1/*
2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
3 *
4 * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
5 *
6 * This software is available to you under a choice of one of two
7 * licenses.  You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
11 *
12 *     Redistribution and use in source and binary forms, with or
13 *     without modification, are permitted provided that the following
14 *     conditions are met:
15 *
16 *      - Redistributions of source code must retain the above
17 *        copyright notice, this list of conditions and the following
18 *        disclaimer.
19 *
20 *      - Redistributions in binary form must reproduce the above
21 *        copyright notice, this list of conditions and the following
22 *        disclaimer in the documentation and/or other materials
23 *        provided with the distribution.
24 *
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
33 */
34
35#include <linux/skbuff.h>
36#include <linux/netdevice.h>
37#include <linux/etherdevice.h>
38#include <linux/if_vlan.h>
39#include <linux/ip.h>
40#include <linux/dma-mapping.h>
41#include <linux/jiffies.h>
42#include <linux/prefetch.h>
43#include <linux/export.h>
44#include <net/xfrm.h>
45#include <net/ipv6.h>
46#include <net/tcp.h>
47#include <net/busy_poll.h>
48#ifdef CONFIG_CHELSIO_T4_FCOE
49#include <scsi/fc/fc_fcoe.h>
50#endif /* CONFIG_CHELSIO_T4_FCOE */
51#include "cxgb4.h"
52#include "t4_regs.h"
53#include "t4_values.h"
54#include "t4_msg.h"
55#include "t4fw_api.h"
56#include "cxgb4_ptp.h"
57#include "cxgb4_uld.h"
58#include "cxgb4_tc_mqprio.h"
59#include "sched.h"
60
61/*
62 * Rx buffer size.  We use largish buffers if possible but settle for single
63 * pages under memory shortage.
64 */
65#if PAGE_SHIFT >= 16
66# define FL_PG_ORDER 0
67#else
68# define FL_PG_ORDER (16 - PAGE_SHIFT)
69#endif
70
71/* RX_PULL_LEN should be <= RX_COPY_THRES */
72#define RX_COPY_THRES    256
73#define RX_PULL_LEN      128
74
75/*
76 * Main body length for sk_buffs used for Rx Ethernet packets with fragments.
77 * Should be >= RX_PULL_LEN but possibly bigger to give pskb_may_pull some room.
78 */
79#define RX_PKT_SKB_LEN   512
80
81/*
82 * Max number of Tx descriptors we clean up at a time.  Should be modest as
83 * freeing skbs isn't cheap and it happens while holding locks.  We just need
84 * to free packets faster than they arrive, we eventually catch up and keep
85 * the amortized cost reasonable.  Must be >= 2 * TXQ_STOP_THRES.  It should
86 * also match the CIDX Flush Threshold.
87 */
88#define MAX_TX_RECLAIM 32
89
90/*
91 * Max number of Rx buffers we replenish at a time.  Again keep this modest,
92 * allocating buffers isn't cheap either.
93 */
94#define MAX_RX_REFILL 16U
95
96/*
97 * Period of the Rx queue check timer.  This timer is infrequent as it has
98 * something to do only when the system experiences severe memory shortage.
99 */
100#define RX_QCHECK_PERIOD (HZ / 2)
101
102/*
103 * Period of the Tx queue check timer.
104 */
105#define TX_QCHECK_PERIOD (HZ / 2)
106
107/*
108 * Max number of Tx descriptors to be reclaimed by the Tx timer.
109 */
110#define MAX_TIMER_TX_RECLAIM 100
111
112/*
113 * Timer index used when backing off due to memory shortage.
114 */
115#define NOMEM_TMR_IDX (SGE_NTIMERS - 1)
116
117/*
118 * Suspension threshold for non-Ethernet Tx queues.  We require enough room
119 * for a full sized WR.
120 */
121#define TXQ_STOP_THRES (SGE_MAX_WR_LEN / sizeof(struct tx_desc))
122
123/*
124 * Max Tx descriptor space we allow for an Ethernet packet to be inlined
125 * into a WR.
126 */
127#define MAX_IMM_TX_PKT_LEN 256
128
129/*
130 * Max size of a WR sent through a control Tx queue.
131 */
132#define MAX_CTRL_WR_LEN SGE_MAX_WR_LEN
133
134struct rx_sw_desc {                /* SW state per Rx descriptor */
135	struct page *page;
136	dma_addr_t dma_addr;
137};
138
139/*
140 * Rx buffer sizes for "useskbs" Free List buffers (one ingress packet pe skb
141 * buffer).  We currently only support two sizes for 1500- and 9000-byte MTUs.
142 * We could easily support more but there doesn't seem to be much need for
143 * that ...
144 */
145#define FL_MTU_SMALL 1500
146#define FL_MTU_LARGE 9000
147
148static inline unsigned int fl_mtu_bufsize(struct adapter *adapter,
149					  unsigned int mtu)
150{
151	struct sge *s = &adapter->sge;
152
153	return ALIGN(s->pktshift + ETH_HLEN + VLAN_HLEN + mtu, s->fl_align);
154}
155
156#define FL_MTU_SMALL_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_SMALL)
157#define FL_MTU_LARGE_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_LARGE)
158
159/*
160 * Bits 0..3 of rx_sw_desc.dma_addr have special meaning.  The hardware uses
161 * these to specify the buffer size as an index into the SGE Free List Buffer
162 * Size register array.  We also use bit 4, when the buffer has been unmapped
163 * for DMA, but this is of course never sent to the hardware and is only used
164 * to prevent double unmappings.  All of the above requires that the Free List
165 * Buffers which we allocate have the bottom 5 bits free (0) -- i.e. are
166 * 32-byte or or a power of 2 greater in alignment.  Since the SGE's minimal
167 * Free List Buffer alignment is 32 bytes, this works out for us ...
168 */
169enum {
170	RX_BUF_FLAGS     = 0x1f,   /* bottom five bits are special */
171	RX_BUF_SIZE      = 0x0f,   /* bottom three bits are for buf sizes */
172	RX_UNMAPPED_BUF  = 0x10,   /* buffer is not mapped */
173
174	/*
175	 * XXX We shouldn't depend on being able to use these indices.
176	 * XXX Especially when some other Master PF has initialized the
177	 * XXX adapter or we use the Firmware Configuration File.  We
178	 * XXX should really search through the Host Buffer Size register
179	 * XXX array for the appropriately sized buffer indices.
180	 */
181	RX_SMALL_PG_BUF  = 0x0,   /* small (PAGE_SIZE) page buffer */
182	RX_LARGE_PG_BUF  = 0x1,   /* buffer large (FL_PG_ORDER) page buffer */
183
184	RX_SMALL_MTU_BUF = 0x2,   /* small MTU buffer */
185	RX_LARGE_MTU_BUF = 0x3,   /* large MTU buffer */
186};
187
188static int timer_pkt_quota[] = {1, 1, 2, 3, 4, 5};
189#define MIN_NAPI_WORK  1
190
191static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *d)
192{
193	return d->dma_addr & ~(dma_addr_t)RX_BUF_FLAGS;
194}
195
196static inline bool is_buf_mapped(const struct rx_sw_desc *d)
197{
198	return !(d->dma_addr & RX_UNMAPPED_BUF);
199}
200
201/**
202 *	txq_avail - return the number of available slots in a Tx queue
203 *	@q: the Tx queue
204 *
205 *	Returns the number of descriptors in a Tx queue available to write new
206 *	packets.
207 */
208static inline unsigned int txq_avail(const struct sge_txq *q)
209{
210	return q->size - 1 - q->in_use;
211}
212
213/**
214 *	fl_cap - return the capacity of a free-buffer list
215 *	@fl: the FL
216 *
217 *	Returns the capacity of a free-buffer list.  The capacity is less than
218 *	the size because one descriptor needs to be left unpopulated, otherwise
219 *	HW will think the FL is empty.
220 */
221static inline unsigned int fl_cap(const struct sge_fl *fl)
222{
223	return fl->size - 8;   /* 1 descriptor = 8 buffers */
224}
225
226/**
227 *	fl_starving - return whether a Free List is starving.
228 *	@adapter: pointer to the adapter
229 *	@fl: the Free List
230 *
231 *	Tests specified Free List to see whether the number of buffers
232 *	available to the hardware has falled below our "starvation"
233 *	threshold.
234 */
235static inline bool fl_starving(const struct adapter *adapter,
236			       const struct sge_fl *fl)
237{
238	const struct sge *s = &adapter->sge;
239
240	return fl->avail - fl->pend_cred <= s->fl_starve_thres;
241}
242
243int cxgb4_map_skb(struct device *dev, const struct sk_buff *skb,
244		  dma_addr_t *addr)
245{
246	const skb_frag_t *fp, *end;
247	const struct skb_shared_info *si;
248
249	*addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
250	if (dma_mapping_error(dev, *addr))
251		goto out_err;
252
253	si = skb_shinfo(skb);
254	end = &si->frags[si->nr_frags];
255
256	for (fp = si->frags; fp < end; fp++) {
257		*++addr = skb_frag_dma_map(dev, fp, 0, skb_frag_size(fp),
258					   DMA_TO_DEVICE);
259		if (dma_mapping_error(dev, *addr))
260			goto unwind;
261	}
262	return 0;
263
264unwind:
265	while (fp-- > si->frags)
266		dma_unmap_page(dev, *--addr, skb_frag_size(fp), DMA_TO_DEVICE);
267
268	dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE);
269out_err:
270	return -ENOMEM;
271}
272EXPORT_SYMBOL(cxgb4_map_skb);
273
274static void unmap_skb(struct device *dev, const struct sk_buff *skb,
275		      const dma_addr_t *addr)
276{
277	const skb_frag_t *fp, *end;
278	const struct skb_shared_info *si;
279
280	dma_unmap_single(dev, *addr++, skb_headlen(skb), DMA_TO_DEVICE);
281
282	si = skb_shinfo(skb);
283	end = &si->frags[si->nr_frags];
284	for (fp = si->frags; fp < end; fp++)
285		dma_unmap_page(dev, *addr++, skb_frag_size(fp), DMA_TO_DEVICE);
286}
287
288#ifdef CONFIG_NEED_DMA_MAP_STATE
289/**
290 *	deferred_unmap_destructor - unmap a packet when it is freed
291 *	@skb: the packet
292 *
293 *	This is the packet destructor used for Tx packets that need to remain
294 *	mapped until they are freed rather than until their Tx descriptors are
295 *	freed.
296 */
297static void deferred_unmap_destructor(struct sk_buff *skb)
298{
299	unmap_skb(skb->dev->dev.parent, skb, (dma_addr_t *)skb->head);
300}
301#endif
302
303/**
304 *	free_tx_desc - reclaims Tx descriptors and their buffers
305 *	@adap: the adapter
306 *	@q: the Tx queue to reclaim descriptors from
307 *	@n: the number of descriptors to reclaim
308 *	@unmap: whether the buffers should be unmapped for DMA
309 *
310 *	Reclaims Tx descriptors from an SGE Tx queue and frees the associated
311 *	Tx buffers.  Called with the Tx queue lock held.
312 */
313void free_tx_desc(struct adapter *adap, struct sge_txq *q,
314		  unsigned int n, bool unmap)
315{
316	unsigned int cidx = q->cidx;
317	struct tx_sw_desc *d;
318
319	d = &q->sdesc[cidx];
320	while (n--) {
321		if (d->skb) {                       /* an SGL is present */
322			if (unmap && d->addr[0]) {
323				unmap_skb(adap->pdev_dev, d->skb, d->addr);
324				memset(d->addr, 0, sizeof(d->addr));
325			}
326			dev_consume_skb_any(d->skb);
327			d->skb = NULL;
328		}
329		++d;
330		if (++cidx == q->size) {
331			cidx = 0;
332			d = q->sdesc;
333		}
334	}
335	q->cidx = cidx;
336}
337
338/*
339 * Return the number of reclaimable descriptors in a Tx queue.
340 */
341static inline int reclaimable(const struct sge_txq *q)
342{
343	int hw_cidx = ntohs(READ_ONCE(q->stat->cidx));
344	hw_cidx -= q->cidx;
345	return hw_cidx < 0 ? hw_cidx + q->size : hw_cidx;
346}
347
348/**
349 *	reclaim_completed_tx - reclaims completed TX Descriptors
350 *	@adap: the adapter
351 *	@q: the Tx queue to reclaim completed descriptors from
352 *	@maxreclaim: the maximum number of TX Descriptors to reclaim or -1
353 *	@unmap: whether the buffers should be unmapped for DMA
354 *
355 *	Reclaims Tx Descriptors that the SGE has indicated it has processed,
356 *	and frees the associated buffers if possible.  If @max == -1, then
357 *	we'll use a defaiult maximum.  Called with the TX Queue locked.
358 */
359static inline int reclaim_completed_tx(struct adapter *adap, struct sge_txq *q,
360				       int maxreclaim, bool unmap)
361{
362	int reclaim = reclaimable(q);
363
364	if (reclaim) {
365		/*
366		 * Limit the amount of clean up work we do at a time to keep
367		 * the Tx lock hold time O(1).
368		 */
369		if (maxreclaim < 0)
370			maxreclaim = MAX_TX_RECLAIM;
371		if (reclaim > maxreclaim)
372			reclaim = maxreclaim;
373
374		free_tx_desc(adap, q, reclaim, unmap);
375		q->in_use -= reclaim;
376	}
377
378	return reclaim;
379}
380
381/**
382 *	cxgb4_reclaim_completed_tx - reclaims completed Tx descriptors
383 *	@adap: the adapter
384 *	@q: the Tx queue to reclaim completed descriptors from
385 *	@unmap: whether the buffers should be unmapped for DMA
386 *
387 *	Reclaims Tx descriptors that the SGE has indicated it has processed,
388 *	and frees the associated buffers if possible.  Called with the Tx
389 *	queue locked.
390 */
391void cxgb4_reclaim_completed_tx(struct adapter *adap, struct sge_txq *q,
392				bool unmap)
393{
394	(void)reclaim_completed_tx(adap, q, -1, unmap);
395}
396EXPORT_SYMBOL(cxgb4_reclaim_completed_tx);
397
398static inline int get_buf_size(struct adapter *adapter,
399			       const struct rx_sw_desc *d)
400{
401	struct sge *s = &adapter->sge;
402	unsigned int rx_buf_size_idx = d->dma_addr & RX_BUF_SIZE;
403	int buf_size;
404
405	switch (rx_buf_size_idx) {
406	case RX_SMALL_PG_BUF:
407		buf_size = PAGE_SIZE;
408		break;
409
410	case RX_LARGE_PG_BUF:
411		buf_size = PAGE_SIZE << s->fl_pg_order;
412		break;
413
414	case RX_SMALL_MTU_BUF:
415		buf_size = FL_MTU_SMALL_BUFSIZE(adapter);
416		break;
417
418	case RX_LARGE_MTU_BUF:
419		buf_size = FL_MTU_LARGE_BUFSIZE(adapter);
420		break;
421
422	default:
423		BUG();
424	}
425
426	return buf_size;
427}
428
429/**
430 *	free_rx_bufs - free the Rx buffers on an SGE free list
431 *	@adap: the adapter
432 *	@q: the SGE free list to free buffers from
433 *	@n: how many buffers to free
434 *
435 *	Release the next @n buffers on an SGE free-buffer Rx queue.   The
436 *	buffers must be made inaccessible to HW before calling this function.
437 */
438static void free_rx_bufs(struct adapter *adap, struct sge_fl *q, int n)
439{
440	while (n--) {
441		struct rx_sw_desc *d = &q->sdesc[q->cidx];
442
443		if (is_buf_mapped(d))
444			dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
445				       get_buf_size(adap, d),
446				       DMA_FROM_DEVICE);
447		put_page(d->page);
448		d->page = NULL;
449		if (++q->cidx == q->size)
450			q->cidx = 0;
451		q->avail--;
452	}
453}
454
455/**
456 *	unmap_rx_buf - unmap the current Rx buffer on an SGE free list
457 *	@adap: the adapter
458 *	@q: the SGE free list
459 *
460 *	Unmap the current buffer on an SGE free-buffer Rx queue.   The
461 *	buffer must be made inaccessible to HW before calling this function.
462 *
463 *	This is similar to @free_rx_bufs above but does not free the buffer.
464 *	Do note that the FL still loses any further access to the buffer.
465 */
466static void unmap_rx_buf(struct adapter *adap, struct sge_fl *q)
467{
468	struct rx_sw_desc *d = &q->sdesc[q->cidx];
469
470	if (is_buf_mapped(d))
471		dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
472			       get_buf_size(adap, d), DMA_FROM_DEVICE);
473	d->page = NULL;
474	if (++q->cidx == q->size)
475		q->cidx = 0;
476	q->avail--;
477}
478
479static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q)
480{
481	if (q->pend_cred >= 8) {
482		u32 val = adap->params.arch.sge_fl_db;
483
484		if (is_t4(adap->params.chip))
485			val |= PIDX_V(q->pend_cred / 8);
486		else
487			val |= PIDX_T5_V(q->pend_cred / 8);
488
489		/* Make sure all memory writes to the Free List queue are
490		 * committed before we tell the hardware about them.
491		 */
492		wmb();
493
494		/* If we don't have access to the new User Doorbell (T5+), use
495		 * the old doorbell mechanism; otherwise use the new BAR2
496		 * mechanism.
497		 */
498		if (unlikely(q->bar2_addr == NULL)) {
499			t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
500				     val | QID_V(q->cntxt_id));
501		} else {
502			writel(val | QID_V(q->bar2_qid),
503			       q->bar2_addr + SGE_UDB_KDOORBELL);
504
505			/* This Write memory Barrier will force the write to
506			 * the User Doorbell area to be flushed.
507			 */
508			wmb();
509		}
510		q->pend_cred &= 7;
511	}
512}
513
514static inline void set_rx_sw_desc(struct rx_sw_desc *sd, struct page *pg,
515				  dma_addr_t mapping)
516{
517	sd->page = pg;
518	sd->dma_addr = mapping;      /* includes size low bits */
519}
520
521/**
522 *	refill_fl - refill an SGE Rx buffer ring
523 *	@adap: the adapter
524 *	@q: the ring to refill
525 *	@n: the number of new buffers to allocate
526 *	@gfp: the gfp flags for the allocations
527 *
528 *	(Re)populate an SGE free-buffer queue with up to @n new packet buffers,
529 *	allocated with the supplied gfp flags.  The caller must assure that
530 *	@n does not exceed the queue's capacity.  If afterwards the queue is
531 *	found critically low mark it as starving in the bitmap of starving FLs.
532 *
533 *	Returns the number of buffers allocated.
534 */
535static unsigned int refill_fl(struct adapter *adap, struct sge_fl *q, int n,
536			      gfp_t gfp)
537{
538	struct sge *s = &adap->sge;
539	struct page *pg;
540	dma_addr_t mapping;
541	unsigned int cred = q->avail;
542	__be64 *d = &q->desc[q->pidx];
543	struct rx_sw_desc *sd = &q->sdesc[q->pidx];
544	int node;
545
546#ifdef CONFIG_DEBUG_FS
547	if (test_bit(q->cntxt_id - adap->sge.egr_start, adap->sge.blocked_fl))
548		goto out;
549#endif
550
551	gfp |= __GFP_NOWARN;
552	node = dev_to_node(adap->pdev_dev);
553
554	if (s->fl_pg_order == 0)
555		goto alloc_small_pages;
556
557	/*
558	 * Prefer large buffers
559	 */
560	while (n) {
561		pg = alloc_pages_node(node, gfp | __GFP_COMP, s->fl_pg_order);
562		if (unlikely(!pg)) {
563			q->large_alloc_failed++;
564			break;       /* fall back to single pages */
565		}
566
567		mapping = dma_map_page(adap->pdev_dev, pg, 0,
568				       PAGE_SIZE << s->fl_pg_order,
569				       DMA_FROM_DEVICE);
570		if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
571			__free_pages(pg, s->fl_pg_order);
572			q->mapping_err++;
573			goto out;   /* do not try small pages for this error */
574		}
575		mapping |= RX_LARGE_PG_BUF;
576		*d++ = cpu_to_be64(mapping);
577
578		set_rx_sw_desc(sd, pg, mapping);
579		sd++;
580
581		q->avail++;
582		if (++q->pidx == q->size) {
583			q->pidx = 0;
584			sd = q->sdesc;
585			d = q->desc;
586		}
587		n--;
588	}
589
590alloc_small_pages:
591	while (n--) {
592		pg = alloc_pages_node(node, gfp, 0);
593		if (unlikely(!pg)) {
594			q->alloc_failed++;
595			break;
596		}
597
598		mapping = dma_map_page(adap->pdev_dev, pg, 0, PAGE_SIZE,
599				       DMA_FROM_DEVICE);
600		if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
601			put_page(pg);
602			q->mapping_err++;
603			goto out;
604		}
605		*d++ = cpu_to_be64(mapping);
606
607		set_rx_sw_desc(sd, pg, mapping);
608		sd++;
609
610		q->avail++;
611		if (++q->pidx == q->size) {
612			q->pidx = 0;
613			sd = q->sdesc;
614			d = q->desc;
615		}
616	}
617
618out:	cred = q->avail - cred;
619	q->pend_cred += cred;
620	ring_fl_db(adap, q);
621
622	if (unlikely(fl_starving(adap, q))) {
623		smp_wmb();
624		q->low++;
625		set_bit(q->cntxt_id - adap->sge.egr_start,
626			adap->sge.starving_fl);
627	}
628
629	return cred;
630}
631
632static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl)
633{
634	refill_fl(adap, fl, min(MAX_RX_REFILL, fl_cap(fl) - fl->avail),
635		  GFP_ATOMIC);
636}
637
638/**
639 *	alloc_ring - allocate resources for an SGE descriptor ring
640 *	@dev: the PCI device's core device
641 *	@nelem: the number of descriptors
642 *	@elem_size: the size of each descriptor
643 *	@sw_size: the size of the SW state associated with each ring element
644 *	@phys: the physical address of the allocated ring
645 *	@metadata: address of the array holding the SW state for the ring
646 *	@stat_size: extra space in HW ring for status information
647 *	@node: preferred node for memory allocations
648 *
649 *	Allocates resources for an SGE descriptor ring, such as Tx queues,
650 *	free buffer lists, or response queues.  Each SGE ring requires
651 *	space for its HW descriptors plus, optionally, space for the SW state
652 *	associated with each HW entry (the metadata).  The function returns
653 *	three values: the virtual address for the HW ring (the return value
654 *	of the function), the bus address of the HW ring, and the address
655 *	of the SW ring.
656 */
657static void *alloc_ring(struct device *dev, size_t nelem, size_t elem_size,
658			size_t sw_size, dma_addr_t *phys, void *metadata,
659			size_t stat_size, int node)
660{
661	size_t len = nelem * elem_size + stat_size;
662	void *s = NULL;
663	void *p = dma_alloc_coherent(dev, len, phys, GFP_KERNEL);
664
665	if (!p)
666		return NULL;
667	if (sw_size) {
668		s = kcalloc_node(sw_size, nelem, GFP_KERNEL, node);
669
670		if (!s) {
671			dma_free_coherent(dev, len, p, *phys);
672			return NULL;
673		}
674	}
675	if (metadata)
676		*(void **)metadata = s;
677	return p;
678}
679
680/**
681 *	sgl_len - calculates the size of an SGL of the given capacity
682 *	@n: the number of SGL entries
683 *
684 *	Calculates the number of flits needed for a scatter/gather list that
685 *	can hold the given number of entries.
686 */
687static inline unsigned int sgl_len(unsigned int n)
688{
689	/* A Direct Scatter Gather List uses 32-bit lengths and 64-bit PCI DMA
690	 * addresses.  The DSGL Work Request starts off with a 32-bit DSGL
691	 * ULPTX header, then Length0, then Address0, then, for 1 <= i <= N,
692	 * repeated sequences of { Length[i], Length[i+1], Address[i],
693	 * Address[i+1] } (this ensures that all addresses are on 64-bit
694	 * boundaries).  If N is even, then Length[N+1] should be set to 0 and
695	 * Address[N+1] is omitted.
696	 *
697	 * The following calculation incorporates all of the above.  It's
698	 * somewhat hard to follow but, briefly: the "+2" accounts for the
699	 * first two flits which include the DSGL header, Length0 and
700	 * Address0; the "(3*(n-1))/2" covers the main body of list entries (3
701	 * flits for every pair of the remaining N) +1 if (n-1) is odd; and
702	 * finally the "+((n-1)&1)" adds the one remaining flit needed if
703	 * (n-1) is odd ...
704	 */
705	n--;
706	return (3 * n) / 2 + (n & 1) + 2;
707}
708
709/**
710 *	flits_to_desc - returns the num of Tx descriptors for the given flits
711 *	@n: the number of flits
712 *
713 *	Returns the number of Tx descriptors needed for the supplied number
714 *	of flits.
715 */
716static inline unsigned int flits_to_desc(unsigned int n)
717{
718	BUG_ON(n > SGE_MAX_WR_LEN / 8);
719	return DIV_ROUND_UP(n, 8);
720}
721
722/**
723 *	is_eth_imm - can an Ethernet packet be sent as immediate data?
724 *	@skb: the packet
725 *	@chip_ver: chip version
726 *
727 *	Returns whether an Ethernet packet is small enough to fit as
728 *	immediate data. Return value corresponds to headroom required.
729 */
730static inline int is_eth_imm(const struct sk_buff *skb, unsigned int chip_ver)
731{
732	int hdrlen = 0;
733
734	if (skb->encapsulation && skb_shinfo(skb)->gso_size &&
735	    chip_ver > CHELSIO_T5) {
736		hdrlen = sizeof(struct cpl_tx_tnl_lso);
737		hdrlen += sizeof(struct cpl_tx_pkt_core);
738	} else if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
739		return 0;
740	} else {
741		hdrlen = skb_shinfo(skb)->gso_size ?
742			 sizeof(struct cpl_tx_pkt_lso_core) : 0;
743		hdrlen += sizeof(struct cpl_tx_pkt);
744	}
745	if (skb->len <= MAX_IMM_TX_PKT_LEN - hdrlen)
746		return hdrlen;
747	return 0;
748}
749
750/**
751 *	calc_tx_flits - calculate the number of flits for a packet Tx WR
752 *	@skb: the packet
753 *	@chip_ver: chip version
754 *
755 *	Returns the number of flits needed for a Tx WR for the given Ethernet
756 *	packet, including the needed WR and CPL headers.
757 */
758static inline unsigned int calc_tx_flits(const struct sk_buff *skb,
759					 unsigned int chip_ver)
760{
761	unsigned int flits;
762	int hdrlen = is_eth_imm(skb, chip_ver);
763
764	/* If the skb is small enough, we can pump it out as a work request
765	 * with only immediate data.  In that case we just have to have the
766	 * TX Packet header plus the skb data in the Work Request.
767	 */
768
769	if (hdrlen)
770		return DIV_ROUND_UP(skb->len + hdrlen, sizeof(__be64));
771
772	/* Otherwise, we're going to have to construct a Scatter gather list
773	 * of the skb body and fragments.  We also include the flits necessary
774	 * for the TX Packet Work Request and CPL.  We always have a firmware
775	 * Write Header (incorporated as part of the cpl_tx_pkt_lso and
776	 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL
777	 * message or, if we're doing a Large Send Offload, an LSO CPL message
778	 * with an embedded TX Packet Write CPL message.
