162306a36Sopenharmony_ci/* 262306a36Sopenharmony_ci * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet 362306a36Sopenharmony_ci * driver for Linux. 462306a36Sopenharmony_ci * 562306a36Sopenharmony_ci * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved. 662306a36Sopenharmony_ci * 762306a36Sopenharmony_ci * This software is available to you under a choice of one of two 862306a36Sopenharmony_ci * licenses. You may choose to be licensed under the terms of the GNU 962306a36Sopenharmony_ci * General Public License (GPL) Version 2, available from the file 1062306a36Sopenharmony_ci * COPYING in the main directory of this source tree, or the 1162306a36Sopenharmony_ci * OpenIB.org BSD license below: 1262306a36Sopenharmony_ci * 1362306a36Sopenharmony_ci * Redistribution and use in source and binary forms, with or 1462306a36Sopenharmony_ci * without modification, are permitted provided that the following 1562306a36Sopenharmony_ci * conditions are met: 1662306a36Sopenharmony_ci * 1762306a36Sopenharmony_ci * - Redistributions of source code must retain the above 1862306a36Sopenharmony_ci * copyright notice, this list of conditions and the following 1962306a36Sopenharmony_ci * disclaimer. 2062306a36Sopenharmony_ci * 2162306a36Sopenharmony_ci * - Redistributions in binary form must reproduce the above 2262306a36Sopenharmony_ci * copyright notice, this list of conditions and the following 2362306a36Sopenharmony_ci * disclaimer in the documentation and/or other materials 2462306a36Sopenharmony_ci * provided with the distribution. 2562306a36Sopenharmony_ci * 2662306a36Sopenharmony_ci * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 2762306a36Sopenharmony_ci * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 2862306a36Sopenharmony_ci * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 2962306a36Sopenharmony_ci * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 3062306a36Sopenharmony_ci * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 3162306a36Sopenharmony_ci * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 3262306a36Sopenharmony_ci * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 3362306a36Sopenharmony_ci * SOFTWARE. 3462306a36Sopenharmony_ci */ 3562306a36Sopenharmony_ci 3662306a36Sopenharmony_ci#include <linux/skbuff.h> 3762306a36Sopenharmony_ci#include <linux/netdevice.h> 3862306a36Sopenharmony_ci#include <linux/etherdevice.h> 3962306a36Sopenharmony_ci#include <linux/if_vlan.h> 4062306a36Sopenharmony_ci#include <linux/ip.h> 4162306a36Sopenharmony_ci#include <net/ipv6.h> 4262306a36Sopenharmony_ci#include <net/tcp.h> 4362306a36Sopenharmony_ci#include <linux/dma-mapping.h> 4462306a36Sopenharmony_ci#include <linux/prefetch.h> 4562306a36Sopenharmony_ci 4662306a36Sopenharmony_ci#include "t4vf_common.h" 4762306a36Sopenharmony_ci#include "t4vf_defs.h" 4862306a36Sopenharmony_ci 4962306a36Sopenharmony_ci#include "../cxgb4/t4_regs.h" 5062306a36Sopenharmony_ci#include "../cxgb4/t4_values.h" 5162306a36Sopenharmony_ci#include "../cxgb4/t4fw_api.h" 5262306a36Sopenharmony_ci#include "../cxgb4/t4_msg.h" 5362306a36Sopenharmony_ci 5462306a36Sopenharmony_ci/* 5562306a36Sopenharmony_ci * Constants ... 5662306a36Sopenharmony_ci */ 5762306a36Sopenharmony_cienum { 5862306a36Sopenharmony_ci /* 5962306a36Sopenharmony_ci * Egress Queue sizes, producer and consumer indices are all in units 6062306a36Sopenharmony_ci * of Egress Context Units bytes. Note that as far as the hardware is 6162306a36Sopenharmony_ci * concerned, the free list is an Egress Queue (the host produces free 6262306a36Sopenharmony_ci * buffers which the hardware consumes) and free list entries are 6362306a36Sopenharmony_ci * 64-bit PCI DMA addresses. 6462306a36Sopenharmony_ci */ 6562306a36Sopenharmony_ci EQ_UNIT = SGE_EQ_IDXSIZE, 6662306a36Sopenharmony_ci FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64), 6762306a36Sopenharmony_ci TXD_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64), 6862306a36Sopenharmony_ci 6962306a36Sopenharmony_ci /* 7062306a36Sopenharmony_ci * Max number of TX descriptors we clean up at a time. Should be 7162306a36Sopenharmony_ci * modest as freeing skbs isn't cheap and it happens while holding 7262306a36Sopenharmony_ci * locks. We just need to free packets faster than they arrive, we 7362306a36Sopenharmony_ci * eventually catch up and keep the amortized cost reasonable. 7462306a36Sopenharmony_ci */ 7562306a36Sopenharmony_ci MAX_TX_RECLAIM = 16, 7662306a36Sopenharmony_ci 7762306a36Sopenharmony_ci /* 7862306a36Sopenharmony_ci * Max number of Rx buffers we replenish at a time. Again keep this 7962306a36Sopenharmony_ci * modest, allocating buffers isn't cheap either. 8062306a36Sopenharmony_ci */ 8162306a36Sopenharmony_ci MAX_RX_REFILL = 16, 8262306a36Sopenharmony_ci 8362306a36Sopenharmony_ci /* 8462306a36Sopenharmony_ci * Period of the Rx queue check timer. This timer is infrequent as it 8562306a36Sopenharmony_ci * has something to do only when the system experiences severe memory 8662306a36Sopenharmony_ci * shortage. 8762306a36Sopenharmony_ci */ 8862306a36Sopenharmony_ci RX_QCHECK_PERIOD = (HZ / 2), 8962306a36Sopenharmony_ci 9062306a36Sopenharmony_ci /* 9162306a36Sopenharmony_ci * Period of the TX queue check timer and the maximum number of TX 9262306a36Sopenharmony_ci * descriptors to be reclaimed by the TX timer. 9362306a36Sopenharmony_ci */ 9462306a36Sopenharmony_ci TX_QCHECK_PERIOD = (HZ / 2), 9562306a36Sopenharmony_ci MAX_TIMER_TX_RECLAIM = 100, 9662306a36Sopenharmony_ci 9762306a36Sopenharmony_ci /* 9862306a36Sopenharmony_ci * Suspend an Ethernet TX queue with fewer available descriptors than 9962306a36Sopenharmony_ci * this. We always want to have room for a maximum sized packet: 10062306a36Sopenharmony_ci * inline immediate data + MAX_SKB_FRAGS. This is the same as 10162306a36Sopenharmony_ci * calc_tx_flits() for a TSO packet with nr_frags == MAX_SKB_FRAGS 10262306a36Sopenharmony_ci * (see that function and its helpers for a description of the 10362306a36Sopenharmony_ci * calculation). 10462306a36Sopenharmony_ci */ 10562306a36Sopenharmony_ci ETHTXQ_MAX_FRAGS = MAX_SKB_FRAGS + 1, 10662306a36Sopenharmony_ci ETHTXQ_MAX_SGL_LEN = ((3 * (ETHTXQ_MAX_FRAGS-1))/2 + 10762306a36Sopenharmony_ci ((ETHTXQ_MAX_FRAGS-1) & 1) + 10862306a36Sopenharmony_ci 2), 10962306a36Sopenharmony_ci ETHTXQ_MAX_HDR = (sizeof(struct fw_eth_tx_pkt_vm_wr) + 11062306a36Sopenharmony_ci sizeof(struct cpl_tx_pkt_lso_core) + 11162306a36Sopenharmony_ci sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64), 11262306a36Sopenharmony_ci ETHTXQ_MAX_FLITS = ETHTXQ_MAX_SGL_LEN + ETHTXQ_MAX_HDR, 11362306a36Sopenharmony_ci 11462306a36Sopenharmony_ci ETHTXQ_STOP_THRES = 1 + DIV_ROUND_UP(ETHTXQ_MAX_FLITS, TXD_PER_EQ_UNIT), 11562306a36Sopenharmony_ci 11662306a36Sopenharmony_ci /* 11762306a36Sopenharmony_ci * Max TX descriptor space we allow for an Ethernet packet to be 11862306a36Sopenharmony_ci * inlined into a WR. This is limited by the maximum value which 11962306a36Sopenharmony_ci * we can specify for immediate data in the firmware Ethernet TX 12062306a36Sopenharmony_ci * Work Request. 12162306a36Sopenharmony_ci */ 12262306a36Sopenharmony_ci MAX_IMM_TX_PKT_LEN = FW_WR_IMMDLEN_M, 12362306a36Sopenharmony_ci 12462306a36Sopenharmony_ci /* 12562306a36Sopenharmony_ci * Max size of a WR sent through a control TX queue. 12662306a36Sopenharmony_ci */ 12762306a36Sopenharmony_ci MAX_CTRL_WR_LEN = 256, 12862306a36Sopenharmony_ci 12962306a36Sopenharmony_ci /* 13062306a36Sopenharmony_ci * Maximum amount of data which we'll ever need to inline into a 13162306a36Sopenharmony_ci * TX ring: max(MAX_IMM_TX_PKT_LEN, MAX_CTRL_WR_LEN). 13262306a36Sopenharmony_ci */ 13362306a36Sopenharmony_ci MAX_IMM_TX_LEN = (MAX_IMM_TX_PKT_LEN > MAX_CTRL_WR_LEN 13462306a36Sopenharmony_ci ? MAX_IMM_TX_PKT_LEN 13562306a36Sopenharmony_ci : MAX_CTRL_WR_LEN), 13662306a36Sopenharmony_ci 13762306a36Sopenharmony_ci /* 13862306a36Sopenharmony_ci * For incoming packets less than RX_COPY_THRES, we copy the data into 13962306a36Sopenharmony_ci * an skb rather than referencing the data. We allocate enough 14062306a36Sopenharmony_ci * in-line room in skb's to accommodate pulling in RX_PULL_LEN bytes 14162306a36Sopenharmony_ci * of the data (header). 14262306a36Sopenharmony_ci */ 14362306a36Sopenharmony_ci RX_COPY_THRES = 256, 14462306a36Sopenharmony_ci RX_PULL_LEN = 128, 14562306a36Sopenharmony_ci 14662306a36Sopenharmony_ci /* 14762306a36Sopenharmony_ci * Main body length for sk_buffs used for RX Ethernet packets with 14862306a36Sopenharmony_ci * fragments. Should be >= RX_PULL_LEN but possibly bigger to give 14962306a36Sopenharmony_ci * pskb_may_pull() some room. 15062306a36Sopenharmony_ci */ 15162306a36Sopenharmony_ci RX_SKB_LEN = 512, 15262306a36Sopenharmony_ci}; 15362306a36Sopenharmony_ci 15462306a36Sopenharmony_ci/* 15562306a36Sopenharmony_ci * Software state per TX descriptor. 15662306a36Sopenharmony_ci */ 15762306a36Sopenharmony_cistruct tx_sw_desc { 15862306a36Sopenharmony_ci struct sk_buff *skb; /* socket buffer of TX data source */ 15962306a36Sopenharmony_ci struct ulptx_sgl *sgl; /* scatter/gather list in TX Queue */ 16062306a36Sopenharmony_ci}; 16162306a36Sopenharmony_ci 16262306a36Sopenharmony_ci/* 16362306a36Sopenharmony_ci * Software state per RX Free List descriptor. We keep track of the allocated 16462306a36Sopenharmony_ci * FL page, its size, and its PCI DMA address (if the page is mapped). The FL 16562306a36Sopenharmony_ci * page size and its PCI DMA mapped state are stored in the low bits of the 16662306a36Sopenharmony_ci * PCI DMA address as per below. 16762306a36Sopenharmony_ci */ 16862306a36Sopenharmony_cistruct rx_sw_desc { 16962306a36Sopenharmony_ci struct page *page; /* Free List page buffer */ 17062306a36Sopenharmony_ci dma_addr_t dma_addr; /* PCI DMA address (if mapped) */ 17162306a36Sopenharmony_ci /* and flags (see below) */ 17262306a36Sopenharmony_ci}; 17362306a36Sopenharmony_ci 17462306a36Sopenharmony_ci/* 17562306a36Sopenharmony_ci * The low bits of rx_sw_desc.dma_addr have special meaning. Note that the 17662306a36Sopenharmony_ci * SGE also uses the low 4 bits to determine the size of the buffer. It uses 17762306a36Sopenharmony_ci * those bits to index into the SGE_FL_BUFFER_SIZE[index] register array. 17862306a36Sopenharmony_ci * Since we only use SGE_FL_BUFFER_SIZE0 and SGE_FL_BUFFER_SIZE1, these low 4 17962306a36Sopenharmony_ci * bits can only contain a 0 or a 1 to indicate which size buffer we're giving 18062306a36Sopenharmony_ci * to the SGE. Thus, our software state of "is the buffer mapped for DMA" is 18162306a36Sopenharmony_ci * maintained in an inverse sense so the hardware never sees that bit high. 18262306a36Sopenharmony_ci */ 18362306a36Sopenharmony_cienum { 18462306a36Sopenharmony_ci RX_LARGE_BUF = 1 << 0, /* buffer is SGE_FL_BUFFER_SIZE[1] */ 18562306a36Sopenharmony_ci RX_UNMAPPED_BUF = 1 << 1, /* buffer is not mapped */ 18662306a36Sopenharmony_ci}; 18762306a36Sopenharmony_ci 18862306a36Sopenharmony_ci/** 18962306a36Sopenharmony_ci * get_buf_addr - return DMA buffer address of software descriptor 19062306a36Sopenharmony_ci * @sdesc: pointer to the software buffer descriptor 19162306a36Sopenharmony_ci * 19262306a36Sopenharmony_ci * Return the DMA buffer address of a software descriptor (stripping out 19362306a36Sopenharmony_ci * our low-order flag bits). 19462306a36Sopenharmony_ci */ 19562306a36Sopenharmony_cistatic inline dma_addr_t get_buf_addr(const struct rx_sw_desc *sdesc) 19662306a36Sopenharmony_ci{ 19762306a36Sopenharmony_ci return sdesc->dma_addr & ~(dma_addr_t)(RX_LARGE_BUF | RX_UNMAPPED_BUF); 19862306a36Sopenharmony_ci} 19962306a36Sopenharmony_ci 20062306a36Sopenharmony_ci/** 20162306a36Sopenharmony_ci * is_buf_mapped - is buffer mapped for DMA? 20262306a36Sopenharmony_ci * @sdesc: pointer to the software buffer descriptor 20362306a36Sopenharmony_ci * 20462306a36Sopenharmony_ci * Determine whether the buffer associated with a software descriptor in 20562306a36Sopenharmony_ci * mapped for DMA or not. 20662306a36Sopenharmony_ci */ 20762306a36Sopenharmony_cistatic inline bool is_buf_mapped(const struct rx_sw_desc *sdesc) 20862306a36Sopenharmony_ci{ 20962306a36Sopenharmony_ci return !(sdesc->dma_addr & RX_UNMAPPED_BUF); 21062306a36Sopenharmony_ci} 21162306a36Sopenharmony_ci 21262306a36Sopenharmony_ci/** 21362306a36Sopenharmony_ci * need_skb_unmap - does the platform need unmapping of sk_buffs? 21462306a36Sopenharmony_ci * 21562306a36Sopenharmony_ci * Returns true if the platform needs sk_buff unmapping. The compiler 21662306a36Sopenharmony_ci * optimizes away unnecessary code if this returns true. 21762306a36Sopenharmony_ci */ 21862306a36Sopenharmony_cistatic inline int need_skb_unmap(void) 21962306a36Sopenharmony_ci{ 22062306a36Sopenharmony_ci#ifdef CONFIG_NEED_DMA_MAP_STATE 22162306a36Sopenharmony_ci return 1; 22262306a36Sopenharmony_ci#else 22362306a36Sopenharmony_ci return 0; 22462306a36Sopenharmony_ci#endif 22562306a36Sopenharmony_ci} 22662306a36Sopenharmony_ci 22762306a36Sopenharmony_ci/** 22862306a36Sopenharmony_ci * txq_avail - return the number of available slots in a TX queue 22962306a36Sopenharmony_ci * @tq: the TX queue 23062306a36Sopenharmony_ci * 23162306a36Sopenharmony_ci * Returns the number of available descriptors in a TX queue. 23262306a36Sopenharmony_ci */ 23362306a36Sopenharmony_cistatic inline unsigned int txq_avail(const struct sge_txq *tq) 23462306a36Sopenharmony_ci{ 23562306a36Sopenharmony_ci return tq->size - 1 - tq->in_use; 23662306a36Sopenharmony_ci} 23762306a36Sopenharmony_ci 23862306a36Sopenharmony_ci/** 23962306a36Sopenharmony_ci * fl_cap - return the capacity of a Free List 24062306a36Sopenharmony_ci * @fl: the Free List 24162306a36Sopenharmony_ci * 24262306a36Sopenharmony_ci * Returns the capacity of a Free List. The capacity is less than the 24362306a36Sopenharmony_ci * size because an Egress Queue Index Unit worth of descriptors needs to 24462306a36Sopenharmony_ci * be left unpopulated, otherwise the Producer and Consumer indices PIDX 24562306a36Sopenharmony_ci * and CIDX will match and the hardware will think the FL is empty. 24662306a36Sopenharmony_ci */ 24762306a36Sopenharmony_cistatic inline unsigned int fl_cap(const struct sge_fl *fl) 24862306a36Sopenharmony_ci{ 24962306a36Sopenharmony_ci return fl->size - FL_PER_EQ_UNIT; 25062306a36Sopenharmony_ci} 25162306a36Sopenharmony_ci 25262306a36Sopenharmony_ci/** 25362306a36Sopenharmony_ci * fl_starving - return whether a Free List is starving. 25462306a36Sopenharmony_ci * @adapter: pointer to the adapter 25562306a36Sopenharmony_ci * @fl: the Free List 25662306a36Sopenharmony_ci * 25762306a36Sopenharmony_ci * Tests specified Free List to see whether the number of buffers 25862306a36Sopenharmony_ci * available to the hardware has falled below our "starvation" 25962306a36Sopenharmony_ci * threshold. 26062306a36Sopenharmony_ci */ 26162306a36Sopenharmony_cistatic inline bool fl_starving(const struct adapter *adapter, 26262306a36Sopenharmony_ci const struct sge_fl *fl) 26362306a36Sopenharmony_ci{ 26462306a36Sopenharmony_ci const struct sge *s = &adapter->sge; 26562306a36Sopenharmony_ci 26662306a36Sopenharmony_ci return fl->avail - fl->pend_cred <= s->fl_starve_thres; 26762306a36Sopenharmony_ci} 26862306a36Sopenharmony_ci 26962306a36Sopenharmony_ci/** 27062306a36Sopenharmony_ci * map_skb - map an skb for DMA to the device 27162306a36Sopenharmony_ci * @dev: the egress net device 27262306a36Sopenharmony_ci * @skb: the packet to map 27362306a36Sopenharmony_ci * @addr: a pointer to the base of the DMA mapping array 27462306a36Sopenharmony_ci * 27562306a36Sopenharmony_ci * Map an skb for DMA to the device and return an array of DMA addresses. 27662306a36Sopenharmony_ci */ 27762306a36Sopenharmony_cistatic int map_skb(struct device *dev, const struct sk_buff *skb, 27862306a36Sopenharmony_ci dma_addr_t *addr) 27962306a36Sopenharmony_ci{ 28062306a36Sopenharmony_ci const skb_frag_t *fp, *end; 28162306a36Sopenharmony_ci const struct skb_shared_info *si; 28262306a36Sopenharmony_ci 28362306a36Sopenharmony_ci *addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE); 28462306a36Sopenharmony_ci if (dma_mapping_error(dev, *addr)) 28562306a36Sopenharmony_ci goto out_err; 28662306a36Sopenharmony_ci 28762306a36Sopenharmony_ci si = skb_shinfo(skb); 28862306a36Sopenharmony_ci end = &si->frags[si->nr_frags]; 28962306a36Sopenharmony_ci for (fp = si->frags; fp < end; fp++) { 29062306a36Sopenharmony_ci *++addr = skb_frag_dma_map(dev, fp, 0, skb_frag_size(fp), 29162306a36Sopenharmony_ci DMA_TO_DEVICE); 29262306a36Sopenharmony_ci if (dma_mapping_error(dev, *addr)) 29362306a36Sopenharmony_ci goto unwind; 29462306a36Sopenharmony_ci } 29562306a36Sopenharmony_ci return 0; 29662306a36Sopenharmony_ci 29762306a36Sopenharmony_ciunwind: 29862306a36Sopenharmony_ci while (fp-- > si->frags) 29962306a36Sopenharmony_ci dma_unmap_page(dev, *--addr, skb_frag_size(fp), DMA_TO_DEVICE); 30062306a36Sopenharmony_ci dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE); 30162306a36Sopenharmony_ci 30262306a36Sopenharmony_ciout_err: 30362306a36Sopenharmony_ci return -ENOMEM; 30462306a36Sopenharmony_ci} 30562306a36Sopenharmony_ci 30662306a36Sopenharmony_cistatic void unmap_sgl(struct device *dev, const struct sk_buff *skb, 30762306a36Sopenharmony_ci const struct ulptx_sgl *sgl, const struct sge_txq *tq) 30862306a36Sopenharmony_ci{ 30962306a36Sopenharmony_ci const struct ulptx_sge_pair *p; 31062306a36Sopenharmony_ci unsigned int nfrags = skb_shinfo(skb)->nr_frags; 31162306a36Sopenharmony_ci 31262306a36Sopenharmony_ci if (likely(skb_headlen(skb))) 31362306a36Sopenharmony_ci dma_unmap_single(dev, be64_to_cpu(sgl->addr0), 31462306a36Sopenharmony_ci be32_to_cpu(sgl->len0), DMA_TO_DEVICE); 31562306a36Sopenharmony_ci else { 31662306a36Sopenharmony_ci dma_unmap_page(dev, be64_to_cpu(sgl->addr0), 31762306a36Sopenharmony_ci be32_to_cpu(sgl->len0), DMA_TO_DEVICE); 31862306a36Sopenharmony_ci nfrags--; 31962306a36Sopenharmony_ci } 32062306a36Sopenharmony_ci 32162306a36Sopenharmony_ci /* 32262306a36Sopenharmony_ci * the complexity below is because of the possibility of a wrap-around 32362306a36Sopenharmony_ci * in the middle of an SGL 32462306a36Sopenharmony_ci */ 32562306a36Sopenharmony_ci for (p = sgl->sge; nfrags >= 2; nfrags -= 2) { 32662306a36Sopenharmony_ci if (likely((u8 *)(p + 1) <= (u8 *)tq->stat)) { 32762306a36Sopenharmony_ciunmap: 32862306a36Sopenharmony_ci dma_unmap_page(dev, be64_to_cpu(p->addr[0]), 32962306a36Sopenharmony_ci be32_to_cpu(p->len[0]), DMA_TO_DEVICE); 33062306a36Sopenharmony_ci dma_unmap_page(dev, be64_to_cpu(p->addr[1]), 33162306a36Sopenharmony_ci be32_to_cpu(p->len[1]), DMA_TO_DEVICE); 33262306a36Sopenharmony_ci p++; 33362306a36Sopenharmony_ci } else if ((u8 *)p == (u8 *)tq->stat) { 33462306a36Sopenharmony_ci p = (const struct ulptx_sge_pair *)tq->desc; 33562306a36Sopenharmony_ci goto unmap; 33662306a36Sopenharmony_ci } else if ((u8 *)p + 8 == (u8 *)tq->stat) { 