1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 *      Davicom DM9000 Fast Ethernet driver for Linux.
4 * 	Copyright (C) 1997  Sten Wang
5 *
6 * (C) Copyright 1997-1998 DAVICOM Semiconductor,Inc. All Rights Reserved.
7 *
8 * Additional updates, Copyright:
9 *	Ben Dooks <ben@simtec.co.uk>
10 *	Sascha Hauer <s.hauer@pengutronix.de>
11 */
12
13#include <linux/module.h>
14#include <linux/ioport.h>
15#include <linux/netdevice.h>
16#include <linux/etherdevice.h>
17#include <linux/interrupt.h>
18#include <linux/skbuff.h>
19#include <linux/spinlock.h>
20#include <linux/crc32.h>
21#include <linux/mii.h>
22#include <linux/of.h>
23#include <linux/of_net.h>
24#include <linux/ethtool.h>
25#include <linux/dm9000.h>
26#include <linux/delay.h>
27#include <linux/platform_device.h>
28#include <linux/irq.h>
29#include <linux/slab.h>
30#include <linux/regulator/consumer.h>
31#include <linux/gpio/consumer.h>
32
33#include <asm/delay.h>
34#include <asm/irq.h>
35#include <asm/io.h>
36
37#include "dm9000.h"
38
39/* Board/System/Debug information/definition ---------------- */
40
41#define DM9000_PHY		0x40	/* PHY address 0x01 */
42
43#define CARDNAME	"dm9000"
44
45/*
46 * Transmit timeout, default 5 seconds.
47 */
48static int watchdog = 5000;
49module_param(watchdog, int, 0400);
50MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds");
51
52/*
53 * Debug messages level
54 */
55static int debug;
56module_param(debug, int, 0644);
57MODULE_PARM_DESC(debug, "dm9000 debug level (0-6)");
58
59/* DM9000 register address locking.
60 *
61 * The DM9000 uses an address register to control where data written
62 * to the data register goes. This means that the address register
63 * must be preserved over interrupts or similar calls.
64 *
65 * During interrupt and other critical calls, a spinlock is used to
66 * protect the system, but the calls themselves save the address
67 * in the address register in case they are interrupting another
68 * access to the device.
69 *
70 * For general accesses a lock is provided so that calls which are
71 * allowed to sleep are serialised so that the address register does
72 * not need to be saved. This lock also serves to serialise access
73 * to the EEPROM and PHY access registers which are shared between
74 * these two devices.
75 */
76
77/* The driver supports the original DM9000E, and now the two newer
78 * devices, DM9000A and DM9000B.
79 */
80
81enum dm9000_type {
82	TYPE_DM9000E,	/* original DM9000 */
83	TYPE_DM9000A,
84	TYPE_DM9000B
85};
86
87/* Structure/enum declaration ------------------------------- */
88struct board_info {
89
90	void __iomem	*io_addr;	/* Register I/O base address */
91	void __iomem	*io_data;	/* Data I/O address */
92	u16		 irq;		/* IRQ */
93
94	u16		tx_pkt_cnt;
95	u16		queue_pkt_len;
96	u16		queue_start_addr;
97	u16		queue_ip_summed;
98	u16		dbug_cnt;
99	u8		io_mode;		/* 0:word, 2:byte */
100	u8		phy_addr;
101	u8		imr_all;
102
103	unsigned int	flags;
104	unsigned int	in_timeout:1;
105	unsigned int	in_suspend:1;
106	unsigned int	wake_supported:1;
107
108	enum dm9000_type type;
109
110	void (*inblk)(void __iomem *port, void *data, int length);
111	void (*outblk)(void __iomem *port, void *data, int length);
112	void (*dumpblk)(void __iomem *port, int length);
113
114	struct device	*dev;	     /* parent device */
115
116	struct resource	*addr_res;   /* resources found */
117	struct resource *data_res;
118	struct resource	*addr_req;   /* resources requested */
119	struct resource *data_req;
120
121	int		 irq_wake;
122
123	struct mutex	 addr_lock;	/* phy and eeprom access lock */
124
125	struct delayed_work phy_poll;
126	struct net_device  *ndev;
127
128	spinlock_t	lock;
129
130	struct mii_if_info mii;
131	u32		msg_enable;
132	u32		wake_state;
133
134	int		ip_summed;
135
136	struct regulator *power_supply;
137};
138
139/* debug code */
140
141#define dm9000_dbg(db, lev, msg...) do {		\
142	if ((lev) < debug) {				\
143		dev_dbg(db->dev, msg);			\
144	}						\
145} while (0)
146
147static inline struct board_info *to_dm9000_board(struct net_device *dev)
148{
149	return netdev_priv(dev);
150}
151
152/* DM9000 network board routine ---------------------------- */
153
154/*
155 *   Read a byte from I/O port
156 */
157static u8
158ior(struct board_info *db, int reg)
159{
160	writeb(reg, db->io_addr);
161	return readb(db->io_data);
162}
163
164/*
165 *   Write a byte to I/O port
166 */
167
168static void
169iow(struct board_info *db, int reg, int value)
170{
171	writeb(reg, db->io_addr);
172	writeb(value, db->io_data);
173}
174
175static void
176dm9000_reset(struct board_info *db)
177{
178	dev_dbg(db->dev, "resetting device\n");
179
180	/* Reset DM9000, see DM9000 Application Notes V1.22 Jun 11, 2004 page 29
181	 * The essential point is that we have to do a double reset, and the
182	 * instruction is to set LBK into MAC internal loopback mode.
183	 */
184	iow(db, DM9000_NCR, NCR_RST | NCR_MAC_LBK);
185	udelay(100); /* Application note says at least 20 us */
186	if (ior(db, DM9000_NCR) & 1)
187		dev_err(db->dev, "dm9000 did not respond to first reset\n");
188
189	iow(db, DM9000_NCR, 0);
190	iow(db, DM9000_NCR, NCR_RST | NCR_MAC_LBK);
191	udelay(100);
192	if (ior(db, DM9000_NCR) & 1)
193		dev_err(db->dev, "dm9000 did not respond to second reset\n");
194}
195
196/* routines for sending block to chip */
197
198static void dm9000_outblk_8bit(void __iomem *reg, void *data, int count)
199{
200	iowrite8_rep(reg, data, count);
201}
202
203static void dm9000_outblk_16bit(void __iomem *reg, void *data, int count)
204{
205	iowrite16_rep(reg, data, (count+1) >> 1);
206}
207
208static void dm9000_outblk_32bit(void __iomem *reg, void *data, int count)
209{
210	iowrite32_rep(reg, data, (count+3) >> 2);
211}
212
213/* input block from chip to memory */
214
215static void dm9000_inblk_8bit(void __iomem *reg, void *data, int count)
216{
217	ioread8_rep(reg, data, count);
218}
219
220
221static void dm9000_inblk_16bit(void __iomem *reg, void *data, int count)
222{
223	ioread16_rep(reg, data, (count+1) >> 1);
224}
225
226static void dm9000_inblk_32bit(void __iomem *reg, void *data, int count)
227{
228	ioread32_rep(reg, data, (count+3) >> 2);
229}
230
231/* dump block from chip to null */
232
233static void dm9000_dumpblk_8bit(void __iomem *reg, int count)
234{
235	int i;
236
237	for (i = 0; i < count; i++)
238		readb(reg);
239}
240
241static void dm9000_dumpblk_16bit(void __iomem *reg, int count)
242{
243	int i;
244
245	count = (count + 1) >> 1;
246
247	for (i = 0; i < count; i++)
248		readw(reg);
249}
250
251static void dm9000_dumpblk_32bit(void __iomem *reg, int count)
252{
253	int i;
254
255	count = (count + 3) >> 2;
256
257	for (i = 0; i < count; i++)
258		readl(reg);
259}
260
261/*
262 * Sleep, either by using msleep() or if we are suspending, then
263 * use mdelay() to sleep.