779	 */
780	flits = sgl_len(skb_shinfo(skb)->nr_frags + 1);
781	if (skb_shinfo(skb)->gso_size) {
782		if (skb->encapsulation && chip_ver > CHELSIO_T5) {
783			hdrlen = sizeof(struct fw_eth_tx_pkt_wr) +
784				 sizeof(struct cpl_tx_tnl_lso);
785		} else if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
786			u32 pkt_hdrlen;
787
788			pkt_hdrlen = eth_get_headlen(skb->dev, skb->data,
789						     skb_headlen(skb));
790			hdrlen = sizeof(struct fw_eth_tx_eo_wr) +
791				 round_up(pkt_hdrlen, 16);
792		} else {
793			hdrlen = sizeof(struct fw_eth_tx_pkt_wr) +
794				 sizeof(struct cpl_tx_pkt_lso_core);
795		}
796
797		hdrlen += sizeof(struct cpl_tx_pkt_core);
798		flits += (hdrlen / sizeof(__be64));
799	} else {
800		flits += (sizeof(struct fw_eth_tx_pkt_wr) +
801			  sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
802	}
803	return flits;
804}
805
806/**
807 *	calc_tx_descs - calculate the number of Tx descriptors for a packet
808 *	@skb: the packet
809 *	@chip_ver: chip version
810 *
811 *	Returns the number of Tx descriptors needed for the given Ethernet
812 *	packet, including the needed WR and CPL headers.
813 */
814static inline unsigned int calc_tx_descs(const struct sk_buff *skb,
815					 unsigned int chip_ver)
816{
817	return flits_to_desc(calc_tx_flits(skb, chip_ver));
818}
819
820/**
821 *	cxgb4_write_sgl - populate a scatter/gather list for a packet
822 *	@skb: the packet
823 *	@q: the Tx queue we are writing into
824 *	@sgl: starting location for writing the SGL
825 *	@end: points right after the end of the SGL
826 *	@start: start offset into skb main-body data to include in the SGL
827 *	@addr: the list of bus addresses for the SGL elements
828 *
829 *	Generates a gather list for the buffers that make up a packet.
830 *	The caller must provide adequate space for the SGL that will be written.
831 *	The SGL includes all of the packet's page fragments and the data in its
832 *	main body except for the first @start bytes.  @sgl must be 16-byte
833 *	aligned and within a Tx descriptor with available space.  @end points
834 *	right after the end of the SGL but does not account for any potential
835 *	wrap around, i.e., @end > @sgl.
836 */
837void cxgb4_write_sgl(const struct sk_buff *skb, struct sge_txq *q,
838		     struct ulptx_sgl *sgl, u64 *end, unsigned int start,
839		     const dma_addr_t *addr)
840{
841	unsigned int i, len;
842	struct ulptx_sge_pair *to;
843	const struct skb_shared_info *si = skb_shinfo(skb);
844	unsigned int nfrags = si->nr_frags;
845	struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1];
846
847	len = skb_headlen(skb) - start;
848	if (likely(len)) {
849		sgl->len0 = htonl(len);
850		sgl->addr0 = cpu_to_be64(addr[0] + start);
851		nfrags++;
852	} else {
853		sgl->len0 = htonl(skb_frag_size(&si->frags[0]));
854		sgl->addr0 = cpu_to_be64(addr[1]);
855	}
856
857	sgl->cmd_nsge = htonl(ULPTX_CMD_V(ULP_TX_SC_DSGL) |
858			      ULPTX_NSGE_V(nfrags));
859	if (likely(--nfrags == 0))
860		return;
861	/*
862	 * Most of the complexity below deals with the possibility we hit the
863	 * end of the queue in the middle of writing the SGL.  For this case
864	 * only we create the SGL in a temporary buffer and then copy it.
865	 */
866	to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge;
867
868	for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) {
869		to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
870		to->len[1] = cpu_to_be32(skb_frag_size(&si->frags[++i]));
871		to->addr[0] = cpu_to_be64(addr[i]);
872		to->addr[1] = cpu_to_be64(addr[++i]);
873	}
874	if (nfrags) {
875		to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
876		to->len[1] = cpu_to_be32(0);
877		to->addr[0] = cpu_to_be64(addr[i + 1]);
878	}
879	if (unlikely((u8 *)end > (u8 *)q->stat)) {
880		unsigned int part0 = (u8 *)q->stat - (u8 *)sgl->sge, part1;
881
882		if (likely(part0))
883			memcpy(sgl->sge, buf, part0);
884		part1 = (u8 *)end - (u8 *)q->stat;
885		memcpy(q->desc, (u8 *)buf + part0, part1);
886		end = (void *)q->desc + part1;
887	}
888	if ((uintptr_t)end & 8)           /* 0-pad to multiple of 16 */
889		*end = 0;
890}
891EXPORT_SYMBOL(cxgb4_write_sgl);
892
893/*	cxgb4_write_partial_sgl - populate SGL for partial packet
894 *	@skb: the packet
895 *	@q: the Tx queue we are writing into
896 *	@sgl: starting location for writing the SGL
897 *	@end: points right after the end of the SGL
898 *	@addr: the list of bus addresses for the SGL elements
899 *	@start: start offset in the SKB where partial data starts
900 *	@len: length of data from @start to send out
901 *
902 *	This API will handle sending out partial data of a skb if required.
903 *	Unlike cxgb4_write_sgl, @start can be any offset into the skb data,
904 *	and @len will decide how much data after @start offset to send out.
905 */
906void cxgb4_write_partial_sgl(const struct sk_buff *skb, struct sge_txq *q,
907			     struct ulptx_sgl *sgl, u64 *end,
908			     const dma_addr_t *addr, u32 start, u32 len)
909{
910	struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1] = {0}, *to;
911	u32 frag_size, skb_linear_data_len = skb_headlen(skb);
912	struct skb_shared_info *si = skb_shinfo(skb);
913	u8 i = 0, frag_idx = 0, nfrags = 0;
914	skb_frag_t *frag;
915
916	/* Fill the first SGL either from linear data or from partial
917	 * frag based on @start.
918	 */
919	if (unlikely(start < skb_linear_data_len)) {
920		frag_size = min(len, skb_linear_data_len - start);
921		sgl->len0 = htonl(frag_size);
922		sgl->addr0 = cpu_to_be64(addr[0] + start);
923		len -= frag_size;
924		nfrags++;
925	} else {
926		start -= skb_linear_data_len;
927		frag = &si->frags[frag_idx];
928		frag_size = skb_frag_size(frag);
929		/* find the first frag */
930		while (start >= frag_size) {
931			start -= frag_size;
932			frag_idx++;
933			frag = &si->frags[frag_idx];
934			frag_size = skb_frag_size(frag);
935		}
936
937		frag_size = min(len, skb_frag_size(frag) - start);
938		sgl->len0 = cpu_to_be32(frag_size);
939		sgl->addr0 = cpu_to_be64(addr[frag_idx + 1] + start);
940		len -= frag_size;
941		nfrags++;
942		frag_idx++;
943	}
944
945	/* If the entire partial data fit in one SGL, then send it out
946	 * now.
947	 */
948	if (!len)
949		goto done;
950
951	/* Most of the complexity below deals with the possibility we hit the
952	 * end of the queue in the middle of writing the SGL.  For this case
953	 * only we create the SGL in a temporary buffer and then copy it.
954	 */
955	to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge;
956
957	/* If the skb couldn't fit in first SGL completely, fill the
958	 * rest of the frags in subsequent SGLs. Note that each SGL
959	 * pair can store 2 frags.
960	 */
961	while (len) {
962		frag_size = min(len, skb_frag_size(&si->frags[frag_idx]));
963		to->len[i & 1] = cpu_to_be32(frag_size);
964		to->addr[i & 1] = cpu_to_be64(addr[frag_idx + 1]);
965		if (i && (i & 1))
966			to++;
967		nfrags++;
968		frag_idx++;
969		i++;
970		len -= frag_size;
971	}
972
973	/* If we ended in an odd boundary, then set the second SGL's
974	 * length in the pair to 0.
975	 */
976	if (i & 1)
977		to->len[1] = cpu_to_be32(0);
978
979	/* Copy from temporary buffer to Tx ring, in case we hit the
980	 * end of the queue in the middle of writing the SGL.
981	 */
982	if (unlikely((u8 *)end > (u8 *)q->stat)) {
983		u32 part0 = (u8 *)q->stat - (u8 *)sgl->sge, part1;
984
985		if (likely(part0))
986			memcpy(sgl->sge, buf, part0);
987		part1 = (u8 *)end - (u8 *)q->stat;
988		memcpy(q->desc, (u8 *)buf + part0, part1);
989		end = (void *)q->desc + part1;
990	}
991
992	/* 0-pad to multiple of 16 */
993	if ((uintptr_t)end & 8)
994		*end = 0;
995done:
996	sgl->cmd_nsge = htonl(ULPTX_CMD_V(ULP_TX_SC_DSGL) |
997			ULPTX_NSGE_V(nfrags));
998}
999EXPORT_SYMBOL(cxgb4_write_partial_sgl);
1000
1001/* This function copies 64 byte coalesced work request to
1002 * memory mapped BAR2 space. For coalesced WR SGE fetches
1003 * data from the FIFO instead of from Host.
1004 */
1005static void cxgb_pio_copy(u64 __iomem *dst, u64 *src)
1006{
1007	int count = 8;
1008
1009	while (count) {
1010		writeq(*src, dst);
1011		src++;
1012		dst++;
1013		count--;
1014	}
1015}
1016
1017/**
1018 *	cxgb4_ring_tx_db - check and potentially ring a Tx queue's doorbell
1019 *	@adap: the adapter
1020 *	@q: the Tx queue
1021 *	@n: number of new descriptors to give to HW
1022 *
1023 *	Ring the doorbel for a Tx queue.
1024 */
1025inline void cxgb4_ring_tx_db(struct adapter *adap, struct sge_txq *q, int n)
1026{
1027	/* Make sure that all writes to the TX Descriptors are committed
1028	 * before we tell the hardware about them.
1029	 */
1030	wmb();
1031
1032	/* If we don't have access to the new User Doorbell (T5+), use the old
1033	 * doorbell mechanism; otherwise use the new BAR2 mechanism.
1034	 */
1035	if (unlikely(q->bar2_addr == NULL)) {
1036		u32 val = PIDX_V(n);
1037		unsigned long flags;
1038
1039		/* For T4 we need to participate in the Doorbell Recovery
1040		 * mechanism.
1041		 */
1042		spin_lock_irqsave(&q->db_lock, flags);
1043		if (!q->db_disabled)
1044			t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
1045				     QID_V(q->cntxt_id) | val);
1046		else
1047			q->db_pidx_inc += n;
1048		q->db_pidx = q->pidx;
1049		spin_unlock_irqrestore(&q->db_lock, flags);
1050	} else {
1051		u32 val = PIDX_T5_V(n);
1052
1053		/* T4 and later chips share the same PIDX field offset within
1054		 * the doorbell, but T5 and later shrank the field in order to
1055		 * gain a bit for Doorbell Priority.  The field was absurdly
1056		 * large in the first place (14 bits) so we just use the T5
1057		 * and later limits and warn if a Queue ID is too large.
1058		 */
1059		WARN_ON(val & DBPRIO_F);
1060
1061		/* If we're only writing a single TX Descriptor and we can use
1062		 * Inferred QID registers, we can use the Write Combining
1063		 * Gather Buffer; otherwise we use the simple doorbell.
1064		 */
1065		if (n == 1 && q->bar2_qid == 0) {
1066			int index = (q->pidx
1067				     ? (q->pidx - 1)
1068				     : (q->size - 1));
1069			u64 *wr = (u64 *)&q->desc[index];
1070
1071			cxgb_pio_copy((u64 __iomem *)
1072				      (q->bar2_addr + SGE_UDB_WCDOORBELL),
1073				      wr);
1074		} else {
1075			writel(val | QID_V(q->bar2_qid),
1076			       q->bar2_addr + SGE_UDB_KDOORBELL);
1077		}
1078
1079		/* This Write Memory Barrier will force the write to the User
1080		 * Doorbell area to be flushed.  This is needed to prevent
1081		 * writes on different CPUs for the same queue from hitting
1082		 * the adapter out of order.  This is required when some Work
1083		 * Requests take the Write Combine Gather Buffer path (user
1084		 * doorbell area offset [SGE_UDB_WCDOORBELL..+63]) and some
1085		 * take the traditional path where we simply increment the
1086		 * PIDX (User Doorbell area SGE_UDB_KDOORBELL) and have the
1087		 * hardware DMA read the actual Work Request.
1088		 */
1089		wmb();
1090	}
1091}
1092EXPORT_SYMBOL(cxgb4_ring_tx_db);
1093
1094/**
1095 *	cxgb4_inline_tx_skb - inline a packet's data into Tx descriptors
1096 *	@skb: the packet
1097 *	@q: the Tx queue where the packet will be inlined
1098 *	@pos: starting position in the Tx queue where to inline the packet
1099 *
1100 *	Inline a packet's contents directly into Tx descriptors, starting at
1101 *	the given position within the Tx DMA ring.
1102 *	Most of the complexity of this operation is dealing with wrap arounds
1103 *	in the middle of the packet we want to inline.
1104 */
1105void cxgb4_inline_tx_skb(const struct sk_buff *skb,
1106			 const struct sge_txq *q, void *pos)
1107{
1108	int left = (void *)q->stat - pos;
1109	u64 *p;
1110
1111	if (likely(skb->len <= left)) {
1112		if (likely(!skb->data_len))
1113			skb_copy_from_linear_data(skb, pos, skb->len);
1114		else
1115			skb_copy_bits(skb, 0, pos, skb->len);
1116		pos += skb->len;
1117	} else {
1118		skb_copy_bits(skb, 0, pos, left);
1119		skb_copy_bits(skb, left, q->desc, skb->len - left);
1120		pos = (void *)q->desc + (skb->len - left);
1121	}
1122
1123	/* 0-pad to multiple of 16 */
1124	p = PTR_ALIGN(pos, 8);
1125	if ((uintptr_t)p & 8)
1126		*p = 0;
1127}
1128EXPORT_SYMBOL(cxgb4_inline_tx_skb);
1129
1130static void *inline_tx_skb_header(const struct sk_buff *skb,
1131				  const struct sge_txq *q,  void *pos,
1132				  int length)
1133{
1134	u64 *p;
1135	int left = (void *)q->stat - pos;
1136
1137	if (likely(length <= left)) {
1138		memcpy(pos, skb->data, length);
1139		pos += length;
1140	} else {
1141		memcpy(pos, skb->data, left);
1142		memcpy(q->desc, skb->data + left, length - left);
1143		pos = (void *)q->desc + (length - left);
1144	}
1145	/* 0-pad to multiple of 16 */
1146	p = PTR_ALIGN(pos, 8);
1147	if ((uintptr_t)p & 8) {
1148		*p = 0;
1149		return p + 1;
1150	}
1151	return p;
1152}
1153
1154/*
1155 * Figure out what HW csum a packet wants and return the appropriate control
1156 * bits.
1157 */
1158static u64 hwcsum(enum chip_type chip, const struct sk_buff *skb)
1159{
1160	int csum_type;
1161	bool inner_hdr_csum = false;
1162	u16 proto, ver;
1163
1164	if (skb->encapsulation &&
1165	    (CHELSIO_CHIP_VERSION(chip) > CHELSIO_T5))
1166		inner_hdr_csum = true;
1167
1168	if (inner_hdr_csum) {
1169		ver = inner_ip_hdr(skb)->version;
1170		proto = (ver == 4) ? inner_ip_hdr(skb)->protocol :
1171			inner_ipv6_hdr(skb)->nexthdr;
1172	} else {
1173		ver = ip_hdr(skb)->version;
1174		proto = (ver == 4) ? ip_hdr(skb)->protocol :
1175			ipv6_hdr(skb)->nexthdr;
1176	}
1177
1178	if (ver == 4) {
1179		if (proto == IPPROTO_TCP)
1180			csum_type = TX_CSUM_TCPIP;
1181		else if (proto == IPPROTO_UDP)
1182			csum_type = TX_CSUM_UDPIP;
1183		else {
1184nocsum:			/*
1185			 * unknown protocol, disable HW csum
1186			 * and hope a bad packet is detected
1187			 */
1188			return TXPKT_L4CSUM_DIS_F;
1189		}
1190	} else {
1191		/*
1192		 * this doesn't work with extension headers
1193		 */
1194		if (proto == IPPROTO_TCP)
1195			csum_type = TX_CSUM_TCPIP6;
1196		else if (proto == IPPROTO_UDP)
1197			csum_type = TX_CSUM_UDPIP6;
1198		else
1199			goto nocsum;
1200	}
1201
1202	if (likely(csum_type >= TX_CSUM_TCPIP)) {
1203		int eth_hdr_len, l4_len;
1204		u64 hdr_len;
1205
1206		if (inner_hdr_csum) {
1207			/* This allows checksum offload for all encapsulated
1208			 * packets like GRE etc..
1209			 */
1210			l4_len = skb_inner_network_header_len(skb);
1211			eth_hdr_len = skb_inner_network_offset(skb) - ETH_HLEN;
1212		} else {
1213			l4_len = skb_network_header_len(skb);
1214			eth_hdr_len = skb_network_offset(skb) - ETH_HLEN;
1215		}
1216		hdr_len = TXPKT_IPHDR_LEN_V(l4_len);
1217
1218		if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5)
1219			hdr_len |= TXPKT_ETHHDR_LEN_V(eth_hdr_len);
1220		else
1221			hdr_len |= T6_TXPKT_ETHHDR_LEN_V(eth_hdr_len);
1222		return TXPKT_CSUM_TYPE_V(csum_type) | hdr_len;
1223	} else {
1224		int start = skb_transport_offset(skb);
1225
1226		return TXPKT_CSUM_TYPE_V(csum_type) |
1227			TXPKT_CSUM_START_V(start) |
1228			TXPKT_CSUM_LOC_V(start + skb->csum_offset);
1229	}
1230}
1231
1232static void eth_txq_stop(struct sge_eth_txq *q)
1233{
1234	netif_tx_stop_queue(q->txq);
1235	q->q.stops++;
1236}
1237
1238static inline void txq_advance(struct sge_txq *q, unsigned int n)
1239{
1240	q->in_use += n;
1241	q->pidx += n;
1242	if (q->pidx >= q->size)
1243		q->pidx -= q->size;
1244}
1245
1246#ifdef CONFIG_CHELSIO_T4_FCOE
1247static inline int
1248cxgb_fcoe_offload(struct sk_buff *skb, struct adapter *adap,
1249		  const struct port_info *pi, u64 *cntrl)
1250{
1251	const struct cxgb_fcoe *fcoe = &pi->fcoe;
1252
1253	if (!(fcoe->flags & CXGB_FCOE_ENABLED))
1254		return 0;
1255
1256	if (skb->protocol != htons(ETH_P_FCOE))
1257		return 0;
1258
1259	skb_reset_mac_header(skb);
1260	skb->mac_len = sizeof(struct ethhdr);
1261
1262	skb_set_network_header(skb, skb->mac_len);
1263	skb_set_transport_header(skb, skb->mac_len + sizeof(struct fcoe_hdr));
1264
1265	if (!cxgb_fcoe_sof_eof_supported(adap, skb))
1266		return -ENOTSUPP;
1267
1268	/* FC CRC offload */
1269	*cntrl = TXPKT_CSUM_TYPE_V(TX_CSUM_FCOE) |
1270		     TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F |
1271		     TXPKT_CSUM_START_V(CXGB_FCOE_TXPKT_CSUM_START) |
1272		     TXPKT_CSUM_END_V(CXGB_FCOE_TXPKT_CSUM_END) |
1273		     TXPKT_CSUM_LOC_V(CXGB_FCOE_TXPKT_CSUM_END);
1274	return 0;
1275}
1276#endif /* CONFIG_CHELSIO_T4_FCOE */
1277
1278/* Returns tunnel type if hardware supports offloading of the same.
1279 * It is called only for T5 and onwards.
1280 */
1281enum cpl_tx_tnl_lso_type cxgb_encap_offload_supported(struct sk_buff *skb)
1282{
1283	u8 l4_hdr = 0;
1284	enum cpl_tx_tnl_lso_type tnl_type = TX_TNL_TYPE_OPAQUE;
1285	struct port_info *pi = netdev_priv(skb->dev);
1286	struct adapter *adapter = pi->adapter;
1287
1288	if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
1289	    skb->inner_protocol != htons(ETH_P_TEB))
1290		return tnl_type;
1291
1292	switch (vlan_get_protocol(skb)) {
1293	case htons(ETH_P_IP):
1294		l4_hdr = ip_hdr(skb)->protocol;
1295		break;
1296	case htons(ETH_P_IPV6):
1297		l4_hdr = ipv6_hdr(skb)->nexthdr;
1298		break;
1299	default:
1300		return tnl_type;
1301	}
1302
1303	switch (l4_hdr) {
1304	case IPPROTO_UDP:
1305		if (adapter->vxlan_port == udp_hdr(skb)->dest)
1306			tnl_type = TX_TNL_TYPE_VXLAN;
1307		else if (adapter->geneve_port == udp_hdr(skb)->dest)
1308			tnl_type = TX_TNL_TYPE_GENEVE;
1309		break;
1310	default:
1311		return tnl_type;
1312	}
1313
1314	return tnl_type;
1315}
1316
1317static inline void t6_fill_tnl_lso(struct sk_buff *skb,
1318				   struct cpl_tx_tnl_lso *tnl_lso,
1319				   enum cpl_tx_tnl_lso_type tnl_type)
1320{
1321	u32 val;
1322	int in_eth_xtra_len;
1323	int l3hdr_len = skb_network_header_len(skb);
1324	int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
1325	const struct skb_shared_info *ssi = skb_shinfo(skb);
1326	bool v6 = (ip_hdr(skb)->version == 6);
1327
1328	val = CPL_TX_TNL_LSO_OPCODE_V(CPL_TX_TNL_LSO) |
1329	      CPL_TX_TNL_LSO_FIRST_F |
1330	      CPL_TX_TNL_LSO_LAST_F |
1331	      (v6 ? CPL_TX_TNL_LSO_IPV6OUT_F : 0) |
1332	      CPL_TX_TNL_LSO_ETHHDRLENOUT_V(eth_xtra_len / 4) |
1333	      CPL_TX_TNL_LSO_IPHDRLENOUT_V(l3hdr_len / 4) |
1334	      (v6 ? 0 : CPL_TX_TNL_LSO_IPHDRCHKOUT_F) |
1335	      CPL_TX_TNL_LSO_IPLENSETOUT_F |
1336	      (v6 ? 0 : CPL_TX_TNL_LSO_IPIDINCOUT_F);
1337	tnl_lso->op_to_IpIdSplitOut = htonl(val);
1338
1339	tnl_lso->IpIdOffsetOut = 0;
1340
1341	/* Get the tunnel header length */
1342	val = skb_inner_mac_header(skb) - skb_mac_header(skb);
1343	in_eth_xtra_len = skb_inner_network_header(skb) -
1344			  skb_inner_mac_header(skb) - ETH_HLEN;
1345
1346	switch (tnl_type) {
1347	case TX_TNL_TYPE_VXLAN:
1348	case TX_TNL_TYPE_GENEVE:
1349		tnl_lso->UdpLenSetOut_to_TnlHdrLen =
1350			htons(CPL_TX_TNL_LSO_UDPCHKCLROUT_F |
1351			CPL_TX_TNL_LSO_UDPLENSETOUT_F);
1352		break;
1353	default:
1354		tnl_lso->UdpLenSetOut_to_TnlHdrLen = 0;
1355		break;
1356	}
1357
1358	tnl_lso->UdpLenSetOut_to_TnlHdrLen |=
1359		 htons(CPL_TX_TNL_LSO_TNLHDRLEN_V(val) |
1360		       CPL_TX_TNL_LSO_TNLTYPE_V(tnl_type));
1361
1362	tnl_lso->r1 = 0;
1363
1364	val = CPL_TX_TNL_LSO_ETHHDRLEN_V(in_eth_xtra_len / 4) |
1365	      CPL_TX_TNL_LSO_IPV6_V(inner_ip_hdr(skb)->version == 6) |
1366	      CPL_TX_TNL_LSO_IPHDRLEN_V(skb_inner_network_header_len(skb) / 4) |
1367	      CPL_TX_TNL_LSO_TCPHDRLEN_V(inner_tcp_hdrlen(skb) / 4);
1368	tnl_lso->Flow_to_TcpHdrLen = htonl(val);
1369
1370	tnl_lso->IpIdOffset = htons(0);
1371
1372	tnl_lso->IpIdSplit_to_Mss = htons(CPL_TX_TNL_LSO_MSS_V(ssi->gso_size));
1373	tnl_lso->TCPSeqOffset = htonl(0);
1374	tnl_lso->EthLenOffset_Size = htonl(CPL_TX_TNL_LSO_SIZE_V(skb->len));
1375}
1376
1377static inline void *write_tso_wr(struct adapter *adap, struct sk_buff *skb,
1378				 struct cpl_tx_pkt_lso_core *lso)
1379{
1380	int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
1381	int l3hdr_len = skb_network_header_len(skb);
1382	const struct skb_shared_info *ssi;
1383	bool ipv6 = false;
1384
1385	ssi = skb_shinfo(skb);
1386	if (ssi->gso_type & SKB_GSO_TCPV6)
1387		ipv6 = true;
1388
1389	lso->lso_ctrl = htonl(LSO_OPCODE_V(CPL_TX_PKT_LSO) |
1390			      LSO_FIRST_SLICE_F | LSO_LAST_SLICE_F |
1391			      LSO_IPV6_V(ipv6) |
1392			      LSO_ETHHDR_LEN_V(eth_xtra_len / 4) |
1393			      LSO_IPHDR_LEN_V(l3hdr_len / 4) |
1394			      LSO_TCPHDR_LEN_V(tcp_hdr(skb)->doff));
1395	lso->ipid_ofst = htons(0);
1396	lso->mss = htons(ssi->gso_size);
1397	lso->seqno_offset = htonl(0);
1398	if (is_t4(adap->params.chip))
1399		lso->len = htonl(skb->len);
1400	else
1401		lso->len = htonl(LSO_T5_XFER_SIZE_V(skb->len));
1402
1403	return (void *)(lso + 1);
1404}
1405
1406/**
1407 *	t4_sge_eth_txq_egress_update - handle Ethernet TX Queue update
1408 *	@adap: the adapter
1409 *	@eq: the Ethernet TX Queue
1410 *	@maxreclaim: the maximum number of TX Descriptors to reclaim or -1
1411 *
1412 *	We're typically called here to update the state of an Ethernet TX
1413 *	Queue with respect to the hardware's progress in consuming the TX
1414 *	Work Requests that we've put on that Egress Queue.  This happens
1415 *	when we get Egress Queue Update messages and also prophylactically
1416 *	in regular timer-based Ethernet TX Queue maintenance.
