1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Broadcom GENET (Gigabit Ethernet) controller driver
4 *
5 * Copyright (c) 2014-2020 Broadcom
6 */
7
8#define pr_fmt(fmt)				"bcmgenet: " fmt
9
10#include <linux/acpi.h>
11#include <linux/kernel.h>
12#include <linux/module.h>
13#include <linux/sched.h>
14#include <linux/types.h>
15#include <linux/fcntl.h>
16#include <linux/interrupt.h>
17#include <linux/string.h>
18#include <linux/if_ether.h>
19#include <linux/init.h>
20#include <linux/errno.h>
21#include <linux/delay.h>
22#include <linux/platform_device.h>
23#include <linux/dma-mapping.h>
24#include <linux/pm.h>
25#include <linux/clk.h>
26#include <net/arp.h>
27
28#include <linux/mii.h>
29#include <linux/ethtool.h>
30#include <linux/netdevice.h>
31#include <linux/inetdevice.h>
32#include <linux/etherdevice.h>
33#include <linux/skbuff.h>
34#include <linux/in.h>
35#include <linux/ip.h>
36#include <linux/ipv6.h>
37#include <linux/phy.h>
38#include <linux/platform_data/bcmgenet.h>
39
40#include <asm/unaligned.h>
41
42#include "bcmgenet.h"
43
44/* Maximum number of hardware queues, downsized if needed */
45#define GENET_MAX_MQ_CNT	4
46
47/* Default highest priority queue for multi queue support */
48#define GENET_Q0_PRIORITY	0
49
50#define GENET_Q16_RX_BD_CNT	\
51	(TOTAL_DESC - priv->hw_params->rx_queues * priv->hw_params->rx_bds_per_q)
52#define GENET_Q16_TX_BD_CNT	\
53	(TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->tx_bds_per_q)
54
55#define RX_BUF_LENGTH		2048
56#define SKB_ALIGNMENT		32
57
58/* Tx/Rx DMA register offset, skip 256 descriptors */
59#define WORDS_PER_BD(p)		(p->hw_params->words_per_bd)
60#define DMA_DESC_SIZE		(WORDS_PER_BD(priv) * sizeof(u32))
61
62#define GENET_TDMA_REG_OFF	(priv->hw_params->tdma_offset + \
63				TOTAL_DESC * DMA_DESC_SIZE)
64
65#define GENET_RDMA_REG_OFF	(priv->hw_params->rdma_offset + \
66				TOTAL_DESC * DMA_DESC_SIZE)
67
68/* Forward declarations */
69static void bcmgenet_set_rx_mode(struct net_device *dev);
70
71static inline void bcmgenet_writel(u32 value, void __iomem *offset)
72{
73	/* MIPS chips strapped for BE will automagically configure the
74	 * peripheral registers for CPU-native byte order.
75	 */
76	if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
77		__raw_writel(value, offset);
78	else
79		writel_relaxed(value, offset);
80}
81
82static inline u32 bcmgenet_readl(void __iomem *offset)
83{
84	if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
85		return __raw_readl(offset);
86	else
87		return readl_relaxed(offset);
88}
89
90static inline void dmadesc_set_length_status(struct bcmgenet_priv *priv,
91					     void __iomem *d, u32 value)
92{
93	bcmgenet_writel(value, d + DMA_DESC_LENGTH_STATUS);
94}
95
96static inline void dmadesc_set_addr(struct bcmgenet_priv *priv,
97				    void __iomem *d,
98				    dma_addr_t addr)
99{
100	bcmgenet_writel(lower_32_bits(addr), d + DMA_DESC_ADDRESS_LO);
101
102	/* Register writes to GISB bus can take couple hundred nanoseconds
103	 * and are done for each packet, save these expensive writes unless
104	 * the platform is explicitly configured for 64-bits/LPAE.
105	 */
106#ifdef CONFIG_PHYS_ADDR_T_64BIT
107	if (priv->hw_params->flags & GENET_HAS_40BITS)
108		bcmgenet_writel(upper_32_bits(addr), d + DMA_DESC_ADDRESS_HI);
109#endif
110}
111
112/* Combined address + length/status setter */
113static inline void dmadesc_set(struct bcmgenet_priv *priv,
114			       void __iomem *d, dma_addr_t addr, u32 val)
115{
116	dmadesc_set_addr(priv, d, addr);
117	dmadesc_set_length_status(priv, d, val);
118}
119
120#define GENET_VER_FMT	"%1d.%1d EPHY: 0x%04x"
121
122#define GENET_MSG_DEFAULT	(NETIF_MSG_DRV | NETIF_MSG_PROBE | \
123				NETIF_MSG_LINK)
124
125static inline u32 bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv *priv)
126{
127	if (GENET_IS_V1(priv))
128		return bcmgenet_rbuf_readl(priv, RBUF_FLUSH_CTRL_V1);
129	else
130		return bcmgenet_sys_readl(priv, SYS_RBUF_FLUSH_CTRL);
131}
132
133static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
134{
135	if (GENET_IS_V1(priv))
136		bcmgenet_rbuf_writel(priv, val, RBUF_FLUSH_CTRL_V1);
137	else
138		bcmgenet_sys_writel(priv, val, SYS_RBUF_FLUSH_CTRL);
139}
140
141/* These macros are defined to deal with register map change
142 * between GENET1.1 and GENET2. Only those currently being used
143 * by driver are defined.
144 */
145static inline u32 bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv *priv)
146{
147	if (GENET_IS_V1(priv))
148		return bcmgenet_rbuf_readl(priv, TBUF_CTRL_V1);
149	else
150		return bcmgenet_readl(priv->base +
151				      priv->hw_params->tbuf_offset + TBUF_CTRL);
152}
153
154static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
155{
156	if (GENET_IS_V1(priv))
157		bcmgenet_rbuf_writel(priv, val, TBUF_CTRL_V1);
158	else
159		bcmgenet_writel(val, priv->base +
160				priv->hw_params->tbuf_offset + TBUF_CTRL);
161}
162
163static inline u32 bcmgenet_bp_mc_get(struct bcmgenet_priv *priv)
164{
165	if (GENET_IS_V1(priv))
166		return bcmgenet_rbuf_readl(priv, TBUF_BP_MC_V1);
167	else
168		return bcmgenet_readl(priv->base +
169				      priv->hw_params->tbuf_offset + TBUF_BP_MC);
170}
171
172static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv *priv, u32 val)
173{
174	if (GENET_IS_V1(priv))
175		bcmgenet_rbuf_writel(priv, val, TBUF_BP_MC_V1);
176	else
177		bcmgenet_writel(val, priv->base +
178				priv->hw_params->tbuf_offset + TBUF_BP_MC);
179}
180
181/* RX/TX DMA register accessors */
182enum dma_reg {
183	DMA_RING_CFG = 0,
184	DMA_CTRL,
185	DMA_STATUS,
186	DMA_SCB_BURST_SIZE,
187	DMA_ARB_CTRL,
188	DMA_PRIORITY_0,
189	DMA_PRIORITY_1,
190	DMA_PRIORITY_2,
191	DMA_INDEX2RING_0,
192	DMA_INDEX2RING_1,
193	DMA_INDEX2RING_2,
194	DMA_INDEX2RING_3,
195	DMA_INDEX2RING_4,
196	DMA_INDEX2RING_5,
197	DMA_INDEX2RING_6,
198	DMA_INDEX2RING_7,
199	DMA_RING0_TIMEOUT,
200	DMA_RING1_TIMEOUT,
201	DMA_RING2_TIMEOUT,
202	DMA_RING3_TIMEOUT,
203	DMA_RING4_TIMEOUT,
204	DMA_RING5_TIMEOUT,
205	DMA_RING6_TIMEOUT,
206	DMA_RING7_TIMEOUT,
207	DMA_RING8_TIMEOUT,
208	DMA_RING9_TIMEOUT,
209	DMA_RING10_TIMEOUT,
210	DMA_RING11_TIMEOUT,
211	DMA_RING12_TIMEOUT,
212	DMA_RING13_TIMEOUT,
213	DMA_RING14_TIMEOUT,
214	DMA_RING15_TIMEOUT,
215	DMA_RING16_TIMEOUT,
216};
217
218static const u8 bcmgenet_dma_regs_v3plus[] = {
219	[DMA_RING_CFG]		= 0x00,
220	[DMA_CTRL]		= 0x04,
221	[DMA_STATUS]		= 0x08,
222	[DMA_SCB_BURST_SIZE]	= 0x0C,
223	[DMA_ARB_CTRL]		= 0x2C,
224	[DMA_PRIORITY_0]	= 0x30,
225	[DMA_PRIORITY_1]	= 0x34,
226	[DMA_PRIORITY_2]	= 0x38,
227	[DMA_RING0_TIMEOUT]	= 0x2C,
228	[DMA_RING1_TIMEOUT]	= 0x30,
229	[DMA_RING2_TIMEOUT]	= 0x34,
230	[DMA_RING3_TIMEOUT]	= 0x38,
231	[DMA_RING4_TIMEOUT]	= 0x3c,
232	[DMA_RING5_TIMEOUT]	= 0x40,
233	[DMA_RING6_TIMEOUT]	= 0x44,
234	[DMA_RING7_TIMEOUT]	= 0x48,
235	[DMA_RING8_TIMEOUT]	= 0x4c,
236	[DMA_RING9_TIMEOUT]	= 0x50,
237	[DMA_RING10_TIMEOUT]	= 0x54,
238	[DMA_RING11_TIMEOUT]	= 0x58,
239	[DMA_RING12_TIMEOUT]	= 0x5c,
240	[DMA_RING13_TIMEOUT]	= 0x60,
241	[DMA_RING14_TIMEOUT]	= 0x64,
242	[DMA_RING15_TIMEOUT]	= 0x68,
243	[DMA_RING16_TIMEOUT]	= 0x6C,
244	[DMA_INDEX2RING_0]	= 0x70,
245	[DMA_INDEX2RING_1]	= 0x74,
246	[DMA_INDEX2RING_2]	= 0x78,
247	[DMA_INDEX2RING_3]	= 0x7C,
248	[DMA_INDEX2RING_4]	= 0x80,
249	[DMA_INDEX2RING_5]	= 0x84,
250	[DMA_INDEX2RING_6]	= 0x88,
251	[DMA_INDEX2RING_7]	= 0x8C,
252};
253
254static const u8 bcmgenet_dma_regs_v2[] = {
255	[DMA_RING_CFG]		= 0x00,
256	[DMA_CTRL]		= 0x04,
257	[DMA_STATUS]		= 0x08,
258	[DMA_SCB_BURST_SIZE]	= 0x0C,
259	[DMA_ARB_CTRL]		= 0x30,
260	[DMA_PRIORITY_0]	= 0x34,
261	[DMA_PRIORITY_1]	= 0x38,
262	[DMA_PRIORITY_2]	= 0x3C,
263	[DMA_RING0_TIMEOUT]	= 0x2C,
264	[DMA_RING1_TIMEOUT]	= 0x30,
265	[DMA_RING2_TIMEOUT]	= 0x34,
266	[DMA_RING3_TIMEOUT]	= 0x38,
267	[DMA_RING4_TIMEOUT]	= 0x3c,
268	[DMA_RING5_TIMEOUT]	= 0x40,
269	[DMA_RING6_TIMEOUT]	= 0x44,
270	[DMA_RING7_TIMEOUT]	= 0x48,
271	[DMA_RING8_TIMEOUT]	= 0x4c,
272	[DMA_RING9_TIMEOUT]	= 0x50,
273	[DMA_RING10_TIMEOUT]	= 0x54,
274	[DMA_RING11_TIMEOUT]	= 0x58,
275	[DMA_RING12_TIMEOUT]	= 0x5c,
276	[DMA_RING13_TIMEOUT]	= 0x60,
277	[DMA_RING14_TIMEOUT]	= 0x64,
278	[DMA_RING15_TIMEOUT]	= 0x68,
279	[DMA_RING16_TIMEOUT]	= 0x6C,
280};
281
282static const u8 bcmgenet_dma_regs_v1[] = {
283	[DMA_CTRL]		= 0x00,
284	[DMA_STATUS]		= 0x04,
285	[DMA_SCB_BURST_SIZE]	= 0x0C,
286	[DMA_ARB_CTRL]		= 0x30,
287	[DMA_PRIORITY_0]	= 0x34,
288	[DMA_PRIORITY_1]	= 0x38,
289	[DMA_PRIORITY_2]	= 0x3C,
290	[DMA_RING0_TIMEOUT]	= 0x2C,
291	[DMA_RING1_TIMEOUT]	= 0x30,
292	[DMA_RING2_TIMEOUT]	= 0x34,
293	[DMA_RING3_TIMEOUT]	= 0x38,
294	[DMA_RING4_TIMEOUT]	= 0x3c,
295	[DMA_RING5_TIMEOUT]	= 0x40,
296	[DMA_RING6_TIMEOUT]	= 0x44,
297	[DMA_RING7_TIMEOUT]	= 0x48,
298	[DMA_RING8_TIMEOUT]	= 0x4c,
299	[DMA_RING9_TIMEOUT]	= 0x50,
300	[DMA_RING10_TIMEOUT]	= 0x54,
301	[DMA_RING11_TIMEOUT]	= 0x58,
302	[DMA_RING12_TIMEOUT]	= 0x5c,
303	[DMA_RING13_TIMEOUT]	= 0x60,
304	[DMA_RING14_TIMEOUT]	= 0x64,
305	[DMA_RING15_TIMEOUT]	= 0x68,
306	[DMA_RING16_TIMEOUT]	= 0x6C,
307};
308
309/* Set at runtime once bcmgenet version is known */
310static const u8 *bcmgenet_dma_regs;
311
312static inline struct bcmgenet_priv *dev_to_priv(struct device *dev)
313{
314	return netdev_priv(dev_get_drvdata(dev));
315}
316
317static inline u32 bcmgenet_tdma_readl(struct bcmgenet_priv *priv,
318				      enum dma_reg r)
319{
320	return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF +
321			      DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
322}
323
324static inline void bcmgenet_tdma_writel(struct bcmgenet_priv *priv,
325					u32 val, enum dma_reg r)
326{
327	bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF +
328			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
329}
330
331static inline u32 bcmgenet_rdma_readl(struct bcmgenet_priv *priv,
332				      enum dma_reg r)
333{
334	return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF +
335			      DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
336}
337
338static inline void bcmgenet_rdma_writel(struct bcmgenet_priv *priv,
339					u32 val, enum dma_reg r)
340{
341	bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF +
342			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
343}
344
345/* RDMA/TDMA ring registers and accessors
346 * we merge the common fields and just prefix with T/D the registers
347 * having different meaning depending on the direction
348 */
349enum dma_ring_reg {
350	TDMA_READ_PTR = 0,
351	RDMA_WRITE_PTR = TDMA_READ_PTR,
352	TDMA_READ_PTR_HI,
353	RDMA_WRITE_PTR_HI = TDMA_READ_PTR_HI,
354	TDMA_CONS_INDEX,
355	RDMA_PROD_INDEX = TDMA_CONS_INDEX,
356	TDMA_PROD_INDEX,
357	RDMA_CONS_INDEX = TDMA_PROD_INDEX,
358	DMA_RING_BUF_SIZE,
359	DMA_START_ADDR,
360	DMA_START_ADDR_HI,
361	DMA_END_ADDR,
362	DMA_END_ADDR_HI,
363	DMA_MBUF_DONE_THRESH,
364	TDMA_FLOW_PERIOD,
365	RDMA_XON_XOFF_THRESH = TDMA_FLOW_PERIOD,
366	TDMA_WRITE_PTR,
367	RDMA_READ_PTR = TDMA_WRITE_PTR,
368	TDMA_WRITE_PTR_HI,
369	RDMA_READ_PTR_HI = TDMA_WRITE_PTR_HI
370};
371
372/* GENET v4 supports 40-bits pointer addressing
373 * for obvious reasons the LO and HI word parts
374 * are contiguous, but this offsets the other
375 * registers.