33762306a36Sopenharmony_ci const __be64 *addr = (const __be64 *)tq->desc; 33862306a36Sopenharmony_ci 33962306a36Sopenharmony_ci dma_unmap_page(dev, be64_to_cpu(addr[0]), 34062306a36Sopenharmony_ci be32_to_cpu(p->len[0]), DMA_TO_DEVICE); 34162306a36Sopenharmony_ci dma_unmap_page(dev, be64_to_cpu(addr[1]), 34262306a36Sopenharmony_ci be32_to_cpu(p->len[1]), DMA_TO_DEVICE); 34362306a36Sopenharmony_ci p = (const struct ulptx_sge_pair *)&addr[2]; 34462306a36Sopenharmony_ci } else { 34562306a36Sopenharmony_ci const __be64 *addr = (const __be64 *)tq->desc; 34662306a36Sopenharmony_ci 34762306a36Sopenharmony_ci dma_unmap_page(dev, be64_to_cpu(p->addr[0]), 34862306a36Sopenharmony_ci be32_to_cpu(p->len[0]), DMA_TO_DEVICE); 34962306a36Sopenharmony_ci dma_unmap_page(dev, be64_to_cpu(addr[0]), 35062306a36Sopenharmony_ci be32_to_cpu(p->len[1]), DMA_TO_DEVICE); 35162306a36Sopenharmony_ci p = (const struct ulptx_sge_pair *)&addr[1]; 35262306a36Sopenharmony_ci } 35362306a36Sopenharmony_ci } 35462306a36Sopenharmony_ci if (nfrags) { 35562306a36Sopenharmony_ci __be64 addr; 35662306a36Sopenharmony_ci 35762306a36Sopenharmony_ci if ((u8 *)p == (u8 *)tq->stat) 35862306a36Sopenharmony_ci p = (const struct ulptx_sge_pair *)tq->desc; 35962306a36Sopenharmony_ci addr = ((u8 *)p + 16 <= (u8 *)tq->stat 36062306a36Sopenharmony_ci ? p->addr[0] 36162306a36Sopenharmony_ci : *(const __be64 *)tq->desc); 36262306a36Sopenharmony_ci dma_unmap_page(dev, be64_to_cpu(addr), be32_to_cpu(p->len[0]), 36362306a36Sopenharmony_ci DMA_TO_DEVICE); 36462306a36Sopenharmony_ci } 36562306a36Sopenharmony_ci} 36662306a36Sopenharmony_ci 36762306a36Sopenharmony_ci/** 36862306a36Sopenharmony_ci * free_tx_desc - reclaims TX descriptors and their buffers 36962306a36Sopenharmony_ci * @adapter: the adapter 37062306a36Sopenharmony_ci * @tq: the TX queue to reclaim descriptors from 37162306a36Sopenharmony_ci * @n: the number of descriptors to reclaim 37262306a36Sopenharmony_ci * @unmap: whether the buffers should be unmapped for DMA 37362306a36Sopenharmony_ci * 37462306a36Sopenharmony_ci * Reclaims TX descriptors from an SGE TX queue and frees the associated 37562306a36Sopenharmony_ci * TX buffers. Called with the TX queue lock held. 37662306a36Sopenharmony_ci */ 37762306a36Sopenharmony_cistatic void free_tx_desc(struct adapter *adapter, struct sge_txq *tq, 37862306a36Sopenharmony_ci unsigned int n, bool unmap) 37962306a36Sopenharmony_ci{ 38062306a36Sopenharmony_ci struct tx_sw_desc *sdesc; 38162306a36Sopenharmony_ci unsigned int cidx = tq->cidx; 38262306a36Sopenharmony_ci struct device *dev = adapter->pdev_dev; 38362306a36Sopenharmony_ci 38462306a36Sopenharmony_ci const int need_unmap = need_skb_unmap() && unmap; 38562306a36Sopenharmony_ci 38662306a36Sopenharmony_ci sdesc = &tq->sdesc[cidx]; 38762306a36Sopenharmony_ci while (n--) { 38862306a36Sopenharmony_ci /* 38962306a36Sopenharmony_ci * If we kept a reference to the original TX skb, we need to 39062306a36Sopenharmony_ci * unmap it from PCI DMA space (if required) and free it. 39162306a36Sopenharmony_ci */ 39262306a36Sopenharmony_ci if (sdesc->skb) { 39362306a36Sopenharmony_ci if (need_unmap) 39462306a36Sopenharmony_ci unmap_sgl(dev, sdesc->skb, sdesc->sgl, tq); 39562306a36Sopenharmony_ci dev_consume_skb_any(sdesc->skb); 39662306a36Sopenharmony_ci sdesc->skb = NULL; 39762306a36Sopenharmony_ci } 39862306a36Sopenharmony_ci 39962306a36Sopenharmony_ci sdesc++; 40062306a36Sopenharmony_ci if (++cidx == tq->size) { 40162306a36Sopenharmony_ci cidx = 0; 40262306a36Sopenharmony_ci sdesc = tq->sdesc; 40362306a36Sopenharmony_ci } 40462306a36Sopenharmony_ci } 40562306a36Sopenharmony_ci tq->cidx = cidx; 40662306a36Sopenharmony_ci} 40762306a36Sopenharmony_ci 40862306a36Sopenharmony_ci/* 40962306a36Sopenharmony_ci * Return the number of reclaimable descriptors in a TX queue. 41062306a36Sopenharmony_ci */ 41162306a36Sopenharmony_cistatic inline int reclaimable(const struct sge_txq *tq) 41262306a36Sopenharmony_ci{ 41362306a36Sopenharmony_ci int hw_cidx = be16_to_cpu(tq->stat->cidx); 41462306a36Sopenharmony_ci int reclaimable = hw_cidx - tq->cidx; 41562306a36Sopenharmony_ci if (reclaimable < 0) 41662306a36Sopenharmony_ci reclaimable += tq->size; 41762306a36Sopenharmony_ci return reclaimable; 41862306a36Sopenharmony_ci} 41962306a36Sopenharmony_ci 42062306a36Sopenharmony_ci/** 42162306a36Sopenharmony_ci * reclaim_completed_tx - reclaims completed TX descriptors 42262306a36Sopenharmony_ci * @adapter: the adapter 42362306a36Sopenharmony_ci * @tq: the TX queue to reclaim completed descriptors from 42462306a36Sopenharmony_ci * @unmap: whether the buffers should be unmapped for DMA 42562306a36Sopenharmony_ci * 42662306a36Sopenharmony_ci * Reclaims TX descriptors that the SGE has indicated it has processed, 42762306a36Sopenharmony_ci * and frees the associated buffers if possible. Called with the TX 42862306a36Sopenharmony_ci * queue locked. 42962306a36Sopenharmony_ci */ 43062306a36Sopenharmony_cistatic inline void reclaim_completed_tx(struct adapter *adapter, 43162306a36Sopenharmony_ci struct sge_txq *tq, 43262306a36Sopenharmony_ci bool unmap) 43362306a36Sopenharmony_ci{ 43462306a36Sopenharmony_ci int avail = reclaimable(tq); 43562306a36Sopenharmony_ci 43662306a36Sopenharmony_ci if (avail) { 43762306a36Sopenharmony_ci /* 43862306a36Sopenharmony_ci * Limit the amount of clean up work we do at a time to keep 43962306a36Sopenharmony_ci * the TX lock hold time O(1). 44062306a36Sopenharmony_ci */ 44162306a36Sopenharmony_ci if (avail > MAX_TX_RECLAIM) 44262306a36Sopenharmony_ci avail = MAX_TX_RECLAIM; 44362306a36Sopenharmony_ci 44462306a36Sopenharmony_ci free_tx_desc(adapter, tq, avail, unmap); 44562306a36Sopenharmony_ci tq->in_use -= avail; 44662306a36Sopenharmony_ci } 44762306a36Sopenharmony_ci} 44862306a36Sopenharmony_ci 44962306a36Sopenharmony_ci/** 45062306a36Sopenharmony_ci * get_buf_size - return the size of an RX Free List buffer. 45162306a36Sopenharmony_ci * @adapter: pointer to the associated adapter 45262306a36Sopenharmony_ci * @sdesc: pointer to the software buffer descriptor 45362306a36Sopenharmony_ci */ 45462306a36Sopenharmony_cistatic inline int get_buf_size(const struct adapter *adapter, 45562306a36Sopenharmony_ci const struct rx_sw_desc *sdesc) 45662306a36Sopenharmony_ci{ 45762306a36Sopenharmony_ci const struct sge *s = &adapter->sge; 45862306a36Sopenharmony_ci 45962306a36Sopenharmony_ci return (s->fl_pg_order > 0 && (sdesc->dma_addr & RX_LARGE_BUF) 46062306a36Sopenharmony_ci ? (PAGE_SIZE << s->fl_pg_order) : PAGE_SIZE); 46162306a36Sopenharmony_ci} 46262306a36Sopenharmony_ci 46362306a36Sopenharmony_ci/** 46462306a36Sopenharmony_ci * free_rx_bufs - free RX buffers on an SGE Free List 46562306a36Sopenharmony_ci * @adapter: the adapter 46662306a36Sopenharmony_ci * @fl: the SGE Free List to free buffers from 46762306a36Sopenharmony_ci * @n: how many buffers to free 46862306a36Sopenharmony_ci * 46962306a36Sopenharmony_ci * Release the next @n buffers on an SGE Free List RX queue. The 47062306a36Sopenharmony_ci * buffers must be made inaccessible to hardware before calling this 47162306a36Sopenharmony_ci * function. 47262306a36Sopenharmony_ci */ 47362306a36Sopenharmony_cistatic void free_rx_bufs(struct adapter *adapter, struct sge_fl *fl, int n) 47462306a36Sopenharmony_ci{ 47562306a36Sopenharmony_ci while (n--) { 47662306a36Sopenharmony_ci struct rx_sw_desc *sdesc = &fl->sdesc[fl->cidx]; 47762306a36Sopenharmony_ci 47862306a36Sopenharmony_ci if (is_buf_mapped(sdesc)) 47962306a36Sopenharmony_ci dma_unmap_page(adapter->pdev_dev, get_buf_addr(sdesc), 48062306a36Sopenharmony_ci get_buf_size(adapter, sdesc), 48162306a36Sopenharmony_ci DMA_FROM_DEVICE); 48262306a36Sopenharmony_ci put_page(sdesc->page); 48362306a36Sopenharmony_ci sdesc->page = NULL; 48462306a36Sopenharmony_ci if (++fl->cidx == fl->size) 48562306a36Sopenharmony_ci fl->cidx = 0; 48662306a36Sopenharmony_ci fl->avail--; 48762306a36Sopenharmony_ci } 48862306a36Sopenharmony_ci} 48962306a36Sopenharmony_ci 49062306a36Sopenharmony_ci/** 49162306a36Sopenharmony_ci * unmap_rx_buf - unmap the current RX buffer on an SGE Free List 49262306a36Sopenharmony_ci * @adapter: the adapter 49362306a36Sopenharmony_ci * @fl: the SGE Free List 49462306a36Sopenharmony_ci * 49562306a36Sopenharmony_ci * Unmap the current buffer on an SGE Free List RX queue. The 49662306a36Sopenharmony_ci * buffer must be made inaccessible to HW before calling this function. 49762306a36Sopenharmony_ci * 49862306a36Sopenharmony_ci * This is similar to @free_rx_bufs above but does not free the buffer. 49962306a36Sopenharmony_ci * Do note that the FL still loses any further access to the buffer. 50062306a36Sopenharmony_ci * This is used predominantly to "transfer ownership" of an FL buffer 50162306a36Sopenharmony_ci * to another entity (typically an skb's fragment list). 50262306a36Sopenharmony_ci */ 50362306a36Sopenharmony_cistatic void unmap_rx_buf(struct adapter *adapter, struct sge_fl *fl) 50462306a36Sopenharmony_ci{ 50562306a36Sopenharmony_ci struct rx_sw_desc *sdesc = &fl->sdesc[fl->cidx]; 50662306a36Sopenharmony_ci 50762306a36Sopenharmony_ci if (is_buf_mapped(sdesc)) 50862306a36Sopenharmony_ci dma_unmap_page(adapter->pdev_dev, get_buf_addr(sdesc), 50962306a36Sopenharmony_ci get_buf_size(adapter, sdesc), 51062306a36Sopenharmony_ci DMA_FROM_DEVICE); 51162306a36Sopenharmony_ci sdesc->page = NULL; 51262306a36Sopenharmony_ci if (++fl->cidx == fl->size) 51362306a36Sopenharmony_ci fl->cidx = 0; 51462306a36Sopenharmony_ci fl->avail--; 51562306a36Sopenharmony_ci} 51662306a36Sopenharmony_ci 51762306a36Sopenharmony_ci/** 51862306a36Sopenharmony_ci * ring_fl_db - righ doorbell on free list 51962306a36Sopenharmony_ci * @adapter: the adapter 52062306a36Sopenharmony_ci * @fl: the Free List whose doorbell should be rung ... 52162306a36Sopenharmony_ci * 52262306a36Sopenharmony_ci * Tell the Scatter Gather Engine that there are new free list entries 52362306a36Sopenharmony_ci * available. 52462306a36Sopenharmony_ci */ 52562306a36Sopenharmony_cistatic inline void ring_fl_db(struct adapter *adapter, struct sge_fl *fl) 52662306a36Sopenharmony_ci{ 52762306a36Sopenharmony_ci u32 val = adapter->params.arch.sge_fl_db; 52862306a36Sopenharmony_ci 52962306a36Sopenharmony_ci /* The SGE keeps track of its Producer and Consumer Indices in terms 53062306a36Sopenharmony_ci * of Egress Queue Units so we can only tell it about integral numbers 53162306a36Sopenharmony_ci * of multiples of Free List Entries per Egress Queue Units ... 53262306a36Sopenharmony_ci */ 53362306a36Sopenharmony_ci if (fl->pend_cred >= FL_PER_EQ_UNIT) { 53462306a36Sopenharmony_ci if (is_t4(adapter->params.chip)) 53562306a36Sopenharmony_ci val |= PIDX_V(fl->pend_cred / FL_PER_EQ_UNIT); 53662306a36Sopenharmony_ci else 53762306a36Sopenharmony_ci val |= PIDX_T5_V(fl->pend_cred / FL_PER_EQ_UNIT); 53862306a36Sopenharmony_ci 53962306a36Sopenharmony_ci /* Make sure all memory writes to the Free List queue are 54062306a36Sopenharmony_ci * committed before we tell the hardware about them. 54162306a36Sopenharmony_ci */ 54262306a36Sopenharmony_ci wmb(); 54362306a36Sopenharmony_ci 54462306a36Sopenharmony_ci /* If we don't have access to the new User Doorbell (T5+), use 54562306a36Sopenharmony_ci * the old doorbell mechanism; otherwise use the new BAR2 54662306a36Sopenharmony_ci * mechanism. 54762306a36Sopenharmony_ci */ 54862306a36Sopenharmony_ci if (unlikely(fl->bar2_addr == NULL)) { 54962306a36Sopenharmony_ci t4_write_reg(adapter, 55062306a36Sopenharmony_ci T4VF_SGE_BASE_ADDR + SGE_VF_KDOORBELL, 55162306a36Sopenharmony_ci QID_V(fl->cntxt_id) | val); 55262306a36Sopenharmony_ci } else { 55362306a36Sopenharmony_ci writel(val | QID_V(fl->bar2_qid), 55462306a36Sopenharmony_ci fl->bar2_addr + SGE_UDB_KDOORBELL); 55562306a36Sopenharmony_ci 55662306a36Sopenharmony_ci /* This Write memory Barrier will force the write to 55762306a36Sopenharmony_ci * the User Doorbell area to be flushed. 55862306a36Sopenharmony_ci */ 55962306a36Sopenharmony_ci wmb(); 56062306a36Sopenharmony_ci } 56162306a36Sopenharmony_ci fl->pend_cred %= FL_PER_EQ_UNIT; 56262306a36Sopenharmony_ci } 56362306a36Sopenharmony_ci} 56462306a36Sopenharmony_ci 56562306a36Sopenharmony_ci/** 56662306a36Sopenharmony_ci * set_rx_sw_desc - initialize software RX buffer descriptor 56762306a36Sopenharmony_ci * @sdesc: pointer to the softwore RX buffer descriptor 56862306a36Sopenharmony_ci * @page: pointer to the page data structure backing the RX buffer 56962306a36Sopenharmony_ci * @dma_addr: PCI DMA address (possibly with low-bit flags) 57062306a36Sopenharmony_ci */ 57162306a36Sopenharmony_cistatic inline void set_rx_sw_desc(struct rx_sw_desc *sdesc, struct page *page, 57262306a36Sopenharmony_ci dma_addr_t dma_addr) 57362306a36Sopenharmony_ci{ 57462306a36Sopenharmony_ci sdesc->page = page; 57562306a36Sopenharmony_ci sdesc->dma_addr = dma_addr; 57662306a36Sopenharmony_ci} 57762306a36Sopenharmony_ci 57862306a36Sopenharmony_ci/* 57962306a36Sopenharmony_ci * Support for poisoning RX buffers ... 58062306a36Sopenharmony_ci */ 58162306a36Sopenharmony_ci#define POISON_BUF_VAL -1 58262306a36Sopenharmony_ci 58362306a36Sopenharmony_cistatic inline void poison_buf(struct page *page, size_t sz) 58462306a36Sopenharmony_ci{ 58562306a36Sopenharmony_ci#if POISON_BUF_VAL >= 0 58662306a36Sopenharmony_ci memset(page_address(page), POISON_BUF_VAL, sz); 58762306a36Sopenharmony_ci#endif 58862306a36Sopenharmony_ci} 58962306a36Sopenharmony_ci 59062306a36Sopenharmony_ci/** 59162306a36Sopenharmony_ci * refill_fl - refill an SGE RX buffer ring 59262306a36Sopenharmony_ci * @adapter: the adapter 59362306a36Sopenharmony_ci * @fl: the Free List ring to refill 59462306a36Sopenharmony_ci * @n: the number of new buffers to allocate 59562306a36Sopenharmony_ci * @gfp: the gfp flags for the allocations 59662306a36Sopenharmony_ci * 59762306a36Sopenharmony_ci * (Re)populate an SGE free-buffer queue with up to @n new packet buffers, 59862306a36Sopenharmony_ci * allocated with the supplied gfp flags. The caller must assure that 59962306a36Sopenharmony_ci * @n does not exceed the queue's capacity -- i.e. (cidx == pidx) _IN 60062306a36Sopenharmony_ci * EGRESS QUEUE UNITS_ indicates an empty Free List! Returns the number 60162306a36Sopenharmony_ci * of buffers allocated. If afterwards the queue is found critically low, 60262306a36Sopenharmony_ci * mark it as starving in the bitmap of starving FLs. 60362306a36Sopenharmony_ci */ 60462306a36Sopenharmony_cistatic unsigned int refill_fl(struct adapter *adapter, struct sge_fl *fl, 60562306a36Sopenharmony_ci int n, gfp_t gfp) 60662306a36Sopenharmony_ci{ 60762306a36Sopenharmony_ci struct sge *s = &adapter->sge; 60862306a36Sopenharmony_ci struct page *page; 60962306a36Sopenharmony_ci dma_addr_t dma_addr; 61062306a36Sopenharmony_ci unsigned int cred = fl->avail; 61162306a36Sopenharmony_ci __be64 *d = &fl->desc[fl->pidx]; 61262306a36Sopenharmony_ci struct rx_sw_desc *sdesc = &fl->sdesc[fl->pidx]; 61362306a36Sopenharmony_ci 61462306a36Sopenharmony_ci /* 61562306a36Sopenharmony_ci * Sanity: ensure that the result of adding n Free List buffers 61662306a36Sopenharmony_ci * won't result in wrapping the SGE's Producer Index around to 61762306a36Sopenharmony_ci * it's Consumer Index thereby indicating an empty Free List ... 61862306a36Sopenharmony_ci */ 61962306a36Sopenharmony_ci BUG_ON(fl->avail + n > fl->size - FL_PER_EQ_UNIT); 62062306a36Sopenharmony_ci 62162306a36Sopenharmony_ci gfp |= __GFP_NOWARN; 62262306a36Sopenharmony_ci 62362306a36Sopenharmony_ci /* 62462306a36Sopenharmony_ci * If we support large pages, prefer large buffers and fail over to 62562306a36Sopenharmony_ci * small pages if we can't allocate large pages to satisfy the refill. 62662306a36Sopenharmony_ci * If we don't support large pages, drop directly into the small page 62762306a36Sopenharmony_ci * allocation code. 62862306a36Sopenharmony_ci */ 62962306a36Sopenharmony_ci if (s->fl_pg_order == 0) 63062306a36Sopenharmony_ci goto alloc_small_pages; 63162306a36Sopenharmony_ci 63262306a36Sopenharmony_ci while (n) { 63362306a36Sopenharmony_ci page = __dev_alloc_pages(gfp, s->fl_pg_order); 63462306a36Sopenharmony_ci if (unlikely(!page)) { 63562306a36Sopenharmony_ci /* 63662306a36Sopenharmony_ci * We've failed inour attempt to allocate a "large 63762306a36Sopenharmony_ci * page". Fail over to the "small page" allocation 63862306a36Sopenharmony_ci * below. 63962306a36Sopenharmony_ci */ 64062306a36Sopenharmony_ci fl->large_alloc_failed++; 64162306a36Sopenharmony_ci break; 64262306a36Sopenharmony_ci } 64362306a36Sopenharmony_ci poison_buf(page, PAGE_SIZE << s->fl_pg_order); 64462306a36Sopenharmony_ci 64562306a36Sopenharmony_ci dma_addr = dma_map_page(adapter->pdev_dev, page, 0, 64662306a36Sopenharmony_ci PAGE_SIZE << s->fl_pg_order, 64762306a36Sopenharmony_ci DMA_FROM_DEVICE); 64862306a36Sopenharmony_ci if (unlikely(dma_mapping_error(adapter->pdev_dev, dma_addr))) { 64962306a36Sopenharmony_ci /* 65062306a36Sopenharmony_ci * We've run out of DMA mapping space. Free up the 65162306a36Sopenharmony_ci * buffer and return with what we've managed to put 65262306a36Sopenharmony_ci * into the free list. We don't want to fail over to 65362306a36Sopenharmony_ci * the small page allocation below in this case 65462306a36Sopenharmony_ci * because DMA mapping resources are typically 65562306a36Sopenharmony_ci * critical resources once they become scarse. 65662306a36Sopenharmony_ci */ 65762306a36Sopenharmony_ci __free_pages(page, s->fl_pg_order); 65862306a36Sopenharmony_ci goto out; 65962306a36Sopenharmony_ci } 66062306a36Sopenharmony_ci dma_addr |= RX_LARGE_BUF; 66162306a36Sopenharmony_ci *d++ = cpu_to_be64(dma_addr); 66262306a36Sopenharmony_ci 66362306a36Sopenharmony_ci set_rx_sw_desc(sdesc, page, dma_addr); 66462306a36Sopenharmony_ci sdesc++; 66562306a36Sopenharmony_ci 66662306a36Sopenharmony_ci fl->avail++; 66762306a36Sopenharmony_ci if (++fl->pidx == fl->size) { 66862306a36Sopenharmony_ci fl->pidx = 0; 66962306a36Sopenharmony_ci sdesc = fl->sdesc; 67062306a36Sopenharmony_ci d = fl->desc; 67162306a36Sopenharmony_ci } 67262306a36Sopenharmony_ci n--; 67362306a36Sopenharmony_ci } 67462306a36Sopenharmony_ci 67562306a36Sopenharmony_cialloc_small_pages: 67662306a36Sopenharmony_ci while (n--) { 67762306a36Sopenharmony_ci page = __dev_alloc_page(gfp); 67862306a36Sopenharmony_ci if (unlikely(!page)) { 67962306a36Sopenharmony_ci fl->alloc_failed++; 68062306a36Sopenharmony_ci break; 68162306a36Sopenharmony_ci } 68262306a36Sopenharmony_ci poison_buf(page, PAGE_SIZE); 68362306a36Sopenharmony_ci 68462306a36Sopenharmony_ci dma_addr = dma_map_page(adapter->pdev_dev, page, 0, PAGE_SIZE, 68562306a36Sopenharmony_ci DMA_FROM_DEVICE); 68662306a36Sopenharmony_ci if (unlikely(dma_mapping_error(adapter->pdev_dev, dma_addr))) { 68762306a36Sopenharmony_ci put_page(page); 68862306a36Sopenharmony_ci break; 68962306a36Sopenharmony_ci } 69062306a36Sopenharmony_ci *d++ = cpu_to_be64(dma_addr); 69162306a36Sopenharmony_ci 69262306a36Sopenharmony_ci set_rx_sw_desc(sdesc, page, dma_addr); 69362306a36Sopenharmony_ci sdesc++; 69462306a36Sopenharmony_ci 69562306a36Sopenharmony_ci fl->avail++; 69662306a36Sopenharmony_ci if (++fl->pidx == fl->size) { 69762306a36Sopenharmony_ci fl->pidx = 0; 69862306a36Sopenharmony_ci sdesc = fl->sdesc; 69962306a36Sopenharmony_ci d = fl->desc; 70062306a36Sopenharmony_ci } 70162306a36Sopenharmony_ci } 70262306a36Sopenharmony_ci 70362306a36Sopenharmony_ciout: 70462306a36Sopenharmony_ci /* 70562306a36Sopenharmony_ci * Update our accounting state to incorporate the new Free List 70662306a36Sopenharmony_ci * buffers, tell the hardware about them and return the number of 70762306a36Sopenharmony_ci * buffers which we were able to allocate. 