1// SPDX-License-Identifier: GPL-2.0-only
2/*****************************************************************************
3 *                                                                           *
4 * File: subr.c                                                              *
5 * $Revision: 1.27 $                                                         *
6 * $Date: 2005/06/22 01:08:36 $                                              *
7 * Description:                                                              *
8 *  Various subroutines (intr,pio,etc.) used by Chelsio 10G Ethernet driver. *
9 *  part of the Chelsio 10Gb Ethernet Driver.                                *
10 *                                                                           *
11 *                                                                           *
12 * http://www.chelsio.com                                                    *
13 *                                                                           *
14 * Copyright (c) 2003 - 2005 Chelsio Communications, Inc.                    *
15 * All rights reserved.                                                      *
16 *                                                                           *
17 * Maintainers: maintainers@chelsio.com                                      *
18 *                                                                           *
19 * Authors: Dimitrios Michailidis   <dm@chelsio.com>                         *
20 *          Tina Yang               <tainay@chelsio.com>                     *
21 *          Felix Marti             <felix@chelsio.com>                      *
22 *          Scott Bardone           <sbardone@chelsio.com>                   *
23 *          Kurt Ottaway            <kottaway@chelsio.com>                   *
24 *          Frank DiMambro          <frank@chelsio.com>                      *
25 *                                                                           *
26 * History:                                                                  *
27 *                                                                           *
28 ****************************************************************************/
29
30#include "common.h"
31#include "elmer0.h"
32#include "regs.h"
33#include "gmac.h"
34#include "cphy.h"
35#include "sge.h"
36#include "tp.h"
37#include "espi.h"
38
39/**
40 *	t1_wait_op_done - wait until an operation is completed
41 *	@adapter: the adapter performing the operation
42 *	@reg: the register to check for completion
43 *	@mask: a single-bit field within @reg that indicates completion
44 *	@polarity: the value of the field when the operation is completed
45 *	@attempts: number of check iterations
46 *      @delay: delay in usecs between iterations
47 *
48 *	Wait until an operation is completed by checking a bit in a register
49 *	up to @attempts times.  Returns %0 if the operation completes and %1
50 *	otherwise.
51 */
52static int t1_wait_op_done(adapter_t *adapter, int reg, u32 mask, int polarity,
53			   int attempts, int delay)
54{
55	while (1) {
56		u32 val = readl(adapter->regs + reg) & mask;
57
58		if (!!val == polarity)
59			return 0;
60		if (--attempts == 0)
61			return 1;
62		if (delay)
63			udelay(delay);
64	}
65}
66
67#define TPI_ATTEMPTS 50
68
69/*
70 * Write a register over the TPI interface (unlocked and locked versions).
71 */
72int __t1_tpi_write(adapter_t *adapter, u32 addr, u32 value)
73{
74	int tpi_busy;
75
76	writel(addr, adapter->regs + A_TPI_ADDR);
77	writel(value, adapter->regs + A_TPI_WR_DATA);
78	writel(F_TPIWR, adapter->regs + A_TPI_CSR);
79
80	tpi_busy = t1_wait_op_done(adapter, A_TPI_CSR, F_TPIRDY, 1,
81				   TPI_ATTEMPTS, 3);
82	if (tpi_busy)
83		pr_alert("%s: TPI write to 0x%x failed\n",
84			 adapter->name, addr);
85	return tpi_busy;
86}
87
88int t1_tpi_write(adapter_t *adapter, u32 addr, u32 value)
89{
90	int ret;
91
92	spin_lock(&adapter->tpi_lock);
93	ret = __t1_tpi_write(adapter, addr, value);
94	spin_unlock(&adapter->tpi_lock);
95	return ret;
96}
97
98/*
99 * Read a register over the TPI interface (unlocked and locked versions).
100 */
101int __t1_tpi_read(adapter_t *adapter, u32 addr, u32 *valp)
102{
103	int tpi_busy;
104
105	writel(addr, adapter->regs + A_TPI_ADDR);
106	writel(0, adapter->regs + A_TPI_CSR);
107
108	tpi_busy = t1_wait_op_done(adapter, A_TPI_CSR, F_TPIRDY, 1,
109				   TPI_ATTEMPTS, 3);
110	if (tpi_busy)
111		pr_alert("%s: TPI read from 0x%x failed\n",
112			 adapter->name, addr);
113	else
114		*valp = readl(adapter->regs + A_TPI_RD_DATA);
115	return tpi_busy;
116}
117
118int t1_tpi_read(adapter_t *adapter, u32 addr, u32 *valp)
119{
120	int ret;
121
122	spin_lock(&adapter->tpi_lock);
123	ret = __t1_tpi_read(adapter, addr, valp);
124	spin_unlock(&adapter->tpi_lock);
125	return ret;
126}
127
128/*
129 * Set a TPI parameter.
130 */
131static void t1_tpi_par(adapter_t *adapter, u32 value)
132{
133	writel(V_TPIPAR(value), adapter->regs + A_TPI_PAR);
134}
135
136/*
137 * Called when a port's link settings change to propagate the new values to the
138 * associated PHY and MAC.  After performing the common tasks it invokes an
139 * OS-specific handler.