376 */
377static const u8 genet_dma_ring_regs_v4[] = {
378	[TDMA_READ_PTR]			= 0x00,
379	[TDMA_READ_PTR_HI]		= 0x04,
380	[TDMA_CONS_INDEX]		= 0x08,
381	[TDMA_PROD_INDEX]		= 0x0C,
382	[DMA_RING_BUF_SIZE]		= 0x10,
383	[DMA_START_ADDR]		= 0x14,
384	[DMA_START_ADDR_HI]		= 0x18,
385	[DMA_END_ADDR]			= 0x1C,
386	[DMA_END_ADDR_HI]		= 0x20,
387	[DMA_MBUF_DONE_THRESH]		= 0x24,
388	[TDMA_FLOW_PERIOD]		= 0x28,
389	[TDMA_WRITE_PTR]		= 0x2C,
390	[TDMA_WRITE_PTR_HI]		= 0x30,
391};
392
393static const u8 genet_dma_ring_regs_v123[] = {
394	[TDMA_READ_PTR]			= 0x00,
395	[TDMA_CONS_INDEX]		= 0x04,
396	[TDMA_PROD_INDEX]		= 0x08,
397	[DMA_RING_BUF_SIZE]		= 0x0C,
398	[DMA_START_ADDR]		= 0x10,
399	[DMA_END_ADDR]			= 0x14,
400	[DMA_MBUF_DONE_THRESH]		= 0x18,
401	[TDMA_FLOW_PERIOD]		= 0x1C,
402	[TDMA_WRITE_PTR]		= 0x20,
403};
404
405/* Set at runtime once GENET version is known */
406static const u8 *genet_dma_ring_regs;
407
408static inline u32 bcmgenet_tdma_ring_readl(struct bcmgenet_priv *priv,
409					   unsigned int ring,
410					   enum dma_ring_reg r)
411{
412	return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF +
413			      (DMA_RING_SIZE * ring) +
414			      genet_dma_ring_regs[r]);
415}
416
417static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv *priv,
418					     unsigned int ring, u32 val,
419					     enum dma_ring_reg r)
420{
421	bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF +
422			(DMA_RING_SIZE * ring) +
423			genet_dma_ring_regs[r]);
424}
425
426static inline u32 bcmgenet_rdma_ring_readl(struct bcmgenet_priv *priv,
427					   unsigned int ring,
428					   enum dma_ring_reg r)
429{
430	return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF +
431			      (DMA_RING_SIZE * ring) +
432			      genet_dma_ring_regs[r]);
433}
434
435static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv *priv,
436					     unsigned int ring, u32 val,
437					     enum dma_ring_reg r)
438{
439	bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF +
440			(DMA_RING_SIZE * ring) +
441			genet_dma_ring_regs[r]);
442}
443
444static void bcmgenet_hfb_enable_filter(struct bcmgenet_priv *priv, u32 f_index)
445{
446	u32 offset;
447	u32 reg;
448
449	offset = HFB_FLT_ENABLE_V3PLUS + (f_index < 32) * sizeof(u32);
450	reg = bcmgenet_hfb_reg_readl(priv, offset);
451	reg |= (1 << (f_index % 32));
452	bcmgenet_hfb_reg_writel(priv, reg, offset);
453	reg = bcmgenet_hfb_reg_readl(priv, HFB_CTRL);
454	reg |= RBUF_HFB_EN;
455	bcmgenet_hfb_reg_writel(priv, reg, HFB_CTRL);
456}
457
458static void bcmgenet_hfb_disable_filter(struct bcmgenet_priv *priv, u32 f_index)
459{
460	u32 offset, reg, reg1;
461
462	offset = HFB_FLT_ENABLE_V3PLUS;
463	reg = bcmgenet_hfb_reg_readl(priv, offset);
464	reg1 = bcmgenet_hfb_reg_readl(priv, offset + sizeof(u32));
465	if  (f_index < 32) {
466		reg1 &= ~(1 << (f_index % 32));
467		bcmgenet_hfb_reg_writel(priv, reg1, offset + sizeof(u32));
468	} else {
469		reg &= ~(1 << (f_index % 32));
470		bcmgenet_hfb_reg_writel(priv, reg, offset);
471	}
472	if (!reg && !reg1) {
473		reg = bcmgenet_hfb_reg_readl(priv, HFB_CTRL);
474		reg &= ~RBUF_HFB_EN;
475		bcmgenet_hfb_reg_writel(priv, reg, HFB_CTRL);
476	}
477}
478
479static void bcmgenet_hfb_set_filter_rx_queue_mapping(struct bcmgenet_priv *priv,
480						     u32 f_index, u32 rx_queue)
481{
482	u32 offset;
483	u32 reg;
484
485	offset = f_index / 8;
486	reg = bcmgenet_rdma_readl(priv, DMA_INDEX2RING_0 + offset);
487	reg &= ~(0xF << (4 * (f_index % 8)));
488	reg |= ((rx_queue & 0xF) << (4 * (f_index % 8)));
489	bcmgenet_rdma_writel(priv, reg, DMA_INDEX2RING_0 + offset);
490}
491
492static void bcmgenet_hfb_set_filter_length(struct bcmgenet_priv *priv,
493					   u32 f_index, u32 f_length)
494{
495	u32 offset;
496	u32 reg;
497
498	offset = HFB_FLT_LEN_V3PLUS +
499		 ((priv->hw_params->hfb_filter_cnt - 1 - f_index) / 4) *
500		 sizeof(u32);
501	reg = bcmgenet_hfb_reg_readl(priv, offset);
502	reg &= ~(0xFF << (8 * (f_index % 4)));
503	reg |= ((f_length & 0xFF) << (8 * (f_index % 4)));
504	bcmgenet_hfb_reg_writel(priv, reg, offset);
505}
506
507static int bcmgenet_hfb_validate_mask(void *mask, size_t size)
508{
509	while (size) {
510		switch (*(unsigned char *)mask++) {
511		case 0x00:
512		case 0x0f:
513		case 0xf0:
514		case 0xff:
515			size--;
516			continue;
517		default:
518			return -EINVAL;
519		}
520	}
521
522	return 0;
523}
524
525#define VALIDATE_MASK(x) \
526	bcmgenet_hfb_validate_mask(&(x), sizeof(x))
527
528static int bcmgenet_hfb_insert_data(struct bcmgenet_priv *priv, u32 f_index,
529				    u32 offset, void *val, void *mask,
530				    size_t size)
531{
532	u32 index, tmp;
533
534	index = f_index * priv->hw_params->hfb_filter_size + offset / 2;
535	tmp = bcmgenet_hfb_readl(priv, index * sizeof(u32));
536
537	while (size--) {
538		if (offset++ & 1) {
539			tmp &= ~0x300FF;
540			tmp |= (*(unsigned char *)val++);
541			switch ((*(unsigned char *)mask++)) {
542			case 0xFF:
543				tmp |= 0x30000;
544				break;
545			case 0xF0:
546				tmp |= 0x20000;
547				break;
548			case 0x0F:
549				tmp |= 0x10000;
550				break;
551			}
552			bcmgenet_hfb_writel(priv, tmp, index++ * sizeof(u32));
553			if (size)
554				tmp = bcmgenet_hfb_readl(priv,
555							 index * sizeof(u32));
556		} else {
557			tmp &= ~0xCFF00;
558			tmp |= (*(unsigned char *)val++) << 8;
559			switch ((*(unsigned char *)mask++)) {
560			case 0xFF:
561				tmp |= 0xC0000;
562				break;
563			case 0xF0:
564				tmp |= 0x80000;
565				break;
566			case 0x0F:
567				tmp |= 0x40000;
568				break;
569			}
570			if (!size)
571				bcmgenet_hfb_writel(priv, tmp, index * sizeof(u32));
572		}
573	}
574
575	return 0;
576}
577
578static void bcmgenet_hfb_create_rxnfc_filter(struct bcmgenet_priv *priv,
579					     struct bcmgenet_rxnfc_rule *rule)
580{
581	struct ethtool_rx_flow_spec *fs = &rule->fs;
582	u32 offset = 0, f_length = 0, f;
583	u8 val_8, mask_8;
584	__be16 val_16;
585	u16 mask_16;
586	size_t size;
587
588	f = fs->location;
589	if (fs->flow_type & FLOW_MAC_EXT) {
590		bcmgenet_hfb_insert_data(priv, f, 0,
591					 &fs->h_ext.h_dest, &fs->m_ext.h_dest,
592					 sizeof(fs->h_ext.h_dest));
593	}
594
595	if (fs->flow_type & FLOW_EXT) {
596		if (fs->m_ext.vlan_etype ||
597		    fs->m_ext.vlan_tci) {
598			bcmgenet_hfb_insert_data(priv, f, 12,
599						 &fs->h_ext.vlan_etype,
600						 &fs->m_ext.vlan_etype,
601						 sizeof(fs->h_ext.vlan_etype));
602			bcmgenet_hfb_insert_data(priv, f, 14,
603						 &fs->h_ext.vlan_tci,
604						 &fs->m_ext.vlan_tci,
605						 sizeof(fs->h_ext.vlan_tci));
606			offset += VLAN_HLEN;
607			f_length += DIV_ROUND_UP(VLAN_HLEN, 2);
608		}
609	}
610
611	switch (fs->flow_type & ~(FLOW_EXT | FLOW_MAC_EXT)) {
612	case ETHER_FLOW:
613		f_length += DIV_ROUND_UP(ETH_HLEN, 2);
614		bcmgenet_hfb_insert_data(priv, f, 0,
615					 &fs->h_u.ether_spec.h_dest,
616					 &fs->m_u.ether_spec.h_dest,
617					 sizeof(fs->h_u.ether_spec.h_dest));
618		bcmgenet_hfb_insert_data(priv, f, ETH_ALEN,
619					 &fs->h_u.ether_spec.h_source,
620					 &fs->m_u.ether_spec.h_source,
621					 sizeof(fs->h_u.ether_spec.h_source));
622		bcmgenet_hfb_insert_data(priv, f, (2 * ETH_ALEN) + offset,
623					 &fs->h_u.ether_spec.h_proto,
624					 &fs->m_u.ether_spec.h_proto,
625					 sizeof(fs->h_u.ether_spec.h_proto));
626		break;
627	case IP_USER_FLOW:
628		f_length += DIV_ROUND_UP(ETH_HLEN + 20, 2);
629		/* Specify IP Ether Type */
630		val_16 = htons(ETH_P_IP);
631		mask_16 = 0xFFFF;
632		bcmgenet_hfb_insert_data(priv, f, (2 * ETH_ALEN) + offset,
633					 &val_16, &mask_16, sizeof(val_16));
634		bcmgenet_hfb_insert_data(priv, f, 15 + offset,
635					 &fs->h_u.usr_ip4_spec.tos,
636					 &fs->m_u.usr_ip4_spec.tos,
637					 sizeof(fs->h_u.usr_ip4_spec.tos));
638		bcmgenet_hfb_insert_data(priv, f, 23 + offset,
639					 &fs->h_u.usr_ip4_spec.proto,
640					 &fs->m_u.usr_ip4_spec.proto,
641					 sizeof(fs->h_u.usr_ip4_spec.proto));
642		bcmgenet_hfb_insert_data(priv, f, 26 + offset,
643					 &fs->h_u.usr_ip4_spec.ip4src,
644					 &fs->m_u.usr_ip4_spec.ip4src,
645					 sizeof(fs->h_u.usr_ip4_spec.ip4src));
646		bcmgenet_hfb_insert_data(priv, f, 30 + offset,
647					 &fs->h_u.usr_ip4_spec.ip4dst,
648					 &fs->m_u.usr_ip4_spec.ip4dst,
649					 sizeof(fs->h_u.usr_ip4_spec.ip4dst));
650		if (!fs->m_u.usr_ip4_spec.l4_4_bytes)
651			break;
652
653		/* Only supports 20 byte IPv4 header */
654		val_8 = 0x45;
655		mask_8 = 0xFF;
656		bcmgenet_hfb_insert_data(priv, f, ETH_HLEN + offset,
657					 &val_8, &mask_8,
658					 sizeof(val_8));
659		size = sizeof(fs->h_u.usr_ip4_spec.l4_4_bytes);
660		bcmgenet_hfb_insert_data(priv, f,
661					 ETH_HLEN + 20 + offset,
662					 &fs->h_u.usr_ip4_spec.l4_4_bytes,
663					 &fs->m_u.usr_ip4_spec.l4_4_bytes,
664					 size);
665		f_length += DIV_ROUND_UP(size, 2);
666		break;
667	}
668
669	bcmgenet_hfb_set_filter_length(priv, f, 2 * f_length);
670	if (!fs->ring_cookie || fs->ring_cookie == RX_CLS_FLOW_WAKE) {
671		/* Ring 0 flows can be handled by the default Descriptor Ring
672		 * We'll map them to ring 0, but don't enable the filter
673		 */
674		bcmgenet_hfb_set_filter_rx_queue_mapping(priv, f, 0);
675		rule->state = BCMGENET_RXNFC_STATE_DISABLED;
676	} else {
677		/* Other Rx rings are direct mapped here */
678		bcmgenet_hfb_set_filter_rx_queue_mapping(priv, f,
679							 fs->ring_cookie);
680		bcmgenet_hfb_enable_filter(priv, f);
681		rule->state = BCMGENET_RXNFC_STATE_ENABLED;
682	}
683}
684
685/* bcmgenet_hfb_clear
686 *
687 * Clear Hardware Filter Block and disable all filtering.