70862306a36Sopenharmony_ci */ 70962306a36Sopenharmony_ci cred = fl->avail - cred; 71062306a36Sopenharmony_ci fl->pend_cred += cred; 71162306a36Sopenharmony_ci ring_fl_db(adapter, fl); 71262306a36Sopenharmony_ci 71362306a36Sopenharmony_ci if (unlikely(fl_starving(adapter, fl))) { 71462306a36Sopenharmony_ci smp_wmb(); 71562306a36Sopenharmony_ci set_bit(fl->cntxt_id, adapter->sge.starving_fl); 71662306a36Sopenharmony_ci } 71762306a36Sopenharmony_ci 71862306a36Sopenharmony_ci return cred; 71962306a36Sopenharmony_ci} 72062306a36Sopenharmony_ci 72162306a36Sopenharmony_ci/* 72262306a36Sopenharmony_ci * Refill a Free List to its capacity or the Maximum Refill Increment, 72362306a36Sopenharmony_ci * whichever is smaller ... 72462306a36Sopenharmony_ci */ 72562306a36Sopenharmony_cistatic inline void __refill_fl(struct adapter *adapter, struct sge_fl *fl) 72662306a36Sopenharmony_ci{ 72762306a36Sopenharmony_ci refill_fl(adapter, fl, 72862306a36Sopenharmony_ci min((unsigned int)MAX_RX_REFILL, fl_cap(fl) - fl->avail), 72962306a36Sopenharmony_ci GFP_ATOMIC); 73062306a36Sopenharmony_ci} 73162306a36Sopenharmony_ci 73262306a36Sopenharmony_ci/** 73362306a36Sopenharmony_ci * alloc_ring - allocate resources for an SGE descriptor ring 73462306a36Sopenharmony_ci * @dev: the PCI device's core device 73562306a36Sopenharmony_ci * @nelem: the number of descriptors 73662306a36Sopenharmony_ci * @hwsize: the size of each hardware descriptor 73762306a36Sopenharmony_ci * @swsize: the size of each software descriptor 73862306a36Sopenharmony_ci * @busaddrp: the physical PCI bus address of the allocated ring 73962306a36Sopenharmony_ci * @swringp: return address pointer for software ring 74062306a36Sopenharmony_ci * @stat_size: extra space in hardware ring for status information 74162306a36Sopenharmony_ci * 74262306a36Sopenharmony_ci * Allocates resources for an SGE descriptor ring, such as TX queues, 74362306a36Sopenharmony_ci * free buffer lists, response queues, etc. Each SGE ring requires 74462306a36Sopenharmony_ci * space for its hardware descriptors plus, optionally, space for software 74562306a36Sopenharmony_ci * state associated with each hardware entry (the metadata). The function 74662306a36Sopenharmony_ci * returns three values: the virtual address for the hardware ring (the 74762306a36Sopenharmony_ci * return value of the function), the PCI bus address of the hardware 74862306a36Sopenharmony_ci * ring (in *busaddrp), and the address of the software ring (in swringp). 74962306a36Sopenharmony_ci * Both the hardware and software rings are returned zeroed out. 75062306a36Sopenharmony_ci */ 75162306a36Sopenharmony_cistatic void *alloc_ring(struct device *dev, size_t nelem, size_t hwsize, 75262306a36Sopenharmony_ci size_t swsize, dma_addr_t *busaddrp, void *swringp, 75362306a36Sopenharmony_ci size_t stat_size) 75462306a36Sopenharmony_ci{ 75562306a36Sopenharmony_ci /* 75662306a36Sopenharmony_ci * Allocate the hardware ring and PCI DMA bus address space for said. 75762306a36Sopenharmony_ci */ 75862306a36Sopenharmony_ci size_t hwlen = nelem * hwsize + stat_size; 75962306a36Sopenharmony_ci void *hwring = dma_alloc_coherent(dev, hwlen, busaddrp, GFP_KERNEL); 76062306a36Sopenharmony_ci 76162306a36Sopenharmony_ci if (!hwring) 76262306a36Sopenharmony_ci return NULL; 76362306a36Sopenharmony_ci 76462306a36Sopenharmony_ci /* 76562306a36Sopenharmony_ci * If the caller wants a software ring, allocate it and return a 76662306a36Sopenharmony_ci * pointer to it in *swringp. 76762306a36Sopenharmony_ci */ 76862306a36Sopenharmony_ci BUG_ON((swsize != 0) != (swringp != NULL)); 76962306a36Sopenharmony_ci if (swsize) { 77062306a36Sopenharmony_ci void *swring = kcalloc(nelem, swsize, GFP_KERNEL); 77162306a36Sopenharmony_ci 77262306a36Sopenharmony_ci if (!swring) { 77362306a36Sopenharmony_ci dma_free_coherent(dev, hwlen, hwring, *busaddrp); 77462306a36Sopenharmony_ci return NULL; 77562306a36Sopenharmony_ci } 77662306a36Sopenharmony_ci *(void **)swringp = swring; 77762306a36Sopenharmony_ci } 77862306a36Sopenharmony_ci 77962306a36Sopenharmony_ci return hwring; 78062306a36Sopenharmony_ci} 78162306a36Sopenharmony_ci 78262306a36Sopenharmony_ci/** 78362306a36Sopenharmony_ci * sgl_len - calculates the size of an SGL of the given capacity 78462306a36Sopenharmony_ci * @n: the number of SGL entries 78562306a36Sopenharmony_ci * 78662306a36Sopenharmony_ci * Calculates the number of flits (8-byte units) needed for a Direct 78762306a36Sopenharmony_ci * Scatter/Gather List that can hold the given number of entries. 78862306a36Sopenharmony_ci */ 78962306a36Sopenharmony_cistatic inline unsigned int sgl_len(unsigned int n) 79062306a36Sopenharmony_ci{ 79162306a36Sopenharmony_ci /* 79262306a36Sopenharmony_ci * A Direct Scatter Gather List uses 32-bit lengths and 64-bit PCI DMA 79362306a36Sopenharmony_ci * addresses. The DSGL Work Request starts off with a 32-bit DSGL 79462306a36Sopenharmony_ci * ULPTX header, then Length0, then Address0, then, for 1 <= i <= N, 79562306a36Sopenharmony_ci * repeated sequences of { Length[i], Length[i+1], Address[i], 79662306a36Sopenharmony_ci * Address[i+1] } (this ensures that all addresses are on 64-bit 79762306a36Sopenharmony_ci * boundaries). If N is even, then Length[N+1] should be set to 0 and 79862306a36Sopenharmony_ci * Address[N+1] is omitted. 79962306a36Sopenharmony_ci * 80062306a36Sopenharmony_ci * The following calculation incorporates all of the above. It's 80162306a36Sopenharmony_ci * somewhat hard to follow but, briefly: the "+2" accounts for the 80262306a36Sopenharmony_ci * first two flits which include the DSGL header, Length0 and 80362306a36Sopenharmony_ci * Address0; the "(3*(n-1))/2" covers the main body of list entries (3 80462306a36Sopenharmony_ci * flits for every pair of the remaining N) +1 if (n-1) is odd; and 80562306a36Sopenharmony_ci * finally the "+((n-1)&1)" adds the one remaining flit needed if 80662306a36Sopenharmony_ci * (n-1) is odd ... 80762306a36Sopenharmony_ci */ 80862306a36Sopenharmony_ci n--; 80962306a36Sopenharmony_ci return (3 * n) / 2 + (n & 1) + 2; 81062306a36Sopenharmony_ci} 81162306a36Sopenharmony_ci 81262306a36Sopenharmony_ci/** 81362306a36Sopenharmony_ci * flits_to_desc - returns the num of TX descriptors for the given flits 81462306a36Sopenharmony_ci * @flits: the number of flits 81562306a36Sopenharmony_ci * 81662306a36Sopenharmony_ci * Returns the number of TX descriptors needed for the supplied number 81762306a36Sopenharmony_ci * of flits. 81862306a36Sopenharmony_ci */ 81962306a36Sopenharmony_cistatic inline unsigned int flits_to_desc(unsigned int flits) 82062306a36Sopenharmony_ci{ 82162306a36Sopenharmony_ci BUG_ON(flits > SGE_MAX_WR_LEN / sizeof(__be64)); 82262306a36Sopenharmony_ci return DIV_ROUND_UP(flits, TXD_PER_EQ_UNIT); 82362306a36Sopenharmony_ci} 82462306a36Sopenharmony_ci 82562306a36Sopenharmony_ci/** 82662306a36Sopenharmony_ci * is_eth_imm - can an Ethernet packet be sent as immediate data? 82762306a36Sopenharmony_ci * @skb: the packet 82862306a36Sopenharmony_ci * 82962306a36Sopenharmony_ci * Returns whether an Ethernet packet is small enough to fit completely as 83062306a36Sopenharmony_ci * immediate data. 83162306a36Sopenharmony_ci */ 83262306a36Sopenharmony_cistatic inline int is_eth_imm(const struct sk_buff *skb) 83362306a36Sopenharmony_ci{ 83462306a36Sopenharmony_ci /* 83562306a36Sopenharmony_ci * The VF Driver uses the FW_ETH_TX_PKT_VM_WR firmware Work Request 83662306a36Sopenharmony_ci * which does not accommodate immediate data. We could dike out all 83762306a36Sopenharmony_ci * of the support code for immediate data but that would tie our hands 83862306a36Sopenharmony_ci * too much if we ever want to enhace the firmware. It would also 83962306a36Sopenharmony_ci * create more differences between the PF and VF Drivers. 84062306a36Sopenharmony_ci */ 84162306a36Sopenharmony_ci return false; 84262306a36Sopenharmony_ci} 84362306a36Sopenharmony_ci 84462306a36Sopenharmony_ci/** 84562306a36Sopenharmony_ci * calc_tx_flits - calculate the number of flits for a packet TX WR 84662306a36Sopenharmony_ci * @skb: the packet 84762306a36Sopenharmony_ci * 84862306a36Sopenharmony_ci * Returns the number of flits needed for a TX Work Request for the 84962306a36Sopenharmony_ci * given Ethernet packet, including the needed WR and CPL headers. 85062306a36Sopenharmony_ci */ 85162306a36Sopenharmony_cistatic inline unsigned int calc_tx_flits(const struct sk_buff *skb) 85262306a36Sopenharmony_ci{ 85362306a36Sopenharmony_ci unsigned int flits; 85462306a36Sopenharmony_ci 85562306a36Sopenharmony_ci /* 85662306a36Sopenharmony_ci * If the skb is small enough, we can pump it out as a work request 85762306a36Sopenharmony_ci * with only immediate data. In that case we just have to have the 85862306a36Sopenharmony_ci * TX Packet header plus the skb data in the Work Request. 85962306a36Sopenharmony_ci */ 86062306a36Sopenharmony_ci if (is_eth_imm(skb)) 86162306a36Sopenharmony_ci return DIV_ROUND_UP(skb->len + sizeof(struct cpl_tx_pkt), 86262306a36Sopenharmony_ci sizeof(__be64)); 86362306a36Sopenharmony_ci 86462306a36Sopenharmony_ci /* 86562306a36Sopenharmony_ci * Otherwise, we're going to have to construct a Scatter gather list 86662306a36Sopenharmony_ci * of the skb body and fragments. We also include the flits necessary 86762306a36Sopenharmony_ci * for the TX Packet Work Request and CPL. We always have a firmware 86862306a36Sopenharmony_ci * Write Header (incorporated as part of the cpl_tx_pkt_lso and 86962306a36Sopenharmony_ci * cpl_tx_pkt structures), followed by either a TX Packet Write CPL 87062306a36Sopenharmony_ci * message or, if we're doing a Large Send Offload, an LSO CPL message 87162306a36Sopenharmony_ci * with an embedded TX Packet Write CPL message. 87262306a36Sopenharmony_ci */ 87362306a36Sopenharmony_ci flits = sgl_len(skb_shinfo(skb)->nr_frags + 1); 87462306a36Sopenharmony_ci if (skb_shinfo(skb)->gso_size) 87562306a36Sopenharmony_ci flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) + 87662306a36Sopenharmony_ci sizeof(struct cpl_tx_pkt_lso_core) + 87762306a36Sopenharmony_ci sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64); 87862306a36Sopenharmony_ci else 87962306a36Sopenharmony_ci flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) + 88062306a36Sopenharmony_ci sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64); 88162306a36Sopenharmony_ci return flits; 88262306a36Sopenharmony_ci} 88362306a36Sopenharmony_ci 88462306a36Sopenharmony_ci/** 88562306a36Sopenharmony_ci * write_sgl - populate a Scatter/Gather List for a packet 88662306a36Sopenharmony_ci * @skb: the packet 88762306a36Sopenharmony_ci * @tq: the TX queue we are writing into 88862306a36Sopenharmony_ci * @sgl: starting location for writing the SGL 88962306a36Sopenharmony_ci * @end: points right after the end of the SGL 89062306a36Sopenharmony_ci * @start: start offset into skb main-body data to include in the SGL 89162306a36Sopenharmony_ci * @addr: the list of DMA bus addresses for the SGL elements 89262306a36Sopenharmony_ci * 89362306a36Sopenharmony_ci * Generates a Scatter/Gather List for the buffers that make up a packet. 89462306a36Sopenharmony_ci * The caller must provide adequate space for the SGL that will be written. 89562306a36Sopenharmony_ci * The SGL includes all of the packet's page fragments and the data in its 89662306a36Sopenharmony_ci * main body except for the first @start bytes. @pos must be 16-byte 89762306a36Sopenharmony_ci * aligned and within a TX descriptor with available space. @end points 89862306a36Sopenharmony_ci * write after the end of the SGL but does not account for any potential 89962306a36Sopenharmony_ci * wrap around, i.e., @end > @tq->stat. 90062306a36Sopenharmony_ci */ 90162306a36Sopenharmony_cistatic void write_sgl(const struct sk_buff *skb, struct sge_txq *tq, 90262306a36Sopenharmony_ci struct ulptx_sgl *sgl, u64 *end, unsigned int start, 90362306a36Sopenharmony_ci const dma_addr_t *addr) 90462306a36Sopenharmony_ci{ 90562306a36Sopenharmony_ci unsigned int i, len; 90662306a36Sopenharmony_ci struct ulptx_sge_pair *to; 90762306a36Sopenharmony_ci const struct skb_shared_info *si = skb_shinfo(skb); 90862306a36Sopenharmony_ci unsigned int nfrags = si->nr_frags; 90962306a36Sopenharmony_ci struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1]; 91062306a36Sopenharmony_ci 91162306a36Sopenharmony_ci len = skb_headlen(skb) - start; 91262306a36Sopenharmony_ci if (likely(len)) { 91362306a36Sopenharmony_ci sgl->len0 = htonl(len); 91462306a36Sopenharmony_ci sgl->addr0 = cpu_to_be64(addr[0] + start); 91562306a36Sopenharmony_ci nfrags++; 91662306a36Sopenharmony_ci } else { 91762306a36Sopenharmony_ci sgl->len0 = htonl(skb_frag_size(&si->frags[0])); 91862306a36Sopenharmony_ci sgl->addr0 = cpu_to_be64(addr[1]); 91962306a36Sopenharmony_ci } 92062306a36Sopenharmony_ci 92162306a36Sopenharmony_ci sgl->cmd_nsge = htonl(ULPTX_CMD_V(ULP_TX_SC_DSGL) | 92262306a36Sopenharmony_ci ULPTX_NSGE_V(nfrags)); 92362306a36Sopenharmony_ci if (likely(--nfrags == 0)) 92462306a36Sopenharmony_ci return; 92562306a36Sopenharmony_ci /* 92662306a36Sopenharmony_ci * Most of the complexity below deals with the possibility we hit the 92762306a36Sopenharmony_ci * end of the queue in the middle of writing the SGL. For this case 92862306a36Sopenharmony_ci * only we create the SGL in a temporary buffer and then copy it. 92962306a36Sopenharmony_ci */ 93062306a36Sopenharmony_ci to = (u8 *)end > (u8 *)tq->stat ? buf : sgl->sge; 93162306a36Sopenharmony_ci 93262306a36Sopenharmony_ci for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) { 93362306a36Sopenharmony_ci to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i])); 93462306a36Sopenharmony_ci to->len[1] = cpu_to_be32(skb_frag_size(&si->frags[++i])); 93562306a36Sopenharmony_ci to->addr[0] = cpu_to_be64(addr[i]); 93662306a36Sopenharmony_ci to->addr[1] = cpu_to_be64(addr[++i]); 93762306a36Sopenharmony_ci } 93862306a36Sopenharmony_ci if (nfrags) { 93962306a36Sopenharmony_ci to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i])); 94062306a36Sopenharmony_ci to->len[1] = cpu_to_be32(0); 94162306a36Sopenharmony_ci to->addr[0] = cpu_to_be64(addr[i + 1]); 94262306a36Sopenharmony_ci } 94362306a36Sopenharmony_ci if (unlikely((u8 *)end > (u8 *)tq->stat)) { 94462306a36Sopenharmony_ci unsigned int part0 = (u8 *)tq->stat - (u8 *)sgl->sge, part1; 94562306a36Sopenharmony_ci 94662306a36Sopenharmony_ci if (likely(part0)) 94762306a36Sopenharmony_ci memcpy(sgl->sge, buf, part0); 94862306a36Sopenharmony_ci part1 = (u8 *)end - (u8 *)tq->stat; 94962306a36Sopenharmony_ci memcpy(tq->desc, (u8 *)buf + part0, part1); 95062306a36Sopenharmony_ci end = (void *)tq->desc + part1; 95162306a36Sopenharmony_ci } 95262306a36Sopenharmony_ci if ((uintptr_t)end & 8) /* 0-pad to multiple of 16 */ 95362306a36Sopenharmony_ci *end = 0; 95462306a36Sopenharmony_ci} 95562306a36Sopenharmony_ci 95662306a36Sopenharmony_ci/** 95762306a36Sopenharmony_ci * ring_tx_db - check and potentially ring a TX queue's doorbell 95862306a36Sopenharmony_ci * @adapter: the adapter 95962306a36Sopenharmony_ci * @tq: the TX queue 96062306a36Sopenharmony_ci * @n: number of new descriptors to give to HW 96162306a36Sopenharmony_ci * 96262306a36Sopenharmony_ci * Ring the doorbel for a TX queue. 96362306a36Sopenharmony_ci */ 96462306a36Sopenharmony_cistatic inline void ring_tx_db(struct adapter *adapter, struct sge_txq *tq, 96562306a36Sopenharmony_ci int n) 96662306a36Sopenharmony_ci{ 96762306a36Sopenharmony_ci /* Make sure that all writes to the TX Descriptors are committed 96862306a36Sopenharmony_ci * before we tell the hardware about them. 96962306a36Sopenharmony_ci */ 97062306a36Sopenharmony_ci wmb(); 97162306a36Sopenharmony_ci 97262306a36Sopenharmony_ci /* If we don't have access to the new User Doorbell (T5+), use the old 97362306a36Sopenharmony_ci * doorbell mechanism; otherwise use the new BAR2 mechanism. 97462306a36Sopenharmony_ci */ 97562306a36Sopenharmony_ci if (unlikely(tq->bar2_addr == NULL)) { 97662306a36Sopenharmony_ci u32 val = PIDX_V(n); 97762306a36Sopenharmony_ci 97862306a36Sopenharmony_ci t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_KDOORBELL, 97962306a36Sopenharmony_ci QID_V(tq->cntxt_id) | val); 98062306a36Sopenharmony_ci } else { 98162306a36Sopenharmony_ci u32 val = PIDX_T5_V(n); 98262306a36Sopenharmony_ci 98362306a36Sopenharmony_ci /* T4 and later chips share the same PIDX field offset within 98462306a36Sopenharmony_ci * the doorbell, but T5 and later shrank the field in order to 98562306a36Sopenharmony_ci * gain a bit for Doorbell Priority. The field was absurdly 98662306a36Sopenharmony_ci * large in the first place (14 bits) so we just use the T5 98762306a36Sopenharmony_ci * and later limits and warn if a Queue ID is too large. 98862306a36Sopenharmony_ci */ 98962306a36Sopenharmony_ci WARN_ON(val & DBPRIO_F); 99062306a36Sopenharmony_ci 99162306a36Sopenharmony_ci /* If we're only writing a single Egress Unit and the BAR2 99262306a36Sopenharmony_ci * Queue ID is 0, we can use the Write Combining Doorbell 99362306a36Sopenharmony_ci * Gather Buffer; otherwise we use the simple doorbell. 