1/*
2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
3 * driver for Linux.
4 *
5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
6 *
7 * This software is available to you under a choice of one of two
8 * licenses.  You may choose to be licensed under the terms of the GNU
9 * General Public License (GPL) Version 2, available from the file
10 * COPYING in the main directory of this source tree, or the
11 * OpenIB.org BSD license below:
12 *
13 *     Redistribution and use in source and binary forms, with or
14 *     without modification, are permitted provided that the following
15 *     conditions are met:
16 *
17 *      - Redistributions of source code must retain the above
18 *        copyright notice, this list of conditions and the following
19 *        disclaimer.
20 *
21 *      - Redistributions in binary form must reproduce the above
22 *        copyright notice, this list of conditions and the following
23 *        disclaimer in the documentation and/or other materials
24 *        provided with the distribution.
25 *
26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33 * SOFTWARE.
34 */
35
36#include <linux/ethtool.h>
37#include <linux/pci.h>
38
39#include "t4vf_common.h"
40#include "t4vf_defs.h"
41
42#include "../cxgb4/t4_regs.h"
43#include "../cxgb4/t4_values.h"
44#include "../cxgb4/t4fw_api.h"
45
46/*
47 * Wait for the device to become ready (signified by our "who am I" register
48 * returning a value other than all 1's).  Return an error if it doesn't
49 * become ready ...
50 */
51int t4vf_wait_dev_ready(struct adapter *adapter)
52{
53	const u32 whoami = T4VF_PL_BASE_ADDR + PL_VF_WHOAMI;
54	const u32 notready1 = 0xffffffff;
55	const u32 notready2 = 0xeeeeeeee;
56	u32 val;
57
58	val = t4_read_reg(adapter, whoami);
59	if (val != notready1 && val != notready2)
60		return 0;
61	msleep(500);
62	val = t4_read_reg(adapter, whoami);
63	if (val != notready1 && val != notready2)
64		return 0;
65	else
66		return -EIO;
67}
68
69/*
70 * Get the reply to a mailbox command and store it in @rpl in big-endian order
71 * (since the firmware data structures are specified in a big-endian layout).
72 */
73static void get_mbox_rpl(struct adapter *adapter, __be64 *rpl, int size,
74			 u32 mbox_data)
75{
76	for ( ; size; size -= 8, mbox_data += 8)
77		*rpl++ = cpu_to_be64(t4_read_reg64(adapter, mbox_data));
78}
79
80/**
81 *	t4vf_record_mbox - record a Firmware Mailbox Command/Reply in the log
82 *	@adapter: the adapter
83 *	@cmd: the Firmware Mailbox Command or Reply
84 *	@size: command length in bytes
85 *	@access: the time (ms) needed to access the Firmware Mailbox
86 *	@execute: the time (ms) the command spent being executed
87 */
88static void t4vf_record_mbox(struct adapter *adapter, const __be64 *cmd,
89			     int size, int access, int execute)
90{
91	struct mbox_cmd_log *log = adapter->mbox_log;
92	struct mbox_cmd *entry;
93	int i;
94
95	entry = mbox_cmd_log_entry(log, log->cursor++);
96	if (log->cursor == log->size)
97		log->cursor = 0;
98
99	for (i = 0; i < size / 8; i++)
100		entry->cmd[i] = be64_to_cpu(cmd[i]);
101	while (i < MBOX_LEN / 8)
102		entry->cmd[i++] = 0;
103	entry->timestamp = jiffies;
104	entry->seqno = log->seqno++;
105	entry->access = access;
106	entry->execute = execute;
107}
108
109/**
110 *	t4vf_wr_mbox_core - send a command to FW through the mailbox
111 *	@adapter: the adapter
112 *	@cmd: the command to write
113 *	@size: command length in bytes
114 *	@rpl: where to optionally store the reply
115 *	@sleep_ok: if true we may sleep while awaiting command completion
116 *
117 *	Sends the given command to FW through the mailbox and waits for the
118 *	FW to execute the command.  If @rpl is not %NULL it is used to store
119 *	the FW's reply to the command.  The command and its optional reply
120 *	are of the same length.  FW can take up to 500 ms to respond.
121 *	@sleep_ok determines whether we may sleep while awaiting the response.
122 *	If sleeping is allowed we use progressive backoff otherwise we spin.
123 *
124 *	The return value is 0 on success or a negative errno on failure.  A
125 *	failure can happen either because we are not able to execute the
126 *	command or FW executes it but signals an error.  In the latter case
127 *	the return value is the error code indicated by FW (negated).
128 */
129int t4vf_wr_mbox_core(struct adapter *adapter, const void *cmd, int size,
130		      void *rpl, bool sleep_ok)
131{
132	static const int delay[] = {
133		1, 1, 3, 5, 10, 10, 20, 50, 100
134	};
135
136	u16 access = 0, execute = 0;
137	u32 v, mbox_data;
138	int i, ms, delay_idx, ret;
139	const __be64 *p;
140	u32 mbox_ctl = T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL;
141	u32 cmd_op = FW_CMD_OP_G(be32_to_cpu(((struct fw_cmd_hdr *)cmd)->hi));
142	__be64 cmd_rpl[MBOX_LEN / 8];
143	struct mbox_list entry;
144
145	/* In T6, mailbox size is changed to 128 bytes to avoid
146	 * invalidating the entire prefetch buffer.
147	 */
148	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
149		mbox_data = T4VF_MBDATA_BASE_ADDR;
150	else
151		mbox_data = T6VF_MBDATA_BASE_ADDR;
152
153	/*
154	 * Commands must be multiples of 16 bytes in length and may not be
155	 * larger than the size of the Mailbox Data register array.
156	 */
157	if ((size % 16) != 0 ||
158	    size > NUM_CIM_VF_MAILBOX_DATA_INSTANCES * 4)
159		return -EINVAL;
160
161	/* Queue ourselves onto the mailbox access list.  When our entry is at
162	 * the front of the list, we have rights to access the mailbox.  So we
163	 * wait [for a while] till we're at the front [or bail out with an
164	 * EBUSY] ...
165	 */
166	spin_lock(&adapter->mbox_lock);
167	list_add_tail(&entry.list, &adapter->mlist.list);
168	spin_unlock(&adapter->mbox_lock);
169
170	delay_idx = 0;
171	ms = delay[0];
172
173	for (i = 0; ; i += ms) {
174		/* If we've waited too long, return a busy indication.  This
175		 * really ought to be based on our initial position in the
176		 * mailbox access list but this is a start.  We very rearely
177		 * contend on access to the mailbox ...
178		 */
179		if (i > FW_CMD_MAX_TIMEOUT) {
180			spin_lock(&adapter->mbox_lock);
181			list_del(&entry.list);
182			spin_unlock(&adapter->mbox_lock);
183			ret = -EBUSY;
184			t4vf_record_mbox(adapter, cmd, size, access, ret);
185			return ret;
186		}
187
188		/* If we're at the head, break out and start the mailbox
189		 * protocol.
190		 */
191		if (list_first_entry(&adapter->mlist.list, struct mbox_list,
192				     list) == &entry)
193			break;
194
195		/* Delay for a bit before checking again ... */
196		if (sleep_ok) {
197			ms = delay[delay_idx];  /* last element may repeat */
198			if (delay_idx < ARRAY_SIZE(delay) - 1)
199				delay_idx++;
200			msleep(ms);
201		} else {
202			mdelay(ms);
203		}
204	}
205
206	/*
207	 * Loop trying to get ownership of the mailbox.  Return an error
208	 * if we can't gain ownership.
209	 */
210	v = MBOWNER_G(t4_read_reg(adapter, mbox_ctl));
211	for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
212		v = MBOWNER_G(t4_read_reg(adapter, mbox_ctl));
213	if (v != MBOX_OWNER_DRV) {
214		spin_lock(&adapter->mbox_lock);
215		list_del(&entry.list);
216		spin_unlock(&adapter->mbox_lock);
217		ret = (v == MBOX_OWNER_FW) ? -EBUSY : -ETIMEDOUT;
218		t4vf_record_mbox(adapter, cmd, size, access, ret);
219		return ret;
220	}
221
222	/*
223	 * Write the command array into the Mailbox Data register array and
224	 * transfer ownership of the mailbox to the firmware.
225	 *
226	 * For the VFs, the Mailbox Data "registers" are actually backed by
227	 * T4's "MA" interface rather than PL Registers (as is the case for
228	 * the PFs).  Because these are in different coherency domains, the
229	 * write to the VF's PL-register-backed Mailbox Control can race in
230	 * front of the writes to the MA-backed VF Mailbox Data "registers".
231	 * So we need to do a read-back on at least one byte of the VF Mailbox
232	 * Data registers before doing the write to the VF Mailbox Control
233	 * register.
234	 */
235	if (cmd_op != FW_VI_STATS_CMD)
236		t4vf_record_mbox(adapter, cmd, size, access, 0);
237	for (i = 0, p = cmd; i < size; i += 8)
238		t4_write_reg64(adapter, mbox_data + i, be64_to_cpu(*p++));
239	t4_read_reg(adapter, mbox_data);         /* flush write */
240
241	t4_write_reg(adapter, mbox_ctl,
242		     MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
243	t4_read_reg(adapter, mbox_ctl);          /* flush write */
244
245	/*
246	 * Spin waiting for firmware to acknowledge processing our command.
247	 */
248	delay_idx = 0;
249	ms = delay[0];
250
251	for (i = 0; i < FW_CMD_MAX_TIMEOUT; i += ms) {
252		if (sleep_ok) {
253			ms = delay[delay_idx];
254			if (delay_idx < ARRAY_SIZE(delay) - 1)
255				delay_idx++;
256			msleep(ms);
257		} else
258			mdelay(ms);
259
260		/*
261		 * If we're the owner, see if this is the reply we wanted.
262		 */
263		v = t4_read_reg(adapter, mbox_ctl);
264		if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
265			/*
266			 * If the Message Valid bit isn't on, revoke ownership
267			 * of the mailbox and continue waiting for our reply.
268			 */
269			if ((v & MBMSGVALID_F) == 0) {
270				t4_write_reg(adapter, mbox_ctl,
271					     MBOWNER_V(MBOX_OWNER_NONE));
272				continue;
273			}
274
275			/*
276			 * We now have our reply.  Extract the command return
277			 * value, copy the reply back to our caller's buffer
278			 * (if specified) and revoke ownership of the mailbox.
279			 * We return the (negated) firmware command return
280			 * code (this depends on FW_SUCCESS == 0).