688 */
689static void bcmgenet_hfb_clear_filter(struct bcmgenet_priv *priv, u32 f_index)
690{
691	u32 base, i;
692
693	base = f_index * priv->hw_params->hfb_filter_size;
694	for (i = 0; i < priv->hw_params->hfb_filter_size; i++)
695		bcmgenet_hfb_writel(priv, 0x0, (base + i) * sizeof(u32));
696}
697
698static void bcmgenet_hfb_clear(struct bcmgenet_priv *priv)
699{
700	u32 i;
701
702	if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
703		return;
704
705	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_CTRL);
706	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS);
707	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS + 4);
708
709	for (i = DMA_INDEX2RING_0; i <= DMA_INDEX2RING_7; i++)
710		bcmgenet_rdma_writel(priv, 0x0, i);
711
712	for (i = 0; i < (priv->hw_params->hfb_filter_cnt / 4); i++)
713		bcmgenet_hfb_reg_writel(priv, 0x0,
714					HFB_FLT_LEN_V3PLUS + i * sizeof(u32));
715
716	for (i = 0; i < priv->hw_params->hfb_filter_cnt; i++)
717		bcmgenet_hfb_clear_filter(priv, i);
718}
719
720static void bcmgenet_hfb_init(struct bcmgenet_priv *priv)
721{
722	int i;
723
724	INIT_LIST_HEAD(&priv->rxnfc_list);
725	if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
726		return;
727
728	for (i = 0; i < MAX_NUM_OF_FS_RULES; i++) {
729		INIT_LIST_HEAD(&priv->rxnfc_rules[i].list);
730		priv->rxnfc_rules[i].state = BCMGENET_RXNFC_STATE_UNUSED;
731	}
732
733	bcmgenet_hfb_clear(priv);
734}
735
736static int bcmgenet_begin(struct net_device *dev)
737{
738	struct bcmgenet_priv *priv = netdev_priv(dev);
739
740	/* Turn on the clock */
741	return clk_prepare_enable(priv->clk);
742}
743
744static void bcmgenet_complete(struct net_device *dev)
745{
746	struct bcmgenet_priv *priv = netdev_priv(dev);
747
748	/* Turn off the clock */
749	clk_disable_unprepare(priv->clk);
750}
751
752static int bcmgenet_get_link_ksettings(struct net_device *dev,
753				       struct ethtool_link_ksettings *cmd)
754{
755	if (!netif_running(dev))
756		return -EINVAL;
757
758	if (!dev->phydev)
759		return -ENODEV;
760
761	phy_ethtool_ksettings_get(dev->phydev, cmd);
762
763	return 0;
764}
765
766static int bcmgenet_set_link_ksettings(struct net_device *dev,
767				       const struct ethtool_link_ksettings *cmd)
768{
769	if (!netif_running(dev))
770		return -EINVAL;
771
772	if (!dev->phydev)
773		return -ENODEV;
774
775	return phy_ethtool_ksettings_set(dev->phydev, cmd);
776}
777
778static int bcmgenet_set_features(struct net_device *dev,
779				 netdev_features_t features)
780{
781	struct bcmgenet_priv *priv = netdev_priv(dev);
782	u32 reg;
783	int ret;
784
785	ret = clk_prepare_enable(priv->clk);
786	if (ret)
787		return ret;
788
789	/* Make sure we reflect the value of CRC_CMD_FWD */
790	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
791	priv->crc_fwd_en = !!(reg & CMD_CRC_FWD);
792
793	clk_disable_unprepare(priv->clk);
794
795	return ret;
796}
797
798static u32 bcmgenet_get_msglevel(struct net_device *dev)
799{
800	struct bcmgenet_priv *priv = netdev_priv(dev);
801
802	return priv->msg_enable;
803}
804
805static void bcmgenet_set_msglevel(struct net_device *dev, u32 level)
806{
807	struct bcmgenet_priv *priv = netdev_priv(dev);
808
809	priv->msg_enable = level;
810}
811
812static int bcmgenet_get_coalesce(struct net_device *dev,
813				 struct ethtool_coalesce *ec,
814				 struct kernel_ethtool_coalesce *kernel_coal,
815				 struct netlink_ext_ack *extack)
816{
817	struct bcmgenet_priv *priv = netdev_priv(dev);
818	struct bcmgenet_rx_ring *ring;
819	unsigned int i;
820
821	ec->tx_max_coalesced_frames =
822		bcmgenet_tdma_ring_readl(priv, DESC_INDEX,
823					 DMA_MBUF_DONE_THRESH);
824	ec->rx_max_coalesced_frames =
825		bcmgenet_rdma_ring_readl(priv, DESC_INDEX,
826					 DMA_MBUF_DONE_THRESH);
827	ec->rx_coalesce_usecs =
828		bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT) * 8192 / 1000;
829
830	for (i = 0; i < priv->hw_params->rx_queues; i++) {
831		ring = &priv->rx_rings[i];
832		ec->use_adaptive_rx_coalesce |= ring->dim.use_dim;
833	}
834	ring = &priv->rx_rings[DESC_INDEX];
835	ec->use_adaptive_rx_coalesce |= ring->dim.use_dim;
836
837	return 0;
838}
839
840static void bcmgenet_set_rx_coalesce(struct bcmgenet_rx_ring *ring,
841				     u32 usecs, u32 pkts)
842{
843	struct bcmgenet_priv *priv = ring->priv;
844	unsigned int i = ring->index;
845	u32 reg;
846
847	bcmgenet_rdma_ring_writel(priv, i, pkts, DMA_MBUF_DONE_THRESH);
848
849	reg = bcmgenet_rdma_readl(priv, DMA_RING0_TIMEOUT + i);
850	reg &= ~DMA_TIMEOUT_MASK;
851	reg |= DIV_ROUND_UP(usecs * 1000, 8192);
852	bcmgenet_rdma_writel(priv, reg, DMA_RING0_TIMEOUT + i);
853}
854
855static void bcmgenet_set_ring_rx_coalesce(struct bcmgenet_rx_ring *ring,
856					  struct ethtool_coalesce *ec)
857{
858	struct dim_cq_moder moder;
859	u32 usecs, pkts;
860
861	ring->rx_coalesce_usecs = ec->rx_coalesce_usecs;
862	ring->rx_max_coalesced_frames = ec->rx_max_coalesced_frames;
863	usecs = ring->rx_coalesce_usecs;
864	pkts = ring->rx_max_coalesced_frames;
865
866	if (ec->use_adaptive_rx_coalesce && !ring->dim.use_dim) {
867		moder = net_dim_get_def_rx_moderation(ring->dim.dim.mode);
868		usecs = moder.usec;
869		pkts = moder.pkts;
870	}
871
872	ring->dim.use_dim = ec->use_adaptive_rx_coalesce;
873	bcmgenet_set_rx_coalesce(ring, usecs, pkts);
874}
875
876static int bcmgenet_set_coalesce(struct net_device *dev,
877				 struct ethtool_coalesce *ec,
878				 struct kernel_ethtool_coalesce *kernel_coal,
879				 struct netlink_ext_ack *extack)
880{
881	struct bcmgenet_priv *priv = netdev_priv(dev);
882	unsigned int i;
883
884	/* Base system clock is 125Mhz, DMA timeout is this reference clock
885	 * divided by 1024, which yields roughly 8.192us, our maximum value
886	 * has to fit in the DMA_TIMEOUT_MASK (16 bits)
887	 */
888	if (ec->tx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
889	    ec->tx_max_coalesced_frames == 0 ||
890	    ec->rx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
891	    ec->rx_coalesce_usecs > (DMA_TIMEOUT_MASK * 8) + 1)
892		return -EINVAL;
893
894	if (ec->rx_coalesce_usecs == 0 && ec->rx_max_coalesced_frames == 0)
895		return -EINVAL;
896
897	/* GENET TDMA hardware does not support a configurable timeout, but will
898	 * always generate an interrupt either after MBDONE packets have been
899	 * transmitted, or when the ring is empty.
900	 */
901
902	/* Program all TX queues with the same values, as there is no
903	 * ethtool knob to do coalescing on a per-queue basis
904	 */
905	for (i = 0; i < priv->hw_params->tx_queues; i++)
906		bcmgenet_tdma_ring_writel(priv, i,
907					  ec->tx_max_coalesced_frames,
908					  DMA_MBUF_DONE_THRESH);
909	bcmgenet_tdma_ring_writel(priv, DESC_INDEX,
910				  ec->tx_max_coalesced_frames,
911				  DMA_MBUF_DONE_THRESH);
912
913	for (i = 0; i < priv->hw_params->rx_queues; i++)
914		bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[i], ec);
915	bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[DESC_INDEX], ec);
916
917	return 0;
918}
919
920static void bcmgenet_get_pauseparam(struct net_device *dev,
921				    struct ethtool_pauseparam *epause)
922{
923	struct bcmgenet_priv *priv;
924	u32 umac_cmd;
925
926	priv = netdev_priv(dev);
927
928	epause->autoneg = priv->autoneg_pause;
929
930	if (netif_carrier_ok(dev)) {
931		/* report active state when link is up */
932		umac_cmd = bcmgenet_umac_readl(priv, UMAC_CMD);
933		epause->tx_pause = !(umac_cmd & CMD_TX_PAUSE_IGNORE);
934		epause->rx_pause = !(umac_cmd & CMD_RX_PAUSE_IGNORE);
935	} else {
936		/* otherwise report stored settings */
937		epause->tx_pause = priv->tx_pause;
938		epause->rx_pause = priv->rx_pause;
939	}
940}
941
942static int bcmgenet_set_pauseparam(struct net_device *dev,
943				   struct ethtool_pauseparam *epause)
944{
945	struct bcmgenet_priv *priv = netdev_priv(dev);
946
947	if (!dev->phydev)
948		return -ENODEV;
949
950	if (!phy_validate_pause(dev->phydev, epause))
951		return -EINVAL;
952
953	priv->autoneg_pause = !!epause->autoneg;
954	priv->tx_pause = !!epause->tx_pause;
955	priv->rx_pause = !!epause->rx_pause;
956
957	bcmgenet_phy_pause_set(dev, priv->rx_pause, priv->tx_pause);
958
959	return 0;
960}
961
962/* standard ethtool support functions. */
963enum bcmgenet_stat_type {
964	BCMGENET_STAT_NETDEV = -1,
965	BCMGENET_STAT_MIB_RX,
966	BCMGENET_STAT_MIB_TX,
967	BCMGENET_STAT_RUNT,
968	BCMGENET_STAT_MISC,
969	BCMGENET_STAT_SOFT,
970};
971
972struct bcmgenet_stats {
973	char stat_string[ETH_GSTRING_LEN];
974	int stat_sizeof;
975	int stat_offset;
976	enum bcmgenet_stat_type type;
977	/* reg offset from UMAC base for misc counters */
978	u16 reg_offset;
979};
980
981#define STAT_NETDEV(m) { \
982	.stat_string = __stringify(m), \
983	.stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \
984	.stat_offset = offsetof(struct net_device_stats, m), \
985	.type = BCMGENET_STAT_NETDEV, \
986}
987
988#define STAT_GENET_MIB(str, m, _type) { \
989	.stat_string = str, \
990	.stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
991	.stat_offset = offsetof(struct bcmgenet_priv, m), \
992	.type = _type, \
993}
994
995#define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX)
996#define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX)
997#define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT)
998#define STAT_GENET_SOFT_MIB(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_SOFT)
999
1000#define STAT_GENET_MISC(str, m, offset) { \
1001	.stat_string = str, \
1002	.stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
1003	.stat_offset = offsetof(struct bcmgenet_priv, m), \
1004	.type = BCMGENET_STAT_MISC, \
1005	.reg_offset = offset, \
1006}
1007
1008#define STAT_GENET_Q(num) \
1009	STAT_GENET_SOFT_MIB("txq" __stringify(num) "_packets", \
1010			tx_rings[num].packets), \
1011	STAT_GENET_SOFT_MIB("txq" __stringify(num) "_bytes", \
1012			tx_rings[num].bytes), \
1013	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_bytes", \
1014			rx_rings[num].bytes),	 \
1015	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_packets", \
1016			rx_rings[num].packets), \
1017	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_errors", \
1018			rx_rings[num].errors), \
1019	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_dropped", \
1020			rx_rings[num].dropped)
1021
1022/* There is a 0xC gap between the end of RX and beginning of TX stats and then
1023 * between the end of TX stats and the beginning of the RX RUNT
1024 */
1025#define BCMGENET_STAT_OFFSET	0xc
1026
1027/* Hardware counters must be kept in sync because the order/offset
1028 * is important here (order in structure declaration = order in hardware)
1029 */
1030static const struct bcmgenet_stats bcmgenet_gstrings_stats[] = {
1031	/* general stats */
1032	STAT_NETDEV(rx_packets),
1033	STAT_NETDEV(tx_packets),
1034	STAT_NETDEV(rx_bytes),
1035	STAT_NETDEV(tx_bytes),
1036	STAT_NETDEV(rx_errors),
1037	STAT_NETDEV(tx_errors),
1038	STAT_NETDEV(rx_dropped),
1039	STAT_NETDEV(tx_dropped),
1040	STAT_NETDEV(multicast),
1041	/* UniMAC RSV counters */
1042	STAT_GENET_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64),
1043	STAT_GENET_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127),
1044	STAT_GENET_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255),
1045	STAT_GENET_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511),
1046	STAT_GENET_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023),
1047	STAT_GENET_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518),
1048	STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv),
1049	STAT_GENET_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047),
1050	STAT_GENET_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095),
1051	STAT_GENET_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216),
1052	STAT_GENET_MIB_RX("rx_pkts", mib.rx.pkt),
1053	STAT_GENET_MIB_RX("rx_bytes", mib.rx.bytes),
1054	STAT_GENET_MIB_RX("rx_multicast", mib.rx.mca),
1055	STAT_GENET_MIB_RX("rx_broadcast", mib.rx.bca),
1056	STAT_GENET_MIB_RX("rx_fcs", mib.rx.fcs),
1057	STAT_GENET_MIB_RX("rx_control", mib.rx.cf),
1058	STAT_GENET_MIB_RX("rx_pause", mib.rx.pf),
1059	STAT_GENET_MIB_RX("rx_unknown", mib.rx.uo),
1060	STAT_GENET_MIB_RX("rx_align", mib.rx.aln),
1061	STAT_GENET_MIB_RX("rx_outrange", mib.rx.flr),
1062	STAT_GENET_MIB_RX("rx_code", mib.rx.cde),
1063	STAT_GENET_MIB_RX("rx_carrier", mib.rx.fcr),
1064	STAT_GENET_MIB_RX("rx_oversize", mib.rx.ovr),
1065	STAT_GENET_MIB_RX("rx_jabber", mib.rx.jbr),
1066	STAT_GENET_MIB_RX("rx_mtu_err", mib.rx.mtue),
1067	STAT_GENET_MIB_RX("rx_good_pkts", mib.rx.pok),
1068	STAT_GENET_MIB_RX("rx_unicast", mib.rx.uc),
1069	STAT_GENET_MIB_RX("rx_ppp", mib.rx.ppp),
1070	STAT_GENET_MIB_RX("rx_crc", mib.rx.rcrc),
1071	/* UniMAC TSV counters */
1072	STAT_GENET_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64),
1073	STAT_GENET_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127),
1074	STAT_GENET_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255),
1075	STAT_GENET_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511),
1076	STAT_GENET_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023),
1077	STAT_GENET_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518),
1078	STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv),
1079	STAT_GENET_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047),
1080	STAT_GENET_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095),
1081	STAT_GENET_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216),
1082	STAT_GENET_MIB_TX("tx_pkts", mib.tx.pkts),
1083	STAT_GENET_MIB_TX("tx_multicast", mib.tx.mca),
1084	STAT_GENET_MIB_TX("tx_broadcast", mib.tx.bca),
1085	STAT_GENET_MIB_TX("tx_pause", mib.tx.pf),
1086	STAT_GENET_MIB_TX("tx_control", mib.tx.cf),