264 */
265static void dm9000_msleep(struct board_info *db, unsigned int ms)
266{
267	if (db->in_suspend || db->in_timeout)
268		mdelay(ms);
269	else
270		msleep(ms);
271}
272
273/* Read a word from phyxcer */
274static int
275dm9000_phy_read(struct net_device *dev, int phy_reg_unused, int reg)
276{
277	struct board_info *db = netdev_priv(dev);
278	unsigned long flags;
279	unsigned int reg_save;
280	int ret;
281
282	mutex_lock(&db->addr_lock);
283
284	spin_lock_irqsave(&db->lock, flags);
285
286	/* Save previous register address */
287	reg_save = readb(db->io_addr);
288
289	/* Fill the phyxcer register into REG_0C */
290	iow(db, DM9000_EPAR, DM9000_PHY | reg);
291
292	/* Issue phyxcer read command */
293	iow(db, DM9000_EPCR, EPCR_ERPRR | EPCR_EPOS);
294
295	writeb(reg_save, db->io_addr);
296	spin_unlock_irqrestore(&db->lock, flags);
297
298	dm9000_msleep(db, 1);		/* Wait read complete */
299
300	spin_lock_irqsave(&db->lock, flags);
301	reg_save = readb(db->io_addr);
302
303	iow(db, DM9000_EPCR, 0x0);	/* Clear phyxcer read command */
304
305	/* The read data keeps on REG_0D & REG_0E */
306	ret = (ior(db, DM9000_EPDRH) << 8) | ior(db, DM9000_EPDRL);
307
308	/* restore the previous address */
309	writeb(reg_save, db->io_addr);
310	spin_unlock_irqrestore(&db->lock, flags);
311
312	mutex_unlock(&db->addr_lock);
313
314	dm9000_dbg(db, 5, "phy_read[%02x] -> %04x\n", reg, ret);
315	return ret;
316}
317
318/* Write a word to phyxcer */
319static void
320dm9000_phy_write(struct net_device *dev,
321		 int phyaddr_unused, int reg, int value)
322{
323	struct board_info *db = netdev_priv(dev);
324	unsigned long flags;
325	unsigned long reg_save;
326
327	dm9000_dbg(db, 5, "phy_write[%02x] = %04x\n", reg, value);
328	if (!db->in_timeout)
329		mutex_lock(&db->addr_lock);
330
331	spin_lock_irqsave(&db->lock, flags);
332
333	/* Save previous register address */
334	reg_save = readb(db->io_addr);
335
336	/* Fill the phyxcer register into REG_0C */
337	iow(db, DM9000_EPAR, DM9000_PHY | reg);
338
339	/* Fill the written data into REG_0D & REG_0E */
340	iow(db, DM9000_EPDRL, value);
341	iow(db, DM9000_EPDRH, value >> 8);
342
343	/* Issue phyxcer write command */
344	iow(db, DM9000_EPCR, EPCR_EPOS | EPCR_ERPRW);
345
346	writeb(reg_save, db->io_addr);
347	spin_unlock_irqrestore(&db->lock, flags);
348
349	dm9000_msleep(db, 1);		/* Wait write complete */
350
351	spin_lock_irqsave(&db->lock, flags);
352	reg_save = readb(db->io_addr);
353
354	iow(db, DM9000_EPCR, 0x0);	/* Clear phyxcer write command */
355
356	/* restore the previous address */
357	writeb(reg_save, db->io_addr);
358
359	spin_unlock_irqrestore(&db->lock, flags);
360	if (!db->in_timeout)
361		mutex_unlock(&db->addr_lock);
362}
363
364/* dm9000_set_io
365 *
366 * select the specified set of io routines to use with the
367 * device
368 */
369
370static void dm9000_set_io(struct board_info *db, int byte_width)
371{
372	/* use the size of the data resource to work out what IO
373	 * routines we want to use
374	 */
375
376	switch (byte_width) {
377	case 1:
378		db->dumpblk = dm9000_dumpblk_8bit;
379		db->outblk  = dm9000_outblk_8bit;
380		db->inblk   = dm9000_inblk_8bit;
381		break;
382
383
384	case 3:
385		dev_dbg(db->dev, ": 3 byte IO, falling back to 16bit\n");
386		fallthrough;
387	case 2:
388		db->dumpblk = dm9000_dumpblk_16bit;
389		db->outblk  = dm9000_outblk_16bit;
390		db->inblk   = dm9000_inblk_16bit;
391		break;
392
393	case 4:
394	default:
395		db->dumpblk = dm9000_dumpblk_32bit;
396		db->outblk  = dm9000_outblk_32bit;
397		db->inblk   = dm9000_inblk_32bit;
398		break;
399	}
400}
401
402static void dm9000_schedule_poll(struct board_info *db)
403{
404	if (db->type == TYPE_DM9000E)
405		schedule_delayed_work(&db->phy_poll, HZ * 2);
406}
407
408static int dm9000_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
409{
410	struct board_info *dm = to_dm9000_board(dev);
411
412	if (!netif_running(dev))
413		return -EINVAL;
414
415	return generic_mii_ioctl(&dm->mii, if_mii(req), cmd, NULL);
416}
417
418static unsigned int
419dm9000_read_locked(struct board_info *db, int reg)
420{
421	unsigned long flags;
422	unsigned int ret;
423
424	spin_lock_irqsave(&db->lock, flags);
425	ret = ior(db, reg);
426	spin_unlock_irqrestore(&db->lock, flags);
427
428	return ret;
429}
430
431static int dm9000_wait_eeprom(struct board_info *db)
432{
433	unsigned int status;
434	int timeout = 8;	/* wait max 8msec */
435
436	/* The DM9000 data sheets say we should be able to
437	 * poll the ERRE bit in EPCR to wait for the EEPROM
438	 * operation. From testing several chips, this bit
439	 * does not seem to work.
440	 *
441	 * We attempt to use the bit, but fall back to the
442	 * timeout (which is why we do not return an error
443	 * on expiry) to say that the EEPROM operation has
444	 * completed.