99462306a36Sopenharmony_ci */ 99562306a36Sopenharmony_ci if (n == 1 && tq->bar2_qid == 0) { 99662306a36Sopenharmony_ci unsigned int index = (tq->pidx 99762306a36Sopenharmony_ci ? (tq->pidx - 1) 99862306a36Sopenharmony_ci : (tq->size - 1)); 99962306a36Sopenharmony_ci __be64 *src = (__be64 *)&tq->desc[index]; 100062306a36Sopenharmony_ci __be64 __iomem *dst = (__be64 __iomem *)(tq->bar2_addr + 100162306a36Sopenharmony_ci SGE_UDB_WCDOORBELL); 100262306a36Sopenharmony_ci unsigned int count = EQ_UNIT / sizeof(__be64); 100362306a36Sopenharmony_ci 100462306a36Sopenharmony_ci /* Copy the TX Descriptor in a tight loop in order to 100562306a36Sopenharmony_ci * try to get it to the adapter in a single Write 100662306a36Sopenharmony_ci * Combined transfer on the PCI-E Bus. If the Write 100762306a36Sopenharmony_ci * Combine fails (say because of an interrupt, etc.) 100862306a36Sopenharmony_ci * the hardware will simply take the last write as a 100962306a36Sopenharmony_ci * simple doorbell write with a PIDX Increment of 1 101062306a36Sopenharmony_ci * and will fetch the TX Descriptor from memory via 101162306a36Sopenharmony_ci * DMA. 101262306a36Sopenharmony_ci */ 101362306a36Sopenharmony_ci while (count) { 101462306a36Sopenharmony_ci /* the (__force u64) is because the compiler 101562306a36Sopenharmony_ci * doesn't understand the endian swizzling 101662306a36Sopenharmony_ci * going on 101762306a36Sopenharmony_ci */ 101862306a36Sopenharmony_ci writeq((__force u64)*src, dst); 101962306a36Sopenharmony_ci src++; 102062306a36Sopenharmony_ci dst++; 102162306a36Sopenharmony_ci count--; 102262306a36Sopenharmony_ci } 102362306a36Sopenharmony_ci } else 102462306a36Sopenharmony_ci writel(val | QID_V(tq->bar2_qid), 102562306a36Sopenharmony_ci tq->bar2_addr + SGE_UDB_KDOORBELL); 102662306a36Sopenharmony_ci 102762306a36Sopenharmony_ci /* This Write Memory Barrier will force the write to the User 102862306a36Sopenharmony_ci * Doorbell area to be flushed. This is needed to prevent 102962306a36Sopenharmony_ci * writes on different CPUs for the same queue from hitting 103062306a36Sopenharmony_ci * the adapter out of order. This is required when some Work 103162306a36Sopenharmony_ci * Requests take the Write Combine Gather Buffer path (user 103262306a36Sopenharmony_ci * doorbell area offset [SGE_UDB_WCDOORBELL..+63]) and some 103362306a36Sopenharmony_ci * take the traditional path where we simply increment the 103462306a36Sopenharmony_ci * PIDX (User Doorbell area SGE_UDB_KDOORBELL) and have the 103562306a36Sopenharmony_ci * hardware DMA read the actual Work Request. 103662306a36Sopenharmony_ci */ 103762306a36Sopenharmony_ci wmb(); 103862306a36Sopenharmony_ci } 103962306a36Sopenharmony_ci} 104062306a36Sopenharmony_ci 104162306a36Sopenharmony_ci/** 104262306a36Sopenharmony_ci * inline_tx_skb - inline a packet's data into TX descriptors 104362306a36Sopenharmony_ci * @skb: the packet 104462306a36Sopenharmony_ci * @tq: the TX queue where the packet will be inlined 104562306a36Sopenharmony_ci * @pos: starting position in the TX queue to inline the packet 104662306a36Sopenharmony_ci * 104762306a36Sopenharmony_ci * Inline a packet's contents directly into TX descriptors, starting at 104862306a36Sopenharmony_ci * the given position within the TX DMA ring. 104962306a36Sopenharmony_ci * Most of the complexity of this operation is dealing with wrap arounds 105062306a36Sopenharmony_ci * in the middle of the packet we want to inline. 105162306a36Sopenharmony_ci */ 105262306a36Sopenharmony_cistatic void inline_tx_skb(const struct sk_buff *skb, const struct sge_txq *tq, 105362306a36Sopenharmony_ci void *pos) 105462306a36Sopenharmony_ci{ 105562306a36Sopenharmony_ci u64 *p; 105662306a36Sopenharmony_ci int left = (void *)tq->stat - pos; 105762306a36Sopenharmony_ci 105862306a36Sopenharmony_ci if (likely(skb->len <= left)) { 105962306a36Sopenharmony_ci if (likely(!skb->data_len)) 106062306a36Sopenharmony_ci skb_copy_from_linear_data(skb, pos, skb->len); 106162306a36Sopenharmony_ci else 106262306a36Sopenharmony_ci skb_copy_bits(skb, 0, pos, skb->len); 106362306a36Sopenharmony_ci pos += skb->len; 106462306a36Sopenharmony_ci } else { 106562306a36Sopenharmony_ci skb_copy_bits(skb, 0, pos, left); 106662306a36Sopenharmony_ci skb_copy_bits(skb, left, tq->desc, skb->len - left); 106762306a36Sopenharmony_ci pos = (void *)tq->desc + (skb->len - left); 106862306a36Sopenharmony_ci } 106962306a36Sopenharmony_ci 107062306a36Sopenharmony_ci /* 0-pad to multiple of 16 */ 107162306a36Sopenharmony_ci p = PTR_ALIGN(pos, 8); 107262306a36Sopenharmony_ci if ((uintptr_t)p & 8) 107362306a36Sopenharmony_ci *p = 0; 107462306a36Sopenharmony_ci} 107562306a36Sopenharmony_ci 107662306a36Sopenharmony_ci/* 107762306a36Sopenharmony_ci * Figure out what HW csum a packet wants and return the appropriate control 107862306a36Sopenharmony_ci * bits. 107962306a36Sopenharmony_ci */ 108062306a36Sopenharmony_cistatic u64 hwcsum(enum chip_type chip, const struct sk_buff *skb) 108162306a36Sopenharmony_ci{ 108262306a36Sopenharmony_ci int csum_type; 108362306a36Sopenharmony_ci const struct iphdr *iph = ip_hdr(skb); 108462306a36Sopenharmony_ci 108562306a36Sopenharmony_ci if (iph->version == 4) { 108662306a36Sopenharmony_ci if (iph->protocol == IPPROTO_TCP) 108762306a36Sopenharmony_ci csum_type = TX_CSUM_TCPIP; 108862306a36Sopenharmony_ci else if (iph->protocol == IPPROTO_UDP) 108962306a36Sopenharmony_ci csum_type = TX_CSUM_UDPIP; 109062306a36Sopenharmony_ci else { 109162306a36Sopenharmony_cinocsum: 109262306a36Sopenharmony_ci /* 109362306a36Sopenharmony_ci * unknown protocol, disable HW csum 109462306a36Sopenharmony_ci * and hope a bad packet is detected 109562306a36Sopenharmony_ci */ 109662306a36Sopenharmony_ci return TXPKT_L4CSUM_DIS_F; 109762306a36Sopenharmony_ci } 109862306a36Sopenharmony_ci } else { 109962306a36Sopenharmony_ci /* 110062306a36Sopenharmony_ci * this doesn't work with extension headers 110162306a36Sopenharmony_ci */ 110262306a36Sopenharmony_ci const struct ipv6hdr *ip6h = (const struct ipv6hdr *)iph; 110362306a36Sopenharmony_ci 110462306a36Sopenharmony_ci if (ip6h->nexthdr == IPPROTO_TCP) 110562306a36Sopenharmony_ci csum_type = TX_CSUM_TCPIP6; 110662306a36Sopenharmony_ci else if (ip6h->nexthdr == IPPROTO_UDP) 110762306a36Sopenharmony_ci csum_type = TX_CSUM_UDPIP6; 110862306a36Sopenharmony_ci else 110962306a36Sopenharmony_ci goto nocsum; 111062306a36Sopenharmony_ci } 111162306a36Sopenharmony_ci 111262306a36Sopenharmony_ci if (likely(csum_type >= TX_CSUM_TCPIP)) { 111362306a36Sopenharmony_ci u64 hdr_len = TXPKT_IPHDR_LEN_V(skb_network_header_len(skb)); 111462306a36Sopenharmony_ci int eth_hdr_len = skb_network_offset(skb) - ETH_HLEN; 111562306a36Sopenharmony_ci 111662306a36Sopenharmony_ci if (chip <= CHELSIO_T5) 111762306a36Sopenharmony_ci hdr_len |= TXPKT_ETHHDR_LEN_V(eth_hdr_len); 111862306a36Sopenharmony_ci else 111962306a36Sopenharmony_ci hdr_len |= T6_TXPKT_ETHHDR_LEN_V(eth_hdr_len); 112062306a36Sopenharmony_ci return TXPKT_CSUM_TYPE_V(csum_type) | hdr_len; 112162306a36Sopenharmony_ci } else { 112262306a36Sopenharmony_ci int start = skb_transport_offset(skb); 112362306a36Sopenharmony_ci 112462306a36Sopenharmony_ci return TXPKT_CSUM_TYPE_V(csum_type) | 112562306a36Sopenharmony_ci TXPKT_CSUM_START_V(start) | 112662306a36Sopenharmony_ci TXPKT_CSUM_LOC_V(start + skb->csum_offset); 112762306a36Sopenharmony_ci } 112862306a36Sopenharmony_ci} 112962306a36Sopenharmony_ci 113062306a36Sopenharmony_ci/* 113162306a36Sopenharmony_ci * Stop an Ethernet TX queue and record that state change. 113262306a36Sopenharmony_ci */ 113362306a36Sopenharmony_cistatic void txq_stop(struct sge_eth_txq *txq) 113462306a36Sopenharmony_ci{ 113562306a36Sopenharmony_ci netif_tx_stop_queue(txq->txq); 113662306a36Sopenharmony_ci txq->q.stops++; 113762306a36Sopenharmony_ci} 113862306a36Sopenharmony_ci 113962306a36Sopenharmony_ci/* 114062306a36Sopenharmony_ci * Advance our software state for a TX queue by adding n in use descriptors. 114162306a36Sopenharmony_ci */ 114262306a36Sopenharmony_cistatic inline void txq_advance(struct sge_txq *tq, unsigned int n) 114362306a36Sopenharmony_ci{ 114462306a36Sopenharmony_ci tq->in_use += n; 114562306a36Sopenharmony_ci tq->pidx += n; 114662306a36Sopenharmony_ci if (tq->pidx >= tq->size) 114762306a36Sopenharmony_ci tq->pidx -= tq->size; 114862306a36Sopenharmony_ci} 114962306a36Sopenharmony_ci 115062306a36Sopenharmony_ci/** 115162306a36Sopenharmony_ci * t4vf_eth_xmit - add a packet to an Ethernet TX queue 115262306a36Sopenharmony_ci * @skb: the packet 115362306a36Sopenharmony_ci * @dev: the egress net device 115462306a36Sopenharmony_ci * 115562306a36Sopenharmony_ci * Add a packet to an SGE Ethernet TX queue. Runs with softirqs disabled. 115662306a36Sopenharmony_ci */ 115762306a36Sopenharmony_cinetdev_tx_t t4vf_eth_xmit(struct sk_buff *skb, struct net_device *dev) 115862306a36Sopenharmony_ci{ 115962306a36Sopenharmony_ci u32 wr_mid; 116062306a36Sopenharmony_ci u64 cntrl, *end; 116162306a36Sopenharmony_ci int qidx, credits, max_pkt_len; 116262306a36Sopenharmony_ci unsigned int flits, ndesc; 116362306a36Sopenharmony_ci struct adapter *adapter; 116462306a36Sopenharmony_ci struct sge_eth_txq *txq; 116562306a36Sopenharmony_ci const struct port_info *pi; 116662306a36Sopenharmony_ci struct fw_eth_tx_pkt_vm_wr *wr; 116762306a36Sopenharmony_ci struct cpl_tx_pkt_core *cpl; 116862306a36Sopenharmony_ci const struct skb_shared_info *ssi; 116962306a36Sopenharmony_ci dma_addr_t addr[MAX_SKB_FRAGS + 1]; 117062306a36Sopenharmony_ci const size_t fw_hdr_copy_len = sizeof(wr->firmware); 117162306a36Sopenharmony_ci 117262306a36Sopenharmony_ci /* 117362306a36Sopenharmony_ci * The chip minimum packet length is 10 octets but the firmware 117462306a36Sopenharmony_ci * command that we are using requires that we copy the Ethernet header 117562306a36Sopenharmony_ci * (including the VLAN tag) into the header so we reject anything 117662306a36Sopenharmony_ci * smaller than that ... 117762306a36Sopenharmony_ci */ 117862306a36Sopenharmony_ci if (unlikely(skb->len < fw_hdr_copy_len)) 117962306a36Sopenharmony_ci goto out_free; 118062306a36Sopenharmony_ci 118162306a36Sopenharmony_ci /* Discard the packet if the length is greater than mtu */ 118262306a36Sopenharmony_ci max_pkt_len = ETH_HLEN + dev->mtu; 118362306a36Sopenharmony_ci if (skb_vlan_tagged(skb)) 118462306a36Sopenharmony_ci max_pkt_len += VLAN_HLEN; 118562306a36Sopenharmony_ci if (!skb_shinfo(skb)->gso_size && (unlikely(skb->len > max_pkt_len))) 118662306a36Sopenharmony_ci goto out_free; 118762306a36Sopenharmony_ci 118862306a36Sopenharmony_ci /* 118962306a36Sopenharmony_ci * Figure out which TX Queue we're going to use. 119062306a36Sopenharmony_ci */ 119162306a36Sopenharmony_ci pi = netdev_priv(dev); 119262306a36Sopenharmony_ci adapter = pi->adapter; 119362306a36Sopenharmony_ci qidx = skb_get_queue_mapping(skb); 119462306a36Sopenharmony_ci BUG_ON(qidx >= pi->nqsets); 119562306a36Sopenharmony_ci txq = &adapter->sge.ethtxq[pi->first_qset + qidx]; 119662306a36Sopenharmony_ci 119762306a36Sopenharmony_ci if (pi->vlan_id && !skb_vlan_tag_present(skb)) 119862306a36Sopenharmony_ci __vlan_hwaccel_put_tag(skb, cpu_to_be16(ETH_P_8021Q), 119962306a36Sopenharmony_ci pi->vlan_id); 120062306a36Sopenharmony_ci 120162306a36Sopenharmony_ci /* 120262306a36Sopenharmony_ci * Take this opportunity to reclaim any TX Descriptors whose DMA 120362306a36Sopenharmony_ci * transfers have completed. 120462306a36Sopenharmony_ci */ 120562306a36Sopenharmony_ci reclaim_completed_tx(adapter, &txq->q, true); 120662306a36Sopenharmony_ci 120762306a36Sopenharmony_ci /* 120862306a36Sopenharmony_ci * Calculate the number of flits and TX Descriptors we're going to 120962306a36Sopenharmony_ci * need along with how many TX Descriptors will be left over after 121062306a36Sopenharmony_ci * we inject our Work Request. 121162306a36Sopenharmony_ci */ 121262306a36Sopenharmony_ci flits = calc_tx_flits(skb); 121362306a36Sopenharmony_ci ndesc = flits_to_desc(flits); 121462306a36Sopenharmony_ci credits = txq_avail(&txq->q) - ndesc; 121562306a36Sopenharmony_ci 121662306a36Sopenharmony_ci if (unlikely(credits < 0)) { 121762306a36Sopenharmony_ci /* 121862306a36Sopenharmony_ci * Not enough room for this packet's Work Request. Stop the 121962306a36Sopenharmony_ci * TX Queue and return a "busy" condition. The queue will get 122062306a36Sopenharmony_ci * started later on when the firmware informs us that space 122162306a36Sopenharmony_ci * has opened up. 122262306a36Sopenharmony_ci */ 122362306a36Sopenharmony_ci txq_stop(txq); 122462306a36Sopenharmony_ci dev_err(adapter->pdev_dev, 122562306a36Sopenharmony_ci "%s: TX ring %u full while queue awake!\n", 122662306a36Sopenharmony_ci dev->name, qidx); 122762306a36Sopenharmony_ci return NETDEV_TX_BUSY; 122862306a36Sopenharmony_ci } 122962306a36Sopenharmony_ci 123062306a36Sopenharmony_ci if (!is_eth_imm(skb) && 123162306a36Sopenharmony_ci unlikely(map_skb(adapter->pdev_dev, skb, addr) < 0)) { 123262306a36Sopenharmony_ci /* 123362306a36Sopenharmony_ci * We need to map the skb into PCI DMA space (because it can't 123462306a36Sopenharmony_ci * be in-lined directly into the Work Request) and the mapping 123562306a36Sopenharmony_ci * operation failed. Record the error and drop the packet. 123662306a36Sopenharmony_ci */ 123762306a36Sopenharmony_ci txq->mapping_err++; 123862306a36Sopenharmony_ci goto out_free; 123962306a36Sopenharmony_ci } 124062306a36Sopenharmony_ci 124162306a36Sopenharmony_ci wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2)); 124262306a36Sopenharmony_ci if (unlikely(credits < ETHTXQ_STOP_THRES)) { 124362306a36Sopenharmony_ci /* 124462306a36Sopenharmony_ci * After we're done injecting the Work Request for this 124562306a36Sopenharmony_ci * packet, we'll be below our "stop threshold" so stop the TX 124662306a36Sopenharmony_ci * Queue now and schedule a request for an SGE Egress Queue 124762306a36Sopenharmony_ci * Update message. The queue will get started later on when 124862306a36Sopenharmony_ci * the firmware processes this Work Request and sends us an 124962306a36Sopenharmony_ci * Egress Queue Status Update message indicating that space 125062306a36Sopenharmony_ci * has opened up. 125162306a36Sopenharmony_ci */ 125262306a36Sopenharmony_ci txq_stop(txq); 125362306a36Sopenharmony_ci wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F; 125462306a36Sopenharmony_ci } 125562306a36Sopenharmony_ci 125662306a36Sopenharmony_ci /* 125762306a36Sopenharmony_ci * Start filling in our Work Request. Note that we do _not_ handle 125862306a36Sopenharmony_ci * the WR Header wrapping around the TX Descriptor Ring. If our 125962306a36Sopenharmony_ci * maximum header size ever exceeds one TX Descriptor, we'll need to 126062306a36Sopenharmony_ci * do something else here. 126162306a36Sopenharmony_ci */ 126262306a36Sopenharmony_ci BUG_ON(DIV_ROUND_UP(ETHTXQ_MAX_HDR, TXD_PER_EQ_UNIT) > 1); 126362306a36Sopenharmony_ci wr = (void *)&txq->q.desc[txq->q.pidx]; 126462306a36Sopenharmony_ci wr->equiq_to_len16 = cpu_to_be32(wr_mid); 126562306a36Sopenharmony_ci wr->r3[0] = cpu_to_be32(0); 126662306a36Sopenharmony_ci wr->r3[1] = cpu_to_be32(0); 126762306a36Sopenharmony_ci skb_copy_from_linear_data(skb, &wr->firmware, fw_hdr_copy_len); 126862306a36Sopenharmony_ci end = (u64 *)wr + flits; 126962306a36Sopenharmony_ci 127062306a36Sopenharmony_ci /* 127162306a36Sopenharmony_ci * If this is a Large Send Offload packet we'll put in an LSO CPL 127262306a36Sopenharmony_ci * message with an encapsulated TX Packet CPL message. Otherwise we 127362306a36Sopenharmony_ci * just use a TX Packet CPL message. 127462306a36Sopenharmony_ci */ 127562306a36Sopenharmony_ci ssi = skb_shinfo(skb); 127662306a36Sopenharmony_ci if (ssi->gso_size) { 127762306a36Sopenharmony_ci struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1); 127862306a36Sopenharmony_ci bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0; 127962306a36Sopenharmony_ci int l3hdr_len = skb_network_header_len(skb); 128062306a36Sopenharmony_ci int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN; 128162306a36Sopenharmony_ci 128262306a36Sopenharmony_ci wr->op_immdlen = 128362306a36Sopenharmony_ci cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_PKT_VM_WR) | 128462306a36Sopenharmony_ci FW_WR_IMMDLEN_V(sizeof(*lso) + 128562306a36Sopenharmony_ci sizeof(*cpl))); 128662306a36Sopenharmony_ci /* 128762306a36Sopenharmony_ci * Fill in the LSO CPL message. 128862306a36Sopenharmony_ci */ 128962306a36Sopenharmony_ci lso->lso_ctrl = 129062306a36Sopenharmony_ci cpu_to_be32(LSO_OPCODE_V(CPL_TX_PKT_LSO) | 129162306a36Sopenharmony_ci LSO_FIRST_SLICE_F | 129262306a36Sopenharmony_ci LSO_LAST_SLICE_F | 129362306a36Sopenharmony_ci LSO_IPV6_V(v6) | 129462306a36Sopenharmony_ci LSO_ETHHDR_LEN_V(eth_xtra_len / 4) | 129562306a36Sopenharmony_ci LSO_IPHDR_LEN_V(l3hdr_len / 4) | 129662306a36Sopenharmony_ci LSO_TCPHDR_LEN_V(tcp_hdr(skb)->doff)); 129762306a36Sopenharmony_ci lso->ipid_ofst = cpu_to_be16(0); 129862306a36Sopenharmony_ci lso->mss = cpu_to_be16(ssi->gso_size); 129962306a36Sopenharmony_ci lso->seqno_offset = cpu_to_be32(0); 130062306a36Sopenharmony_ci if (is_t4(adapter->params.chip)) 130162306a36Sopenharmony_ci lso->len = cpu_to_be32(skb->len); 130262306a36Sopenharmony_ci else 130362306a36Sopenharmony_ci lso->len = cpu_to_be32(LSO_T5_XFER_SIZE_V(skb->len)); 130462306a36Sopenharmony_ci 130562306a36Sopenharmony_ci /* 130662306a36Sopenharmony_ci * Set up TX Packet CPL pointer, control word and perform 130762306a36Sopenharmony_ci * accounting. 130862306a36Sopenharmony_ci */ 130962306a36Sopenharmony_ci cpl = (void *)(lso + 1); 131062306a36Sopenharmony_ci 131162306a36Sopenharmony_ci if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) 131262306a36Sopenharmony_ci cntrl = TXPKT_ETHHDR_LEN_V(eth_xtra_len); 131362306a36Sopenharmony_ci else 131462306a36Sopenharmony_ci cntrl = T6_TXPKT_ETHHDR_LEN_V(eth_xtra_len); 131562306a36Sopenharmony_ci 131662306a36Sopenharmony_ci cntrl |= TXPKT_CSUM_TYPE_V(v6 ? 131762306a36Sopenharmony_ci TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) | 131862306a36Sopenharmony_ci TXPKT_IPHDR_LEN_V(l3hdr_len); 131962306a36Sopenharmony_ci txq->tso++; 132062306a36Sopenharmony_ci txq->tx_cso += ssi->gso_segs; 132162306a36Sopenharmony_ci } else { 132262306a36Sopenharmony_ci int len; 132362306a36Sopenharmony_ci 132462306a36Sopenharmony_ci len = is_eth_imm(skb) ? skb->len + sizeof(*cpl) : sizeof(*cpl); 132562306a36Sopenharmony_ci wr->op_immdlen = 132662306a36Sopenharmony_ci cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_PKT_VM_WR) | 132762306a36Sopenharmony_ci FW_WR_IMMDLEN_V(len)); 132862306a36Sopenharmony_ci 132962306a36Sopenharmony_ci /* 133062306a36Sopenharmony_ci * Set up TX Packet CPL pointer, control word and perform 133162306a36Sopenharmony_ci * accounting. 133262306a36Sopenharmony_ci */ 133362306a36Sopenharmony_ci cpl = (void *)(wr + 1); 133462306a36Sopenharmony_ci if (skb->ip_summed == CHECKSUM_PARTIAL) { 133562306a36Sopenharmony_ci cntrl = hwcsum(adapter->params.chip, skb) | 133662306a36Sopenharmony_ci TXPKT_IPCSUM_DIS_F; 133762306a36Sopenharmony_ci txq->tx_cso++; 133862306a36Sopenharmony_ci } else 133962306a36Sopenharmony_ci cntrl = TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F; 134062306a36Sopenharmony_ci } 134162306a36Sopenharmony_ci 134262306a36Sopenharmony_ci /* 134362306a36Sopenharmony_ci * If there's a VLAN tag present, add that to the list of things to 134462306a36Sopenharmony_ci * do in this Work Request. 134562306a36Sopenharmony_ci */ 134662306a36Sopenharmony_ci if (skb_vlan_tag_present(skb)) { 134762306a36Sopenharmony_ci txq->vlan_ins++; 134862306a36Sopenharmony_ci cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb)); 134962306a36Sopenharmony_ci } 135062306a36Sopenharmony_ci 135162306a36Sopenharmony_ci /* 135262306a36Sopenharmony_ci * Fill in the TX Packet CPL message header. 