1087	STAT_GENET_MIB_TX("tx_fcs_err", mib.tx.fcs),
1088	STAT_GENET_MIB_TX("tx_oversize", mib.tx.ovr),
1089	STAT_GENET_MIB_TX("tx_defer", mib.tx.drf),
1090	STAT_GENET_MIB_TX("tx_excess_defer", mib.tx.edf),
1091	STAT_GENET_MIB_TX("tx_single_col", mib.tx.scl),
1092	STAT_GENET_MIB_TX("tx_multi_col", mib.tx.mcl),
1093	STAT_GENET_MIB_TX("tx_late_col", mib.tx.lcl),
1094	STAT_GENET_MIB_TX("tx_excess_col", mib.tx.ecl),
1095	STAT_GENET_MIB_TX("tx_frags", mib.tx.frg),
1096	STAT_GENET_MIB_TX("tx_total_col", mib.tx.ncl),
1097	STAT_GENET_MIB_TX("tx_jabber", mib.tx.jbr),
1098	STAT_GENET_MIB_TX("tx_bytes", mib.tx.bytes),
1099	STAT_GENET_MIB_TX("tx_good_pkts", mib.tx.pok),
1100	STAT_GENET_MIB_TX("tx_unicast", mib.tx.uc),
1101	/* UniMAC RUNT counters */
1102	STAT_GENET_RUNT("rx_runt_pkts", mib.rx_runt_cnt),
1103	STAT_GENET_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs),
1104	STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align),
1105	STAT_GENET_RUNT("rx_runt_bytes", mib.rx_runt_bytes),
1106	/* Misc UniMAC counters */
1107	STAT_GENET_MISC("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt,
1108			UMAC_RBUF_OVFL_CNT_V1),
1109	STAT_GENET_MISC("rbuf_err_cnt", mib.rbuf_err_cnt,
1110			UMAC_RBUF_ERR_CNT_V1),
1111	STAT_GENET_MISC("mdf_err_cnt", mib.mdf_err_cnt, UMAC_MDF_ERR_CNT),
1112	STAT_GENET_SOFT_MIB("alloc_rx_buff_failed", mib.alloc_rx_buff_failed),
1113	STAT_GENET_SOFT_MIB("rx_dma_failed", mib.rx_dma_failed),
1114	STAT_GENET_SOFT_MIB("tx_dma_failed", mib.tx_dma_failed),
1115	STAT_GENET_SOFT_MIB("tx_realloc_tsb", mib.tx_realloc_tsb),
1116	STAT_GENET_SOFT_MIB("tx_realloc_tsb_failed",
1117			    mib.tx_realloc_tsb_failed),
1118	/* Per TX queues */
1119	STAT_GENET_Q(0),
1120	STAT_GENET_Q(1),
1121	STAT_GENET_Q(2),
1122	STAT_GENET_Q(3),
1123	STAT_GENET_Q(16),
1124};
1125
1126#define BCMGENET_STATS_LEN	ARRAY_SIZE(bcmgenet_gstrings_stats)
1127
1128static void bcmgenet_get_drvinfo(struct net_device *dev,
1129				 struct ethtool_drvinfo *info)
1130{
1131	strscpy(info->driver, "bcmgenet", sizeof(info->driver));
1132}
1133
1134static int bcmgenet_get_sset_count(struct net_device *dev, int string_set)
1135{
1136	switch (string_set) {
1137	case ETH_SS_STATS:
1138		return BCMGENET_STATS_LEN;
1139	default:
1140		return -EOPNOTSUPP;
1141	}
1142}
1143
1144static void bcmgenet_get_strings(struct net_device *dev, u32 stringset,
1145				 u8 *data)
1146{
1147	int i;
1148
1149	switch (stringset) {
1150	case ETH_SS_STATS:
1151		for (i = 0; i < BCMGENET_STATS_LEN; i++) {
1152			memcpy(data + i * ETH_GSTRING_LEN,
1153			       bcmgenet_gstrings_stats[i].stat_string,
1154			       ETH_GSTRING_LEN);
1155		}
1156		break;
1157	}
1158}
1159
1160static u32 bcmgenet_update_stat_misc(struct bcmgenet_priv *priv, u16 offset)
1161{
1162	u16 new_offset;
1163	u32 val;
1164
1165	switch (offset) {
1166	case UMAC_RBUF_OVFL_CNT_V1:
1167		if (GENET_IS_V2(priv))
1168			new_offset = RBUF_OVFL_CNT_V2;
1169		else
1170			new_offset = RBUF_OVFL_CNT_V3PLUS;
1171
1172		val = bcmgenet_rbuf_readl(priv,	new_offset);
1173		/* clear if overflowed */
1174		if (val == ~0)
1175			bcmgenet_rbuf_writel(priv, 0, new_offset);
1176		break;
1177	case UMAC_RBUF_ERR_CNT_V1:
1178		if (GENET_IS_V2(priv))
1179			new_offset = RBUF_ERR_CNT_V2;
1180		else
1181			new_offset = RBUF_ERR_CNT_V3PLUS;
1182
1183		val = bcmgenet_rbuf_readl(priv,	new_offset);
1184		/* clear if overflowed */
1185		if (val == ~0)
1186			bcmgenet_rbuf_writel(priv, 0, new_offset);
1187		break;
1188	default:
1189		val = bcmgenet_umac_readl(priv, offset);
1190		/* clear if overflowed */
1191		if (val == ~0)
1192			bcmgenet_umac_writel(priv, 0, offset);
1193		break;
1194	}
1195
1196	return val;
1197}
1198
1199static void bcmgenet_update_mib_counters(struct bcmgenet_priv *priv)
1200{
1201	int i, j = 0;
1202
1203	for (i = 0; i < BCMGENET_STATS_LEN; i++) {
1204		const struct bcmgenet_stats *s;
1205		u8 offset = 0;
1206		u32 val = 0;
1207		char *p;
1208
1209		s = &bcmgenet_gstrings_stats[i];
1210		switch (s->type) {
1211		case BCMGENET_STAT_NETDEV:
1212		case BCMGENET_STAT_SOFT:
1213			continue;
1214		case BCMGENET_STAT_RUNT:
1215			offset += BCMGENET_STAT_OFFSET;
1216			fallthrough;
1217		case BCMGENET_STAT_MIB_TX:
1218			offset += BCMGENET_STAT_OFFSET;
1219			fallthrough;
1220		case BCMGENET_STAT_MIB_RX:
1221			val = bcmgenet_umac_readl(priv,
1222						  UMAC_MIB_START + j + offset);
1223			offset = 0;	/* Reset Offset */
1224			break;
1225		case BCMGENET_STAT_MISC:
1226			if (GENET_IS_V1(priv)) {
1227				val = bcmgenet_umac_readl(priv, s->reg_offset);
1228				/* clear if overflowed */
1229				if (val == ~0)
1230					bcmgenet_umac_writel(priv, 0,
1231							     s->reg_offset);
1232			} else {
1233				val = bcmgenet_update_stat_misc(priv,
1234								s->reg_offset);
1235			}
1236			break;
1237		}
1238
1239		j += s->stat_sizeof;
1240		p = (char *)priv + s->stat_offset;
1241		*(u32 *)p = val;
1242	}
1243}
1244
1245static void bcmgenet_get_ethtool_stats(struct net_device *dev,
1246				       struct ethtool_stats *stats,
1247				       u64 *data)
1248{
1249	struct bcmgenet_priv *priv = netdev_priv(dev);
1250	int i;
1251
1252	if (netif_running(dev))
1253		bcmgenet_update_mib_counters(priv);
1254
1255	dev->netdev_ops->ndo_get_stats(dev);
1256
1257	for (i = 0; i < BCMGENET_STATS_LEN; i++) {
1258		const struct bcmgenet_stats *s;
1259		char *p;
1260
1261		s = &bcmgenet_gstrings_stats[i];
1262		if (s->type == BCMGENET_STAT_NETDEV)
1263			p = (char *)&dev->stats;
1264		else
1265			p = (char *)priv;
1266		p += s->stat_offset;
1267		if (sizeof(unsigned long) != sizeof(u32) &&
1268		    s->stat_sizeof == sizeof(unsigned long))
1269			data[i] = *(unsigned long *)p;
1270		else
1271			data[i] = *(u32 *)p;
1272	}
1273}
1274
1275void bcmgenet_eee_enable_set(struct net_device *dev, bool enable,
1276			     bool tx_lpi_enabled)
1277{
1278	struct bcmgenet_priv *priv = netdev_priv(dev);
1279	u32 off = priv->hw_params->tbuf_offset + TBUF_ENERGY_CTRL;
1280	u32 reg;
1281
1282	if (enable && !priv->clk_eee_enabled) {
1283		clk_prepare_enable(priv->clk_eee);
1284		priv->clk_eee_enabled = true;
1285	}
1286
1287	reg = bcmgenet_umac_readl(priv, UMAC_EEE_CTRL);
1288	if (enable)
1289		reg |= EEE_EN;
1290	else
1291		reg &= ~EEE_EN;
1292	bcmgenet_umac_writel(priv, reg, UMAC_EEE_CTRL);
1293
1294	/* Enable EEE and switch to a 27Mhz clock automatically */
1295	reg = bcmgenet_readl(priv->base + off);
1296	if (tx_lpi_enabled)
1297		reg |= TBUF_EEE_EN | TBUF_PM_EN;
1298	else
1299		reg &= ~(TBUF_EEE_EN | TBUF_PM_EN);
1300	bcmgenet_writel(reg, priv->base + off);
1301
1302	/* Do the same for thing for RBUF */
1303	reg = bcmgenet_rbuf_readl(priv, RBUF_ENERGY_CTRL);
1304	if (enable)
1305		reg |= RBUF_EEE_EN | RBUF_PM_EN;
1306	else
1307		reg &= ~(RBUF_EEE_EN | RBUF_PM_EN);
1308	bcmgenet_rbuf_writel(priv, reg, RBUF_ENERGY_CTRL);
1309
1310	if (!enable && priv->clk_eee_enabled) {
1311		clk_disable_unprepare(priv->clk_eee);
1312		priv->clk_eee_enabled = false;
1313	}
1314
1315	priv->eee.eee_enabled = enable;
1316	priv->eee.eee_active = enable;
1317	priv->eee.tx_lpi_enabled = tx_lpi_enabled;
1318}
1319
1320static int bcmgenet_get_eee(struct net_device *dev, struct ethtool_eee *e)
1321{
1322	struct bcmgenet_priv *priv = netdev_priv(dev);
1323	struct ethtool_eee *p = &priv->eee;
1324
1325	if (GENET_IS_V1(priv))
1326		return -EOPNOTSUPP;
1327
1328	if (!dev->phydev)
1329		return -ENODEV;
1330
1331	e->eee_enabled = p->eee_enabled;
1332	e->eee_active = p->eee_active;
1333	e->tx_lpi_enabled = p->tx_lpi_enabled;
1334	e->tx_lpi_timer = bcmgenet_umac_readl(priv, UMAC_EEE_LPI_TIMER);
1335
1336	return phy_ethtool_get_eee(dev->phydev, e);
1337}
1338
1339static int bcmgenet_set_eee(struct net_device *dev, struct ethtool_eee *e)
1340{
1341	struct bcmgenet_priv *priv = netdev_priv(dev);
1342	struct ethtool_eee *p = &priv->eee;
1343
1344	if (GENET_IS_V1(priv))
1345		return -EOPNOTSUPP;
1346
1347	if (!dev->phydev)
1348		return -ENODEV;
1349
1350	p->eee_enabled = e->eee_enabled;
1351
1352	if (!p->eee_enabled) {
1353		bcmgenet_eee_enable_set(dev, false, false);
1354	} else {
1355		p->eee_active = phy_init_eee(dev->phydev, false) >= 0;
1356		bcmgenet_umac_writel(priv, e->tx_lpi_timer, UMAC_EEE_LPI_TIMER);
1357		bcmgenet_eee_enable_set(dev, p->eee_active, e->tx_lpi_enabled);
1358	}
1359
1360	return phy_ethtool_set_eee(dev->phydev, e);
1361}
1362
1363static int bcmgenet_validate_flow(struct net_device *dev,
1364				  struct ethtool_rxnfc *cmd)
1365{
1366	struct ethtool_usrip4_spec *l4_mask;
1367	struct ethhdr *eth_mask;
1368
1369	if (cmd->fs.location >= MAX_NUM_OF_FS_RULES &&
1370	    cmd->fs.location != RX_CLS_LOC_ANY) {
1371		netdev_err(dev, "rxnfc: Invalid location (%d)\n",
1372			   cmd->fs.location);
1373		return -EINVAL;
1374	}
1375
1376	switch (cmd->fs.flow_type & ~(FLOW_EXT | FLOW_MAC_EXT)) {
1377	case IP_USER_FLOW:
1378		l4_mask = &cmd->fs.m_u.usr_ip4_spec;
1379		/* don't allow mask which isn't valid */
1380		if (VALIDATE_MASK(l4_mask->ip4src) ||
1381		    VALIDATE_MASK(l4_mask->ip4dst) ||
1382		    VALIDATE_MASK(l4_mask->l4_4_bytes) ||
1383		    VALIDATE_MASK(l4_mask->proto) ||
1384		    VALIDATE_MASK(l4_mask->ip_ver) ||
1385		    VALIDATE_MASK(l4_mask->tos)) {
1386			netdev_err(dev, "rxnfc: Unsupported mask\n");
1387			return -EINVAL;
1388		}
1389		break;
1390	case ETHER_FLOW:
1391		eth_mask = &cmd->fs.m_u.ether_spec;
1392		/* don't allow mask which isn't valid */
1393		if (VALIDATE_MASK(eth_mask->h_dest) ||
1394		    VALIDATE_MASK(eth_mask->h_source) ||
1395		    VALIDATE_MASK(eth_mask->h_proto)) {
1396			netdev_err(dev, "rxnfc: Unsupported mask\n");
1397			return -EINVAL;
1398		}
1399		break;
1400	default:
1401		netdev_err(dev, "rxnfc: Unsupported flow type (0x%x)\n",
1402			   cmd->fs.flow_type);
1403		return -EINVAL;
1404	}
1405
1406	if ((cmd->fs.flow_type & FLOW_EXT)) {
1407		/* don't allow mask which isn't valid */
1408		if (VALIDATE_MASK(cmd->fs.m_ext.vlan_etype) ||
1409		    VALIDATE_MASK(cmd->fs.m_ext.vlan_tci)) {
1410			netdev_err(dev, "rxnfc: Unsupported mask\n");
1411			return -EINVAL;
1412		}
1413		if (cmd->fs.m_ext.data[0] || cmd->fs.m_ext.data[1]) {
1414			netdev_err(dev, "rxnfc: user-def not supported\n");
1415			return -EINVAL;
1416		}
1417	}
1418
1419	if ((cmd->fs.flow_type & FLOW_MAC_EXT)) {
1420		/* don't allow mask which isn't valid */
1421		if (VALIDATE_MASK(cmd->fs.m_ext.h_dest)) {
1422			netdev_err(dev, "rxnfc: Unsupported mask\n");
1423			return -EINVAL;
1424		}
1425	}
1426
1427	return 0;
1428}
1429
1430static int bcmgenet_insert_flow(struct net_device *dev,
1431				struct ethtool_rxnfc *cmd)
1432{
1433	struct bcmgenet_priv *priv = netdev_priv(dev);
1434	struct bcmgenet_rxnfc_rule *loc_rule;
1435	int err, i;
1436
1437	if (priv->hw_params->hfb_filter_size < 128) {
1438		netdev_err(dev, "rxnfc: Not supported by this device\n");
1439		return -EINVAL;
1440	}
1441
1442	if (cmd->fs.ring_cookie > priv->hw_params->rx_queues &&
1443	    cmd->fs.ring_cookie != RX_CLS_FLOW_WAKE) {
1444		netdev_err(dev, "rxnfc: Unsupported action (%llu)\n",
1445			   cmd->fs.ring_cookie);
1446		return -EINVAL;
1447	}
1448
1449	err = bcmgenet_validate_flow(dev, cmd);
1450	if (err)
1451		return err;
1452
1453	if (cmd->fs.location == RX_CLS_LOC_ANY) {
1454		list_for_each_entry(loc_rule, &priv->rxnfc_list, list) {
1455			cmd->fs.location = loc_rule->fs.location;
1456			err = memcmp(&loc_rule->fs, &cmd->fs,
1457				     sizeof(struct ethtool_rx_flow_spec));
1458			if (!err)
1459				/* rule exists so return current location */
1460				return 0;
1461		}
1462		for (i = 0; i < MAX_NUM_OF_FS_RULES; i++) {
1463			loc_rule = &priv->rxnfc_rules[i];
1464			if (loc_rule->state == BCMGENET_RXNFC_STATE_UNUSED) {
1465				cmd->fs.location = i;
1466				break;
1467			}
1468		}
1469		if (i == MAX_NUM_OF_FS_RULES) {
1470			cmd->fs.location = RX_CLS_LOC_ANY;
1471			return -ENOSPC;
1472		}
1473	} else {
1474		loc_rule = &priv->rxnfc_rules[cmd->fs.location];
1475	}
1476	if (loc_rule->state == BCMGENET_RXNFC_STATE_ENABLED)
1477		bcmgenet_hfb_disable_filter(priv, cmd->fs.location);
1478	if (loc_rule->state != BCMGENET_RXNFC_STATE_UNUSED) {
1479		list_del(&loc_rule->list);
1480		bcmgenet_hfb_clear_filter(priv, cmd->fs.location);
1481	}
1482	loc_rule->state = BCMGENET_RXNFC_STATE_UNUSED;
1483	memcpy(&loc_rule->fs, &cmd->fs,
1484	       sizeof(struct ethtool_rx_flow_spec));
1485
1486	bcmgenet_hfb_create_rxnfc_filter(priv, loc_rule);
1487
1488	list_add_tail(&loc_rule->list, &priv->rxnfc_list);
1489
1490	return 0;
1491}
1492
1493static int bcmgenet_delete_flow(struct net_device *dev,
1494				struct ethtool_rxnfc *cmd)
1495{
1496	struct bcmgenet_priv *priv = netdev_priv(dev);
1497	struct bcmgenet_rxnfc_rule *rule;
1498	int err = 0;
1499
1500	if (cmd->fs.location >= MAX_NUM_OF_FS_RULES)
1501		return -EINVAL;
1502
1503	rule = &priv->rxnfc_rules[cmd->fs.location];
1504	if (rule->state == BCMGENET_RXNFC_STATE_UNUSED) {
1505		err =  -ENOENT;
1506		goto out;
1507	}
1508
1509	if (rule->state == BCMGENET_RXNFC_STATE_ENABLED)
1510		bcmgenet_hfb_disable_filter(priv, cmd->fs.location);
1511	if (rule->state != BCMGENET_RXNFC_STATE_UNUSED) {
1512		list_del(&rule->list);
1513		bcmgenet_hfb_clear_filter(priv, cmd->fs.location);
1514	}
1515	rule->state = BCMGENET_RXNFC_STATE_UNUSED;
1516	memset(&rule->fs, 0, sizeof(struct ethtool_rx_flow_spec));
1517
1518out:
1519	return err;
1520}
1521
1522static int bcmgenet_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
1523{
1524	struct bcmgenet_priv *priv = netdev_priv(dev);
1525	int err = 0;
1526
1527	switch (cmd->cmd) {
1528	case ETHTOOL_SRXCLSRLINS:
1529		err = bcmgenet_insert_flow(dev, cmd);
1530		break;
1531	case ETHTOOL_SRXCLSRLDEL:
1532		err = bcmgenet_delete_flow(dev, cmd);