445	 */
446
447	while (1) {
448		status = dm9000_read_locked(db, DM9000_EPCR);
449
450		if ((status & EPCR_ERRE) == 0)
451			break;
452
453		msleep(1);
454
455		if (timeout-- < 0) {
456			dev_dbg(db->dev, "timeout waiting EEPROM\n");
457			break;
458		}
459	}
460
461	return 0;
462}
463
464/*
465 *  Read a word data from EEPROM
466 */
467static void
468dm9000_read_eeprom(struct board_info *db, int offset, u8 *to)
469{
470	unsigned long flags;
471
472	if (db->flags & DM9000_PLATF_NO_EEPROM) {
473		to[0] = 0xff;
474		to[1] = 0xff;
475		return;
476	}
477
478	mutex_lock(&db->addr_lock);
479
480	spin_lock_irqsave(&db->lock, flags);
481
482	iow(db, DM9000_EPAR, offset);
483	iow(db, DM9000_EPCR, EPCR_ERPRR);
484
485	spin_unlock_irqrestore(&db->lock, flags);
486
487	dm9000_wait_eeprom(db);
488
489	/* delay for at-least 150uS */
490	msleep(1);
491
492	spin_lock_irqsave(&db->lock, flags);
493
494	iow(db, DM9000_EPCR, 0x0);
495
496	to[0] = ior(db, DM9000_EPDRL);
497	to[1] = ior(db, DM9000_EPDRH);
498
499	spin_unlock_irqrestore(&db->lock, flags);
500
501	mutex_unlock(&db->addr_lock);
502}
503
504/*
505 * Write a word data to SROM
506 */
507static void
508dm9000_write_eeprom(struct board_info *db, int offset, u8 *data)
509{
510	unsigned long flags;
511
512	if (db->flags & DM9000_PLATF_NO_EEPROM)
513		return;
514
515	mutex_lock(&db->addr_lock);
516
517	spin_lock_irqsave(&db->lock, flags);
518	iow(db, DM9000_EPAR, offset);
519	iow(db, DM9000_EPDRH, data[1]);
520	iow(db, DM9000_EPDRL, data[0]);
521	iow(db, DM9000_EPCR, EPCR_WEP | EPCR_ERPRW);
522	spin_unlock_irqrestore(&db->lock, flags);
523
524	dm9000_wait_eeprom(db);
525
526	mdelay(1);	/* wait at least 150uS to clear */
527
528	spin_lock_irqsave(&db->lock, flags);
529	iow(db, DM9000_EPCR, 0);
530	spin_unlock_irqrestore(&db->lock, flags);
531
532	mutex_unlock(&db->addr_lock);
533}
534
535/* ethtool ops */
536
537static void dm9000_get_drvinfo(struct net_device *dev,
538			       struct ethtool_drvinfo *info)
539{
540	struct board_info *dm = to_dm9000_board(dev);
541
542	strscpy(info->driver, CARDNAME, sizeof(info->driver));
543	strscpy(info->bus_info, to_platform_device(dm->dev)->name,
544		sizeof(info->bus_info));
545}
546
547static u32 dm9000_get_msglevel(struct net_device *dev)
548{
549	struct board_info *dm = to_dm9000_board(dev);
550
551	return dm->msg_enable;
552}
553
554static void dm9000_set_msglevel(struct net_device *dev, u32 value)
555{
556	struct board_info *dm = to_dm9000_board(dev);
557
558	dm->msg_enable = value;
559}
560
561static int dm9000_get_link_ksettings(struct net_device *dev,
562				     struct ethtool_link_ksettings *cmd)
563{
564	struct board_info *dm = to_dm9000_board(dev);
565
566	mii_ethtool_get_link_ksettings(&dm->mii, cmd);
567	return 0;
568}
569
570static int dm9000_set_link_ksettings(struct net_device *dev,
571				     const struct ethtool_link_ksettings *cmd)
572{
573	struct board_info *dm = to_dm9000_board(dev);
574
575	return mii_ethtool_set_link_ksettings(&dm->mii, cmd);
576}
577
578static int dm9000_nway_reset(struct net_device *dev)
579{
580	struct board_info *dm = to_dm9000_board(dev);
581	return mii_nway_restart(&dm->mii);
582}
583
584static int dm9000_set_features(struct net_device *dev,
585	netdev_features_t features)
586{
587	struct board_info *dm = to_dm9000_board(dev);
588	netdev_features_t changed = dev->features ^ features;
589	unsigned long flags;
590
591	if (!(changed & NETIF_F_RXCSUM))
592		return 0;
593
594	spin_lock_irqsave(&dm->lock, flags);
595	iow(dm, DM9000_RCSR, (features & NETIF_F_RXCSUM) ? RCSR_CSUM : 0);
596	spin_unlock_irqrestore(&dm->lock, flags);
597
598	return 0;
599}
600
601static u32 dm9000_get_link(struct net_device *dev)
602{
603	struct board_info *dm = to_dm9000_board(dev);
604	u32 ret;
605
606	if (dm->flags & DM9000_PLATF_EXT_PHY)
607		ret = mii_link_ok(&dm->mii);
608	else
609		ret = dm9000_read_locked(dm, DM9000_NSR) & NSR_LINKST ? 1 : 0;
610
611	return ret;
612}
613
614#define DM_EEPROM_MAGIC		(0x444D394B)
615
616static int dm9000_get_eeprom_len(struct net_device *dev)
617{
618	return 128;
619}
620
621static int dm9000_get_eeprom(struct net_device *dev,
622			     struct ethtool_eeprom *ee, u8 *data)
623{
624	struct board_info *dm = to_dm9000_board(dev);
625	int offset = ee->offset;
626	int len = ee->len;
627	int i;
628
629	/* EEPROM access is aligned to two bytes */
630
631	if ((len & 1) != 0 || (offset & 1) != 0)
632		return -EINVAL;
633
634	if (dm->flags & DM9000_PLATF_NO_EEPROM)
635		return -ENOENT;
636
637	ee->magic = DM_EEPROM_MAGIC;
638
639	for (i = 0; i < len; i += 2)
640		dm9000_read_eeprom(dm, (offset + i) / 2, data + i);
641
642	return 0;
643}
644
645static int dm9000_set_eeprom(struct net_device *dev,
646			     struct ethtool_eeprom *ee, u8 *data)
647{
648	struct board_info *dm = to_dm9000_board(dev);
649	int offset = ee->offset;
650	int len = ee->len;
651	int done;
652
653	/* EEPROM access is aligned to two bytes */
654
655	if (dm->flags & DM9000_PLATF_NO_EEPROM)
656		return -ENOENT;
657
658	if (ee->magic != DM_EEPROM_MAGIC)
659		return -EINVAL;
660
661	while (len > 0) {
662		if (len & 1 || offset & 1) {
663			int which = offset & 1;
664			u8 tmp[2];
665
666			dm9000_read_eeprom(dm, offset / 2, tmp);
667			tmp[which] = *data;
668			dm9000_write_eeprom(dm, offset / 2, tmp);
669
670			done = 1;
671		} else {
672			dm9000_write_eeprom(dm, offset / 2, data);
673			done = 2;
674		}
675
676		data += done;
677		offset += done;
678		len -= done;
679	}
680
681	return 0;
682}
683
684static void dm9000_get_wol(struct net_device *dev, struct ethtool_wolinfo *w)
685{
686	struct board_info *dm = to_dm9000_board(dev);
687
688	memset(w, 0, sizeof(struct ethtool_wolinfo));
689
690	/* note, we could probably support wake-phy too */
691	w->supported = dm->wake_supported ? WAKE_MAGIC : 0;
692	w->wolopts = dm->wake_state;
693}
694
695static int dm9000_set_wol(struct net_device *dev, struct ethtool_wolinfo *w)
696{
697	struct board_info *dm = to_dm9000_board(dev);
698	unsigned long flags;
699	u32 opts = w->wolopts;
700	u32 wcr = 0;
701
702	if (!dm->wake_supported)
703		return -EOPNOTSUPP;
704
705	if (opts & ~WAKE_MAGIC)
706		return -EINVAL;
707
708	if (opts & WAKE_MAGIC)
709		wcr |= WCR_MAGICEN;
710
711	mutex_lock(&dm->addr_lock);
712
713	spin_lock_irqsave(&dm->lock, flags);
714	iow(dm, DM9000_WCR, wcr);
715	spin_unlock_irqrestore(&dm->lock, flags);
716
717	mutex_unlock(&dm->addr_lock);
718
719	if (dm->wake_state != opts) {
720		/* change in wol state, update IRQ state */
721
722		if (!dm->wake_state)
723			irq_set_irq_wake(dm->irq_wake, 1);
724		else if (dm->wake_state && !opts)
725			irq_set_irq_wake(dm->irq_wake, 0);
726	}
727
728	dm->wake_state = opts;
729	return 0;
730}
731
732static const struct ethtool_ops dm9000_ethtool_ops = {
733	.get_drvinfo		= dm9000_get_drvinfo,
734	.get_msglevel		= dm9000_get_msglevel,
735	.set_msglevel		= dm9000_set_msglevel,
736	.nway_reset		= dm9000_nway_reset,
737	.get_link		= dm9000_get_link,
738	.get_wol		= dm9000_get_wol,
739	.set_wol		= dm9000_set_wol,
740	.get_eeprom_len		= dm9000_get_eeprom_len,
741	.get_eeprom		= dm9000_get_eeprom,
742	.set_eeprom		= dm9000_set_eeprom,
743	.get_link_ksettings	= dm9000_get_link_ksettings,
744	.set_link_ksettings	= dm9000_set_link_ksettings,
745};
746