281			 */
282			get_mbox_rpl(adapter, cmd_rpl, size, mbox_data);
283
284			/* return value in low-order little-endian word */
285			v = be64_to_cpu(cmd_rpl[0]);
286
287			if (rpl) {
288				/* request bit in high-order BE word */
289				WARN_ON((be32_to_cpu(*(const __be32 *)cmd)
290					 & FW_CMD_REQUEST_F) == 0);
291				memcpy(rpl, cmd_rpl, size);
292				WARN_ON((be32_to_cpu(*(__be32 *)rpl)
293					 & FW_CMD_REQUEST_F) != 0);
294			}
295			t4_write_reg(adapter, mbox_ctl,
296				     MBOWNER_V(MBOX_OWNER_NONE));
297			execute = i + ms;
298			if (cmd_op != FW_VI_STATS_CMD)
299				t4vf_record_mbox(adapter, cmd_rpl, size, access,
300						 execute);
301			spin_lock(&adapter->mbox_lock);
302			list_del(&entry.list);
303			spin_unlock(&adapter->mbox_lock);
304			return -FW_CMD_RETVAL_G(v);
305		}
306	}
307
308	/* We timed out.  Return the error ... */
309	ret = -ETIMEDOUT;
310	t4vf_record_mbox(adapter, cmd, size, access, ret);
311	spin_lock(&adapter->mbox_lock);
312	list_del(&entry.list);
313	spin_unlock(&adapter->mbox_lock);
314	return ret;
315}
316
317/* In the Physical Function Driver Common Code, the ADVERT_MASK is used to
318 * mask out bits in the Advertised Port Capabilities which are managed via
319 * separate controls, like Pause Frames and Forward Error Correction.  In the
320 * Virtual Function Common Code, since we never perform L1 Configuration on
321 * the Link, the only things we really need to filter out are things which
322 * we decode and report separately like Speed.
323 */
324#define ADVERT_MASK (FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_M) | \
325		     FW_PORT_CAP32_802_3_PAUSE | \
326		     FW_PORT_CAP32_802_3_ASM_DIR | \
327		     FW_PORT_CAP32_FEC_V(FW_PORT_CAP32_FEC_M) | \
328		     FW_PORT_CAP32_ANEG)
329
330/**
331 *	fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits
332 *	@caps16: a 16-bit Port Capabilities value
333 *
334 *	Returns the equivalent 32-bit Port Capabilities value.
335 */
336static fw_port_cap32_t fwcaps16_to_caps32(fw_port_cap16_t caps16)
337{
338	fw_port_cap32_t caps32 = 0;
339
340	#define CAP16_TO_CAP32(__cap) \
341		do { \
342			if (caps16 & FW_PORT_CAP_##__cap) \
343				caps32 |= FW_PORT_CAP32_##__cap; \
344		} while (0)
345
346	CAP16_TO_CAP32(SPEED_100M);
347	CAP16_TO_CAP32(SPEED_1G);
348	CAP16_TO_CAP32(SPEED_25G);
349	CAP16_TO_CAP32(SPEED_10G);
350	CAP16_TO_CAP32(SPEED_40G);
351	CAP16_TO_CAP32(SPEED_100G);
352	CAP16_TO_CAP32(FC_RX);
353	CAP16_TO_CAP32(FC_TX);
354	CAP16_TO_CAP32(ANEG);
355	CAP16_TO_CAP32(MDIAUTO);
356	CAP16_TO_CAP32(MDISTRAIGHT);
357	CAP16_TO_CAP32(FEC_RS);
358	CAP16_TO_CAP32(FEC_BASER_RS);
359	CAP16_TO_CAP32(802_3_PAUSE);
360	CAP16_TO_CAP32(802_3_ASM_DIR);
361
362	#undef CAP16_TO_CAP32
363
364	return caps32;
365}
366
367/* Translate Firmware Pause specification to Common Code */
368static inline enum cc_pause fwcap_to_cc_pause(fw_port_cap32_t fw_pause)
369{
370	enum cc_pause cc_pause = 0;
371
372	if (fw_pause & FW_PORT_CAP32_FC_RX)
373		cc_pause |= PAUSE_RX;
374	if (fw_pause & FW_PORT_CAP32_FC_TX)
375		cc_pause |= PAUSE_TX;
376
377	return cc_pause;
378}
379
380/* Translate Firmware Forward Error Correction specification to Common Code */
381static inline enum cc_fec fwcap_to_cc_fec(fw_port_cap32_t fw_fec)
382{
383	enum cc_fec cc_fec = 0;
384
385	if (fw_fec & FW_PORT_CAP32_FEC_RS)
386		cc_fec |= FEC_RS;
387	if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS)
388		cc_fec |= FEC_BASER_RS;
389
390	return cc_fec;
391}
392
393/* Return the highest speed set in the port capabilities, in Mb/s. */
394static unsigned int fwcap_to_speed(fw_port_cap32_t caps)
395{
396	#define TEST_SPEED_RETURN(__caps_speed, __speed) \
397		do { \
398			if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
399				return __speed; \
400		} while (0)
401
402	TEST_SPEED_RETURN(400G, 400000);
403	TEST_SPEED_RETURN(200G, 200000);
404	TEST_SPEED_RETURN(100G, 100000);
405	TEST_SPEED_RETURN(50G,   50000);
406	TEST_SPEED_RETURN(40G,   40000);
407	TEST_SPEED_RETURN(25G,   25000);
408	TEST_SPEED_RETURN(10G,   10000);
409	TEST_SPEED_RETURN(1G,     1000);
410	TEST_SPEED_RETURN(100M,    100);
411
412	#undef TEST_SPEED_RETURN
413
414	return 0;
415}
416
417/**
418 *      fwcap_to_fwspeed - return highest speed in Port Capabilities
419 *      @acaps: advertised Port Capabilities
420 *
421 *      Get the highest speed for the port from the advertised Port
422 *      Capabilities.  It will be either the highest speed from the list of
423 *      speeds or whatever user has set using ethtool.
424 */
425static fw_port_cap32_t fwcap_to_fwspeed(fw_port_cap32_t acaps)
426{
427	#define TEST_SPEED_RETURN(__caps_speed) \
428		do { \
429			if (acaps & FW_PORT_CAP32_SPEED_##__caps_speed) \
430				return FW_PORT_CAP32_SPEED_##__caps_speed; \
431		} while (0)
432
433	TEST_SPEED_RETURN(400G);
434	TEST_SPEED_RETURN(200G);
435	TEST_SPEED_RETURN(100G);
436	TEST_SPEED_RETURN(50G);
437	TEST_SPEED_RETURN(40G);
438	TEST_SPEED_RETURN(25G);
439	TEST_SPEED_RETURN(10G);
440	TEST_SPEED_RETURN(1G);
441	TEST_SPEED_RETURN(100M);
442
443	#undef TEST_SPEED_RETURN
444	return 0;
445}
446
447/*
448 *	init_link_config - initialize a link's SW state
449 *	@lc: structure holding the link state
450 *	@pcaps: link Port Capabilities
451 *	@acaps: link current Advertised Port Capabilities
452 *
453 *	Initializes the SW state maintained for each link, including the link's
454 *	capabilities and default speed/flow-control/autonegotiation settings.
455 */
456static void init_link_config(struct link_config *lc,
457			     fw_port_cap32_t pcaps,
458			     fw_port_cap32_t acaps)
459{
460	lc->pcaps = pcaps;
461	lc->lpacaps = 0;
462	lc->speed_caps = 0;
463	lc->speed = 0;
464	lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
465
466	/* For Forward Error Control, we default to whatever the Firmware
467	 * tells us the Link is currently advertising.
468	 */
469	lc->auto_fec = fwcap_to_cc_fec(acaps);
470	lc->requested_fec = FEC_AUTO;
471	lc->fec = lc->auto_fec;
472
473	/* If the Port is capable of Auto-Negtotiation, initialize it as
474	 * "enabled" and copy over all of the Physical Port Capabilities
475	 * to the Advertised Port Capabilities.  Otherwise mark it as
476	 * Auto-Negotiate disabled and select the highest supported speed
477	 * for the link.  Note parallel structure in t4_link_l1cfg_core()
478	 * and t4_handle_get_port_info().
479	 */
480	if (lc->pcaps & FW_PORT_CAP32_ANEG) {
481		lc->acaps = acaps & ADVERT_MASK;
482		lc->autoneg = AUTONEG_ENABLE;
483		lc->requested_fc |= PAUSE_AUTONEG;
484	} else {
485		lc->acaps = 0;
486		lc->autoneg = AUTONEG_DISABLE;
487		lc->speed_caps = fwcap_to_fwspeed(acaps);
488	}
489}
490
491/**
492 *	t4vf_port_init - initialize port hardware/software state
493 *	@adapter: the adapter
494 *	@pidx: the adapter port index
495 */
496int t4vf_port_init(struct adapter *adapter, int pidx)
497{
498	struct port_info *pi = adap2pinfo(adapter, pidx);
499	unsigned int fw_caps = adapter->params.fw_caps_support;
500	struct fw_vi_cmd vi_cmd, vi_rpl;
501	struct fw_port_cmd port_cmd, port_rpl;
502	enum fw_port_type port_type;
503	int mdio_addr;
504	fw_port_cap32_t pcaps, acaps;
505	int ret;
506
507	/* If we haven't yet determined whether we're talking to Firmware
508	 * which knows the new 32-bit Port Capabilities, it's time to find
509	 * out now.  This will also tell new Firmware to send us Port Status
510	 * Updates using the new 32-bit Port Capabilities version of the
511	 * Port Information message.
512	 */
513	if (fw_caps == FW_CAPS_UNKNOWN) {
514		u32 param, val;
515
516		param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
517			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_PORT_CAPS32));
518		val = 1;
519		ret = t4vf_set_params(adapter, 1, &param, &val);
520		fw_caps = (ret == 0 ? FW_CAPS32 : FW_CAPS16);
521		adapter->params.fw_caps_support = fw_caps;
522	}
523
524	/*
525	 * Execute a VI Read command to get our Virtual Interface information
526	 * like MAC address, etc.
527	 */
528	memset(&vi_cmd, 0, sizeof(vi_cmd));
529	vi_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
530				       FW_CMD_REQUEST_F |
531				       FW_CMD_READ_F);
532	vi_cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(vi_cmd));
533	vi_cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(pi->viid));
534	ret = t4vf_wr_mbox(adapter, &vi_cmd, sizeof(vi_cmd), &vi_rpl);
535	if (ret != FW_SUCCESS)
536		return ret;
537
538	BUG_ON(pi->port_id != FW_VI_CMD_PORTID_G(vi_rpl.portid_pkd));
539	pi->rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(vi_rpl.rsssize_pkd));
540	t4_os_set_hw_addr(adapter, pidx, vi_rpl.mac);
541
542	/*
543	 * If we don't have read access to our port information, we're done
544	 * now.  Otherwise, execute a PORT Read command to get it ...
