (dev);
572	if (np->coalesce) {
573		dw32(RxDMAIntCtrl, np->rx_coalesce | np->rx_timeout << 16);
574	}
575	/* Set RIO to poll every N*320nsec. */
576	dw8(RxDMAPollPeriod, 0x20);
577	dw8(TxDMAPollPeriod, 0xff);
578	dw8(RxDMABurstThresh, 0x30);
579	dw8(RxDMAUrgentThresh, 0x30);
580	dw32(RmonStatMask, 0x0007ffff);
581	/* clear statistics */
582	clear_stats (dev);
583
584	/* VLAN supported */
585	if (np->vlan) {
586		/* priority field in RxDMAIntCtrl  */
587		dw32(RxDMAIntCtrl, dr32(RxDMAIntCtrl) | 0x7 << 10);
588		/* VLANId */
589		dw16(VLANId, np->vlan);
590		/* Length/Type should be 0x8100 */
591		dw32(VLANTag, 0x8100 << 16 | np->vlan);
592		/* Enable AutoVLANuntagging, but disable AutoVLANtagging.
593		   VLAN information tagged by TFC' VID, CFI fields. */
594		dw32(MACCtrl, dr32(MACCtrl) | AutoVLANuntagging);
595	}
596
597	/* Start Tx/Rx */
598	dw32(MACCtrl, dr32(MACCtrl) | StatsEnable | RxEnable | TxEnable);
599
600	macctrl = 0;
601	macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
602	macctrl |= (np->full_duplex) ? DuplexSelect : 0;
603	macctrl |= (np->tx_flow) ? TxFlowControlEnable : 0;
604	macctrl |= (np->rx_flow) ? RxFlowControlEnable : 0;
605	dw16(MACCtrl, macctrl);
606}
607
608static void rio_hw_stop(struct net_device *dev)
609{
610	struct netdev_private *np = netdev_priv(dev);
611	void __iomem *ioaddr = np->ioaddr;
612
613	/* Disable interrupts */
614	dw16(IntEnable, 0);
615
616	/* Stop Tx and Rx logics */
617	dw32(MACCtrl, TxDisable | RxDisable | StatsDisable);
618}
619
620static int rio_open(struct net_device *dev)
621{
622	struct netdev_private *np = netdev_priv(dev);
623	const int irq = np->pdev->irq;
624	int i;
625
626	i = alloc_list(dev);
627	if (i)
628		return i;
629
630	rio_hw_init(dev);
631
632	i = request_irq(irq, rio_interrupt, IRQF_SHARED, dev->name, dev);
633	if (i) {
634		rio_hw_stop(dev);
635		free_list(dev);
636		return i;
637	}
638
639	timer_setup(&np->timer, rio_timer, 0);
640	np->timer.expires = jiffies + 1 * HZ;
641	add_timer(&np->timer);
642
643	netif_start_queue (dev);
644
645	dl2k_enable_int(np);
646	return 0;
647}
648
649static void
650rio_timer (struct timer_list *t)
651{
652	struct netdev_private *np = from_timer(np, t, timer);
653	struct net_device *dev = pci_get_drvdata(np->pdev);
654	unsigned int entry;
655	int next_tick = 1*HZ;
656	unsigned long flags;
657
658	spin_lock_irqsave(&np->rx_lock, flags);
659	/* Recover rx ring exhausted error */
660	if (np->cur_rx - np->old_rx >= RX_RING_SIZE) {
661		printk(KERN_INFO "Try to recover rx ring exhausted...\n");
662		/* Re-allocate skbuffs to fill the descriptor ring */
663		for (; np->cur_rx - np->old_rx > 0; np->old_rx++) {
664			struct sk_buff *skb;
665			entry = np->old_rx % RX_RING_SIZE;
666			/* Dropped packets don't need to re-allocate */
667			if (np->rx_skbuff[entry] == NULL) {
668				skb = netdev_alloc_skb_ip_align(dev,
669								np->rx_buf_sz);
670				if (skb == NULL) {
671					np->rx_ring[entry].fraginfo = 0;
672					printk (KERN_INFO
673						"%s: Still unable to re-allocate Rx skbuff.#%d\n",
674						dev->name, entry);
675					break;
676				}
677				np->rx_skbuff[entry] = skb;
678				np->rx_ring[entry].fraginfo =
679				    cpu_to_le64 (dma_map_single(&np->pdev->dev, skb->data,
680								np->rx_buf_sz, DMA_FROM_DEVICE));
681			}
682			np->rx_ring[entry].fraginfo |=
683			    cpu_to_le64((u64)np->rx_buf_sz << 48);
684			np->rx_ring[entry].status = 0;
685		} /* end for */
686	} /* end if */
687	spin_unlock_irqrestore (&np->rx_lock, flags);
688	np->timer.expires = jiffies + next_tick;
689	add_timer(&np->timer);
690}
691
692static void
693rio_tx_timeout (struct net_device *dev, unsigned int txqueue)
694{
695	struct netdev_private *np = netdev_priv(dev);
696	void __iomem *ioaddr = np->ioaddr;
697
698	printk (KERN_INFO "%s: Tx timed out (%4.4x), is buffer full?\n",
699		dev->name, dr32(TxStatus));
700	rio_free_tx(dev, 0);
701	dev->if_port = 0;
702	netif_trans_update(dev); /* prevent tx timeout */
703}
704
705static netdev_tx_t
706start_xmit (struct sk_buff *skb, struct net_device *dev)
707{
708	struct netdev_private *np = netdev_priv(dev);
709	void __iomem *ioaddr = np->ioaddr;
710	struct netdev_desc *txdesc;
711	unsigned entry;
712	u64 tfc_vlan_tag = 0;
713
714	if (np->link_status == 0) {	/* Link Down */
715		dev_kfree_skb(skb);
716		return NETDEV_TX_OK;
717	}
718	entry = np->cur_tx % TX_RING_SIZE;
719	np->tx_skbuff[entry] = skb;
720	txdesc = &np->tx_ring[entry];
721
722#if 0
723	if (skb->ip_summed == CHECKSUM_PARTIAL) {
724		txdesc->status |=
725		    cpu_to_le64 (TCPChecksumEnable | UDPChecksumEnable |
726				 IPChecksumEnable);
727	}
728#endif
729	if (np->vlan) {
730		tfc_vlan_tag = VLANTagInsert |
731		    ((u64)np->vlan << 32) |