140 */
141void t1_link_changed(adapter_t *adapter, int port_id)
142{
143	int link_ok, speed, duplex, fc;
144	struct cphy *phy = adapter->port[port_id].phy;
145	struct link_config *lc = &adapter->port[port_id].link_config;
146
147	phy->ops->get_link_status(phy, &link_ok, &speed, &duplex, &fc);
148
149	lc->speed = speed < 0 ? SPEED_INVALID : speed;
150	lc->duplex = duplex < 0 ? DUPLEX_INVALID : duplex;
151	if (!(lc->requested_fc & PAUSE_AUTONEG))
152		fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
153
154	if (link_ok && speed >= 0 && lc->autoneg == AUTONEG_ENABLE) {
155		/* Set MAC speed, duplex, and flow control to match PHY. */
156		struct cmac *mac = adapter->port[port_id].mac;
157
158		mac->ops->set_speed_duplex_fc(mac, speed, duplex, fc);
159		lc->fc = (unsigned char)fc;
160	}
161	t1_link_negotiated(adapter, port_id, link_ok, speed, duplex, fc);
162}
163
164static bool t1_pci_intr_handler(adapter_t *adapter)
165{
166	u32 pcix_cause;
167
168	pci_read_config_dword(adapter->pdev, A_PCICFG_INTR_CAUSE, &pcix_cause);
169
170	if (pcix_cause) {
171		pci_write_config_dword(adapter->pdev, A_PCICFG_INTR_CAUSE,
172				       pcix_cause);
173		/* PCI errors are fatal */
174		t1_interrupts_disable(adapter);
175		adapter->pending_thread_intr |= F_PL_INTR_SGE_ERR;
176		pr_alert("%s: PCI error encountered.\n", adapter->name);
177		return true;
178	}
179	return false;
180}
181
182#ifdef CONFIG_CHELSIO_T1_1G
183#include "fpga_defs.h"
184
185/*
186 * PHY interrupt handler for FPGA boards.
187 */
188static int fpga_phy_intr_handler(adapter_t *adapter)
189{
190	int p;
191	u32 cause = readl(adapter->regs + FPGA_GMAC_ADDR_INTERRUPT_CAUSE);
192
193	for_each_port(adapter, p)
194		if (cause & (1 << p)) {
195			struct cphy *phy = adapter->port[p].phy;
196			int phy_cause = phy->ops->interrupt_handler(phy);
197
198			if (phy_cause & cphy_cause_link_change)
199				t1_link_changed(adapter, p);
200		}
201	writel(cause, adapter->regs + FPGA_GMAC_ADDR_INTERRUPT_CAUSE);
202	return 0;
203}
204
205/*
206 * Slow path interrupt handler for FPGAs.
207 */
208static irqreturn_t fpga_slow_intr(adapter_t *adapter)
209{
210	u32 cause = readl(adapter->regs + A_PL_CAUSE);
211	irqreturn_t ret = IRQ_NONE;
212
213	cause &= ~F_PL_INTR_SGE_DATA;
214	if (cause & F_PL_INTR_SGE_ERR) {
215		if (t1_sge_intr_error_handler(adapter->sge))
216			ret = IRQ_WAKE_THREAD;
217	}
218
219	if (cause & FPGA_PCIX_INTERRUPT_GMAC)
220		fpga_phy_intr_handler(adapter);
221
222	if (cause & FPGA_PCIX_INTERRUPT_TP) {
223		/*
224		 * FPGA doesn't support MC4 interrupts and it requires
225		 * this odd layer of indirection for MC5.
226		 */
227		u32 tp_cause = readl(adapter->regs + FPGA_TP_ADDR_INTERRUPT_CAUSE);
228
229		/* Clear TP interrupt */
230		writel(tp_cause, adapter->regs + FPGA_TP_ADDR_INTERRUPT_CAUSE);
231	}
232	if (cause & FPGA_PCIX_INTERRUPT_PCIX) {
233		if (t1_pci_intr_handler(adapter))
234			ret = IRQ_WAKE_THREAD;
235	}
236
237	/* Clear the interrupts just processed. */
238	if (cause)
239		writel(cause, adapter->regs + A_PL_CAUSE);
240
241	if (ret != IRQ_NONE)
242		return ret;
243
244	return cause == 0 ? IRQ_NONE : IRQ_HANDLED;
245}
246#endif
247
248/*
249 * Wait until Elmer's MI1 interface is ready for new operations.
250 */
251static int mi1_wait_until_ready(adapter_t *adapter, int mi1_reg)
252{
253	int attempts = 100, busy;
254
255	do {
256		u32 val;
257
258		__t1_tpi_read(adapter, mi1_reg, &val);
259		busy = val & F_MI1_OP_BUSY;
260		if (busy)
261			udelay(10);
262	} while (busy && --attempts);
263	if (busy)
264		pr_alert("%s: MDIO operation timed out\n", adapter->name);
265	return busy;
266}
267
268/*
269 * MI1 MDIO initialization.
270 */
271static void mi1_mdio_init(adapter_t *adapter, const struct board_info *bi)
272{
273	u32 clkdiv = bi->clock_elmer0 / (2 * bi->mdio_mdc) - 1;
274	u32 val = F_MI1_PREAMBLE_ENABLE | V_MI1_MDI_INVERT(bi->mdio_mdiinv) |
275		V_MI1_MDI_ENABLE(bi->mdio_mdien) | V_MI1_CLK_DIV(clkdiv);
276
277	if (!(bi->caps & SUPPORTED_10000baseT_Full))
278		val |= V_MI1_SOF(1);
279	t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_CFG, val);
280}
281
282#if defined(CONFIG_CHELSIO_T1_1G)
283/*
284 * Elmer MI1 MDIO read/write operations.