545	 */
546	if (!(adapter->params.vfres.r_caps & FW_CMD_CAP_PORT))
547		return 0;
548
549	memset(&port_cmd, 0, sizeof(port_cmd));
550	port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
551					    FW_CMD_REQUEST_F |
552					    FW_CMD_READ_F |
553					    FW_PORT_CMD_PORTID_V(pi->port_id));
554	port_cmd.action_to_len16 = cpu_to_be32(
555		FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
556				     ? FW_PORT_ACTION_GET_PORT_INFO
557				     : FW_PORT_ACTION_GET_PORT_INFO32) |
558		FW_LEN16(port_cmd));
559	ret = t4vf_wr_mbox(adapter, &port_cmd, sizeof(port_cmd), &port_rpl);
560	if (ret != FW_SUCCESS)
561		return ret;
562
563	/* Extract the various fields from the Port Information message. */
564	if (fw_caps == FW_CAPS16) {
565		u32 lstatus = be32_to_cpu(port_rpl.u.info.lstatus_to_modtype);
566
567		port_type = FW_PORT_CMD_PTYPE_G(lstatus);
568		mdio_addr = ((lstatus & FW_PORT_CMD_MDIOCAP_F)
569			     ? FW_PORT_CMD_MDIOADDR_G(lstatus)
570			     : -1);
571		pcaps = fwcaps16_to_caps32(be16_to_cpu(port_rpl.u.info.pcap));
572		acaps = fwcaps16_to_caps32(be16_to_cpu(port_rpl.u.info.acap));
573	} else {
574		u32 lstatus32 =
575			   be32_to_cpu(port_rpl.u.info32.lstatus32_to_cbllen32);
576
577		port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
578		mdio_addr = ((lstatus32 & FW_PORT_CMD_MDIOCAP32_F)
579			     ? FW_PORT_CMD_MDIOADDR32_G(lstatus32)
580			     : -1);
581		pcaps = be32_to_cpu(port_rpl.u.info32.pcaps32);
582		acaps = be32_to_cpu(port_rpl.u.info32.acaps32);
583	}
584
585	pi->port_type = port_type;
586	pi->mdio_addr = mdio_addr;
587	pi->mod_type = FW_PORT_MOD_TYPE_NA;
588
589	init_link_config(&pi->link_cfg, pcaps, acaps);
590	return 0;
591}
592
593/**
594 *      t4vf_fw_reset - issue a reset to FW
595 *      @adapter: the adapter
596 *
597 *	Issues a reset command to FW.  For a Physical Function this would
598 *	result in the Firmware resetting all of its state.  For a Virtual
599 *	Function this just resets the state associated with the VF.
600 */
601int t4vf_fw_reset(struct adapter *adapter)
602{
603	struct fw_reset_cmd cmd;
604
605	memset(&cmd, 0, sizeof(cmd));
606	cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RESET_CMD) |
607				      FW_CMD_WRITE_F);
608	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
609	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
610}
611
612/**
613 *	t4vf_query_params - query FW or device parameters
614 *	@adapter: the adapter
615 *	@nparams: the number of parameters
616 *	@params: the parameter names
617 *	@vals: the parameter values
618 *
619 *	Reads the values of firmware or device parameters.  Up to 7 parameters
620 *	can be queried at once.
621 */
622static int t4vf_query_params(struct adapter *adapter, unsigned int nparams,
623			     const u32 *params, u32 *vals)
624{
625	int i, ret;
626	struct fw_params_cmd cmd, rpl;
627	struct fw_params_param *p;
628	size_t len16;
629
630	if (nparams > 7)
631		return -EINVAL;
632
633	memset(&cmd, 0, sizeof(cmd));
634	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
635				    FW_CMD_REQUEST_F |
636				    FW_CMD_READ_F);
637	len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd,
638				      param[nparams].mnem), 16);
639	cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
640	for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++)
641		p->mnem = htonl(*params++);
642
643	ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
644	if (ret == 0)
645		for (i = 0, p = &rpl.param[0]; i < nparams; i++, p++)
646			*vals++ = be32_to_cpu(p->val);
647	return ret;
648}
649
650/**
651 *	t4vf_set_params - sets FW or device parameters
652 *	@adapter: the adapter
653 *	@nparams: the number of parameters
654 *	@params: the parameter names
655 *	@vals: the parameter values
656 *
657 *	Sets the values of firmware or device parameters.  Up to 7 parameters
658 *	can be specified at once.
659 */
660int t4vf_set_params(struct adapter *adapter, unsigned int nparams,
661		    const u32 *params, const u32 *vals)
662{
663	int i;
664	struct fw_params_cmd cmd;
665	struct fw_params_param *p;
666	size_t len16;
667
668	if (nparams > 7)
669		return -EINVAL;
670
671	memset(&cmd, 0, sizeof(cmd));
672	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
673				    FW_CMD_REQUEST_F |
674				    FW_CMD_WRITE_F);
675	len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd,
676				      param[nparams]), 16);
677	cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
678	for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++) {
679		p->mnem = cpu_to_be32(*params++);
680		p->val = cpu_to_be32(*vals++);
681	}
682
683	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
684}
685
686/**
687 *	t4vf_fl_pkt_align - return the fl packet alignment
688 *	@adapter: the adapter
689 *
690 *	T4 has a single field to specify the packing and padding boundary.
691 *	T5 onwards has separate fields for this and hence the alignment for
692 *	next packet offset is maximum of these two.  And T6 changes the
693 *	Ingress Padding Boundary Shift, so it's all a mess and it's best
694 *	if we put this in low-level Common Code ...
695 *
696 */
697int t4vf_fl_pkt_align(struct adapter *adapter)
698{
699	u32 sge_control, sge_control2;
700	unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift;
701
702	sge_control = adapter->params.sge.sge_control;
703
704	/* T4 uses a single control field to specify both the PCIe Padding and
705	 * Packing Boundary.  T5 introduced the ability to specify these
706	 * separately.  The actual Ingress Packet Data alignment boundary
707	 * within Packed Buffer Mode is the maximum of these two
708	 * specifications.  (Note that it makes no real practical sense to
709	 * have the Pading Boudary be larger than the Packing Boundary but you
710	 * could set the chip up that way and, in fact, legacy T4 code would
711	 * end doing this because it would initialize the Padding Boundary and
712	 * leave the Packing Boundary initialized to 0 (16 bytes).)
713	 * Padding Boundary values in T6 starts from 8B,
714	 * where as it is 32B for T4 and T5.
715	 */
716	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
717		ingpad_shift = INGPADBOUNDARY_SHIFT_X;
718	else
719		ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X;
720
721	ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift);
722
723	fl_align = ingpadboundary;
724	if (!is_t4(adapter->params.chip)) {
725		/* T5 has a different interpretation of one of the PCIe Packing
726		 * Boundary values.
727		 */
728		sge_control2 = adapter->params.sge.sge_control2;
729		ingpackboundary = INGPACKBOUNDARY_G(sge_control2);
730		if (ingpackboundary == INGPACKBOUNDARY_16B_X)
731			ingpackboundary = 16;
732		else
733			ingpackboundary = 1 << (ingpackboundary +
734						INGPACKBOUNDARY_SHIFT_X);
735
736		fl_align = max(ingpadboundary, ingpackboundary);
737	}
738	return fl_align;
739}
740
741/**
742 *	t4vf_bar2_sge_qregs - return BAR2 SGE Queue register information
743 *	@adapter: the adapter
744 *	@qid: the Queue ID
745 *	@qtype: the Ingress or Egress type for @qid
746 *	@pbar2_qoffset: BAR2 Queue Offset
747 *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
748 *
749 *	Returns the BAR2 SGE Queue Registers information associated with the
750 *	indicated Absolute Queue ID.  These are passed back in return value
751 *	pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
752 *	and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
753 *
754 *	This may return an error which indicates that BAR2 SGE Queue
755 *	registers aren't available.  If an error is not returned, then the
756 *	following values are returned:
757 *
758 *	  *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
759 *	  *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
760 *
761 *	If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
762 *	require the "Inferred Queue ID" ability may be used.  E.g. the
763 *	Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
764 *	then these "Inferred Queue ID" register may not be used.
765 */
766int t4vf_bar2_sge_qregs(struct adapter *adapter,
767			unsigned int qid,
768			enum t4_bar2_qtype qtype,
769			u64 *pbar2_qoffset,
770			unsigned int *pbar2_qid)
771{
772	unsigned int page_shift, page_size, qpp_shift, qpp_mask;
773	u64 bar2_page_offset, bar2_qoffset;
774	unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
775
776	/* T4 doesn't support BAR2 SGE Queue registers.
777	 */
778	if (is_t4(adapter->params.chip))
779		return -EINVAL;
780
781	/* Get our SGE Page Size parameters.
782	 */
783	page_shift = adapter->params.sge.sge_vf_hps + 10;
784	page_size = 1 << page_shift;
785
786	/* Get the right Queues per Page parameters for our Queue.
787	 */
788	qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
789		     ? adapter->params.sge.sge_vf_eq_qpp
790		     : adapter->params.sge.sge_vf_iq_qpp);
791	qpp_mask = (1 << qpp_shift) - 1;
792
793	/* Calculate the basics of the BAR2 SGE Queue register area:
794	 *  o The BAR2 page the Queue registers will be in.
795	 *  o The BAR2 Queue ID.
796	 *  o The BAR2 Queue ID Offset into the BAR2 page.
797	 */
798	bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
799	bar2_qid = qid & qpp_mask;
800	bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
801
802	/* If the BAR2 Queue ID Offset is less than the Page Size, then the
803	 * hardware will infer the Absolute Queue ID simply from the writes to
804	 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
805	 * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
806	 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
807	 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
808	 * from the BAR2 Page and BAR2 Queue ID.
809	 *
810	 * One important censequence of this is that some BAR2 SGE registers
811	 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
812	 * there.  But other registers synthesize the SGE Queue ID purely
813	 * from the writes to the registers -- the Write Combined Doorbell
814	 * Buffer is a good example.  These BAR2 SGE Registers are only
815	 * available for those BAR2 SGE Register areas where the SGE Absolute
816	 * Queue ID can be inferred from simple writes.
817	 */
818	bar2_qoffset = bar2_page_offset;
819	bar2_qinferred = (bar2_qid_offset < page_size);
820	if (bar2_qinferred) {
821		bar2_qoffset += bar2_qid_offset;
822		bar2_qid = 0;
823	}
824
825	*pbar2_qoffset = bar2_qoffset;
826	*pbar2_qid = bar2_qid;
827	return 0;
828}
829
830unsigned int t4vf_get_pf_from_vf(struct adapter *adapter)
831{
832	u32 whoami;
833
834	whoami = t4_read_reg(adapter, T4VF_PL_BASE_ADDR + PL_VF_WHOAMI_A);
835	return (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
836			SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami));
837}
838
839/**
840 *	t4vf_get_sge_params - retrieve adapter Scatter gather Engine parameters
841 *	@adapter: the adapter
842 *
843 *	Retrieves various core SGE parameters in the form of hardware SGE
844 *	register values.  The caller is responsible for decoding these as
845 *	needed.  The SGE parameters are stored in @adapter->params.sge.