732		    ((u64)skb->priority << 45);
733	}
734	txdesc->fraginfo = cpu_to_le64 (dma_map_single(&np->pdev->dev, skb->data,
735						       skb->len, DMA_TO_DEVICE));
736	txdesc->fraginfo |= cpu_to_le64((u64)skb->len << 48);
737
738	/* DL2K bug: DMA fails to get next descriptor ptr in 10Mbps mode
739	 * Work around: Always use 1 descriptor in 10Mbps mode */
740	if (entry % np->tx_coalesce == 0 || np->speed == 10)
741		txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
742					      WordAlignDisable |
743					      TxDMAIndicate |
744					      (1 << FragCountShift));
745	else
746		txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
747					      WordAlignDisable |
748					      (1 << FragCountShift));
749
750	/* TxDMAPollNow */
751	dw32(DMACtrl, dr32(DMACtrl) | 0x00001000);
752	/* Schedule ISR */
753	dw32(CountDown, 10000);
754	np->cur_tx = (np->cur_tx + 1) % TX_RING_SIZE;
755	if ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
756			< TX_QUEUE_LEN - 1 && np->speed != 10) {
757		/* do nothing */
758	} else if (!netif_queue_stopped(dev)) {
759		netif_stop_queue (dev);
760	}
761
762	/* The first TFDListPtr */
763	if (!dr32(TFDListPtr0)) {
764		dw32(TFDListPtr0, np->tx_ring_dma +
765		     entry * sizeof (struct netdev_desc));
766		dw32(TFDListPtr1, 0);
767	}
768
769	return NETDEV_TX_OK;
770}
771
772static irqreturn_t
773rio_interrupt (int irq, void *dev_instance)
774{
775	struct net_device *dev = dev_instance;
776	struct netdev_private *np = netdev_priv(dev);
777	void __iomem *ioaddr = np->ioaddr;
778	unsigned int_status;
779	int cnt = max_intrloop;
780	int handled = 0;
781
782	while (1) {
783		int_status = dr16(IntStatus);
784		dw16(IntStatus, int_status);
785		int_status &= DEFAULT_INTR;
786		if (int_status == 0 || --cnt < 0)
787			break;
788		handled = 1;
789		/* Processing received packets */
790		if (int_status & RxDMAComplete)
791			receive_packet (dev);
792		/* TxDMAComplete interrupt */
793		if ((int_status & (TxDMAComplete|IntRequested))) {
794			int tx_status;
795			tx_status = dr32(TxStatus);
796			if (tx_status & 0x01)
797				tx_error (dev, tx_status);
798			/* Free used tx skbuffs */
799			rio_free_tx (dev, 1);
800		}
801
802		/* Handle uncommon events */
803		if (int_status &
804		    (HostError | LinkEvent | UpdateStats))
805			rio_error (dev, int_status);
806	}
807	if (np->cur_tx != np->old_tx)
808		dw32(CountDown, 100);
809	return IRQ_RETVAL(handled);
810}
811
812static void
813rio_free_tx (struct net_device *dev, int irq)
814{
815	struct netdev_private *np = netdev_priv(dev);
816	int entry = np->old_tx % TX_RING_SIZE;
817	unsigned long flag = 0;
818
819	if (irq)
820		spin_lock(&np->tx_lock);
821	else
822		spin_lock_irqsave(&np->tx_lock, flag);
823
824	/* Free used tx skbuffs */
825	while (entry != np->cur_tx) {
826		struct sk_buff *skb;
827
828		if (!(np->tx_ring[entry].status & cpu_to_le64(TFDDone)))
829			break;
830		skb = np->tx_skbuff[entry];
831		dma_unmap_single(&np->pdev->dev,
832				 desc_to_dma(&np->tx_ring[entry]), skb->len,
833				 DMA_TO_DEVICE);
834		if (irq)
835			dev_consume_skb_irq(skb);
836		else
837			dev_kfree_skb(skb);
838
839		np->tx_skbuff[entry] = NULL;
840		entry = (entry + 1) % TX_RING_SIZE;
841	}
842	if (irq)
843		spin_unlock(&np->tx_lock);
844	else
845		spin_unlock_irqrestore(&np->tx_lock, flag);
846	np->old_tx = entry;
847
848	/* If the ring is no longer full, clear tx_full and
849	   call netif_wake_queue() */
850
851	if (netif_queue_stopped(dev) &&
852	    ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
853	    < TX_QUEUE_LEN - 1 || np->speed == 10)) {
854		netif_wake_queue (dev);
855	}
856}
857
858static void
859tx_error (struct net_device *dev, int tx_status)
860{
861	struct netdev_private *np = netdev_priv(dev);
862	void __iomem *ioaddr = np->ioaddr;
863	int frame_id;
864	int i;
865
866	frame_id = (tx_status & 0xffff0000);
867	printk (KERN_ERR "%s: Transmit error, TxStatus %4.4x, FrameId %d.\n",
868		dev->name, tx_status, frame_id);
869	dev->stats.tx_errors++;
870	/* Ttransmit Underrun */
871	if (tx_status & 0x10) {
872		dev->stats.tx_fifo_errors++;
873		dw16(TxStartThresh, dr16(TxStartThresh) + 0x10);
874		/* Transmit Underrun need to set TxReset, DMARest, FIFOReset */
875		dw16(ASICCtrl + 2,
876		     TxReset | DMAReset | FIFOReset | NetworkReset);
877		/* Wait for ResetBusy bit clear */
878		for (i = 50; i > 0; i--) {
879			if (!(dr16(ASICCtrl + 2) & ResetBusy))
880				break;
881			mdelay (1);
882		}
883		rio_set_led_mode(dev);
884		rio_free_tx (dev, 1);
885		/* Reset TFDListPtr */
886		dw32(TFDListPtr0, np->tx_ring_dma +
887		     np->old_tx * sizeof (struct netdev_desc));
888		dw32(TFDListPtr1, 0);
889
890		/* Let TxStartThresh stay default value */