747static void dm9000_show_carrier(struct board_info *db,
748				unsigned carrier, unsigned nsr)
749{
750	int lpa;
751	struct net_device *ndev = db->ndev;
752	struct mii_if_info *mii = &db->mii;
753	unsigned ncr = dm9000_read_locked(db, DM9000_NCR);
754
755	if (carrier) {
756		lpa = mii->mdio_read(mii->dev, mii->phy_id, MII_LPA);
757		dev_info(db->dev,
758			 "%s: link up, %dMbps, %s-duplex, lpa 0x%04X\n",
759			 ndev->name, (nsr & NSR_SPEED) ? 10 : 100,
760			 (ncr & NCR_FDX) ? "full" : "half", lpa);
761	} else {
762		dev_info(db->dev, "%s: link down\n", ndev->name);
763	}
764}
765
766static void
767dm9000_poll_work(struct work_struct *w)
768{
769	struct delayed_work *dw = to_delayed_work(w);
770	struct board_info *db = container_of(dw, struct board_info, phy_poll);
771	struct net_device *ndev = db->ndev;
772
773	if (db->flags & DM9000_PLATF_SIMPLE_PHY &&
774	    !(db->flags & DM9000_PLATF_EXT_PHY)) {
775		unsigned nsr = dm9000_read_locked(db, DM9000_NSR);
776		unsigned old_carrier = netif_carrier_ok(ndev) ? 1 : 0;
777		unsigned new_carrier;
778
779		new_carrier = (nsr & NSR_LINKST) ? 1 : 0;
780
781		if (old_carrier != new_carrier) {
782			if (netif_msg_link(db))
783				dm9000_show_carrier(db, new_carrier, nsr);
784
785			if (!new_carrier)
786				netif_carrier_off(ndev);
787			else
788				netif_carrier_on(ndev);
789		}
790	} else
791		mii_check_media(&db->mii, netif_msg_link(db), 0);
792
793	if (netif_running(ndev))
794		dm9000_schedule_poll(db);
795}
796
797/* dm9000_release_board
798 *
799 * release a board, and any mapped resources
800 */
801
802static void
803dm9000_release_board(struct platform_device *pdev, struct board_info *db)
804{
805	/* unmap our resources */
806
807	iounmap(db->io_addr);
808	iounmap(db->io_data);
809
810	/* release the resources */
811
812	if (db->data_req)
813		release_resource(db->data_req);
814	kfree(db->data_req);
815
816	if (db->addr_req)
817		release_resource(db->addr_req);
818	kfree(db->addr_req);
819}
820
821static unsigned char dm9000_type_to_char(enum dm9000_type type)
822{
823	switch (type) {
824	case TYPE_DM9000E: return 'e';
825	case TYPE_DM9000A: return 'a';
826	case TYPE_DM9000B: return 'b';
827	}
828
829	return '?';
830}
831
832/*
833 *  Set DM9000 multicast address
834 */
835static void
836dm9000_hash_table_unlocked(struct net_device *dev)
837{
838	struct board_info *db = netdev_priv(dev);
839	struct netdev_hw_addr *ha;
840	int i, oft;
841	u32 hash_val;
842	u16 hash_table[4] = { 0, 0, 0, 0x8000 }; /* broadcast address */
843	u8 rcr = RCR_DIS_LONG | RCR_DIS_CRC | RCR_RXEN;
844
845	dm9000_dbg(db, 1, "entering %s\n", __func__);
846
847	for (i = 0, oft = DM9000_PAR; i < 6; i++, oft++)
848		iow(db, oft, dev->dev_addr[i]);
849
850	if (dev->flags & IFF_PROMISC)
851		rcr |= RCR_PRMSC;
852
853	if (dev->flags & IFF_ALLMULTI)
854		rcr |= RCR_ALL;
855
856	/* the multicast address in Hash Table : 64 bits */
857	netdev_for_each_mc_addr(ha, dev) {
858		hash_val = ether_crc_le(6, ha->addr) & 0x3f;
859		hash_table[hash_val / 16] |= (u16) 1 << (hash_val % 16);
860	}
861
862	/* Write the hash table to MAC MD table */
863	for (i = 0, oft = DM9000_MAR; i < 4; i++) {
864		iow(db, oft++, hash_table[i]);
865		iow(db, oft++, hash_table[i] >> 8);
866	}
867
868	iow(db, DM9000_RCR, rcr);
869}
870
871static void
872dm9000_hash_table(struct net_device *dev)
873{
874	struct board_info *db = netdev_priv(dev);
875	unsigned long flags;
876
877	spin_lock_irqsave(&db->lock, flags);
878	dm9000_hash_table_unlocked(dev);
879	spin_unlock_irqrestore(&db->lock, flags);
880}
881
882static void
883dm9000_mask_interrupts(struct board_info *db)
884{
885	iow(db, DM9000_IMR, IMR_PAR);
886}
887
888static void
889dm9000_unmask_interrupts(struct board_info *db)
890{
891	iow(db, DM9000_IMR, db->imr_all);
892}
893
894/*
895 * Initialize dm9000 board
896 */
897static void
898dm9000_init_dm9000(struct net_device *dev)
899{
900	struct board_info *db = netdev_priv(dev);
901	unsigned int imr;
902	unsigned int ncr;
903
904	dm9000_dbg(db, 1, "entering %s\n", __func__);
905
906	dm9000_reset(db);
907	dm9000_mask_interrupts(db);
908
909	/* I/O mode */
910	db->io_mode = ior(db, DM9000_ISR) >> 6;	/* ISR bit7:6 keeps I/O mode */
911
912	/* Checksum mode */
913	if (dev->hw_features & NETIF_F_RXCSUM)
914		iow(db, DM9000_RCSR,
915			(dev->features & NETIF_F_RXCSUM) ? RCSR_CSUM : 0);
916
917	iow(db, DM9000_GPCR, GPCR_GEP_CNTL);	/* Let GPIO0 output */
918	iow(db, DM9000_GPR, 0);
919
920	/* If we are dealing with DM9000B, some extra steps are required: a
921	 * manual phy reset, and setting init params.
922	 */
923	if (db->type == TYPE_DM9000B) {
924		dm9000_phy_write(dev, 0, MII_BMCR, BMCR_RESET);
925		dm9000_phy_write(dev, 0, MII_DM_DSPCR, DSPCR_INIT_PARAM);
926	}
927
928	ncr = (db->flags & DM9000_PLATF_EXT_PHY) ? NCR_EXT_PHY : 0;
929
930	/* if wol is needed, then always set NCR_WAKEEN otherwise we end
931	 * up dumping the wake events if we disable this. There is already
932	 * a wake-mask in DM9000_WCR */
933	if (db->wake_supported)
934		ncr |= NCR_WAKEEN;
935
936	iow(db, DM9000_NCR, ncr);
937
938	/* Program operating register */
939	iow(db, DM9000_TCR, 0);	        /* TX Polling clear */
940	iow(db, DM9000_BPTR, 0x3f);	/* Less 3Kb, 200us */
941	iow(db, DM9000_FCR, 0xff);	/* Flow Control */
942	iow(db, DM9000_SMCR, 0);        /* Special Mode */
943	/* clear TX status */
944	iow(db, DM9000_NSR, NSR_WAKEST | NSR_TX2END | NSR_TX1END);
945	iow(db, DM9000_ISR, ISR_CLR_STATUS); /* Clear interrupt status */
946
947	/* Set address filter table */
948	dm9000_hash_table_unlocked(dev);
949
950	imr = IMR_PAR | IMR_PTM | IMR_PRM;
951	if (db->type != TYPE_DM9000E)
952		imr |= IMR_LNKCHNG;
953
954	db->imr_all = imr;
955
956	/* Init Driver variable */
957	db->tx_pkt_cnt = 0;
958	db->queue_pkt_len = 0;
959	netif_trans_update(dev);
960}
961
962/* Our watchdog timed out. Called by the networking layer */
963static void dm9000_timeout(struct net_device *dev, unsigned int txqueue)
964{
965	struct board_info *db = netdev_priv(dev);
966	u8 reg_save;
967	unsigned long flags;
968
969	/* Save previous register address */
970	spin_lock_irqsave(&db->lock, flags);
971	db->in_timeout = 1;
972	reg_save = readb(db->io_addr);
973
974	netif_stop_queue(dev);
975	dm9000_init_dm9000(dev);
976	dm9000_unmask_interrupts(db);
977	/* We can accept TX packets again */
978	netif_trans_update(dev); /* prevent tx timeout */
979	netif_wake_queue(dev);
980
981	/* Restore previous register address */
982	writeb(reg_save, db->io_addr);
983	db->in_timeout = 0;
984	spin_unlock_irqrestore(&db->lock, flags);
985}
986
987static void dm9000_send_packet(struct net_device *dev,
988			       int ip_summed,
989			       u16 pkt_len)
990{
991	struct board_info *dm = to_dm9000_board(dev);
992
993	/* The DM9000 is not smart enough to leave fragmented packets alone. */
994	if (dm->ip_summed != ip_summed) {
995		if (ip_summed == CHECKSUM_NONE)
996			iow(dm, DM9000_TCCR, 0);
997		else
998			iow(dm, DM9000_TCCR, TCCR_IP | TCCR_UDP | TCCR_TCP);
999		dm->ip_summed = ip_summed;
1000	}
1001
1002	/* Set TX length to DM9000 */
1003	iow(dm, DM9000_TXPLL, pkt_len);
1004	iow(dm, DM9000_TXPLH, pkt_len >> 8);
1005
1006	/* Issue TX polling command */
1007	iow(dm, DM9000_TCR, TCR_TXREQ);	/* Cleared after TX complete */
1008}
1009
1010/*
1011 *  Hardware start transmission.