846 */
847int t4vf_get_sge_params(struct adapter *adapter)
848{
849	struct sge_params *sge_params = &adapter->params.sge;
850	u32 params[7], vals[7];
851	int v;
852
853	params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
854		     FW_PARAMS_PARAM_XYZ_V(SGE_CONTROL_A));
855	params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
856		     FW_PARAMS_PARAM_XYZ_V(SGE_HOST_PAGE_SIZE_A));
857	params[2] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
858		     FW_PARAMS_PARAM_XYZ_V(SGE_FL_BUFFER_SIZE0_A));
859	params[3] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
860		     FW_PARAMS_PARAM_XYZ_V(SGE_FL_BUFFER_SIZE1_A));
861	params[4] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
862		     FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_0_AND_1_A));
863	params[5] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
864		     FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_2_AND_3_A));
865	params[6] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
866		     FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_4_AND_5_A));
867	v = t4vf_query_params(adapter, 7, params, vals);
868	if (v)
869		return v;
870	sge_params->sge_control = vals[0];
871	sge_params->sge_host_page_size = vals[1];
872	sge_params->sge_fl_buffer_size[0] = vals[2];
873	sge_params->sge_fl_buffer_size[1] = vals[3];
874	sge_params->sge_timer_value_0_and_1 = vals[4];
875	sge_params->sge_timer_value_2_and_3 = vals[5];
876	sge_params->sge_timer_value_4_and_5 = vals[6];
877
878	/* T4 uses a single control field to specify both the PCIe Padding and
879	 * Packing Boundary.  T5 introduced the ability to specify these
880	 * separately with the Padding Boundary in SGE_CONTROL and Packing
881	 * Boundary in SGE_CONTROL2.  So for T5 and later we need to grab
882	 * SGE_CONTROL in order to determine how ingress packet data will be
883	 * laid out in Packed Buffer Mode.  Unfortunately, older versions of
884	 * the firmware won't let us retrieve SGE_CONTROL2 so if we get a
885	 * failure grabbing it we throw an error since we can't figure out the
886	 * right value.
887	 */
888	if (!is_t4(adapter->params.chip)) {
889		params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
890			     FW_PARAMS_PARAM_XYZ_V(SGE_CONTROL2_A));
891		v = t4vf_query_params(adapter, 1, params, vals);
892		if (v != FW_SUCCESS) {
893			dev_err(adapter->pdev_dev,
894				"Unable to get SGE Control2; "
895				"probably old firmware.\n");
896			return v;
897		}
898		sge_params->sge_control2 = vals[0];
899	}
900
901	params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
902		     FW_PARAMS_PARAM_XYZ_V(SGE_INGRESS_RX_THRESHOLD_A));
903	params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
904		     FW_PARAMS_PARAM_XYZ_V(SGE_CONM_CTRL_A));
905	v = t4vf_query_params(adapter, 2, params, vals);
906	if (v)
907		return v;
908	sge_params->sge_ingress_rx_threshold = vals[0];
909	sge_params->sge_congestion_control = vals[1];
910
911	/* For T5 and later we want to use the new BAR2 Doorbells.
912	 * Unfortunately, older firmware didn't allow the this register to be
913	 * read.
914	 */
915	if (!is_t4(adapter->params.chip)) {
916		unsigned int pf, s_hps, s_qpp;
917
918		params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
919			     FW_PARAMS_PARAM_XYZ_V(
920				     SGE_EGRESS_QUEUES_PER_PAGE_VF_A));
921		params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
922			     FW_PARAMS_PARAM_XYZ_V(
923				     SGE_INGRESS_QUEUES_PER_PAGE_VF_A));
924		v = t4vf_query_params(adapter, 2, params, vals);
925		if (v != FW_SUCCESS) {
926			dev_warn(adapter->pdev_dev,
927				 "Unable to get VF SGE Queues/Page; "
928				 "probably old firmware.\n");
929			return v;
930		}
931		sge_params->sge_egress_queues_per_page = vals[0];
932		sge_params->sge_ingress_queues_per_page = vals[1];
933
934		/* We need the Queues/Page for our VF.  This is based on the
935		 * PF from which we're instantiated and is indexed in the
936		 * register we just read. Do it once here so other code in
937		 * the driver can just use it.
938		 */
939		pf = t4vf_get_pf_from_vf(adapter);
940		s_hps = (HOSTPAGESIZEPF0_S +
941			 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * pf);
942		sge_params->sge_vf_hps =
943			((sge_params->sge_host_page_size >> s_hps)
944			 & HOSTPAGESIZEPF0_M);
945
946		s_qpp = (QUEUESPERPAGEPF0_S +
947			 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * pf);
948		sge_params->sge_vf_eq_qpp =
949			((sge_params->sge_egress_queues_per_page >> s_qpp)
950			 & QUEUESPERPAGEPF0_M);
951		sge_params->sge_vf_iq_qpp =
952			((sge_params->sge_ingress_queues_per_page >> s_qpp)
953			 & QUEUESPERPAGEPF0_M);
954	}
955
956	return 0;
957}
958
959/**
960 *	t4vf_get_vpd_params - retrieve device VPD paremeters
961 *	@adapter: the adapter
962 *
963 *	Retrives various device Vital Product Data parameters.  The parameters
964 *	are stored in @adapter->params.vpd.
965 */
966int t4vf_get_vpd_params(struct adapter *adapter)
967{
968	struct vpd_params *vpd_params = &adapter->params.vpd;
969	u32 params[7], vals[7];
970	int v;
971
972	params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
973		     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
974	v = t4vf_query_params(adapter, 1, params, vals);
975	if (v)
976		return v;
977	vpd_params->cclk = vals[0];
978
979	return 0;
980}
981
982/**
983 *	t4vf_get_dev_params - retrieve device paremeters
984 *	@adapter: the adapter
985 *
986 *	Retrives various device parameters.  The parameters are stored in
987 *	@adapter->params.dev.
988 */
989int t4vf_get_dev_params(struct adapter *adapter)
990{
991	struct dev_params *dev_params = &adapter->params.dev;
992	u32 params[7], vals[7];
993	int v;
994
995	params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
996		     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWREV));
997	params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
998		     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_TPREV));
999	v = t4vf_query_params(adapter, 2, params, vals);
1000	if (v)
1001		return v;
1002	dev_params->fwrev = vals[0];
1003	dev_params->tprev = vals[1];
1004
1005	return 0;
1006}
1007
1008/**
1009 *	t4vf_get_rss_glb_config - retrieve adapter RSS Global Configuration
1010 *	@adapter: the adapter
1011 *
1012 *	Retrieves global RSS mode and parameters with which we have to live
1013 *	and stores them in the @adapter's RSS parameters.
1014 */
1015int t4vf_get_rss_glb_config(struct adapter *adapter)
1016{
1017	struct rss_params *rss = &adapter->params.rss;
1018	struct fw_rss_glb_config_cmd cmd, rpl;
1019	int v;
1020
1021	/*
1022	 * Execute an RSS Global Configuration read command to retrieve
1023	 * our RSS configuration.
1024	 */
1025	memset(&cmd, 0, sizeof(cmd));
1026	cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
1027				      FW_CMD_REQUEST_F |
1028				      FW_CMD_READ_F);
1029	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1030	v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1031	if (v)
1032		return v;
1033
1034	/*
1035	 * Transate the big-endian RSS Global Configuration into our
1036	 * cpu-endian format based on the RSS mode.  We also do first level
1037	 * filtering at this point to weed out modes which don't support
1038	 * VF Drivers ...
1039	 */
1040	rss->mode = FW_RSS_GLB_CONFIG_CMD_MODE_G(
1041			be32_to_cpu(rpl.u.manual.mode_pkd));
1042	switch (rss->mode) {
1043	case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
1044		u32 word = be32_to_cpu(
1045				rpl.u.basicvirtual.synmapen_to_hashtoeplitz);
1046
1047		rss->u.basicvirtual.synmapen =
1048			((word & FW_RSS_GLB_CONFIG_CMD_SYNMAPEN_F) != 0);
1049		rss->u.basicvirtual.syn4tupenipv6 =
1050			((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV6_F) != 0);
1051		rss->u.basicvirtual.syn2tupenipv6 =
1052			((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV6_F) != 0);
1053		rss->u.basicvirtual.syn4tupenipv4 =
1054			((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV4_F) != 0);
1055		rss->u.basicvirtual.syn2tupenipv4 =
1056			((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV4_F) != 0);
1057
1058		rss->u.basicvirtual.ofdmapen =
1059			((word & FW_RSS_GLB_CONFIG_CMD_OFDMAPEN_F) != 0);
1060
1061		rss->u.basicvirtual.tnlmapen =
1062			((word & FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F) != 0);
1063		rss->u.basicvirtual.tnlalllookup =
1064			((word  & FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F) != 0);
1065
1066		rss->u.basicvirtual.hashtoeplitz =
1067			((word & FW_RSS_GLB_CONFIG_CMD_HASHTOEPLITZ_F) != 0);
1068
1069		/* we need at least Tunnel Map Enable to be set */
1070		if (!rss->u.basicvirtual.tnlmapen)
1071			return -EINVAL;
1072		break;
1073	}
1074
1075	default:
1076		/* all unknown/unsupported RSS modes result in an error */
1077		return -EINVAL;
1078	}
1079
1080	return 0;
1081}
1082
1083/**
1084 *	t4vf_get_vfres - retrieve VF resource limits
1085 *	@adapter: the adapter
1086 *
1087 *	Retrieves configured resource limits and capabilities for a virtual
1088 *	function.  The results are stored in @adapter->vfres.
1089 */
1090int t4vf_get_vfres(struct adapter *adapter)
1091{
1092	struct vf_resources *vfres = &adapter->params.vfres;
1093	struct fw_pfvf_cmd cmd, rpl;
1094	int v;
1095	u32 word;
1096
1097	/*
1098	 * Execute PFVF Read command to get VF resource limits; bail out early
1099	 * with error on command failure.
1100	 */
1101	memset(&cmd, 0, sizeof(cmd));
1102	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) |
1103				    FW_CMD_REQUEST_F |
1104				    FW_CMD_READ_F);
1105	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1106	v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1107	if (v)
1108		return v;
1109
1110	/*
1111	 * Extract VF resource limits and return success.
1112	 */
1113	word = be32_to_cpu(rpl.niqflint_niq);
1114	vfres->niqflint = FW_PFVF_CMD_NIQFLINT_G(word);
1115	vfres->niq = FW_PFVF_CMD_NIQ_G(word);
1116
1117	word = be32_to_cpu(rpl.type_to_neq);
1118	vfres->neq = FW_PFVF_CMD_NEQ_G(word);
1119	vfres->pmask = FW_PFVF_CMD_PMASK_G(word);
1120
1121	word = be32_to_cpu(rpl.tc_to_nexactf);
1122	vfres->tc = FW_PFVF_CMD_TC_G(word);
1123	vfres->nvi = FW_PFVF_CMD_NVI_G(word);
1124	vfres->nexactf = FW_PFVF_CMD_NEXACTF_G(word);
1125
1126	word = be32_to_cpu(rpl.r_caps_to_nethctrl);
1127	vfres->r_caps = FW_PFVF_CMD_R_CAPS_G(word);
1128	vfres->wx_caps = FW_PFVF_CMD_WX_CAPS_G(word);
1129	vfres->nethctrl = FW_PFVF_CMD_NETHCTRL_G(word);
1130
1131	return 0;
1132}
1133
1134/**
1135 *	t4vf_read_rss_vi_config - read a VI's RSS configuration
1136 *	@adapter: the adapter
1137 *	@viid: Virtual Interface ID
1138 *	@config: pointer to host-native VI RSS Configuration buffer
1139 *
1140 *	Reads the Virtual Interface's RSS configuration information and
1141 *	translates it into CPU-native format.