1533		break;
1534	default:
1535		netdev_warn(priv->dev, "Unsupported ethtool command. (%d)\n",
1536			    cmd->cmd);
1537		return -EINVAL;
1538	}
1539
1540	return err;
1541}
1542
1543static int bcmgenet_get_flow(struct net_device *dev, struct ethtool_rxnfc *cmd,
1544			     int loc)
1545{
1546	struct bcmgenet_priv *priv = netdev_priv(dev);
1547	struct bcmgenet_rxnfc_rule *rule;
1548	int err = 0;
1549
1550	if (loc < 0 || loc >= MAX_NUM_OF_FS_RULES)
1551		return -EINVAL;
1552
1553	rule = &priv->rxnfc_rules[loc];
1554	if (rule->state == BCMGENET_RXNFC_STATE_UNUSED)
1555		err = -ENOENT;
1556	else
1557		memcpy(&cmd->fs, &rule->fs,
1558		       sizeof(struct ethtool_rx_flow_spec));
1559
1560	return err;
1561}
1562
1563static int bcmgenet_get_num_flows(struct bcmgenet_priv *priv)
1564{
1565	struct list_head *pos;
1566	int res = 0;
1567
1568	list_for_each(pos, &priv->rxnfc_list)
1569		res++;
1570
1571	return res;
1572}
1573
1574static int bcmgenet_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
1575			      u32 *rule_locs)
1576{
1577	struct bcmgenet_priv *priv = netdev_priv(dev);
1578	struct bcmgenet_rxnfc_rule *rule;
1579	int err = 0;
1580	int i = 0;
1581
1582	switch (cmd->cmd) {
1583	case ETHTOOL_GRXRINGS:
1584		cmd->data = priv->hw_params->rx_queues ?: 1;
1585		break;
1586	case ETHTOOL_GRXCLSRLCNT:
1587		cmd->rule_cnt = bcmgenet_get_num_flows(priv);
1588		cmd->data = MAX_NUM_OF_FS_RULES | RX_CLS_LOC_SPECIAL;
1589		break;
1590	case ETHTOOL_GRXCLSRULE:
1591		err = bcmgenet_get_flow(dev, cmd, cmd->fs.location);
1592		break;
1593	case ETHTOOL_GRXCLSRLALL:
1594		list_for_each_entry(rule, &priv->rxnfc_list, list)
1595			if (i < cmd->rule_cnt)
1596				rule_locs[i++] = rule->fs.location;
1597		cmd->rule_cnt = i;
1598		cmd->data = MAX_NUM_OF_FS_RULES;
1599		break;
1600	default:
1601		err = -EOPNOTSUPP;
1602		break;
1603	}
1604
1605	return err;
1606}
1607
1608/* standard ethtool support functions. */
1609static const struct ethtool_ops bcmgenet_ethtool_ops = {
1610	.supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS |
1611				     ETHTOOL_COALESCE_MAX_FRAMES |
1612				     ETHTOOL_COALESCE_USE_ADAPTIVE_RX,
1613	.begin			= bcmgenet_begin,
1614	.complete		= bcmgenet_complete,
1615	.get_strings		= bcmgenet_get_strings,
1616	.get_sset_count		= bcmgenet_get_sset_count,
1617	.get_ethtool_stats	= bcmgenet_get_ethtool_stats,
1618	.get_drvinfo		= bcmgenet_get_drvinfo,
1619	.get_link		= ethtool_op_get_link,
1620	.get_msglevel		= bcmgenet_get_msglevel,
1621	.set_msglevel		= bcmgenet_set_msglevel,
1622	.get_wol		= bcmgenet_get_wol,
1623	.set_wol		= bcmgenet_set_wol,
1624	.get_eee		= bcmgenet_get_eee,
1625	.set_eee		= bcmgenet_set_eee,
1626	.nway_reset		= phy_ethtool_nway_reset,
1627	.get_coalesce		= bcmgenet_get_coalesce,
1628	.set_coalesce		= bcmgenet_set_coalesce,
1629	.get_link_ksettings	= bcmgenet_get_link_ksettings,
1630	.set_link_ksettings	= bcmgenet_set_link_ksettings,
1631	.get_ts_info		= ethtool_op_get_ts_info,
1632	.get_rxnfc		= bcmgenet_get_rxnfc,
1633	.set_rxnfc		= bcmgenet_set_rxnfc,
1634	.get_pauseparam		= bcmgenet_get_pauseparam,
1635	.set_pauseparam		= bcmgenet_set_pauseparam,
1636};
1637
1638/* Power down the unimac, based on mode. */
1639static int bcmgenet_power_down(struct bcmgenet_priv *priv,
1640				enum bcmgenet_power_mode mode)
1641{
1642	int ret = 0;
1643	u32 reg;
1644
1645	switch (mode) {
1646	case GENET_POWER_CABLE_SENSE:
1647		phy_detach(priv->dev->phydev);
1648		break;
1649
1650	case GENET_POWER_WOL_MAGIC:
1651		ret = bcmgenet_wol_power_down_cfg(priv, mode);
1652		break;
1653
1654	case GENET_POWER_PASSIVE:
1655		/* Power down LED */
1656		if (priv->hw_params->flags & GENET_HAS_EXT) {
1657			reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1658			if (GENET_IS_V5(priv) && !priv->ephy_16nm)
1659				reg |= EXT_PWR_DOWN_PHY_EN |
1660				       EXT_PWR_DOWN_PHY_RD |
1661				       EXT_PWR_DOWN_PHY_SD |
1662				       EXT_PWR_DOWN_PHY_RX |
1663				       EXT_PWR_DOWN_PHY_TX |
1664				       EXT_IDDQ_GLBL_PWR;
1665			else
1666				reg |= EXT_PWR_DOWN_PHY;
1667
1668			reg |= (EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1669			bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1670
1671			bcmgenet_phy_power_set(priv->dev, false);
1672		}
1673		break;
1674	default:
1675		break;
1676	}
1677
1678	return ret;
1679}
1680
1681static void bcmgenet_power_up(struct bcmgenet_priv *priv,
1682			      enum bcmgenet_power_mode mode)
1683{
1684	u32 reg;
1685
1686	if (!(priv->hw_params->flags & GENET_HAS_EXT))
1687		return;
1688
1689	reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1690
1691	switch (mode) {
1692	case GENET_POWER_PASSIVE:
1693		reg &= ~(EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS |
1694			 EXT_ENERGY_DET_MASK);
1695		if (GENET_IS_V5(priv) && !priv->ephy_16nm) {
1696			reg &= ~(EXT_PWR_DOWN_PHY_EN |
1697				 EXT_PWR_DOWN_PHY_RD |
1698				 EXT_PWR_DOWN_PHY_SD |
1699				 EXT_PWR_DOWN_PHY_RX |
1700				 EXT_PWR_DOWN_PHY_TX |
1701				 EXT_IDDQ_GLBL_PWR);
1702			reg |=   EXT_PHY_RESET;
1703			bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1704			mdelay(1);
1705
1706			reg &=  ~EXT_PHY_RESET;
1707		} else {
1708			reg &= ~EXT_PWR_DOWN_PHY;
1709			reg |= EXT_PWR_DN_EN_LD;
1710		}
1711		bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1712		bcmgenet_phy_power_set(priv->dev, true);
1713		break;
1714
1715	case GENET_POWER_CABLE_SENSE:
1716		/* enable APD */
1717		if (!GENET_IS_V5(priv)) {
1718			reg |= EXT_PWR_DN_EN_LD;
1719			bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1720		}
1721		break;
1722	case GENET_POWER_WOL_MAGIC:
1723		bcmgenet_wol_power_up_cfg(priv, mode);
1724		return;
1725	default:
1726		break;
1727	}
1728}
1729
1730static struct enet_cb *bcmgenet_get_txcb(struct bcmgenet_priv *priv,
1731					 struct bcmgenet_tx_ring *ring)
1732{
1733	struct enet_cb *tx_cb_ptr;
1734
1735	tx_cb_ptr = ring->cbs;
1736	tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1737
1738	/* Advancing local write pointer */
1739	if (ring->write_ptr == ring->end_ptr)
1740		ring->write_ptr = ring->cb_ptr;
1741	else
1742		ring->write_ptr++;
1743
1744	return tx_cb_ptr;
1745}
1746
1747static struct enet_cb *bcmgenet_put_txcb(struct bcmgenet_priv *priv,
1748					 struct bcmgenet_tx_ring *ring)
1749{
1750	struct enet_cb *tx_cb_ptr;
1751
1752	tx_cb_ptr = ring->cbs;
1753	tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1754
1755	/* Rewinding local write pointer */
1756	if (ring->write_ptr == ring->cb_ptr)
1757		ring->write_ptr = ring->end_ptr;
1758	else
1759		ring->write_ptr--;
1760
1761	return tx_cb_ptr;
1762}
1763
1764static inline void bcmgenet_rx_ring16_int_disable(struct bcmgenet_rx_ring *ring)
1765{
1766	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1767				 INTRL2_CPU_MASK_SET);
1768}
1769
1770static inline void bcmgenet_rx_ring16_int_enable(struct bcmgenet_rx_ring *ring)
1771{
1772	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1773				 INTRL2_CPU_MASK_CLEAR);
1774}
1775
1776static inline void bcmgenet_rx_ring_int_disable(struct bcmgenet_rx_ring *ring)
1777{
1778	bcmgenet_intrl2_1_writel(ring->priv,
1779				 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1780				 INTRL2_CPU_MASK_SET);
1781}
1782
1783static inline void bcmgenet_rx_ring_int_enable(struct bcmgenet_rx_ring *ring)
1784{
1785	bcmgenet_intrl2_1_writel(ring->priv,
1786				 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1787				 INTRL2_CPU_MASK_CLEAR);
1788}
1789
1790static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_tx_ring *ring)
1791{
1792	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1793				 INTRL2_CPU_MASK_SET);
1794}
1795
1796static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_tx_ring *ring)
1797{
1798	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1799				 INTRL2_CPU_MASK_CLEAR);
1800}
1801
1802static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_tx_ring *ring)
1803{
1804	bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1805				 INTRL2_CPU_MASK_CLEAR);
1806}
1807
1808static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_tx_ring *ring)
1809{
1810	bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1811				 INTRL2_CPU_MASK_SET);
1812}
1813
1814/* Simple helper to free a transmit control block's resources
1815 * Returns an skb when the last transmit control block associated with the
1816 * skb is freed.  The skb should be freed by the caller if necessary.
1817 */
1818static struct sk_buff *bcmgenet_free_tx_cb(struct device *dev,
1819					   struct enet_cb *cb)
1820{
1821	struct sk_buff *skb;
1822
1823	skb = cb->skb;
1824
1825	if (skb) {
1826		cb->skb = NULL;
1827		if (cb == GENET_CB(skb)->first_cb)
1828			dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1829					 dma_unmap_len(cb, dma_len),
1830					 DMA_TO_DEVICE);
1831		else
1832			dma_unmap_page(dev, dma_unmap_addr(cb, dma_addr),
1833				       dma_unmap_len(cb, dma_len),
1834				       DMA_TO_DEVICE);
1835		dma_unmap_addr_set(cb, dma_addr, 0);
1836
1837		if (cb == GENET_CB(skb)->last_cb)
1838			return skb;
1839
1840	} else if (dma_unmap_addr(cb, dma_addr)) {
1841		dma_unmap_page(dev,
1842			       dma_unmap_addr(cb, dma_addr),
1843			       dma_unmap_len(cb, dma_len),
1844			       DMA_TO_DEVICE);
1845		dma_unmap_addr_set(cb, dma_addr, 0);
1846	}
1847
1848	return NULL;
1849}
1850
1851/* Simple helper to free a receive control block's resources */
1852static struct sk_buff *bcmgenet_free_rx_cb(struct device *dev,
1853					   struct enet_cb *cb)
1854{
1855	struct sk_buff *skb;
1856
1857	skb = cb->skb;
1858	cb->skb = NULL;
1859
1860	if (dma_unmap_addr(cb, dma_addr)) {
1861		dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1862				 dma_unmap_len(cb, dma_len), DMA_FROM_DEVICE);
1863		dma_unmap_addr_set(cb, dma_addr, 0);
1864	}
1865
1866	return skb;
1867}
1868
1869/* Unlocked version of the reclaim routine */
1870static unsigned int __bcmgenet_tx_reclaim(struct net_device *dev,
1871					  struct bcmgenet_tx_ring *ring)
1872{
1873	struct bcmgenet_priv *priv = netdev_priv(dev);
1874	unsigned int txbds_processed = 0;
1875	unsigned int bytes_compl = 0;
1876	unsigned int pkts_compl = 0;
1877	unsigned int txbds_ready;
1878	unsigned int c_index;
1879	struct sk_buff *skb;
1880
1881	/* Clear status before servicing to reduce spurious interrupts */
1882	if (ring->index == DESC_INDEX)
1883		bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_TXDMA_DONE,
1884					 INTRL2_CPU_CLEAR);
1885	else
1886		bcmgenet_intrl2_1_writel(priv, (1 << ring->index),
1887					 INTRL2_CPU_CLEAR);
1888
1889	/* Compute how many buffers are transmitted since last xmit call */
1890	c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX)
1891		& DMA_C_INDEX_MASK;
1892	txbds_ready = (c_index - ring->c_index) & DMA_C_INDEX_MASK;
1893
1894	netif_dbg(priv, tx_done, dev,
1895		  "%s ring=%d old_c_index=%u c_index=%u txbds_ready=%u\n",
1896		  __func__, ring->index, ring->c_index, c_index, txbds_ready);
1897
1898	/* Reclaim transmitted buffers */
1899	while (txbds_processed < txbds_ready) {
1900		skb = bcmgenet_free_tx_cb(&priv->pdev->dev,
1901					  &priv->tx_cbs[ring->clean_ptr]);
1902		if (skb) {
1903			pkts_compl++;
1904			bytes_compl += GENET_CB(skb)->bytes_sent;
1905			dev_consume_skb_any(skb);
1906		}
1907
1908		txbds_processed++;
1909		if (likely(ring->clean_ptr < ring->end_ptr))
1910			ring->clean_ptr++;
1911		else
1912			ring->clean_ptr = ring->cb_ptr;
1913	}
1914
1915	ring->free_bds += txbds_processed;
1916	ring->c_index = c_index;
1917
1918	ring->packets += pkts_compl;
1919	ring->bytes += bytes_compl;
1920
1921	netdev_tx_completed_queue(netdev_get_tx_queue(dev, ring->queue),
1922				  pkts_compl, bytes_compl);
1923
1924	return txbds_processed;
1925}
1926
1927static unsigned int bcmgenet_tx_reclaim(struct net_device *dev,
1928				struct bcmgenet_tx_ring *ring)
1929{
1930	unsigned int released;
1931
1932	spin_lock_bh(&ring->lock);
1933	released = __bcmgenet_tx_reclaim(dev, ring);
1934	spin_unlock_bh(&ring->lock);
1935
1936	return released;
1937}
1938
1939static int bcmgenet_tx_poll(struct napi_struct *napi, int budget)
1940{
1941	struct bcmgenet_tx_ring *ring =
1942		container_of(napi, struct bcmgenet_tx_ring, napi);
1943	unsigned int work_done = 0;
1944	struct netdev_queue *txq;
1945
1946	spin_lock(&ring->lock);
1947	work_done = __bcmgenet_tx_reclaim(ring->priv->dev, ring);
1948	if (ring->free_bds > (MAX_SKB_FRAGS + 1)) {
1949		txq = netdev_get_tx_queue(ring->priv->dev, ring->queue);
1950		netif_tx_wake_queue(txq);
1951	}
1952	spin_unlock(&ring->lock);
1953
1954	if (work_done == 0) {
1955		napi_complete(napi);
1956		ring->int_enable(ring);
1957
1958		return 0;
1959	}
1960
1961	return budget;
1962}
1963
1964static void bcmgenet_tx_reclaim_all(struct net_device *dev)
1965{
1966	struct bcmgenet_priv *priv = netdev_priv(dev);
1967	int i;
1968
1969	if (netif_is_multiqueue(dev)) {
1970		for (i = 0; i < priv->hw_params->tx_queues; i++)
1971			bcmgenet_tx_reclaim(dev, &priv->tx_rings[i]);
1972	}
1973
1974	bcmgenet_tx_reclaim(dev, &priv->tx_rings[DESC_INDEX]);
1975}
1976
1977/* Reallocate the SKB to put enough headroom in front of it and insert
1978 * the transmit checksum offsets in the descriptors
1979 */
1980static struct sk_buff *bcmgenet_add_tsb(struct net_device *dev,
1981					struct sk_buff *skb)
1982{
1983	struct bcmgenet_priv *priv = netdev_priv(dev);
1984	struct status_64 *status = NULL;
1985	struct sk_buff *new_skb;
1986	u16 offset;
1987	u8 ip_proto;
1988	__be16 ip_ver;
1989	u32 tx_csum_info;
1990
1991	if (unlikely(skb_headroom(skb) < sizeof(*status))) {
1992		/* If 64 byte status block enabled, must make sure skb has
1993		 * enough headroom for us to insert 64B status block.