1012 *  Send a packet to media from the upper layer.
1013 */
1014static netdev_tx_t
1015dm9000_start_xmit(struct sk_buff *skb, struct net_device *dev)
1016{
1017	unsigned long flags;
1018	struct board_info *db = netdev_priv(dev);
1019
1020	dm9000_dbg(db, 3, "%s:\n", __func__);
1021
1022	if (db->tx_pkt_cnt > 1)
1023		return NETDEV_TX_BUSY;
1024
1025	spin_lock_irqsave(&db->lock, flags);
1026
1027	/* Move data to DM9000 TX RAM */
1028	writeb(DM9000_MWCMD, db->io_addr);
1029
1030	(db->outblk)(db->io_data, skb->data, skb->len);
1031	dev->stats.tx_bytes += skb->len;
1032
1033	db->tx_pkt_cnt++;
1034	/* TX control: First packet immediately send, second packet queue */
1035	if (db->tx_pkt_cnt == 1) {
1036		dm9000_send_packet(dev, skb->ip_summed, skb->len);
1037	} else {
1038		/* Second packet */
1039		db->queue_pkt_len = skb->len;
1040		db->queue_ip_summed = skb->ip_summed;
1041		netif_stop_queue(dev);
1042	}
1043
1044	spin_unlock_irqrestore(&db->lock, flags);
1045
1046	/* free this SKB */
1047	dev_consume_skb_any(skb);
1048
1049	return NETDEV_TX_OK;
1050}
1051
1052/*
1053 * DM9000 interrupt handler
1054 * receive the packet to upper layer, free the transmitted packet
1055 */
1056
1057static void dm9000_tx_done(struct net_device *dev, struct board_info *db)
1058{
1059	int tx_status = ior(db, DM9000_NSR);	/* Got TX status */
1060
1061	if (tx_status & (NSR_TX2END | NSR_TX1END)) {
1062		/* One packet sent complete */
1063		db->tx_pkt_cnt--;
1064		dev->stats.tx_packets++;
1065
1066		if (netif_msg_tx_done(db))
1067			dev_dbg(db->dev, "tx done, NSR %02x\n", tx_status);
1068
1069		/* Queue packet check & send */
1070		if (db->tx_pkt_cnt > 0)
1071			dm9000_send_packet(dev, db->queue_ip_summed,
1072					   db->queue_pkt_len);
1073		netif_wake_queue(dev);
1074	}
1075}
1076
1077struct dm9000_rxhdr {
1078	u8	RxPktReady;
1079	u8	RxStatus;
1080	__le16	RxLen;
1081} __packed;
1082
1083/*
1084 *  Received a packet and pass to upper layer
1085 */
1086static void
1087dm9000_rx(struct net_device *dev)
1088{
1089	struct board_info *db = netdev_priv(dev);
1090	struct dm9000_rxhdr rxhdr;
1091	struct sk_buff *skb;
1092	u8 rxbyte, *rdptr;
1093	bool GoodPacket;
1094	int RxLen;
1095
1096	/* Check packet ready or not */
1097	do {
1098		ior(db, DM9000_MRCMDX);	/* Dummy read */
1099
1100		/* Get most updated data */
1101		rxbyte = readb(db->io_data);
1102
1103		/* Status check: this byte must be 0 or 1 */
1104		if (rxbyte & DM9000_PKT_ERR) {
1105			dev_warn(db->dev, "status check fail: %d\n", rxbyte);
1106			iow(db, DM9000_RCR, 0x00);	/* Stop Device */
1107			return;
1108		}
1109
1110		if (!(rxbyte & DM9000_PKT_RDY))
1111			return;
1112
1113		/* A packet ready now  & Get status/length */
1114		GoodPacket = true;
1115		writeb(DM9000_MRCMD, db->io_addr);
1116
1117		(db->inblk)(db->io_data, &rxhdr, sizeof(rxhdr));
1118
1119		RxLen = le16_to_cpu(rxhdr.RxLen);
1120
1121		if (netif_msg_rx_status(db))
1122			dev_dbg(db->dev, "RX: status %02x, length %04x\n",
1123				rxhdr.RxStatus, RxLen);
1124
1125		/* Packet Status check */
1126		if (RxLen < 0x40) {
1127			GoodPacket = false;
1128			if (netif_msg_rx_err(db))
1129				dev_dbg(db->dev, "RX: Bad Packet (runt)\n");
1130		}
1131
1132		if (RxLen > DM9000_PKT_MAX) {
1133			dev_dbg(db->dev, "RST: RX Len:%x\n", RxLen);
1134		}
1135
1136		/* rxhdr.RxStatus is identical to RSR register. */
1137		if (rxhdr.RxStatus & (RSR_FOE | RSR_CE | RSR_AE |
1138				      RSR_PLE | RSR_RWTO |
1139				      RSR_LCS | RSR_RF)) {
1140			GoodPacket = false;
1141			if (rxhdr.RxStatus & RSR_FOE) {
1142				if (netif_msg_rx_err(db))
1143					dev_dbg(db->dev, "fifo error\n");
1144				dev->stats.rx_fifo_errors++;
1145			}
1146			if (rxhdr.RxStatus & RSR_CE) {
1147				if (netif_msg_rx_err(db))
1148					dev_dbg(db->dev, "crc error\n");
1149				dev->stats.rx_crc_errors++;
1150			}
1151			if (rxhdr.RxStatus & RSR_RF) {
1152				if (netif_msg_rx_err(db))
1153					dev_dbg(db->dev, "length error\n");
1154				dev->stats.rx_length_errors++;
1155			}
1156		}
1157
1158		/* Move data from DM9000 */
1159		if (GoodPacket &&
1160		    ((skb = netdev_alloc_skb(dev, RxLen + 4)) != NULL)) {
1161			skb_reserve(skb, 2);
1162			rdptr = skb_put(skb, RxLen - 4);
1163
1164			/* Read received packet from RX SRAM */
1165
1166			(db->inblk)(db->io_data, rdptr, RxLen);
1167			dev->stats.rx_bytes += RxLen;
1168
1169			/* Pass to upper layer */
1170			skb->protocol = eth_type_trans(skb, dev);
1171			if (dev->features & NETIF_F_RXCSUM) {
1172				if ((((rxbyte & 0x1c) << 3) & rxbyte) == 0)
1173					skb->ip_summed = CHECKSUM_UNNECESSARY;
1174				else
1175					skb_checksum_none_assert(skb);
1176			}
1177			netif_rx(skb);
1178			dev->stats.rx_packets++;
1179