1417 */
1418int t4_sge_eth_txq_egress_update(struct adapter *adap, struct sge_eth_txq *eq,
1419				 int maxreclaim)
1420{
1421	unsigned int reclaimed, hw_cidx;
1422	struct sge_txq *q = &eq->q;
1423	int hw_in_use;
1424
1425	if (!q->in_use || !__netif_tx_trylock(eq->txq))
1426		return 0;
1427
1428	/* Reclaim pending completed TX Descriptors. */
1429	reclaimed = reclaim_completed_tx(adap, &eq->q, maxreclaim, true);
1430
1431	hw_cidx = ntohs(READ_ONCE(q->stat->cidx));
1432	hw_in_use = q->pidx - hw_cidx;
1433	if (hw_in_use < 0)
1434		hw_in_use += q->size;
1435
1436	/* If the TX Queue is currently stopped and there's now more than half
1437	 * the queue available, restart it.  Otherwise bail out since the rest
1438	 * of what we want do here is with the possibility of shipping any
1439	 * currently buffered Coalesced TX Work Request.
1440	 */
1441	if (netif_tx_queue_stopped(eq->txq) && hw_in_use < (q->size / 2)) {
1442		netif_tx_wake_queue(eq->txq);
1443		eq->q.restarts++;
1444	}
1445
1446	__netif_tx_unlock(eq->txq);
1447	return reclaimed;
1448}
1449
1450static inline int cxgb4_validate_skb(struct sk_buff *skb,
1451				     struct net_device *dev,
1452				     u32 min_pkt_len)
1453{
1454	u32 max_pkt_len;
1455
1456	/* The chip min packet length is 10 octets but some firmware
1457	 * commands have a minimum packet length requirement. So, play
1458	 * safe and reject anything shorter than @min_pkt_len.
1459	 */
1460	if (unlikely(skb->len < min_pkt_len))
1461		return -EINVAL;
1462
1463	/* Discard the packet if the length is greater than mtu */
1464	max_pkt_len = ETH_HLEN + dev->mtu;
1465
1466	if (skb_vlan_tagged(skb))
1467		max_pkt_len += VLAN_HLEN;
1468
1469	if (!skb_shinfo(skb)->gso_size && (unlikely(skb->len > max_pkt_len)))
1470		return -EINVAL;
1471
1472	return 0;
1473}
1474
1475static void *write_eo_udp_wr(struct sk_buff *skb, struct fw_eth_tx_eo_wr *wr,
1476			     u32 hdr_len)
1477{
1478	wr->u.udpseg.type = FW_ETH_TX_EO_TYPE_UDPSEG;
1479	wr->u.udpseg.ethlen = skb_network_offset(skb);
1480	wr->u.udpseg.iplen = cpu_to_be16(skb_network_header_len(skb));
1481	wr->u.udpseg.udplen = sizeof(struct udphdr);
1482	wr->u.udpseg.rtplen = 0;
1483	wr->u.udpseg.r4 = 0;
1484	if (skb_shinfo(skb)->gso_size)
1485		wr->u.udpseg.mss = cpu_to_be16(skb_shinfo(skb)->gso_size);
1486	else
1487		wr->u.udpseg.mss = cpu_to_be16(skb->len - hdr_len);
1488	wr->u.udpseg.schedpktsize = wr->u.udpseg.mss;
1489	wr->u.udpseg.plen = cpu_to_be32(skb->len - hdr_len);
1490
1491	return (void *)(wr + 1);
1492}
1493
1494/**
1495 *	cxgb4_eth_xmit - add a packet to an Ethernet Tx queue
1496 *	@skb: the packet
1497 *	@dev: the egress net device
1498 *
1499 *	Add a packet to an SGE Ethernet Tx queue.  Runs with softirqs disabled.
1500 */
1501static netdev_tx_t cxgb4_eth_xmit(struct sk_buff *skb, struct net_device *dev)
1502{
1503	enum cpl_tx_tnl_lso_type tnl_type = TX_TNL_TYPE_OPAQUE;
1504	bool ptp_enabled = is_ptp_enabled(skb, dev);
1505	unsigned int last_desc, flits, ndesc;
1506	u32 wr_mid, ctrl0, op, sgl_off = 0;
1507	const struct skb_shared_info *ssi;
1508	int len, qidx, credits, ret, left;
1509	struct tx_sw_desc *sgl_sdesc;
1510	struct fw_eth_tx_eo_wr *eowr;
1511	struct fw_eth_tx_pkt_wr *wr;
1512	struct cpl_tx_pkt_core *cpl;
1513	const struct port_info *pi;
1514	bool immediate = false;
1515	u64 cntrl, *end, *sgl;
1516	struct sge_eth_txq *q;
1517	unsigned int chip_ver;
1518	struct adapter *adap;
1519
1520	ret = cxgb4_validate_skb(skb, dev, ETH_HLEN);
1521	if (ret)
1522		goto out_free;
1523
1524	pi = netdev_priv(dev);
1525	adap = pi->adapter;
1526	ssi = skb_shinfo(skb);
1527#if IS_ENABLED(CONFIG_CHELSIO_IPSEC_INLINE)
1528	if (xfrm_offload(skb) && !ssi->gso_size)
1529		return adap->uld[CXGB4_ULD_IPSEC].tx_handler(skb, dev);
1530#endif /* CHELSIO_IPSEC_INLINE */
1531
1532#if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE)
1533	if (tls_is_skb_tx_device_offloaded(skb) &&
1534	    (skb->len - skb_tcp_all_headers(skb)))
1535		return adap->uld[CXGB4_ULD_KTLS].tx_handler(skb, dev);
1536#endif /* CHELSIO_TLS_DEVICE */
1537
1538	qidx = skb_get_queue_mapping(skb);
1539	if (ptp_enabled) {
1540		if (!(adap->ptp_tx_skb)) {
1541			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1542			adap->ptp_tx_skb = skb_get(skb);
1543		} else {
1544			goto out_free;
1545		}
1546		q = &adap->sge.ptptxq;
1547	} else {
1548		q = &adap->sge.ethtxq[qidx + pi->first_qset];
1549	}
1550	skb_tx_timestamp(skb);
1551
1552	reclaim_completed_tx(adap, &q->q, -1, true);
1553	cntrl = TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F;
1554
1555#ifdef CONFIG_CHELSIO_T4_FCOE
1556	ret = cxgb_fcoe_offload(skb, adap, pi, &cntrl);
1557	if (unlikely(ret == -EOPNOTSUPP))
1558		goto out_free;
1559#endif /* CONFIG_CHELSIO_T4_FCOE */
1560
1561	chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip);
1562	flits = calc_tx_flits(skb, chip_ver);
1563	ndesc = flits_to_desc(flits);
1564	credits = txq_avail(&q->q) - ndesc;
1565
1566	if (unlikely(credits < 0)) {
1567		eth_txq_stop(q);
1568		dev_err(adap->pdev_dev,
1569			"%s: Tx ring %u full while queue awake!\n",
1570			dev->name, qidx);
1571		return NETDEV_TX_BUSY;
1572	}
1573
1574	if (is_eth_imm(skb, chip_ver))
1575		immediate = true;
1576
1577	if (skb->encapsulation && chip_ver > CHELSIO_T5)
1578		tnl_type = cxgb_encap_offload_supported(skb);
1579
1580	last_desc = q->q.pidx + ndesc - 1;
1581	if (last_desc >= q->q.size)
1582		last_desc -= q->q.size;
1583	sgl_sdesc = &q->q.sdesc[last_desc];
1584
1585	if (!immediate &&
1586	    unlikely(cxgb4_map_skb(adap->pdev_dev, skb, sgl_sdesc->addr) < 0)) {
1587		memset(sgl_sdesc->addr, 0, sizeof(sgl_sdesc->addr));
1588		q->mapping_err++;
1589		goto out_free;
1590	}
1591
1592	wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2));
1593	if (unlikely(credits < ETHTXQ_STOP_THRES)) {
1594		/* After we're done injecting the Work Request for this
1595		 * packet, we'll be below our "stop threshold" so stop the TX
1596		 * Queue now and schedule a request for an SGE Egress Queue
1597		 * Update message. The queue will get started later on when
1598		 * the firmware processes this Work Request and sends us an
1599		 * Egress Queue Status Update message indicating that space
1600		 * has opened up.
1601		 */
1602		eth_txq_stop(q);
1603		if (chip_ver > CHELSIO_T5)
1604			wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F;
1605	}
1606
1607	wr = (void *)&q->q.desc[q->q.pidx];
1608	eowr = (void *)&q->q.desc[q->q.pidx];
1609	wr->equiq_to_len16 = htonl(wr_mid);
1610	wr->r3 = cpu_to_be64(0);
1611	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4)
1612		end = (u64 *)eowr + flits;
1613	else
1614		end = (u64 *)wr + flits;
1615
1616	len = immediate ? skb->len : 0;
1617	len += sizeof(*cpl);
1618	if (ssi->gso_size && !(ssi->gso_type & SKB_GSO_UDP_L4)) {
1619		struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
1620		struct cpl_tx_tnl_lso *tnl_lso = (void *)(wr + 1);
1621
1622		if (tnl_type)
1623			len += sizeof(*tnl_lso);
1624		else
1625			len += sizeof(*lso);
1626
1627		wr->op_immdlen = htonl(FW_WR_OP_V(FW_ETH_TX_PKT_WR) |
1628				       FW_WR_IMMDLEN_V(len));
1629		if (tnl_type) {
1630			struct iphdr *iph = ip_hdr(skb);
1631
1632			t6_fill_tnl_lso(skb, tnl_lso, tnl_type);
1633			cpl = (void *)(tnl_lso + 1);
1634			/* Driver is expected to compute partial checksum that
1635			 * does not include the IP Total Length.
1636			 */
1637			if (iph->version == 4) {
1638				iph->check = 0;
1639				iph->tot_len = 0;
1640				iph->check = ~ip_fast_csum((u8 *)iph, iph->ihl);
1641			}
1642			if (skb->ip_summed == CHECKSUM_PARTIAL)
1643				cntrl = hwcsum(adap->params.chip, skb);
1644		} else {
1645			cpl = write_tso_wr(adap, skb, lso);
1646			cntrl = hwcsum(adap->params.chip, skb);
1647		}
1648		sgl = (u64 *)(cpl + 1); /* sgl start here */
1649		q->tso++;
1650		q->tx_cso += ssi->gso_segs;
1651	} else if (ssi->gso_size) {
1652		u64 *start;
1653		u32 hdrlen;
1654
1655		hdrlen = eth_get_headlen(dev, skb->data, skb_headlen(skb));
1656		len += hdrlen;
1657		wr->op_immdlen = cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_EO_WR) |
1658					     FW_ETH_TX_EO_WR_IMMDLEN_V(len));
1659		cpl = write_eo_udp_wr(skb, eowr, hdrlen);
1660		cntrl = hwcsum(adap->params.chip, skb);
1661
1662		start = (u64 *)(cpl + 1);
1663		sgl = (u64 *)inline_tx_skb_header(skb, &q->q, (void *)start,
1664						  hdrlen);
1665		if (unlikely(start > sgl)) {
1666			left = (u8 *)end - (u8 *)q->q.stat;
1667			end = (void *)q->q.desc + left;
1668		}
1669		sgl_off = hdrlen;
1670		q->uso++;
1671		q->tx_cso += ssi->gso_segs;
1672	} else {
1673		if (ptp_enabled)
1674			op = FW_PTP_TX_PKT_WR;
1675		else
1676			op = FW_ETH_TX_PKT_WR;
1677		wr->op_immdlen = htonl(FW_WR_OP_V(op) |
1678				       FW_WR_IMMDLEN_V(len));
1679		cpl = (void *)(wr + 1);
1680		sgl = (u64 *)(cpl + 1);
1681		if (skb->ip_summed == CHECKSUM_PARTIAL) {
1682			cntrl = hwcsum(adap->params.chip, skb) |
1683				TXPKT_IPCSUM_DIS_F;
1684			q->tx_cso++;
1685		}
1686	}
1687
1688	if (unlikely((u8 *)sgl >= (u8 *)q->q.stat)) {
1689		/* If current position is already at the end of the
1690		 * txq, reset the current to point to start of the queue
1691		 * and update the end ptr as well.
1692		 */
1693		left = (u8 *)end - (u8 *)q->q.stat;
1694		end = (void *)q->q.desc + left;
1695		sgl = (void *)q->q.desc;
1696	}
1697
1698	if (skb_vlan_tag_present(skb)) {
1699		q->vlan_ins++;
1700		cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb));
1701#ifdef CONFIG_CHELSIO_T4_FCOE
1702		if (skb->protocol == htons(ETH_P_FCOE))
1703			cntrl |= TXPKT_VLAN_V(
1704				 ((skb->priority & 0x7) << VLAN_PRIO_SHIFT));
1705#endif /* CONFIG_CHELSIO_T4_FCOE */
1706	}
1707
1708	ctrl0 = TXPKT_OPCODE_V(CPL_TX_PKT_XT) | TXPKT_INTF_V(pi->tx_chan) |
1709		TXPKT_PF_V(adap->pf);
1710	if (ptp_enabled)
1711		ctrl0 |= TXPKT_TSTAMP_F;
1712#ifdef CONFIG_CHELSIO_T4_DCB
1713	if (is_t4(adap->params.chip))
1714		ctrl0 |= TXPKT_OVLAN_IDX_V(q->dcb_prio);
1715	else
1716		ctrl0 |= TXPKT_T5_OVLAN_IDX_V(q->dcb_prio);
1717#endif
1718	cpl->ctrl0 = htonl(ctrl0);
1719	cpl->pack = htons(0);
1720	cpl->len = htons(skb->len);
1721	cpl->ctrl1 = cpu_to_be64(cntrl);
1722
1723	if (immediate) {
1724		cxgb4_inline_tx_skb(skb, &q->q, sgl);
1725		dev_consume_skb_any(skb);
1726	} else {
1727		cxgb4_write_sgl(skb, &q->q, (void *)sgl, end, sgl_off,
1728				sgl_sdesc->addr);
1729		skb_orphan(skb);
1730		sgl_sdesc->skb = skb;
1731	}
1732
1733	txq_advance(&q->q, ndesc);
1734
1735	cxgb4_ring_tx_db(adap, &q->q, ndesc);
1736	return NETDEV_TX_OK;
1737
1738out_free:
1739	dev_kfree_skb_any(skb);
1740	return NETDEV_TX_OK;
1741}
1742
1743/* Constants ... */
1744enum {
1745	/* Egress Queue sizes, producer and consumer indices are all in units
1746	 * of Egress Context Units bytes.  Note that as far as the hardware is
1747	 * concerned, the free list is an Egress Queue (the host produces free
1748	 * buffers which the hardware consumes) and free list entries are
1749	 * 64-bit PCI DMA addresses.
1750	 */
1751	EQ_UNIT = SGE_EQ_IDXSIZE,
1752	FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
1753	TXD_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
1754
1755	T4VF_ETHTXQ_MAX_HDR = (sizeof(struct fw_eth_tx_pkt_vm_wr) +
1756			       sizeof(struct cpl_tx_pkt_lso_core) +
1757			       sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64),
1758};
1759
1760/**
1761 *	t4vf_is_eth_imm - can an Ethernet packet be sent as immediate data?
1762 *	@skb: the packet
1763 *
1764 *	Returns whether an Ethernet packet is small enough to fit completely as
1765 *	immediate data.
1766 */
1767static inline int t4vf_is_eth_imm(const struct sk_buff *skb)
1768{
1769	/* The VF Driver uses the FW_ETH_TX_PKT_VM_WR firmware Work Request
1770	 * which does not accommodate immediate data.  We could dike out all
1771	 * of the support code for immediate data but that would tie our hands
1772	 * too much if we ever want to enhace the firmware.  It would also
1773	 * create more differences between the PF and VF Drivers.
1774	 */
1775	return false;
1776}
1777
1778/**
1779 *	t4vf_calc_tx_flits - calculate the number of flits for a packet TX WR
1780 *	@skb: the packet
1781 *
1782 *	Returns the number of flits needed for a TX Work Request for the
1783 *	given Ethernet packet, including the needed WR and CPL headers.
1784 */
1785static inline unsigned int t4vf_calc_tx_flits(const struct sk_buff *skb)
1786{
1787	unsigned int flits;
1788
1789	/* If the skb is small enough, we can pump it out as a work request
1790	 * with only immediate data.  In that case we just have to have the
1791	 * TX Packet header plus the skb data in the Work Request.
1792	 */
1793	if (t4vf_is_eth_imm(skb))
1794		return DIV_ROUND_UP(skb->len + sizeof(struct cpl_tx_pkt),
1795				    sizeof(__be64));
1796
1797	/* Otherwise, we're going to have to construct a Scatter gather list
1798	 * of the skb body and fragments.  We also include the flits necessary
1799	 * for the TX Packet Work Request and CPL.  We always have a firmware
1800	 * Write Header (incorporated as part of the cpl_tx_pkt_lso and
1801	 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL
1802	 * message or, if we're doing a Large Send Offload, an LSO CPL message
1803	 * with an embedded TX Packet Write CPL message.
1804	 */
1805	flits = sgl_len(skb_shinfo(skb)->nr_frags + 1);
1806	if (skb_shinfo(skb)->gso_size)
1807		flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) +
1808			  sizeof(struct cpl_tx_pkt_lso_core) +
1809			  sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
1810	else
1811		flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) +
1812			  sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
1813	return flits;
1814}
1815
1816/**
1817 *	cxgb4_vf_eth_xmit - add a packet to an Ethernet TX queue
1818 *	@skb: the packet
1819 *	@dev: the egress net device
1820 *
1821 *	Add a packet to an SGE Ethernet TX queue.  Runs with softirqs disabled.
1822 */
1823static netdev_tx_t cxgb4_vf_eth_xmit(struct sk_buff *skb,
1824				     struct net_device *dev)
1825{
1826	unsigned int last_desc, flits, ndesc;
1827	const struct skb_shared_info *ssi;
1828	struct fw_eth_tx_pkt_vm_wr *wr;
1829	struct tx_sw_desc *sgl_sdesc;
1830	struct cpl_tx_pkt_core *cpl;
1831	const struct port_info *pi;
1832	struct sge_eth_txq *txq;
1833	struct adapter *adapter;
1834	int qidx, credits, ret;
1835	size_t fw_hdr_copy_len;
1836	unsigned int chip_ver;
1837	u64 cntrl, *end;
1838	u32 wr_mid;
1839
1840	/* The chip minimum packet length is 10 octets but the firmware
1841	 * command that we are using requires that we copy the Ethernet header
1842	 * (including the VLAN tag) into the header so we reject anything
1843	 * smaller than that ...
1844	 */
1845	BUILD_BUG_ON(sizeof(wr->firmware) !=
1846		     (sizeof(wr->ethmacdst) + sizeof(wr->ethmacsrc) +
1847		      sizeof(wr->ethtype) + sizeof(wr->vlantci)));
1848	fw_hdr_copy_len = sizeof(wr->firmware);
1849	ret = cxgb4_validate_skb(skb, dev, fw_hdr_copy_len);
1850	if (ret)
1851		goto out_free;
1852
1853	/* Figure out which TX Queue we're going to use. */
1854	pi = netdev_priv(dev);
1855	adapter = pi->adapter;
1856	qidx = skb_get_queue_mapping(skb);
1857	WARN_ON(qidx >= pi->nqsets);
1858	txq = &adapter->sge.ethtxq[pi->first_qset + qidx];
1859
1860	/* Take this opportunity to reclaim any TX Descriptors whose DMA
1861	 * transfers have completed.
1862	 */
1863	reclaim_completed_tx(adapter, &txq->q, -1, true);
1864
1865	/* Calculate the number of flits and TX Descriptors we're going to
1866	 * need along with how many TX Descriptors will be left over after
1867	 * we inject our Work Request.
1868	 */
1869	flits = t4vf_calc_tx_flits(skb);
1870	ndesc = flits_to_desc(flits);
1871	credits = txq_avail(&txq->q) - ndesc;
1872
1873	if (unlikely(credits < 0)) {
1874		/* Not enough room for this packet's Work Request.  Stop the
1875		 * TX Queue and return a "busy" condition.  The queue will get
1876		 * started later on when the firmware informs us that space
1877		 * has opened up.
1878		 */
1879		eth_txq_stop(txq);
1880		dev_err(adapter->pdev_dev,
1881			"%s: TX ring %u full while queue awake!\n",
1882			dev->name, qidx);
1883		return NETDEV_TX_BUSY;
1884	}
1885
1886	last_desc = txq->q.pidx + ndesc - 1;
1887	if (last_desc >= txq->q.size)
1888		last_desc -= txq->q.size;
1889	sgl_sdesc = &txq->q.sdesc[last_desc];
1890
1891	if (!t4vf_is_eth_imm(skb) &&
1892	    unlikely(cxgb4_map_skb(adapter->pdev_dev, skb,
1893				   sgl_sdesc->addr) < 0)) {
1894		/* We need to map the skb into PCI DMA space (because it can't
1895		 * be in-lined directly into the Work Request) and the mapping
1896		 * operation failed.  Record the error and drop the packet.
1897		 */
1898		memset(sgl_sdesc->addr, 0, sizeof(sgl_sdesc->addr));
1899		txq->mapping_err++;
1900		goto out_free;
1901	}
1902
1903	chip_ver = CHELSIO_CHIP_VERSION(adapter->params.chip);
1904	wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2));
1905	if (unlikely(credits < ETHTXQ_STOP_THRES)) {
1906		/* After we're done injecting the Work Request for this
1907		 * packet, we'll be below our "stop threshold" so stop the TX
1908		 * Queue now and schedule a request for an SGE Egress Queue
1909		 * Update message.  The queue will get started later on when
1910		 * the firmware processes this Work Request and sends us an
1911		 * Egress Queue Status Update message indicating that space
1912		 * has opened up.
1913		 */
1914		eth_txq_stop(txq);
1915		if (chip_ver > CHELSIO_T5)
1916			wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F;
1917	}
1918
1919	/* Start filling in our Work Request.  Note that we do _not_ handle
1920	 * the WR Header wrapping around the TX Descriptor Ring.  If our
1921	 * maximum header size ever exceeds one TX Descriptor, we'll need to
1922	 * do something else here.
1923	 */
1924	WARN_ON(DIV_ROUND_UP(T4VF_ETHTXQ_MAX_HDR, TXD_PER_EQ_UNIT) > 1);
1925	wr = (void *)&txq->q.desc[txq->q.pidx];
1926	wr->equiq_to_len16 = cpu_to_be32(wr_mid);
1927	wr->r3[0] = cpu_to_be32(0);
1928	wr->r3[1] = cpu_to_be32(0);
1929	skb_copy_from_linear_data(skb, &wr->firmware, fw_hdr_copy_len);
1930	end = (u64 *)wr + flits;
1931
1932	/* If this is a Large Send Offload packet we'll put in an LSO CPL
1933	 * message with an encapsulated TX Packet CPL message.  Otherwise we
1934	 * just use a TX Packet CPL message.
1935	 */
1936	ssi = skb_shinfo(skb);
1937	if (ssi->gso_size) {
1938		struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
1939		bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0;
1940		int l3hdr_len = skb_network_header_len(skb);
1941		int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
1942
1943		wr->op_immdlen =
1944			cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_PKT_VM_WR) |
1945				    FW_WR_IMMDLEN_V(sizeof(*lso) +
1946						    sizeof(*cpl)));
1947		 /* Fill in the LSO CPL message. */
1948		lso->lso_ctrl =
1949			cpu_to_be32(LSO_OPCODE_V(CPL_TX_PKT_LSO) |
1950				    LSO_FIRST_SLICE_F |
1951				    LSO_LAST_SLICE_F |
1952				    LSO_IPV6_V(v6) |
1953				    LSO_ETHHDR_LEN_V(eth_xtra_len / 4) |
1954				    LSO_IPHDR_LEN_V(l3hdr_len / 4) |
1955				    LSO_TCPHDR_LEN_V(tcp_hdr(skb)->doff));
1956		lso->ipid_ofst = cpu_to_be16(0);
1957		lso->mss = cpu_to_be16(ssi->gso_size);
1958		lso->seqno_offset = cpu_to_be32(0);
1959		if (is_t4(adapter->params.chip))
1960			lso->len = cpu_to_be32(skb->len);
1961		else
1962			lso->len = cpu_to_be32(LSO_T5_XFER_SIZE_V(skb->len));
1963
1964		/* Set up TX Packet CPL pointer, control word and perform
1965		 * accounting.
1966		 */
1967		cpl = (void *)(lso + 1);
1968
1969		if (chip_ver <= CHELSIO_T5)
1970			cntrl = TXPKT_ETHHDR_LEN_V(eth_xtra_len);
1971		else
1972			cntrl = T6_TXPKT_ETHHDR_LEN_V(eth_xtra_len);
1973
1974		cntrl |= TXPKT_CSUM_TYPE_V(v6 ?
1975					   TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) |
1976			 TXPKT_IPHDR_LEN_V(l3hdr_len);
1977		txq->tso++;
1978		txq->tx_cso += ssi->gso_segs;
1979	} else {
1980		int len;
1981
1982		len = (t4vf_is_eth_imm(skb)
1983		       ? skb->len + sizeof(*cpl)
1984		       : sizeof(*cpl));
1985		wr->op_immdlen =
1986			cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_PKT_VM_WR) |
1987				    FW_WR_IMMDLEN_V(len));
1988
1989		/* Set up TX Packet CPL pointer, control word and perform
1990		 * accounting.
1991		 */
1992		cpl = (void *)(wr + 1);
1993		if (skb->ip_summed == CHECKSUM_PARTIAL) {
1994			cntrl = hwcsum(adapter->params.chip, skb) |
1995				TXPKT_IPCSUM_DIS_F;
1996			txq->tx_cso++;
1997		} else {
1998			cntrl = TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F;
1999		}
2000	}
2001
2002	/* If there's a VLAN tag present, add that to the list of things to
2003	 * do in this Work Request.
2004	 */
2005	if (skb_vlan_tag_present(skb)) {
2006		txq->vlan_ins++;
2007		cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb));
2008	}
2009
2010	 /* Fill in the TX Packet CPL message header. */
2011	cpl->ctrl0 = cpu_to_be32(TXPKT_OPCODE_V(CPL_TX_PKT_XT) |
2012				 TXPKT_INTF_V(pi->port_id) |
2013				 TXPKT_PF_V(0));
2014	cpl->pack = cpu_to_be16(0);
2015	cpl->len = cpu_to_be16(skb->len);
2016	cpl->ctrl1 = cpu_to_be64(cntrl);
2017
2018	/* Fill in the body of the TX Packet CPL message with either in-lined
2019	 * data or a Scatter/Gather List.
2020	 */
2021	if (t4vf_is_eth_imm(skb)) {
2022		/* In-line the packet's data and free the skb since we don't
2023		 * need it any longer.
2024		 */
2025		cxgb4_inline_tx_skb(skb, &txq->q, cpl + 1);
2026		dev_consume_skb_any(skb);
2027	} else {
2028		/* Write the skb's Scatter/Gather list into the TX Packet CPL
2029		 * message and retain a pointer to the skb so we can free it
2030		 * later when its DMA completes.  (We store the skb pointer
2031		 * in the Software Descriptor corresponding to the last TX
2032		 * Descriptor used by the Work Request.)