285 */
286static int mi1_mdio_read(struct net_device *dev, int phy_addr, int mmd_addr,
287			 u16 reg_addr)
288{
289	struct adapter *adapter = dev->ml_priv;
290	u32 addr = V_MI1_REG_ADDR(reg_addr) | V_MI1_PHY_ADDR(phy_addr);
291	unsigned int val;
292
293	spin_lock(&adapter->tpi_lock);
294	__t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_ADDR, addr);
295	__t1_tpi_write(adapter,
296			A_ELMER0_PORT0_MI1_OP, MI1_OP_DIRECT_READ);
297	mi1_wait_until_ready(adapter, A_ELMER0_PORT0_MI1_OP);
298	__t1_tpi_read(adapter, A_ELMER0_PORT0_MI1_DATA, &val);
299	spin_unlock(&adapter->tpi_lock);
300	return val;
301}
302
303static int mi1_mdio_write(struct net_device *dev, int phy_addr, int mmd_addr,
304			  u16 reg_addr, u16 val)
305{
306	struct adapter *adapter = dev->ml_priv;
307	u32 addr = V_MI1_REG_ADDR(reg_addr) | V_MI1_PHY_ADDR(phy_addr);
308
309	spin_lock(&adapter->tpi_lock);
310	__t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_ADDR, addr);
311	__t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_DATA, val);
312	__t1_tpi_write(adapter,
313			A_ELMER0_PORT0_MI1_OP, MI1_OP_DIRECT_WRITE);
314	mi1_wait_until_ready(adapter, A_ELMER0_PORT0_MI1_OP);
315	spin_unlock(&adapter->tpi_lock);
316	return 0;
317}
318
319static const struct mdio_ops mi1_mdio_ops = {
320	.init = mi1_mdio_init,
321	.read = mi1_mdio_read,
322	.write = mi1_mdio_write,
323	.mode_support = MDIO_SUPPORTS_C22
324};
325
326#endif
327
328static int mi1_mdio_ext_read(struct net_device *dev, int phy_addr, int mmd_addr,
329			     u16 reg_addr)
330{
331	struct adapter *adapter = dev->ml_priv;
332	u32 addr = V_MI1_REG_ADDR(mmd_addr) | V_MI1_PHY_ADDR(phy_addr);
333	unsigned int val;
334
335	spin_lock(&adapter->tpi_lock);
336
337	/* Write the address we want. */
338	__t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_ADDR, addr);
339	__t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_DATA, reg_addr);
340	__t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_OP,
341		       MI1_OP_INDIRECT_ADDRESS);
342	mi1_wait_until_ready(adapter, A_ELMER0_PORT0_MI1_OP);
343
344	/* Write the operation we want. */
345	__t1_tpi_write(adapter,
346			A_ELMER0_PORT0_MI1_OP, MI1_OP_INDIRECT_READ);
347	mi1_wait_until_ready(adapter, A_ELMER0_PORT0_MI1_OP);
348
349	/* Read the data. */
350	__t1_tpi_read(adapter, A_ELMER0_PORT0_MI1_DATA, &val);
351	spin_unlock(&adapter->tpi_lock);
352	return val;
353}
354
355static int mi1_mdio_ext_write(struct net_device *dev, int phy_addr,
356			      int mmd_addr, u16 reg_addr, u16 val)
357{
358	struct adapter *adapter = dev->ml_priv;
359	u32 addr = V_MI1_REG_ADDR(mmd_addr) | V_MI1_PHY_ADDR(phy_addr);
360
361	spin_lock(&adapter->tpi_lock);
362
363	/* Write the address we want. */
364	__t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_ADDR, addr);
365	__t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_DATA, reg_addr);
366	__t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_OP,
367		       MI1_OP_INDIRECT_ADDRESS);
368	mi1_wait_until_ready(adapter, A_ELMER0_PORT0_MI1_OP);
369
370	/* Write the data. */
371	__t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_DATA, val);
372	__t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_OP, MI1_OP_INDIRECT_WRITE);
373	mi1_wait_until_ready(adapter, A_ELMER0_PORT0_MI1_OP);
374	spin_unlock(&adapter->tpi_lock);
375	return 0;
376}
377
378static const struct mdio_ops mi1_mdio_ext_ops = {
379	.init = mi1_mdio_init,
380	.read = mi1_mdio_ext_read,
381	.write = mi1_mdio_ext_write,
382	.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22
383};
384
385enum {
386	CH_BRD_T110_1CU,
387	CH_BRD_N110_1F,
388	CH_BRD_N210_1F,
389	CH_BRD_T210_1F,
390	CH_BRD_T210_1CU,
391	CH_BRD_N204_4CU,
392};
393
394static const struct board_info t1_board[] = {
395	{
396		.board		= CHBT_BOARD_CHT110,
397		.port_number	= 1,
398		.caps		= SUPPORTED_10000baseT_Full,
399		.chip_term	= CHBT_TERM_T1,
400		.chip_mac	= CHBT_MAC_PM3393,
401		.chip_phy	= CHBT_PHY_MY3126,
402		.clock_core	= 125000000,
403		.clock_mc3	= 150000000,
404		.clock_mc4	= 125000000,
405		.espi_nports	= 1,
406		.clock_elmer0	= 44,
407		.mdio_mdien	= 1,
408		.mdio_mdiinv	= 1,
409		.mdio_mdc	= 1,
410		.mdio_phybaseaddr = 1,
411		.gmac		= &t1_pm3393_ops,
412		.gphy		= &t1_my3126_ops,
413		.mdio_ops	= &mi1_mdio_ext_ops,