1180		} else {
1181			/* need to dump the packet's data */
1182
1183			(db->dumpblk)(db->io_data, RxLen);
1184		}
1185	} while (rxbyte & DM9000_PKT_RDY);
1186}
1187
1188static irqreturn_t dm9000_interrupt(int irq, void *dev_id)
1189{
1190	struct net_device *dev = dev_id;
1191	struct board_info *db = netdev_priv(dev);
1192	int int_status;
1193	unsigned long flags;
1194	u8 reg_save;
1195
1196	dm9000_dbg(db, 3, "entering %s\n", __func__);
1197
1198	/* A real interrupt coming */
1199
1200	/* holders of db->lock must always block IRQs */
1201	spin_lock_irqsave(&db->lock, flags);
1202
1203	/* Save previous register address */
1204	reg_save = readb(db->io_addr);
1205
1206	dm9000_mask_interrupts(db);
1207	/* Got DM9000 interrupt status */
1208	int_status = ior(db, DM9000_ISR);	/* Got ISR */
1209	iow(db, DM9000_ISR, int_status);	/* Clear ISR status */
1210
1211	if (netif_msg_intr(db))
1212		dev_dbg(db->dev, "interrupt status %02x\n", int_status);
1213
1214	/* Received the coming packet */
1215	if (int_status & ISR_PRS)
1216		dm9000_rx(dev);
1217
1218	/* Transmit Interrupt check */
1219	if (int_status & ISR_PTS)
1220		dm9000_tx_done(dev, db);
1221
1222	if (db->type != TYPE_DM9000E) {
1223		if (int_status & ISR_LNKCHNG) {
1224			/* fire a link-change request */
1225			schedule_delayed_work(&db->phy_poll, 1);
1226		}
1227	}
1228
1229	dm9000_unmask_interrupts(db);
1230	/* Restore previous register address */
1231	writeb(reg_save, db->io_addr);
1232
1233	spin_unlock_irqrestore(&db->lock, flags);
1234
1235	return IRQ_HANDLED;
1236}
1237
1238static irqreturn_t dm9000_wol_interrupt(int irq, void *dev_id)
1239{
1240	struct net_device *dev = dev_id;
1241	struct board_info *db = netdev_priv(dev);
1242	unsigned long flags;
1243	unsigned nsr, wcr;
1244
1245	spin_lock_irqsave(&db->lock, flags);
1246
1247	nsr = ior(db, DM9000_NSR);
1248	wcr = ior(db, DM9000_WCR);
1249
1250	dev_dbg(db->dev, "%s: NSR=0x%02x, WCR=0x%02x\n", __func__, nsr, wcr);
1251
1252	if (nsr & NSR_WAKEST) {
1253		/* clear, so we can avoid */
1254		iow(db, DM9000_NSR, NSR_WAKEST);
1255
1256		if (wcr & WCR_LINKST)
1257			dev_info(db->dev, "wake by link status change\n");
1258		if (wcr & WCR_SAMPLEST)
1259			dev_info(db->dev, "wake by sample packet\n");
1260		if (wcr & WCR_MAGICST)
1261			dev_info(db->dev, "wake by magic packet\n");
1262		if (!(wcr & (WCR_LINKST | WCR_SAMPLEST | WCR_MAGICST)))
1263			dev_err(db->dev, "wake signalled with no reason? "
1264				"NSR=0x%02x, WSR=0x%02x\n", nsr, wcr);
1265	}
1266
1267	spin_unlock_irqrestore(&db->lock, flags);
1268
1269	return (nsr & NSR_WAKEST) ? IRQ_HANDLED : IRQ_NONE;
1270}
1271
1272#ifdef CONFIG_NET_POLL_CONTROLLER
1273/*
1274 *Used by netconsole
1275 */
1276static void dm9000_poll_controller(struct net_device *dev)
1277{
1278	disable_irq(dev->irq);
1279	dm9000_interrupt(dev->irq, dev);
1280	enable_irq(dev->irq);
1281}
1282#endif
1283
1284/*
1285 *  Open the interface.
1286 *  The interface is opened whenever "ifconfig" actives it.
1287 */
1288static int
1289dm9000_open(struct net_device *dev)
1290{
1291	struct board_info *db = netdev_priv(dev);
1292	unsigned int irq_flags = irq_get_trigger_type(dev->irq);
1293
1294	if (netif_msg_ifup(db))
1295		dev_dbg(db->dev, "enabling %s\n", dev->name);
1296
1297	/* If there is no IRQ type specified, tell the user that this is a
1298	 * problem
1299	 */
1300	if (irq_flags == IRQF_TRIGGER_NONE)
1301		dev_warn(db->dev, "WARNING: no IRQ resource flags set.\n");
1302
1303	irq_flags |= IRQF_SHARED;
1304
1305	/* GPIO0 on pre-activate PHY, Reg 1F is not set by reset */
1306	iow(db, DM9000_GPR, 0);	/* REG_1F bit0 activate phyxcer */
1307	mdelay(1); /* delay needs by DM9000B */
1308
1309	/* Initialize DM9000 board */
1310	dm9000_init_dm9000(dev);
1311
1312	if (request_irq(dev->irq, dm9000_interrupt, irq_flags, dev->name, dev))
1313		return -EAGAIN;
1314	/* Now that we have an interrupt handler hooked up we can unmask
1315	 * our interrupts
1316	 */
1317	dm9000_unmask_interrupts(db);
1318
1319	/* Init driver variable */
1320	db->dbug_cnt = 0;
1321
1322	mii_check_media(&db->mii, netif_msg_link(db), 1);
1323	netif_start_queue(dev);
1324
1325	/* Poll initial link status */
1326	schedule_delayed_work(&db->phy_poll, 1);
1327
1328	return 0;
1329}
1330
1331static void
1332dm9000_shutdown(struct net_device *dev)
1333{
1334	struct board_info *db = netdev_priv(dev);
1335
1336	/* RESET device */
1337	dm9000_phy_write(dev, 0, MII_BMCR, BMCR_RESET);	/* PHY RESET */
1338	iow(db, DM9000_GPR, 0x01);	/* Power-Down PHY */
1339	dm9000_mask_interrupts(db);
1340	iow(db, DM9000_RCR, 0x00);	/* Disable RX */
1341}
1342
1343/*
1344 * Stop the interface.
1345 * The interface is stopped when it is brought.