135362306a36Sopenharmony_ci */ 135462306a36Sopenharmony_ci cpl->ctrl0 = cpu_to_be32(TXPKT_OPCODE_V(CPL_TX_PKT_XT) | 135562306a36Sopenharmony_ci TXPKT_INTF_V(pi->port_id) | 135662306a36Sopenharmony_ci TXPKT_PF_V(0)); 135762306a36Sopenharmony_ci cpl->pack = cpu_to_be16(0); 135862306a36Sopenharmony_ci cpl->len = cpu_to_be16(skb->len); 135962306a36Sopenharmony_ci cpl->ctrl1 = cpu_to_be64(cntrl); 136062306a36Sopenharmony_ci 136162306a36Sopenharmony_ci#ifdef T4_TRACE 136262306a36Sopenharmony_ci T4_TRACE5(adapter->tb[txq->q.cntxt_id & 7], 136362306a36Sopenharmony_ci "eth_xmit: ndesc %u, credits %u, pidx %u, len %u, frags %u", 136462306a36Sopenharmony_ci ndesc, credits, txq->q.pidx, skb->len, ssi->nr_frags); 136562306a36Sopenharmony_ci#endif 136662306a36Sopenharmony_ci 136762306a36Sopenharmony_ci /* 136862306a36Sopenharmony_ci * Fill in the body of the TX Packet CPL message with either in-lined 136962306a36Sopenharmony_ci * data or a Scatter/Gather List. 137062306a36Sopenharmony_ci */ 137162306a36Sopenharmony_ci if (is_eth_imm(skb)) { 137262306a36Sopenharmony_ci /* 137362306a36Sopenharmony_ci * In-line the packet's data and free the skb since we don't 137462306a36Sopenharmony_ci * need it any longer. 137562306a36Sopenharmony_ci */ 137662306a36Sopenharmony_ci inline_tx_skb(skb, &txq->q, cpl + 1); 137762306a36Sopenharmony_ci dev_consume_skb_any(skb); 137862306a36Sopenharmony_ci } else { 137962306a36Sopenharmony_ci /* 138062306a36Sopenharmony_ci * Write the skb's Scatter/Gather list into the TX Packet CPL 138162306a36Sopenharmony_ci * message and retain a pointer to the skb so we can free it 138262306a36Sopenharmony_ci * later when its DMA completes. (We store the skb pointer 138362306a36Sopenharmony_ci * in the Software Descriptor corresponding to the last TX 138462306a36Sopenharmony_ci * Descriptor used by the Work Request.) 138562306a36Sopenharmony_ci * 138662306a36Sopenharmony_ci * The retained skb will be freed when the corresponding TX 138762306a36Sopenharmony_ci * Descriptors are reclaimed after their DMAs complete. 138862306a36Sopenharmony_ci * However, this could take quite a while since, in general, 138962306a36Sopenharmony_ci * the hardware is set up to be lazy about sending DMA 139062306a36Sopenharmony_ci * completion notifications to us and we mostly perform TX 139162306a36Sopenharmony_ci * reclaims in the transmit routine. 139262306a36Sopenharmony_ci * 139362306a36Sopenharmony_ci * This is good for performamce but means that we rely on new 139462306a36Sopenharmony_ci * TX packets arriving to run the destructors of completed 139562306a36Sopenharmony_ci * packets, which open up space in their sockets' send queues. 139662306a36Sopenharmony_ci * Sometimes we do not get such new packets causing TX to 139762306a36Sopenharmony_ci * stall. A single UDP transmitter is a good example of this 139862306a36Sopenharmony_ci * situation. We have a clean up timer that periodically 139962306a36Sopenharmony_ci * reclaims completed packets but it doesn't run often enough 140062306a36Sopenharmony_ci * (nor do we want it to) to prevent lengthy stalls. A 140162306a36Sopenharmony_ci * solution to this problem is to run the destructor early, 140262306a36Sopenharmony_ci * after the packet is queued but before it's DMAd. A con is 140362306a36Sopenharmony_ci * that we lie to socket memory accounting, but the amount of 140462306a36Sopenharmony_ci * extra memory is reasonable (limited by the number of TX 140562306a36Sopenharmony_ci * descriptors), the packets do actually get freed quickly by 140662306a36Sopenharmony_ci * new packets almost always, and for protocols like TCP that 140762306a36Sopenharmony_ci * wait for acks to really free up the data the extra memory 140862306a36Sopenharmony_ci * is even less. On the positive side we run the destructors 140962306a36Sopenharmony_ci * on the sending CPU rather than on a potentially different 141062306a36Sopenharmony_ci * completing CPU, usually a good thing. 141162306a36Sopenharmony_ci * 141262306a36Sopenharmony_ci * Run the destructor before telling the DMA engine about the 141362306a36Sopenharmony_ci * packet to make sure it doesn't complete and get freed 141462306a36Sopenharmony_ci * prematurely. 141562306a36Sopenharmony_ci */ 141662306a36Sopenharmony_ci struct ulptx_sgl *sgl = (struct ulptx_sgl *)(cpl + 1); 141762306a36Sopenharmony_ci struct sge_txq *tq = &txq->q; 141862306a36Sopenharmony_ci int last_desc; 141962306a36Sopenharmony_ci 142062306a36Sopenharmony_ci /* 142162306a36Sopenharmony_ci * If the Work Request header was an exact multiple of our TX 142262306a36Sopenharmony_ci * Descriptor length, then it's possible that the starting SGL 142362306a36Sopenharmony_ci * pointer lines up exactly with the end of our TX Descriptor 142462306a36Sopenharmony_ci * ring. If that's the case, wrap around to the beginning 142562306a36Sopenharmony_ci * here ... 142662306a36Sopenharmony_ci */ 142762306a36Sopenharmony_ci if (unlikely((void *)sgl == (void *)tq->stat)) { 142862306a36Sopenharmony_ci sgl = (void *)tq->desc; 142962306a36Sopenharmony_ci end = ((void *)tq->desc + ((void *)end - (void *)tq->stat)); 143062306a36Sopenharmony_ci } 143162306a36Sopenharmony_ci 143262306a36Sopenharmony_ci write_sgl(skb, tq, sgl, end, 0, addr); 143362306a36Sopenharmony_ci skb_orphan(skb); 143462306a36Sopenharmony_ci 143562306a36Sopenharmony_ci last_desc = tq->pidx + ndesc - 1; 143662306a36Sopenharmony_ci if (last_desc >= tq->size) 143762306a36Sopenharmony_ci last_desc -= tq->size; 143862306a36Sopenharmony_ci tq->sdesc[last_desc].skb = skb; 143962306a36Sopenharmony_ci tq->sdesc[last_desc].sgl = sgl; 144062306a36Sopenharmony_ci } 144162306a36Sopenharmony_ci 144262306a36Sopenharmony_ci /* 144362306a36Sopenharmony_ci * Advance our internal TX Queue state, tell the hardware about 144462306a36Sopenharmony_ci * the new TX descriptors and return success. 144562306a36Sopenharmony_ci */ 144662306a36Sopenharmony_ci txq_advance(&txq->q, ndesc); 144762306a36Sopenharmony_ci netif_trans_update(dev); 144862306a36Sopenharmony_ci ring_tx_db(adapter, &txq->q, ndesc); 144962306a36Sopenharmony_ci return NETDEV_TX_OK; 145062306a36Sopenharmony_ci 145162306a36Sopenharmony_ciout_free: 145262306a36Sopenharmony_ci /* 145362306a36Sopenharmony_ci * An error of some sort happened. Free the TX skb and tell the 145462306a36Sopenharmony_ci * OS that we've "dealt" with the packet ... 145562306a36Sopenharmony_ci */ 145662306a36Sopenharmony_ci dev_kfree_skb_any(skb); 145762306a36Sopenharmony_ci return NETDEV_TX_OK; 145862306a36Sopenharmony_ci} 145962306a36Sopenharmony_ci 146062306a36Sopenharmony_ci/** 146162306a36Sopenharmony_ci * copy_frags - copy fragments from gather list into skb_shared_info 146262306a36Sopenharmony_ci * @skb: destination skb 146362306a36Sopenharmony_ci * @gl: source internal packet gather list 146462306a36Sopenharmony_ci * @offset: packet start offset in first page 146562306a36Sopenharmony_ci * 146662306a36Sopenharmony_ci * Copy an internal packet gather list into a Linux skb_shared_info 146762306a36Sopenharmony_ci * structure. 146862306a36Sopenharmony_ci */ 146962306a36Sopenharmony_cistatic inline void copy_frags(struct sk_buff *skb, 147062306a36Sopenharmony_ci const struct pkt_gl *gl, 147162306a36Sopenharmony_ci unsigned int offset) 147262306a36Sopenharmony_ci{ 147362306a36Sopenharmony_ci int i; 147462306a36Sopenharmony_ci 147562306a36Sopenharmony_ci /* usually there's just one frag */ 147662306a36Sopenharmony_ci __skb_fill_page_desc(skb, 0, gl->frags[0].page, 147762306a36Sopenharmony_ci gl->frags[0].offset + offset, 147862306a36Sopenharmony_ci gl->frags[0].size - offset); 147962306a36Sopenharmony_ci skb_shinfo(skb)->nr_frags = gl->nfrags; 148062306a36Sopenharmony_ci for (i = 1; i < gl->nfrags; i++) 148162306a36Sopenharmony_ci __skb_fill_page_desc(skb, i, gl->frags[i].page, 148262306a36Sopenharmony_ci gl->frags[i].offset, 148362306a36Sopenharmony_ci gl->frags[i].size); 148462306a36Sopenharmony_ci 148562306a36Sopenharmony_ci /* get a reference to the last page, we don't own it */ 148662306a36Sopenharmony_ci get_page(gl->frags[gl->nfrags - 1].page); 148762306a36Sopenharmony_ci} 148862306a36Sopenharmony_ci 148962306a36Sopenharmony_ci/** 149062306a36Sopenharmony_ci * t4vf_pktgl_to_skb - build an sk_buff from a packet gather list 149162306a36Sopenharmony_ci * @gl: the gather list 149262306a36Sopenharmony_ci * @skb_len: size of sk_buff main body if it carries fragments 149362306a36Sopenharmony_ci * @pull_len: amount of data to move to the sk_buff's main body 149462306a36Sopenharmony_ci * 149562306a36Sopenharmony_ci * Builds an sk_buff from the given packet gather list. Returns the 149662306a36Sopenharmony_ci * sk_buff or %NULL if sk_buff allocation failed. 149762306a36Sopenharmony_ci */ 149862306a36Sopenharmony_cistatic struct sk_buff *t4vf_pktgl_to_skb(const struct pkt_gl *gl, 149962306a36Sopenharmony_ci unsigned int skb_len, 150062306a36Sopenharmony_ci unsigned int pull_len) 150162306a36Sopenharmony_ci{ 150262306a36Sopenharmony_ci struct sk_buff *skb; 150362306a36Sopenharmony_ci 150462306a36Sopenharmony_ci /* 150562306a36Sopenharmony_ci * If the ingress packet is small enough, allocate an skb large enough 150662306a36Sopenharmony_ci * for all of the data and copy it inline. Otherwise, allocate an skb 150762306a36Sopenharmony_ci * with enough room to pull in the header and reference the rest of 150862306a36Sopenharmony_ci * the data via the skb fragment list. 150962306a36Sopenharmony_ci * 151062306a36Sopenharmony_ci * Below we rely on RX_COPY_THRES being less than the smallest Rx 151162306a36Sopenharmony_ci * buff! size, which is expected since buffers are at least 151262306a36Sopenharmony_ci * PAGE_SIZEd. In this case packets up to RX_COPY_THRES have only one 151362306a36Sopenharmony_ci * fragment. 151462306a36Sopenharmony_ci */ 151562306a36Sopenharmony_ci if (gl->tot_len <= RX_COPY_THRES) { 151662306a36Sopenharmony_ci /* small packets have only one fragment */ 151762306a36Sopenharmony_ci skb = alloc_skb(gl->tot_len, GFP_ATOMIC); 151862306a36Sopenharmony_ci if (unlikely(!skb)) 151962306a36Sopenharmony_ci goto out; 152062306a36Sopenharmony_ci __skb_put(skb, gl->tot_len); 152162306a36Sopenharmony_ci skb_copy_to_linear_data(skb, gl->va, gl->tot_len); 152262306a36Sopenharmony_ci } else { 152362306a36Sopenharmony_ci skb = alloc_skb(skb_len, GFP_ATOMIC); 152462306a36Sopenharmony_ci if (unlikely(!skb)) 152562306a36Sopenharmony_ci goto out; 152662306a36Sopenharmony_ci __skb_put(skb, pull_len); 152762306a36Sopenharmony_ci skb_copy_to_linear_data(skb, gl->va, pull_len); 152862306a36Sopenharmony_ci 152962306a36Sopenharmony_ci copy_frags(skb, gl, pull_len); 153062306a36Sopenharmony_ci skb->len = gl->tot_len; 153162306a36Sopenharmony_ci skb->data_len = skb->len - pull_len; 153262306a36Sopenharmony_ci skb->truesize += skb->data_len; 153362306a36Sopenharmony_ci } 153462306a36Sopenharmony_ci 153562306a36Sopenharmony_ciout: 153662306a36Sopenharmony_ci return skb; 153762306a36Sopenharmony_ci} 153862306a36Sopenharmony_ci 153962306a36Sopenharmony_ci/** 154062306a36Sopenharmony_ci * t4vf_pktgl_free - free a packet gather list 154162306a36Sopenharmony_ci * @gl: the gather list 154262306a36Sopenharmony_ci * 154362306a36Sopenharmony_ci * Releases the pages of a packet gather list. We do not own the last 154462306a36Sopenharmony_ci * page on the list and do not free it. 154562306a36Sopenharmony_ci */ 154662306a36Sopenharmony_cistatic void t4vf_pktgl_free(const struct pkt_gl *gl) 154762306a36Sopenharmony_ci{ 154862306a36Sopenharmony_ci int frag; 154962306a36Sopenharmony_ci 155062306a36Sopenharmony_ci frag = gl->nfrags - 1; 155162306a36Sopenharmony_ci while (frag--) 155262306a36Sopenharmony_ci put_page(gl->frags[frag].page); 155362306a36Sopenharmony_ci} 155462306a36Sopenharmony_ci 155562306a36Sopenharmony_ci/** 155662306a36Sopenharmony_ci * do_gro - perform Generic Receive Offload ingress packet processing 155762306a36Sopenharmony_ci * @rxq: ingress RX Ethernet Queue 155862306a36Sopenharmony_ci * @gl: gather list for ingress packet 155962306a36Sopenharmony_ci * @pkt: CPL header for last packet fragment 156062306a36Sopenharmony_ci * 156162306a36Sopenharmony_ci * Perform Generic Receive Offload (GRO) ingress packet processing. 156262306a36Sopenharmony_ci * We use the standard Linux GRO interfaces for this. 156362306a36Sopenharmony_ci */ 156462306a36Sopenharmony_cistatic void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl, 156562306a36Sopenharmony_ci const struct cpl_rx_pkt *pkt) 156662306a36Sopenharmony_ci{ 156762306a36Sopenharmony_ci struct adapter *adapter = rxq->rspq.adapter; 156862306a36Sopenharmony_ci struct sge *s = &adapter->sge; 156962306a36Sopenharmony_ci struct port_info *pi; 157062306a36Sopenharmony_ci int ret; 157162306a36Sopenharmony_ci struct sk_buff *skb; 157262306a36Sopenharmony_ci 157362306a36Sopenharmony_ci skb = napi_get_frags(&rxq->rspq.napi); 157462306a36Sopenharmony_ci if (unlikely(!skb)) { 157562306a36Sopenharmony_ci t4vf_pktgl_free(gl); 157662306a36Sopenharmony_ci rxq->stats.rx_drops++; 157762306a36Sopenharmony_ci return; 157862306a36Sopenharmony_ci } 157962306a36Sopenharmony_ci 158062306a36Sopenharmony_ci copy_frags(skb, gl, s->pktshift); 158162306a36Sopenharmony_ci skb->len = gl->tot_len - s->pktshift; 158262306a36Sopenharmony_ci skb->data_len = skb->len; 158362306a36Sopenharmony_ci skb->truesize += skb->data_len; 158462306a36Sopenharmony_ci skb->ip_summed = CHECKSUM_UNNECESSARY; 158562306a36Sopenharmony_ci skb_record_rx_queue(skb, rxq->rspq.idx); 158662306a36Sopenharmony_ci pi = netdev_priv(skb->dev); 158762306a36Sopenharmony_ci 158862306a36Sopenharmony_ci if (pkt->vlan_ex && !pi->vlan_id) { 158962306a36Sopenharmony_ci __vlan_hwaccel_put_tag(skb, cpu_to_be16(ETH_P_8021Q), 159062306a36Sopenharmony_ci be16_to_cpu(pkt->vlan)); 159162306a36Sopenharmony_ci rxq->stats.vlan_ex++; 159262306a36Sopenharmony_ci } 159362306a36Sopenharmony_ci ret = napi_gro_frags(&rxq->rspq.napi); 159462306a36Sopenharmony_ci 159562306a36Sopenharmony_ci if (ret == GRO_HELD) 159662306a36Sopenharmony_ci rxq->stats.lro_pkts++; 159762306a36Sopenharmony_ci else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE) 159862306a36Sopenharmony_ci rxq->stats.lro_merged++; 159962306a36Sopenharmony_ci rxq->stats.pkts++; 160062306a36Sopenharmony_ci rxq->stats.rx_cso++; 160162306a36Sopenharmony_ci} 160262306a36Sopenharmony_ci 160362306a36Sopenharmony_ci/** 160462306a36Sopenharmony_ci * t4vf_ethrx_handler - process an ingress ethernet packet 160562306a36Sopenharmony_ci * @rspq: the response queue that received the packet 160662306a36Sopenharmony_ci * @rsp: the response queue descriptor holding the RX_PKT message 160762306a36Sopenharmony_ci * @gl: the gather list of packet fragments 160862306a36Sopenharmony_ci * 160962306a36Sopenharmony_ci * Process an ingress ethernet packet and deliver it to the stack. 161062306a36Sopenharmony_ci */ 161162306a36Sopenharmony_ciint t4vf_ethrx_handler(struct sge_rspq *rspq, const __be64 *rsp, 161262306a36Sopenharmony_ci const struct pkt_gl *gl) 161362306a36Sopenharmony_ci{ 161462306a36Sopenharmony_ci struct sk_buff *skb; 161562306a36Sopenharmony_ci const struct cpl_rx_pkt *pkt = (void *)rsp; 161662306a36Sopenharmony_ci bool csum_ok = pkt->csum_calc && !pkt->err_vec && 161762306a36Sopenharmony_ci (rspq->netdev->features & NETIF_F_RXCSUM); 161862306a36Sopenharmony_ci struct sge_eth_rxq *rxq = container_of(rspq, struct sge_eth_rxq, rspq); 161962306a36Sopenharmony_ci struct adapter *adapter = rspq->adapter; 162062306a36Sopenharmony_ci struct sge *s = &adapter->sge; 162162306a36Sopenharmony_ci struct port_info *pi; 162262306a36Sopenharmony_ci 162362306a36Sopenharmony_ci /* 162462306a36Sopenharmony_ci * If this is a good TCP packet and we have Generic Receive Offload 162562306a36Sopenharmony_ci * enabled, handle the packet in the GRO path. 162662306a36Sopenharmony_ci */ 162762306a36Sopenharmony_ci if ((pkt->l2info & cpu_to_be32(RXF_TCP_F)) && 162862306a36Sopenharmony_ci (rspq->netdev->features & NETIF_F_GRO) && csum_ok && 162962306a36Sopenharmony_ci !pkt->ip_frag) { 163062306a36Sopenharmony_ci do_gro(rxq, gl, pkt); 163162306a36Sopenharmony_ci return 0; 163262306a36Sopenharmony_ci } 163362306a36Sopenharmony_ci 163462306a36Sopenharmony_ci /* 163562306a36Sopenharmony_ci * Convert the Packet Gather List into an skb. 163662306a36Sopenharmony_ci */ 163762306a36Sopenharmony_ci skb = t4vf_pktgl_to_skb(gl, RX_SKB_LEN, RX_PULL_LEN); 163862306a36Sopenharmony_ci if (unlikely(!skb)) { 163962306a36Sopenharmony_ci t4vf_pktgl_free(gl); 164062306a36Sopenharmony_ci rxq->stats.rx_drops++; 164162306a36Sopenharmony_ci return 0; 164262306a36Sopenharmony_ci } 164362306a36Sopenharmony_ci __skb_pull(skb, s->pktshift); 164462306a36Sopenharmony_ci skb->protocol = eth_type_trans(skb, rspq->netdev); 164562306a36Sopenharmony_ci skb_record_rx_queue(skb, rspq->idx); 164662306a36Sopenharmony_ci pi = netdev_priv(skb->dev); 164762306a36Sopenharmony_ci rxq->stats.pkts++; 164862306a36Sopenharmony_ci 164962306a36Sopenharmony_ci if (csum_ok && !pkt->err_vec && 165062306a36Sopenharmony_ci (be32_to_cpu(pkt->l2info) & (RXF_UDP_F | RXF_TCP_F))) { 165162306a36Sopenharmony_ci if (!pkt->ip_frag) { 165262306a36Sopenharmony_ci skb->ip_summed = CHECKSUM_UNNECESSARY; 165362306a36Sopenharmony_ci rxq->stats.rx_cso++; 165462306a36Sopenharmony_ci } else if (pkt->l2info & htonl(RXF_IP_F)) { 165562306a36Sopenharmony_ci __sum16 c = (__force __sum16)pkt->csum; 165662306a36Sopenharmony_ci skb->csum = csum_unfold(c); 165762306a36Sopenharmony_ci skb->ip_summed = CHECKSUM_COMPLETE; 165862306a36Sopenharmony_ci rxq->stats.rx_cso++; 165962306a36Sopenharmony_ci } 166062306a36Sopenharmony_ci } else 166162306a36Sopenharmony_ci skb_checksum_none_assert(skb); 166262306a36Sopenharmony_ci 166362306a36Sopenharmony_ci if (pkt->vlan_ex && !pi->vlan_id) { 166462306a36Sopenharmony_ci rxq->stats.vlan_ex++; 166562306a36Sopenharmony_ci __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 166662306a36Sopenharmony_ci be16_to_cpu(pkt->vlan)); 166762306a36Sopenharmony_ci } 166862306a36Sopenharmony_ci 166962306a36Sopenharmony_ci netif_receive_skb(skb); 167062306a36Sopenharmony_ci 167162306a36Sopenharmony_ci return 0; 167262306a36Sopenharmony_ci} 167362306a36Sopenharmony_ci 167462306a36Sopenharmony_ci/** 167562306a36Sopenharmony_ci * is_new_response - check if a response is newly written 167662306a36Sopenharmony_ci * @rc: the response control descriptor 167762306a36Sopenharmony_ci * @rspq: the response queue 167862306a36Sopenharmony_ci * 167962306a36Sopenharmony_ci * Returns true if a response descriptor contains a yet unprocessed 168062306a36Sopenharmony_ci * response. 