1142 */
1143int t4vf_read_rss_vi_config(struct adapter *adapter, unsigned int viid,
1144			    union rss_vi_config *config)
1145{
1146	struct fw_rss_vi_config_cmd cmd, rpl;
1147	int v;
1148
1149	memset(&cmd, 0, sizeof(cmd));
1150	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
1151				     FW_CMD_REQUEST_F |
1152				     FW_CMD_READ_F |
1153				     FW_RSS_VI_CONFIG_CMD_VIID(viid));
1154	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1155	v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1156	if (v)
1157		return v;
1158
1159	switch (adapter->params.rss.mode) {
1160	case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
1161		u32 word = be32_to_cpu(rpl.u.basicvirtual.defaultq_to_udpen);
1162
1163		config->basicvirtual.ip6fourtupen =
1164			((word & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F) != 0);
1165		config->basicvirtual.ip6twotupen =
1166			((word & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F) != 0);
1167		config->basicvirtual.ip4fourtupen =
1168			((word & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F) != 0);
1169		config->basicvirtual.ip4twotupen =
1170			((word & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F) != 0);
1171		config->basicvirtual.udpen =
1172			((word & FW_RSS_VI_CONFIG_CMD_UDPEN_F) != 0);
1173		config->basicvirtual.defaultq =
1174			FW_RSS_VI_CONFIG_CMD_DEFAULTQ_G(word);
1175		break;
1176	}
1177
1178	default:
1179		return -EINVAL;
1180	}
1181
1182	return 0;
1183}
1184
1185/**
1186 *	t4vf_write_rss_vi_config - write a VI's RSS configuration
1187 *	@adapter: the adapter
1188 *	@viid: Virtual Interface ID
1189 *	@config: pointer to host-native VI RSS Configuration buffer
1190 *
1191 *	Write the Virtual Interface's RSS configuration information
1192 *	(translating it into firmware-native format before writing).
1193 */
1194int t4vf_write_rss_vi_config(struct adapter *adapter, unsigned int viid,
1195			     union rss_vi_config *config)
1196{
1197	struct fw_rss_vi_config_cmd cmd, rpl;
1198
1199	memset(&cmd, 0, sizeof(cmd));
1200	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
1201				     FW_CMD_REQUEST_F |
1202				     FW_CMD_WRITE_F |
1203				     FW_RSS_VI_CONFIG_CMD_VIID(viid));
1204	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1205	switch (adapter->params.rss.mode) {
1206	case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
1207		u32 word = 0;
1208
1209		if (config->basicvirtual.ip6fourtupen)
1210			word |= FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F;
1211		if (config->basicvirtual.ip6twotupen)
1212			word |= FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F;
1213		if (config->basicvirtual.ip4fourtupen)
1214			word |= FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F;
1215		if (config->basicvirtual.ip4twotupen)
1216			word |= FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F;
1217		if (config->basicvirtual.udpen)
1218			word |= FW_RSS_VI_CONFIG_CMD_UDPEN_F;
1219		word |= FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(
1220				config->basicvirtual.defaultq);
1221		cmd.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(word);
1222		break;
1223	}
1224
1225	default:
1226		return -EINVAL;
1227	}
1228
1229	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1230}
1231
1232/**
1233 *	t4vf_config_rss_range - configure a portion of the RSS mapping table
1234 *	@adapter: the adapter
1235 *	@viid: Virtual Interface of RSS Table Slice
1236 *	@start: starting entry in the table to write
1237 *	@n: how many table entries to write
1238 *	@rspq: values for the "Response Queue" (Ingress Queue) lookup table
1239 *	@nrspq: number of values in @rspq
1240 *
1241 *	Programs the selected part of the VI's RSS mapping table with the
1242 *	provided values.  If @nrspq < @n the supplied values are used repeatedly
1243 *	until the full table range is populated.
1244 *
1245 *	The caller must ensure the values in @rspq are in the range 0..1023.
1246 */
1247int t4vf_config_rss_range(struct adapter *adapter, unsigned int viid,
1248			  int start, int n, const u16 *rspq, int nrspq)
1249{
1250	const u16 *rsp = rspq;
1251	const u16 *rsp_end = rspq+nrspq;
1252	struct fw_rss_ind_tbl_cmd cmd;
1253
1254	/*
1255	 * Initialize firmware command template to write the RSS table.
1256	 */
1257	memset(&cmd, 0, sizeof(cmd));
1258	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
1259				     FW_CMD_REQUEST_F |
1260				     FW_CMD_WRITE_F |
1261				     FW_RSS_IND_TBL_CMD_VIID_V(viid));
1262	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1263
1264	/*
1265	 * Each firmware RSS command can accommodate up to 32 RSS Ingress
1266	 * Queue Identifiers.  These Ingress Queue IDs are packed three to
1267	 * a 32-bit word as 10-bit values with the upper remaining 2 bits
1268	 * reserved.
1269	 */
1270	while (n > 0) {
1271		__be32 *qp = &cmd.iq0_to_iq2;
1272		int nq = min(n, 32);
1273		int ret;
1274
1275		/*
1276		 * Set up the firmware RSS command header to send the next
1277		 * "nq" Ingress Queue IDs to the firmware.
1278		 */
1279		cmd.niqid = cpu_to_be16(nq);
1280		cmd.startidx = cpu_to_be16(start);
1281
1282		/*
1283		 * "nq" more done for the start of the next loop.
1284		 */
1285		start += nq;
1286		n -= nq;
1287
1288		/*
1289		 * While there are still Ingress Queue IDs to stuff into the
1290		 * current firmware RSS command, retrieve them from the
1291		 * Ingress Queue ID array and insert them into the command.
1292		 */
1293		while (nq > 0) {
1294			/*
1295			 * Grab up to the next 3 Ingress Queue IDs (wrapping
1296			 * around the Ingress Queue ID array if necessary) and
1297			 * insert them into the firmware RSS command at the
1298			 * current 3-tuple position within the commad.
1299			 */
1300			u16 qbuf[3];
1301			u16 *qbp = qbuf;
1302			int nqbuf = min(3, nq);
1303
1304			nq -= nqbuf;
1305			qbuf[0] = qbuf[1] = qbuf[2] = 0;
1306			while (nqbuf) {
1307				nqbuf--;
1308				*qbp++ = *rsp++;
1309				if (rsp >= rsp_end)
1310					rsp = rspq;
1311			}
1312			*qp++ = cpu_to_be32(FW_RSS_IND_TBL_CMD_IQ0_V(qbuf[0]) |
1313					    FW_RSS_IND_TBL_CMD_IQ1_V(qbuf[1]) |
1314					    FW_RSS_IND_TBL_CMD_IQ2_V(qbuf[2]));
1315		}
1316
1317		/*
1318		 * Send this portion of the RRS table update to the firmware;
1319		 * bail out on any errors.
1320		 */
1321		ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1322		if (ret)
1323			return ret;
1324	}
1325	return 0;
1326}
1327
1328/**
1329 *	t4vf_alloc_vi - allocate a virtual interface on a port
1330 *	@adapter: the adapter
1331 *	@port_id: physical port associated with the VI
1332 *
1333 *	Allocate a new Virtual Interface and bind it to the indicated
1334 *	physical port.  Return the new Virtual Interface Identifier on
1335 *	success, or a [negative] error number on failure.
1336 */
1337int t4vf_alloc_vi(struct adapter *adapter, int port_id)
1338{
1339	struct fw_vi_cmd cmd, rpl;
1340	int v;
1341
1342	/*
1343	 * Execute a VI command to allocate Virtual Interface and return its
1344	 * VIID.
1345	 */
1346	memset(&cmd, 0, sizeof(cmd));
1347	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
1348				    FW_CMD_REQUEST_F |
1349				    FW_CMD_WRITE_F |
1350				    FW_CMD_EXEC_F);
1351	cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) |
1352					 FW_VI_CMD_ALLOC_F);
1353	cmd.portid_pkd = FW_VI_CMD_PORTID_V(port_id);
1354	v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1355	if (v)
1356		return v;
1357
1358	return FW_VI_CMD_VIID_G(be16_to_cpu(rpl.type_viid));
1359}
1360
1361/**
1362 *	t4vf_free_vi -- free a virtual interface
1363 *	@adapter: the adapter
1364 *	@viid: the virtual interface identifier
1365 *
1366 *	Free a previously allocated Virtual Interface.  Return an error on
1367 *	failure.
1368 */
1369int t4vf_free_vi(struct adapter *adapter, int viid)
1370{
1371	struct fw_vi_cmd cmd;
1372
1373	/*
1374	 * Execute a VI command to free the Virtual Interface.
1375	 */
1376	memset(&cmd, 0, sizeof(cmd));
1377	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
1378				    FW_CMD_REQUEST_F |
1379				    FW_CMD_EXEC_F);
1380	cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) |
1381					 FW_VI_CMD_FREE_F);
1382	cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
1383	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1384}
1385
1386/**
1387 *	t4vf_enable_vi - enable/disable a virtual interface
1388 *	@adapter: the adapter
1389 *	@viid: the Virtual Interface ID
1390 *	@rx_en: 1=enable Rx, 0=disable Rx
1391 *	@tx_en: 1=enable Tx, 0=disable Tx
1392 *
1393 *	Enables/disables a virtual interface.
1394 */
1395int t4vf_enable_vi(struct adapter *adapter, unsigned int viid,
1396		   bool rx_en, bool tx_en)
1397{
1398	struct fw_vi_enable_cmd cmd;
1399
1400	memset(&cmd, 0, sizeof(cmd));
1401	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
1402				     FW_CMD_REQUEST_F |
1403				     FW_CMD_EXEC_F |
1404				     FW_VI_ENABLE_CMD_VIID_V(viid));
1405	cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
1406				       FW_VI_ENABLE_CMD_EEN_V(tx_en) |
1407				       FW_LEN16(cmd));
1408	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1409}
1410
1411/**
1412 *	t4vf_enable_pi - enable/disable a Port's virtual interface
1413 *	@adapter: the adapter
1414 *	@pi: the Port Information structure
1415 *	@rx_en: 1=enable Rx, 0=disable Rx
1416 *	@tx_en: 1=enable Tx, 0=disable Tx
1417 *
1418 *	Enables/disables a Port's virtual interface.  If the Virtual
1419 *	Interface enable/disable operation is successful, we notify the
1420 *	OS-specific code of a potential Link Status change via the OS Contract
1421 *	API t4vf_os_link_changed().
1422 */
1423int t4vf_enable_pi(struct adapter *adapter, struct port_info *pi,
1424		   bool rx_en, bool tx_en)
1425{
1426	int ret = t4vf_enable_vi(adapter, pi->viid, rx_en, tx_en);
1427
1428	if (ret)
1429		return ret;
1430	t4vf_os_link_changed(adapter, pi->pidx,
1431			     rx_en && tx_en && pi->link_cfg.link_ok);
1432	return 0;
1433}
1434
1435/**
1436 *	t4vf_identify_port - identify a VI's port by blinking its LED
1437 *	@adapter: the adapter
1438 *	@viid: the Virtual Interface ID
1439 *	@nblinks: how many times to blink LED at 2.5 Hz
1440 *
1441 *	Identifies a VI's port by blinking its LED.