1346 */
1347static int
1348dm9000_stop(struct net_device *ndev)
1349{
1350	struct board_info *db = netdev_priv(ndev);
1351
1352	if (netif_msg_ifdown(db))
1353		dev_dbg(db->dev, "shutting down %s\n", ndev->name);
1354
1355	cancel_delayed_work_sync(&db->phy_poll);
1356
1357	netif_stop_queue(ndev);
1358	netif_carrier_off(ndev);
1359
1360	/* free interrupt */
1361	free_irq(ndev->irq, ndev);
1362
1363	dm9000_shutdown(ndev);
1364
1365	return 0;
1366}
1367
1368static const struct net_device_ops dm9000_netdev_ops = {
1369	.ndo_open		= dm9000_open,
1370	.ndo_stop		= dm9000_stop,
1371	.ndo_start_xmit		= dm9000_start_xmit,
1372	.ndo_tx_timeout		= dm9000_timeout,
1373	.ndo_set_rx_mode	= dm9000_hash_table,
1374	.ndo_eth_ioctl		= dm9000_ioctl,
1375	.ndo_set_features	= dm9000_set_features,
1376	.ndo_validate_addr	= eth_validate_addr,
1377	.ndo_set_mac_address	= eth_mac_addr,
1378#ifdef CONFIG_NET_POLL_CONTROLLER
1379	.ndo_poll_controller	= dm9000_poll_controller,
1380#endif
1381};
1382
1383static struct dm9000_plat_data *dm9000_parse_dt(struct device *dev)
1384{
1385	struct dm9000_plat_data *pdata;
1386	struct device_node *np = dev->of_node;
1387	int ret;
1388
1389	if (!IS_ENABLED(CONFIG_OF) || !np)
1390		return ERR_PTR(-ENXIO);
1391
1392	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
1393	if (!pdata)
1394		return ERR_PTR(-ENOMEM);
1395
1396	if (of_property_read_bool(np, "davicom,ext-phy"))
1397		pdata->flags |= DM9000_PLATF_EXT_PHY;
1398	if (of_property_read_bool(np, "davicom,no-eeprom"))
1399		pdata->flags |= DM9000_PLATF_NO_EEPROM;
1400
1401	ret = of_get_mac_address(np, pdata->dev_addr);
1402	if (ret == -EPROBE_DEFER)
1403		return ERR_PTR(ret);
1404
1405	return pdata;
1406}
1407
1408/*
1409 * Search DM9000 board, allocate space and register it
1410 */
1411static int
1412dm9000_probe(struct platform_device *pdev)
1413{
1414	struct dm9000_plat_data *pdata = dev_get_platdata(&pdev->dev);
1415	struct board_info *db;	/* Point a board information structure */
1416	struct net_device *ndev;
1417	struct device *dev = &pdev->dev;
1418	const unsigned char *mac_src;
1419	int ret = 0;
1420	int iosize;
1421	int i;
1422	u32 id_val;
1423	struct gpio_desc *reset_gpio;
1424	struct regulator *power;
1425	bool inv_mac_addr = false;
1426	u8 addr[ETH_ALEN];
1427
1428	power = devm_regulator_get(dev, "vcc");
1429	if (IS_ERR(power)) {
1430		if (PTR_ERR(power) == -EPROBE_DEFER)
1431			return -EPROBE_DEFER;
1432		dev_dbg(dev, "no regulator provided\n");
1433	} else {
1434		ret = regulator_enable(power);
1435		if (ret != 0) {
1436			dev_err(dev,
1437				"Failed to enable power regulator: %d\n", ret);
1438			return ret;
1439		}
1440		dev_dbg(dev, "regulator enabled\n");
1441	}
1442
1443	reset_gpio = devm_gpiod_get_optional(dev, "reset", GPIOD_OUT_HIGH);
1444	ret = PTR_ERR_OR_ZERO(reset_gpio);
1445	if (ret) {
1446		dev_err(dev, "failed to request reset gpio: %d\n", ret);
1447		goto out_regulator_disable;
1448	}
1449
1450	if (reset_gpio) {
1451		ret = gpiod_set_consumer_name(reset_gpio, "dm9000_reset");
1452		if (ret) {
1453			dev_err(dev, "failed to set reset gpio name: %d\n",
1454				ret);
1455			goto out_regulator_disable;
1456		}
1457
1458		/* According to manual PWRST# Low Period Min 1ms */
1459		msleep(2);
1460		gpiod_set_value_cansleep(reset_gpio, 0);
1461		/* Needs 3ms to read eeprom when PWRST is deasserted */
1462		msleep(4);
1463	}
1464
1465	if (!pdata) {
1466		pdata = dm9000_parse_dt(&pdev->dev);
1467		if (IS_ERR(pdata)) {
1468			ret = PTR_ERR(pdata);
1469			goto out_regulator_disable;
1470		}
1471	}
1472
1473	/* Init network device */
1474	ndev = alloc_etherdev(sizeof(struct board_info));
1475	if (!ndev) {
1476		ret = -ENOMEM;
1477		goto out_regulator_disable;
1478	}
1479
1480	SET_NETDEV_DEV(ndev, &pdev->dev);
1481
1482	dev_dbg(&pdev->dev, "dm9000_probe()\n");
1483
1484	/* setup board info structure */
1485	db = netdev_priv(ndev);
1486
1487	db->dev = &pdev->dev;
1488	db->ndev = ndev;
1489	if (!IS_ERR(power))
1490		db->power_supply = power;
1491
1492	spin_lock_init(&db->lock);
1493	mutex_init(&db->addr_lock);
1494
1495	INIT_DELAYED_WORK(&db->phy_poll, dm9000_poll_work);
1496
1497	db->addr_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1498	db->data_res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1499
1500	if (!db->addr_res || !db->data_res) {
1501		dev_err(db->dev, "insufficient resources addr=%p data=%p\n",
1502			db->addr_res, db->data_res);
1503		ret = -ENOENT;
1504		goto out;
1505	}
1506
1507	ndev->irq = platform_get_irq(pdev, 0);
1508	if (ndev->irq < 0) {
1509		ret = ndev->irq;
1510		goto out;
1511	}
1512
1513	db->irq_wake = platform_get_irq_optional(pdev, 1);
1514	if (db->irq_wake >= 0) {
1515		dev_dbg(db->dev, "wakeup irq %d\n", db->irq_wake);
1516
1517		ret = request_irq(db->irq_wake, dm9000_wol_interrupt,
1518				  IRQF_SHARED, dev_name(db->dev), ndev);
1519		if (ret) {
1520			dev_err(db->dev, "cannot get wakeup irq (%d)\n", ret);
1521		} else {
1522
1523			/* test to see if irq is really wakeup capable */
1524			ret = irq_set_irq_wake(db->irq_wake, 1);
1525			if (ret) {
1526				dev_err(db->dev, "irq %d cannot set wakeup (%d)\n",
1527					db->irq_wake, ret);
1528			} else {
1529				irq_set_irq_wake(db->irq_wake, 0);
1530				db->wake_supported = 1;
1531			}
1532		}
1533	}
1534
1535	iosize = resource_size(db->addr_res);
1536	db->addr_req = request_mem_region(db->addr_res->start, iosize,
1537					  pdev->name);
1538
1539	if (db->addr_req == NULL) {
1540		dev_err(db->dev, "cannot claim address reg area\n");
1541		ret = -EIO;
1542		goto out;
1543	}
1544
1545	db->io_addr = ioremap(db->addr_res->start, iosize);
1546
1547	if (db->io_addr == NULL) {
1548		dev_err(db->dev, "failed to ioremap address reg\n");
1549		ret = -EINVAL;
1550		goto out;
1551	}
1552
1553	iosize = resource_size(db->data_res);
1554	db->data_req = request_mem_region(db->data_res->start, iosize,
1555					  pdev->name);
1556
1557	if (db->data_req == NULL) {
1558		dev_err(db->dev, "cannot claim data reg area\n");
1559		ret = -EIO;
1560		goto out;
1561	}
1562
1563	db->io_data = ioremap(db->data_res->start, iosize);
1564
1565	if (db->io_data == NULL) {
1566		dev_err(db->dev, "failed to ioremap data reg\n");
1567		ret = -EINVAL;
1568		goto out;
1569	}
1570
1571	/* fill in parameters for net-dev structure */
1572	ndev->base_addr = (unsigned long)db->io_addr;
1573
1574	/* ensure at least we have a default set of IO routines */
1575	dm9000_set_io(db, iosize);
1576