1994		 */
1995		new_skb = skb_realloc_headroom(skb, sizeof(*status));
1996		if (!new_skb) {
1997			dev_kfree_skb_any(skb);
1998			priv->mib.tx_realloc_tsb_failed++;
1999			dev->stats.tx_dropped++;
2000			return NULL;
2001		}
2002		dev_consume_skb_any(skb);
2003		skb = new_skb;
2004		priv->mib.tx_realloc_tsb++;
2005	}
2006
2007	skb_push(skb, sizeof(*status));
2008	status = (struct status_64 *)skb->data;
2009
2010	if (skb->ip_summed  == CHECKSUM_PARTIAL) {
2011		ip_ver = skb->protocol;
2012		switch (ip_ver) {
2013		case htons(ETH_P_IP):
2014			ip_proto = ip_hdr(skb)->protocol;
2015			break;
2016		case htons(ETH_P_IPV6):
2017			ip_proto = ipv6_hdr(skb)->nexthdr;
2018			break;
2019		default:
2020			/* don't use UDP flag */
2021			ip_proto = 0;
2022			break;
2023		}
2024
2025		offset = skb_checksum_start_offset(skb) - sizeof(*status);
2026		tx_csum_info = (offset << STATUS_TX_CSUM_START_SHIFT) |
2027				(offset + skb->csum_offset) |
2028				STATUS_TX_CSUM_LV;
2029
2030		/* Set the special UDP flag for UDP */
2031		if (ip_proto == IPPROTO_UDP)
2032			tx_csum_info |= STATUS_TX_CSUM_PROTO_UDP;
2033
2034		status->tx_csum_info = tx_csum_info;
2035	}
2036
2037	return skb;
2038}
2039
2040static void bcmgenet_hide_tsb(struct sk_buff *skb)
2041{
2042	__skb_pull(skb, sizeof(struct status_64));
2043}
2044
2045static netdev_tx_t bcmgenet_xmit(struct sk_buff *skb, struct net_device *dev)
2046{
2047	struct bcmgenet_priv *priv = netdev_priv(dev);
2048	struct device *kdev = &priv->pdev->dev;
2049	struct bcmgenet_tx_ring *ring = NULL;
2050	struct enet_cb *tx_cb_ptr;
2051	struct netdev_queue *txq;
2052	int nr_frags, index;
2053	dma_addr_t mapping;
2054	unsigned int size;
2055	skb_frag_t *frag;
2056	u32 len_stat;
2057	int ret;
2058	int i;
2059
2060	index = skb_get_queue_mapping(skb);
2061	/* Mapping strategy:
2062	 * queue_mapping = 0, unclassified, packet xmited through ring16
2063	 * queue_mapping = 1, goes to ring 0. (highest priority queue
2064	 * queue_mapping = 2, goes to ring 1.
2065	 * queue_mapping = 3, goes to ring 2.
2066	 * queue_mapping = 4, goes to ring 3.
2067	 */
2068	if (index == 0)
2069		index = DESC_INDEX;
2070	else
2071		index -= 1;
2072
2073	ring = &priv->tx_rings[index];
2074	txq = netdev_get_tx_queue(dev, ring->queue);
2075
2076	nr_frags = skb_shinfo(skb)->nr_frags;
2077
2078	spin_lock(&ring->lock);
2079	if (ring->free_bds <= (nr_frags + 1)) {
2080		if (!netif_tx_queue_stopped(txq))
2081			netif_tx_stop_queue(txq);
2082		ret = NETDEV_TX_BUSY;
2083		goto out;
2084	}
2085
2086	/* Retain how many bytes will be sent on the wire, without TSB inserted
2087	 * by transmit checksum offload
2088	 */
2089	GENET_CB(skb)->bytes_sent = skb->len;
2090
2091	/* add the Transmit Status Block */
2092	skb = bcmgenet_add_tsb(dev, skb);
2093	if (!skb) {
2094		ret = NETDEV_TX_OK;
2095		goto out;
2096	}
2097
2098	for (i = 0; i <= nr_frags; i++) {
2099		tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
2100
2101		BUG_ON(!tx_cb_ptr);
2102
2103		if (!i) {
2104			/* Transmit single SKB or head of fragment list */
2105			GENET_CB(skb)->first_cb = tx_cb_ptr;
2106			size = skb_headlen(skb);
2107			mapping = dma_map_single(kdev, skb->data, size,
2108						 DMA_TO_DEVICE);
2109		} else {
2110			/* xmit fragment */
2111			frag = &skb_shinfo(skb)->frags[i - 1];
2112			size = skb_frag_size(frag);
2113			mapping = skb_frag_dma_map(kdev, frag, 0, size,
2114						   DMA_TO_DEVICE);
2115		}
2116
2117		ret = dma_mapping_error(kdev, mapping);
2118		if (ret) {
2119			priv->mib.tx_dma_failed++;
2120			netif_err(priv, tx_err, dev, "Tx DMA map failed\n");
2121			ret = NETDEV_TX_OK;
2122			goto out_unmap_frags;
2123		}
2124		dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
2125		dma_unmap_len_set(tx_cb_ptr, dma_len, size);
2126
2127		tx_cb_ptr->skb = skb;
2128
2129		len_stat = (size << DMA_BUFLENGTH_SHIFT) |
2130			   (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT);
2131
2132		/* Note: if we ever change from DMA_TX_APPEND_CRC below we
2133		 * will need to restore software padding of "runt" packets
2134		 */
2135		len_stat |= DMA_TX_APPEND_CRC;
2136
2137		if (!i) {
2138			len_stat |= DMA_SOP;
2139			if (skb->ip_summed == CHECKSUM_PARTIAL)
2140				len_stat |= DMA_TX_DO_CSUM;
2141		}
2142		if (i == nr_frags)
2143			len_stat |= DMA_EOP;
2144
2145		dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, len_stat);
2146	}
2147
2148	GENET_CB(skb)->last_cb = tx_cb_ptr;
2149
2150	bcmgenet_hide_tsb(skb);
2151	skb_tx_timestamp(skb);
2152
2153	/* Decrement total BD count and advance our write pointer */
2154	ring->free_bds -= nr_frags + 1;
2155	ring->prod_index += nr_frags + 1;
2156	ring->prod_index &= DMA_P_INDEX_MASK;
2157
2158	netdev_tx_sent_queue(txq, GENET_CB(skb)->bytes_sent);
2159
2160	if (ring->free_bds <= (MAX_SKB_FRAGS + 1))
2161		netif_tx_stop_queue(txq);
2162
2163	if (!netdev_xmit_more() || netif_xmit_stopped(txq))
2164		/* Packets are ready, update producer index */
2165		bcmgenet_tdma_ring_writel(priv, ring->index,
2166					  ring->prod_index, TDMA_PROD_INDEX);
2167out:
2168	spin_unlock(&ring->lock);
2169
2170	return ret;
2171
2172out_unmap_frags:
2173	/* Back up for failed control block mapping */
2174	bcmgenet_put_txcb(priv, ring);
2175
2176	/* Unmap successfully mapped control blocks */
2177	while (i-- > 0) {
2178		tx_cb_ptr = bcmgenet_put_txcb(priv, ring);
2179		bcmgenet_free_tx_cb(kdev, tx_cb_ptr);
2180	}
2181
2182	dev_kfree_skb(skb);
2183	goto out;
2184}
2185
2186static struct sk_buff *bcmgenet_rx_refill(struct bcmgenet_priv *priv,
2187					  struct enet_cb *cb)
2188{
2189	struct device *kdev = &priv->pdev->dev;
2190	struct sk_buff *skb;
2191	struct sk_buff *rx_skb;
2192	dma_addr_t mapping;
2193
2194	/* Allocate a new Rx skb */
2195	skb = __netdev_alloc_skb(priv->dev, priv->rx_buf_len + SKB_ALIGNMENT,
2196				 GFP_ATOMIC | __GFP_NOWARN);
2197	if (!skb) {
2198		priv->mib.alloc_rx_buff_failed++;
2199		netif_err(priv, rx_err, priv->dev,
2200			  "%s: Rx skb allocation failed\n", __func__);
2201		return NULL;
2202	}
2203
2204	/* DMA-map the new Rx skb */
2205	mapping = dma_map_single(kdev, skb->data, priv->rx_buf_len,
2206				 DMA_FROM_DEVICE);
2207	if (dma_mapping_error(kdev, mapping)) {
2208		priv->mib.rx_dma_failed++;
2209		dev_kfree_skb_any(skb);
2210		netif_err(priv, rx_err, priv->dev,
2211			  "%s: Rx skb DMA mapping failed\n", __func__);
2212		return NULL;
2213	}
2214
2215	/* Grab the current Rx skb from the ring and DMA-unmap it */
2216	rx_skb = bcmgenet_free_rx_cb(kdev, cb);
2217
2218	/* Put the new Rx skb on the ring */
2219	cb->skb = skb;
2220	dma_unmap_addr_set(cb, dma_addr, mapping);
2221	dma_unmap_len_set(cb, dma_len, priv->rx_buf_len);
2222	dmadesc_set_addr(priv, cb->bd_addr, mapping);
2223
2224	/* Return the current Rx skb to caller */
2225	return rx_skb;
2226}
2227
2228/* bcmgenet_desc_rx - descriptor based rx process.
2229 * this could be called from bottom half, or from NAPI polling method.
2230 */
2231static unsigned int bcmgenet_desc_rx(struct bcmgenet_rx_ring *ring,
2232				     unsigned int budget)
2233{
2234	struct bcmgenet_priv *priv = ring->priv;
2235	struct net_device *dev = priv->dev;
2236	struct enet_cb *cb;
2237	struct sk_buff *skb;
2238	u32 dma_length_status;
2239	unsigned long dma_flag;
2240	int len;
2241	unsigned int rxpktprocessed = 0, rxpkttoprocess;
2242	unsigned int bytes_processed = 0;
2243	unsigned int p_index, mask;
2244	unsigned int discards;
2245
2246	/* Clear status before servicing to reduce spurious interrupts */
2247	if (ring->index == DESC_INDEX) {
2248		bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_RXDMA_DONE,
2249					 INTRL2_CPU_CLEAR);
2250	} else {
2251		mask = 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index);
2252		bcmgenet_intrl2_1_writel(priv,
2253					 mask,
2254					 INTRL2_CPU_CLEAR);
2255	}
2256
2257	p_index = bcmgenet_rdma_ring_readl(priv, ring->index, RDMA_PROD_INDEX);
2258
2259	discards = (p_index >> DMA_P_INDEX_DISCARD_CNT_SHIFT) &
2260		   DMA_P_INDEX_DISCARD_CNT_MASK;
2261	if (discards > ring->old_discards) {
2262		discards = discards - ring->old_discards;
2263		ring->errors += discards;
2264		ring->old_discards += discards;
2265
2266		/* Clear HW register when we reach 75% of maximum 0xFFFF */
2267		if (ring->old_discards >= 0xC000) {
2268			ring->old_discards = 0;
2269			bcmgenet_rdma_ring_writel(priv, ring->index, 0,
2270						  RDMA_PROD_INDEX);
2271		}
2272	}
2273
2274	p_index &= DMA_P_INDEX_MASK;
2275	rxpkttoprocess = (p_index - ring->c_index) & DMA_C_INDEX_MASK;
2276
2277	netif_dbg(priv, rx_status, dev,
2278		  "RDMA: rxpkttoprocess=%d\n", rxpkttoprocess);
2279
2280	while ((rxpktprocessed < rxpkttoprocess) &&
2281	       (rxpktprocessed < budget)) {
2282		struct status_64 *status;
2283		__be16 rx_csum;
2284
2285		cb = &priv->rx_cbs[ring->read_ptr];
2286		skb = bcmgenet_rx_refill(priv, cb);
2287
2288		if (unlikely(!skb)) {
2289			ring->dropped++;
2290			goto next;
2291		}
2292
2293		status = (struct status_64 *)skb->data;
2294		dma_length_status = status->length_status;
2295		if (dev->features & NETIF_F_RXCSUM) {
2296			rx_csum = (__force __be16)(status->rx_csum & 0xffff);
2297			if (rx_csum) {
2298				skb->csum = (__force __wsum)ntohs(rx_csum);
2299				skb->ip_summed = CHECKSUM_COMPLETE;
2300			}
2301		}
2302
2303		/* DMA flags and length are still valid no matter how
2304		 * we got the Receive Status Vector (64B RSB or register)
2305		 */
2306		dma_flag = dma_length_status & 0xffff;
2307		len = dma_length_status >> DMA_BUFLENGTH_SHIFT;
2308
2309		netif_dbg(priv, rx_status, dev,
2310			  "%s:p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n",
2311			  __func__, p_index, ring->c_index,
2312			  ring->read_ptr, dma_length_status);
2313
2314		if (unlikely(len > RX_BUF_LENGTH)) {
2315			netif_err(priv, rx_status, dev, "oversized packet\n");
2316			dev->stats.rx_length_errors++;
2317			dev->stats.rx_errors++;
2318			dev_kfree_skb_any(skb);
2319			goto next;
2320		}
2321
2322		if (unlikely(!(dma_flag & DMA_EOP) || !(dma_flag & DMA_SOP))) {
2323			netif_err(priv, rx_status, dev,
2324				  "dropping fragmented packet!\n");
2325			ring->errors++;
2326			dev_kfree_skb_any(skb);
2327			goto next;
2328		}
2329
2330		/* report errors */
2331		if (unlikely(dma_flag & (DMA_RX_CRC_ERROR |
2332						DMA_RX_OV |
2333						DMA_RX_NO |
2334						DMA_RX_LG |
2335						DMA_RX_RXER))) {
2336			netif_err(priv, rx_status, dev, "dma_flag=0x%x\n",
2337				  (unsigned int)dma_flag);
2338			if (dma_flag & DMA_RX_CRC_ERROR)
2339				dev->stats.rx_crc_errors++;
2340			if (dma_flag & DMA_RX_OV)
2341				dev->stats.rx_over_errors++;
2342			if (dma_flag & DMA_RX_NO)
2343				dev->stats.rx_frame_errors++;
2344			if (dma_flag & DMA_RX_LG)
2345				dev->stats.rx_length_errors++;
2346			dev->stats.rx_errors++;
2347			dev_kfree_skb_any(skb);
2348			goto next;
2349		} /* error packet */
2350
2351		skb_put(skb, len);
2352
2353		/* remove RSB and hardware 2bytes added for IP alignment */
2354		skb_pull(skb, 66);
2355		len -= 66;
2356
2357		if (priv->crc_fwd_en) {
2358			skb_trim(skb, len - ETH_FCS_LEN);
2359			len -= ETH_FCS_LEN;
2360		}
2361
2362		bytes_processed += len;
2363
2364		/*Finish setting up the received SKB and send it to the kernel*/
2365		skb->protocol = eth_type_trans(skb, priv->dev);
2366		ring->packets++;
2367		ring->bytes += len;
2368		if (dma_flag & DMA_RX_MULT)
2369			dev->stats.multicast++;
2370
2371		/* Notify kernel */
2372		napi_gro_receive(&ring->napi, skb);
2373		netif_dbg(priv, rx_status, dev, "pushed up to kernel\n");
2374
2375next:
2376		rxpktprocessed++;
2377		if (likely(ring->read_ptr < ring->end_ptr))
2378			ring->read_ptr++;
2379		else
2380			ring->read_ptr = ring->cb_ptr;
2381
2382		ring->c_index = (ring->c_index + 1) & DMA_C_INDEX_MASK;
2383		bcmgenet_rdma_ring_writel(priv, ring->index, ring->c_index, RDMA_CONS_INDEX);
2384	}
2385
2386	ring->dim.bytes = bytes_processed;
2387	ring->dim.packets = rxpktprocessed;
2388
2389	return rxpktprocessed;
2390}
2391
2392/* Rx NAPI polling method */
2393static int bcmgenet_rx_poll(struct napi_struct *napi, int budget)
2394{
2395	struct bcmgenet_rx_ring *ring = container_of(napi,
2396			struct bcmgenet_rx_ring, napi);
2397	struct dim_sample dim_sample = {};
2398	unsigned int work_done;
2399
2400	work_done = bcmgenet_desc_rx(ring, budget);
2401
2402	if (work_done < budget) {
2403		napi_complete_done(napi, work_done);
2404		ring->int_enable(ring);
2405	}
2406