414		.desc		= "Chelsio T110 1x10GBase-CX4 TOE",
415	},
416
417	{
418		.board		= CHBT_BOARD_N110,
419		.port_number	= 1,
420		.caps		= SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE,
421		.chip_term	= CHBT_TERM_T1,
422		.chip_mac	= CHBT_MAC_PM3393,
423		.chip_phy	= CHBT_PHY_88X2010,
424		.clock_core	= 125000000,
425		.espi_nports	= 1,
426		.clock_elmer0	= 44,
427		.mdio_mdien	= 0,
428		.mdio_mdiinv	= 0,
429		.mdio_mdc	= 1,
430		.mdio_phybaseaddr = 0,
431		.gmac		= &t1_pm3393_ops,
432		.gphy		= &t1_mv88x201x_ops,
433		.mdio_ops	= &mi1_mdio_ext_ops,
434		.desc		= "Chelsio N110 1x10GBaseX NIC",
435	},
436
437	{
438		.board		= CHBT_BOARD_N210,
439		.port_number	= 1,
440		.caps		= SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE,
441		.chip_term	= CHBT_TERM_T2,
442		.chip_mac	= CHBT_MAC_PM3393,
443		.chip_phy	= CHBT_PHY_88X2010,
444		.clock_core	= 125000000,
445		.espi_nports	= 1,
446		.clock_elmer0	= 44,
447		.mdio_mdien	= 0,
448		.mdio_mdiinv	= 0,
449		.mdio_mdc	= 1,
450		.mdio_phybaseaddr = 0,
451		.gmac		= &t1_pm3393_ops,
452		.gphy		= &t1_mv88x201x_ops,
453		.mdio_ops	= &mi1_mdio_ext_ops,
454		.desc		= "Chelsio N210 1x10GBaseX NIC",
455	},
456
457	{
458		.board		= CHBT_BOARD_CHT210,
459		.port_number	= 1,
460		.caps		= SUPPORTED_10000baseT_Full,
461		.chip_term	= CHBT_TERM_T2,
462		.chip_mac	= CHBT_MAC_PM3393,
463		.chip_phy	= CHBT_PHY_88X2010,
464		.clock_core	= 125000000,
465		.clock_mc3	= 133000000,
466		.clock_mc4	= 125000000,
467		.espi_nports	= 1,
468		.clock_elmer0	= 44,
469		.mdio_mdien	= 0,
470		.mdio_mdiinv	= 0,
471		.mdio_mdc	= 1,
472		.mdio_phybaseaddr = 0,
473		.gmac		= &t1_pm3393_ops,
474		.gphy		= &t1_mv88x201x_ops,
475		.mdio_ops	= &mi1_mdio_ext_ops,
476		.desc		= "Chelsio T210 1x10GBaseX TOE",
477	},
478
479	{
480		.board		= CHBT_BOARD_CHT210,
481		.port_number	= 1,
482		.caps		= SUPPORTED_10000baseT_Full,
483		.chip_term	= CHBT_TERM_T2,
484		.chip_mac	= CHBT_MAC_PM3393,
485		.chip_phy	= CHBT_PHY_MY3126,
486		.clock_core	= 125000000,
487		.clock_mc3	= 133000000,
488		.clock_mc4	= 125000000,
489		.espi_nports	= 1,
490		.clock_elmer0	= 44,
491		.mdio_mdien	= 1,
492		.mdio_mdiinv	= 1,
493		.mdio_mdc	= 1,
494		.mdio_phybaseaddr = 1,
495		.gmac		= &t1_pm3393_ops,
496		.gphy		= &t1_my3126_ops,
497		.mdio_ops	= &mi1_mdio_ext_ops,
498		.desc		= "Chelsio T210 1x10GBase-CX4 TOE",
499	},
500
501#ifdef CONFIG_CHELSIO_T1_1G
502	{
503		.board		= CHBT_BOARD_CHN204,
504		.port_number	= 4,
505		.caps		= SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full
506				| SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full
507				| SUPPORTED_1000baseT_Full | SUPPORTED_Autoneg |
508				  SUPPORTED_PAUSE | SUPPORTED_TP,
509		.chip_term	= CHBT_TERM_T2,
510		.chip_mac	= CHBT_MAC_VSC7321,
511		.chip_phy	= CHBT_PHY_88E1111,
512		.clock_core	= 100000000,
513		.espi_nports	= 4,
514		.clock_elmer0	= 44,
515		.mdio_mdien	= 0,
516		.mdio_mdiinv	= 0,
517		.mdio_mdc	= 0,
518		.mdio_phybaseaddr = 4,
519		.gmac		= &t1_vsc7326_ops,
520		.gphy		= &t1_mv88e1xxx_ops,
521		.mdio_ops	= &mi1_mdio_ops,
522		.desc		= "Chelsio N204 4x100/1000BaseT NIC",
523	},
524#endif
525
526};
527
528const struct pci_device_id t1_pci_tbl[] = {
529	CH_DEVICE(8, 0, CH_BRD_T110_1CU),
530	CH_DEVICE(8, 1, CH_BRD_T110_1CU),
531	CH_DEVICE(7, 0, CH_BRD_N110_1F),
532	CH_DEVICE(10, 1, CH_BRD_N210_1F),
533	CH_DEVICE(11, 1, CH_BRD_T210_1F),
534	CH_DEVICE(14, 1, CH_BRD_T210_1CU),
535	CH_DEVICE(16, 1, CH_BRD_N204_4CU),
536	{ 0 }
537};
538
539MODULE_DEVICE_TABLE(pci, t1_pci_tbl);
540
541/*
542 * Return the board_info structure with a given index.  Out-of-range indices
543 * return NULL.
544 */
545const struct board_info *t1_get_board_info(unsigned int board_id)
546{
547	return board_id < ARRAY_SIZE(t1_board) ? &t1_board[board_id] : NULL;
548}
549
550struct chelsio_vpd_t {
551	u32 format_version;
552	u8 serial_number[16];
553	u8 mac_base_address[6];
554	u8 pad[2];           /* make multiple-of-4 size requirement explicit */
555};
556
557#define EEPROMSIZE        (8 * 1024)
558#define EEPROM_MAX_POLL   4
559
560/*
561 * Read SEEPROM. A zero is written to the flag register when the address is
562 * written to the Control register. The hardware device will set the flag to a
563 * one when 4B have been transferred to the Data register.