2033		 *
2034		 * The retained skb will be freed when the corresponding TX
2035		 * Descriptors are reclaimed after their DMAs complete.
2036		 * However, this could take quite a while since, in general,
2037		 * the hardware is set up to be lazy about sending DMA
2038		 * completion notifications to us and we mostly perform TX
2039		 * reclaims in the transmit routine.
2040		 *
2041		 * This is good for performamce but means that we rely on new
2042		 * TX packets arriving to run the destructors of completed
2043		 * packets, which open up space in their sockets' send queues.
2044		 * Sometimes we do not get such new packets causing TX to
2045		 * stall.  A single UDP transmitter is a good example of this
2046		 * situation.  We have a clean up timer that periodically
2047		 * reclaims completed packets but it doesn't run often enough
2048		 * (nor do we want it to) to prevent lengthy stalls.  A
2049		 * solution to this problem is to run the destructor early,
2050		 * after the packet is queued but before it's DMAd.  A con is
2051		 * that we lie to socket memory accounting, but the amount of
2052		 * extra memory is reasonable (limited by the number of TX
2053		 * descriptors), the packets do actually get freed quickly by
2054		 * new packets almost always, and for protocols like TCP that
2055		 * wait for acks to really free up the data the extra memory
2056		 * is even less.  On the positive side we run the destructors
2057		 * on the sending CPU rather than on a potentially different
2058		 * completing CPU, usually a good thing.
2059		 *
2060		 * Run the destructor before telling the DMA engine about the
2061		 * packet to make sure it doesn't complete and get freed
2062		 * prematurely.
2063		 */
2064		struct ulptx_sgl *sgl = (struct ulptx_sgl *)(cpl + 1);
2065		struct sge_txq *tq = &txq->q;
2066
2067		/* If the Work Request header was an exact multiple of our TX
2068		 * Descriptor length, then it's possible that the starting SGL
2069		 * pointer lines up exactly with the end of our TX Descriptor
2070		 * ring.  If that's the case, wrap around to the beginning
2071		 * here ...
2072		 */
2073		if (unlikely((void *)sgl == (void *)tq->stat)) {
2074			sgl = (void *)tq->desc;
2075			end = (void *)((void *)tq->desc +
2076				       ((void *)end - (void *)tq->stat));
2077		}
2078
2079		cxgb4_write_sgl(skb, tq, sgl, end, 0, sgl_sdesc->addr);
2080		skb_orphan(skb);
2081		sgl_sdesc->skb = skb;
2082	}
2083
2084	/* Advance our internal TX Queue state, tell the hardware about
2085	 * the new TX descriptors and return success.
2086	 */
2087	txq_advance(&txq->q, ndesc);
2088
2089	cxgb4_ring_tx_db(adapter, &txq->q, ndesc);
2090	return NETDEV_TX_OK;
2091
2092out_free:
2093	/* An error of some sort happened.  Free the TX skb and tell the
2094	 * OS that we've "dealt" with the packet ...
2095	 */
2096	dev_kfree_skb_any(skb);
2097	return NETDEV_TX_OK;
2098}
2099
2100/**
2101 * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
2102 * @q: the SGE control Tx queue
2103 *
2104 * This is a variant of cxgb4_reclaim_completed_tx() that is used
2105 * for Tx queues that send only immediate data (presently just
2106 * the control queues) and	thus do not have any sk_buffs to release.
2107 */
2108static inline void reclaim_completed_tx_imm(struct sge_txq *q)
2109{
2110	int hw_cidx = ntohs(READ_ONCE(q->stat->cidx));
2111	int reclaim = hw_cidx - q->cidx;
2112
2113	if (reclaim < 0)
2114		reclaim += q->size;
2115
2116	q->in_use -= reclaim;
2117	q->cidx = hw_cidx;
2118}
2119
2120static inline void eosw_txq_advance_index(u32 *idx, u32 n, u32 max)
2121{
2122	u32 val = *idx + n;
2123
2124	if (val >= max)
2125		val -= max;
2126
2127	*idx = val;
2128}
2129
2130void cxgb4_eosw_txq_free_desc(struct adapter *adap,
2131			      struct sge_eosw_txq *eosw_txq, u32 ndesc)
2132{
2133	struct tx_sw_desc *d;
2134
2135	d = &eosw_txq->desc[eosw_txq->last_cidx];
2136	while (ndesc--) {
2137		if (d->skb) {
2138			if (d->addr[0]) {
2139				unmap_skb(adap->pdev_dev, d->skb, d->addr);
2140				memset(d->addr, 0, sizeof(d->addr));
2141			}
2142			dev_consume_skb_any(d->skb);
2143			d->skb = NULL;
2144		}
2145		eosw_txq_advance_index(&eosw_txq->last_cidx, 1,
2146				       eosw_txq->ndesc);
2147		d = &eosw_txq->desc[eosw_txq->last_cidx];
2148	}
2149}
2150
2151static inline void eosw_txq_advance(struct sge_eosw_txq *eosw_txq, u32 n)
2152{
2153	eosw_txq_advance_index(&eosw_txq->pidx, n, eosw_txq->ndesc);
2154	eosw_txq->inuse += n;
2155}
2156
2157static inline int eosw_txq_enqueue(struct sge_eosw_txq *eosw_txq,
2158				   struct sk_buff *skb)
2159{
2160	if (eosw_txq->inuse == eosw_txq->ndesc)
2161		return -ENOMEM;
2162
2163	eosw_txq->desc[eosw_txq->pidx].skb = skb;
2164	return 0;
2165}
2166
2167static inline struct sk_buff *eosw_txq_peek(struct sge_eosw_txq *eosw_txq)
2168{
2169	return eosw_txq->desc[eosw_txq->last_pidx].skb;
2170}
2171
2172static inline u8 ethofld_calc_tx_flits(struct adapter *adap,
2173				       struct sk_buff *skb, u32 hdr_len)
2174{
2175	u8 flits, nsgl = 0;
2176	u32 wrlen;
2177
2178	wrlen = sizeof(struct fw_eth_tx_eo_wr) + sizeof(struct cpl_tx_pkt_core);
2179	if (skb_shinfo(skb)->gso_size &&
2180	    !(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4))
2181		wrlen += sizeof(struct cpl_tx_pkt_lso_core);
2182
2183	wrlen += roundup(hdr_len, 16);
2184
2185	/* Packet headers + WR + CPLs */
2186	flits = DIV_ROUND_UP(wrlen, 8);
2187
2188	if (skb_shinfo(skb)->nr_frags > 0) {
2189		if (skb_headlen(skb) - hdr_len)
2190			nsgl = sgl_len(skb_shinfo(skb)->nr_frags + 1);
2191		else
2192			nsgl = sgl_len(skb_shinfo(skb)->nr_frags);
2193	} else if (skb->len - hdr_len) {
2194		nsgl = sgl_len(1);
2195	}
2196
2197	return flits + nsgl;
2198}
2199
2200static void *write_eo_wr(struct adapter *adap, struct sge_eosw_txq *eosw_txq,
2201			 struct sk_buff *skb, struct fw_eth_tx_eo_wr *wr,
2202			 u32 hdr_len, u32 wrlen)
2203{
2204	const struct skb_shared_info *ssi = skb_shinfo(skb);
2205	struct cpl_tx_pkt_core *cpl;
2206	u32 immd_len, wrlen16;
2207	bool compl = false;
2208	u8 ver, proto;
2209
2210	ver = ip_hdr(skb)->version;
2211	proto = (ver == 6) ? ipv6_hdr(skb)->nexthdr : ip_hdr(skb)->protocol;
2212
2213	wrlen16 = DIV_ROUND_UP(wrlen, 16);
2214	immd_len = sizeof(struct cpl_tx_pkt_core);
2215	if (skb_shinfo(skb)->gso_size &&
2216	    !(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4))
2217		immd_len += sizeof(struct cpl_tx_pkt_lso_core);
2218	immd_len += hdr_len;
2219
2220	if (!eosw_txq->ncompl ||
2221	    (eosw_txq->last_compl + wrlen16) >=
2222	    (adap->params.ofldq_wr_cred / 2)) {
2223		compl = true;
2224		eosw_txq->ncompl++;
2225		eosw_txq->last_compl = 0;
2226	}
2227
2228	wr->op_immdlen = cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_EO_WR) |
2229				     FW_ETH_TX_EO_WR_IMMDLEN_V(immd_len) |
2230				     FW_WR_COMPL_V(compl));
2231	wr->equiq_to_len16 = cpu_to_be32(FW_WR_LEN16_V(wrlen16) |
2232					 FW_WR_FLOWID_V(eosw_txq->hwtid));
2233	wr->r3 = 0;
2234	if (proto == IPPROTO_UDP) {
2235		cpl = write_eo_udp_wr(skb, wr, hdr_len);
2236	} else {
2237		wr->u.tcpseg.type = FW_ETH_TX_EO_TYPE_TCPSEG;
2238		wr->u.tcpseg.ethlen = skb_network_offset(skb);
2239		wr->u.tcpseg.iplen = cpu_to_be16(skb_network_header_len(skb));
2240		wr->u.tcpseg.tcplen = tcp_hdrlen(skb);
2241		wr->u.tcpseg.tsclk_tsoff = 0;
2242		wr->u.tcpseg.r4 = 0;
2243		wr->u.tcpseg.r5 = 0;
2244		wr->u.tcpseg.plen = cpu_to_be32(skb->len - hdr_len);
2245
2246		if (ssi->gso_size) {
2247			struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
2248
2249			wr->u.tcpseg.mss = cpu_to_be16(ssi->gso_size);
2250			cpl = write_tso_wr(adap, skb, lso);
2251		} else {
2252			wr->u.tcpseg.mss = cpu_to_be16(0xffff);
2253			cpl = (void *)(wr + 1);
2254		}
2255	}
2256
2257	eosw_txq->cred -= wrlen16;
2258	eosw_txq->last_compl += wrlen16;
2259	return cpl;
2260}
2261
2262static int ethofld_hard_xmit(struct net_device *dev,
2263			     struct sge_eosw_txq *eosw_txq)
2264{
2265	struct port_info *pi = netdev2pinfo(dev);
2266	struct adapter *adap = netdev2adap(dev);
2267	u32 wrlen, wrlen16, hdr_len, data_len;
2268	enum sge_eosw_state next_state;
2269	u64 cntrl, *start, *end, *sgl;
2270	struct sge_eohw_txq *eohw_txq;
2271	struct cpl_tx_pkt_core *cpl;
2272	struct fw_eth_tx_eo_wr *wr;
2273	bool skip_eotx_wr = false;
2274	struct tx_sw_desc *d;
2275	struct sk_buff *skb;
2276	int left, ret = 0;
2277	u8 flits, ndesc;
2278
2279	eohw_txq = &adap->sge.eohw_txq[eosw_txq->hwqid];
2280	spin_lock(&eohw_txq->lock);
2281	reclaim_completed_tx_imm(&eohw_txq->q);
2282
2283	d = &eosw_txq->desc[eosw_txq->last_pidx];
2284	skb = d->skb;
2285	skb_tx_timestamp(skb);
2286
2287	wr = (struct fw_eth_tx_eo_wr *)&eohw_txq->q.desc[eohw_txq->q.pidx];
2288	if (unlikely(eosw_txq->state != CXGB4_EO_STATE_ACTIVE &&
2289		     eosw_txq->last_pidx == eosw_txq->flowc_idx)) {
2290		hdr_len = skb->len;
2291		data_len = 0;
2292		flits = DIV_ROUND_UP(hdr_len, 8);
2293		if (eosw_txq->state == CXGB4_EO_STATE_FLOWC_OPEN_SEND)
2294			next_state = CXGB4_EO_STATE_FLOWC_OPEN_REPLY;
2295		else
2296			next_state = CXGB4_EO_STATE_FLOWC_CLOSE_REPLY;
2297		skip_eotx_wr = true;
2298	} else {
2299		hdr_len = eth_get_headlen(dev, skb->data, skb_headlen(skb));
2300		data_len = skb->len - hdr_len;
2301		flits = ethofld_calc_tx_flits(adap, skb, hdr_len);
2302	}
2303	ndesc = flits_to_desc(flits);
2304	wrlen = flits * 8;
2305	wrlen16 = DIV_ROUND_UP(wrlen, 16);
2306
2307	left = txq_avail(&eohw_txq->q) - ndesc;
2308
2309	/* If there are no descriptors left in hardware queues or no
2310	 * CPL credits left in software queues, then wait for them
2311	 * to come back and retry again. Note that we always request
2312	 * for credits update via interrupt for every half credits
2313	 * consumed. So, the interrupt will eventually restore the
2314	 * credits and invoke the Tx path again.
2315	 */
2316	if (unlikely(left < 0 || wrlen16 > eosw_txq->cred)) {
2317		ret = -ENOMEM;
2318		goto out_unlock;
2319	}
2320
2321	if (unlikely(skip_eotx_wr)) {
2322		start = (u64 *)wr;
2323		eosw_txq->state = next_state;
2324		eosw_txq->cred -= wrlen16;
2325		eosw_txq->ncompl++;
2326		eosw_txq->last_compl = 0;
2327		goto write_wr_headers;
2328	}
2329
2330	cpl = write_eo_wr(adap, eosw_txq, skb, wr, hdr_len, wrlen);
2331	cntrl = hwcsum(adap->params.chip, skb);
2332	if (skb_vlan_tag_present(skb))
2333		cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb));
2334
2335	cpl->ctrl0 = cpu_to_be32(TXPKT_OPCODE_V(CPL_TX_PKT_XT) |
2336				 TXPKT_INTF_V(pi->tx_chan) |
2337				 TXPKT_PF_V(adap->pf));
2338	cpl->pack = 0;
2339	cpl->len = cpu_to_be16(skb->len);
2340	cpl->ctrl1 = cpu_to_be64(cntrl);
2341
2342	start = (u64 *)(cpl + 1);
2343
2344write_wr_headers:
2345	sgl = (u64 *)inline_tx_skb_header(skb, &eohw_txq->q, (void *)start,
2346					  hdr_len);
2347	if (data_len) {
2348		ret = cxgb4_map_skb(adap->pdev_dev, skb, d->addr);
2349		if (unlikely(ret)) {
2350			memset(d->addr, 0, sizeof(d->addr));
2351			eohw_txq->mapping_err++;
2352			goto out_unlock;
2353		}
2354
2355		end = (u64 *)wr + flits;
2356		if (unlikely(start > sgl)) {
2357			left = (u8 *)end - (u8 *)eohw_txq->q.stat;
2358			end = (void *)eohw_txq->q.desc + left;
2359		}
2360
2361		if (unlikely((u8 *)sgl >= (u8 *)eohw_txq->q.stat)) {
2362			/* If current position is already at the end of the
2363			 * txq, reset the current to point to start of the queue
2364			 * and update the end ptr as well.
2365			 */
2366			left = (u8 *)end - (u8 *)eohw_txq->q.stat;
2367
2368			end = (void *)eohw_txq->q.desc + left;
2369			sgl = (void *)eohw_txq->q.desc;
2370		}
2371
2372		cxgb4_write_sgl(skb, &eohw_txq->q, (void *)sgl, end, hdr_len,
2373				d->addr);
2374	}
2375
2376	if (skb_shinfo(skb)->gso_size) {
2377		if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4)
2378			eohw_txq->uso++;
2379		else
2380			eohw_txq->tso++;
2381		eohw_txq->tx_cso += skb_shinfo(skb)->gso_segs;
2382	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2383		eohw_txq->tx_cso++;
2384	}
2385
2386	if (skb_vlan_tag_present(skb))
2387		eohw_txq->vlan_ins++;
2388
2389	txq_advance(&eohw_txq->q, ndesc);
2390	cxgb4_ring_tx_db(adap, &eohw_txq->q, ndesc);
2391	eosw_txq_advance_index(&eosw_txq->last_pidx, 1, eosw_txq->ndesc);
2392
2393out_unlock:
2394	spin_unlock(&eohw_txq->lock);
2395	return ret;
2396}
2397
2398static void ethofld_xmit(struct net_device *dev, struct sge_eosw_txq *eosw_txq)
2399{
2400	struct sk_buff *skb;
2401	int pktcount, ret;
2402
2403	switch (eosw_txq->state) {
2404	case CXGB4_EO_STATE_ACTIVE:
2405	case CXGB4_EO_STATE_FLOWC_OPEN_SEND:
2406	case CXGB4_EO_STATE_FLOWC_CLOSE_SEND:
2407		pktcount = eosw_txq->pidx - eosw_txq->last_pidx;
2408		if (pktcount < 0)
2409			pktcount += eosw_txq->ndesc;
2410		break;
2411	case CXGB4_EO_STATE_FLOWC_OPEN_REPLY:
2412	case CXGB4_EO_STATE_FLOWC_CLOSE_REPLY:
2413	case CXGB4_EO_STATE_CLOSED:
2414	default:
2415		return;
2416	}
2417
2418	while (pktcount--) {
2419		skb = eosw_txq_peek(eosw_txq);
2420		if (!skb) {
2421			eosw_txq_advance_index(&eosw_txq->last_pidx, 1,
2422					       eosw_txq->ndesc);
2423			continue;
2424		}
2425
2426		ret = ethofld_hard_xmit(dev, eosw_txq);
2427		if (ret)
2428			break;
2429	}
2430}
2431
2432static netdev_tx_t cxgb4_ethofld_xmit(struct sk_buff *skb,
2433				      struct net_device *dev)
2434{
2435	struct cxgb4_tc_port_mqprio *tc_port_mqprio;
2436	struct port_info *pi = netdev2pinfo(dev);
2437	struct adapter *adap = netdev2adap(dev);
2438	struct sge_eosw_txq *eosw_txq;
2439	u32 qid;
2440	int ret;
2441
2442	ret = cxgb4_validate_skb(skb, dev, ETH_HLEN);
2443	if (ret)
2444		goto out_free;
2445
2446	tc_port_mqprio = &adap->tc_mqprio->port_mqprio[pi->port_id];
2447	qid = skb_get_queue_mapping(skb) - pi->nqsets;
2448	eosw_txq = &tc_port_mqprio->eosw_txq[qid];
2449	spin_lock_bh(&eosw_txq->lock);
2450	if (eosw_txq->state != CXGB4_EO_STATE_ACTIVE)
2451		goto out_unlock;
2452
2453	ret = eosw_txq_enqueue(eosw_txq, skb);
2454	if (ret)
2455		goto out_unlock;
2456
2457	/* SKB is queued for processing until credits are available.
2458	 * So, call the destructor now and we'll free the skb later
2459	 * after it has been successfully transmitted.
2460	 */
2461	skb_orphan(skb);
2462
2463	eosw_txq_advance(eosw_txq, 1);
2464	ethofld_xmit(dev, eosw_txq);
2465	spin_unlock_bh(&eosw_txq->lock);
2466	return NETDEV_TX_OK;
2467
2468out_unlock:
2469	spin_unlock_bh(&eosw_txq->lock);
2470out_free:
2471	dev_kfree_skb_any(skb);
2472	return NETDEV_TX_OK;
2473}
2474
2475netdev_tx_t t4_start_xmit(struct sk_buff *skb, struct net_device *dev)
2476{
2477	struct port_info *pi = netdev_priv(dev);
2478	u16 qid = skb_get_queue_mapping(skb);
2479
2480	if (unlikely(pi->eth_flags & PRIV_FLAG_PORT_TX_VM))
2481		return cxgb4_vf_eth_xmit(skb, dev);
2482
2483	if (unlikely(qid >= pi->nqsets))
2484		return cxgb4_ethofld_xmit(skb, dev);
2485
2486	if (is_ptp_enabled(skb, dev)) {
2487		struct adapter *adap = netdev2adap(dev);
2488		netdev_tx_t ret;
2489
2490		spin_lock(&adap->ptp_lock);
2491		ret = cxgb4_eth_xmit(skb, dev);
2492		spin_unlock(&adap->ptp_lock);
2493		return ret;
2494	}
2495
2496	return cxgb4_eth_xmit(skb, dev);
2497}
2498
2499static void eosw_txq_flush_pending_skbs(struct sge_eosw_txq *eosw_txq)
2500{
2501	int pktcount = eosw_txq->pidx - eosw_txq->last_pidx;
2502	int pidx = eosw_txq->pidx;
2503	struct sk_buff *skb;
2504
2505	if (!pktcount)
2506		return;
2507
2508	if (pktcount < 0)
2509		pktcount += eosw_txq->ndesc;
2510
2511	while (pktcount--) {
2512		pidx--;
2513		if (pidx < 0)
2514			pidx += eosw_txq->ndesc;
2515
2516		skb = eosw_txq->desc[pidx].skb;
2517		if (skb) {
2518			dev_consume_skb_any(skb);
2519			eosw_txq->desc[pidx].skb = NULL;
2520			eosw_txq->inuse--;
2521		}
2522	}
2523
2524	eosw_txq->pidx = eosw_txq->last_pidx + 1;
2525}
2526
2527/**
2528 * cxgb4_ethofld_send_flowc - Send ETHOFLD flowc request to bind eotid to tc.
2529 * @dev: netdevice
2530 * @eotid: ETHOFLD tid to bind/unbind
2531 * @tc: traffic class. If set to FW_SCHED_CLS_NONE, then unbinds the @eotid
2532 *
2533 * Send a FLOWC work request to bind an ETHOFLD TID to a traffic class.
2534 * If @tc is set to FW_SCHED_CLS_NONE, then the @eotid is unbound from
2535 * a traffic class.
2536 */
2537int cxgb4_ethofld_send_flowc(struct net_device *dev, u32 eotid, u32 tc)
2538{
2539	struct port_info *pi = netdev2pinfo(dev);
2540	struct adapter *adap = netdev2adap(dev);
2541	enum sge_eosw_state next_state;
2542	struct sge_eosw_txq *eosw_txq;
2543	u32 len, len16, nparams = 6;
2544	struct fw_flowc_wr *flowc;
2545	struct eotid_entry *entry;
2546	struct sge_ofld_rxq *rxq;
2547	struct sk_buff *skb;
2548	int ret = 0;
2549
2550	len = struct_size(flowc, mnemval, nparams);
2551	len16 = DIV_ROUND_UP(len, 16);
2552
2553	entry = cxgb4_lookup_eotid(&adap->tids, eotid);
2554	if (!entry)
2555		return -ENOMEM;
2556
2557	eosw_txq = (struct sge_eosw_txq *)entry->data;
2558	if (!eosw_txq)
2559		return -ENOMEM;
2560
2561	if (!(adap->flags & CXGB4_FW_OK)) {
2562		/* Don't stall caller when access to FW is lost */
2563		complete(&eosw_txq->completion);
2564		return -EIO;
2565	}
2566
2567	skb = alloc_skb(len, GFP_KERNEL);
2568	if (!skb)
2569		return -ENOMEM;
2570
2571	spin_lock_bh(&eosw_txq->lock);
2572	if (tc != FW_SCHED_CLS_NONE) {
2573		if (eosw_txq->state != CXGB4_EO_STATE_CLOSED)
2574			goto out_free_skb;
2575
2576		next_state = CXGB4_EO_STATE_FLOWC_OPEN_SEND;
2577	} else {
2578		if (eosw_txq->state != CXGB4_EO_STATE_ACTIVE)
2579			goto out_free_skb;
2580
2581		next_state = CXGB4_EO_STATE_FLOWC_CLOSE_SEND;
2582	}
2583
2584	flowc = __skb_put(skb, len);
2585	memset(flowc, 0, len);
2586
2587	rxq = &adap->sge.eohw_rxq[eosw_txq->hwqid];
2588	flowc->flowid_len16 = cpu_to_be32(FW_WR_LEN16_V(len16) |
2589					  FW_WR_FLOWID_V(eosw_txq->hwtid));
2590	flowc->op_to_nparams = cpu_to_be32(FW_WR_OP_V(FW_FLOWC_WR) |
2591					   FW_FLOWC_WR_NPARAMS_V(nparams) |
2592					   FW_WR_COMPL_V(1));
2593	flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_PFNVFN;
2594	flowc->mnemval[0].val = cpu_to_be32(FW_PFVF_CMD_PFN_V(adap->pf));
2595	flowc->mnemval[1].mnemonic = FW_FLOWC_MNEM_CH;
2596	flowc->mnemval[1].val = cpu_to_be32(pi->tx_chan);
2597	flowc->mnemval[2].mnemonic = FW_FLOWC_MNEM_PORT;
2598	flowc->mnemval[2].val = cpu_to_be32(pi->tx_chan);
2599	flowc->mnemval[3].mnemonic = FW_FLOWC_MNEM_IQID;
2600	flowc->mnemval[3].val = cpu_to_be32(rxq->rspq.abs_id);
2601	flowc->mnemval[4].mnemonic = FW_FLOWC_MNEM_SCHEDCLASS;
2602	flowc->mnemval[4].val = cpu_to_be32(tc);
2603	flowc->mnemval[5].mnemonic = FW_FLOWC_MNEM_EOSTATE;
2604	flowc->mnemval[5].val = cpu_to_be32(tc == FW_SCHED_CLS_NONE ?
2605					    FW_FLOWC_MNEM_EOSTATE_CLOSING :
2606					    FW_FLOWC_MNEM_EOSTATE_ESTABLISHED);
2607
2608	/* Free up any pending skbs to ensure there's room for
2609	 * termination FLOWC.
2610	 */
2611	if (tc == FW_SCHED_CLS_NONE)
2612		eosw_txq_flush_pending_skbs(eosw_txq);
2613
2614	ret = eosw_txq_enqueue(eosw_txq, skb);
2615	if (ret)
2616		goto out_free_skb;
2617
2618	eosw_txq->state = next_state;
2619	eosw_txq->flowc_idx = eosw_txq->pidx;
2620	eosw_txq_advance(eosw_txq, 1);
2621	ethofld_xmit(dev, eosw_txq);
2622
2623	spin_unlock_bh(&eosw_txq->lock);
2624	return 0;
2625
2626out_free_skb:
2627	dev_consume_skb_any(skb);
2628	spin_unlock_bh(&eosw_txq->lock);
2629	return ret;
2630}
2631
2632/**
2633 *	is_imm - check whether a packet can be sent as immediate data
2634 *	@skb: the packet
2635 *
2636 *	Returns true if a packet can be sent as a WR with immediate data.
2637 */
2638static inline int is_imm(const struct sk_buff *skb)
2639{
2640	return skb->len <= MAX_CTRL_WR_LEN;
2641}
2642
2643/**
2644 *	ctrlq_check_stop - check if a control queue is full and should stop
2645 *	@q: the queue
2646 *	@wr: most recent WR written to the queue
2647 *
2648 *	Check if a control queue has become full and should be stopped.
2649 *	We clean up control queue descriptors very lazily, only when we are out.
2650 *	If the queue is still full after reclaiming any completed descriptors
2651 *	we suspend it and have the last WR wake it up.