891	}
892	/* Late Collision */
893	if (tx_status & 0x04) {
894		dev->stats.tx_fifo_errors++;
895		/* TxReset and clear FIFO */
896		dw16(ASICCtrl + 2, TxReset | FIFOReset);
897		/* Wait reset done */
898		for (i = 50; i > 0; i--) {
899			if (!(dr16(ASICCtrl + 2) & ResetBusy))
900				break;
901			mdelay (1);
902		}
903		rio_set_led_mode(dev);
904		/* Let TxStartThresh stay default value */
905	}
906	/* Maximum Collisions */
907	if (tx_status & 0x08)
908		dev->stats.collisions++;
909	/* Restart the Tx */
910	dw32(MACCtrl, dr16(MACCtrl) | TxEnable);
911}
912
913static int
914receive_packet (struct net_device *dev)
915{
916	struct netdev_private *np = netdev_priv(dev);
917	int entry = np->cur_rx % RX_RING_SIZE;
918	int cnt = 30;
919
920	/* If RFDDone, FrameStart and FrameEnd set, there is a new packet in. */
921	while (1) {
922		struct netdev_desc *desc = &np->rx_ring[entry];
923		int pkt_len;
924		u64 frame_status;
925
926		if (!(desc->status & cpu_to_le64(RFDDone)) ||
927		    !(desc->status & cpu_to_le64(FrameStart)) ||
928		    !(desc->status & cpu_to_le64(FrameEnd)))
929			break;
930
931		/* Chip omits the CRC. */
932		frame_status = le64_to_cpu(desc->status);
933		pkt_len = frame_status & 0xffff;
934		if (--cnt < 0)
935			break;
936		/* Update rx error statistics, drop packet. */
937		if (frame_status & RFS_Errors) {
938			dev->stats.rx_errors++;
939			if (frame_status & (RxRuntFrame | RxLengthError))
940				dev->stats.rx_length_errors++;
941			if (frame_status & RxFCSError)
942				dev->stats.rx_crc_errors++;
943			if (frame_status & RxAlignmentError && np->speed != 1000)
944				dev->stats.rx_frame_errors++;
945			if (frame_status & RxFIFOOverrun)
946				dev->stats.rx_fifo_errors++;
947		} else {
948			struct sk_buff *skb;
949
950			/* Small skbuffs for short packets */
951			if (pkt_len > copy_thresh) {
952				dma_unmap_single(&np->pdev->dev,
953						 desc_to_dma(desc),
954						 np->rx_buf_sz,
955						 DMA_FROM_DEVICE);
956				skb_put (skb = np->rx_skbuff[entry], pkt_len);
957				np->rx_skbuff[entry] = NULL;
958			} else if ((skb = netdev_alloc_skb_ip_align(dev, pkt_len))) {
959				dma_sync_single_for_cpu(&np->pdev->dev,
960							desc_to_dma(desc),
961							np->rx_buf_sz,
962							DMA_FROM_DEVICE);
963				skb_copy_to_linear_data (skb,
964						  np->rx_skbuff[entry]->data,
965						  pkt_len);
966				skb_put (skb, pkt_len);
967				dma_sync_single_for_device(&np->pdev->dev,
968							   desc_to_dma(desc),
969							   np->rx_buf_sz,
970							   DMA_FROM_DEVICE);
971			}
972			skb->protocol = eth_type_trans (skb, dev);
973#if 0
974			/* Checksum done by hw, but csum value unavailable. */
975			if (np->pdev->pci_rev_id >= 0x0c &&
976				!(frame_status & (TCPError | UDPError | IPError))) {
977				skb->ip_summed = CHECKSUM_UNNECESSARY;
978			}
979#endif
980			netif_rx (skb);
981		}
982		entry = (entry + 1) % RX_RING_SIZE;
983	}
984	spin_lock(&np->rx_lock);
985	np->cur_rx = entry;
986	/* Re-allocate skbuffs to fill the descriptor ring */
987	entry = np->old_rx;
988	while (entry != np->cur_rx) {
989		struct sk_buff *skb;
990		/* Dropped packets don't need to re-allocate */
991		if (np->rx_skbuff[entry] == NULL) {
992			skb = netdev_alloc_skb_ip_align(dev, np->rx_buf_sz);
993			if (skb == NULL) {
994				np->rx_ring[entry].fraginfo = 0;
995				printk (KERN_INFO
996					"%s: receive_packet: "
997					"Unable to re-allocate Rx skbuff.#%d\n",
998					dev->name, entry);
999				break;
1000			}
1001			np->rx_skbuff[entry] = skb;
1002			np->rx_ring[entry].fraginfo =
1003			    cpu_to_le64(dma_map_single(&np->pdev->dev, skb->data,
1004						       np->rx_buf_sz, DMA_FROM_DEVICE));
1005		}
1006		np->rx_ring[entry].fraginfo |=
1007		    cpu_to_le64((u64)np->rx_buf_sz << 48);
1008		np->rx_ring[entry].status = 0;
1009		entry = (entry + 1) % RX_RING_SIZE;
1010	}
1011	np->old_rx = entry;
1012	spin_unlock(&np->rx_lock);
1013	return 0;
1014}
1015
1016static void
1017rio_error (struct net_device *dev, int int_status)
1018{
1019	struct netdev_private *np = netdev_priv(dev);
1020	void __iomem *ioaddr = np->ioaddr;
1021	u16 macctrl;
1022
1023	/* Link change event */
1024	if (int_status & LinkEvent) {
1025		if (mii_wait_link (dev, 10) == 0) {
1026			printk (KERN_INFO "%s: Link up\n", dev->name);
1027			if (np->phy_media)
1028				mii_get_media_pcs (dev);
1029			else
1030				mii_get_media (dev);
1031			if (np->speed == 1000)
1032				np->tx_coalesce = tx_coalesce;
1033			else
1034				np->tx_coalesce = 1;
1035			macctrl = 0;
1036			macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
1037			macctrl |= (np->full_duplex) ? DuplexSelect : 0;
1038			macctrl |= (np->tx_flow) ?
1039				TxFlowControlEnable : 0;
1040			macctrl |= (np->rx_flow) ?