564 */
565int t1_seeprom_read(adapter_t *adapter, u32 addr, __le32 *data)
566{
567	int i = EEPROM_MAX_POLL;
568	u16 val;
569	u32 v;
570
571	if (addr >= EEPROMSIZE || (addr & 3))
572		return -EINVAL;
573
574	pci_write_config_word(adapter->pdev, A_PCICFG_VPD_ADDR, (u16)addr);
575	do {
576		udelay(50);
577		pci_read_config_word(adapter->pdev, A_PCICFG_VPD_ADDR, &val);
578	} while (!(val & F_VPD_OP_FLAG) && --i);
579
580	if (!(val & F_VPD_OP_FLAG)) {
581		pr_err("%s: reading EEPROM address 0x%x failed\n",
582		       adapter->name, addr);
583		return -EIO;
584	}
585	pci_read_config_dword(adapter->pdev, A_PCICFG_VPD_DATA, &v);
586	*data = cpu_to_le32(v);
587	return 0;
588}
589
590static int t1_eeprom_vpd_get(adapter_t *adapter, struct chelsio_vpd_t *vpd)
591{
592	int addr, ret = 0;
593
594	for (addr = 0; !ret && addr < sizeof(*vpd); addr += sizeof(u32))
595		ret = t1_seeprom_read(adapter, addr,
596				      (__le32 *)((u8 *)vpd + addr));
597
598	return ret;
599}
600
601/*
602 * Read a port's MAC address from the VPD ROM.
603 */
604static int vpd_macaddress_get(adapter_t *adapter, int index, u8 mac_addr[])
605{
606	struct chelsio_vpd_t vpd;
607
608	if (t1_eeprom_vpd_get(adapter, &vpd))
609		return 1;
610	memcpy(mac_addr, vpd.mac_base_address, 5);
611	mac_addr[5] = vpd.mac_base_address[5] + index;
612	return 0;
613}
614
615/*
616 * Set up the MAC/PHY according to the requested link settings.
617 *
618 * If the PHY can auto-negotiate first decide what to advertise, then
619 * enable/disable auto-negotiation as desired and reset.
620 *
621 * If the PHY does not auto-negotiate we just reset it.
622 *
623 * If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
624 * otherwise do it later based on the outcome of auto-negotiation.
625 */
626int t1_link_start(struct cphy *phy, struct cmac *mac, struct link_config *lc)
627{
628	unsigned int fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
629
630	if (lc->supported & SUPPORTED_Autoneg) {
631		lc->advertising &= ~(ADVERTISED_ASYM_PAUSE | ADVERTISED_PAUSE);
632		if (fc) {
633			if (fc == ((PAUSE_RX | PAUSE_TX) &
634				   (mac->adapter->params.nports < 2)))
635				lc->advertising |= ADVERTISED_PAUSE;
636			else {
637				lc->advertising |= ADVERTISED_ASYM_PAUSE;
638				if (fc == PAUSE_RX)
639					lc->advertising |= ADVERTISED_PAUSE;
640			}
641		}
642		phy->ops->advertise(phy, lc->advertising);
643
644		if (lc->autoneg == AUTONEG_DISABLE) {
645			lc->speed = lc->requested_speed;
646			lc->duplex = lc->requested_duplex;
647			lc->fc = (unsigned char)fc;
648			mac->ops->set_speed_duplex_fc(mac, lc->speed,
649						      lc->duplex, fc);
650			/* Also disables autoneg */
651			phy->state = PHY_AUTONEG_RDY;
652			phy->ops->set_speed_duplex(phy, lc->speed, lc->duplex);
653			phy->ops->reset(phy, 0);
654		} else {
655			phy->state = PHY_AUTONEG_EN;
656			phy->ops->autoneg_enable(phy); /* also resets PHY */
657		}
658	} else {
659		phy->state = PHY_AUTONEG_RDY;
660		mac->ops->set_speed_duplex_fc(mac, -1, -1, fc);
661		lc->fc = (unsigned char)fc;
662		phy->ops->reset(phy, 0);
663	}
664	return 0;
665}
666
667/*
668 * External interrupt handler for boards using elmer0.
669 */
670int t1_elmer0_ext_intr_handler(adapter_t *adapter)
671{
672	struct cphy *phy;
673	int phy_cause;
674	u32 cause;
675
676	t1_tpi_read(adapter, A_ELMER0_INT_CAUSE, &cause);
677
678	switch (board_info(adapter)->board) {
679#ifdef CONFIG_CHELSIO_T1_1G
680	case CHBT_BOARD_CHT204:
681	case CHBT_BOARD_CHT204E:
682	case CHBT_BOARD_CHN204:
683	case CHBT_BOARD_CHT204V: {
684		int i, port_bit;
685		for_each_port(adapter, i) {
686			port_bit = i + 1;
687			if (!(cause & (1 << port_bit)))
688				continue;
689
690			phy = adapter->port[i].phy;
691			phy_cause = phy->ops->interrupt_handler(phy);
692			if (phy_cause & cphy_cause_link_change)
693				t1_link_changed(adapter, i);
694		}
695		break;
696	}
697	case CHBT_BOARD_CHT101:
698		if (cause & ELMER0_GP_BIT1) { /* Marvell 88E1111 interrupt */
699			phy = adapter->port[0].phy;
700			phy_cause = phy->ops->interrupt_handler(phy);
701			if (phy_cause & cphy_cause_link_change)
702				t1_link_changed(adapter, 0);
703		}
704		break;
705	case CHBT_BOARD_7500: {
706		int p;
707		/*
708		 * Elmer0's interrupt cause isn't useful here because there is
709		 * only one bit that can be set for all 4 ports.  This means
710		 * we are forced to check every PHY's interrupt status
711		 * register to see who initiated the interrupt.