2652 */
2653static void ctrlq_check_stop(struct sge_ctrl_txq *q, struct fw_wr_hdr *wr)
2654{
2655	reclaim_completed_tx_imm(&q->q);
2656	if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
2657		wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F);
2658		q->q.stops++;
2659		q->full = 1;
2660	}
2661}
2662
2663#define CXGB4_SELFTEST_LB_STR "CHELSIO_SELFTEST"
2664
2665int cxgb4_selftest_lb_pkt(struct net_device *netdev)
2666{
2667	struct port_info *pi = netdev_priv(netdev);
2668	struct adapter *adap = pi->adapter;
2669	struct cxgb4_ethtool_lb_test *lb;
2670	int ret, i = 0, pkt_len, credits;
2671	struct fw_eth_tx_pkt_wr *wr;
2672	struct cpl_tx_pkt_core *cpl;
2673	u32 ctrl0, ndesc, flits;
2674	struct sge_eth_txq *q;
2675	u8 *sgl;
2676
2677	pkt_len = ETH_HLEN + sizeof(CXGB4_SELFTEST_LB_STR);
2678
2679	flits = DIV_ROUND_UP(pkt_len + sizeof(*cpl) + sizeof(*wr),
2680			     sizeof(__be64));
2681	ndesc = flits_to_desc(flits);
2682
2683	lb = &pi->ethtool_lb;
2684	lb->loopback = 1;
2685
2686	q = &adap->sge.ethtxq[pi->first_qset];
2687	__netif_tx_lock(q->txq, smp_processor_id());
2688
2689	reclaim_completed_tx(adap, &q->q, -1, true);
2690	credits = txq_avail(&q->q) - ndesc;
2691	if (unlikely(credits < 0)) {
2692		__netif_tx_unlock(q->txq);
2693		return -ENOMEM;
2694	}
2695
2696	wr = (void *)&q->q.desc[q->q.pidx];
2697	memset(wr, 0, sizeof(struct tx_desc));
2698
2699	wr->op_immdlen = htonl(FW_WR_OP_V(FW_ETH_TX_PKT_WR) |
2700			       FW_WR_IMMDLEN_V(pkt_len +
2701			       sizeof(*cpl)));
2702	wr->equiq_to_len16 = htonl(FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2)));
2703	wr->r3 = cpu_to_be64(0);
2704
2705	cpl = (void *)(wr + 1);
2706	sgl = (u8 *)(cpl + 1);
2707
2708	ctrl0 = TXPKT_OPCODE_V(CPL_TX_PKT_XT) | TXPKT_PF_V(adap->pf) |
2709		TXPKT_INTF_V(pi->tx_chan + 4);
2710
2711	cpl->ctrl0 = htonl(ctrl0);
2712	cpl->pack = htons(0);
2713	cpl->len = htons(pkt_len);
2714	cpl->ctrl1 = cpu_to_be64(TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F);
2715
2716	eth_broadcast_addr(sgl);
2717	i += ETH_ALEN;
2718	ether_addr_copy(&sgl[i], netdev->dev_addr);
2719	i += ETH_ALEN;
2720
2721	snprintf(&sgl[i], sizeof(CXGB4_SELFTEST_LB_STR), "%s",
2722		 CXGB4_SELFTEST_LB_STR);
2723
2724	init_completion(&lb->completion);
2725	txq_advance(&q->q, ndesc);
2726	cxgb4_ring_tx_db(adap, &q->q, ndesc);
2727	__netif_tx_unlock(q->txq);
2728
2729	/* wait for the pkt to return */
2730	ret = wait_for_completion_timeout(&lb->completion, 10 * HZ);
2731	if (!ret)
2732		ret = -ETIMEDOUT;
2733	else
2734		ret = lb->result;
2735
2736	lb->loopback = 0;
2737
2738	return ret;
2739}
2740
2741/**
2742 *	ctrl_xmit - send a packet through an SGE control Tx queue
2743 *	@q: the control queue
2744 *	@skb: the packet
2745 *
2746 *	Send a packet through an SGE control Tx queue.  Packets sent through
2747 *	a control queue must fit entirely as immediate data.
2748 */
2749static int ctrl_xmit(struct sge_ctrl_txq *q, struct sk_buff *skb)
2750{
2751	unsigned int ndesc;
2752	struct fw_wr_hdr *wr;
2753
2754	if (unlikely(!is_imm(skb))) {
2755		WARN_ON(1);
2756		dev_kfree_skb(skb);
2757		return NET_XMIT_DROP;
2758	}
2759
2760	ndesc = DIV_ROUND_UP(skb->len, sizeof(struct tx_desc));
2761	spin_lock(&q->sendq.lock);
2762
2763	if (unlikely(q->full)) {
2764		skb->priority = ndesc;                  /* save for restart */
2765		__skb_queue_tail(&q->sendq, skb);
2766		spin_unlock(&q->sendq.lock);
2767		return NET_XMIT_CN;
2768	}
2769
2770	wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
2771	cxgb4_inline_tx_skb(skb, &q->q, wr);
2772
2773	txq_advance(&q->q, ndesc);
2774	if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES))
2775		ctrlq_check_stop(q, wr);
2776
2777	cxgb4_ring_tx_db(q->adap, &q->q, ndesc);
2778	spin_unlock(&q->sendq.lock);
2779
2780	kfree_skb(skb);
2781	return NET_XMIT_SUCCESS;
2782}
2783
2784/**
2785 *	restart_ctrlq - restart a suspended control queue
2786 *	@t: pointer to the tasklet associated with this handler
2787 *
2788 *	Resumes transmission on a suspended Tx control queue.
2789 */
2790static void restart_ctrlq(struct tasklet_struct *t)
2791{
2792	struct sk_buff *skb;
2793	unsigned int written = 0;
2794	struct sge_ctrl_txq *q = from_tasklet(q, t, qresume_tsk);
2795
2796	spin_lock(&q->sendq.lock);
2797	reclaim_completed_tx_imm(&q->q);
2798	BUG_ON(txq_avail(&q->q) < TXQ_STOP_THRES);  /* q should be empty */
2799
2800	while ((skb = __skb_dequeue(&q->sendq)) != NULL) {
2801		struct fw_wr_hdr *wr;
2802		unsigned int ndesc = skb->priority;     /* previously saved */
2803
2804		written += ndesc;
2805		/* Write descriptors and free skbs outside the lock to limit
2806		 * wait times.  q->full is still set so new skbs will be queued.
2807		 */
2808		wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
2809		txq_advance(&q->q, ndesc);
2810		spin_unlock(&q->sendq.lock);
2811
2812		cxgb4_inline_tx_skb(skb, &q->q, wr);
2813		kfree_skb(skb);
2814
2815		if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
2816			unsigned long old = q->q.stops;
2817
2818			ctrlq_check_stop(q, wr);
2819			if (q->q.stops != old) {          /* suspended anew */
2820				spin_lock(&q->sendq.lock);
2821				goto ringdb;
2822			}
2823		}
2824		if (written > 16) {
2825			cxgb4_ring_tx_db(q->adap, &q->q, written);
2826			written = 0;
2827		}
2828		spin_lock(&q->sendq.lock);
2829	}
2830	q->full = 0;
2831ringdb:
2832	if (written)
2833		cxgb4_ring_tx_db(q->adap, &q->q, written);
2834	spin_unlock(&q->sendq.lock);
2835}
2836
2837/**
2838 *	t4_mgmt_tx - send a management message
2839 *	@adap: the adapter
2840 *	@skb: the packet containing the management message
2841 *
2842 *	Send a management message through control queue 0.
2843 */
2844int t4_mgmt_tx(struct adapter *adap, struct sk_buff *skb)
2845{
2846	int ret;
2847
2848	local_bh_disable();
2849	ret = ctrl_xmit(&adap->sge.ctrlq[0], skb);
2850	local_bh_enable();
2851	return ret;
2852}
2853
2854/**
2855 *	is_ofld_imm - check whether a packet can be sent as immediate data
2856 *	@skb: the packet
2857 *
2858 *	Returns true if a packet can be sent as an offload WR with immediate
2859 *	data.
2860 *	FW_OFLD_TX_DATA_WR limits the payload to 255 bytes due to 8-bit field.
2861 *      However, FW_ULPTX_WR commands have a 256 byte immediate only
2862 *      payload limit.
2863 */
2864static inline int is_ofld_imm(const struct sk_buff *skb)
2865{
2866	struct work_request_hdr *req = (struct work_request_hdr *)skb->data;
2867	unsigned long opcode = FW_WR_OP_G(ntohl(req->wr_hi));
2868
2869	if (unlikely(opcode == FW_ULPTX_WR))
2870		return skb->len <= MAX_IMM_ULPTX_WR_LEN;
2871	else if (opcode == FW_CRYPTO_LOOKASIDE_WR)
2872		return skb->len <= SGE_MAX_WR_LEN;
2873	else
2874		return skb->len <= MAX_IMM_OFLD_TX_DATA_WR_LEN;
2875}
2876
2877/**
2878 *	calc_tx_flits_ofld - calculate # of flits for an offload packet
2879 *	@skb: the packet
2880 *
2881 *	Returns the number of flits needed for the given offload packet.
2882 *	These packets are already fully constructed and no additional headers
2883 *	will be added.
2884 */
2885static inline unsigned int calc_tx_flits_ofld(const struct sk_buff *skb)
2886{
2887	unsigned int flits, cnt;
2888
2889	if (is_ofld_imm(skb))
2890		return DIV_ROUND_UP(skb->len, 8);
2891
2892	flits = skb_transport_offset(skb) / 8U;   /* headers */
2893	cnt = skb_shinfo(skb)->nr_frags;
2894	if (skb_tail_pointer(skb) != skb_transport_header(skb))
2895		cnt++;
2896	return flits + sgl_len(cnt);
2897}
2898
2899/**
2900 *	txq_stop_maperr - stop a Tx queue due to I/O MMU exhaustion
2901 *	@q: the queue to stop
2902 *
2903 *	Mark a Tx queue stopped due to I/O MMU exhaustion and resulting
2904 *	inability to map packets.  A periodic timer attempts to restart
2905 *	queues so marked.
2906 */
2907static void txq_stop_maperr(struct sge_uld_txq *q)
2908{
2909	q->mapping_err++;
2910	q->q.stops++;
2911	set_bit(q->q.cntxt_id - q->adap->sge.egr_start,
2912		q->adap->sge.txq_maperr);
2913}
2914
2915/**
2916 *	ofldtxq_stop - stop an offload Tx queue that has become full
2917 *	@q: the queue to stop
2918 *	@wr: the Work Request causing the queue to become full
2919 *
2920 *	Stops an offload Tx queue that has become full and modifies the packet
2921 *	being written to request a wakeup.
2922 */
2923static void ofldtxq_stop(struct sge_uld_txq *q, struct fw_wr_hdr *wr)
2924{
2925	wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F);
2926	q->q.stops++;
2927	q->full = 1;
2928}
2929
2930/**
2931 *	service_ofldq - service/restart a suspended offload queue
2932 *	@q: the offload queue
2933 *
2934 *	Services an offload Tx queue by moving packets from its Pending Send
2935 *	Queue to the Hardware TX ring.  The function starts and ends with the
2936 *	Send Queue locked, but drops the lock while putting the skb at the
2937 *	head of the Send Queue onto the Hardware TX Ring.  Dropping the lock
2938 *	allows more skbs to be added to the Send Queue by other threads.
2939 *	The packet being processed at the head of the Pending Send Queue is
2940 *	left on the queue in case we experience DMA Mapping errors, etc.
2941 *	and need to give up and restart later.
2942 *
2943 *	service_ofldq() can be thought of as a task which opportunistically
2944 *	uses other threads execution contexts.  We use the Offload Queue
2945 *	boolean "service_ofldq_running" to make sure that only one instance
2946 *	is ever running at a time ...
2947 */
2948static void service_ofldq(struct sge_uld_txq *q)
2949	__must_hold(&q->sendq.lock)
2950{
2951	u64 *pos, *before, *end;
2952	int credits;
2953	struct sk_buff *skb;
2954	struct sge_txq *txq;
2955	unsigned int left;
2956	unsigned int written = 0;
2957	unsigned int flits, ndesc;
2958
2959	/* If another thread is currently in service_ofldq() processing the
2960	 * Pending Send Queue then there's nothing to do. Otherwise, flag
2961	 * that we're doing the work and continue.  Examining/modifying
2962	 * the Offload Queue boolean "service_ofldq_running" must be done
2963	 * while holding the Pending Send Queue Lock.
2964	 */
2965	if (q->service_ofldq_running)
2966		return;
2967	q->service_ofldq_running = true;
2968
2969	while ((skb = skb_peek(&q->sendq)) != NULL && !q->full) {
2970		/* We drop the lock while we're working with the skb at the
2971		 * head of the Pending Send Queue.  This allows more skbs to
2972		 * be added to the Pending Send Queue while we're working on
2973		 * this one.  We don't need to lock to guard the TX Ring
2974		 * updates because only one thread of execution is ever
2975		 * allowed into service_ofldq() at a time.
2976		 */
2977		spin_unlock(&q->sendq.lock);
2978
2979		cxgb4_reclaim_completed_tx(q->adap, &q->q, false);
2980
2981		flits = skb->priority;                /* previously saved */
2982		ndesc = flits_to_desc(flits);
2983		credits = txq_avail(&q->q) - ndesc;
2984		BUG_ON(credits < 0);
2985		if (unlikely(credits < TXQ_STOP_THRES))
2986			ofldtxq_stop(q, (struct fw_wr_hdr *)skb->data);
2987
2988		pos = (u64 *)&q->q.desc[q->q.pidx];
2989		if (is_ofld_imm(skb))
2990			cxgb4_inline_tx_skb(skb, &q->q, pos);
2991		else if (cxgb4_map_skb(q->adap->pdev_dev, skb,
2992				       (dma_addr_t *)skb->head)) {
2993			txq_stop_maperr(q);
2994			spin_lock(&q->sendq.lock);
2995			break;
2996		} else {
2997			int last_desc, hdr_len = skb_transport_offset(skb);
2998
2999			/* The WR headers  may not fit within one descriptor.
3000			 * So we need to deal with wrap-around here.
3001			 */
3002			before = (u64 *)pos;
3003			end = (u64 *)pos + flits;
3004			txq = &q->q;
3005			pos = (void *)inline_tx_skb_header(skb, &q->q,
3006							   (void *)pos,
3007							   hdr_len);
3008			if (before > (u64 *)pos) {
3009				left = (u8 *)end - (u8 *)txq->stat;
3010				end = (void *)txq->desc + left;
3011			}
3012
3013			/* If current position is already at the end of the
3014			 * ofld queue, reset the current to point to
3015			 * start of the queue and update the end ptr as well.
3016			 */
3017			if (pos == (u64 *)txq->stat) {
3018				left = (u8 *)end - (u8 *)txq->stat;
3019				end = (void *)txq->desc + left;
3020				pos = (void *)txq->desc;
3021			}
3022
3023			cxgb4_write_sgl(skb, &q->q, (void *)pos,
3024					end, hdr_len,
3025					(dma_addr_t *)skb->head);
3026#ifdef CONFIG_NEED_DMA_MAP_STATE
3027			skb->dev = q->adap->port[0];
3028			skb->destructor = deferred_unmap_destructor;
3029#endif
3030			last_desc = q->q.pidx + ndesc - 1;
3031			if (last_desc >= q->q.size)
3032				last_desc -= q->q.size;
3033			q->q.sdesc[last_desc].skb = skb;
3034		}
3035
3036		txq_advance(&q->q, ndesc);
3037		written += ndesc;
3038		if (unlikely(written > 32)) {
3039			cxgb4_ring_tx_db(q->adap, &q->q, written);
3040			written = 0;
3041		}
3042
3043		/* Reacquire the Pending Send Queue Lock so we can unlink the
3044		 * skb we've just successfully transferred to the TX Ring and
3045		 * loop for the next skb which may be at the head of the
3046		 * Pending Send Queue.
3047		 */
3048		spin_lock(&q->sendq.lock);
3049		__skb_unlink(skb, &q->sendq);
3050		if (is_ofld_imm(skb))
3051			kfree_skb(skb);
3052	}
3053	if (likely(written))
3054		cxgb4_ring_tx_db(q->adap, &q->q, written);
3055
3056	/*Indicate that no thread is processing the Pending Send Queue
3057	 * currently.
3058	 */
3059	q->service_ofldq_running = false;
3060}
3061
3062/**
3063 *	ofld_xmit - send a packet through an offload queue
3064 *	@q: the Tx offload queue
3065 *	@skb: the packet
3066 *
3067 *	Send an offload packet through an SGE offload queue.
3068 */
3069static int ofld_xmit(struct sge_uld_txq *q, struct sk_buff *skb)
3070{
3071	skb->priority = calc_tx_flits_ofld(skb);       /* save for restart */
3072	spin_lock(&q->sendq.lock);
3073
3074	/* Queue the new skb onto the Offload Queue's Pending Send Queue.  If
3075	 * that results in this new skb being the only one on the queue, start
3076	 * servicing it.  If there are other skbs already on the list, then
3077	 * either the queue is currently being processed or it's been stopped
3078	 * for some reason and it'll be restarted at a later time.  Restart
3079	 * paths are triggered by events like experiencing a DMA Mapping Error
3080	 * or filling the Hardware TX Ring.
3081	 */
3082	__skb_queue_tail(&q->sendq, skb);
3083	if (q->sendq.qlen == 1)
3084		service_ofldq(q);
3085
3086	spin_unlock(&q->sendq.lock);
3087	return NET_XMIT_SUCCESS;
3088}
3089
3090/**
3091 *	restart_ofldq - restart a suspended offload queue
3092 *	@t: pointer to the tasklet associated with this handler
3093 *
3094 *	Resumes transmission on a suspended Tx offload queue.
3095 */
3096static void restart_ofldq(struct tasklet_struct *t)
3097{
3098	struct sge_uld_txq *q = from_tasklet(q, t, qresume_tsk);
3099
3100	spin_lock(&q->sendq.lock);
3101	q->full = 0;            /* the queue actually is completely empty now */
3102	service_ofldq(q);
3103	spin_unlock(&q->sendq.lock);
3104}
3105
3106/**
3107 *	skb_txq - return the Tx queue an offload packet should use
3108 *	@skb: the packet
3109 *
3110 *	Returns the Tx queue an offload packet should use as indicated by bits
3111 *	1-15 in the packet's queue_mapping.
3112 */
3113static inline unsigned int skb_txq(const struct sk_buff *skb)
3114{
3115	return skb->queue_mapping >> 1;
3116}
3117
3118/**
3119 *	is_ctrl_pkt - return whether an offload packet is a control packet
3120 *	@skb: the packet
3121 *
3122 *	Returns whether an offload packet should use an OFLD or a CTRL
3123 *	Tx queue as indicated by bit 0 in the packet's queue_mapping.
3124 */
3125static inline unsigned int is_ctrl_pkt(const struct sk_buff *skb)
3126{
3127	return skb->queue_mapping & 1;
3128}
3129
3130static inline int uld_send(struct adapter *adap, struct sk_buff *skb,
3131			   unsigned int tx_uld_type)
3132{
3133	struct sge_uld_txq_info *txq_info;
3134	struct sge_uld_txq *txq;
3135	unsigned int idx = skb_txq(skb);
3136
3137	if (unlikely(is_ctrl_pkt(skb))) {
3138		/* Single ctrl queue is a requirement for LE workaround path */
3139		if (adap->tids.nsftids)
3140			idx = 0;
3141		return ctrl_xmit(&adap->sge.ctrlq[idx], skb);
3142	}
3143
3144	txq_info = adap->sge.uld_txq_info[tx_uld_type];
3145	if (unlikely(!txq_info)) {
3146		WARN_ON(true);
3147		kfree_skb(skb);
3148		return NET_XMIT_DROP;
3149	}
3150
3151	txq = &txq_info->uldtxq[idx];
3152	return ofld_xmit(txq, skb);
3153}
3154
3155/**
3156 *	t4_ofld_send - send an offload packet
3157 *	@adap: the adapter
3158 *	@skb: the packet
3159 *
3160 *	Sends an offload packet.  We use the packet queue_mapping to select the
3161 *	appropriate Tx queue as follows: bit 0 indicates whether the packet
3162 *	should be sent as regular or control, bits 1-15 select the queue.
3163 */
3164int t4_ofld_send(struct adapter *adap, struct sk_buff *skb)
3165{
3166	int ret;
3167
3168	local_bh_disable();
3169	ret = uld_send(adap, skb, CXGB4_TX_OFLD);
3170	local_bh_enable();
3171	return ret;
3172}
3173
3174/**
3175 *	cxgb4_ofld_send - send an offload packet
3176 *	@dev: the net device
3177 *	@skb: the packet
3178 *
3179 *	Sends an offload packet.  This is an exported version of @t4_ofld_send,
3180 *	intended for ULDs.
3181 */
3182int cxgb4_ofld_send(struct net_device *dev, struct sk_buff *skb)
3183{
3184	return t4_ofld_send(netdev2adap(dev), skb);
3185}
3186EXPORT_SYMBOL(cxgb4_ofld_send);
3187
3188static void *inline_tx_header(const void *src,
3189			      const struct sge_txq *q,
3190			      void *pos, int length)
3191{
3192	int left = (void *)q->stat - pos;
3193	u64 *p;
3194
3195	if (likely(length <= left)) {
3196		memcpy(pos, src, length);
3197		pos += length;
3198	} else {
3199		memcpy(pos, src, left);
3200		memcpy(q->desc, src + left, length - left);
3201		pos = (void *)q->desc + (length - left);
3202	}
3203	/* 0-pad to multiple of 16 */
3204	p = PTR_ALIGN(pos, 8);
3205	if ((uintptr_t)p & 8) {
3206		*p = 0;
3207		return p + 1;
3208	}
3209	return p;
3210}
3211
3212/**
3213 *      ofld_xmit_direct - copy a WR into offload queue
3214 *      @q: the Tx offload queue
3215 *      @src: location of WR
3216 *      @len: WR length
3217 *
3218 *      Copy an immediate WR into an uncontended SGE offload queue.
3219 */
3220static int ofld_xmit_direct(struct sge_uld_txq *q, const void *src,
3221			    unsigned int len)
3222{
3223	unsigned int ndesc;
3224	int credits;
3225	u64 *pos;
3226
3227	/* Use the lower limit as the cut-off */
3228	if (len > MAX_IMM_OFLD_TX_DATA_WR_LEN) {
3229		WARN_ON(1);
3230		return NET_XMIT_DROP;
3231	}
3232
3233	/* Don't return NET_XMIT_CN here as the current
3234	 * implementation doesn't queue the request
3235	 * using an skb when the following conditions not met
3236	 */
3237	if (!spin_trylock(&q->sendq.lock))
3238		return NET_XMIT_DROP;
3239
3240	if (q->full || !skb_queue_empty(&q->sendq) ||
3241	    q->service_ofldq_running) {
3242		spin_unlock(&q->sendq.lock);
3243		return NET_XMIT_DROP;
3244	}
3245	ndesc = flits_to_desc(DIV_ROUND_UP(len, 8));
3246	credits = txq_avail(&q->q) - ndesc;
3247	pos = (u64 *)&q->q.desc[q->q.pidx];
3248
3249	/* ofldtxq_stop modifies WR header in-situ */
3250	inline_tx_header(src, &q->q, pos, len);
3251	if (unlikely(credits < TXQ_STOP_THRES))
3252		ofldtxq_stop(q, (struct fw_wr_hdr *)pos);
3253	txq_advance(&q->q, ndesc);
3254	cxgb4_ring_tx_db(q->adap, &q->q, ndesc);
3255
3256	spin_unlock(&q->sendq.lock);
3257	return NET_XMIT_SUCCESS;
3258}
3259
3260int cxgb4_immdata_send(struct net_device *dev, unsigned int idx,
3261		       const void *src, unsigned int len)
3262{
3263	struct sge_uld_txq_info *txq_info;
3264	struct sge_uld_txq *txq;
3265	struct adapter *adap;
3266	int ret;
3267
3268	adap = netdev2adap(dev);
3269
3270	local_bh_disable();
3271	txq_info = adap->sge.uld_txq_info[CXGB4_TX_OFLD];
3272	if (unlikely(!txq_info)) {
3273		WARN_ON(true);
3274		local_bh_enable();
3275		return NET_XMIT_DROP;
3276	}
3277	txq = &txq_info->uldtxq[idx];
3278
3279	ret = ofld_xmit_direct(txq, src, len);
3280	local_bh_enable();
3281	return net_xmit_eval(ret);
3282}
3283EXPORT_SYMBOL(cxgb4_immdata_send);
3284
3285/**
3286 *	t4_crypto_send - send crypto packet
3287 *	@adap: the adapter
3288 *	@skb: the packet
3289 *
3290 *	Sends crypto packet.  We use the packet queue_mapping to select the
3291 *	appropriate Tx queue as follows: bit 0 indicates whether the packet
3292 *	should be sent as regular or control, bits 1-15 select the queue.
3293 */
3294static int t4_crypto_send(struct adapter *adap, struct sk_buff *skb)
3295{
3296	int ret;
3297
3298	local_bh_disable();
3299	ret = uld_send(adap, skb, CXGB4_TX_CRYPTO);
3300	local_bh_enable();
3301	return ret;
3302}
3303
3304/**
3305 *	cxgb4_crypto_send - send crypto packet
3306 *	@dev: the net device
3307 *	@skb: the packet
3308 *
3309 *	Sends crypto packet.  This is an exported version of @t4_crypto_send,
3310 *	intended for ULDs.
3311 */
3312int cxgb4_crypto_send(struct net_device *dev, struct sk_buff *skb)
3313{
3314	return t4_crypto_send(netdev2adap(dev), skb);
3315}
3316EXPORT_SYMBOL(cxgb4_crypto_send);
3317
3318static inline void copy_frags(struct sk_buff *skb,
3319			      const struct pkt_gl *gl, unsigned int offset)
3320{
3321	int i;
3322
3323	/* usually there's just one frag */
3324	__skb_fill_page_desc(skb, 0, gl->frags[0].page,
3325			     gl->frags[0].offset + offset,
3326			     gl->frags[0].size - offset);
3327	skb_shinfo(skb)->nr_frags = gl->nfrags;
3328	for (i = 1; i < gl->nfrags; i++)
3329		__skb_fill_page_desc(skb, i, gl->frags[i].page,
3330				     gl->frags[i].offset,
3331				     gl->frags[i].size);
3332
3333	/* get a reference to the last page, we don't own it */
3334	get_page(gl->frags[gl->nfrags - 1].page);
3335}
3336
3337/**
3338 *	cxgb4_pktgl_to_skb - build an sk_buff from a packet gather list
3339 *	@gl: the gather list
3340 *	@skb_len: size of sk_buff main body if it carries fragments
3341 *	@pull_len: amount of data to move to the sk_buff's main body
3342 *
3343 *	Builds an sk_buff from the given packet gather list.  Returns the
3344 *	sk_buff or %NULL if sk_buff allocation failed.
3345 */
3346struct sk_buff *cxgb4_pktgl_to_skb(const struct pkt_gl *gl,
3347				   unsigned int skb_len, unsigned int pull_len)
3348{
3349	struct sk_buff *skb;
3350
3351	/*
3352	 * Below we rely on RX_COPY_THRES being less than the smallest Rx buffer
3353	 * size, which is expected since buffers are at least PAGE_SIZEd.
3354	 * In this case packets up to RX_COPY_THRES have only one fragment.