1041				RxFlowControlEnable : 0;
1042			dw16(MACCtrl, macctrl);
1043			np->link_status = 1;
1044			netif_carrier_on(dev);
1045		} else {
1046			printk (KERN_INFO "%s: Link off\n", dev->name);
1047			np->link_status = 0;
1048			netif_carrier_off(dev);
1049		}
1050	}
1051
1052	/* UpdateStats statistics registers */
1053	if (int_status & UpdateStats) {
1054		get_stats (dev);
1055	}
1056
1057	/* PCI Error, a catastronphic error related to the bus interface
1058	   occurs, set GlobalReset and HostReset to reset. */
1059	if (int_status & HostError) {
1060		printk (KERN_ERR "%s: HostError! IntStatus %4.4x.\n",
1061			dev->name, int_status);
1062		dw16(ASICCtrl + 2, GlobalReset | HostReset);
1063		mdelay (500);
1064		rio_set_led_mode(dev);
1065	}
1066}
1067
1068static struct net_device_stats *
1069get_stats (struct net_device *dev)
1070{
1071	struct netdev_private *np = netdev_priv(dev);
1072	void __iomem *ioaddr = np->ioaddr;
1073#ifdef MEM_MAPPING
1074	int i;
1075#endif
1076	unsigned int stat_reg;
1077
1078	/* All statistics registers need to be acknowledged,
1079	   else statistic overflow could cause problems */
1080
1081	dev->stats.rx_packets += dr32(FramesRcvOk);
1082	dev->stats.tx_packets += dr32(FramesXmtOk);
1083	dev->stats.rx_bytes += dr32(OctetRcvOk);
1084	dev->stats.tx_bytes += dr32(OctetXmtOk);
1085
1086	dev->stats.multicast = dr32(McstFramesRcvdOk);
1087	dev->stats.collisions += dr32(SingleColFrames)
1088			     +  dr32(MultiColFrames);
1089
1090	/* detailed tx errors */
1091	stat_reg = dr16(FramesAbortXSColls);
1092	dev->stats.tx_aborted_errors += stat_reg;
1093	dev->stats.tx_errors += stat_reg;
1094
1095	stat_reg = dr16(CarrierSenseErrors);
1096	dev->stats.tx_carrier_errors += stat_reg;
1097	dev->stats.tx_errors += stat_reg;
1098
1099	/* Clear all other statistic register. */
1100	dr32(McstOctetXmtOk);
1101	dr16(BcstFramesXmtdOk);
1102	dr32(McstFramesXmtdOk);
1103	dr16(BcstFramesRcvdOk);
1104	dr16(MacControlFramesRcvd);
1105	dr16(FrameTooLongErrors);
1106	dr16(InRangeLengthErrors);
1107	dr16(FramesCheckSeqErrors);
1108	dr16(FramesLostRxErrors);
1109	dr32(McstOctetXmtOk);
1110	dr32(BcstOctetXmtOk);
1111	dr32(McstFramesXmtdOk);
1112	dr32(FramesWDeferredXmt);
1113	dr32(LateCollisions);
1114	dr16(BcstFramesXmtdOk);
1115	dr16(MacControlFramesXmtd);
1116	dr16(FramesWEXDeferal);
1117
1118#ifdef MEM_MAPPING
1119	for (i = 0x100; i <= 0x150; i += 4)
1120		dr32(i);
1121#endif
1122	dr16(TxJumboFrames);
1123	dr16(RxJumboFrames);
1124	dr16(TCPCheckSumErrors);
1125	dr16(UDPCheckSumErrors);
1126	dr16(IPCheckSumErrors);
1127	return &dev->stats;
1128}
1129
1130static int
1131clear_stats (struct net_device *dev)
1132{
1133	struct netdev_private *np = netdev_priv(dev);
1134	void __iomem *ioaddr = np->ioaddr;
1135#ifdef MEM_MAPPING
1136	int i;
1137#endif
1138
1139	/* All statistics registers need to be acknowledged,
1140	   else statistic overflow could cause problems */
1141	dr32(FramesRcvOk);
1142	dr32(FramesXmtOk);
1143	dr32(OctetRcvOk);
1144	dr32(OctetXmtOk);
1145
1146	dr32(McstFramesRcvdOk);
1147	dr32(SingleColFrames);
1148	dr32(MultiColFrames);
1149	dr32(LateCollisions);
1150	/* detailed rx errors */
1151	dr16(FrameTooLongErrors);
1152	dr16(InRangeLengthErrors);
1153	dr16(FramesCheckSeqErrors);
1154	dr16(FramesLostRxErrors);
1155
1156	/* detailed tx errors */
1157	dr16(FramesAbortXSColls);
1158	dr16(CarrierSenseErrors);
1159
1160	/* Clear all other statistic register. */
1161	dr32(McstOctetXmtOk);
1162	dr16(BcstFramesXmtdOk);
1163	dr32(McstFramesXmtdOk);
1164	dr16(BcstFramesRcvdOk);
1165	dr16(MacControlFramesRcvd);
1166	dr32(McstOctetXmtOk);
1167	dr32(BcstOctetXmtOk);
1168	dr32(McstFramesXmtdOk);
1169	dr32(FramesWDeferredXmt);
1170	dr16(BcstFramesXmtdOk);
1171	dr16(MacControlFramesXmtd);
1172	dr16(FramesWEXDeferal);
1173#ifdef MEM_MAPPING
1174	for (i = 0x100; i <= 0x150; i += 4)
1175		dr32(i);
1176#endif
1177	dr16(TxJumboFrames);
1178	dr16(RxJumboFrames);
1179	dr16(TCPCheckSumErrors);
1180	dr16(UDPCheckSumErrors);
1181	dr16(IPCheckSumErrors);
1182	return 0;
1183}
1184
1185static void
1186set_multicast (struct net_device *dev)
1187{
1188	struct netdev_private *np = netdev_priv(dev);
1189	void __iomem *ioaddr = np->ioaddr;
1190	u32 hash_table[2];
1191	u16 rx_mode = 0;
1192
1193	hash_table[0] = hash_table[1] = 0;
1194	/* RxFlowcontrol DA: 01-80-C2-00-00-01. Hash index=0x39 */
1195	hash_table[1] |= 0x02000000;
1196	if (dev->flags & IFF_PROMISC) {
1197		/* Receive all frames promiscuously. */
1198		rx_mode = ReceiveAllFrames;
1199	} else if ((dev->flags & IFF_ALLMULTI) ||
1200			(netdev_mc_count(dev) > multicast_filter_limit)) {
1201		/* Receive broadcast and multicast frames */
1202		rx_mode = ReceiveBroadcast | ReceiveMulticast | ReceiveUnicast;
1203	} else if (!netdev_mc_empty(dev)) {