2407	if (ring->dim.use_dim) {
2408		dim_update_sample(ring->dim.event_ctr, ring->dim.packets,
2409				  ring->dim.bytes, &dim_sample);
2410		net_dim(&ring->dim.dim, dim_sample);
2411	}
2412
2413	return work_done;
2414}
2415
2416static void bcmgenet_dim_work(struct work_struct *work)
2417{
2418	struct dim *dim = container_of(work, struct dim, work);
2419	struct bcmgenet_net_dim *ndim =
2420			container_of(dim, struct bcmgenet_net_dim, dim);
2421	struct bcmgenet_rx_ring *ring =
2422			container_of(ndim, struct bcmgenet_rx_ring, dim);
2423	struct dim_cq_moder cur_profile =
2424			net_dim_get_rx_moderation(dim->mode, dim->profile_ix);
2425
2426	bcmgenet_set_rx_coalesce(ring, cur_profile.usec, cur_profile.pkts);
2427	dim->state = DIM_START_MEASURE;
2428}
2429
2430/* Assign skb to RX DMA descriptor. */
2431static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv *priv,
2432				     struct bcmgenet_rx_ring *ring)
2433{
2434	struct enet_cb *cb;
2435	struct sk_buff *skb;
2436	int i;
2437
2438	netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
2439
2440	/* loop here for each buffer needing assign */
2441	for (i = 0; i < ring->size; i++) {
2442		cb = ring->cbs + i;
2443		skb = bcmgenet_rx_refill(priv, cb);
2444		if (skb)
2445			dev_consume_skb_any(skb);
2446		if (!cb->skb)
2447			return -ENOMEM;
2448	}
2449
2450	return 0;
2451}
2452
2453static void bcmgenet_free_rx_buffers(struct bcmgenet_priv *priv)
2454{
2455	struct sk_buff *skb;
2456	struct enet_cb *cb;
2457	int i;
2458
2459	for (i = 0; i < priv->num_rx_bds; i++) {
2460		cb = &priv->rx_cbs[i];
2461
2462		skb = bcmgenet_free_rx_cb(&priv->pdev->dev, cb);
2463		if (skb)
2464			dev_consume_skb_any(skb);
2465	}
2466}
2467
2468static void umac_enable_set(struct bcmgenet_priv *priv, u32 mask, bool enable)
2469{
2470	u32 reg;
2471
2472	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
2473	if (reg & CMD_SW_RESET)
2474		return;
2475	if (enable)
2476		reg |= mask;
2477	else
2478		reg &= ~mask;
2479	bcmgenet_umac_writel(priv, reg, UMAC_CMD);
2480
2481	/* UniMAC stops on a packet boundary, wait for a full-size packet
2482	 * to be processed
2483	 */
2484	if (enable == 0)
2485		usleep_range(1000, 2000);
2486}
2487
2488static void reset_umac(struct bcmgenet_priv *priv)
2489{
2490	/* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */
2491	bcmgenet_rbuf_ctrl_set(priv, 0);
2492	udelay(10);
2493
2494	/* issue soft reset and disable MAC while updating its registers */
2495	bcmgenet_umac_writel(priv, CMD_SW_RESET, UMAC_CMD);
2496	udelay(2);
2497}
2498
2499static void bcmgenet_intr_disable(struct bcmgenet_priv *priv)
2500{
2501	/* Mask all interrupts.*/
2502	bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
2503	bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
2504	bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
2505	bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
2506}
2507
2508static void bcmgenet_link_intr_enable(struct bcmgenet_priv *priv)
2509{
2510	u32 int0_enable = 0;
2511
2512	/* Monitor cable plug/unplugged event for internal PHY, external PHY
2513	 * and MoCA PHY
2514	 */
2515	if (priv->internal_phy) {
2516		int0_enable |= UMAC_IRQ_LINK_EVENT;
2517		if (GENET_IS_V1(priv) || GENET_IS_V2(priv) || GENET_IS_V3(priv))
2518			int0_enable |= UMAC_IRQ_PHY_DET_R;
2519	} else if (priv->ext_phy) {
2520		int0_enable |= UMAC_IRQ_LINK_EVENT;
2521	} else if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
2522		if (priv->hw_params->flags & GENET_HAS_MOCA_LINK_DET)
2523			int0_enable |= UMAC_IRQ_LINK_EVENT;
2524	}
2525	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2526}
2527
2528static void init_umac(struct bcmgenet_priv *priv)
2529{
2530	struct device *kdev = &priv->pdev->dev;
2531	u32 reg;
2532	u32 int0_enable = 0;
2533
2534	dev_dbg(&priv->pdev->dev, "bcmgenet: init_umac\n");
2535
2536	reset_umac(priv);
2537
2538	/* clear tx/rx counter */
2539	bcmgenet_umac_writel(priv,
2540			     MIB_RESET_RX | MIB_RESET_TX | MIB_RESET_RUNT,
2541			     UMAC_MIB_CTRL);
2542	bcmgenet_umac_writel(priv, 0, UMAC_MIB_CTRL);
2543
2544	bcmgenet_umac_writel(priv, ENET_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);
2545
2546	/* init tx registers, enable TSB */
2547	reg = bcmgenet_tbuf_ctrl_get(priv);
2548	reg |= TBUF_64B_EN;
2549	bcmgenet_tbuf_ctrl_set(priv, reg);
2550
2551	/* init rx registers, enable ip header optimization and RSB */
2552	reg = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
2553	reg |= RBUF_ALIGN_2B | RBUF_64B_EN;
2554	bcmgenet_rbuf_writel(priv, reg, RBUF_CTRL);
2555
2556	/* enable rx checksumming */
2557	reg = bcmgenet_rbuf_readl(priv, RBUF_CHK_CTRL);
2558	reg |= RBUF_RXCHK_EN | RBUF_L3_PARSE_DIS;
2559	/* If UniMAC forwards CRC, we need to skip over it to get
2560	 * a valid CHK bit to be set in the per-packet status word
2561	 */
2562	if (priv->crc_fwd_en)
2563		reg |= RBUF_SKIP_FCS;
2564	else
2565		reg &= ~RBUF_SKIP_FCS;
2566	bcmgenet_rbuf_writel(priv, reg, RBUF_CHK_CTRL);
2567
2568	if (!GENET_IS_V1(priv) && !GENET_IS_V2(priv))
2569		bcmgenet_rbuf_writel(priv, 1, RBUF_TBUF_SIZE_CTRL);
2570
2571	bcmgenet_intr_disable(priv);
2572
2573	/* Configure backpressure vectors for MoCA */
2574	if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
2575		reg = bcmgenet_bp_mc_get(priv);
2576		reg |= BIT(priv->hw_params->bp_in_en_shift);
2577
2578		/* bp_mask: back pressure mask */
2579		if (netif_is_multiqueue(priv->dev))
2580			reg |= priv->hw_params->bp_in_mask;
2581		else
2582			reg &= ~priv->hw_params->bp_in_mask;
2583		bcmgenet_bp_mc_set(priv, reg);
2584	}
2585
2586	/* Enable MDIO interrupts on GENET v3+ */
2587	if (priv->hw_params->flags & GENET_HAS_MDIO_INTR)
2588		int0_enable |= (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
2589
2590	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2591
2592	dev_dbg(kdev, "done init umac\n");
2593}
2594
2595static void bcmgenet_init_dim(struct bcmgenet_rx_ring *ring,
2596			      void (*cb)(struct work_struct *work))
2597{
2598	struct bcmgenet_net_dim *dim = &ring->dim;
2599
2600	INIT_WORK(&dim->dim.work, cb);
2601	dim->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
2602	dim->event_ctr = 0;
2603	dim->packets = 0;
2604	dim->bytes = 0;
2605}
2606
2607static void bcmgenet_init_rx_coalesce(struct bcmgenet_rx_ring *ring)
2608{
2609	struct bcmgenet_net_dim *dim = &ring->dim;
2610	struct dim_cq_moder moder;
2611	u32 usecs, pkts;
2612
2613	usecs = ring->rx_coalesce_usecs;
2614	pkts = ring->rx_max_coalesced_frames;
2615
2616	/* If DIM was enabled, re-apply default parameters */
2617	if (dim->use_dim) {
2618		moder = net_dim_get_def_rx_moderation(dim->dim.mode);
2619		usecs = moder.usec;
2620		pkts = moder.pkts;
2621	}
2622
2623	bcmgenet_set_rx_coalesce(ring, usecs, pkts);
2624}
2625
2626/* Initialize a Tx ring along with corresponding hardware registers */
2627static void bcmgenet_init_tx_ring(struct bcmgenet_priv *priv,
2628				  unsigned int index, unsigned int size,
2629				  unsigned int start_ptr, unsigned int end_ptr)
2630{
2631	struct bcmgenet_tx_ring *ring = &priv->tx_rings[index];
2632	u32 words_per_bd = WORDS_PER_BD(priv);
2633	u32 flow_period_val = 0;
2634
2635	spin_lock_init(&ring->lock);
2636	ring->priv = priv;
2637	ring->index = index;
2638	if (index == DESC_INDEX) {
2639		ring->queue = 0;
2640		ring->int_enable = bcmgenet_tx_ring16_int_enable;
2641		ring->int_disable = bcmgenet_tx_ring16_int_disable;
2642	} else {
2643		ring->queue = index + 1;
2644		ring->int_enable = bcmgenet_tx_ring_int_enable;
2645		ring->int_disable = bcmgenet_tx_ring_int_disable;
2646	}
2647	ring->cbs = priv->tx_cbs + start_ptr;
2648	ring->size = size;
2649	ring->clean_ptr = start_ptr;
2650	ring->c_index = 0;
2651	ring->free_bds = size;
2652	ring->write_ptr = start_ptr;
2653	ring->cb_ptr = start_ptr;
2654	ring->end_ptr = end_ptr - 1;
2655	ring->prod_index = 0;
2656
2657	/* Set flow period for ring != 16 */
2658	if (index != DESC_INDEX)
2659		flow_period_val = ENET_MAX_MTU_SIZE << 16;
2660
2661	bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_PROD_INDEX);
2662	bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_CONS_INDEX);
2663	bcmgenet_tdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
2664	/* Disable rate control for now */
2665	bcmgenet_tdma_ring_writel(priv, index, flow_period_val,
2666				  TDMA_FLOW_PERIOD);
2667	bcmgenet_tdma_ring_writel(priv, index,
2668				  ((size << DMA_RING_SIZE_SHIFT) |
2669				   RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2670
2671	/* Set start and end address, read and write pointers */
2672	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2673				  DMA_START_ADDR);
2674	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2675				  TDMA_READ_PTR);
2676	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2677				  TDMA_WRITE_PTR);
2678	bcmgenet_tdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2679				  DMA_END_ADDR);
2680
2681	/* Initialize Tx NAPI */
2682	netif_napi_add_tx(priv->dev, &ring->napi, bcmgenet_tx_poll);
2683}
2684
2685/* Initialize a RDMA ring */
2686static int bcmgenet_init_rx_ring(struct bcmgenet_priv *priv,
2687				 unsigned int index, unsigned int size,
2688				 unsigned int start_ptr, unsigned int end_ptr)
2689{
2690	struct bcmgenet_rx_ring *ring = &priv->rx_rings[index];
2691	u32 words_per_bd = WORDS_PER_BD(priv);
2692	int ret;
2693
2694	ring->priv = priv;
2695	ring->index = index;
2696	if (index == DESC_INDEX) {
2697		ring->int_enable = bcmgenet_rx_ring16_int_enable;
2698		ring->int_disable = bcmgenet_rx_ring16_int_disable;
2699	} else {
2700		ring->int_enable = bcmgenet_rx_ring_int_enable;
2701		ring->int_disable = bcmgenet_rx_ring_int_disable;
2702	}
2703	ring->cbs = priv->rx_cbs + start_ptr;
2704	ring->size = size;
2705	ring->c_index = 0;
2706	ring->read_ptr = start_ptr;
2707	ring->cb_ptr = start_ptr;
2708	ring->end_ptr = end_ptr - 1;
2709
2710	ret = bcmgenet_alloc_rx_buffers(priv, ring);
2711	if (ret)
2712		return ret;
2713
2714	bcmgenet_init_dim(ring, bcmgenet_dim_work);
2715	bcmgenet_init_rx_coalesce(ring);
2716
2717	/* Initialize Rx NAPI */
2718	netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll);
2719
2720	bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_PROD_INDEX);
2721	bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_CONS_INDEX);
2722	bcmgenet_rdma_ring_writel(priv, index,
2723				  ((size << DMA_RING_SIZE_SHIFT) |
2724				   RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2725	bcmgenet_rdma_ring_writel(priv, index,
2726				  (DMA_FC_THRESH_LO <<
2727				   DMA_XOFF_THRESHOLD_SHIFT) |
2728				   DMA_FC_THRESH_HI, RDMA_XON_XOFF_THRESH);
2729
2730	/* Set start and end address, read and write pointers */
2731	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2732				  DMA_START_ADDR);
2733	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2734				  RDMA_READ_PTR);
2735	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2736				  RDMA_WRITE_PTR);
2737	bcmgenet_rdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2738				  DMA_END_ADDR);
2739
2740	return ret;
2741}
2742
2743static void bcmgenet_enable_tx_napi(struct bcmgenet_priv *priv)
2744{
2745	unsigned int i;
2746	struct bcmgenet_tx_ring *ring;
2747
2748	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2749		ring = &priv->tx_rings[i];
2750		napi_enable(&ring->napi);
2751		ring->int_enable(ring);
2752	}
2753
2754	ring = &priv->tx_rings[DESC_INDEX];
2755	napi_enable(&ring->napi);
2756	ring->int_enable(ring);
2757}
2758
2759static void bcmgenet_disable_tx_napi(struct bcmgenet_priv *priv)
2760{
2761	unsigned int i;
2762	struct bcmgenet_tx_ring *ring;
2763
2764	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2765		ring = &priv->tx_rings[i];
2766		napi_disable(&ring->napi);
2767	}
2768
2769	ring = &priv->tx_rings[DESC_INDEX];
2770	napi_disable(&ring->napi);
2771}
2772
2773static void bcmgenet_fini_tx_napi(struct bcmgenet_priv *priv)
2774{
2775	unsigned int i;
2776	struct bcmgenet_tx_ring *ring;
2777
2778	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2779		ring = &priv->tx_rings[i];
2780		netif_napi_del(&ring->napi);
2781	}
2782
2783	ring = &priv->tx_rings[DESC_INDEX];
2784	netif_napi_del(&ring->napi);
2785}
2786
2787/* Initialize Tx queues
2788 *
2789 * Queues 0-3 are priority-based, each one has 32 descriptors,
2790 * with queue 0 being the highest priority queue.
2791 *
2792 * Queue 16 is the default Tx queue with
2793 * GENET_Q16_TX_BD_CNT = 256 - 4 * 32 = 128 descriptors.