3355	 */
3356	if (gl->tot_len <= RX_COPY_THRES) {
3357		skb = dev_alloc_skb(gl->tot_len);
3358		if (unlikely(!skb))
3359			goto out;
3360		__skb_put(skb, gl->tot_len);
3361		skb_copy_to_linear_data(skb, gl->va, gl->tot_len);
3362	} else {
3363		skb = dev_alloc_skb(skb_len);
3364		if (unlikely(!skb))
3365			goto out;
3366		__skb_put(skb, pull_len);
3367		skb_copy_to_linear_data(skb, gl->va, pull_len);
3368
3369		copy_frags(skb, gl, pull_len);
3370		skb->len = gl->tot_len;
3371		skb->data_len = skb->len - pull_len;
3372		skb->truesize += skb->data_len;
3373	}
3374out:	return skb;
3375}
3376EXPORT_SYMBOL(cxgb4_pktgl_to_skb);
3377
3378/**
3379 *	t4_pktgl_free - free a packet gather list
3380 *	@gl: the gather list
3381 *
3382 *	Releases the pages of a packet gather list.  We do not own the last
3383 *	page on the list and do not free it.
3384 */
3385static void t4_pktgl_free(const struct pkt_gl *gl)
3386{
3387	int n;
3388	const struct page_frag *p;
3389
3390	for (p = gl->frags, n = gl->nfrags - 1; n--; p++)
3391		put_page(p->page);
3392}
3393
3394/*
3395 * Process an MPS trace packet.  Give it an unused protocol number so it won't
3396 * be delivered to anyone and send it to the stack for capture.
3397 */
3398static noinline int handle_trace_pkt(struct adapter *adap,
3399				     const struct pkt_gl *gl)
3400{
3401	struct sk_buff *skb;
3402
3403	skb = cxgb4_pktgl_to_skb(gl, RX_PULL_LEN, RX_PULL_LEN);
3404	if (unlikely(!skb)) {
3405		t4_pktgl_free(gl);
3406		return 0;
3407	}
3408
3409	if (is_t4(adap->params.chip))
3410		__skb_pull(skb, sizeof(struct cpl_trace_pkt));
3411	else
3412		__skb_pull(skb, sizeof(struct cpl_t5_trace_pkt));
3413
3414	skb_reset_mac_header(skb);
3415	skb->protocol = htons(0xffff);
3416	skb->dev = adap->port[0];
3417	netif_receive_skb(skb);
3418	return 0;
3419}
3420
3421/**
3422 * cxgb4_sgetim_to_hwtstamp - convert sge time stamp to hw time stamp
3423 * @adap: the adapter
3424 * @hwtstamps: time stamp structure to update
3425 * @sgetstamp: 60bit iqe timestamp
3426 *
3427 * Every ingress queue entry has the 60-bit timestamp, convert that timestamp
3428 * which is in Core Clock ticks into ktime_t and assign it
3429 **/
3430static void cxgb4_sgetim_to_hwtstamp(struct adapter *adap,
3431				     struct skb_shared_hwtstamps *hwtstamps,
3432				     u64 sgetstamp)
3433{
3434	u64 ns;
3435	u64 tmp = (sgetstamp * 1000 * 1000 + adap->params.vpd.cclk / 2);
3436
3437	ns = div_u64(tmp, adap->params.vpd.cclk);
3438
3439	memset(hwtstamps, 0, sizeof(*hwtstamps));
3440	hwtstamps->hwtstamp = ns_to_ktime(ns);
3441}
3442
3443static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl,
3444		   const struct cpl_rx_pkt *pkt, unsigned long tnl_hdr_len)
3445{
3446	struct adapter *adapter = rxq->rspq.adap;
3447	struct sge *s = &adapter->sge;
3448	struct port_info *pi;
3449	int ret;
3450	struct sk_buff *skb;
3451
3452	skb = napi_get_frags(&rxq->rspq.napi);
3453	if (unlikely(!skb)) {
3454		t4_pktgl_free(gl);
3455		rxq->stats.rx_drops++;
3456		return;
3457	}
3458
3459	copy_frags(skb, gl, s->pktshift);
3460	if (tnl_hdr_len)
3461		skb->csum_level = 1;
3462	skb->len = gl->tot_len - s->pktshift;
3463	skb->data_len = skb->len;
3464	skb->truesize += skb->data_len;
3465	skb->ip_summed = CHECKSUM_UNNECESSARY;
3466	skb_record_rx_queue(skb, rxq->rspq.idx);
3467	pi = netdev_priv(skb->dev);
3468	if (pi->rxtstamp)
3469		cxgb4_sgetim_to_hwtstamp(adapter, skb_hwtstamps(skb),
3470					 gl->sgetstamp);
3471	if (rxq->rspq.netdev->features & NETIF_F_RXHASH)
3472		skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val,
3473			     PKT_HASH_TYPE_L3);
3474
3475	if (unlikely(pkt->vlan_ex)) {
3476		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan));
3477		rxq->stats.vlan_ex++;
3478	}
3479	ret = napi_gro_frags(&rxq->rspq.napi);
3480	if (ret == GRO_HELD)
3481		rxq->stats.lro_pkts++;
3482	else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE)
3483		rxq->stats.lro_merged++;
3484	rxq->stats.pkts++;
3485	rxq->stats.rx_cso++;
3486}
3487
3488enum {
3489	RX_NON_PTP_PKT = 0,
3490	RX_PTP_PKT_SUC = 1,
3491	RX_PTP_PKT_ERR = 2
3492};
3493
3494/**
3495 *     t4_systim_to_hwstamp - read hardware time stamp
3496 *     @adapter: the adapter
3497 *     @skb: the packet
3498 *
3499 *     Read Time Stamp from MPS packet and insert in skb which
3500 *     is forwarded to PTP application
3501 */
3502static noinline int t4_systim_to_hwstamp(struct adapter *adapter,
3503					 struct sk_buff *skb)
3504{
3505	struct skb_shared_hwtstamps *hwtstamps;
3506	struct cpl_rx_mps_pkt *cpl = NULL;
3507	unsigned char *data;
3508	int offset;
3509
3510	cpl = (struct cpl_rx_mps_pkt *)skb->data;
3511	if (!(CPL_RX_MPS_PKT_TYPE_G(ntohl(cpl->op_to_r1_hi)) &
3512	     X_CPL_RX_MPS_PKT_TYPE_PTP))
3513		return RX_PTP_PKT_ERR;
3514
3515	data = skb->data + sizeof(*cpl);
3516	skb_pull(skb, 2 * sizeof(u64) + sizeof(struct cpl_rx_mps_pkt));
3517	offset = ETH_HLEN + IPV4_HLEN(skb->data) + UDP_HLEN;
3518	if (skb->len < offset + OFF_PTP_SEQUENCE_ID + sizeof(short))
3519		return RX_PTP_PKT_ERR;
3520
3521	hwtstamps = skb_hwtstamps(skb);
3522	memset(hwtstamps, 0, sizeof(*hwtstamps));
3523	hwtstamps->hwtstamp = ns_to_ktime(get_unaligned_be64(data));
3524
3525	return RX_PTP_PKT_SUC;
3526}
3527
3528/**
3529 *     t4_rx_hststamp - Recv PTP Event Message
3530 *     @adapter: the adapter
3531 *     @rsp: the response queue descriptor holding the RX_PKT message
3532 *     @rxq: the response queue holding the RX_PKT message
3533 *     @skb: the packet
3534 *
3535 *     PTP enabled and MPS packet, read HW timestamp
3536 */
3537static int t4_rx_hststamp(struct adapter *adapter, const __be64 *rsp,
3538			  struct sge_eth_rxq *rxq, struct sk_buff *skb)
3539{
3540	int ret;
3541
3542	if (unlikely((*(u8 *)rsp == CPL_RX_MPS_PKT) &&
3543		     !is_t4(adapter->params.chip))) {
3544		ret = t4_systim_to_hwstamp(adapter, skb);
3545		if (ret == RX_PTP_PKT_ERR) {
3546			kfree_skb(skb);
3547			rxq->stats.rx_drops++;
3548		}
3549		return ret;
3550	}
3551	return RX_NON_PTP_PKT;
3552}
3553
3554/**
3555 *      t4_tx_hststamp - Loopback PTP Transmit Event Message
3556 *      @adapter: the adapter
3557 *      @skb: the packet
3558 *      @dev: the ingress net device
3559 *
3560 *      Read hardware timestamp for the loopback PTP Tx event message
3561 */
3562static int t4_tx_hststamp(struct adapter *adapter, struct sk_buff *skb,
3563			  struct net_device *dev)
3564{
3565	struct port_info *pi = netdev_priv(dev);
3566
3567	if (!is_t4(adapter->params.chip) && adapter->ptp_tx_skb) {
3568		cxgb4_ptp_read_hwstamp(adapter, pi);
3569		kfree_skb(skb);
3570		return 0;
3571	}
3572	return 1;
3573}
3574
3575/**
3576 *	t4_tx_completion_handler - handle CPL_SGE_EGR_UPDATE messages
3577 *	@rspq: Ethernet RX Response Queue associated with Ethernet TX Queue
3578 *	@rsp: Response Entry pointer into Response Queue
3579 *	@gl: Gather List pointer
3580 *
3581 *	For adapters which support the SGE Doorbell Queue Timer facility,
3582 *	we configure the Ethernet TX Queues to send CIDX Updates to the
3583 *	Associated Ethernet RX Response Queue with CPL_SGE_EGR_UPDATE
3584 *	messages.  This adds a small load to PCIe Link RX bandwidth and,
3585 *	potentially, higher CPU Interrupt load, but allows us to respond
3586 *	much more quickly to the CIDX Updates.  This is important for
3587 *	Upper Layer Software which isn't willing to have a large amount
3588 *	of TX Data outstanding before receiving DMA Completions.
3589 */
3590static void t4_tx_completion_handler(struct sge_rspq *rspq,
3591				     const __be64 *rsp,
3592				     const struct pkt_gl *gl)
3593{
3594	u8 opcode = ((const struct rss_header *)rsp)->opcode;
3595	struct port_info *pi = netdev_priv(rspq->netdev);
3596	struct adapter *adapter = rspq->adap;
3597	struct sge *s = &adapter->sge;
3598	struct sge_eth_txq *txq;
3599
3600	/* skip RSS header */
3601	rsp++;
3602
3603	/* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
3604	 */
3605	if (unlikely(opcode == CPL_FW4_MSG &&
3606		     ((const struct cpl_fw4_msg *)rsp)->type ==
3607							FW_TYPE_RSSCPL)) {
3608		rsp++;
3609		opcode = ((const struct rss_header *)rsp)->opcode;
3610		rsp++;
3611	}
3612
3613	if (unlikely(opcode != CPL_SGE_EGR_UPDATE)) {
3614		pr_info("%s: unexpected FW4/CPL %#x on Rx queue\n",
3615			__func__, opcode);
3616		return;
3617	}
3618
3619	txq = &s->ethtxq[pi->first_qset + rspq->idx];
3620
3621	/* We've got the Hardware Consumer Index Update in the Egress Update
3622	 * message. These Egress Update messages will be our sole CIDX Updates
3623	 * we get since we don't want to chew up PCIe bandwidth for both Ingress
3624	 * Messages and Status Page writes.  However, The code which manages
3625	 * reclaiming successfully DMA'ed TX Work Requests uses the CIDX value
3626	 * stored in the Status Page at the end of the TX Queue.  It's easiest
3627	 * to simply copy the CIDX Update value from the Egress Update message
3628	 * to the Status Page.  Also note that no Endian issues need to be
3629	 * considered here since both are Big Endian and we're just copying
3630	 * bytes consistently ...
3631	 */
3632	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) {
3633		struct cpl_sge_egr_update *egr;
3634
3635		egr = (struct cpl_sge_egr_update *)rsp;
3636		WRITE_ONCE(txq->q.stat->cidx, egr->cidx);
3637	}
3638
3639	t4_sge_eth_txq_egress_update(adapter, txq, -1);
3640}
3641
3642static int cxgb4_validate_lb_pkt(struct port_info *pi, const struct pkt_gl *si)
3643{
3644	struct adapter *adap = pi->adapter;
3645	struct cxgb4_ethtool_lb_test *lb;
3646	struct sge *s = &adap->sge;
3647	struct net_device *netdev;
3648	u8 *data;
3649	int i;
3650
3651	netdev = adap->port[pi->port_id];
3652	lb = &pi->ethtool_lb;
3653	data = si->va + s->pktshift;
3654
3655	i = ETH_ALEN;
3656	if (!ether_addr_equal(data + i, netdev->dev_addr))
3657		return -1;
3658
3659	i += ETH_ALEN;
3660	if (strcmp(&data[i], CXGB4_SELFTEST_LB_STR))
3661		lb->result = -EIO;
3662
3663	complete(&lb->completion);
3664	return 0;
3665}
3666
3667/**
3668 *	t4_ethrx_handler - process an ingress ethernet packet
3669 *	@q: the response queue that received the packet
3670 *	@rsp: the response queue descriptor holding the RX_PKT message
3671 *	@si: the gather list of packet fragments
3672 *
3673 *	Process an ingress ethernet packet and deliver it to the stack.
3674 */
3675int t4_ethrx_handler(struct sge_rspq *q, const __be64 *rsp,
3676		     const struct pkt_gl *si)
3677{
3678	bool csum_ok;
3679	struct sk_buff *skb;
3680	const struct cpl_rx_pkt *pkt;
3681	struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
3682	struct adapter *adapter = q->adap;
3683	struct sge *s = &q->adap->sge;
3684	int cpl_trace_pkt = is_t4(q->adap->params.chip) ?
3685			    CPL_TRACE_PKT : CPL_TRACE_PKT_T5;
3686	u16 err_vec, tnl_hdr_len = 0;
3687	struct port_info *pi;
3688	int ret = 0;
3689
3690	pi = netdev_priv(q->netdev);
3691	/* If we're looking at TX Queue CIDX Update, handle that separately
3692	 * and return.
3693	 */
3694	if (unlikely((*(u8 *)rsp == CPL_FW4_MSG) ||
3695		     (*(u8 *)rsp == CPL_SGE_EGR_UPDATE))) {
3696		t4_tx_completion_handler(q, rsp, si);
3697		return 0;
3698	}
3699
3700	if (unlikely(*(u8 *)rsp == cpl_trace_pkt))
3701		return handle_trace_pkt(q->adap, si);
3702
3703	pkt = (const struct cpl_rx_pkt *)rsp;
3704	/* Compressed error vector is enabled for T6 only */
3705	if (q->adap->params.tp.rx_pkt_encap) {
3706		err_vec = T6_COMPR_RXERR_VEC_G(be16_to_cpu(pkt->err_vec));
3707		tnl_hdr_len = T6_RX_TNLHDR_LEN_G(ntohs(pkt->err_vec));
3708	} else {
3709		err_vec = be16_to_cpu(pkt->err_vec);
3710	}
3711
3712	csum_ok = pkt->csum_calc && !err_vec &&
3713		  (q->netdev->features & NETIF_F_RXCSUM);
3714
3715	if (err_vec)
3716		rxq->stats.bad_rx_pkts++;
3717
3718	if (unlikely(pi->ethtool_lb.loopback && pkt->iff >= NCHAN)) {
3719		ret = cxgb4_validate_lb_pkt(pi, si);
3720		if (!ret)
3721			return 0;
3722	}
3723
3724	if (((pkt->l2info & htonl(RXF_TCP_F)) ||
3725	     tnl_hdr_len) &&
3726	    (q->netdev->features & NETIF_F_GRO) && csum_ok && !pkt->ip_frag) {
3727		do_gro(rxq, si, pkt, tnl_hdr_len);
3728		return 0;
3729	}
3730
3731	skb = cxgb4_pktgl_to_skb(si, RX_PKT_SKB_LEN, RX_PULL_LEN);
3732	if (unlikely(!skb)) {
3733		t4_pktgl_free(si);
3734		rxq->stats.rx_drops++;
3735		return 0;
3736	}
3737
3738	/* Handle PTP Event Rx packet */
3739	if (unlikely(pi->ptp_enable)) {
3740		ret = t4_rx_hststamp(adapter, rsp, rxq, skb);
3741		if (ret == RX_PTP_PKT_ERR)
3742			return 0;
3743	}
3744	if (likely(!ret))
3745		__skb_pull(skb, s->pktshift); /* remove ethernet header pad */
3746
3747	/* Handle the PTP Event Tx Loopback packet */
3748	if (unlikely(pi->ptp_enable && !ret &&
3749		     (pkt->l2info & htonl(RXF_UDP_F)) &&
3750		     cxgb4_ptp_is_ptp_rx(skb))) {
3751		if (!t4_tx_hststamp(adapter, skb, q->netdev))
3752			return 0;
3753	}
3754
3755	skb->protocol = eth_type_trans(skb, q->netdev);
3756	skb_record_rx_queue(skb, q->idx);
3757	if (skb->dev->features & NETIF_F_RXHASH)
3758		skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val,
3759			     PKT_HASH_TYPE_L3);
3760
3761	rxq->stats.pkts++;
3762
3763	if (pi->rxtstamp)
3764		cxgb4_sgetim_to_hwtstamp(q->adap, skb_hwtstamps(skb),
3765					 si->sgetstamp);
3766	if (csum_ok && (pkt->l2info & htonl(RXF_UDP_F | RXF_TCP_F))) {
3767		if (!pkt->ip_frag) {
3768			skb->ip_summed = CHECKSUM_UNNECESSARY;
3769			rxq->stats.rx_cso++;
3770		} else if (pkt->l2info & htonl(RXF_IP_F)) {
3771			__sum16 c = (__force __sum16)pkt->csum;
3772			skb->csum = csum_unfold(c);
3773
3774			if (tnl_hdr_len) {
3775				skb->ip_summed = CHECKSUM_UNNECESSARY;
3776				skb->csum_level = 1;
3777			} else {
3778				skb->ip_summed = CHECKSUM_COMPLETE;
3779			}
3780			rxq->stats.rx_cso++;
3781		}
3782	} else {
3783		skb_checksum_none_assert(skb);
3784#ifdef CONFIG_CHELSIO_T4_FCOE
3785#define CPL_RX_PKT_FLAGS (RXF_PSH_F | RXF_SYN_F | RXF_UDP_F | \
3786			  RXF_TCP_F | RXF_IP_F | RXF_IP6_F | RXF_LRO_F)
3787
3788		if (!(pkt->l2info & cpu_to_be32(CPL_RX_PKT_FLAGS))) {
3789			if ((pkt->l2info & cpu_to_be32(RXF_FCOE_F)) &&
3790			    (pi->fcoe.flags & CXGB_FCOE_ENABLED)) {
3791				if (q->adap->params.tp.rx_pkt_encap)
3792					csum_ok = err_vec &
3793						  T6_COMPR_RXERR_SUM_F;
3794				else
3795					csum_ok = err_vec & RXERR_CSUM_F;
3796				if (!csum_ok)
3797					skb->ip_summed = CHECKSUM_UNNECESSARY;
3798			}
3799		}
3800
3801#undef CPL_RX_PKT_FLAGS
3802#endif /* CONFIG_CHELSIO_T4_FCOE */
3803	}
3804
3805	if (unlikely(pkt->vlan_ex)) {
3806		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan));
3807		rxq->stats.vlan_ex++;
3808	}
3809	skb_mark_napi_id(skb, &q->napi);
3810	netif_receive_skb(skb);
3811	return 0;
3812}
3813
3814/**
3815 *	restore_rx_bufs - put back a packet's Rx buffers
3816 *	@si: the packet gather list
3817 *	@q: the SGE free list
3818 *	@frags: number of FL buffers to restore
3819 *
3820 *	Puts back on an FL the Rx buffers associated with @si.  The buffers
3821 *	have already been unmapped and are left unmapped, we mark them so to
3822 *	prevent further unmapping attempts.
3823 *
3824 *	This function undoes a series of @unmap_rx_buf calls when we find out
3825 *	that the current packet can't be processed right away afterall and we
3826 *	need to come back to it later.  This is a very rare event and there's
3827 *	no effort to make this particularly efficient.
3828 */
3829static void restore_rx_bufs(const struct pkt_gl *si, struct sge_fl *q,
3830			    int frags)
3831{
3832	struct rx_sw_desc *d;
3833
3834	while (frags--) {
3835		if (q->cidx == 0)
3836			q->cidx = q->size - 1;
3837		else
3838			q->cidx--;
3839		d = &q->sdesc[q->cidx];
3840		d->page = si->frags[frags].page;
3841		d->dma_addr |= RX_UNMAPPED_BUF;
3842		q->avail++;
3843	}
3844}
3845
3846/**
3847 *	is_new_response - check if a response is newly written
3848 *	@r: the response descriptor
3849 *	@q: the response queue
3850 *
3851 *	Returns true if a response descriptor contains a yet unprocessed
3852 *	response.
3853 */
3854static inline bool is_new_response(const struct rsp_ctrl *r,
3855				   const struct sge_rspq *q)
3856{
3857	return (r->type_gen >> RSPD_GEN_S) == q->gen;
3858}
3859
3860/**
3861 *	rspq_next - advance to the next entry in a response queue
3862 *	@q: the queue
3863 *
3864 *	Updates the state of a response queue to advance it to the next entry.
3865 */
3866static inline void rspq_next(struct sge_rspq *q)
3867{
3868	q->cur_desc = (void *)q->cur_desc + q->iqe_len;
3869	if (unlikely(++q->cidx == q->size)) {
3870		q->cidx = 0;
3871		q->gen ^= 1;
3872		q->cur_desc = q->desc;
3873	}
3874}
3875
3876/**
3877 *	process_responses - process responses from an SGE response queue
3878 *	@q: the ingress queue to process
3879 *	@budget: how many responses can be processed in this round
3880 *
3881 *	Process responses from an SGE response queue up to the supplied budget.
3882 *	Responses include received packets as well as control messages from FW
3883 *	or HW.
3884 *
3885 *	Additionally choose the interrupt holdoff time for the next interrupt
3886 *	on this queue.  If the system is under memory shortage use a fairly
3887 *	long delay to help recovery.
3888 */
3889static int process_responses(struct sge_rspq *q, int budget)
3890{
3891	int ret, rsp_type;
3892	int budget_left = budget;
3893	const struct rsp_ctrl *rc;
3894	struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
3895	struct adapter *adapter = q->adap;
3896	struct sge *s = &adapter->sge;
3897
3898	while (likely(budget_left)) {
3899		rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
3900		if (!is_new_response(rc, q)) {
3901			if (q->flush_handler)
3902				q->flush_handler(q);
3903			break;
3904		}
3905
3906		dma_rmb();
3907		rsp_type = RSPD_TYPE_G(rc->type_gen);
3908		if (likely(rsp_type == RSPD_TYPE_FLBUF_X)) {
3909			struct page_frag *fp;
3910			struct pkt_gl si;
3911			const struct rx_sw_desc *rsd;
3912			u32 len = ntohl(rc->pldbuflen_qid), bufsz, frags;
3913
3914			if (len & RSPD_NEWBUF_F) {
3915				if (likely(q->offset > 0)) {
3916					free_rx_bufs(q->adap, &rxq->fl, 1);
3917					q->offset = 0;
3918				}
3919				len = RSPD_LEN_G(len);
3920			}
3921			si.tot_len = len;
3922
3923			/* gather packet fragments */
3924			for (frags = 0, fp = si.frags; ; frags++, fp++) {
3925				rsd = &rxq->fl.sdesc[rxq->fl.cidx];
3926				bufsz = get_buf_size(adapter, rsd);
3927				fp->page = rsd->page;
3928				fp->offset = q->offset;
3929				fp->size = min(bufsz, len);
3930				len -= fp->size;
3931				if (!len)
3932					break;
3933				unmap_rx_buf(q->adap, &rxq->fl);
3934			}
3935
3936			si.sgetstamp = SGE_TIMESTAMP_G(
3937					be64_to_cpu(rc->last_flit));
3938			/*
3939			 * Last buffer remains mapped so explicitly make it
3940			 * coherent for CPU access.
3941			 */
3942			dma_sync_single_for_cpu(q->adap->pdev_dev,
3943						get_buf_addr(rsd),
3944						fp->size, DMA_FROM_DEVICE);
3945
3946			si.va = page_address(si.frags[0].page) +
3947				si.frags[0].offset;
3948			prefetch(si.va);
3949
3950			si.nfrags = frags + 1;
3951			ret = q->handler(q, q->cur_desc, &si);
3952			if (likely(ret == 0))
3953				q->offset += ALIGN(fp->size, s->fl_align);
3954			else
3955				restore_rx_bufs(&si, &rxq->fl, frags);
3956		} else if (likely(rsp_type == RSPD_TYPE_CPL_X)) {
3957			ret = q->handler(q, q->cur_desc, NULL);
3958		} else {
3959			ret = q->handler(q, (const __be64 *)rc, CXGB4_MSG_AN);
3960		}
3961
3962		if (unlikely(ret)) {
3963			/* couldn't process descriptor, back off for recovery */
3964			q->next_intr_params = QINTR_TIMER_IDX_V(NOMEM_TMR_IDX);
3965			break;
3966		}
3967
3968		rspq_next(q);
3969		budget_left--;
3970	}
3971
3972	if (q->offset >= 0 && fl_cap(&rxq->fl) - rxq->fl.avail >= 16)
3973		__refill_fl(q->adap, &rxq->fl);
3974	return budget - budget_left;
3975}
3976
3977/**
3978 *	napi_rx_handler - the NAPI handler for Rx processing
3979 *	@napi: the napi instance
3980 *	@budget: how many packets we can process in this round
3981 *
3982 *	Handler for new data events when using NAPI.  This does not need any
3983 *	locking or protection from interrupts as data interrupts are off at
3984 *	this point and other adapter interrupts do not interfere (the latter
3985 *	in not a concern at all with MSI-X as non-data interrupts then have
3986 *	a separate handler).
3987 */
3988static int napi_rx_handler(struct napi_struct *napi, int budget)
3989{
3990	unsigned int params;
3991	struct sge_rspq *q = container_of(napi, struct sge_rspq, napi);
3992	int work_done;
3993	u32 val;
3994
3995	work_done = process_responses(q, budget);
3996	if (likely(work_done < budget)) {
3997		int timer_index;
3998
3999		napi_complete_done(napi, work_done);
4000		timer_index = QINTR_TIMER_IDX_G(q->next_intr_params);
4001
4002		if (q->adaptive_rx) {
4003			if (work_done > max(timer_pkt_quota[timer_index],
4004					    MIN_NAPI_WORK))
4005				timer_index = (timer_index + 1);
4006			else
4007				timer_index = timer_index - 1;
4008
4009			timer_index = clamp(timer_index, 0, SGE_TIMERREGS - 1);
4010			q->next_intr_params =
4011					QINTR_TIMER_IDX_V(timer_index) |
4012					QINTR_CNT_EN_V(0);
4013			params = q->next_intr_params;
4014		} else {
4015			params = q->next_intr_params;
4016			q->next_intr_params = q->intr_params;
4017		}
4018	} else
4019		params = QINTR_TIMER_IDX_V(7);
4020
4021	val = CIDXINC_V(work_done) | SEINTARM_V(params);
4022
4023	/* If we don't have access to the new User GTS (T5+), use the old
4024	 * doorbell mechanism; otherwise use the new BAR2 mechanism.