1204		struct netdev_hw_addr *ha;
1205		/* Receive broadcast frames and multicast frames filtering
1206		   by Hashtable */
1207		rx_mode =
1208		    ReceiveBroadcast | ReceiveMulticastHash | ReceiveUnicast;
1209		netdev_for_each_mc_addr(ha, dev) {
1210			int bit, index = 0;
1211			int crc = ether_crc_le(ETH_ALEN, ha->addr);
1212			/* The inverted high significant 6 bits of CRC are
1213			   used as an index to hashtable */
1214			for (bit = 0; bit < 6; bit++)
1215				if (crc & (1 << (31 - bit)))
1216					index |= (1 << bit);
1217			hash_table[index / 32] |= (1 << (index % 32));
1218		}
1219	} else {
1220		rx_mode = ReceiveBroadcast | ReceiveUnicast;
1221	}
1222	if (np->vlan) {
1223		/* ReceiveVLANMatch field in ReceiveMode */
1224		rx_mode |= ReceiveVLANMatch;
1225	}
1226
1227	dw32(HashTable0, hash_table[0]);
1228	dw32(HashTable1, hash_table[1]);
1229	dw16(ReceiveMode, rx_mode);
1230}
1231
1232static void rio_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1233{
1234	struct netdev_private *np = netdev_priv(dev);
1235
1236	strscpy(info->driver, "dl2k", sizeof(info->driver));
1237	strscpy(info->bus_info, pci_name(np->pdev), sizeof(info->bus_info));
1238}
1239
1240static int rio_get_link_ksettings(struct net_device *dev,
1241				  struct ethtool_link_ksettings *cmd)
1242{
1243	struct netdev_private *np = netdev_priv(dev);
1244	u32 supported, advertising;
1245
1246	if (np->phy_media) {
1247		/* fiber device */
1248		supported = SUPPORTED_Autoneg | SUPPORTED_FIBRE;
1249		advertising = ADVERTISED_Autoneg | ADVERTISED_FIBRE;
1250		cmd->base.port = PORT_FIBRE;
1251	} else {
1252		/* copper device */
1253		supported = SUPPORTED_10baseT_Half |
1254			SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half
1255			| SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Full |
1256			SUPPORTED_Autoneg | SUPPORTED_MII;
1257		advertising = ADVERTISED_10baseT_Half |
1258			ADVERTISED_10baseT_Full | ADVERTISED_100baseT_Half |
1259			ADVERTISED_100baseT_Full | ADVERTISED_1000baseT_Full |
1260			ADVERTISED_Autoneg | ADVERTISED_MII;
1261		cmd->base.port = PORT_MII;
1262	}
1263	if (np->link_status) {
1264		cmd->base.speed = np->speed;
1265		cmd->base.duplex = np->full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
1266	} else {
1267		cmd->base.speed = SPEED_UNKNOWN;
1268		cmd->base.duplex = DUPLEX_UNKNOWN;
1269	}
1270	if (np->an_enable)
1271		cmd->base.autoneg = AUTONEG_ENABLE;
1272	else
1273		cmd->base.autoneg = AUTONEG_DISABLE;
1274
1275	cmd->base.phy_address = np->phy_addr;
1276
1277	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
1278						supported);
1279	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
1280						advertising);
1281
1282	return 0;
1283}
1284
1285static int rio_set_link_ksettings(struct net_device *dev,
1286				  const struct ethtool_link_ksettings *cmd)
1287{
1288	struct netdev_private *np = netdev_priv(dev);
1289	u32 speed = cmd->base.speed;
1290	u8 duplex = cmd->base.duplex;
1291
1292	netif_carrier_off(dev);
1293	if (cmd->base.autoneg == AUTONEG_ENABLE) {
1294		if (np->an_enable) {
1295			return 0;
1296		} else {
1297			np->an_enable = 1;
1298			mii_set_media(dev);
1299			return 0;
1300		}
1301	} else {
1302		np->an_enable = 0;
1303		if (np->speed == 1000) {
1304			speed = SPEED_100;
1305			duplex = DUPLEX_FULL;
1306			printk("Warning!! Can't disable Auto negotiation in 1000Mbps, change to Manual 100Mbps, Full duplex.\n");
1307		}
1308		switch (speed) {
1309		case SPEED_10:
1310			np->speed = 10;
1311			np->full_duplex = (duplex == DUPLEX_FULL);
1312			break;
1313		case SPEED_100:
1314			np->speed = 100;
1315			np->full_duplex = (duplex == DUPLEX_FULL);
1316			break;
1317		case SPEED_1000: /* not supported */
1318		default:
1319			return -EINVAL;
1320		}
1321		mii_set_media(dev);
1322	}
1323	return 0;
1324}
1325
1326static u32 rio_get_link(struct net_device *dev)
1327{
1328	struct netdev_private *np = netdev_priv(dev);
1329	return np->link_status;
1330}
1331
1332static const struct ethtool_ops ethtool_ops = {
1333	.get_drvinfo = rio_get_drvinfo,
1334	.get_link = rio_get_link,
1335	.get_link_ksettings = rio_get_link_ksettings,
1336	.set_link_ksettings = rio_set_link_ksettings,
1337};
1338
1339static int
1340rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
1341{
1342	int phy_addr;
1343	struct netdev_private *np = netdev_priv(dev);
1344	struct mii_ioctl_data *miidata = if_mii(rq);
1345
1346	phy_addr = np->phy_addr;
1347	switch (cmd) {
1348	case SIOCGMIIPHY:
1349		miidata->phy_id = phy_addr;
1350		break;
1351	case SIOCGMIIREG:
1352		miidata->val_out = mii_read (dev, phy_addr, miidata->reg_num);
1353		break;
1354	case SIOCSMIIREG:
1355		if (!capable(CAP_NET_ADMIN))
1356			return -EPERM;
1357		mii_write (dev, phy_addr, miidata->reg_num, miidata->val_in);