1442 */
1443int t4vf_identify_port(struct adapter *adapter, unsigned int viid,
1444		       unsigned int nblinks)
1445{
1446	struct fw_vi_enable_cmd cmd;
1447
1448	memset(&cmd, 0, sizeof(cmd));
1449	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
1450				     FW_CMD_REQUEST_F |
1451				     FW_CMD_EXEC_F |
1452				     FW_VI_ENABLE_CMD_VIID_V(viid));
1453	cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F |
1454				       FW_LEN16(cmd));
1455	cmd.blinkdur = cpu_to_be16(nblinks);
1456	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1457}
1458
1459/**
1460 *	t4vf_set_rxmode - set Rx properties of a virtual interface
1461 *	@adapter: the adapter
1462 *	@viid: the VI id
1463 *	@mtu: the new MTU or -1 for no change
1464 *	@promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
1465 *	@all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
1466 *	@bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
1467 *	@vlanex: 1 to enable hardware VLAN Tag extraction, 0 to disable it,
1468 *		-1 no change
1469 *	@sleep_ok: call is allowed to sleep
1470 *
1471 *	Sets Rx properties of a virtual interface.
1472 */
1473int t4vf_set_rxmode(struct adapter *adapter, unsigned int viid,
1474		    int mtu, int promisc, int all_multi, int bcast, int vlanex,
1475		    bool sleep_ok)
1476{
1477	struct fw_vi_rxmode_cmd cmd;
1478
1479	/* convert to FW values */
1480	if (mtu < 0)
1481		mtu = FW_VI_RXMODE_CMD_MTU_M;
1482	if (promisc < 0)
1483		promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
1484	if (all_multi < 0)
1485		all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
1486	if (bcast < 0)
1487		bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
1488	if (vlanex < 0)
1489		vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
1490
1491	memset(&cmd, 0, sizeof(cmd));
1492	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
1493				     FW_CMD_REQUEST_F |
1494				     FW_CMD_WRITE_F |
1495				     FW_VI_RXMODE_CMD_VIID_V(viid));
1496	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1497	cmd.mtu_to_vlanexen =
1498		cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
1499			    FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
1500			    FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
1501			    FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
1502			    FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
1503	return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok);
1504}
1505
1506/**
1507 *	t4vf_alloc_mac_filt - allocates exact-match filters for MAC addresses
1508 *	@adapter: the adapter
1509 *	@viid: the Virtual Interface Identifier
1510 *	@free: if true any existing filters for this VI id are first removed
1511 *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
1512 *	@addr: the MAC address(es)
1513 *	@idx: where to store the index of each allocated filter
1514 *	@hash: pointer to hash address filter bitmap
1515 *	@sleep_ok: call is allowed to sleep
1516 *
1517 *	Allocates an exact-match filter for each of the supplied addresses and
1518 *	sets it to the corresponding address.  If @idx is not %NULL it should
1519 *	have at least @naddr entries, each of which will be set to the index of
1520 *	the filter allocated for the corresponding MAC address.  If a filter
1521 *	could not be allocated for an address its index is set to 0xffff.
1522 *	If @hash is not %NULL addresses that fail to allocate an exact filter
1523 *	are hashed and update the hash filter bitmap pointed at by @hash.
1524 *
1525 *	Returns a negative error number or the number of filters allocated.
1526 */
1527int t4vf_alloc_mac_filt(struct adapter *adapter, unsigned int viid, bool free,
1528			unsigned int naddr, const u8 **addr, u16 *idx,
1529			u64 *hash, bool sleep_ok)
1530{
1531	int offset, ret = 0;
1532	unsigned nfilters = 0;
1533	unsigned int rem = naddr;
1534	struct fw_vi_mac_cmd cmd, rpl;
1535	unsigned int max_naddr = adapter->params.arch.mps_tcam_size;
1536
1537	if (naddr > max_naddr)
1538		return -EINVAL;
1539
1540	for (offset = 0; offset < naddr; /**/) {
1541		unsigned int fw_naddr = (rem < ARRAY_SIZE(cmd.u.exact)
1542					 ? rem
1543					 : ARRAY_SIZE(cmd.u.exact));
1544		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1545						     u.exact[fw_naddr]), 16);
1546		struct fw_vi_mac_exact *p;
1547		int i;
1548
1549		memset(&cmd, 0, sizeof(cmd));
1550		cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1551					     FW_CMD_REQUEST_F |
1552					     FW_CMD_WRITE_F |
1553					     (free ? FW_CMD_EXEC_F : 0) |
1554					     FW_VI_MAC_CMD_VIID_V(viid));
1555		cmd.freemacs_to_len16 =
1556			cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
1557				    FW_CMD_LEN16_V(len16));
1558
1559		for (i = 0, p = cmd.u.exact; i < fw_naddr; i++, p++) {
1560			p->valid_to_idx = cpu_to_be16(
1561				FW_VI_MAC_CMD_VALID_F |
1562				FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_ADD_MAC));
1563			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
1564		}
1565
1566
1567		ret = t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), &rpl,
1568					sleep_ok);
1569		if (ret && ret != -ENOMEM)
1570			break;
1571
1572		for (i = 0, p = rpl.u.exact; i < fw_naddr; i++, p++) {
1573			u16 index = FW_VI_MAC_CMD_IDX_G(
1574				be16_to_cpu(p->valid_to_idx));
1575
1576			if (idx)
1577				idx[offset+i] =
1578					(index >= max_naddr
1579					 ? 0xffff
1580					 : index);
1581			if (index < max_naddr)
1582				nfilters++;
1583			else if (hash)
1584				*hash |= (1ULL << hash_mac_addr(addr[offset+i]));
1585		}
1586
1587		free = false;
1588		offset += fw_naddr;
1589		rem -= fw_naddr;
1590	}
1591
1592	/*
1593	 * If there were no errors or we merely ran out of room in our MAC
1594	 * address arena, return the number of filters actually written.
1595	 */
1596	if (ret == 0 || ret == -ENOMEM)
1597		ret = nfilters;
1598	return ret;
1599}
1600
1601/**
1602 *	t4vf_free_mac_filt - frees exact-match filters of given MAC addresses
1603 *	@adapter: the adapter
1604 *	@viid: the VI id
1605 *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
1606 *	@addr: the MAC address(es)
1607 *	@sleep_ok: call is allowed to sleep
1608 *
1609 *	Frees the exact-match filter for each of the supplied addresses
1610 *
1611 *	Returns a negative error number or the number of filters freed.
1612 */
1613int t4vf_free_mac_filt(struct adapter *adapter, unsigned int viid,
1614		       unsigned int naddr, const u8 **addr, bool sleep_ok)
1615{
1616	int offset, ret = 0;
1617	struct fw_vi_mac_cmd cmd;
1618	unsigned int nfilters = 0;
1619	unsigned int max_naddr = adapter->params.arch.mps_tcam_size;
1620	unsigned int rem = naddr;
1621
1622	if (naddr > max_naddr)
1623		return -EINVAL;
1624
1625	for (offset = 0; offset < (int)naddr ; /**/) {
1626		unsigned int fw_naddr = (rem < ARRAY_SIZE(cmd.u.exact) ?
1627					 rem : ARRAY_SIZE(cmd.u.exact));
1628		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1629						     u.exact[fw_naddr]), 16);
1630		struct fw_vi_mac_exact *p;
1631		int i;
1632
1633		memset(&cmd, 0, sizeof(cmd));
1634		cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1635				     FW_CMD_REQUEST_F |
1636				     FW_CMD_WRITE_F |
1637				     FW_CMD_EXEC_V(0) |
1638				     FW_VI_MAC_CMD_VIID_V(viid));
1639		cmd.freemacs_to_len16 =
1640				cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
1641					    FW_CMD_LEN16_V(len16));
1642
1643		for (i = 0, p = cmd.u.exact; i < (int)fw_naddr; i++, p++) {
1644			p->valid_to_idx = cpu_to_be16(
1645				FW_VI_MAC_CMD_VALID_F |
1646				FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE));
1647			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
1648		}
1649
1650		ret = t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), &cmd,
1651					sleep_ok);
1652		if (ret)
1653			break;
1654
1655		for (i = 0, p = cmd.u.exact; i < fw_naddr; i++, p++) {
1656			u16 index = FW_VI_MAC_CMD_IDX_G(
1657						be16_to_cpu(p->valid_to_idx));
1658
1659			if (index < max_naddr)
1660				nfilters++;
1661		}
1662
1663		offset += fw_naddr;
1664		rem -= fw_naddr;
1665	}
1666
1667	if (ret == 0)
1668		ret = nfilters;
1669	return ret;
1670}
1671
1672/**
1673 *	t4vf_change_mac - modifies the exact-match filter for a MAC address
1674 *	@adapter: the adapter
1675 *	@viid: the Virtual Interface ID
1676 *	@idx: index of existing filter for old value of MAC address, or -1
1677 *	@addr: the new MAC address value
1678 *	@persist: if idx < 0, the new MAC allocation should be persistent
1679 *
1680 *	Modifies an exact-match filter and sets it to the new MAC address.
1681 *	Note that in general it is not possible to modify the value of a given
1682 *	filter so the generic way to modify an address filter is to free the
1683 *	one being used by the old address value and allocate a new filter for
1684 *	the new address value.  @idx can be -1 if the address is a new
1685 *	addition.
1686 *
1687 *	Returns a negative error number or the index of the filter with the new
1688 *	MAC value.
1689 */
1690int t4vf_change_mac(struct adapter *adapter, unsigned int viid,
1691		    int idx, const u8 *addr, bool persist)
1692{
1693	int ret;
1694	struct fw_vi_mac_cmd cmd, rpl;
1695	struct fw_vi_mac_exact *p = &cmd.u.exact[0];
1696	size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1697					     u.exact[1]), 16);
1698	unsigned int max_mac_addr = adapter->params.arch.mps_tcam_size;
1699
1700	/*
1701	 * If this is a new allocation, determine whether it should be
1702	 * persistent (across a "freemacs" operation) or not.
1703	 */
1704	if (idx < 0)
1705		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
1706
1707	memset(&cmd, 0, sizeof(cmd));
1708	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1709				     FW_CMD_REQUEST_F |
1710				     FW_CMD_WRITE_F |
1711				     FW_VI_MAC_CMD_VIID_V(viid));
1712	cmd.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
1713	p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
1714				      FW_VI_MAC_CMD_IDX_V(idx));
1715	memcpy(p->macaddr, addr, sizeof(p->macaddr));
1716
1717	ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1718	if (ret == 0) {
1719		p = &rpl.u.exact[0];
1720		ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
1721		if (ret >= max_mac_addr)
1722			ret = -ENOMEM;
1723	}
1724	return ret;
1725}
1726
1727/**
1728 *	t4vf_set_addr_hash - program the MAC inexact-match hash filter
1729 *	@adapter: the adapter
1730 *	@viid: the Virtual Interface Identifier
1731 *	@ucast: whether the hash filter should also match unicast addresses
1732 *	@vec: the value to be written to the hash filter
1733 *	@sleep_ok: call is allowed to sleep
1734 *
1735 *	Sets the 64-bit inexact-match hash filter for a virtual interface.