4025	 */
4026	if (unlikely(q->bar2_addr == NULL)) {
4027		t4_write_reg(q->adap, MYPF_REG(SGE_PF_GTS_A),
4028			     val | INGRESSQID_V((u32)q->cntxt_id));
4029	} else {
4030		writel(val | INGRESSQID_V(q->bar2_qid),
4031		       q->bar2_addr + SGE_UDB_GTS);
4032		wmb();
4033	}
4034	return work_done;
4035}
4036
4037void cxgb4_ethofld_restart(struct tasklet_struct *t)
4038{
4039	struct sge_eosw_txq *eosw_txq = from_tasklet(eosw_txq, t,
4040						     qresume_tsk);
4041	int pktcount;
4042
4043	spin_lock(&eosw_txq->lock);
4044	pktcount = eosw_txq->cidx - eosw_txq->last_cidx;
4045	if (pktcount < 0)
4046		pktcount += eosw_txq->ndesc;
4047
4048	if (pktcount) {
4049		cxgb4_eosw_txq_free_desc(netdev2adap(eosw_txq->netdev),
4050					 eosw_txq, pktcount);
4051		eosw_txq->inuse -= pktcount;
4052	}
4053
4054	/* There may be some packets waiting for completions. So,
4055	 * attempt to send these packets now.
4056	 */
4057	ethofld_xmit(eosw_txq->netdev, eosw_txq);
4058	spin_unlock(&eosw_txq->lock);
4059}
4060
4061/* cxgb4_ethofld_rx_handler - Process ETHOFLD Tx completions
4062 * @q: the response queue that received the packet
4063 * @rsp: the response queue descriptor holding the CPL message
4064 * @si: the gather list of packet fragments
4065 *
4066 * Process a ETHOFLD Tx completion. Increment the cidx here, but
4067 * free up the descriptors in a tasklet later.
4068 */
4069int cxgb4_ethofld_rx_handler(struct sge_rspq *q, const __be64 *rsp,
4070			     const struct pkt_gl *si)
4071{
4072	u8 opcode = ((const struct rss_header *)rsp)->opcode;
4073
4074	/* skip RSS header */
4075	rsp++;
4076
4077	if (opcode == CPL_FW4_ACK) {
4078		const struct cpl_fw4_ack *cpl;
4079		struct sge_eosw_txq *eosw_txq;
4080		struct eotid_entry *entry;
4081		struct sk_buff *skb;
4082		u32 hdr_len, eotid;
4083		u8 flits, wrlen16;
4084		int credits;
4085
4086		cpl = (const struct cpl_fw4_ack *)rsp;
4087		eotid = CPL_FW4_ACK_FLOWID_G(ntohl(OPCODE_TID(cpl))) -
4088			q->adap->tids.eotid_base;
4089		entry = cxgb4_lookup_eotid(&q->adap->tids, eotid);
4090		if (!entry)
4091			goto out_done;
4092
4093		eosw_txq = (struct sge_eosw_txq *)entry->data;
4094		if (!eosw_txq)
4095			goto out_done;
4096
4097		spin_lock(&eosw_txq->lock);
4098		credits = cpl->credits;
4099		while (credits > 0) {
4100			skb = eosw_txq->desc[eosw_txq->cidx].skb;
4101			if (!skb)
4102				break;
4103
4104			if (unlikely((eosw_txq->state ==
4105				      CXGB4_EO_STATE_FLOWC_OPEN_REPLY ||
4106				      eosw_txq->state ==
4107				      CXGB4_EO_STATE_FLOWC_CLOSE_REPLY) &&
4108				     eosw_txq->cidx == eosw_txq->flowc_idx)) {
4109				flits = DIV_ROUND_UP(skb->len, 8);
4110				if (eosw_txq->state ==
4111				    CXGB4_EO_STATE_FLOWC_OPEN_REPLY)
4112					eosw_txq->state = CXGB4_EO_STATE_ACTIVE;
4113				else
4114					eosw_txq->state = CXGB4_EO_STATE_CLOSED;
4115				complete(&eosw_txq->completion);
4116			} else {
4117				hdr_len = eth_get_headlen(eosw_txq->netdev,
4118							  skb->data,
4119							  skb_headlen(skb));
4120				flits = ethofld_calc_tx_flits(q->adap, skb,
4121							      hdr_len);
4122			}
4123			eosw_txq_advance_index(&eosw_txq->cidx, 1,
4124					       eosw_txq->ndesc);
4125			wrlen16 = DIV_ROUND_UP(flits * 8, 16);
4126			credits -= wrlen16;
4127		}
4128
4129		eosw_txq->cred += cpl->credits;
4130		eosw_txq->ncompl--;
4131
4132		spin_unlock(&eosw_txq->lock);
4133
4134		/* Schedule a tasklet to reclaim SKBs and restart ETHOFLD Tx,
4135		 * if there were packets waiting for completion.
4136		 */
4137		tasklet_schedule(&eosw_txq->qresume_tsk);
4138	}
4139
4140out_done:
4141	return 0;
4142}
4143
4144/*
4145 * The MSI-X interrupt handler for an SGE response queue.
4146 */
4147irqreturn_t t4_sge_intr_msix(int irq, void *cookie)
4148{
4149	struct sge_rspq *q = cookie;
4150
4151	napi_schedule(&q->napi);
4152	return IRQ_HANDLED;
4153}
4154
4155/*
4156 * Process the indirect interrupt entries in the interrupt queue and kick off
4157 * NAPI for each queue that has generated an entry.
4158 */
4159static unsigned int process_intrq(struct adapter *adap)
4160{
4161	unsigned int credits;
4162	const struct rsp_ctrl *rc;
4163	struct sge_rspq *q = &adap->sge.intrq;
4164	u32 val;
4165
4166	spin_lock(&adap->sge.intrq_lock);
4167	for (credits = 0; ; credits++) {
4168		rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
4169		if (!is_new_response(rc, q))
4170			break;
4171
4172		dma_rmb();
4173		if (RSPD_TYPE_G(rc->type_gen) == RSPD_TYPE_INTR_X) {
4174			unsigned int qid = ntohl(rc->pldbuflen_qid);
4175
4176			qid -= adap->sge.ingr_start;
4177			napi_schedule(&adap->sge.ingr_map[qid]->napi);
4178		}
4179
4180		rspq_next(q);
4181	}
4182
4183	val =  CIDXINC_V(credits) | SEINTARM_V(q->intr_params);
4184
4185	/* If we don't have access to the new User GTS (T5+), use the old
4186	 * doorbell mechanism; otherwise use the new BAR2 mechanism.
4187	 */
4188	if (unlikely(q->bar2_addr == NULL)) {
4189		t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
4190			     val | INGRESSQID_V(q->cntxt_id));
4191	} else {
4192		writel(val | INGRESSQID_V(q->bar2_qid),
4193		       q->bar2_addr + SGE_UDB_GTS);
4194		wmb();
4195	}
4196	spin_unlock(&adap->sge.intrq_lock);
4197	return credits;
4198}
4199
4200/*
4201 * The MSI interrupt handler, which handles data events from SGE response queues
4202 * as well as error and other async events as they all use the same MSI vector.
4203 */
4204static irqreturn_t t4_intr_msi(int irq, void *cookie)
4205{
4206	struct adapter *adap = cookie;
4207
4208	if (adap->flags & CXGB4_MASTER_PF)
4209		t4_slow_intr_handler(adap);
4210	process_intrq(adap);
4211	return IRQ_HANDLED;
4212}
4213
4214/*
4215 * Interrupt handler for legacy INTx interrupts.
4216 * Handles data events from SGE response queues as well as error and other
4217 * async events as they all use the same interrupt line.
4218 */
4219static irqreturn_t t4_intr_intx(int irq, void *cookie)
4220{
4221	struct adapter *adap = cookie;
4222
4223	t4_write_reg(adap, MYPF_REG(PCIE_PF_CLI_A), 0);
4224	if (((adap->flags & CXGB4_MASTER_PF) && t4_slow_intr_handler(adap)) |
4225	    process_intrq(adap))
4226		return IRQ_HANDLED;
4227	return IRQ_NONE;             /* probably shared interrupt */
4228}
4229
4230/**
4231 *	t4_intr_handler - select the top-level interrupt handler
4232 *	@adap: the adapter
4233 *
4234 *	Selects the top-level interrupt handler based on the type of interrupts
4235 *	(MSI-X, MSI, or INTx).
4236 */
4237irq_handler_t t4_intr_handler(struct adapter *adap)
4238{
4239	if (adap->flags & CXGB4_USING_MSIX)
4240		return t4_sge_intr_msix;
4241	if (adap->flags & CXGB4_USING_MSI)
4242		return t4_intr_msi;
4243	return t4_intr_intx;
4244}
4245
4246static void sge_rx_timer_cb(struct timer_list *t)
4247{
4248	unsigned long m;
4249	unsigned int i;
4250	struct adapter *adap = from_timer(adap, t, sge.rx_timer);
4251	struct sge *s = &adap->sge;
4252
4253	for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++)
4254		for (m = s->starving_fl[i]; m; m &= m - 1) {
4255			struct sge_eth_rxq *rxq;
4256			unsigned int id = __ffs(m) + i * BITS_PER_LONG;
4257			struct sge_fl *fl = s->egr_map[id];
4258
4259			clear_bit(id, s->starving_fl);
4260			smp_mb__after_atomic();
4261
4262			if (fl_starving(adap, fl)) {
4263				rxq = container_of(fl, struct sge_eth_rxq, fl);
4264				if (napi_reschedule(&rxq->rspq.napi))
4265					fl->starving++;
4266				else
4267					set_bit(id, s->starving_fl);
4268			}
4269		}
4270	/* The remainder of the SGE RX Timer Callback routine is dedicated to
4271	 * global Master PF activities like checking for chip ingress stalls,
4272	 * etc.
4273	 */
4274	if (!(adap->flags & CXGB4_MASTER_PF))
4275		goto done;
4276
4277	t4_idma_monitor(adap, &s->idma_monitor, HZ, RX_QCHECK_PERIOD);
4278
4279done:
4280	mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD);
4281}
4282
4283static void sge_tx_timer_cb(struct timer_list *t)
4284{
4285	struct adapter *adap = from_timer(adap, t, sge.tx_timer);
4286	struct sge *s = &adap->sge;
4287	unsigned long m, period;
4288	unsigned int i, budget;
4289
4290	for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++)
4291		for (m = s->txq_maperr[i]; m; m &= m - 1) {
4292			unsigned long id = __ffs(m) + i * BITS_PER_LONG;
4293			struct sge_uld_txq *txq = s->egr_map[id];
4294
4295			clear_bit(id, s->txq_maperr);
4296			tasklet_schedule(&txq->qresume_tsk);
4297		}
4298
4299	if (!is_t4(adap->params.chip)) {
4300		struct sge_eth_txq *q = &s->ptptxq;
4301		int avail;
4302
4303		spin_lock(&adap->ptp_lock);
4304		avail = reclaimable(&q->q);
4305
4306		if (avail) {
4307			free_tx_desc(adap, &q->q, avail, false);
4308			q->q.in_use -= avail;
4309		}
4310		spin_unlock(&adap->ptp_lock);
4311	}
4312
4313	budget = MAX_TIMER_TX_RECLAIM;
4314	i = s->ethtxq_rover;
4315	do {
4316		budget -= t4_sge_eth_txq_egress_update(adap, &s->ethtxq[i],
4317						       budget);
4318		if (!budget)
4319			break;
4320
4321		if (++i >= s->ethqsets)
4322			i = 0;
4323	} while (i != s->ethtxq_rover);
4324	s->ethtxq_rover = i;
4325
4326	if (budget == 0) {
4327		/* If we found too many reclaimable packets schedule a timer
4328		 * in the near future to continue where we left off.
4329		 */
4330		period = 2;
4331	} else {
4332		/* We reclaimed all reclaimable TX Descriptors, so reschedule
4333		 * at the normal period.
4334		 */
4335		period = TX_QCHECK_PERIOD;
4336	}
4337
4338	mod_timer(&s->tx_timer, jiffies + period);
4339}
4340
4341/**
4342 *	bar2_address - return the BAR2 address for an SGE Queue's Registers
4343 *	@adapter: the adapter
4344 *	@qid: the SGE Queue ID
4345 *	@qtype: the SGE Queue Type (Egress or Ingress)
4346 *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
4347 *
4348 *	Returns the BAR2 address for the SGE Queue Registers associated with
4349 *	@qid.  If BAR2 SGE Registers aren't available, returns NULL.  Also
4350 *	returns the BAR2 Queue ID to be used with writes to the BAR2 SGE
4351 *	Queue Registers.  If the BAR2 Queue ID is 0, then "Inferred Queue ID"
4352 *	Registers are supported (e.g. the Write Combining Doorbell Buffer).
4353 */
4354static void __iomem *bar2_address(struct adapter *adapter,
4355				  unsigned int qid,
4356				  enum t4_bar2_qtype qtype,
4357				  unsigned int *pbar2_qid)
4358{
4359	u64 bar2_qoffset;
4360	int ret;
4361
4362	ret = t4_bar2_sge_qregs(adapter, qid, qtype, 0,
4363				&bar2_qoffset, pbar2_qid);
4364	if (ret)
4365		return NULL;
4366
4367	return adapter->bar2 + bar2_qoffset;
4368}
4369
4370/* @intr_idx: MSI/MSI-X vector if >=0, -(absolute qid + 1) if < 0
4371 * @cong: < 0 -> no congestion feedback, >= 0 -> congestion channel map
4372 */
4373int t4_sge_alloc_rxq(struct adapter *adap, struct sge_rspq *iq, bool fwevtq,
4374		     struct net_device *dev, int intr_idx,
4375		     struct sge_fl *fl, rspq_handler_t hnd,
4376		     rspq_flush_handler_t flush_hnd, int cong)
4377{
4378	int ret, flsz = 0;
4379	struct fw_iq_cmd c;
4380	struct sge *s = &adap->sge;
4381	struct port_info *pi = netdev_priv(dev);
4382	int relaxed = !(adap->flags & CXGB4_ROOT_NO_RELAXED_ORDERING);
4383
4384	/* Size needs to be multiple of 16, including status entry. */
4385	iq->size = roundup(iq->size, 16);
4386
4387	iq->desc = alloc_ring(adap->pdev_dev, iq->size, iq->iqe_len, 0,
4388			      &iq->phys_addr, NULL, 0,
4389			      dev_to_node(adap->pdev_dev));
4390	if (!iq->desc)
4391		return -ENOMEM;
4392
4393	memset(&c, 0, sizeof(c));
4394	c.op_to_vfn = htonl(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
4395			    FW_CMD_WRITE_F | FW_CMD_EXEC_F |
4396			    FW_IQ_CMD_PFN_V(adap->pf) | FW_IQ_CMD_VFN_V(0));
4397	c.alloc_to_len16 = htonl(FW_IQ_CMD_ALLOC_F | FW_IQ_CMD_IQSTART_F |
4398				 FW_LEN16(c));
4399	c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE_V(FW_IQ_TYPE_FL_INT_CAP) |
4400		FW_IQ_CMD_IQASYNCH_V(fwevtq) | FW_IQ_CMD_VIID_V(pi->viid) |
4401		FW_IQ_CMD_IQANDST_V(intr_idx < 0) |
4402		FW_IQ_CMD_IQANUD_V(UPDATEDELIVERY_INTERRUPT_X) |
4403		FW_IQ_CMD_IQANDSTINDEX_V(intr_idx >= 0 ? intr_idx :
4404							-intr_idx - 1));
4405	c.iqdroprss_to_iqesize = htons(FW_IQ_CMD_IQPCIECH_V(pi->tx_chan) |
4406		FW_IQ_CMD_IQGTSMODE_F |
4407		FW_IQ_CMD_IQINTCNTTHRESH_V(iq->pktcnt_idx) |
4408		FW_IQ_CMD_IQESIZE_V(ilog2(iq->iqe_len) - 4));
4409	c.iqsize = htons(iq->size);
4410	c.iqaddr = cpu_to_be64(iq->phys_addr);
4411	if (cong >= 0)
4412		c.iqns_to_fl0congen = htonl(FW_IQ_CMD_IQFLINTCONGEN_F |
4413				FW_IQ_CMD_IQTYPE_V(cong ? FW_IQ_IQTYPE_NIC
4414							:  FW_IQ_IQTYPE_OFLD));
4415
4416	if (fl) {
4417		unsigned int chip_ver =
4418			CHELSIO_CHIP_VERSION(adap->params.chip);
4419
4420		/* Allocate the ring for the hardware free list (with space
4421		 * for its status page) along with the associated software
4422		 * descriptor ring.  The free list size needs to be a multiple
4423		 * of the Egress Queue Unit and at least 2 Egress Units larger
4424		 * than the SGE's Egress Congrestion Threshold
4425		 * (fl_starve_thres - 1).
4426		 */
4427		if (fl->size < s->fl_starve_thres - 1 + 2 * 8)
4428			fl->size = s->fl_starve_thres - 1 + 2 * 8;
4429		fl->size = roundup(fl->size, 8);
4430		fl->desc = alloc_ring(adap->pdev_dev, fl->size, sizeof(__be64),
4431				      sizeof(struct rx_sw_desc), &fl->addr,
4432				      &fl->sdesc, s->stat_len,
4433				      dev_to_node(adap->pdev_dev));
4434		if (!fl->desc)
4435			goto fl_nomem;
4436
4437		flsz = fl->size / 8 + s->stat_len / sizeof(struct tx_desc);
4438		c.iqns_to_fl0congen |= htonl(FW_IQ_CMD_FL0PACKEN_F |
4439					     FW_IQ_CMD_FL0FETCHRO_V(relaxed) |
4440					     FW_IQ_CMD_FL0DATARO_V(relaxed) |
4441					     FW_IQ_CMD_FL0PADEN_F);
4442		if (cong >= 0)
4443			c.iqns_to_fl0congen |=
4444				htonl(FW_IQ_CMD_FL0CNGCHMAP_V(cong) |
4445				      FW_IQ_CMD_FL0CONGCIF_F |
4446				      FW_IQ_CMD_FL0CONGEN_F);
4447		/* In T6, for egress queue type FL there is internal overhead
4448		 * of 16B for header going into FLM module.  Hence the maximum
4449		 * allowed burst size is 448 bytes.  For T4/T5, the hardware
4450		 * doesn't coalesce fetch requests if more than 64 bytes of
4451		 * Free List pointers are provided, so we use a 128-byte Fetch
4452		 * Burst Minimum there (T6 implements coalescing so we can use
4453		 * the smaller 64-byte value there).
4454		 */
4455		c.fl0dcaen_to_fl0cidxfthresh =
4456			htons(FW_IQ_CMD_FL0FBMIN_V(chip_ver <= CHELSIO_T5 ?
4457						   FETCHBURSTMIN_128B_X :
4458						   FETCHBURSTMIN_64B_T6_X) |
4459			      FW_IQ_CMD_FL0FBMAX_V((chip_ver <= CHELSIO_T5) ?
4460						   FETCHBURSTMAX_512B_X :
4461						   FETCHBURSTMAX_256B_X));
4462		c.fl0size = htons(flsz);
4463		c.fl0addr = cpu_to_be64(fl->addr);
4464	}
4465
4466	ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
4467	if (ret)
4468		goto err;
4469
4470	netif_napi_add(dev, &iq->napi, napi_rx_handler);
4471	iq->cur_desc = iq->desc;
4472	iq->cidx = 0;
4473	iq->gen = 1;
4474	iq->next_intr_params = iq->intr_params;
4475	iq->cntxt_id = ntohs(c.iqid);
4476	iq->abs_id = ntohs(c.physiqid);
4477	iq->bar2_addr = bar2_address(adap,
4478				     iq->cntxt_id,
4479				     T4_BAR2_QTYPE_INGRESS,
4480				     &iq->bar2_qid);
4481	iq->size--;                           /* subtract status entry */
4482	iq->netdev = dev;
4483	iq->handler = hnd;
4484	iq->flush_handler = flush_hnd;
4485
4486	memset(&iq->lro_mgr, 0, sizeof(struct t4_lro_mgr));
4487	skb_queue_head_init(&iq->lro_mgr.lroq);
4488
4489	/* set offset to -1 to distinguish ingress queues without FL */
4490	iq->offset = fl ? 0 : -1;
4491
4492	adap->sge.ingr_map[iq->cntxt_id - adap->sge.ingr_start] = iq;
4493
4494	if (fl) {
4495		fl->cntxt_id = ntohs(c.fl0id);
4496		fl->avail = fl->pend_cred = 0;
4497		fl->pidx = fl->cidx = 0;
4498		fl->alloc_failed = fl->large_alloc_failed = fl->starving = 0;
4499		adap->sge.egr_map[fl->cntxt_id - adap->sge.egr_start] = fl;
4500
4501		/* Note, we must initialize the BAR2 Free List User Doorbell
4502		 * information before refilling the Free List!
4503		 */
4504		fl->bar2_addr = bar2_address(adap,
4505					     fl->cntxt_id,
4506					     T4_BAR2_QTYPE_EGRESS,
4507					     &fl->bar2_qid);
4508		refill_fl(adap, fl, fl_cap(fl), GFP_KERNEL);
4509	}
4510
4511	/* For T5 and later we attempt to set up the Congestion Manager values
4512	 * of the new RX Ethernet Queue.  This should really be handled by
4513	 * firmware because it's more complex than any host driver wants to
4514	 * get involved with and it's different per chip and this is almost
4515	 * certainly wrong.  Firmware would be wrong as well, but it would be
4516	 * a lot easier to fix in one place ...  For now we do something very
4517	 * simple (and hopefully less wrong).
4518	 */
4519	if (!is_t4(adap->params.chip) && cong >= 0) {
4520		u32 param, val, ch_map = 0;
4521		int i;
4522		u16 cng_ch_bits_log = adap->params.arch.cng_ch_bits_log;
4523
4524		param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
4525			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) |
4526			 FW_PARAMS_PARAM_YZ_V(iq->cntxt_id));
4527		if (cong == 0) {
4528			val = CONMCTXT_CNGTPMODE_V(CONMCTXT_CNGTPMODE_QUEUE_X);
4529		} else {
4530			val =
4531			    CONMCTXT_CNGTPMODE_V(CONMCTXT_CNGTPMODE_CHANNEL_X);
4532			for (i = 0; i < 4; i++) {
4533				if (cong & (1 << i))
4534					ch_map |= 1 << (i << cng_ch_bits_log);
4535			}
4536			val |= CONMCTXT_CNGCHMAP_V(ch_map);
4537		}
4538		ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
4539				    &param, &val);
4540		if (ret)
4541			dev_warn(adap->pdev_dev, "Failed to set Congestion"
4542				 " Manager Context for Ingress Queue %d: %d\n",
4543				 iq->cntxt_id, -ret);
4544	}
4545
4546	return 0;
4547
4548fl_nomem:
4549	ret = -ENOMEM;
4550err:
4551	if (iq->desc) {
4552		dma_free_coherent(adap->pdev_dev, iq->size * iq->iqe_len,
4553				  iq->desc, iq->phys_addr);
4554		iq->desc = NULL;
4555	}
4556	if (fl && fl->desc) {
4557		kfree(fl->sdesc);
4558		fl->sdesc = NULL;
4559		dma_free_coherent(adap->pdev_dev, flsz * sizeof(struct tx_desc),
4560				  fl->desc, fl->addr);
4561		fl->desc = NULL;
4562	}
4563	return ret;
4564}
4565
4566static void init_txq(struct adapter *adap, struct sge_txq *q, unsigned int id)
4567{
4568	q->cntxt_id = id;
4569	q->bar2_addr = bar2_address(adap,
4570				    q->cntxt_id,
4571				    T4_BAR2_QTYPE_EGRESS,
4572				    &q->bar2_qid);
4573	q->in_use = 0;
4574	q->cidx = q->pidx = 0;
4575	q->stops = q->restarts = 0;
4576	q->stat = (void *)&q->desc[q->size];
4577	spin_lock_init(&q->db_lock);
4578	adap->sge.egr_map[id - adap->sge.egr_start] = q;
4579}
4580
4581/**
4582 *	t4_sge_alloc_eth_txq - allocate an Ethernet TX Queue
4583 *	@adap: the adapter
4584 *	@txq: the SGE Ethernet TX Queue to initialize
4585 *	@dev: the Linux Network Device
4586 *	@netdevq: the corresponding Linux TX Queue
4587 *	@iqid: the Ingress Queue to which to deliver CIDX Update messages
4588 *	@dbqt: whether this TX Queue will use the SGE Doorbell Queue Timers
4589 */
4590int t4_sge_alloc_eth_txq(struct adapter *adap, struct sge_eth_txq *txq,
4591			 struct net_device *dev, struct netdev_queue *netdevq,
4592			 unsigned int iqid, u8 dbqt)
4593{
4594	unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip);
4595	struct port_info *pi = netdev_priv(dev);
4596	struct sge *s = &adap->sge;
4597	struct fw_eq_eth_cmd c;
4598	int ret, nentries;
4599
4600	/* Add status entries */
4601	nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
4602
4603	txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size,
4604			sizeof(struct tx_desc), sizeof(struct tx_sw_desc),
4605			&txq->q.phys_addr, &txq->q.sdesc, s->stat_len,
4606			netdev_queue_numa_node_read(netdevq));
4607	if (!txq->q.desc)
4608		return -ENOMEM;
4609
4610	memset(&c, 0, sizeof(c));
4611	c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_ETH_CMD) | FW_CMD_REQUEST_F |
4612			    FW_CMD_WRITE_F | FW_CMD_EXEC_F |
4613			    FW_EQ_ETH_CMD_PFN_V(adap->pf) |
4614			    FW_EQ_ETH_CMD_VFN_V(0));
4615	c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_ALLOC_F |
4616				 FW_EQ_ETH_CMD_EQSTART_F | FW_LEN16(c));
4617
4618	/* For TX Ethernet Queues using the SGE Doorbell Queue Timer
4619	 * mechanism, we use Ingress Queue messages for Hardware Consumer
4620	 * Index Updates on the TX Queue.  Otherwise we have the Hardware
4621	 * write the CIDX Updates into the Status Page at the end of the
4622	 * TX Queue.
4623	 */
4624	c.autoequiqe_to_viid = htonl(((chip_ver <= CHELSIO_T5) ?
4625				      FW_EQ_ETH_CMD_AUTOEQUIQE_F :
4626				      FW_EQ_ETH_CMD_AUTOEQUEQE_F) |
4627				     FW_EQ_ETH_CMD_VIID_V(pi->viid));
4628
4629	c.fetchszm_to_iqid =
4630		htonl(FW_EQ_ETH_CMD_HOSTFCMODE_V((chip_ver <= CHELSIO_T5) ?