1358		break;
1359	default:
1360		return -EOPNOTSUPP;
1361	}
1362	return 0;
1363}
1364
1365#define EEP_READ 0x0200
1366#define EEP_BUSY 0x8000
1367/* Read the EEPROM word */
1368/* We use I/O instruction to read/write eeprom to avoid fail on some machines */
1369static int read_eeprom(struct netdev_private *np, int eep_addr)
1370{
1371	void __iomem *ioaddr = np->eeprom_addr;
1372	int i = 1000;
1373
1374	dw16(EepromCtrl, EEP_READ | (eep_addr & 0xff));
1375	while (i-- > 0) {
1376		if (!(dr16(EepromCtrl) & EEP_BUSY))
1377			return dr16(EepromData);
1378	}
1379	return 0;
1380}
1381
1382enum phy_ctrl_bits {
1383	MII_READ = 0x00, MII_CLK = 0x01, MII_DATA1 = 0x02, MII_WRITE = 0x04,
1384	MII_DUPLEX = 0x08,
1385};
1386
1387#define mii_delay() dr8(PhyCtrl)
1388static void
1389mii_sendbit (struct net_device *dev, u32 data)
1390{
1391	struct netdev_private *np = netdev_priv(dev);
1392	void __iomem *ioaddr = np->ioaddr;
1393
1394	data = ((data) ? MII_DATA1 : 0) | (dr8(PhyCtrl) & 0xf8) | MII_WRITE;
1395	dw8(PhyCtrl, data);
1396	mii_delay ();
1397	dw8(PhyCtrl, data | MII_CLK);
1398	mii_delay ();
1399}
1400
1401static int
1402mii_getbit (struct net_device *dev)
1403{
1404	struct netdev_private *np = netdev_priv(dev);
1405	void __iomem *ioaddr = np->ioaddr;
1406	u8 data;
1407
1408	data = (dr8(PhyCtrl) & 0xf8) | MII_READ;
1409	dw8(PhyCtrl, data);
1410	mii_delay ();
1411	dw8(PhyCtrl, data | MII_CLK);
1412	mii_delay ();
1413	return (dr8(PhyCtrl) >> 1) & 1;
1414}
1415
1416static void
1417mii_send_bits (struct net_device *dev, u32 data, int len)
1418{
1419	int i;
1420
1421	for (i = len - 1; i >= 0; i--) {
1422		mii_sendbit (dev, data & (1 << i));
1423	}
1424}
1425
1426static int
1427mii_read (struct net_device *dev, int phy_addr, int reg_num)
1428{
1429	u32 cmd;
1430	int i;
1431	u32 retval = 0;
1432
1433	/* Preamble */
1434	mii_send_bits (dev, 0xffffffff, 32);
1435	/* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1436	/* ST,OP = 0110'b for read operation */
1437	cmd = (0x06 << 10 | phy_addr << 5 | reg_num);
1438	mii_send_bits (dev, cmd, 14);
1439	/* Turnaround */
1440	if (mii_getbit (dev))
1441		goto err_out;
1442	/* Read data */
1443	for (i = 0; i < 16; i++) {
1444		retval |= mii_getbit (dev);
1445		retval <<= 1;
1446	}
1447	/* End cycle */
1448	mii_getbit (dev);
1449	return (retval >> 1) & 0xffff;
1450
1451      err_out:
1452	return 0;
1453}
1454static int
1455mii_write (struct net_device *dev, int phy_addr, int reg_num, u16 data)
1456{
1457	u32 cmd;
1458
1459	/* Preamble */
1460	mii_send_bits (dev, 0xffffffff, 32);
1461	/* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1462	/* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
1463	cmd = (0x5002 << 16) | (phy_addr << 23) | (reg_num << 18) | data;
1464	mii_send_bits (dev, cmd, 32);
1465	/* End cycle */
1466	mii_getbit (dev);
1467	return 0;
1468}
1469static int
1470mii_wait_link (struct net_device *dev, int wait)
1471{
1472	__u16 bmsr;
1473	int phy_addr;
1474	struct netdev_private *np;
1475
1476	np = netdev_priv(dev);
1477	phy_addr = np->phy_addr;
1478
1479	do {
1480		bmsr = mii_read (dev, phy_addr, MII_BMSR);
1481		if (bmsr & BMSR_LSTATUS)
1482			return 0;
1483		mdelay (1);
1484	} while (--wait > 0);
1485	return -1;
1486}
1487static int
1488mii_get_media (struct net_device *dev)
1489{
1490	__u16 negotiate;
1491	__u16 bmsr;
1492	__u16 mscr;
1493	__u16 mssr;
1494	int phy_addr;
1495	struct netdev_private *np;
1496
1497	np = netdev_priv(dev);
1498	phy_addr = np->phy_addr;
1499
1500	bmsr = mii_read (dev, phy_addr, MII_BMSR);
1501	if (np->an_enable) {
1502		if (!(bmsr & BMSR_ANEGCOMPLETE)) {
1503			/* Auto-Negotiation not completed */
1504			return -1;
1505		}
1506		negotiate = mii_read (dev, phy_addr, MII_ADVERTISE) &
1507			mii_read (dev, phy_addr, MII_LPA);
1508		mscr = mii_read (dev, phy_addr, MII_CTRL1000);
1509		mssr = mii_read (dev, phy_addr, MII_STAT1000);
1510		if (mscr & ADVERTISE_1000FULL && mssr & LPA_1000FULL) {
1511			np->speed = 1000;
1512			np->full_duplex = 1;
1513			printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
1514		} else if (mscr & ADVERTISE_1000HALF && mssr & LPA_1000HALF) {
1515			np->speed = 1000;
1516			np->full_duplex = 0;
1517			printk (KERN_INFO "Auto 1000 Mbps, Half duplex\n");
1518		} else if (negotiate & ADVERTISE_100FULL) {
1519			np->speed = 100;
1520			np->full_duplex = 1;
1521			printk (KERN_INFO "Auto 100 Mbps, Full duplex\n");
1522		} else if (negotiate & ADVERTISE_100HALF) {
1523			np->speed = 100;
1524			np->full_duplex = 0;
1525			printk (KERN_INFO "Auto 100 Mbps, Half duplex\n");
1526		} else if (negotiate & ADVERTISE_10FULL) {
1527			np->speed = 10;
1528			np->full_duplex = 1;
1529			printk (KERN_INFO "Auto 10 Mbps, Full duplex\n");