712		 */
713		for_each_port(adapter, p) {
714			phy = adapter->port[p].phy;
715			phy_cause = phy->ops->interrupt_handler(phy);
716			if (phy_cause & cphy_cause_link_change)
717			    t1_link_changed(adapter, p);
718		}
719		break;
720	}
721#endif
722	case CHBT_BOARD_CHT210:
723	case CHBT_BOARD_N210:
724	case CHBT_BOARD_N110:
725		if (cause & ELMER0_GP_BIT6) { /* Marvell 88x2010 interrupt */
726			phy = adapter->port[0].phy;
727			phy_cause = phy->ops->interrupt_handler(phy);
728			if (phy_cause & cphy_cause_link_change)
729				t1_link_changed(adapter, 0);
730		}
731		break;
732	case CHBT_BOARD_8000:
733	case CHBT_BOARD_CHT110:
734		if (netif_msg_intr(adapter))
735			dev_dbg(&adapter->pdev->dev,
736				"External interrupt cause 0x%x\n", cause);
737		if (cause & ELMER0_GP_BIT1) {        /* PMC3393 INTB */
738			struct cmac *mac = adapter->port[0].mac;
739
740			mac->ops->interrupt_handler(mac);
741		}
742		if (cause & ELMER0_GP_BIT5) {        /* XPAK MOD_DETECT */
743			u32 mod_detect;
744
745			t1_tpi_read(adapter,
746					A_ELMER0_GPI_STAT, &mod_detect);
747			if (netif_msg_link(adapter))
748				dev_info(&adapter->pdev->dev, "XPAK %s\n",
749					 mod_detect ? "removed" : "inserted");
750		}
751		break;
752	}
753	t1_tpi_write(adapter, A_ELMER0_INT_CAUSE, cause);
754	return 0;
755}
756
757/* Enables all interrupts. */
758void t1_interrupts_enable(adapter_t *adapter)
759{
760	unsigned int i;
761
762	adapter->slow_intr_mask = F_PL_INTR_SGE_ERR | F_PL_INTR_TP;
763
764	t1_sge_intr_enable(adapter->sge);
765	t1_tp_intr_enable(adapter->tp);
766	if (adapter->espi) {
767		adapter->slow_intr_mask |= F_PL_INTR_ESPI;
768		t1_espi_intr_enable(adapter->espi);
769	}
770
771	/* Enable MAC/PHY interrupts for each port. */
772	for_each_port(adapter, i) {
773		adapter->port[i].mac->ops->interrupt_enable(adapter->port[i].mac);
774		adapter->port[i].phy->ops->interrupt_enable(adapter->port[i].phy);
775	}
776
777	/* Enable PCIX & external chip interrupts on ASIC boards. */
778	if (t1_is_asic(adapter)) {
779		u32 pl_intr = readl(adapter->regs + A_PL_ENABLE);
780
781		/* PCI-X interrupts */
782		pci_write_config_dword(adapter->pdev, A_PCICFG_INTR_ENABLE,
783				       0xffffffff);
784
785		adapter->slow_intr_mask |= F_PL_INTR_EXT | F_PL_INTR_PCIX;
786		pl_intr |= F_PL_INTR_EXT | F_PL_INTR_PCIX;
787		writel(pl_intr, adapter->regs + A_PL_ENABLE);
788	}
789}
790
791/* Disables all interrupts. */
792void t1_interrupts_disable(adapter_t* adapter)
793{
794	unsigned int i;
795
796	t1_sge_intr_disable(adapter->sge);
797	t1_tp_intr_disable(adapter->tp);
798	if (adapter->espi)
799		t1_espi_intr_disable(adapter->espi);
800
801	/* Disable MAC/PHY interrupts for each port. */
802	for_each_port(adapter, i) {
803		adapter->port[i].mac->ops->interrupt_disable(adapter->port[i].mac);
804		adapter->port[i].phy->ops->interrupt_disable(adapter->port[i].phy);
805	}
806
807	/* Disable PCIX & external chip interrupts. */
808	if (t1_is_asic(adapter))
809		writel(0, adapter->regs + A_PL_ENABLE);
810
811	/* PCI-X interrupts */
812	pci_write_config_dword(adapter->pdev, A_PCICFG_INTR_ENABLE, 0);
813
814	adapter->slow_intr_mask = 0;
815}
816
817/* Clears all interrupts */
818void t1_interrupts_clear(adapter_t* adapter)
819{
820	unsigned int i;
821
822	t1_sge_intr_clear(adapter->sge);
823	t1_tp_intr_clear(adapter->tp);
824	if (adapter->espi)
825		t1_espi_intr_clear(adapter->espi);
826
827	/* Clear MAC/PHY interrupts for each port. */
828	for_each_port(adapter, i) {
829		adapter->port[i].mac->ops->interrupt_clear(adapter->port[i].mac);
830		adapter->port[i].phy->ops->interrupt_clear(adapter->port[i].phy);
831	}
832
833	/* Enable interrupts for external devices. */
834	if (t1_is_asic(adapter)) {
835		u32 pl_intr = readl(adapter->regs + A_PL_CAUSE);
836
837		writel(pl_intr | F_PL_INTR_EXT | F_PL_INTR_PCIX,
838		       adapter->regs + A_PL_CAUSE);
839	}
840
841	/* PCI-X interrupts */
842	pci_write_config_dword(adapter->pdev, A_PCICFG_INTR_CAUSE, 0xffffffff);
843}
844
845/*
846 * Slow path interrupt handler for ASICs.