1577	/* check to see if anything is being over-ridden */
1578	if (pdata != NULL) {
1579		/* check to see if the driver wants to over-ride the
1580		 * default IO width */
1581
1582		if (pdata->flags & DM9000_PLATF_8BITONLY)
1583			dm9000_set_io(db, 1);
1584
1585		if (pdata->flags & DM9000_PLATF_16BITONLY)
1586			dm9000_set_io(db, 2);
1587
1588		if (pdata->flags & DM9000_PLATF_32BITONLY)
1589			dm9000_set_io(db, 4);
1590
1591		/* check to see if there are any IO routine
1592		 * over-rides */
1593
1594		if (pdata->inblk != NULL)
1595			db->inblk = pdata->inblk;
1596
1597		if (pdata->outblk != NULL)
1598			db->outblk = pdata->outblk;
1599
1600		if (pdata->dumpblk != NULL)
1601			db->dumpblk = pdata->dumpblk;
1602
1603		db->flags = pdata->flags;
1604	}
1605
1606#ifdef CONFIG_DM9000_FORCE_SIMPLE_PHY_POLL
1607	db->flags |= DM9000_PLATF_SIMPLE_PHY;
1608#endif
1609
1610	dm9000_reset(db);
1611
1612	/* try multiple times, DM9000 sometimes gets the read wrong */
1613	for (i = 0; i < 8; i++) {
1614		id_val  = ior(db, DM9000_VIDL);
1615		id_val |= (u32)ior(db, DM9000_VIDH) << 8;
1616		id_val |= (u32)ior(db, DM9000_PIDL) << 16;
1617		id_val |= (u32)ior(db, DM9000_PIDH) << 24;
1618
1619		if (id_val == DM9000_ID)
1620			break;
1621		dev_err(db->dev, "read wrong id 0x%08x\n", id_val);
1622	}
1623
1624	if (id_val != DM9000_ID) {
1625		dev_err(db->dev, "wrong id: 0x%08x\n", id_val);
1626		ret = -ENODEV;
1627		goto out;
1628	}
1629
1630	/* Identify what type of DM9000 we are working on */
1631
1632	id_val = ior(db, DM9000_CHIPR);
1633	dev_dbg(db->dev, "dm9000 revision 0x%02x\n", id_val);
1634
1635	switch (id_val) {
1636	case CHIPR_DM9000A:
1637		db->type = TYPE_DM9000A;
1638		break;
1639	case CHIPR_DM9000B:
1640		db->type = TYPE_DM9000B;
1641		break;
1642	default:
1643		dev_dbg(db->dev, "ID %02x => defaulting to DM9000E\n", id_val);
1644		db->type = TYPE_DM9000E;
1645	}
1646
1647	/* dm9000a/b are capable of hardware checksum offload */
1648	if (db->type == TYPE_DM9000A || db->type == TYPE_DM9000B) {
1649		ndev->hw_features = NETIF_F_RXCSUM | NETIF_F_IP_CSUM;
1650		ndev->features |= ndev->hw_features;
1651	}
1652
1653	/* from this point we assume that we have found a DM9000 */
1654
1655	ndev->netdev_ops	= &dm9000_netdev_ops;
1656	ndev->watchdog_timeo	= msecs_to_jiffies(watchdog);
1657	ndev->ethtool_ops	= &dm9000_ethtool_ops;
1658
1659	db->msg_enable       = NETIF_MSG_LINK;
1660	db->mii.phy_id_mask  = 0x1f;
1661	db->mii.reg_num_mask = 0x1f;
1662	db->mii.force_media  = 0;
1663	db->mii.full_duplex  = 0;
1664	db->mii.dev	     = ndev;
1665	db->mii.mdio_read    = dm9000_phy_read;
1666	db->mii.mdio_write   = dm9000_phy_write;
1667
1668	mac_src = "eeprom";
1669
1670	/* try reading the node address from the attached EEPROM */
1671	for (i = 0; i < 6; i += 2)
1672		dm9000_read_eeprom(db, i / 2, addr + i);
1673	eth_hw_addr_set(ndev, addr);
1674
1675	if (!is_valid_ether_addr(ndev->dev_addr) && pdata != NULL) {
1676		mac_src = "platform data";
1677		eth_hw_addr_set(ndev, pdata->dev_addr);
1678	}
1679
1680	if (!is_valid_ether_addr(ndev->dev_addr)) {
1681		/* try reading from mac */
1682
1683		mac_src = "chip";
1684		for (i = 0; i < 6; i++)
1685			addr[i] = ior(db, i + DM9000_PAR);
1686		eth_hw_addr_set(ndev, pdata->dev_addr);
1687	}
1688
1689	if (!is_valid_ether_addr(ndev->dev_addr)) {
1690		inv_mac_addr = true;
1691		eth_hw_addr_random(ndev);
1692		mac_src = "random";
1693	}
1694
1695
1696	platform_set_drvdata(pdev, ndev);
1697	ret = register_netdev(ndev);
1698
1699	if (ret == 0) {
1700		if (inv_mac_addr)
1701			dev_warn(db->dev, "%s: Invalid ethernet MAC address. Please set using ip\n",
1702				 ndev->name);
1703		printk(KERN_INFO "%s: dm9000%c at %p,%p IRQ %d MAC: %pM (%s)\n",
1704		       ndev->name, dm9000_type_to_char(db->type),
1705		       db->io_addr, db->io_data, ndev->irq,
1706		       ndev->dev_addr, mac_src);
1707	}
1708	return 0;
1709
1710out:
1711	dev_err(db->dev, "not found (%d).\n", ret);
1712
1713	dm9000_release_board(pdev, db);
1714	free_netdev(ndev);
1715
1716out_regulator_disable:
1717	if (!IS_ERR(power))
1718		regulator_disable(power);
1719
1720	return ret;
1721}
1722
1723static int
1724dm9000_drv_suspend(struct device *dev)
1725{
1726	struct net_device *ndev = dev_get_drvdata(dev);
1727	struct board_info *db;
1728
1729	if (ndev) {
1730		db = netdev_priv(ndev);
1731		db->in_suspend = 1;
1732
1733		if (!netif_running(ndev))
1734			return 0;
1735
1736		netif_device_detach(ndev);
1737
1738		/* only shutdown if not using WoL */
1739		if (!db->wake_state)
1740			dm9000_shutdown(ndev);
1741	}
1742	return 0;
1743}
1744
1745static int
1746dm9000_drv_resume(struct device *dev)
1747{
1748	struct net_device *ndev = dev_get_drvdata(dev);
1749	struct board_info *db = netdev_priv(ndev);
1750
1751	if (ndev) {
1752		if (netif_running(ndev)) {
1753			/* reset if we were not in wake mode to ensure if
1754			 * the device was powered off it is in a known state */
1755			if (!db->wake_state) {
1756				dm9000_init_dm9000(ndev);
1757				dm9000_unmask_interrupts(db);
1758			}
1759
1760			netif_device_attach(ndev);
1761		}
1762
1763		db->in_suspend = 0;
1764	}
1765	return 0;
1766}
1767
1768static const struct dev_pm_ops dm9000_drv_pm_ops = {
1769	.suspend	= dm9000_drv_suspend,
1770	.resume		= dm9000_drv_resume,
1771};
1772
1773static int
1774dm9000_drv_remove(struct platform_device *pdev)
1775{
1776	struct net_device *ndev = platform_get_drvdata(pdev);
1777	struct board_info *dm = to_dm9000_board(ndev);
1778
1779	unregister_netdev(ndev);
1780	dm9000_release_board(pdev, dm);
1781	free_netdev(ndev);		/* free device structure */
1782	if (dm->power_supply)
1783		regulator_disable(dm->power_supply);
1784
1785	dev_dbg(&pdev->dev, "released and freed device\n");
1786	return 0;
1787}
1788
1789#ifdef CONFIG_OF
1790static const struct of_device_id dm9000_of_matches[] = {
1791	{ .compatible = "davicom,dm9000", },
1792	{ /* sentinel */ }
1793};
1794MODULE_DEVICE_TABLE(of, dm9000_of_matches);
1795#endif
1796
1797static struct platform_driver dm9000_driver = {
1798	.driver	= {
1799		.name    = "dm9000",
1800		.pm	 = &dm9000_drv_pm_ops,
1801		.of_match_table = of_match_ptr(dm9000_of_matches),
1802	},
1803	.probe   = dm9000_probe,
1804	.remove  = dm9000_drv_remove,
1805};
1806
1807module_platform_driver(dm9000_driver);
1808
1809MODULE_AUTHOR("Sascha Hauer, Ben Dooks");
1810MODULE_DESCRIPTION("Davicom DM9000 network driver");
1811MODULE_LICENSE("GPL");
1812MODULE_ALIAS("platform:dm9000");
1813