1530		} else if (negotiate & ADVERTISE_10HALF) {
1531			np->speed = 10;
1532			np->full_duplex = 0;
1533			printk (KERN_INFO "Auto 10 Mbps, Half duplex\n");
1534		}
1535		if (negotiate & ADVERTISE_PAUSE_CAP) {
1536			np->tx_flow &= 1;
1537			np->rx_flow &= 1;
1538		} else if (negotiate & ADVERTISE_PAUSE_ASYM) {
1539			np->tx_flow = 0;
1540			np->rx_flow &= 1;
1541		}
1542		/* else tx_flow, rx_flow = user select  */
1543	} else {
1544		__u16 bmcr = mii_read (dev, phy_addr, MII_BMCR);
1545		switch (bmcr & (BMCR_SPEED100 | BMCR_SPEED1000)) {
1546		case BMCR_SPEED1000:
1547			printk (KERN_INFO "Operating at 1000 Mbps, ");
1548			break;
1549		case BMCR_SPEED100:
1550			printk (KERN_INFO "Operating at 100 Mbps, ");
1551			break;
1552		case 0:
1553			printk (KERN_INFO "Operating at 10 Mbps, ");
1554		}
1555		if (bmcr & BMCR_FULLDPLX) {
1556			printk (KERN_CONT "Full duplex\n");
1557		} else {
1558			printk (KERN_CONT "Half duplex\n");
1559		}
1560	}
1561	if (np->tx_flow)
1562		printk(KERN_INFO "Enable Tx Flow Control\n");
1563	else
1564		printk(KERN_INFO "Disable Tx Flow Control\n");
1565	if (np->rx_flow)
1566		printk(KERN_INFO "Enable Rx Flow Control\n");
1567	else
1568		printk(KERN_INFO "Disable Rx Flow Control\n");
1569
1570	return 0;
1571}
1572
1573static int
1574mii_set_media (struct net_device *dev)
1575{
1576	__u16 pscr;
1577	__u16 bmcr;
1578	__u16 bmsr;
1579	__u16 anar;
1580	int phy_addr;
1581	struct netdev_private *np;
1582	np = netdev_priv(dev);
1583	phy_addr = np->phy_addr;
1584
1585	/* Does user set speed? */
1586	if (np->an_enable) {
1587		/* Advertise capabilities */
1588		bmsr = mii_read (dev, phy_addr, MII_BMSR);
1589		anar = mii_read (dev, phy_addr, MII_ADVERTISE) &
1590			~(ADVERTISE_100FULL | ADVERTISE_10FULL |
1591			  ADVERTISE_100HALF | ADVERTISE_10HALF |
1592			  ADVERTISE_100BASE4);
1593		if (bmsr & BMSR_100FULL)
1594			anar |= ADVERTISE_100FULL;
1595		if (bmsr & BMSR_100HALF)
1596			anar |= ADVERTISE_100HALF;
1597		if (bmsr & BMSR_100BASE4)
1598			anar |= ADVERTISE_100BASE4;
1599		if (bmsr & BMSR_10FULL)
1600			anar |= ADVERTISE_10FULL;
1601		if (bmsr & BMSR_10HALF)
1602			anar |= ADVERTISE_10HALF;
1603		anar |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
1604		mii_write (dev, phy_addr, MII_ADVERTISE, anar);
1605
1606		/* Enable Auto crossover */
1607		pscr = mii_read (dev, phy_addr, MII_PHY_SCR);
1608		pscr |= 3 << 5;	/* 11'b */
1609		mii_write (dev, phy_addr, MII_PHY_SCR, pscr);
1610
1611		/* Soft reset PHY */
1612		mii_write (dev, phy_addr, MII_BMCR, BMCR_RESET);
1613		bmcr = BMCR_ANENABLE | BMCR_ANRESTART | BMCR_RESET;
1614		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1615		mdelay(1);
1616	} else {
1617		/* Force speed setting */
1618		/* 1) Disable Auto crossover */
1619		pscr = mii_read (dev, phy_addr, MII_PHY_SCR);
1620		pscr &= ~(3 << 5);
1621		mii_write (dev, phy_addr, MII_PHY_SCR, pscr);
1622
1623		/* 2) PHY Reset */
1624		bmcr = mii_read (dev, phy_addr, MII_BMCR);
1625		bmcr |= BMCR_RESET;
1626		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1627
1628		/* 3) Power Down */
1629		bmcr = 0x1940;	/* must be 0x1940 */
1630		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1631		mdelay (100);	/* wait a certain time */
1632
1633		/* 4) Advertise nothing */
1634		mii_write (dev, phy_addr, MII_ADVERTISE, 0);
1635
1636		/* 5) Set media and Power Up */
1637		bmcr = BMCR_PDOWN;
1638		if (np->speed == 100) {
1639			bmcr |= BMCR_SPEED100;
1640			printk (KERN_INFO "Manual 100 Mbps, ");
1641		} else if (np->speed == 10) {
1642			printk (KERN_INFO "Manual 10 Mbps, ");
1643		}
1644		if (np->full_duplex) {
1645			bmcr |= BMCR_FULLDPLX;
1646			printk (KERN_CONT "Full duplex\n");
1647		} else {
1648			printk (KERN_CONT "Half duplex\n");
1649		}
1650#if 0
1651		/* Set 1000BaseT Master/Slave setting */
1652		mscr = mii_read (dev, phy_addr, MII_CTRL1000);
1653		mscr |= MII_MSCR_CFG_ENABLE;
1654		mscr &= ~MII_MSCR_CFG_VALUE = 0;
1655#endif
1656		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1657		mdelay(10);
1658	}
1659	return 0;
1660}
1661
1662static int
1663mii_get_media_pcs (struct net_device *dev)
1664{
1665	__u16 negotiate;
1666	__u16 bmsr;
1667	int phy_addr;
1668	struct netdev_private *np;
1669
1670	np = netdev_priv(dev);
1671	phy_addr = np->phy_addr;
1672
1673	bmsr = mii_read (dev, phy_addr, PCS_BMSR);
1674	if (np->an_enable) {
1675		if (!(bmsr & BMSR_ANEGCOMPLETE)) {
1676			/* Auto-Negotiation not completed */
1677			return -1;
1678		}
1679		negotiate = mii_read (dev, phy_addr, PCS_ANAR) &
1680			mii_read (dev, phy_addr, PCS_ANLPAR);
1681		np->speed = 1000;
1682		if (negotiate & PCS_ANAR_FULL_DUPLEX) {
1683			printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
1684			np->full_duplex = 1;
1685		} else {