1736 */
1737int t4vf_set_addr_hash(struct adapter *adapter, unsigned int viid,
1738		       bool ucast, u64 vec, bool sleep_ok)
1739{
1740	struct fw_vi_mac_cmd cmd;
1741	size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1742					     u.exact[0]), 16);
1743
1744	memset(&cmd, 0, sizeof(cmd));
1745	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1746				     FW_CMD_REQUEST_F |
1747				     FW_CMD_WRITE_F |
1748				     FW_VI_ENABLE_CMD_VIID_V(viid));
1749	cmd.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
1750					    FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
1751					    FW_CMD_LEN16_V(len16));
1752	cmd.u.hash.hashvec = cpu_to_be64(vec);
1753	return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok);
1754}
1755
1756/**
1757 *	t4vf_get_port_stats - collect "port" statistics
1758 *	@adapter: the adapter
1759 *	@pidx: the port index
1760 *	@s: the stats structure to fill
1761 *
1762 *	Collect statistics for the "port"'s Virtual Interface.
1763 */
1764int t4vf_get_port_stats(struct adapter *adapter, int pidx,
1765			struct t4vf_port_stats *s)
1766{
1767	struct port_info *pi = adap2pinfo(adapter, pidx);
1768	struct fw_vi_stats_vf fwstats;
1769	unsigned int rem = VI_VF_NUM_STATS;
1770	__be64 *fwsp = (__be64 *)&fwstats;
1771
1772	/*
1773	 * Grab the Virtual Interface statistics a chunk at a time via mailbox
1774	 * commands.  We could use a Work Request and get all of them at once
1775	 * but that's an asynchronous interface which is awkward to use.
1776	 */
1777	while (rem) {
1778		unsigned int ix = VI_VF_NUM_STATS - rem;
1779		unsigned int nstats = min(6U, rem);
1780		struct fw_vi_stats_cmd cmd, rpl;
1781		size_t len = (offsetof(struct fw_vi_stats_cmd, u) +
1782			      sizeof(struct fw_vi_stats_ctl));
1783		size_t len16 = DIV_ROUND_UP(len, 16);
1784		int ret;
1785
1786		memset(&cmd, 0, sizeof(cmd));
1787		cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_STATS_CMD) |
1788					     FW_VI_STATS_CMD_VIID_V(pi->viid) |
1789					     FW_CMD_REQUEST_F |
1790					     FW_CMD_READ_F);
1791		cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
1792		cmd.u.ctl.nstats_ix =
1793			cpu_to_be16(FW_VI_STATS_CMD_IX_V(ix) |
1794				    FW_VI_STATS_CMD_NSTATS_V(nstats));
1795		ret = t4vf_wr_mbox_ns(adapter, &cmd, len, &rpl);
1796		if (ret)
1797			return ret;
1798
1799		memcpy(fwsp, &rpl.u.ctl.stat0, sizeof(__be64) * nstats);
1800
1801		rem -= nstats;
1802		fwsp += nstats;
1803	}
1804
1805	/*
1806	 * Translate firmware statistics into host native statistics.
1807	 */
1808	s->tx_bcast_bytes = be64_to_cpu(fwstats.tx_bcast_bytes);
1809	s->tx_bcast_frames = be64_to_cpu(fwstats.tx_bcast_frames);
1810	s->tx_mcast_bytes = be64_to_cpu(fwstats.tx_mcast_bytes);
1811	s->tx_mcast_frames = be64_to_cpu(fwstats.tx_mcast_frames);
1812	s->tx_ucast_bytes = be64_to_cpu(fwstats.tx_ucast_bytes);
1813	s->tx_ucast_frames = be64_to_cpu(fwstats.tx_ucast_frames);
1814	s->tx_drop_frames = be64_to_cpu(fwstats.tx_drop_frames);
1815	s->tx_offload_bytes = be64_to_cpu(fwstats.tx_offload_bytes);
1816	s->tx_offload_frames = be64_to_cpu(fwstats.tx_offload_frames);
1817
1818	s->rx_bcast_bytes = be64_to_cpu(fwstats.rx_bcast_bytes);
1819	s->rx_bcast_frames = be64_to_cpu(fwstats.rx_bcast_frames);
1820	s->rx_mcast_bytes = be64_to_cpu(fwstats.rx_mcast_bytes);
1821	s->rx_mcast_frames = be64_to_cpu(fwstats.rx_mcast_frames);
1822	s->rx_ucast_bytes = be64_to_cpu(fwstats.rx_ucast_bytes);
1823	s->rx_ucast_frames = be64_to_cpu(fwstats.rx_ucast_frames);
1824
1825	s->rx_err_frames = be64_to_cpu(fwstats.rx_err_frames);
1826
1827	return 0;
1828}
1829
1830/**
1831 *	t4vf_iq_free - free an ingress queue and its free lists
1832 *	@adapter: the adapter
1833 *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
1834 *	@iqid: ingress queue ID
1835 *	@fl0id: FL0 queue ID or 0xffff if no attached FL0
1836 *	@fl1id: FL1 queue ID or 0xffff if no attached FL1
1837 *
1838 *	Frees an ingress queue and its associated free lists, if any.
1839 */
1840int t4vf_iq_free(struct adapter *adapter, unsigned int iqtype,
1841		 unsigned int iqid, unsigned int fl0id, unsigned int fl1id)
1842{
1843	struct fw_iq_cmd cmd;
1844
1845	memset(&cmd, 0, sizeof(cmd));
1846	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) |
1847				    FW_CMD_REQUEST_F |
1848				    FW_CMD_EXEC_F);
1849	cmd.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F |
1850					 FW_LEN16(cmd));
1851	cmd.type_to_iqandstindex =
1852		cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
1853
1854	cmd.iqid = cpu_to_be16(iqid);
1855	cmd.fl0id = cpu_to_be16(fl0id);
1856	cmd.fl1id = cpu_to_be16(fl1id);
1857	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1858}
1859
1860/**
1861 *	t4vf_eth_eq_free - free an Ethernet egress queue
1862 *	@adapter: the adapter
1863 *	@eqid: egress queue ID
1864 *
1865 *	Frees an Ethernet egress queue.
1866 */
1867int t4vf_eth_eq_free(struct adapter *adapter, unsigned int eqid)
1868{
1869	struct fw_eq_eth_cmd cmd;
1870
1871	memset(&cmd, 0, sizeof(cmd));
1872	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
1873				    FW_CMD_REQUEST_F |
1874				    FW_CMD_EXEC_F);
1875	cmd.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F |
1876					 FW_LEN16(cmd));
1877	cmd.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
1878	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1879}
1880
1881/**
1882 *	t4vf_link_down_rc_str - return a string for a Link Down Reason Code
1883 *	@link_down_rc: Link Down Reason Code
1884 *
1885 *	Returns a string representation of the Link Down Reason Code.
1886 */
1887static const char *t4vf_link_down_rc_str(unsigned char link_down_rc)
1888{
1889	static const char * const reason[] = {
1890		"Link Down",
1891		"Remote Fault",
1892		"Auto-negotiation Failure",
1893		"Reserved",
1894		"Insufficient Airflow",
1895		"Unable To Determine Reason",
1896		"No RX Signal Detected",
1897		"Reserved",
1898	};
1899
1900	if (link_down_rc >= ARRAY_SIZE(reason))
1901		return "Bad Reason Code";
1902
1903	return reason[link_down_rc];
1904}
1905
1906/**
1907 *	t4vf_handle_get_port_info - process a FW reply message
1908 *	@pi: the port info
1909 *	@cmd: start of the FW message
1910 *
1911 *	Processes a GET_PORT_INFO FW reply message.
1912 */
1913static void t4vf_handle_get_port_info(struct port_info *pi,
1914				      const struct fw_port_cmd *cmd)
1915{
1916	fw_port_cap32_t pcaps, acaps, lpacaps, linkattr;
1917	struct link_config *lc = &pi->link_cfg;
1918	struct adapter *adapter = pi->adapter;
1919	unsigned int speed, fc, fec, adv_fc;
1920	enum fw_port_module_type mod_type;
1921	int action, link_ok, linkdnrc;
1922	enum fw_port_type port_type;
1923
1924	/* Extract the various fields from the Port Information message. */
1925	action = FW_PORT_CMD_ACTION_G(be32_to_cpu(cmd->action_to_len16));
1926	switch (action) {
1927	case FW_PORT_ACTION_GET_PORT_INFO: {
1928		u32 lstatus = be32_to_cpu(cmd->u.info.lstatus_to_modtype);
1929
1930		link_ok = (lstatus & FW_PORT_CMD_LSTATUS_F) != 0;
1931		linkdnrc = FW_PORT_CMD_LINKDNRC_G(lstatus);
1932		port_type = FW_PORT_CMD_PTYPE_G(lstatus);
1933		mod_type = FW_PORT_CMD_MODTYPE_G(lstatus);
1934		pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.pcap));
1935		acaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.acap));
1936		lpacaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.lpacap));
1937
1938		/* Unfortunately the format of the Link Status in the old
1939		 * 16-bit Port Information message isn't the same as the
1940		 * 16-bit Port Capabilities bitfield used everywhere else ...
1941		 */
1942		linkattr = 0;
1943		if (lstatus & FW_PORT_CMD_RXPAUSE_F)
1944			linkattr |= FW_PORT_CAP32_FC_RX;
1945		if (lstatus & FW_PORT_CMD_TXPAUSE_F)
1946			linkattr |= FW_PORT_CAP32_FC_TX;
1947		if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
1948			linkattr |= FW_PORT_CAP32_SPEED_100M;
1949		if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
1950			linkattr |= FW_PORT_CAP32_SPEED_1G;
1951		if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
1952			linkattr |= FW_PORT_CAP32_SPEED_10G;
1953		if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G))
1954			linkattr |= FW_PORT_CAP32_SPEED_25G;
1955		if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
1956			linkattr |= FW_PORT_CAP32_SPEED_40G;
1957		if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G))
1958			linkattr |= FW_PORT_CAP32_SPEED_100G;
1959
1960		break;
1961	}
1962
1963	case FW_PORT_ACTION_GET_PORT_INFO32: {
1964		u32 lstatus32;
1965
1966		lstatus32 = be32_to_cpu(cmd->u.info32.lstatus32_to_cbllen32);
1967		link_ok = (lstatus32 & FW_PORT_CMD_LSTATUS32_F) != 0;
1968		linkdnrc = FW_PORT_CMD_LINKDNRC32_G(lstatus32);
1969		port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
1970		mod_type = FW_PORT_CMD_MODTYPE32_G(lstatus32);
1971		pcaps = be32_to_cpu(cmd->u.info32.pcaps32);
1972		acaps = be32_to_cpu(cmd->u.info32.acaps32);
1973		lpacaps = be32_to_cpu(cmd->u.info32.lpacaps32);
1974		linkattr = be32_to_cpu(cmd->u.info32.linkattr32);
1975		break;
1976	}
1977
1978	default:
1979		dev_err(adapter->pdev_dev, "Handle Port Information: Bad Command/Action %#x\n",
1980			be32_to_cpu(cmd->action_to_len16));
1981		return;
1982	}
1983
1984	fec = fwcap_to_cc_fec(acaps);
1985	adv_fc = fwcap_to_cc_pause(acaps);
1986	fc = fwcap_to_cc_pause(linkattr);
1987	speed = fwcap_to_speed(linkattr);
1988
1989	if (mod_type != pi->mod_type) {
1990		/* When a new Transceiver Module is inserted, the Firmware
1991		 * will examine any Forward Error Correction parameters
1992		 * present in the Transceiver Module i2c EPROM and determine
1993		 * the supported and recommended FEC settings from those
1994		 * based on IEEE 802.3 standards.  We always record the
1995		 * IEEE 802.3 recommended "automatic" settings.