168162306a36Sopenharmony_ci */ 168262306a36Sopenharmony_cistatic inline bool is_new_response(const struct rsp_ctrl *rc, 168362306a36Sopenharmony_ci const struct sge_rspq *rspq) 168462306a36Sopenharmony_ci{ 168562306a36Sopenharmony_ci return ((rc->type_gen >> RSPD_GEN_S) & 0x1) == rspq->gen; 168662306a36Sopenharmony_ci} 168762306a36Sopenharmony_ci 168862306a36Sopenharmony_ci/** 168962306a36Sopenharmony_ci * restore_rx_bufs - put back a packet's RX buffers 169062306a36Sopenharmony_ci * @gl: the packet gather list 169162306a36Sopenharmony_ci * @fl: the SGE Free List 169262306a36Sopenharmony_ci * @frags: how many fragments in @si 169362306a36Sopenharmony_ci * 169462306a36Sopenharmony_ci * Called when we find out that the current packet, @si, can't be 169562306a36Sopenharmony_ci * processed right away for some reason. This is a very rare event and 169662306a36Sopenharmony_ci * there's no effort to make this suspension/resumption process 169762306a36Sopenharmony_ci * particularly efficient. 169862306a36Sopenharmony_ci * 169962306a36Sopenharmony_ci * We implement the suspension by putting all of the RX buffers associated 170062306a36Sopenharmony_ci * with the current packet back on the original Free List. The buffers 170162306a36Sopenharmony_ci * have already been unmapped and are left unmapped, we mark them as 170262306a36Sopenharmony_ci * unmapped in order to prevent further unmapping attempts. (Effectively 170362306a36Sopenharmony_ci * this function undoes the series of @unmap_rx_buf calls which were done 170462306a36Sopenharmony_ci * to create the current packet's gather list.) This leaves us ready to 170562306a36Sopenharmony_ci * restart processing of the packet the next time we start processing the 170662306a36Sopenharmony_ci * RX Queue ... 170762306a36Sopenharmony_ci */ 170862306a36Sopenharmony_cistatic void restore_rx_bufs(const struct pkt_gl *gl, struct sge_fl *fl, 170962306a36Sopenharmony_ci int frags) 171062306a36Sopenharmony_ci{ 171162306a36Sopenharmony_ci struct rx_sw_desc *sdesc; 171262306a36Sopenharmony_ci 171362306a36Sopenharmony_ci while (frags--) { 171462306a36Sopenharmony_ci if (fl->cidx == 0) 171562306a36Sopenharmony_ci fl->cidx = fl->size - 1; 171662306a36Sopenharmony_ci else 171762306a36Sopenharmony_ci fl->cidx--; 171862306a36Sopenharmony_ci sdesc = &fl->sdesc[fl->cidx]; 171962306a36Sopenharmony_ci sdesc->page = gl->frags[frags].page; 172062306a36Sopenharmony_ci sdesc->dma_addr |= RX_UNMAPPED_BUF; 172162306a36Sopenharmony_ci fl->avail++; 172262306a36Sopenharmony_ci } 172362306a36Sopenharmony_ci} 172462306a36Sopenharmony_ci 172562306a36Sopenharmony_ci/** 172662306a36Sopenharmony_ci * rspq_next - advance to the next entry in a response queue 172762306a36Sopenharmony_ci * @rspq: the queue 172862306a36Sopenharmony_ci * 172962306a36Sopenharmony_ci * Updates the state of a response queue to advance it to the next entry. 173062306a36Sopenharmony_ci */ 173162306a36Sopenharmony_cistatic inline void rspq_next(struct sge_rspq *rspq) 173262306a36Sopenharmony_ci{ 173362306a36Sopenharmony_ci rspq->cur_desc = (void *)rspq->cur_desc + rspq->iqe_len; 173462306a36Sopenharmony_ci if (unlikely(++rspq->cidx == rspq->size)) { 173562306a36Sopenharmony_ci rspq->cidx = 0; 173662306a36Sopenharmony_ci rspq->gen ^= 1; 173762306a36Sopenharmony_ci rspq->cur_desc = rspq->desc; 173862306a36Sopenharmony_ci } 173962306a36Sopenharmony_ci} 174062306a36Sopenharmony_ci 174162306a36Sopenharmony_ci/** 174262306a36Sopenharmony_ci * process_responses - process responses from an SGE response queue 174362306a36Sopenharmony_ci * @rspq: the ingress response queue to process 174462306a36Sopenharmony_ci * @budget: how many responses can be processed in this round 174562306a36Sopenharmony_ci * 174662306a36Sopenharmony_ci * Process responses from a Scatter Gather Engine response queue up to 174762306a36Sopenharmony_ci * the supplied budget. Responses include received packets as well as 174862306a36Sopenharmony_ci * control messages from firmware or hardware. 174962306a36Sopenharmony_ci * 175062306a36Sopenharmony_ci * Additionally choose the interrupt holdoff time for the next interrupt 175162306a36Sopenharmony_ci * on this queue. If the system is under memory shortage use a fairly 175262306a36Sopenharmony_ci * long delay to help recovery. 175362306a36Sopenharmony_ci */ 175462306a36Sopenharmony_cistatic int process_responses(struct sge_rspq *rspq, int budget) 175562306a36Sopenharmony_ci{ 175662306a36Sopenharmony_ci struct sge_eth_rxq *rxq = container_of(rspq, struct sge_eth_rxq, rspq); 175762306a36Sopenharmony_ci struct adapter *adapter = rspq->adapter; 175862306a36Sopenharmony_ci struct sge *s = &adapter->sge; 175962306a36Sopenharmony_ci int budget_left = budget; 176062306a36Sopenharmony_ci 176162306a36Sopenharmony_ci while (likely(budget_left)) { 176262306a36Sopenharmony_ci int ret, rsp_type; 176362306a36Sopenharmony_ci const struct rsp_ctrl *rc; 176462306a36Sopenharmony_ci 176562306a36Sopenharmony_ci rc = (void *)rspq->cur_desc + (rspq->iqe_len - sizeof(*rc)); 176662306a36Sopenharmony_ci if (!is_new_response(rc, rspq)) 176762306a36Sopenharmony_ci break; 176862306a36Sopenharmony_ci 176962306a36Sopenharmony_ci /* 177062306a36Sopenharmony_ci * Figure out what kind of response we've received from the 177162306a36Sopenharmony_ci * SGE. 177262306a36Sopenharmony_ci */ 177362306a36Sopenharmony_ci dma_rmb(); 177462306a36Sopenharmony_ci rsp_type = RSPD_TYPE_G(rc->type_gen); 177562306a36Sopenharmony_ci if (likely(rsp_type == RSPD_TYPE_FLBUF_X)) { 177662306a36Sopenharmony_ci struct page_frag *fp; 177762306a36Sopenharmony_ci struct pkt_gl gl; 177862306a36Sopenharmony_ci const struct rx_sw_desc *sdesc; 177962306a36Sopenharmony_ci u32 bufsz, frag; 178062306a36Sopenharmony_ci u32 len = be32_to_cpu(rc->pldbuflen_qid); 178162306a36Sopenharmony_ci 178262306a36Sopenharmony_ci /* 178362306a36Sopenharmony_ci * If we get a "new buffer" message from the SGE we 178462306a36Sopenharmony_ci * need to move on to the next Free List buffer. 178562306a36Sopenharmony_ci */ 178662306a36Sopenharmony_ci if (len & RSPD_NEWBUF_F) { 178762306a36Sopenharmony_ci /* 178862306a36Sopenharmony_ci * We get one "new buffer" message when we 178962306a36Sopenharmony_ci * first start up a queue so we need to ignore 179062306a36Sopenharmony_ci * it when our offset into the buffer is 0. 179162306a36Sopenharmony_ci */ 179262306a36Sopenharmony_ci if (likely(rspq->offset > 0)) { 179362306a36Sopenharmony_ci free_rx_bufs(rspq->adapter, &rxq->fl, 179462306a36Sopenharmony_ci 1); 179562306a36Sopenharmony_ci rspq->offset = 0; 179662306a36Sopenharmony_ci } 179762306a36Sopenharmony_ci len = RSPD_LEN_G(len); 179862306a36Sopenharmony_ci } 179962306a36Sopenharmony_ci gl.tot_len = len; 180062306a36Sopenharmony_ci 180162306a36Sopenharmony_ci /* 180262306a36Sopenharmony_ci * Gather packet fragments. 180362306a36Sopenharmony_ci */ 180462306a36Sopenharmony_ci for (frag = 0, fp = gl.frags; /**/; frag++, fp++) { 180562306a36Sopenharmony_ci BUG_ON(frag >= MAX_SKB_FRAGS); 180662306a36Sopenharmony_ci BUG_ON(rxq->fl.avail == 0); 180762306a36Sopenharmony_ci sdesc = &rxq->fl.sdesc[rxq->fl.cidx]; 180862306a36Sopenharmony_ci bufsz = get_buf_size(adapter, sdesc); 180962306a36Sopenharmony_ci fp->page = sdesc->page; 181062306a36Sopenharmony_ci fp->offset = rspq->offset; 181162306a36Sopenharmony_ci fp->size = min(bufsz, len); 181262306a36Sopenharmony_ci len -= fp->size; 181362306a36Sopenharmony_ci if (!len) 181462306a36Sopenharmony_ci break; 181562306a36Sopenharmony_ci unmap_rx_buf(rspq->adapter, &rxq->fl); 181662306a36Sopenharmony_ci } 181762306a36Sopenharmony_ci gl.nfrags = frag+1; 181862306a36Sopenharmony_ci 181962306a36Sopenharmony_ci /* 182062306a36Sopenharmony_ci * Last buffer remains mapped so explicitly make it 182162306a36Sopenharmony_ci * coherent for CPU access and start preloading first 182262306a36Sopenharmony_ci * cache line ... 182362306a36Sopenharmony_ci */ 182462306a36Sopenharmony_ci dma_sync_single_for_cpu(rspq->adapter->pdev_dev, 182562306a36Sopenharmony_ci get_buf_addr(sdesc), 182662306a36Sopenharmony_ci fp->size, DMA_FROM_DEVICE); 182762306a36Sopenharmony_ci gl.va = (page_address(gl.frags[0].page) + 182862306a36Sopenharmony_ci gl.frags[0].offset); 182962306a36Sopenharmony_ci prefetch(gl.va); 183062306a36Sopenharmony_ci 183162306a36Sopenharmony_ci /* 183262306a36Sopenharmony_ci * Hand the new ingress packet to the handler for 183362306a36Sopenharmony_ci * this Response Queue. 183462306a36Sopenharmony_ci */ 183562306a36Sopenharmony_ci ret = rspq->handler(rspq, rspq->cur_desc, &gl); 183662306a36Sopenharmony_ci if (likely(ret == 0)) 183762306a36Sopenharmony_ci rspq->offset += ALIGN(fp->size, s->fl_align); 183862306a36Sopenharmony_ci else 183962306a36Sopenharmony_ci restore_rx_bufs(&gl, &rxq->fl, frag); 184062306a36Sopenharmony_ci } else if (likely(rsp_type == RSPD_TYPE_CPL_X)) { 184162306a36Sopenharmony_ci ret = rspq->handler(rspq, rspq->cur_desc, NULL); 184262306a36Sopenharmony_ci } else { 184362306a36Sopenharmony_ci WARN_ON(rsp_type > RSPD_TYPE_CPL_X); 184462306a36Sopenharmony_ci ret = 0; 184562306a36Sopenharmony_ci } 184662306a36Sopenharmony_ci 184762306a36Sopenharmony_ci if (unlikely(ret)) { 184862306a36Sopenharmony_ci /* 184962306a36Sopenharmony_ci * Couldn't process descriptor, back off for recovery. 185062306a36Sopenharmony_ci * We use the SGE's last timer which has the longest 185162306a36Sopenharmony_ci * interrupt coalescing value ... 185262306a36Sopenharmony_ci */ 185362306a36Sopenharmony_ci const int NOMEM_TIMER_IDX = SGE_NTIMERS-1; 185462306a36Sopenharmony_ci rspq->next_intr_params = 185562306a36Sopenharmony_ci QINTR_TIMER_IDX_V(NOMEM_TIMER_IDX); 185662306a36Sopenharmony_ci break; 185762306a36Sopenharmony_ci } 185862306a36Sopenharmony_ci 185962306a36Sopenharmony_ci rspq_next(rspq); 186062306a36Sopenharmony_ci budget_left--; 186162306a36Sopenharmony_ci } 186262306a36Sopenharmony_ci 186362306a36Sopenharmony_ci /* 186462306a36Sopenharmony_ci * If this is a Response Queue with an associated Free List and 186562306a36Sopenharmony_ci * at least two Egress Queue units available in the Free List 186662306a36Sopenharmony_ci * for new buffer pointers, refill the Free List. 186762306a36Sopenharmony_ci */ 186862306a36Sopenharmony_ci if (rspq->offset >= 0 && 186962306a36Sopenharmony_ci fl_cap(&rxq->fl) - rxq->fl.avail >= 2*FL_PER_EQ_UNIT) 187062306a36Sopenharmony_ci __refill_fl(rspq->adapter, &rxq->fl); 187162306a36Sopenharmony_ci return budget - budget_left; 187262306a36Sopenharmony_ci} 187362306a36Sopenharmony_ci 187462306a36Sopenharmony_ci/** 187562306a36Sopenharmony_ci * napi_rx_handler - the NAPI handler for RX processing 187662306a36Sopenharmony_ci * @napi: the napi instance 187762306a36Sopenharmony_ci * @budget: how many packets we can process in this round 187862306a36Sopenharmony_ci * 187962306a36Sopenharmony_ci * Handler for new data events when using NAPI. This does not need any 188062306a36Sopenharmony_ci * locking or protection from interrupts as data interrupts are off at 188162306a36Sopenharmony_ci * this point and other adapter interrupts do not interfere (the latter 188262306a36Sopenharmony_ci * in not a concern at all with MSI-X as non-data interrupts then have 188362306a36Sopenharmony_ci * a separate handler). 188462306a36Sopenharmony_ci */ 188562306a36Sopenharmony_cistatic int napi_rx_handler(struct napi_struct *napi, int budget) 188662306a36Sopenharmony_ci{ 188762306a36Sopenharmony_ci unsigned int intr_params; 188862306a36Sopenharmony_ci struct sge_rspq *rspq = container_of(napi, struct sge_rspq, napi); 188962306a36Sopenharmony_ci int work_done = process_responses(rspq, budget); 189062306a36Sopenharmony_ci u32 val; 189162306a36Sopenharmony_ci 189262306a36Sopenharmony_ci if (likely(work_done < budget)) { 189362306a36Sopenharmony_ci napi_complete_done(napi, work_done); 189462306a36Sopenharmony_ci intr_params = rspq->next_intr_params; 189562306a36Sopenharmony_ci rspq->next_intr_params = rspq->intr_params; 189662306a36Sopenharmony_ci } else 189762306a36Sopenharmony_ci intr_params = QINTR_TIMER_IDX_V(SGE_TIMER_UPD_CIDX); 189862306a36Sopenharmony_ci 189962306a36Sopenharmony_ci if (unlikely(work_done == 0)) 190062306a36Sopenharmony_ci rspq->unhandled_irqs++; 190162306a36Sopenharmony_ci 190262306a36Sopenharmony_ci val = CIDXINC_V(work_done) | SEINTARM_V(intr_params); 190362306a36Sopenharmony_ci /* If we don't have access to the new User GTS (T5+), use the old 190462306a36Sopenharmony_ci * doorbell mechanism; otherwise use the new BAR2 mechanism. 190562306a36Sopenharmony_ci */ 190662306a36Sopenharmony_ci if (unlikely(!rspq->bar2_addr)) { 190762306a36Sopenharmony_ci t4_write_reg(rspq->adapter, 190862306a36Sopenharmony_ci T4VF_SGE_BASE_ADDR + SGE_VF_GTS, 190962306a36Sopenharmony_ci val | INGRESSQID_V((u32)rspq->cntxt_id)); 191062306a36Sopenharmony_ci } else { 191162306a36Sopenharmony_ci writel(val | INGRESSQID_V(rspq->bar2_qid), 191262306a36Sopenharmony_ci rspq->bar2_addr + SGE_UDB_GTS); 191362306a36Sopenharmony_ci wmb(); 191462306a36Sopenharmony_ci } 191562306a36Sopenharmony_ci return work_done; 191662306a36Sopenharmony_ci} 191762306a36Sopenharmony_ci 191862306a36Sopenharmony_ci/* 191962306a36Sopenharmony_ci * The MSI-X interrupt handler for an SGE response queue for the NAPI case 192062306a36Sopenharmony_ci * (i.e., response queue serviced by NAPI polling). 192162306a36Sopenharmony_ci */ 192262306a36Sopenharmony_ciirqreturn_t t4vf_sge_intr_msix(int irq, void *cookie) 192362306a36Sopenharmony_ci{ 192462306a36Sopenharmony_ci struct sge_rspq *rspq = cookie; 192562306a36Sopenharmony_ci 192662306a36Sopenharmony_ci napi_schedule(&rspq->napi); 192762306a36Sopenharmony_ci return IRQ_HANDLED; 192862306a36Sopenharmony_ci} 192962306a36Sopenharmony_ci 193062306a36Sopenharmony_ci/* 193162306a36Sopenharmony_ci * Process the indirect interrupt entries in the interrupt queue and kick off 193262306a36Sopenharmony_ci * NAPI for each queue that has generated an entry. 193362306a36Sopenharmony_ci */ 193462306a36Sopenharmony_cistatic unsigned int process_intrq(struct adapter *adapter) 193562306a36Sopenharmony_ci{ 193662306a36Sopenharmony_ci struct sge *s = &adapter->sge; 193762306a36Sopenharmony_ci struct sge_rspq *intrq = &s->intrq; 193862306a36Sopenharmony_ci unsigned int work_done; 193962306a36Sopenharmony_ci u32 val; 194062306a36Sopenharmony_ci 194162306a36Sopenharmony_ci spin_lock(&adapter->sge.intrq_lock); 194262306a36Sopenharmony_ci for (work_done = 0; ; work_done++) { 194362306a36Sopenharmony_ci const struct rsp_ctrl *rc; 194462306a36Sopenharmony_ci unsigned int qid, iq_idx; 194562306a36Sopenharmony_ci struct sge_rspq *rspq; 194662306a36Sopenharmony_ci 194762306a36Sopenharmony_ci /* 194862306a36Sopenharmony_ci * Grab the next response from the interrupt queue and bail 194962306a36Sopenharmony_ci * out if it's not a new response. 195062306a36Sopenharmony_ci */ 195162306a36Sopenharmony_ci rc = (void *)intrq->cur_desc + (intrq->iqe_len - sizeof(*rc)); 195262306a36Sopenharmony_ci if (!is_new_response(rc, intrq)) 195362306a36Sopenharmony_ci break; 195462306a36Sopenharmony_ci 195562306a36Sopenharmony_ci /* 195662306a36Sopenharmony_ci * If the response isn't a forwarded interrupt message issue a 195762306a36Sopenharmony_ci * error and go on to the next response message. This should 195862306a36Sopenharmony_ci * never happen ... 195962306a36Sopenharmony_ci */ 196062306a36Sopenharmony_ci dma_rmb(); 196162306a36Sopenharmony_ci if (unlikely(RSPD_TYPE_G(rc->type_gen) != RSPD_TYPE_INTR_X)) { 196262306a36Sopenharmony_ci dev_err(adapter->pdev_dev, 196362306a36Sopenharmony_ci "Unexpected INTRQ response type %d\n", 196462306a36Sopenharmony_ci RSPD_TYPE_G(rc->type_gen)); 196562306a36Sopenharmony_ci continue; 196662306a36Sopenharmony_ci } 196762306a36Sopenharmony_ci 196862306a36Sopenharmony_ci /* 196962306a36Sopenharmony_ci * Extract the Queue ID from the interrupt message and perform 197062306a36Sopenharmony_ci * sanity checking to make sure it really refers to one of our 197162306a36Sopenharmony_ci * Ingress Queues which is active and matches the queue's ID. 197262306a36Sopenharmony_ci * None of these error conditions should ever happen so we may 197362306a36Sopenharmony_ci * want to either make them fatal and/or conditionalized under 197462306a36Sopenharmony_ci * DEBUG. 197562306a36Sopenharmony_ci */ 197662306a36Sopenharmony_ci qid = RSPD_QID_G(be32_to_cpu(rc->pldbuflen_qid)); 197762306a36Sopenharmony_ci iq_idx = IQ_IDX(s, qid); 197862306a36Sopenharmony_ci if (unlikely(iq_idx >= MAX_INGQ)) { 197962306a36Sopenharmony_ci dev_err(adapter->pdev_dev, 198062306a36Sopenharmony_ci "Ingress QID %d out of range\n", qid); 198162306a36Sopenharmony_ci continue; 198262306a36Sopenharmony_ci } 198362306a36Sopenharmony_ci rspq = s->ingr_map[iq_idx]; 198462306a36Sopenharmony_ci if (unlikely(rspq == NULL)) { 198562306a36Sopenharmony_ci dev_err(adapter->pdev_dev, 198662306a36Sopenharmony_ci "Ingress QID %d RSPQ=NULL\n", qid); 198762306a36Sopenharmony_ci continue; 198862306a36Sopenharmony_ci } 198962306a36Sopenharmony_ci if (unlikely(rspq->abs_id != qid)) { 199062306a36Sopenharmony_ci dev_err(adapter->pdev_dev, 199162306a36Sopenharmony_ci "Ingress QID %d refers to RSPQ %d\n", 199262306a36Sopenharmony_ci qid, rspq->abs_id); 199362306a36Sopenharmony_ci continue; 199462306a36Sopenharmony_ci } 199562306a36Sopenharmony_ci 199662306a36Sopenharmony_ci /* 199762306a36Sopenharmony_ci * Schedule NAPI processing on the indicated Response Queue 199862306a36Sopenharmony_ci * and move on to the next entry in the Forwarded Interrupt 199962306a36Sopenharmony_ci * Queue. 200062306a36Sopenharmony_ci */ 200162306a36Sopenharmony_ci napi_schedule(&rspq->napi); 200262306a36Sopenharmony_ci rspq_next(intrq); 200362306a36Sopenharmony_ci } 200462306a36Sopenharmony_ci 200562306a36Sopenharmony_ci val = CIDXINC_V(work_done) | SEINTARM_V(intrq->intr_params); 200662306a36Sopenharmony_ci /* If we don't have access to the new User GTS (T5+), use the old 200762306a36Sopenharmony_ci * doorbell mechanism; otherwise use the new BAR2 mechanism. 200862306a36Sopenharmony_ci */ 200962306a36Sopenharmony_ci if (unlikely(!intrq->bar2_addr)) { 201062306a36Sopenharmony_ci t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS, 201162306a36Sopenharmony_ci val | INGRESSQID_V(intrq->cntxt_id)); 201262306a36Sopenharmony_ci } else { 201362306a36Sopenharmony_ci writel(val | INGRESSQID_V(intrq->bar2_qid), 201462306a36Sopenharmony_ci intrq->bar2_addr + SGE_UDB_GTS); 201562306a36Sopenharmony_ci wmb(); 201662306a36Sopenharmony_ci } 201762306a36Sopenharmony_ci 201862306a36Sopenharmony_ci spin_unlock(&adapter->sge.intrq_lock); 201962306a36Sopenharmony_ci 202062306a36Sopenharmony_ci return work_done; 202162306a36Sopenharmony_ci} 202262306a36Sopenharmony_ci 202362306a36Sopenharmony_ci/* 202462306a36Sopenharmony_ci * The MSI interrupt handler handles data events from SGE response queues as 202562306a36Sopenharmony_ci * well as error and other async events as they all use the same MSI vector. 202662306a36Sopenharmony_ci */ 202762306a36Sopenharmony_cistatic irqreturn_t t4vf_intr_msi(int irq, void *cookie) 202862306a36Sopenharmony_ci{ 202962306a36Sopenharmony_ci struct adapter *adapter = cookie; 203062306a36Sopenharmony_ci 203162306a36Sopenharmony_ci process_intrq(adapter); 203262306a36Sopenharmony_ci return IRQ_HANDLED; 203362306a36Sopenharmony_ci} 203462306a36Sopenharmony_ci 203562306a36Sopenharmony_ci/** 203662306a36Sopenharmony_ci * t4vf_intr_handler - select the top-level interrupt handler 203762306a36Sopenharmony_ci * @adapter: the adapter 203862306a36Sopenharmony_ci * 203962306a36Sopenharmony_ci * Selects the top-level interrupt handler based on the type of interrupts 204062306a36Sopenharmony_ci * (MSI-X or MSI). 