1686			printk (KERN_INFO "Auto 1000 Mbps, half duplex\n");
1687			np->full_duplex = 0;
1688		}
1689		if (negotiate & PCS_ANAR_PAUSE) {
1690			np->tx_flow &= 1;
1691			np->rx_flow &= 1;
1692		} else if (negotiate & PCS_ANAR_ASYMMETRIC) {
1693			np->tx_flow = 0;
1694			np->rx_flow &= 1;
1695		}
1696		/* else tx_flow, rx_flow = user select  */
1697	} else {
1698		__u16 bmcr = mii_read (dev, phy_addr, PCS_BMCR);
1699		printk (KERN_INFO "Operating at 1000 Mbps, ");
1700		if (bmcr & BMCR_FULLDPLX) {
1701			printk (KERN_CONT "Full duplex\n");
1702		} else {
1703			printk (KERN_CONT "Half duplex\n");
1704		}
1705	}
1706	if (np->tx_flow)
1707		printk(KERN_INFO "Enable Tx Flow Control\n");
1708	else
1709		printk(KERN_INFO "Disable Tx Flow Control\n");
1710	if (np->rx_flow)
1711		printk(KERN_INFO "Enable Rx Flow Control\n");
1712	else
1713		printk(KERN_INFO "Disable Rx Flow Control\n");
1714
1715	return 0;
1716}
1717
1718static int
1719mii_set_media_pcs (struct net_device *dev)
1720{
1721	__u16 bmcr;
1722	__u16 esr;
1723	__u16 anar;
1724	int phy_addr;
1725	struct netdev_private *np;
1726	np = netdev_priv(dev);
1727	phy_addr = np->phy_addr;
1728
1729	/* Auto-Negotiation? */
1730	if (np->an_enable) {
1731		/* Advertise capabilities */
1732		esr = mii_read (dev, phy_addr, PCS_ESR);
1733		anar = mii_read (dev, phy_addr, MII_ADVERTISE) &
1734			~PCS_ANAR_HALF_DUPLEX &
1735			~PCS_ANAR_FULL_DUPLEX;
1736		if (esr & (MII_ESR_1000BT_HD | MII_ESR_1000BX_HD))
1737			anar |= PCS_ANAR_HALF_DUPLEX;
1738		if (esr & (MII_ESR_1000BT_FD | MII_ESR_1000BX_FD))
1739			anar |= PCS_ANAR_FULL_DUPLEX;
1740		anar |= PCS_ANAR_PAUSE | PCS_ANAR_ASYMMETRIC;
1741		mii_write (dev, phy_addr, MII_ADVERTISE, anar);
1742
1743		/* Soft reset PHY */
1744		mii_write (dev, phy_addr, MII_BMCR, BMCR_RESET);
1745		bmcr = BMCR_ANENABLE | BMCR_ANRESTART | BMCR_RESET;
1746		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1747		mdelay(1);
1748	} else {
1749		/* Force speed setting */
1750		/* PHY Reset */
1751		bmcr = BMCR_RESET;
1752		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1753		mdelay(10);
1754		if (np->full_duplex) {
1755			bmcr = BMCR_FULLDPLX;
1756			printk (KERN_INFO "Manual full duplex\n");
1757		} else {
1758			bmcr = 0;
1759			printk (KERN_INFO "Manual half duplex\n");
1760		}
1761		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1762		mdelay(10);
1763
1764		/*  Advertise nothing */
1765		mii_write (dev, phy_addr, MII_ADVERTISE, 0);
1766	}
1767	return 0;
1768}
1769
1770
1771static int
1772rio_close (struct net_device *dev)
1773{
1774	struct netdev_private *np = netdev_priv(dev);
1775	struct pci_dev *pdev = np->pdev;
1776
1777	netif_stop_queue (dev);
1778
1779	rio_hw_stop(dev);
1780
1781	free_irq(pdev->irq, dev);
1782	del_timer_sync (&np->timer);
1783
1784	free_list(dev);
1785
1786	return 0;
1787}
1788
1789static void
1790rio_remove1 (struct pci_dev *pdev)
1791{
1792	struct net_device *dev = pci_get_drvdata (pdev);
1793
1794	if (dev) {
1795		struct netdev_private *np = netdev_priv(dev);
1796
1797		unregister_netdev (dev);
1798		dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, np->rx_ring,
1799				  np->rx_ring_dma);
1800		dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, np->tx_ring,
1801				  np->tx_ring_dma);
1802#ifdef MEM_MAPPING
1803		pci_iounmap(pdev, np->ioaddr);
1804#endif
1805		pci_iounmap(pdev, np->eeprom_addr);
1806		free_netdev (dev);
1807		pci_release_regions (pdev);
1808		pci_disable_device (pdev);
1809	}
1810}
1811
1812#ifdef CONFIG_PM_SLEEP
1813static int rio_suspend(struct device *device)
1814{
1815	struct net_device *dev = dev_get_drvdata(device);
1816	struct netdev_private *np = netdev_priv(dev);
1817
1818	if (!netif_running(dev))
1819		return 0;
1820
1821	netif_device_detach(dev);
1822	del_timer_sync(&np->timer);
1823	rio_hw_stop(dev);
1824
1825	return 0;
1826}
1827
1828static int rio_resume(struct device *device)
1829{
1830	struct net_device *dev = dev_get_drvdata(device);
1831	struct netdev_private *np = netdev_priv(dev);
1832
1833	if (!netif_running(dev))
1834		return 0;
1835
1836	rio_reset_ring(np);
1837	rio_hw_init(dev);
1838	np->timer.expires = jiffies + 1 * HZ;
1839	add_timer(&np->timer);
1840	netif_device_attach(dev);
1841	dl2k_enable_int(np);
1842
1843	return 0;
1844}
1845
1846static SIMPLE_DEV_PM_OPS(rio_pm_ops, rio_suspend, rio_resume);
1847#define RIO_PM_OPS    (&rio_pm_ops)
1848
1849#else
1850
1851#define RIO_PM_OPS	NULL
1852
1853#endif /* CONFIG_PM_SLEEP */
1854
1855static struct pci_driver rio_driver = {
1856	.name		= "dl2k",
1857	.id_table	= rio_pci_tbl,
1858	.probe		= rio_probe1,
1859	.remove		= rio_remove1,
1860	.driver.pm	= RIO_PM_OPS,
1861};
1862
1863module_pci_driver(rio_driver);
1864
1865/* Read Documentation/networking/device_drivers/ethernet/dlink/dl2k.rst. */
1866