847 */
848static irqreturn_t asic_slow_intr(adapter_t *adapter)
849{
850	u32 cause = readl(adapter->regs + A_PL_CAUSE);
851	irqreturn_t ret = IRQ_HANDLED;
852
853	cause &= adapter->slow_intr_mask;
854	if (!cause)
855		return IRQ_NONE;
856	if (cause & F_PL_INTR_SGE_ERR) {
857		if (t1_sge_intr_error_handler(adapter->sge))
858			ret = IRQ_WAKE_THREAD;
859	}
860	if (cause & F_PL_INTR_TP)
861		t1_tp_intr_handler(adapter->tp);
862	if (cause & F_PL_INTR_ESPI)
863		t1_espi_intr_handler(adapter->espi);
864	if (cause & F_PL_INTR_PCIX) {
865		if (t1_pci_intr_handler(adapter))
866			ret = IRQ_WAKE_THREAD;
867	}
868	if (cause & F_PL_INTR_EXT) {
869		/* Wake the threaded interrupt to handle external interrupts as
870		 * we require a process context. We disable EXT interrupts in
871		 * the interim and let the thread reenable them when it's done.
872		 */
873		adapter->pending_thread_intr |= F_PL_INTR_EXT;
874		adapter->slow_intr_mask &= ~F_PL_INTR_EXT;
875		writel(adapter->slow_intr_mask | F_PL_INTR_SGE_DATA,
876		       adapter->regs + A_PL_ENABLE);
877		ret = IRQ_WAKE_THREAD;
878	}
879
880	/* Clear the interrupts just processed. */
881	writel(cause, adapter->regs + A_PL_CAUSE);
882	readl(adapter->regs + A_PL_CAUSE); /* flush writes */
883	return ret;
884}
885
886irqreturn_t t1_slow_intr_handler(adapter_t *adapter)
887{
888#ifdef CONFIG_CHELSIO_T1_1G
889	if (!t1_is_asic(adapter))
890		return fpga_slow_intr(adapter);
891#endif
892	return asic_slow_intr(adapter);
893}
894
895/* Power sequencing is a work-around for Intel's XPAKs. */
896static void power_sequence_xpak(adapter_t* adapter)
897{
898	u32 mod_detect;
899	u32 gpo;
900
901	/* Check for XPAK */
902	t1_tpi_read(adapter, A_ELMER0_GPI_STAT, &mod_detect);
903	if (!(ELMER0_GP_BIT5 & mod_detect)) {
904		/* XPAK is present */
905		t1_tpi_read(adapter, A_ELMER0_GPO, &gpo);
906		gpo |= ELMER0_GP_BIT18;
907		t1_tpi_write(adapter, A_ELMER0_GPO, gpo);
908	}
909}
910
911int t1_get_board_rev(adapter_t *adapter, const struct board_info *bi,
912		     struct adapter_params *p)
913{
914	p->chip_version = bi->chip_term;
915	p->is_asic = (p->chip_version != CHBT_TERM_FPGA);
916	if (p->chip_version == CHBT_TERM_T1 ||
917	    p->chip_version == CHBT_TERM_T2 ||
918	    p->chip_version == CHBT_TERM_FPGA) {
919		u32 val = readl(adapter->regs + A_TP_PC_CONFIG);
920
921		val = G_TP_PC_REV(val);
922		if (val == 2)
923			p->chip_revision = TERM_T1B;
924		else if (val == 3)
925			p->chip_revision = TERM_T2;
926		else
927			return -1;
928	} else
929		return -1;
930	return 0;
931}
932
933/*
934 * Enable board components other than the Chelsio chip, such as external MAC
935 * and PHY.
936 */
937static int board_init(adapter_t *adapter, const struct board_info *bi)
938{
939	switch (bi->board) {
940	case CHBT_BOARD_8000:
941	case CHBT_BOARD_N110:
942	case CHBT_BOARD_N210:
943	case CHBT_BOARD_CHT210:
944		t1_tpi_par(adapter, 0xf);
945		t1_tpi_write(adapter, A_ELMER0_GPO, 0x800);
946		break;
947	case CHBT_BOARD_CHT110:
948		t1_tpi_par(adapter, 0xf);
949		t1_tpi_write(adapter, A_ELMER0_GPO, 0x1800);
950
951		/* TBD XXX Might not need.  This fixes a problem
952		 *         described in the Intel SR XPAK errata.
953		 */
954		power_sequence_xpak(adapter);
955		break;
956#ifdef CONFIG_CHELSIO_T1_1G
957	case CHBT_BOARD_CHT204E:
958		/* add config space write here */
959	case CHBT_BOARD_CHT204:
960	case CHBT_BOARD_CHT204V:
961	case CHBT_BOARD_CHN204:
962		t1_tpi_par(adapter, 0xf);
963		t1_tpi_write(adapter, A_ELMER0_GPO, 0x804);
964		break;
965	case CHBT_BOARD_CHT101:
966	case CHBT_BOARD_7500:
967		t1_tpi_par(adapter, 0xf);
968		t1_tpi_write(adapter, A_ELMER0_GPO, 0x1804);
969		break;
970#endif
971	}
972	return 0;
973}
974
975/*
976 * Initialize and configure the Terminator HW modules.  Note that external
977 * MAC and PHYs are initialized separately.
978 */
979int t1_init_hw_modules(adapter_t *adapter)
980{
981	int err = -EIO;
982	const struct board_info *bi = board_info(adapter);
983
984	if (!bi->clock_mc4) {
985		u32 val = readl(adapter->regs + A_MC4_CFG);
986
987		writel(val | F_READY | F_MC4_SLOW, adapter->regs + A_MC4_CFG);
988		writel(F_M_BUS_ENABLE | F_TCAM_RESET,
989		       adapter->regs + A_MC5_CONFIG);
990	}
991
992	if (adapter->espi && t1_espi_init(adapter->espi, bi->chip_mac,
993					  bi->espi_nports))
994		goto out_err;
995
996	if (t1_tp_reset(adapter->tp, &adapter->params.tp, bi->clock_core))
997		goto out_err;
998
999	err = t1_sge_configure(adapter->sge, &adapter->params.sge);
1000	if (err)
1001		goto out_err;
1002
1003	err = 0;
1004out_err:
1005	return err;
1006}
1007
1008/*
1009 * Determine a card's PCI mode.