204162306a36Sopenharmony_ci */ 204262306a36Sopenharmony_ciirq_handler_t t4vf_intr_handler(struct adapter *adapter) 204362306a36Sopenharmony_ci{ 204462306a36Sopenharmony_ci BUG_ON((adapter->flags & 204562306a36Sopenharmony_ci (CXGB4VF_USING_MSIX | CXGB4VF_USING_MSI)) == 0); 204662306a36Sopenharmony_ci if (adapter->flags & CXGB4VF_USING_MSIX) 204762306a36Sopenharmony_ci return t4vf_sge_intr_msix; 204862306a36Sopenharmony_ci else 204962306a36Sopenharmony_ci return t4vf_intr_msi; 205062306a36Sopenharmony_ci} 205162306a36Sopenharmony_ci 205262306a36Sopenharmony_ci/** 205362306a36Sopenharmony_ci * sge_rx_timer_cb - perform periodic maintenance of SGE RX queues 205462306a36Sopenharmony_ci * @t: Rx timer 205562306a36Sopenharmony_ci * 205662306a36Sopenharmony_ci * Runs periodically from a timer to perform maintenance of SGE RX queues. 205762306a36Sopenharmony_ci * 205862306a36Sopenharmony_ci * a) Replenishes RX queues that have run out due to memory shortage. 205962306a36Sopenharmony_ci * Normally new RX buffers are added when existing ones are consumed but 206062306a36Sopenharmony_ci * when out of memory a queue can become empty. We schedule NAPI to do 206162306a36Sopenharmony_ci * the actual refill. 206262306a36Sopenharmony_ci */ 206362306a36Sopenharmony_cistatic void sge_rx_timer_cb(struct timer_list *t) 206462306a36Sopenharmony_ci{ 206562306a36Sopenharmony_ci struct adapter *adapter = from_timer(adapter, t, sge.rx_timer); 206662306a36Sopenharmony_ci struct sge *s = &adapter->sge; 206762306a36Sopenharmony_ci unsigned int i; 206862306a36Sopenharmony_ci 206962306a36Sopenharmony_ci /* 207062306a36Sopenharmony_ci * Scan the "Starving Free Lists" flag array looking for any Free 207162306a36Sopenharmony_ci * Lists in need of more free buffers. If we find one and it's not 207262306a36Sopenharmony_ci * being actively polled, then bump its "starving" counter and attempt 207362306a36Sopenharmony_ci * to refill it. If we're successful in adding enough buffers to push 207462306a36Sopenharmony_ci * the Free List over the starving threshold, then we can clear its 207562306a36Sopenharmony_ci * "starving" status. 207662306a36Sopenharmony_ci */ 207762306a36Sopenharmony_ci for (i = 0; i < ARRAY_SIZE(s->starving_fl); i++) { 207862306a36Sopenharmony_ci unsigned long m; 207962306a36Sopenharmony_ci 208062306a36Sopenharmony_ci for (m = s->starving_fl[i]; m; m &= m - 1) { 208162306a36Sopenharmony_ci unsigned int id = __ffs(m) + i * BITS_PER_LONG; 208262306a36Sopenharmony_ci struct sge_fl *fl = s->egr_map[id]; 208362306a36Sopenharmony_ci 208462306a36Sopenharmony_ci clear_bit(id, s->starving_fl); 208562306a36Sopenharmony_ci smp_mb__after_atomic(); 208662306a36Sopenharmony_ci 208762306a36Sopenharmony_ci /* 208862306a36Sopenharmony_ci * Since we are accessing fl without a lock there's a 208962306a36Sopenharmony_ci * small probability of a false positive where we 209062306a36Sopenharmony_ci * schedule napi but the FL is no longer starving. 209162306a36Sopenharmony_ci * No biggie. 209262306a36Sopenharmony_ci */ 209362306a36Sopenharmony_ci if (fl_starving(adapter, fl)) { 209462306a36Sopenharmony_ci struct sge_eth_rxq *rxq; 209562306a36Sopenharmony_ci 209662306a36Sopenharmony_ci rxq = container_of(fl, struct sge_eth_rxq, fl); 209762306a36Sopenharmony_ci if (napi_reschedule(&rxq->rspq.napi)) 209862306a36Sopenharmony_ci fl->starving++; 209962306a36Sopenharmony_ci else 210062306a36Sopenharmony_ci set_bit(id, s->starving_fl); 210162306a36Sopenharmony_ci } 210262306a36Sopenharmony_ci } 210362306a36Sopenharmony_ci } 210462306a36Sopenharmony_ci 210562306a36Sopenharmony_ci /* 210662306a36Sopenharmony_ci * Reschedule the next scan for starving Free Lists ... 210762306a36Sopenharmony_ci */ 210862306a36Sopenharmony_ci mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD); 210962306a36Sopenharmony_ci} 211062306a36Sopenharmony_ci 211162306a36Sopenharmony_ci/** 211262306a36Sopenharmony_ci * sge_tx_timer_cb - perform periodic maintenance of SGE Tx queues 211362306a36Sopenharmony_ci * @t: Tx timer 211462306a36Sopenharmony_ci * 211562306a36Sopenharmony_ci * Runs periodically from a timer to perform maintenance of SGE TX queues. 211662306a36Sopenharmony_ci * 211762306a36Sopenharmony_ci * b) Reclaims completed Tx packets for the Ethernet queues. Normally 211862306a36Sopenharmony_ci * packets are cleaned up by new Tx packets, this timer cleans up packets 211962306a36Sopenharmony_ci * when no new packets are being submitted. This is essential for pktgen, 212062306a36Sopenharmony_ci * at least. 212162306a36Sopenharmony_ci */ 212262306a36Sopenharmony_cistatic void sge_tx_timer_cb(struct timer_list *t) 212362306a36Sopenharmony_ci{ 212462306a36Sopenharmony_ci struct adapter *adapter = from_timer(adapter, t, sge.tx_timer); 212562306a36Sopenharmony_ci struct sge *s = &adapter->sge; 212662306a36Sopenharmony_ci unsigned int i, budget; 212762306a36Sopenharmony_ci 212862306a36Sopenharmony_ci budget = MAX_TIMER_TX_RECLAIM; 212962306a36Sopenharmony_ci i = s->ethtxq_rover; 213062306a36Sopenharmony_ci do { 213162306a36Sopenharmony_ci struct sge_eth_txq *txq = &s->ethtxq[i]; 213262306a36Sopenharmony_ci 213362306a36Sopenharmony_ci if (reclaimable(&txq->q) && __netif_tx_trylock(txq->txq)) { 213462306a36Sopenharmony_ci int avail = reclaimable(&txq->q); 213562306a36Sopenharmony_ci 213662306a36Sopenharmony_ci if (avail > budget) 213762306a36Sopenharmony_ci avail = budget; 213862306a36Sopenharmony_ci 213962306a36Sopenharmony_ci free_tx_desc(adapter, &txq->q, avail, true); 214062306a36Sopenharmony_ci txq->q.in_use -= avail; 214162306a36Sopenharmony_ci __netif_tx_unlock(txq->txq); 214262306a36Sopenharmony_ci 214362306a36Sopenharmony_ci budget -= avail; 214462306a36Sopenharmony_ci if (!budget) 214562306a36Sopenharmony_ci break; 214662306a36Sopenharmony_ci } 214762306a36Sopenharmony_ci 214862306a36Sopenharmony_ci i++; 214962306a36Sopenharmony_ci if (i >= s->ethqsets) 215062306a36Sopenharmony_ci i = 0; 215162306a36Sopenharmony_ci } while (i != s->ethtxq_rover); 215262306a36Sopenharmony_ci s->ethtxq_rover = i; 215362306a36Sopenharmony_ci 215462306a36Sopenharmony_ci /* 215562306a36Sopenharmony_ci * If we found too many reclaimable packets schedule a timer in the 215662306a36Sopenharmony_ci * near future to continue where we left off. Otherwise the next timer 215762306a36Sopenharmony_ci * will be at its normal interval. 215862306a36Sopenharmony_ci */ 215962306a36Sopenharmony_ci mod_timer(&s->tx_timer, jiffies + (budget ? TX_QCHECK_PERIOD : 2)); 216062306a36Sopenharmony_ci} 216162306a36Sopenharmony_ci 216262306a36Sopenharmony_ci/** 216362306a36Sopenharmony_ci * bar2_address - return the BAR2 address for an SGE Queue's Registers 216462306a36Sopenharmony_ci * @adapter: the adapter 216562306a36Sopenharmony_ci * @qid: the SGE Queue ID 216662306a36Sopenharmony_ci * @qtype: the SGE Queue Type (Egress or Ingress) 216762306a36Sopenharmony_ci * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues 216862306a36Sopenharmony_ci * 216962306a36Sopenharmony_ci * Returns the BAR2 address for the SGE Queue Registers associated with 217062306a36Sopenharmony_ci * @qid. If BAR2 SGE Registers aren't available, returns NULL. Also 217162306a36Sopenharmony_ci * returns the BAR2 Queue ID to be used with writes to the BAR2 SGE 217262306a36Sopenharmony_ci * Queue Registers. If the BAR2 Queue ID is 0, then "Inferred Queue ID" 217362306a36Sopenharmony_ci * Registers are supported (e.g. the Write Combining Doorbell Buffer). 217462306a36Sopenharmony_ci */ 217562306a36Sopenharmony_cistatic void __iomem *bar2_address(struct adapter *adapter, 217662306a36Sopenharmony_ci unsigned int qid, 217762306a36Sopenharmony_ci enum t4_bar2_qtype qtype, 217862306a36Sopenharmony_ci unsigned int *pbar2_qid) 217962306a36Sopenharmony_ci{ 218062306a36Sopenharmony_ci u64 bar2_qoffset; 218162306a36Sopenharmony_ci int ret; 218262306a36Sopenharmony_ci 218362306a36Sopenharmony_ci ret = t4vf_bar2_sge_qregs(adapter, qid, qtype, 218462306a36Sopenharmony_ci &bar2_qoffset, pbar2_qid); 218562306a36Sopenharmony_ci if (ret) 218662306a36Sopenharmony_ci return NULL; 218762306a36Sopenharmony_ci 218862306a36Sopenharmony_ci return adapter->bar2 + bar2_qoffset; 218962306a36Sopenharmony_ci} 219062306a36Sopenharmony_ci 219162306a36Sopenharmony_ci/** 219262306a36Sopenharmony_ci * t4vf_sge_alloc_rxq - allocate an SGE RX Queue 219362306a36Sopenharmony_ci * @adapter: the adapter 219462306a36Sopenharmony_ci * @rspq: pointer to to the new rxq's Response Queue to be filled in 219562306a36Sopenharmony_ci * @iqasynch: if 0, a normal rspq; if 1, an asynchronous event queue 219662306a36Sopenharmony_ci * @dev: the network device associated with the new rspq 219762306a36Sopenharmony_ci * @intr_dest: MSI-X vector index (overriden in MSI mode) 219862306a36Sopenharmony_ci * @fl: pointer to the new rxq's Free List to be filled in 219962306a36Sopenharmony_ci * @hnd: the interrupt handler to invoke for the rspq 220062306a36Sopenharmony_ci */ 220162306a36Sopenharmony_ciint t4vf_sge_alloc_rxq(struct adapter *adapter, struct sge_rspq *rspq, 220262306a36Sopenharmony_ci bool iqasynch, struct net_device *dev, 220362306a36Sopenharmony_ci int intr_dest, 220462306a36Sopenharmony_ci struct sge_fl *fl, rspq_handler_t hnd) 220562306a36Sopenharmony_ci{ 220662306a36Sopenharmony_ci struct sge *s = &adapter->sge; 220762306a36Sopenharmony_ci struct port_info *pi = netdev_priv(dev); 220862306a36Sopenharmony_ci struct fw_iq_cmd cmd, rpl; 220962306a36Sopenharmony_ci int ret, iqandst, flsz = 0; 221062306a36Sopenharmony_ci int relaxed = !(adapter->flags & CXGB4VF_ROOT_NO_RELAXED_ORDERING); 221162306a36Sopenharmony_ci 221262306a36Sopenharmony_ci /* 221362306a36Sopenharmony_ci * If we're using MSI interrupts and we're not initializing the 221462306a36Sopenharmony_ci * Forwarded Interrupt Queue itself, then set up this queue for 221562306a36Sopenharmony_ci * indirect interrupts to the Forwarded Interrupt Queue. Obviously 221662306a36Sopenharmony_ci * the Forwarded Interrupt Queue must be set up before any other 221762306a36Sopenharmony_ci * ingress queue ... 221862306a36Sopenharmony_ci */ 221962306a36Sopenharmony_ci if ((adapter->flags & CXGB4VF_USING_MSI) && 222062306a36Sopenharmony_ci rspq != &adapter->sge.intrq) { 222162306a36Sopenharmony_ci iqandst = SGE_INTRDST_IQ; 222262306a36Sopenharmony_ci intr_dest = adapter->sge.intrq.abs_id; 222362306a36Sopenharmony_ci } else 222462306a36Sopenharmony_ci iqandst = SGE_INTRDST_PCI; 222562306a36Sopenharmony_ci 222662306a36Sopenharmony_ci /* 222762306a36Sopenharmony_ci * Allocate the hardware ring for the Response Queue. The size needs 222862306a36Sopenharmony_ci * to be a multiple of 16 which includes the mandatory status entry 222962306a36Sopenharmony_ci * (regardless of whether the Status Page capabilities are enabled or 223062306a36Sopenharmony_ci * not). 223162306a36Sopenharmony_ci */ 223262306a36Sopenharmony_ci rspq->size = roundup(rspq->size, 16); 223362306a36Sopenharmony_ci rspq->desc = alloc_ring(adapter->pdev_dev, rspq->size, rspq->iqe_len, 223462306a36Sopenharmony_ci 0, &rspq->phys_addr, NULL, 0); 223562306a36Sopenharmony_ci if (!rspq->desc) 223662306a36Sopenharmony_ci return -ENOMEM; 223762306a36Sopenharmony_ci 223862306a36Sopenharmony_ci /* 223962306a36Sopenharmony_ci * Fill in the Ingress Queue Command. Note: Ideally this code would 224062306a36Sopenharmony_ci * be in t4vf_hw.c but there are so many parameters and dependencies 224162306a36Sopenharmony_ci * on our Linux SGE state that we would end up having to pass tons of 224262306a36Sopenharmony_ci * parameters. We'll have to think about how this might be migrated 224362306a36Sopenharmony_ci * into OS-independent common code ... 224462306a36Sopenharmony_ci */ 224562306a36Sopenharmony_ci memset(&cmd, 0, sizeof(cmd)); 224662306a36Sopenharmony_ci cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | 224762306a36Sopenharmony_ci FW_CMD_REQUEST_F | 224862306a36Sopenharmony_ci FW_CMD_WRITE_F | 224962306a36Sopenharmony_ci FW_CMD_EXEC_F); 225062306a36Sopenharmony_ci cmd.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_ALLOC_F | 225162306a36Sopenharmony_ci FW_IQ_CMD_IQSTART_F | 225262306a36Sopenharmony_ci FW_LEN16(cmd)); 225362306a36Sopenharmony_ci cmd.type_to_iqandstindex = 225462306a36Sopenharmony_ci cpu_to_be32(FW_IQ_CMD_TYPE_V(FW_IQ_TYPE_FL_INT_CAP) | 225562306a36Sopenharmony_ci FW_IQ_CMD_IQASYNCH_V(iqasynch) | 225662306a36Sopenharmony_ci FW_IQ_CMD_VIID_V(pi->viid) | 225762306a36Sopenharmony_ci FW_IQ_CMD_IQANDST_V(iqandst) | 225862306a36Sopenharmony_ci FW_IQ_CMD_IQANUS_V(1) | 225962306a36Sopenharmony_ci FW_IQ_CMD_IQANUD_V(SGE_UPDATEDEL_INTR) | 226062306a36Sopenharmony_ci FW_IQ_CMD_IQANDSTINDEX_V(intr_dest)); 226162306a36Sopenharmony_ci cmd.iqdroprss_to_iqesize = 226262306a36Sopenharmony_ci cpu_to_be16(FW_IQ_CMD_IQPCIECH_V(pi->port_id) | 226362306a36Sopenharmony_ci FW_IQ_CMD_IQGTSMODE_F | 226462306a36Sopenharmony_ci FW_IQ_CMD_IQINTCNTTHRESH_V(rspq->pktcnt_idx) | 226562306a36Sopenharmony_ci FW_IQ_CMD_IQESIZE_V(ilog2(rspq->iqe_len) - 4)); 226662306a36Sopenharmony_ci cmd.iqsize = cpu_to_be16(rspq->size); 226762306a36Sopenharmony_ci cmd.iqaddr = cpu_to_be64(rspq->phys_addr); 226862306a36Sopenharmony_ci 226962306a36Sopenharmony_ci if (fl) { 227062306a36Sopenharmony_ci unsigned int chip_ver = 227162306a36Sopenharmony_ci CHELSIO_CHIP_VERSION(adapter->params.chip); 227262306a36Sopenharmony_ci /* 227362306a36Sopenharmony_ci * Allocate the ring for the hardware free list (with space 227462306a36Sopenharmony_ci * for its status page) along with the associated software 227562306a36Sopenharmony_ci * descriptor ring. The free list size needs to be a multiple 227662306a36Sopenharmony_ci * of the Egress Queue Unit and at least 2 Egress Units larger 227762306a36Sopenharmony_ci * than the SGE's Egress Congrestion Threshold 227862306a36Sopenharmony_ci * (fl_starve_thres - 1). 227962306a36Sopenharmony_ci */ 228062306a36Sopenharmony_ci if (fl->size < s->fl_starve_thres - 1 + 2 * FL_PER_EQ_UNIT) 228162306a36Sopenharmony_ci fl->size = s->fl_starve_thres - 1 + 2 * FL_PER_EQ_UNIT; 228262306a36Sopenharmony_ci fl->size = roundup(fl->size, FL_PER_EQ_UNIT); 228362306a36Sopenharmony_ci fl->desc = alloc_ring(adapter->pdev_dev, fl->size, 228462306a36Sopenharmony_ci sizeof(__be64), sizeof(struct rx_sw_desc), 228562306a36Sopenharmony_ci &fl->addr, &fl->sdesc, s->stat_len); 228662306a36Sopenharmony_ci if (!fl->desc) { 228762306a36Sopenharmony_ci ret = -ENOMEM; 228862306a36Sopenharmony_ci goto err; 228962306a36Sopenharmony_ci } 229062306a36Sopenharmony_ci 229162306a36Sopenharmony_ci /* 229262306a36Sopenharmony_ci * Calculate the size of the hardware free list ring plus 229362306a36Sopenharmony_ci * Status Page (which the SGE will place after the end of the 229462306a36Sopenharmony_ci * free list ring) in Egress Queue Units. 229562306a36Sopenharmony_ci */ 229662306a36Sopenharmony_ci flsz = (fl->size / FL_PER_EQ_UNIT + 229762306a36Sopenharmony_ci s->stat_len / EQ_UNIT); 229862306a36Sopenharmony_ci 229962306a36Sopenharmony_ci /* 230062306a36Sopenharmony_ci * Fill in all the relevant firmware Ingress Queue Command 230162306a36Sopenharmony_ci * fields for the free list. 230262306a36Sopenharmony_ci */ 230362306a36Sopenharmony_ci cmd.iqns_to_fl0congen = 230462306a36Sopenharmony_ci cpu_to_be32( 230562306a36Sopenharmony_ci FW_IQ_CMD_FL0HOSTFCMODE_V(SGE_HOSTFCMODE_NONE) | 230662306a36Sopenharmony_ci FW_IQ_CMD_FL0PACKEN_F | 230762306a36Sopenharmony_ci FW_IQ_CMD_FL0FETCHRO_V(relaxed) | 230862306a36Sopenharmony_ci FW_IQ_CMD_FL0DATARO_V(relaxed) | 230962306a36Sopenharmony_ci FW_IQ_CMD_FL0PADEN_F); 231062306a36Sopenharmony_ci 231162306a36Sopenharmony_ci /* In T6, for egress queue type FL there is internal overhead 231262306a36Sopenharmony_ci * of 16B for header going into FLM module. Hence the maximum 231362306a36Sopenharmony_ci * allowed burst size is 448 bytes. For T4/T5, the hardware 231462306a36Sopenharmony_ci * doesn't coalesce fetch requests if more than 64 bytes of 231562306a36Sopenharmony_ci * Free List pointers are provided, so we use a 128-byte Fetch 231662306a36Sopenharmony_ci * Burst Minimum there (T6 implements coalescing so we can use 231762306a36Sopenharmony_ci * the smaller 64-byte value there). 231862306a36Sopenharmony_ci */ 231962306a36Sopenharmony_ci cmd.fl0dcaen_to_fl0cidxfthresh = 232062306a36Sopenharmony_ci cpu_to_be16( 232162306a36Sopenharmony_ci FW_IQ_CMD_FL0FBMIN_V(chip_ver <= CHELSIO_T5 232262306a36Sopenharmony_ci ? FETCHBURSTMIN_128B_X 232362306a36Sopenharmony_ci : FETCHBURSTMIN_64B_T6_X) | 232462306a36Sopenharmony_ci FW_IQ_CMD_FL0FBMAX_V((chip_ver <= CHELSIO_T5) ? 232562306a36Sopenharmony_ci FETCHBURSTMAX_512B_X : 232662306a36Sopenharmony_ci FETCHBURSTMAX_256B_X)); 232762306a36Sopenharmony_ci cmd.fl0size = cpu_to_be16(flsz); 232862306a36Sopenharmony_ci cmd.fl0addr = cpu_to_be64(fl->addr); 232962306a36Sopenharmony_ci } 233062306a36Sopenharmony_ci 233162306a36Sopenharmony_ci /* 233262306a36Sopenharmony_ci * Issue the firmware Ingress Queue Command and extract the results if 233362306a36Sopenharmony_ci * it completes successfully. 233462306a36Sopenharmony_ci */ 233562306a36Sopenharmony_ci ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl); 233662306a36Sopenharmony_ci if (ret) 233762306a36Sopenharmony_ci goto err; 233862306a36Sopenharmony_ci 233962306a36Sopenharmony_ci netif_napi_add(dev, &rspq->napi, napi_rx_handler); 234062306a36Sopenharmony_ci rspq->cur_desc = rspq->desc; 234162306a36Sopenharmony_ci rspq->cidx = 0; 234262306a36Sopenharmony_ci rspq->gen = 1; 234362306a36Sopenharmony_ci rspq->next_intr_params = rspq->intr_params; 234462306a36Sopenharmony_ci rspq->cntxt_id = be16_to_cpu(rpl.iqid); 234562306a36Sopenharmony_ci rspq->bar2_addr = bar2_address(adapter, 234662306a36Sopenharmony_ci rspq->cntxt_id, 234762306a36Sopenharmony_ci T4_BAR2_QTYPE_INGRESS, 234862306a36Sopenharmony_ci &rspq->bar2_qid); 234962306a36Sopenharmony_ci rspq->abs_id = be16_to_cpu(rpl.physiqid); 235062306a36Sopenharmony_ci rspq->size--; /* subtract status entry */ 235162306a36Sopenharmony_ci rspq->adapter = adapter; 235262306a36Sopenharmony_ci rspq->netdev = dev; 235362306a36Sopenharmony_ci rspq->handler = hnd; 235462306a36Sopenharmony_ci 235562306a36Sopenharmony_ci /* set offset to -1 to distinguish ingress queues without FL */ 235662306a36Sopenharmony_ci rspq->offset = fl ? 