1996		 */
1997		lc->auto_fec = fec;
1998
1999		/* Some versions of the early T6 Firmware "cheated" when
2000		 * handling different Transceiver Modules by changing the
2001		 * underlaying Port Type reported to the Host Drivers.  As
2002		 * such we need to capture whatever Port Type the Firmware
2003		 * sends us and record it in case it's different from what we
2004		 * were told earlier.  Unfortunately, since Firmware is
2005		 * forever, we'll need to keep this code here forever, but in
2006		 * later T6 Firmware it should just be an assignment of the
2007		 * same value already recorded.
2008		 */
2009		pi->port_type = port_type;
2010
2011		pi->mod_type = mod_type;
2012		t4vf_os_portmod_changed(adapter, pi->pidx);
2013	}
2014
2015	if (link_ok != lc->link_ok || speed != lc->speed ||
2016	    fc != lc->fc || adv_fc != lc->advertised_fc ||
2017	    fec != lc->fec) {
2018		/* something changed */
2019		if (!link_ok && lc->link_ok) {
2020			lc->link_down_rc = linkdnrc;
2021			dev_warn_ratelimited(adapter->pdev_dev,
2022					     "Port %d link down, reason: %s\n",
2023					     pi->port_id,
2024					     t4vf_link_down_rc_str(linkdnrc));
2025		}
2026		lc->link_ok = link_ok;
2027		lc->speed = speed;
2028		lc->advertised_fc = adv_fc;
2029		lc->fc = fc;
2030		lc->fec = fec;
2031
2032		lc->pcaps = pcaps;
2033		lc->lpacaps = lpacaps;
2034		lc->acaps = acaps & ADVERT_MASK;
2035
2036		/* If we're not physically capable of Auto-Negotiation, note
2037		 * this as Auto-Negotiation disabled.  Otherwise, we track
2038		 * what Auto-Negotiation settings we have.  Note parallel
2039		 * structure in init_link_config().
2040		 */
2041		if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) {
2042			lc->autoneg = AUTONEG_DISABLE;
2043		} else if (lc->acaps & FW_PORT_CAP32_ANEG) {
2044			lc->autoneg = AUTONEG_ENABLE;
2045		} else {
2046			/* When Autoneg is disabled, user needs to set
2047			 * single speed.
2048			 * Similar to cxgb4_ethtool.c: set_link_ksettings
2049			 */
2050			lc->acaps = 0;
2051			lc->speed_caps = fwcap_to_speed(acaps);
2052			lc->autoneg = AUTONEG_DISABLE;
2053		}
2054
2055		t4vf_os_link_changed(adapter, pi->pidx, link_ok);
2056	}
2057}
2058
2059/**
2060 *	t4vf_update_port_info - retrieve and update port information if changed
2061 *	@pi: the port_info
2062 *
2063 *	We issue a Get Port Information Command to the Firmware and, if
2064 *	successful, we check to see if anything is different from what we
2065 *	last recorded and update things accordingly.
2066 */
2067int t4vf_update_port_info(struct port_info *pi)
2068{
2069	unsigned int fw_caps = pi->adapter->params.fw_caps_support;
2070	struct fw_port_cmd port_cmd;
2071	int ret;
2072
2073	memset(&port_cmd, 0, sizeof(port_cmd));
2074	port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
2075					    FW_CMD_REQUEST_F | FW_CMD_READ_F |
2076					    FW_PORT_CMD_PORTID_V(pi->port_id));
2077	port_cmd.action_to_len16 = cpu_to_be32(
2078		FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
2079				     ? FW_PORT_ACTION_GET_PORT_INFO
2080				     : FW_PORT_ACTION_GET_PORT_INFO32) |
2081		FW_LEN16(port_cmd));
2082	ret = t4vf_wr_mbox(pi->adapter, &port_cmd, sizeof(port_cmd),
2083			   &port_cmd);
2084	if (ret)
2085		return ret;
2086	t4vf_handle_get_port_info(pi, &port_cmd);
2087	return 0;
2088}
2089
2090/**
2091 *	t4vf_handle_fw_rpl - process a firmware reply message
2092 *	@adapter: the adapter
2093 *	@rpl: start of the firmware message
2094 *
2095 *	Processes a firmware message, such as link state change messages.
2096 */
2097int t4vf_handle_fw_rpl(struct adapter *adapter, const __be64 *rpl)
2098{
2099	const struct fw_cmd_hdr *cmd_hdr = (const struct fw_cmd_hdr *)rpl;
2100	u8 opcode = FW_CMD_OP_G(be32_to_cpu(cmd_hdr->hi));
2101
2102	switch (opcode) {
2103	case FW_PORT_CMD: {
2104		/*
2105		 * Link/module state change message.
2106		 */
2107		const struct fw_port_cmd *port_cmd =
2108			(const struct fw_port_cmd *)rpl;
2109		int action = FW_PORT_CMD_ACTION_G(
2110			be32_to_cpu(port_cmd->action_to_len16));
2111		int port_id, pidx;
2112
2113		if (action != FW_PORT_ACTION_GET_PORT_INFO &&
2114		    action != FW_PORT_ACTION_GET_PORT_INFO32) {
2115			dev_err(adapter->pdev_dev,
2116				"Unknown firmware PORT reply action %x\n",
2117				action);
2118			break;
2119		}
2120
2121		port_id = FW_PORT_CMD_PORTID_G(
2122			be32_to_cpu(port_cmd->op_to_portid));
2123		for_each_port(adapter, pidx) {
2124			struct port_info *pi = adap2pinfo(adapter, pidx);
2125
2126			if (pi->port_id != port_id)
2127				continue;
2128			t4vf_handle_get_port_info(pi, port_cmd);
2129		}
2130		break;
2131	}
2132
2133	default:
2134		dev_err(adapter->pdev_dev, "Unknown firmware reply %X\n",
2135			opcode);
2136	}
2137	return 0;
2138}
2139
2140int t4vf_prep_adapter(struct adapter *adapter)
2141{
2142	int err;
2143	unsigned int chipid;
2144
2145	/* Wait for the device to become ready before proceeding ...
2146	 */
2147	err = t4vf_wait_dev_ready(adapter);
2148	if (err)
2149		return err;
2150
2151	/* Default port and clock for debugging in case we can't reach
2152	 * firmware.
2153	 */
2154	adapter->params.nports = 1;
2155	adapter->params.vfres.pmask = 1;
2156	adapter->params.vpd.cclk = 50000;
2157
2158	adapter->params.chip = 0;
2159	switch (CHELSIO_PCI_ID_VER(adapter->pdev->device)) {
2160	case CHELSIO_T4:
2161		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, 0);
2162		adapter->params.arch.sge_fl_db = DBPRIO_F;
2163		adapter->params.arch.mps_tcam_size =
2164				NUM_MPS_CLS_SRAM_L_INSTANCES;
2165		break;
2166
2167	case CHELSIO_T5:
2168		chipid = REV_G(t4_read_reg(adapter, PL_VF_REV_A));
2169		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, chipid);
2170		adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F;
2171		adapter->params.arch.mps_tcam_size =
2172				NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
2173		break;
2174
2175	case CHELSIO_T6:
2176		chipid = REV_G(t4_read_reg(adapter, PL_VF_REV_A));
2177		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, chipid);
2178		adapter->params.arch.sge_fl_db = 0;
2179		adapter->params.arch.mps_tcam_size =
2180				NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
2181		break;
2182	}
2183
2184	return 0;
2185}
2186
2187/**
2188 *	t4vf_get_vf_mac_acl - Get the MAC address to be set to
2189 *			      the VI of this VF.
2190 *	@adapter: The adapter
2191 *	@port: The port associated with vf
2192 *	@naddr: the number of ACL MAC addresses returned in addr
2193 *	@addr: Placeholder for MAC addresses
2194 *
2195 *	Find the MAC address to be set to the VF's VI. The requested MAC address
2196 *	is from the host OS via callback in the PF driver.
2197 */
2198int t4vf_get_vf_mac_acl(struct adapter *adapter, unsigned int port,
2199			unsigned int *naddr, u8 *addr)
2200{
2201	struct fw_acl_mac_cmd cmd;
2202	int ret;
2203
2204	memset(&cmd, 0, sizeof(cmd));
2205	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_MAC_CMD) |
2206				    FW_CMD_REQUEST_F |
2207				    FW_CMD_READ_F);
2208	cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd));
2209	ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &cmd);
2210	if (ret)
2211		return ret;
2212
2213	if (cmd.nmac < *naddr)
2214		*naddr = cmd.nmac;
2215
2216	switch (port) {
2217	case 3:
2218		memcpy(addr, cmd.macaddr3, sizeof(cmd.macaddr3));
2219		break;
2220	case 2:
2221		memcpy(addr, cmd.macaddr2, sizeof(cmd.macaddr2));
2222		break;
2223	case 1:
2224		memcpy(addr, cmd.macaddr1, sizeof(cmd.macaddr1));
2225		break;
2226	case 0:
2227		memcpy(addr, cmd.macaddr0, sizeof(cmd.macaddr0));
2228		break;
2229	}
2230
2231	return ret;
2232}
2233
2234/**
2235 *	t4vf_get_vf_vlan_acl - Get the VLAN ID to be set to
2236 *                             the VI of this VF.
2237 *	@adapter: The adapter
2238 *
2239 *	Find the VLAN ID to be set to the VF's VI. The requested VLAN ID
2240 *	is from the host OS via callback in the PF driver.
2241 */
2242int t4vf_get_vf_vlan_acl(struct adapter *adapter)
2243{
2244	struct fw_acl_vlan_cmd cmd;
2245	int vlan = 0;
2246	int ret = 0;
2247
2248	cmd.op_to_vfn = htonl(FW_CMD_OP_V(FW_ACL_VLAN_CMD) |
2249			      FW_CMD_REQUEST_F | FW_CMD_READ_F);
2250
2251	/* Note: Do not enable the ACL */
2252	cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd));
2253
2254	ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &cmd);
2255
2256	if (!ret)
2257		vlan = be16_to_cpu(cmd.vlanid[0]);
2258
2259	return vlan;
2260}
2261