1010 */
1011static void get_pci_mode(adapter_t *adapter, struct chelsio_pci_params *p)
1012{
1013	static const unsigned short speed_map[] = { 33, 66, 100, 133 };
1014	u32 pci_mode;
1015
1016	pci_read_config_dword(adapter->pdev, A_PCICFG_MODE, &pci_mode);
1017	p->speed = speed_map[G_PCI_MODE_CLK(pci_mode)];
1018	p->width = (pci_mode & F_PCI_MODE_64BIT) ? 64 : 32;
1019	p->is_pcix = (pci_mode & F_PCI_MODE_PCIX) != 0;
1020}
1021
1022/*
1023 * Release the structures holding the SW per-Terminator-HW-module state.
1024 */
1025void t1_free_sw_modules(adapter_t *adapter)
1026{
1027	unsigned int i;
1028
1029	for_each_port(adapter, i) {
1030		struct cmac *mac = adapter->port[i].mac;
1031		struct cphy *phy = adapter->port[i].phy;
1032
1033		if (mac)
1034			mac->ops->destroy(mac);
1035		if (phy)
1036			phy->ops->destroy(phy);
1037	}
1038
1039	if (adapter->sge)
1040		t1_sge_destroy(adapter->sge);
1041	if (adapter->tp)
1042		t1_tp_destroy(adapter->tp);
1043	if (adapter->espi)
1044		t1_espi_destroy(adapter->espi);
1045}
1046
1047static void init_link_config(struct link_config *lc,
1048			     const struct board_info *bi)
1049{
1050	lc->supported = bi->caps;
1051	lc->requested_speed = lc->speed = SPEED_INVALID;
1052	lc->requested_duplex = lc->duplex = DUPLEX_INVALID;
1053	lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
1054	if (lc->supported & SUPPORTED_Autoneg) {
1055		lc->advertising = lc->supported;
1056		lc->autoneg = AUTONEG_ENABLE;
1057		lc->requested_fc |= PAUSE_AUTONEG;
1058	} else {
1059		lc->advertising = 0;
1060		lc->autoneg = AUTONEG_DISABLE;
1061	}
1062}
1063
1064/*
1065 * Allocate and initialize the data structures that hold the SW state of
1066 * the Terminator HW modules.
1067 */
1068int t1_init_sw_modules(adapter_t *adapter, const struct board_info *bi)
1069{
1070	unsigned int i;
1071
1072	adapter->params.brd_info = bi;
1073	adapter->params.nports = bi->port_number;
1074	adapter->params.stats_update_period = bi->gmac->stats_update_period;
1075
1076	adapter->sge = t1_sge_create(adapter, &adapter->params.sge);
1077	if (!adapter->sge) {
1078		pr_err("%s: SGE initialization failed\n",
1079		       adapter->name);
1080		goto error;
1081	}
1082
1083	if (bi->espi_nports && !(adapter->espi = t1_espi_create(adapter))) {
1084		pr_err("%s: ESPI initialization failed\n",
1085		       adapter->name);
1086		goto error;
1087	}
1088
1089	adapter->tp = t1_tp_create(adapter, &adapter->params.tp);
1090	if (!adapter->tp) {
1091		pr_err("%s: TP initialization failed\n",
1092		       adapter->name);
1093		goto error;
1094	}
1095
1096	board_init(adapter, bi);
1097	bi->mdio_ops->init(adapter, bi);
1098	if (bi->gphy->reset)
1099		bi->gphy->reset(adapter);
1100	if (bi->gmac->reset)
1101		bi->gmac->reset(adapter);
1102
1103	for_each_port(adapter, i) {
1104		u8 hw_addr[6];
1105		struct cmac *mac;
1106		int phy_addr = bi->mdio_phybaseaddr + i;
1107
1108		adapter->port[i].phy = bi->gphy->create(adapter->port[i].dev,
1109							phy_addr, bi->mdio_ops);
1110		if (!adapter->port[i].phy) {
1111			pr_err("%s: PHY %d initialization failed\n",
1112			       adapter->name, i);
1113			goto error;
1114		}
1115
1116		adapter->port[i].mac = mac = bi->gmac->create(adapter, i);
1117		if (!mac) {
1118			pr_err("%s: MAC %d initialization failed\n",
1119			       adapter->name, i);
1120			goto error;
1121		}
1122
1123		/*
1124		 * Get the port's MAC addresses either from the EEPROM if one
1125		 * exists or the one hardcoded in the MAC.
1126		 */
1127		if (!t1_is_asic(adapter) || bi->chip_mac == CHBT_MAC_DUMMY)
1128			mac->ops->macaddress_get(mac, hw_addr);
1129		else if (vpd_macaddress_get(adapter, i, hw_addr)) {
1130			pr_err("%s: could not read MAC address from VPD ROM\n",
1131			       adapter->port[i].dev->name);
1132			goto error;
1133		}
1134		eth_hw_addr_set(adapter->port[i].dev, hw_addr);
1135		init_link_config(&adapter->port[i].link_config, bi);
1136	}
1137
1138	get_pci_mode(adapter, &adapter->params.pci);
1139	t1_interrupts_clear(adapter);
1140	return 0;
1141
1142error:
1143	t1_free_sw_modules(adapter);
1144	return -1;
1145}
1146