0 : -1; 235762306a36Sopenharmony_ci 235862306a36Sopenharmony_ci if (fl) { 235962306a36Sopenharmony_ci fl->cntxt_id = be16_to_cpu(rpl.fl0id); 236062306a36Sopenharmony_ci fl->avail = 0; 236162306a36Sopenharmony_ci fl->pend_cred = 0; 236262306a36Sopenharmony_ci fl->pidx = 0; 236362306a36Sopenharmony_ci fl->cidx = 0; 236462306a36Sopenharmony_ci fl->alloc_failed = 0; 236562306a36Sopenharmony_ci fl->large_alloc_failed = 0; 236662306a36Sopenharmony_ci fl->starving = 0; 236762306a36Sopenharmony_ci 236862306a36Sopenharmony_ci /* Note, we must initialize the BAR2 Free List User Doorbell 236962306a36Sopenharmony_ci * information before refilling the Free List! 237062306a36Sopenharmony_ci */ 237162306a36Sopenharmony_ci fl->bar2_addr = bar2_address(adapter, 237262306a36Sopenharmony_ci fl->cntxt_id, 237362306a36Sopenharmony_ci T4_BAR2_QTYPE_EGRESS, 237462306a36Sopenharmony_ci &fl->bar2_qid); 237562306a36Sopenharmony_ci 237662306a36Sopenharmony_ci refill_fl(adapter, fl, fl_cap(fl), GFP_KERNEL); 237762306a36Sopenharmony_ci } 237862306a36Sopenharmony_ci 237962306a36Sopenharmony_ci return 0; 238062306a36Sopenharmony_ci 238162306a36Sopenharmony_cierr: 238262306a36Sopenharmony_ci /* 238362306a36Sopenharmony_ci * An error occurred. Clean up our partial allocation state and 238462306a36Sopenharmony_ci * return the error. 238562306a36Sopenharmony_ci */ 238662306a36Sopenharmony_ci if (rspq->desc) { 238762306a36Sopenharmony_ci dma_free_coherent(adapter->pdev_dev, rspq->size * rspq->iqe_len, 238862306a36Sopenharmony_ci rspq->desc, rspq->phys_addr); 238962306a36Sopenharmony_ci rspq->desc = NULL; 239062306a36Sopenharmony_ci } 239162306a36Sopenharmony_ci if (fl && fl->desc) { 239262306a36Sopenharmony_ci kfree(fl->sdesc); 239362306a36Sopenharmony_ci fl->sdesc = NULL; 239462306a36Sopenharmony_ci dma_free_coherent(adapter->pdev_dev, flsz * EQ_UNIT, 239562306a36Sopenharmony_ci fl->desc, fl->addr); 239662306a36Sopenharmony_ci fl->desc = NULL; 239762306a36Sopenharmony_ci } 239862306a36Sopenharmony_ci return ret; 239962306a36Sopenharmony_ci} 240062306a36Sopenharmony_ci 240162306a36Sopenharmony_ci/** 240262306a36Sopenharmony_ci * t4vf_sge_alloc_eth_txq - allocate an SGE Ethernet TX Queue 240362306a36Sopenharmony_ci * @adapter: the adapter 240462306a36Sopenharmony_ci * @txq: pointer to the new txq to be filled in 240562306a36Sopenharmony_ci * @dev: the network device 240662306a36Sopenharmony_ci * @devq: the network TX queue associated with the new txq 240762306a36Sopenharmony_ci * @iqid: the relative ingress queue ID to which events relating to 240862306a36Sopenharmony_ci * the new txq should be directed 240962306a36Sopenharmony_ci */ 241062306a36Sopenharmony_ciint t4vf_sge_alloc_eth_txq(struct adapter *adapter, struct sge_eth_txq *txq, 241162306a36Sopenharmony_ci struct net_device *dev, struct netdev_queue *devq, 241262306a36Sopenharmony_ci unsigned int iqid) 241362306a36Sopenharmony_ci{ 241462306a36Sopenharmony_ci unsigned int chip_ver = CHELSIO_CHIP_VERSION(adapter->params.chip); 241562306a36Sopenharmony_ci struct port_info *pi = netdev_priv(dev); 241662306a36Sopenharmony_ci struct fw_eq_eth_cmd cmd, rpl; 241762306a36Sopenharmony_ci struct sge *s = &adapter->sge; 241862306a36Sopenharmony_ci int ret, nentries; 241962306a36Sopenharmony_ci 242062306a36Sopenharmony_ci /* 242162306a36Sopenharmony_ci * Calculate the size of the hardware TX Queue (including the Status 242262306a36Sopenharmony_ci * Page on the end of the TX Queue) in units of TX Descriptors. 242362306a36Sopenharmony_ci */ 242462306a36Sopenharmony_ci nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc); 242562306a36Sopenharmony_ci 242662306a36Sopenharmony_ci /* 242762306a36Sopenharmony_ci * Allocate the hardware ring for the TX ring (with space for its 242862306a36Sopenharmony_ci * status page) along with the associated software descriptor ring. 242962306a36Sopenharmony_ci */ 243062306a36Sopenharmony_ci txq->q.desc = alloc_ring(adapter->pdev_dev, txq->q.size, 243162306a36Sopenharmony_ci sizeof(struct tx_desc), 243262306a36Sopenharmony_ci sizeof(struct tx_sw_desc), 243362306a36Sopenharmony_ci &txq->q.phys_addr, &txq->q.sdesc, s->stat_len); 243462306a36Sopenharmony_ci if (!txq->q.desc) 243562306a36Sopenharmony_ci return -ENOMEM; 243662306a36Sopenharmony_ci 243762306a36Sopenharmony_ci /* 243862306a36Sopenharmony_ci * Fill in the Egress Queue Command. Note: As with the direct use of 243962306a36Sopenharmony_ci * the firmware Ingress Queue COmmand above in our RXQ allocation 244062306a36Sopenharmony_ci * routine, ideally, this code would be in t4vf_hw.c. Again, we'll 244162306a36Sopenharmony_ci * have to see if there's some reasonable way to parameterize it 244262306a36Sopenharmony_ci * into the common code ... 244362306a36Sopenharmony_ci */ 244462306a36Sopenharmony_ci memset(&cmd, 0, sizeof(cmd)); 244562306a36Sopenharmony_ci cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) | 244662306a36Sopenharmony_ci FW_CMD_REQUEST_F | 244762306a36Sopenharmony_ci FW_CMD_WRITE_F | 244862306a36Sopenharmony_ci FW_CMD_EXEC_F); 244962306a36Sopenharmony_ci cmd.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_ALLOC_F | 245062306a36Sopenharmony_ci FW_EQ_ETH_CMD_EQSTART_F | 245162306a36Sopenharmony_ci FW_LEN16(cmd)); 245262306a36Sopenharmony_ci cmd.autoequiqe_to_viid = cpu_to_be32(FW_EQ_ETH_CMD_AUTOEQUEQE_F | 245362306a36Sopenharmony_ci FW_EQ_ETH_CMD_VIID_V(pi->viid)); 245462306a36Sopenharmony_ci cmd.fetchszm_to_iqid = 245562306a36Sopenharmony_ci cpu_to_be32(FW_EQ_ETH_CMD_HOSTFCMODE_V(SGE_HOSTFCMODE_STPG) | 245662306a36Sopenharmony_ci FW_EQ_ETH_CMD_PCIECHN_V(pi->port_id) | 245762306a36Sopenharmony_ci FW_EQ_ETH_CMD_IQID_V(iqid)); 245862306a36Sopenharmony_ci cmd.dcaen_to_eqsize = 245962306a36Sopenharmony_ci cpu_to_be32(FW_EQ_ETH_CMD_FBMIN_V(chip_ver <= CHELSIO_T5 246062306a36Sopenharmony_ci ? FETCHBURSTMIN_64B_X 246162306a36Sopenharmony_ci : FETCHBURSTMIN_64B_T6_X) | 246262306a36Sopenharmony_ci FW_EQ_ETH_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) | 246362306a36Sopenharmony_ci FW_EQ_ETH_CMD_CIDXFTHRESH_V( 246462306a36Sopenharmony_ci CIDXFLUSHTHRESH_32_X) | 246562306a36Sopenharmony_ci FW_EQ_ETH_CMD_EQSIZE_V(nentries)); 246662306a36Sopenharmony_ci cmd.eqaddr = cpu_to_be64(txq->q.phys_addr); 246762306a36Sopenharmony_ci 246862306a36Sopenharmony_ci /* 246962306a36Sopenharmony_ci * Issue the firmware Egress Queue Command and extract the results if 247062306a36Sopenharmony_ci * it completes successfully. 247162306a36Sopenharmony_ci */ 247262306a36Sopenharmony_ci ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl); 247362306a36Sopenharmony_ci if (ret) { 247462306a36Sopenharmony_ci /* 247562306a36Sopenharmony_ci * The girmware Ingress Queue Command failed for some reason. 247662306a36Sopenharmony_ci * Free up our partial allocation state and return the error. 247762306a36Sopenharmony_ci */ 247862306a36Sopenharmony_ci kfree(txq->q.sdesc); 247962306a36Sopenharmony_ci txq->q.sdesc = NULL; 248062306a36Sopenharmony_ci dma_free_coherent(adapter->pdev_dev, 248162306a36Sopenharmony_ci nentries * sizeof(struct tx_desc), 248262306a36Sopenharmony_ci txq->q.desc, txq->q.phys_addr); 248362306a36Sopenharmony_ci txq->q.desc = NULL; 248462306a36Sopenharmony_ci return ret; 248562306a36Sopenharmony_ci } 248662306a36Sopenharmony_ci 248762306a36Sopenharmony_ci txq->q.in_use = 0; 248862306a36Sopenharmony_ci txq->q.cidx = 0; 248962306a36Sopenharmony_ci txq->q.pidx = 0; 249062306a36Sopenharmony_ci txq->q.stat = (void *)&txq->q.desc[txq->q.size]; 249162306a36Sopenharmony_ci txq->q.cntxt_id = FW_EQ_ETH_CMD_EQID_G(be32_to_cpu(rpl.eqid_pkd)); 249262306a36Sopenharmony_ci txq->q.bar2_addr = bar2_address(adapter, 249362306a36Sopenharmony_ci txq->q.cntxt_id, 249462306a36Sopenharmony_ci T4_BAR2_QTYPE_EGRESS, 249562306a36Sopenharmony_ci &txq->q.bar2_qid); 249662306a36Sopenharmony_ci txq->q.abs_id = 249762306a36Sopenharmony_ci FW_EQ_ETH_CMD_PHYSEQID_G(be32_to_cpu(rpl.physeqid_pkd)); 249862306a36Sopenharmony_ci txq->txq = devq; 249962306a36Sopenharmony_ci txq->tso = 0; 250062306a36Sopenharmony_ci txq->tx_cso = 0; 250162306a36Sopenharmony_ci txq->vlan_ins = 0; 250262306a36Sopenharmony_ci txq->q.stops = 0; 250362306a36Sopenharmony_ci txq->q.restarts = 0; 250462306a36Sopenharmony_ci txq->mapping_err = 0; 250562306a36Sopenharmony_ci return 0; 250662306a36Sopenharmony_ci} 250762306a36Sopenharmony_ci 250862306a36Sopenharmony_ci/* 250962306a36Sopenharmony_ci * Free the DMA map resources associated with a TX queue. 251062306a36Sopenharmony_ci */ 251162306a36Sopenharmony_cistatic void free_txq(struct adapter *adapter, struct sge_txq *tq) 251262306a36Sopenharmony_ci{ 251362306a36Sopenharmony_ci struct sge *s = &adapter->sge; 251462306a36Sopenharmony_ci 251562306a36Sopenharmony_ci dma_free_coherent(adapter->pdev_dev, 251662306a36Sopenharmony_ci tq->size * sizeof(*tq->desc) + s->stat_len, 251762306a36Sopenharmony_ci tq->desc, tq->phys_addr); 251862306a36Sopenharmony_ci tq->cntxt_id = 0; 251962306a36Sopenharmony_ci tq->sdesc = NULL; 252062306a36Sopenharmony_ci tq->desc = NULL; 252162306a36Sopenharmony_ci} 252262306a36Sopenharmony_ci 252362306a36Sopenharmony_ci/* 252462306a36Sopenharmony_ci * Free the resources associated with a response queue (possibly including a 252562306a36Sopenharmony_ci * free list). 252662306a36Sopenharmony_ci */ 252762306a36Sopenharmony_cistatic void free_rspq_fl(struct adapter *adapter, struct sge_rspq *rspq, 252862306a36Sopenharmony_ci struct sge_fl *fl) 252962306a36Sopenharmony_ci{ 253062306a36Sopenharmony_ci struct sge *s = &adapter->sge; 253162306a36Sopenharmony_ci unsigned int flid = fl ? fl->cntxt_id : 0xffff; 253262306a36Sopenharmony_ci 253362306a36Sopenharmony_ci t4vf_iq_free(adapter, FW_IQ_TYPE_FL_INT_CAP, 253462306a36Sopenharmony_ci rspq->cntxt_id, flid, 0xffff); 253562306a36Sopenharmony_ci dma_free_coherent(adapter->pdev_dev, (rspq->size + 1) * rspq->iqe_len, 253662306a36Sopenharmony_ci rspq->desc, rspq->phys_addr); 253762306a36Sopenharmony_ci netif_napi_del(&rspq->napi); 253862306a36Sopenharmony_ci rspq->netdev = NULL; 253962306a36Sopenharmony_ci rspq->cntxt_id = 0; 254062306a36Sopenharmony_ci rspq->abs_id = 0; 254162306a36Sopenharmony_ci rspq->desc = NULL; 254262306a36Sopenharmony_ci 254362306a36Sopenharmony_ci if (fl) { 254462306a36Sopenharmony_ci free_rx_bufs(adapter, fl, fl->avail); 254562306a36Sopenharmony_ci dma_free_coherent(adapter->pdev_dev, 254662306a36Sopenharmony_ci fl->size * sizeof(*fl->desc) + s->stat_len, 254762306a36Sopenharmony_ci fl->desc, fl->addr); 254862306a36Sopenharmony_ci kfree(fl->sdesc); 254962306a36Sopenharmony_ci fl->sdesc = NULL; 255062306a36Sopenharmony_ci fl->cntxt_id = 0; 255162306a36Sopenharmony_ci fl->desc = NULL; 255262306a36Sopenharmony_ci } 255362306a36Sopenharmony_ci} 255462306a36Sopenharmony_ci 255562306a36Sopenharmony_ci/** 255662306a36Sopenharmony_ci * t4vf_free_sge_resources - free SGE resources 255762306a36Sopenharmony_ci * @adapter: the adapter 255862306a36Sopenharmony_ci * 255962306a36Sopenharmony_ci * Frees resources used by the SGE queue sets. 256062306a36Sopenharmony_ci */ 256162306a36Sopenharmony_civoid t4vf_free_sge_resources(struct adapter *adapter) 256262306a36Sopenharmony_ci{ 256362306a36Sopenharmony_ci struct sge *s = &adapter->sge; 256462306a36Sopenharmony_ci struct sge_eth_rxq *rxq = s->ethrxq; 256562306a36Sopenharmony_ci struct sge_eth_txq *txq = s->ethtxq; 256662306a36Sopenharmony_ci struct sge_rspq *evtq = &s->fw_evtq; 256762306a36Sopenharmony_ci struct sge_rspq *intrq = &s->intrq; 256862306a36Sopenharmony_ci int qs; 256962306a36Sopenharmony_ci 257062306a36Sopenharmony_ci for (qs = 0; qs < adapter->sge.ethqsets; qs++, rxq++, txq++) { 257162306a36Sopenharmony_ci if (rxq->rspq.desc) 257262306a36Sopenharmony_ci free_rspq_fl(adapter, &rxq->rspq, &rxq->fl); 257362306a36Sopenharmony_ci if (txq->q.desc) { 257462306a36Sopenharmony_ci t4vf_eth_eq_free(adapter, txq->q.cntxt_id); 257562306a36Sopenharmony_ci free_tx_desc(adapter, &txq->q, txq->q.in_use, true); 257662306a36Sopenharmony_ci kfree(txq->q.sdesc); 257762306a36Sopenharmony_ci free_txq(adapter, &txq->q); 257862306a36Sopenharmony_ci } 257962306a36Sopenharmony_ci } 258062306a36Sopenharmony_ci if (evtq->desc) 258162306a36Sopenharmony_ci free_rspq_fl(adapter, evtq, NULL); 258262306a36Sopenharmony_ci if (intrq->desc) 258362306a36Sopenharmony_ci free_rspq_fl(adapter, intrq, NULL); 258462306a36Sopenharmony_ci} 258562306a36Sopenharmony_ci 258662306a36Sopenharmony_ci/** 258762306a36Sopenharmony_ci * t4vf_sge_start - enable SGE operation 258862306a36Sopenharmony_ci * @adapter: the adapter 258962306a36Sopenharmony_ci * 259062306a36Sopenharmony_ci * Start tasklets and timers associated with the DMA engine. 259162306a36Sopenharmony_ci */ 259262306a36Sopenharmony_civoid t4vf_sge_start(struct adapter *adapter) 259362306a36Sopenharmony_ci{ 259462306a36Sopenharmony_ci adapter->sge.ethtxq_rover = 0; 259562306a36Sopenharmony_ci mod_timer(&adapter->sge.rx_timer, jiffies + RX_QCHECK_PERIOD); 259662306a36Sopenharmony_ci mod_timer(&adapter->sge.tx_timer, jiffies + TX_QCHECK_PERIOD); 259762306a36Sopenharmony_ci} 259862306a36Sopenharmony_ci 259962306a36Sopenharmony_ci/** 260062306a36Sopenharmony_ci * t4vf_sge_stop - disable SGE operation 260162306a36Sopenharmony_ci * @adapter: the adapter 260262306a36Sopenharmony_ci * 260362306a36Sopenharmony_ci * Stop tasklets and timers associated with the DMA engine. Note that 260462306a36Sopenharmony_ci * this is effective only if measures have been taken to disable any HW 260562306a36Sopenharmony_ci * events that may restart them. 260662306a36Sopenharmony_ci */ 260762306a36Sopenharmony_civoid t4vf_sge_stop(struct adapter *adapter) 260862306a36Sopenharmony_ci{ 260962306a36Sopenharmony_ci struct sge *s = &adapter->sge; 261062306a36Sopenharmony_ci 261162306a36Sopenharmony_ci if (s->rx_timer.function) 261262306a36Sopenharmony_ci del_timer_sync(&s->rx_timer); 261362306a36Sopenharmony_ci if (s->tx_timer.function) 261462306a36Sopenharmony_ci del_timer_sync(&s->tx_timer); 261562306a36Sopenharmony_ci} 261662306a36Sopenharmony_ci 261762306a36Sopenharmony_ci/** 261862306a36Sopenharmony_ci * t4vf_sge_init - initialize SGE 261962306a36Sopenharmony_ci * @adapter: the adapter 262062306a36Sopenharmony_ci * 262162306a36Sopenharmony_ci * Performs SGE initialization needed every time after a chip reset. 262262306a36Sopenharmony_ci * We do not initialize any of the queue sets here, instead the driver 262362306a36Sopenharmony_ci * top-level must request those individually. We also do not enable DMA 262462306a36Sopenharmony_ci * here, that should be done after the queues have been set up. 262562306a36Sopenharmony_ci */ 262662306a36Sopenharmony_ciint t4vf_sge_init(struct adapter *adapter) 262762306a36Sopenharmony_ci{ 262862306a36Sopenharmony_ci struct sge_params *sge_params = &adapter->params.sge; 262962306a36Sopenharmony_ci u32 fl_small_pg = sge_params->sge_fl_buffer_size[0]; 263062306a36Sopenharmony_ci u32 fl_large_pg = sge_params->sge_fl_buffer_size[1]; 263162306a36Sopenharmony_ci struct sge *s = &adapter->sge; 263262306a36Sopenharmony_ci 263362306a36Sopenharmony_ci /* 263462306a36Sopenharmony_ci * Start by vetting the basic SGE parameters which have been set up by 263562306a36Sopenharmony_ci * the Physical Function Driver. Ideally we should be able to deal 263662306a36Sopenharmony_ci * with _any_ configuration. Practice is different ... 263762306a36Sopenharmony_ci */ 263862306a36Sopenharmony_ci 263962306a36Sopenharmony_ci /* We only bother using the Large Page logic if the Large Page Buffer 264062306a36Sopenharmony_ci * is larger than our Page Size Buffer. 264162306a36Sopenharmony_ci */ 264262306a36Sopenharmony_ci if (fl_large_pg <= fl_small_pg) 264362306a36Sopenharmony_ci fl_large_pg = 0; 264462306a36Sopenharmony_ci 264562306a36Sopenharmony_ci /* The Page Size Buffer must be exactly equal to our Page Size and the 264662306a36Sopenharmony_ci * Large Page Size Buffer should be 0 (per above) or a power of 2. 264762306a36Sopenharmony_ci */ 264862306a36Sopenharmony_ci if (fl_small_pg != PAGE_SIZE || 264962306a36Sopenharmony_ci (fl_large_pg & (fl_large_pg - 1)) != 0) { 265062306a36Sopenharmony_ci dev_err(adapter->pdev_dev, "bad SGE FL buffer sizes [%d, %d]\n", 265162306a36Sopenharmony_ci fl_small_pg, fl_large_pg); 265262306a36Sopenharmony_ci return -EINVAL; 265362306a36Sopenharmony_ci } 265462306a36Sopenharmony_ci if ((sge_params->sge_control & RXPKTCPLMODE_F) != 265562306a36Sopenharmony_ci RXPKTCPLMODE_V(RXPKTCPLMODE_SPLIT_X)) { 265662306a36Sopenharmony_ci dev_err(adapter->pdev_dev, "bad SGE CPL MODE\n"); 265762306a36Sopenharmony_ci return -EINVAL; 265862306a36Sopenharmony_ci } 265962306a36Sopenharmony_ci 266062306a36Sopenharmony_ci /* 266162306a36Sopenharmony_ci * Now translate the adapter parameters into our internal forms. 266262306a36Sopenharmony_ci */ 266362306a36Sopenharmony_ci if (fl_large_pg) 266462306a36Sopenharmony_ci s->fl_pg_order = ilog2(fl_large_pg) - PAGE_SHIFT; 266562306a36Sopenharmony_ci s->stat_len = ((sge_params->sge_control & EGRSTATUSPAGESIZE_F) 266662306a36Sopenharmony_ci ? 128 : 64); 266762306a36Sopenharmony_ci s->pktshift = PKTSHIFT_G(sge_params->sge_control); 266862306a36Sopenharmony_ci s->fl_align = t4vf_fl_pkt_align(adapter); 266962306a36Sopenharmony_ci 267062306a36Sopenharmony_ci /* A FL with <= fl_starve_thres buffers is starving and a periodic 267162306a36Sopenharmony_ci * timer will attempt to refill it. This needs to be larger than the 267262306a36Sopenharmony_ci * SGE's Egress Congestion Threshold. If it isn't, then we can get 267362306a36Sopenharmony_ci * stuck waiting for new packets while the SGE is waiting for us to 267462306a36Sopenharmony_ci * give it more Free List entries. (Note that the SGE's Egress 267562306a36Sopenharmony_ci * Congestion Threshold is in units of 2 Free List pointers.) 267662306a36Sopenharmony_ci */ 267762306a36Sopenharmony_ci switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) { 267862306a36Sopenharmony_ci case CHELSIO_T4: 267962306a36Sopenharmony_ci s->fl_starve_thres = 268062306a36Sopenharmony_ci EGRTHRESHOLD_G(sge_params->sge_congestion_control); 268162306a36Sopenharmony_ci break; 268262306a36Sopenharmony_ci case CHELSIO_T5: 268362306a36Sopenharmony_ci s->fl_starve_thres = 268462306a36Sopenharmony_ci EGRTHRESHOLDPACKING_G(sge_params->sge_congestion_control); 268562306a36Sopenharmony_ci break; 268662306a36Sopenharmony_ci case CHELSIO_T6: 268762306a36Sopenharmony_ci default: 268862306a36Sopenharmony_ci s->fl_starve_thres = 268962306a36Sopenharmony_ci T6_EGRTHRESHOLDPACKING_G(sge_params->sge_congestion_control); 269062306a36Sopenharmony_ci break; 269162306a36Sopenharmony_ci } 269262306a36Sopenharmony_ci s->fl_starve_thres = s->fl_starve_thres * 2 + 1; 269362306a36Sopenharmony_ci 269462306a36Sopenharmony_ci /* 269562306a36Sopenharmony_ci * Set up tasklet timers. 269662306a36Sopenharmony_ci */ 269762306a36Sopenharmony_ci timer_setup(&s->rx_timer, sge_rx_timer_cb, 0); 269862306a36Sopenharmony_ci timer_setup(&s->tx_timer, sge_tx_timer_cb, 0); 269962306a36Sopenharmony_ci 270062306a36Sopenharmony_ci /* 270162306a36Sopenharmony_ci * Initialize Forwarded Interrupt Queue lock. 270262306a36Sopenharmony_ci */ 270362306a36Sopenharmony_ci spin_lock_init(&s->intrq_lock); 270462306a36Sopenharmony_ci 270562306a36Sopenharmony_ci return 0; 270662306a36Sopenharmony_ci} 2707