4631						 HOSTFCMODE_INGRESS_QUEUE_X :
4632						 HOSTFCMODE_STATUS_PAGE_X) |
4633		      FW_EQ_ETH_CMD_PCIECHN_V(pi->tx_chan) |
4634		      FW_EQ_ETH_CMD_FETCHRO_F | FW_EQ_ETH_CMD_IQID_V(iqid));
4635
4636	/* Note that the CIDX Flush Threshold should match MAX_TX_RECLAIM. */
4637	c.dcaen_to_eqsize =
4638		htonl(FW_EQ_ETH_CMD_FBMIN_V(chip_ver <= CHELSIO_T5
4639					    ? FETCHBURSTMIN_64B_X
4640					    : FETCHBURSTMIN_64B_T6_X) |
4641		      FW_EQ_ETH_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
4642		      FW_EQ_ETH_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) |
4643		      FW_EQ_ETH_CMD_CIDXFTHRESHO_V(chip_ver == CHELSIO_T5) |
4644		      FW_EQ_ETH_CMD_EQSIZE_V(nentries));
4645
4646	c.eqaddr = cpu_to_be64(txq->q.phys_addr);
4647
4648	/* If we're using the SGE Doorbell Queue Timer mechanism, pass in the
4649	 * currently configured Timer Index.  THis can be changed later via an
4650	 * ethtool -C tx-usecs {Timer Val} command.  Note that the SGE
4651	 * Doorbell Queue mode is currently automatically enabled in the
4652	 * Firmware by setting either AUTOEQUEQE or AUTOEQUIQE ...
4653	 */
4654	if (dbqt)
4655		c.timeren_timerix =
4656			cpu_to_be32(FW_EQ_ETH_CMD_TIMEREN_F |
4657				    FW_EQ_ETH_CMD_TIMERIX_V(txq->dbqtimerix));
4658
4659	ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
4660	if (ret) {
4661		kfree(txq->q.sdesc);
4662		txq->q.sdesc = NULL;
4663		dma_free_coherent(adap->pdev_dev,
4664				  nentries * sizeof(struct tx_desc),
4665				  txq->q.desc, txq->q.phys_addr);
4666		txq->q.desc = NULL;
4667		return ret;
4668	}
4669
4670	txq->q.q_type = CXGB4_TXQ_ETH;
4671	init_txq(adap, &txq->q, FW_EQ_ETH_CMD_EQID_G(ntohl(c.eqid_pkd)));
4672	txq->txq = netdevq;
4673	txq->tso = 0;
4674	txq->uso = 0;
4675	txq->tx_cso = 0;
4676	txq->vlan_ins = 0;
4677	txq->mapping_err = 0;
4678	txq->dbqt = dbqt;
4679
4680	return 0;
4681}
4682
4683int t4_sge_alloc_ctrl_txq(struct adapter *adap, struct sge_ctrl_txq *txq,
4684			  struct net_device *dev, unsigned int iqid,
4685			  unsigned int cmplqid)
4686{
4687	unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip);
4688	struct port_info *pi = netdev_priv(dev);
4689	struct sge *s = &adap->sge;
4690	struct fw_eq_ctrl_cmd c;
4691	int ret, nentries;
4692
4693	/* Add status entries */
4694	nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
4695
4696	txq->q.desc = alloc_ring(adap->pdev_dev, nentries,
4697				 sizeof(struct tx_desc), 0, &txq->q.phys_addr,
4698				 NULL, 0, dev_to_node(adap->pdev_dev));
4699	if (!txq->q.desc)
4700		return -ENOMEM;
4701
4702	c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST_F |
4703			    FW_CMD_WRITE_F | FW_CMD_EXEC_F |
4704			    FW_EQ_CTRL_CMD_PFN_V(adap->pf) |
4705			    FW_EQ_CTRL_CMD_VFN_V(0));
4706	c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_ALLOC_F |
4707				 FW_EQ_CTRL_CMD_EQSTART_F | FW_LEN16(c));
4708	c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_CMPLIQID_V(cmplqid));
4709	c.physeqid_pkd = htonl(0);
4710	c.fetchszm_to_iqid =
4711		htonl(FW_EQ_CTRL_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) |
4712		      FW_EQ_CTRL_CMD_PCIECHN_V(pi->tx_chan) |
4713		      FW_EQ_CTRL_CMD_FETCHRO_F | FW_EQ_CTRL_CMD_IQID_V(iqid));
4714	c.dcaen_to_eqsize =
4715		htonl(FW_EQ_CTRL_CMD_FBMIN_V(chip_ver <= CHELSIO_T5
4716					     ? FETCHBURSTMIN_64B_X
4717					     : FETCHBURSTMIN_64B_T6_X) |
4718		      FW_EQ_CTRL_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
4719		      FW_EQ_CTRL_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) |
4720		      FW_EQ_CTRL_CMD_EQSIZE_V(nentries));
4721	c.eqaddr = cpu_to_be64(txq->q.phys_addr);
4722
4723	ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
4724	if (ret) {
4725		dma_free_coherent(adap->pdev_dev,
4726				  nentries * sizeof(struct tx_desc),
4727				  txq->q.desc, txq->q.phys_addr);
4728		txq->q.desc = NULL;
4729		return ret;
4730	}
4731
4732	txq->q.q_type = CXGB4_TXQ_CTRL;
4733	init_txq(adap, &txq->q, FW_EQ_CTRL_CMD_EQID_G(ntohl(c.cmpliqid_eqid)));
4734	txq->adap = adap;
4735	skb_queue_head_init(&txq->sendq);
4736	tasklet_setup(&txq->qresume_tsk, restart_ctrlq);
4737	txq->full = 0;
4738	return 0;
4739}
4740
4741int t4_sge_mod_ctrl_txq(struct adapter *adap, unsigned int eqid,
4742			unsigned int cmplqid)
4743{
4744	u32 param, val;
4745
4746	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
4747		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DMAQ_EQ_CMPLIQID_CTRL) |
4748		 FW_PARAMS_PARAM_YZ_V(eqid));
4749	val = cmplqid;
4750	return t4_set_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
4751}
4752
4753static int t4_sge_alloc_ofld_txq(struct adapter *adap, struct sge_txq *q,
4754				 struct net_device *dev, u32 cmd, u32 iqid)
4755{
4756	unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip);
4757	struct port_info *pi = netdev_priv(dev);
4758	struct sge *s = &adap->sge;
4759	struct fw_eq_ofld_cmd c;
4760	u32 fb_min, nentries;
4761	int ret;
4762
4763	/* Add status entries */
4764	nentries = q->size + s->stat_len / sizeof(struct tx_desc);
4765	q->desc = alloc_ring(adap->pdev_dev, q->size, sizeof(struct tx_desc),
4766			     sizeof(struct tx_sw_desc), &q->phys_addr,
4767			     &q->sdesc, s->stat_len, NUMA_NO_NODE);
4768	if (!q->desc)
4769		return -ENOMEM;
4770
4771	if (chip_ver <= CHELSIO_T5)
4772		fb_min = FETCHBURSTMIN_64B_X;
4773	else
4774		fb_min = FETCHBURSTMIN_64B_T6_X;
4775
4776	memset(&c, 0, sizeof(c));
4777	c.op_to_vfn = htonl(FW_CMD_OP_V(cmd) | FW_CMD_REQUEST_F |
4778			    FW_CMD_WRITE_F | FW_CMD_EXEC_F |
4779			    FW_EQ_OFLD_CMD_PFN_V(adap->pf) |
4780			    FW_EQ_OFLD_CMD_VFN_V(0));
4781	c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_ALLOC_F |
4782				 FW_EQ_OFLD_CMD_EQSTART_F | FW_LEN16(c));
4783	c.fetchszm_to_iqid =
4784		htonl(FW_EQ_OFLD_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) |
4785		      FW_EQ_OFLD_CMD_PCIECHN_V(pi->tx_chan) |
4786		      FW_EQ_OFLD_CMD_FETCHRO_F | FW_EQ_OFLD_CMD_IQID_V(iqid));
4787	c.dcaen_to_eqsize =
4788		htonl(FW_EQ_OFLD_CMD_FBMIN_V(fb_min) |
4789		      FW_EQ_OFLD_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
4790		      FW_EQ_OFLD_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) |
4791		      FW_EQ_OFLD_CMD_EQSIZE_V(nentries));
4792	c.eqaddr = cpu_to_be64(q->phys_addr);
4793
4794	ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
4795	if (ret) {
4796		kfree(q->sdesc);
4797		q->sdesc = NULL;
4798		dma_free_coherent(adap->pdev_dev,
4799				  nentries * sizeof(struct tx_desc),
4800				  q->desc, q->phys_addr);
4801		q->desc = NULL;
4802		return ret;
4803	}
4804
4805	init_txq(adap, q, FW_EQ_OFLD_CMD_EQID_G(ntohl(c.eqid_pkd)));
4806	return 0;
4807}
4808
4809int t4_sge_alloc_uld_txq(struct adapter *adap, struct sge_uld_txq *txq,
4810			 struct net_device *dev, unsigned int iqid,
4811			 unsigned int uld_type)
4812{
4813	u32 cmd = FW_EQ_OFLD_CMD;
4814	int ret;
4815
4816	if (unlikely(uld_type == CXGB4_TX_CRYPTO))
4817		cmd = FW_EQ_CTRL_CMD;
4818
4819	ret = t4_sge_alloc_ofld_txq(adap, &txq->q, dev, cmd, iqid);
4820	if (ret)
4821		return ret;
4822
4823	txq->q.q_type = CXGB4_TXQ_ULD;
4824	txq->adap = adap;
4825	skb_queue_head_init(&txq->sendq);
4826	tasklet_setup(&txq->qresume_tsk, restart_ofldq);
4827	txq->full = 0;
4828	txq->mapping_err = 0;
4829	return 0;
4830}
4831
4832int t4_sge_alloc_ethofld_txq(struct adapter *adap, struct sge_eohw_txq *txq,
4833			     struct net_device *dev, u32 iqid)
4834{
4835	int ret;
4836
4837	ret = t4_sge_alloc_ofld_txq(adap, &txq->q, dev, FW_EQ_OFLD_CMD, iqid);
4838	if (ret)
4839		return ret;
4840
4841	txq->q.q_type = CXGB4_TXQ_ULD;
4842	spin_lock_init(&txq->lock);
4843	txq->adap = adap;
4844	txq->tso = 0;
4845	txq->uso = 0;
4846	txq->tx_cso = 0;
4847	txq->vlan_ins = 0;
4848	txq->mapping_err = 0;
4849	return 0;
4850}
4851
4852void free_txq(struct adapter *adap, struct sge_txq *q)
4853{
4854	struct sge *s = &adap->sge;
4855
4856	dma_free_coherent(adap->pdev_dev,
4857			  q->size * sizeof(struct tx_desc) + s->stat_len,
4858			  q->desc, q->phys_addr);
4859	q->cntxt_id = 0;
4860	q->sdesc = NULL;
4861	q->desc = NULL;
4862}
4863
4864void free_rspq_fl(struct adapter *adap, struct sge_rspq *rq,
4865		  struct sge_fl *fl)
4866{
4867	struct sge *s = &adap->sge;
4868	unsigned int fl_id = fl ? fl->cntxt_id : 0xffff;
4869
4870	adap->sge.ingr_map[rq->cntxt_id - adap->sge.ingr_start] = NULL;
4871	t4_iq_free(adap, adap->mbox, adap->pf, 0, FW_IQ_TYPE_FL_INT_CAP,
4872		   rq->cntxt_id, fl_id, 0xffff);
4873	dma_free_coherent(adap->pdev_dev, (rq->size + 1) * rq->iqe_len,
4874			  rq->desc, rq->phys_addr);
4875	netif_napi_del(&rq->napi);
4876	rq->netdev = NULL;
4877	rq->cntxt_id = rq->abs_id = 0;
4878	rq->desc = NULL;
4879
4880	if (fl) {
4881		free_rx_bufs(adap, fl, fl->avail);
4882		dma_free_coherent(adap->pdev_dev, fl->size * 8 + s->stat_len,
4883				  fl->desc, fl->addr);
4884		kfree(fl->sdesc);
4885		fl->sdesc = NULL;
4886		fl->cntxt_id = 0;
4887		fl->desc = NULL;
4888	}
4889}
4890
4891/**
4892 *      t4_free_ofld_rxqs - free a block of consecutive Rx queues
4893 *      @adap: the adapter
4894 *      @n: number of queues
4895 *      @q: pointer to first queue
4896 *
4897 *      Release the resources of a consecutive block of offload Rx queues.
4898 */
4899void t4_free_ofld_rxqs(struct adapter *adap, int n, struct sge_ofld_rxq *q)
4900{
4901	for ( ; n; n--, q++)
4902		if (q->rspq.desc)
4903			free_rspq_fl(adap, &q->rspq,
4904				     q->fl.size ? &q->fl : NULL);
4905}
4906
4907void t4_sge_free_ethofld_txq(struct adapter *adap, struct sge_eohw_txq *txq)
4908{
4909	if (txq->q.desc) {
4910		t4_ofld_eq_free(adap, adap->mbox, adap->pf, 0,
4911				txq->q.cntxt_id);
4912		free_tx_desc(adap, &txq->q, txq->q.in_use, false);
4913		kfree(txq->q.sdesc);
4914		free_txq(adap, &txq->q);
4915	}
4916}
4917
4918/**
4919 *	t4_free_sge_resources - free SGE resources
4920 *	@adap: the adapter
4921 *
4922 *	Frees resources used by the SGE queue sets.
4923 */
4924void t4_free_sge_resources(struct adapter *adap)
4925{
4926	int i;
4927	struct sge_eth_rxq *eq;
4928	struct sge_eth_txq *etq;
4929
4930	/* stop all Rx queues in order to start them draining */
4931	for (i = 0; i < adap->sge.ethqsets; i++) {
4932		eq = &adap->sge.ethrxq[i];
4933		if (eq->rspq.desc)
4934			t4_iq_stop(adap, adap->mbox, adap->pf, 0,
4935				   FW_IQ_TYPE_FL_INT_CAP,
4936				   eq->rspq.cntxt_id,
4937				   eq->fl.size ? eq->fl.cntxt_id : 0xffff,
4938				   0xffff);
4939	}
4940
4941	/* clean up Ethernet Tx/Rx queues */
4942	for (i = 0; i < adap->sge.ethqsets; i++) {
4943		eq = &adap->sge.ethrxq[i];
4944		if (eq->rspq.desc)
4945			free_rspq_fl(adap, &eq->rspq,
4946				     eq->fl.size ? &eq->fl : NULL);
4947		if (eq->msix) {
4948			cxgb4_free_msix_idx_in_bmap(adap, eq->msix->idx);
4949			eq->msix = NULL;
4950		}
4951
4952		etq = &adap->sge.ethtxq[i];
4953		if (etq->q.desc) {
4954			t4_eth_eq_free(adap, adap->mbox, adap->pf, 0,
4955				       etq->q.cntxt_id);
4956			__netif_tx_lock_bh(etq->txq);
4957			free_tx_desc(adap, &etq->q, etq->q.in_use, true);
4958			__netif_tx_unlock_bh(etq->txq);
4959			kfree(etq->q.sdesc);
4960			free_txq(adap, &etq->q);
4961		}
4962	}
4963
4964	/* clean up control Tx queues */
4965	for (i = 0; i < ARRAY_SIZE(adap->sge.ctrlq); i++) {
4966		struct sge_ctrl_txq *cq = &adap->sge.ctrlq[i];
4967
4968		if (cq->q.desc) {
4969			tasklet_kill(&cq->qresume_tsk);
4970			t4_ctrl_eq_free(adap, adap->mbox, adap->pf, 0,
4971					cq->q.cntxt_id);
4972			__skb_queue_purge(&cq->sendq);
4973			free_txq(adap, &cq->q);
4974		}
4975	}
4976
4977	if (adap->sge.fw_evtq.desc) {
4978		free_rspq_fl(adap, &adap->sge.fw_evtq, NULL);
4979		if (adap->sge.fwevtq_msix_idx >= 0)
4980			cxgb4_free_msix_idx_in_bmap(adap,
4981						    adap->sge.fwevtq_msix_idx);
4982	}
4983
4984	if (adap->sge.nd_msix_idx >= 0)
4985		cxgb4_free_msix_idx_in_bmap(adap, adap->sge.nd_msix_idx);
4986
4987	if (adap->sge.intrq.desc)
4988		free_rspq_fl(adap, &adap->sge.intrq, NULL);
4989
4990	if (!is_t4(adap->params.chip)) {
4991		etq = &adap->sge.ptptxq;
4992		if (etq->q.desc) {
4993			t4_eth_eq_free(adap, adap->mbox, adap->pf, 0,
4994				       etq->q.cntxt_id);
4995			spin_lock_bh(&adap->ptp_lock);
4996			free_tx_desc(adap, &etq->q, etq->q.in_use, true);
4997			spin_unlock_bh(&adap->ptp_lock);
4998			kfree(etq->q.sdesc);
4999			free_txq(adap, &etq->q);
5000		}
5001	}
5002
5003	/* clear the reverse egress queue map */
5004	memset(adap->sge.egr_map, 0,
5005	       adap->sge.egr_sz * sizeof(*adap->sge.egr_map));
5006}
5007
5008void t4_sge_start(struct adapter *adap)
5009{
5010	adap->sge.ethtxq_rover = 0;
5011	mod_timer(&adap->sge.rx_timer, jiffies + RX_QCHECK_PERIOD);
5012	mod_timer(&adap->sge.tx_timer, jiffies + TX_QCHECK_PERIOD);
5013}
5014
5015/**
5016 *	t4_sge_stop - disable SGE operation
5017 *	@adap: the adapter
5018 *
5019 *	Stop tasklets and timers associated with the DMA engine.  Note that
5020 *	this is effective only if measures have been taken to disable any HW
5021 *	events that may restart them.
5022 */
5023void t4_sge_stop(struct adapter *adap)
5024{
5025	int i;
5026	struct sge *s = &adap->sge;
5027
5028	if (s->rx_timer.function)
5029		del_timer_sync(&s->rx_timer);
5030	if (s->tx_timer.function)
5031		del_timer_sync(&s->tx_timer);
5032
5033	if (is_offload(adap)) {
5034		struct sge_uld_txq_info *txq_info;
5035
5036		txq_info = adap->sge.uld_txq_info[CXGB4_TX_OFLD];
5037		if (txq_info) {
5038			struct sge_uld_txq *txq = txq_info->uldtxq;
5039
5040			for_each_ofldtxq(&adap->sge, i) {
5041				if (txq->q.desc)
5042					tasklet_kill(&txq->qresume_tsk);
5043			}
5044		}
5045	}
5046
5047	if (is_pci_uld(adap)) {
5048		struct sge_uld_txq_info *txq_info;
5049
5050		txq_info = adap->sge.uld_txq_info[CXGB4_TX_CRYPTO];
5051		if (txq_info) {
5052			struct sge_uld_txq *txq = txq_info->uldtxq;
5053
5054			for_each_ofldtxq(&adap->sge, i) {
5055				if (txq->q.desc)
5056					tasklet_kill(&txq->qresume_tsk);
5057			}
5058		}
5059	}
5060
5061	for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) {
5062		struct sge_ctrl_txq *cq = &s->ctrlq[i];
5063
5064		if (cq->q.desc)
5065			tasklet_kill(&cq->qresume_tsk);
5066	}
5067}
5068
5069/**
5070 *	t4_sge_init_soft - grab core SGE values needed by SGE code
5071 *	@adap: the adapter
5072 *
5073 *	We need to grab the SGE operating parameters that we need to have
5074 *	in order to do our job and make sure we can live with them.
5075 */
5076
5077static int t4_sge_init_soft(struct adapter *adap)
5078{
5079	struct sge *s = &adap->sge;
5080	u32 fl_small_pg, fl_large_pg, fl_small_mtu, fl_large_mtu;
5081	u32 timer_value_0_and_1, timer_value_2_and_3, timer_value_4_and_5;
5082	u32 ingress_rx_threshold;
5083
5084	/*
5085	 * Verify that CPL messages are going to the Ingress Queue for
5086	 * process_responses() and that only packet data is going to the
5087	 * Free Lists.
5088	 */
5089	if ((t4_read_reg(adap, SGE_CONTROL_A) & RXPKTCPLMODE_F) !=
5090	    RXPKTCPLMODE_V(RXPKTCPLMODE_SPLIT_X)) {
5091		dev_err(adap->pdev_dev, "bad SGE CPL MODE\n");
5092		return -EINVAL;
5093	}
5094
5095	/*
5096	 * Validate the Host Buffer Register Array indices that we want to
5097	 * use ...
5098	 *
5099	 * XXX Note that we should really read through the Host Buffer Size
5100	 * XXX register array and find the indices of the Buffer Sizes which
5101	 * XXX meet our needs!
5102	 */
5103	#define READ_FL_BUF(x) \
5104		t4_read_reg(adap, SGE_FL_BUFFER_SIZE0_A+(x)*sizeof(u32))
5105
5106	fl_small_pg = READ_FL_BUF(RX_SMALL_PG_BUF);
5107	fl_large_pg = READ_FL_BUF(RX_LARGE_PG_BUF);
5108	fl_small_mtu = READ_FL_BUF(RX_SMALL_MTU_BUF);
5109	fl_large_mtu = READ_FL_BUF(RX_LARGE_MTU_BUF);
5110
5111	/* We only bother using the Large Page logic if the Large Page Buffer
5112	 * is larger than our Page Size Buffer.
5113	 */
5114	if (fl_large_pg <= fl_small_pg)
5115		fl_large_pg = 0;
5116
5117	#undef READ_FL_BUF
5118
5119	/* The Page Size Buffer must be exactly equal to our Page Size and the
5120	 * Large Page Size Buffer should be 0 (per above) or a power of 2.
5121	 */
5122	if (fl_small_pg != PAGE_SIZE ||
5123	    (fl_large_pg & (fl_large_pg-1)) != 0) {
5124		dev_err(adap->pdev_dev, "bad SGE FL page buffer sizes [%d, %d]\n",
5125			fl_small_pg, fl_large_pg);
5126		return -EINVAL;
5127	}
5128	if (fl_large_pg)
5129		s->fl_pg_order = ilog2(fl_large_pg) - PAGE_SHIFT;
5130
5131	if (fl_small_mtu < FL_MTU_SMALL_BUFSIZE(adap) ||
5132	    fl_large_mtu < FL_MTU_LARGE_BUFSIZE(adap)) {
5133		dev_err(adap->pdev_dev, "bad SGE FL MTU sizes [%d, %d]\n",
5134			fl_small_mtu, fl_large_mtu);
5135		return -EINVAL;
5136	}
5137
5138	/*
5139	 * Retrieve our RX interrupt holdoff timer values and counter
5140	 * threshold values from the SGE parameters.
5141	 */
5142	timer_value_0_and_1 = t4_read_reg(adap, SGE_TIMER_VALUE_0_AND_1_A);
5143	timer_value_2_and_3 = t4_read_reg(adap, SGE_TIMER_VALUE_2_AND_3_A);
5144	timer_value_4_and_5 = t4_read_reg(adap, SGE_TIMER_VALUE_4_AND_5_A);
5145	s->timer_val[0] = core_ticks_to_us(adap,
5146		TIMERVALUE0_G(timer_value_0_and_1));
5147	s->timer_val[1] = core_ticks_to_us(adap,
5148		TIMERVALUE1_G(timer_value_0_and_1));
5149	s->timer_val[2] = core_ticks_to_us(adap,
5150		TIMERVALUE2_G(timer_value_2_and_3));
5151	s->timer_val[3] = core_ticks_to_us(adap,
5152		TIMERVALUE3_G(timer_value_2_and_3));
5153	s->timer_val[4] = core_ticks_to_us(adap,
5154		TIMERVALUE4_G(timer_value_4_and_5));
5155	s->timer_val[5] = core_ticks_to_us(adap,
5156		TIMERVALUE5_G(timer_value_4_and_5));
5157
5158	ingress_rx_threshold = t4_read_reg(adap, SGE_INGRESS_RX_THRESHOLD_A);
5159	s->counter_val[0] = THRESHOLD_0_G(ingress_rx_threshold);
5160	s->counter_val[1] = THRESHOLD_1_G(ingress_rx_threshold);
5161	s->counter_val[2] = THRESHOLD_2_G(ingress_rx_threshold);
5162	s->counter_val[3] = THRESHOLD_3_G(ingress_rx_threshold);
5163
5164	return 0;
5165}
5166
5167/**
5168 *     t4_sge_init - initialize SGE
5169 *     @adap: the adapter
5170 *
5171 *     Perform low-level SGE code initialization needed every time after a
5172 *     chip reset.
5173 */
5174int t4_sge_init(struct adapter *adap)
5175{
5176	struct sge *s = &adap->sge;
5177	u32 sge_control, sge_conm_ctrl;
5178	int ret, egress_threshold;
5179
5180	/*
5181	 * Ingress Padding Boundary and Egress Status Page Size are set up by
5182	 * t4_fixup_host_params().
5183	 */
5184	sge_control = t4_read_reg(adap, SGE_CONTROL_A);
5185	s->pktshift = PKTSHIFT_G(sge_control);
5186	s->stat_len = (sge_control & EGRSTATUSPAGESIZE_F) ? 128 : 64;
5187
5188	s->fl_align = t4_fl_pkt_align(adap);
5189	ret = t4_sge_init_soft(adap);
5190	if (ret < 0)
5191		return ret;
5192
5193	/*
5194	 * A FL with <= fl_starve_thres buffers is starving and a periodic
5195	 * timer will attempt to refill it.  This needs to be larger than the
5196	 * SGE's Egress Congestion Threshold.  If it isn't, then we can get
5197	 * stuck waiting for new packets while the SGE is waiting for us to
5198	 * give it more Free List entries.  (Note that the SGE's Egress
5199	 * Congestion Threshold is in units of 2 Free List pointers.) For T4,
5200	 * there was only a single field to control this.  For T5 there's the
5201	 * original field which now only applies to Unpacked Mode Free List
5202	 * buffers and a new field which only applies to Packed Mode Free List
5203	 * buffers.
5204	 */
5205	sge_conm_ctrl = t4_read_reg(adap, SGE_CONM_CTRL_A);
5206	switch (CHELSIO_CHIP_VERSION(adap->params.chip)) {
5207	case CHELSIO_T4:
5208		egress_threshold = EGRTHRESHOLD_G(sge_conm_ctrl);
5209		break;
5210	case CHELSIO_T5:
5211		egress_threshold = EGRTHRESHOLDPACKING_G(sge_conm_ctrl);
5212		break;
5213	case CHELSIO_T6:
5214		egress_threshold = T6_EGRTHRESHOLDPACKING_G(sge_conm_ctrl);
5215		break;
5216	default:
5217		dev_err(adap->pdev_dev, "Unsupported Chip version %d\n",
5218			CHELSIO_CHIP_VERSION(adap->params.chip));
5219		return -EINVAL;
5220	}
5221	s->fl_starve_thres = 2*egress_threshold + 1;
5222
5223	t4_idma_monitor_init(adap, &s->idma_monitor);
5224
5225	/* Set up timers used for recuring callbacks to process RX and TX
5226	 * administrative tasks.
5227	 */
5228	timer_setup(&s->rx_timer, sge_rx_timer_cb, 0);
5229	timer_setup(&s->tx_timer, sge_tx_timer_cb, 0);
5230
5231	spin_lock_init(&s->intrq_lock);
5232
5233	return 0;
5234}
5235