2794 *
2795 * The transmit control block pool is then partitioned as follows:
2796 * - Tx queue 0 uses tx_cbs[0..31]
2797 * - Tx queue 1 uses tx_cbs[32..63]
2798 * - Tx queue 2 uses tx_cbs[64..95]
2799 * - Tx queue 3 uses tx_cbs[96..127]
2800 * - Tx queue 16 uses tx_cbs[128..255]
2801 */
2802static void bcmgenet_init_tx_queues(struct net_device *dev)
2803{
2804	struct bcmgenet_priv *priv = netdev_priv(dev);
2805	u32 i, dma_enable;
2806	u32 dma_ctrl, ring_cfg;
2807	u32 dma_priority[3] = {0, 0, 0};
2808
2809	dma_ctrl = bcmgenet_tdma_readl(priv, DMA_CTRL);
2810	dma_enable = dma_ctrl & DMA_EN;
2811	dma_ctrl &= ~DMA_EN;
2812	bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2813
2814	dma_ctrl = 0;
2815	ring_cfg = 0;
2816
2817	/* Enable strict priority arbiter mode */
2818	bcmgenet_tdma_writel(priv, DMA_ARBITER_SP, DMA_ARB_CTRL);
2819
2820	/* Initialize Tx priority queues */
2821	for (i = 0; i < priv->hw_params->tx_queues; i++) {
2822		bcmgenet_init_tx_ring(priv, i, priv->hw_params->tx_bds_per_q,
2823				      i * priv->hw_params->tx_bds_per_q,
2824				      (i + 1) * priv->hw_params->tx_bds_per_q);
2825		ring_cfg |= (1 << i);
2826		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2827		dma_priority[DMA_PRIO_REG_INDEX(i)] |=
2828			((GENET_Q0_PRIORITY + i) << DMA_PRIO_REG_SHIFT(i));
2829	}
2830
2831	/* Initialize Tx default queue 16 */
2832	bcmgenet_init_tx_ring(priv, DESC_INDEX, GENET_Q16_TX_BD_CNT,
2833			      priv->hw_params->tx_queues *
2834			      priv->hw_params->tx_bds_per_q,
2835			      TOTAL_DESC);
2836	ring_cfg |= (1 << DESC_INDEX);
2837	dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2838	dma_priority[DMA_PRIO_REG_INDEX(DESC_INDEX)] |=
2839		((GENET_Q0_PRIORITY + priv->hw_params->tx_queues) <<
2840		 DMA_PRIO_REG_SHIFT(DESC_INDEX));
2841
2842	/* Set Tx queue priorities */
2843	bcmgenet_tdma_writel(priv, dma_priority[0], DMA_PRIORITY_0);
2844	bcmgenet_tdma_writel(priv, dma_priority[1], DMA_PRIORITY_1);
2845	bcmgenet_tdma_writel(priv, dma_priority[2], DMA_PRIORITY_2);
2846
2847	/* Enable Tx queues */
2848	bcmgenet_tdma_writel(priv, ring_cfg, DMA_RING_CFG);
2849
2850	/* Enable Tx DMA */
2851	if (dma_enable)
2852		dma_ctrl |= DMA_EN;
2853	bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2854}
2855
2856static void bcmgenet_enable_rx_napi(struct bcmgenet_priv *priv)
2857{
2858	unsigned int i;
2859	struct bcmgenet_rx_ring *ring;
2860
2861	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2862		ring = &priv->rx_rings[i];
2863		napi_enable(&ring->napi);
2864		ring->int_enable(ring);
2865	}
2866
2867	ring = &priv->rx_rings[DESC_INDEX];
2868	napi_enable(&ring->napi);
2869	ring->int_enable(ring);
2870}
2871
2872static void bcmgenet_disable_rx_napi(struct bcmgenet_priv *priv)
2873{
2874	unsigned int i;
2875	struct bcmgenet_rx_ring *ring;
2876
2877	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2878		ring = &priv->rx_rings[i];
2879		napi_disable(&ring->napi);
2880		cancel_work_sync(&ring->dim.dim.work);
2881	}
2882
2883	ring = &priv->rx_rings[DESC_INDEX];
2884	napi_disable(&ring->napi);
2885	cancel_work_sync(&ring->dim.dim.work);
2886}
2887
2888static void bcmgenet_fini_rx_napi(struct bcmgenet_priv *priv)
2889{
2890	unsigned int i;
2891	struct bcmgenet_rx_ring *ring;
2892
2893	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2894		ring = &priv->rx_rings[i];
2895		netif_napi_del(&ring->napi);
2896	}
2897
2898	ring = &priv->rx_rings[DESC_INDEX];
2899	netif_napi_del(&ring->napi);
2900}
2901
2902/* Initialize Rx queues
2903 *
2904 * Queues 0-15 are priority queues. Hardware Filtering Block (HFB) can be
2905 * used to direct traffic to these queues.
2906 *
2907 * Queue 16 is the default Rx queue with GENET_Q16_RX_BD_CNT descriptors.
2908 */
2909static int bcmgenet_init_rx_queues(struct net_device *dev)
2910{
2911	struct bcmgenet_priv *priv = netdev_priv(dev);
2912	u32 i;
2913	u32 dma_enable;
2914	u32 dma_ctrl;
2915	u32 ring_cfg;
2916	int ret;
2917
2918	dma_ctrl = bcmgenet_rdma_readl(priv, DMA_CTRL);
2919	dma_enable = dma_ctrl & DMA_EN;
2920	dma_ctrl &= ~DMA_EN;
2921	bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2922
2923	dma_ctrl = 0;
2924	ring_cfg = 0;
2925
2926	/* Initialize Rx priority queues */
2927	for (i = 0; i < priv->hw_params->rx_queues; i++) {
2928		ret = bcmgenet_init_rx_ring(priv, i,
2929					    priv->hw_params->rx_bds_per_q,
2930					    i * priv->hw_params->rx_bds_per_q,
2931					    (i + 1) *
2932					    priv->hw_params->rx_bds_per_q);
2933		if (ret)
2934			return ret;
2935
2936		ring_cfg |= (1 << i);
2937		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2938	}
2939
2940	/* Initialize Rx default queue 16 */
2941	ret = bcmgenet_init_rx_ring(priv, DESC_INDEX, GENET_Q16_RX_BD_CNT,
2942				    priv->hw_params->rx_queues *
2943				    priv->hw_params->rx_bds_per_q,
2944				    TOTAL_DESC);
2945	if (ret)
2946		return ret;
2947
2948	ring_cfg |= (1 << DESC_INDEX);
2949	dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2950
2951	/* Enable rings */
2952	bcmgenet_rdma_writel(priv, ring_cfg, DMA_RING_CFG);
2953
2954	/* Configure ring as descriptor ring and re-enable DMA if enabled */
2955	if (dma_enable)
2956		dma_ctrl |= DMA_EN;
2957	bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2958
2959	return 0;
2960}
2961
2962static int bcmgenet_dma_teardown(struct bcmgenet_priv *priv)
2963{
2964	int ret = 0;
2965	int timeout = 0;
2966	u32 reg;
2967	u32 dma_ctrl;
2968	int i;
2969
2970	/* Disable TDMA to stop add more frames in TX DMA */
2971	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2972	reg &= ~DMA_EN;
2973	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2974
2975	/* Check TDMA status register to confirm TDMA is disabled */
2976	while (timeout++ < DMA_TIMEOUT_VAL) {
2977		reg = bcmgenet_tdma_readl(priv, DMA_STATUS);
2978		if (reg & DMA_DISABLED)
2979			break;
2980
2981		udelay(1);
2982	}
2983
2984	if (timeout == DMA_TIMEOUT_VAL) {
2985		netdev_warn(priv->dev, "Timed out while disabling TX DMA\n");
2986		ret = -ETIMEDOUT;
2987	}
2988
2989	/* Wait 10ms for packet drain in both tx and rx dma */
2990	usleep_range(10000, 20000);
2991
2992	/* Disable RDMA */
2993	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2994	reg &= ~DMA_EN;
2995	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2996
2997	timeout = 0;
2998	/* Check RDMA status register to confirm RDMA is disabled */
2999	while (timeout++ < DMA_TIMEOUT_VAL) {
3000		reg = bcmgenet_rdma_readl(priv, DMA_STATUS);
3001		if (reg & DMA_DISABLED)
3002			break;
3003
3004		udelay(1);
3005	}
3006
3007	if (timeout == DMA_TIMEOUT_VAL) {
3008		netdev_warn(priv->dev, "Timed out while disabling RX DMA\n");
3009		ret = -ETIMEDOUT;
3010	}
3011
3012	dma_ctrl = 0;
3013	for (i = 0; i < priv->hw_params->rx_queues; i++)
3014		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
3015	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
3016	reg &= ~dma_ctrl;
3017	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
3018
3019	dma_ctrl = 0;
3020	for (i = 0; i < priv->hw_params->tx_queues; i++)
3021		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
3022	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
3023	reg &= ~dma_ctrl;
3024	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
3025
3026	return ret;
3027}
3028
3029static void bcmgenet_fini_dma(struct bcmgenet_priv *priv)
3030{
3031	struct netdev_queue *txq;
3032	int i;
3033
3034	bcmgenet_fini_rx_napi(priv);
3035	bcmgenet_fini_tx_napi(priv);
3036
3037	for (i = 0; i < priv->num_tx_bds; i++)
3038		dev_kfree_skb(bcmgenet_free_tx_cb(&priv->pdev->dev,
3039						  priv->tx_cbs + i));
3040
3041	for (i = 0; i < priv->hw_params->tx_queues; i++) {
3042		txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[i].queue);
3043		netdev_tx_reset_queue(txq);
3044	}
3045
3046	txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[DESC_INDEX].queue);
3047	netdev_tx_reset_queue(txq);
3048
3049	bcmgenet_free_rx_buffers(priv);
3050	kfree(priv->rx_cbs);
3051	kfree(priv->tx_cbs);
3052}
3053
3054/* init_edma: Initialize DMA control register */
3055static int bcmgenet_init_dma(struct bcmgenet_priv *priv)
3056{
3057	int ret;
3058	unsigned int i;
3059	struct enet_cb *cb;
3060
3061	netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
3062
3063	/* Initialize common Rx ring structures */
3064	priv->rx_bds = priv->base + priv->hw_params->rdma_offset;
3065	priv->num_rx_bds = TOTAL_DESC;
3066	priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct enet_cb),
3067			       GFP_KERNEL);
3068	if (!priv->rx_cbs)
3069		return -ENOMEM;
3070
3071	for (i = 0; i < priv->num_rx_bds; i++) {
3072		cb = priv->rx_cbs + i;
3073		cb->bd_addr = priv->rx_bds + i * DMA_DESC_SIZE;
3074	}
3075
3076	/* Initialize common TX ring structures */
3077	priv->tx_bds = priv->base + priv->hw_params->tdma_offset;
3078	priv->num_tx_bds = TOTAL_DESC;
3079	priv->tx_cbs = kcalloc(priv->num_tx_bds, sizeof(struct enet_cb),
3080			       GFP_KERNEL);
3081	if (!priv->tx_cbs) {
3082		kfree(priv->rx_cbs);
3083		return -ENOMEM;
3084	}
3085
3086	for (i = 0; i < priv->num_tx_bds; i++) {
3087		cb = priv->tx_cbs + i;
3088		cb->bd_addr = priv->tx_bds + i * DMA_DESC_SIZE;
3089	}
3090
3091	/* Init rDma */
3092	bcmgenet_rdma_writel(priv, priv->dma_max_burst_length,
3093			     DMA_SCB_BURST_SIZE);
3094
3095	/* Initialize Rx queues */
3096	ret = bcmgenet_init_rx_queues(priv->dev);
3097	if (ret) {
3098		netdev_err(priv->dev, "failed to initialize Rx queues\n");
3099		bcmgenet_free_rx_buffers(priv);
3100		kfree(priv->rx_cbs);
3101		kfree(priv->tx_cbs);
3102		return ret;
3103	}
3104
3105	/* Init tDma */
3106	bcmgenet_tdma_writel(priv, priv->dma_max_burst_length,
3107			     DMA_SCB_BURST_SIZE);
3108
3109	/* Initialize Tx queues */
3110	bcmgenet_init_tx_queues(priv->dev);
3111
3112	return 0;
3113}
3114
3115/* Interrupt bottom half */
3116static void bcmgenet_irq_task(struct work_struct *work)
3117{
3118	unsigned int status;
3119	struct bcmgenet_priv *priv = container_of(
3120			work, struct bcmgenet_priv, bcmgenet_irq_work);
3121
3122	netif_dbg(priv, intr, priv->dev, "%s\n", __func__);
3123
3124	spin_lock_irq(&priv->lock);
3125	status = priv->irq0_stat;
3126	priv->irq0_stat = 0;
3127	spin_unlock_irq(&priv->lock);
3128
3129	if (status & UMAC_IRQ_PHY_DET_R &&
3130	    priv->dev->phydev->autoneg != AUTONEG_ENABLE) {
3131		phy_init_hw(priv->dev->phydev);
3132		genphy_config_aneg(priv->dev->phydev);
3133	}
3134
3135	/* Link UP/DOWN event */
3136	if (status & UMAC_IRQ_LINK_EVENT)
3137		phy_mac_interrupt(priv->dev->phydev);
3138
3139}
3140
3141/* bcmgenet_isr1: handle Rx and Tx priority queues */
3142static irqreturn_t bcmgenet_isr1(int irq, void *dev_id)
3143{
3144	struct bcmgenet_priv *priv = dev_id;
3145	struct bcmgenet_rx_ring *rx_ring;
3146	struct bcmgenet_tx_ring *tx_ring;
3147	unsigned int index, status;
3148
3149	/* Read irq status */
3150	status = bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_STAT) &
3151		~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
3152
3153	/* clear interrupts */
3154	bcmgenet_intrl2_1_writel(priv, status, INTRL2_CPU_CLEAR);
3155
3156	netif_dbg(priv, intr, priv->dev,
3157		  "%s: IRQ=0x%x\n", __func__, status);
3158
3159	/* Check Rx priority queue interrupts */
3160	for (index = 0; index < priv->hw_params->rx_queues; index++) {
3161		if (!(status & BIT(UMAC_IRQ1_RX_INTR_SHIFT + index)))
3162			continue;
3163
3164		rx_ring = &priv->rx_rings[index];
3165		rx_ring->dim.event_ctr++;
3166
3167		if (likely(napi_schedule_prep(&rx_ring->napi))) {
3168			rx_ring->int_disable(rx_ring);
3169			__napi_schedule_irqoff(&rx_ring->napi);
3170		}
3171	}
3172
3173	/* Check Tx priority queue interrupts */
3174	for (index = 0; index < priv->hw_params->tx_queues; index++) {
3175		if (!(status & BIT(index)))
3176			continue;
3177
3178		tx_ring = &priv->tx_rings[index];
3179
3180		if (likely(napi_schedule_prep(&tx_ring->napi))) {
3181			tx_ring->int_disable(tx_ring);
3182			__napi_schedule_irqoff(&tx_ring->napi);
3183		}
3184	}
3185
3186	return IRQ_HANDLED;
3187}
3188
3189/* bcmgenet_isr0: handle Rx and Tx default queues + other stuff */
3190static irqreturn_t bcmgenet_isr0(int irq, void *dev_id)
3191{
3192	struct bcmgenet_priv *priv = dev_id;
3193	struct bcmgenet_rx_ring *rx_ring;
3194	struct bcmgenet_tx_ring *tx_ring;
3195	unsigned int status;
3196	unsigned long flags;
3197
3198	/* Read irq status */
3199	status = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT) &
3200		~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
3201
3202	/* clear interrupts */
3203	bcmgenet_intrl2_0_writel(priv, status, INTRL2_CPU_CLEAR);
3204
3205	netif_dbg(priv, intr, priv->dev,
3206		  "IRQ=0x%x\n", status);
3207
3208	if (status & UMAC_IRQ_RXDMA_DONE) {
3209		rx_ring = &priv->rx_rings[DESC_INDEX];
3210		rx_ring->dim.event_ctr++;
3211
3212		if (likely(napi_schedule_prep(&rx_ring->napi))) {
3213			rx_ring->int_disable(rx_ring);
3214			__napi_schedule_irqoff(&rx_ring->napi);
3215		}
3216	}
3217
3218	if (status & UMAC_IRQ_TXDMA_DONE) {
3219		tx_ring = &priv->tx_rings[DESC_INDEX];
3220
3221		if (likely(napi_schedule_prep(&tx_ring->napi))) {
3222			tx_ring->int_disable(tx_ring);
3223			__napi_schedule_irqoff(&tx_ring->napi);
3224		}
3225	}
3226
3227	if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
3228		status & (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR)) {
3229		wake_up(&priv->wq);
3230	}
3231
3232	/* all other interested interrupts handled in bottom half */
3233	status &= (UMAC_IRQ_LINK_EVENT | UMAC_IRQ_PHY_DET_R);
3234	if (status) {
3235		/* Save irq status for bottom-half processing. */
3236		spin_lock_irqsave(&priv->lock, flags);
3237		priv->irq0_stat |= status;
3238		spin_unlock_irqrestore(&priv->lock, flags);
3239
3240		schedule_work(&priv->bcmgenet_irq_work);
3241	}
3242
3243	return IRQ_HANDLED;
3244}
3245
3246static irqreturn_t bcmgenet_wol_isr(int irq, void *dev_id)
3247{
3248	/* Acknowledge the interrupt */
3249	return IRQ_HANDLED;
3250}
3251
3252#ifdef CONFIG_NET_POLL_CONTROLLER
3253static void bcmgenet_poll_controller(struct net_device *dev)
3254{
3255	struct bcmgenet_priv *priv = netdev_priv(dev);
3256
3257	/* Invoke the main RX/TX interrupt handler */
3258	disable_irq(priv->irq0);
3259	bcmgenet_isr0(priv->irq0, priv);
3260	enable_irq(priv->irq0);
3261
3262	/* And the interrupt handler for RX/TX priority queues */
3263	disable_irq(priv->irq1);
3264	bcmgenet_isr1(priv->irq1, priv);
3265	enable_irq(priv->irq1);
3266}
3267#endif
3268
3269static void bcmgenet_umac_reset(struct bcmgenet_priv *priv)
3270{
3271	u32 reg;
3272
3273	reg = bcmgenet_rbuf_ctrl_get(priv);
3274	reg |= BIT(1);
3275	bcmgenet_rbuf_ctrl_set(priv, reg);
3276	udelay(10);
3277
3278	reg &= ~BIT(1);
3279	bcmgenet_rbuf_ctrl_set(priv, reg);
3280	udelay(10);
3281}
3282
3283static void bcmgenet_set_hw_addr(struct bcmgenet_priv *priv,
3284				 const unsigned char *addr)
3285{
3286	bcmgenet_umac_writel(priv, get_unaligned_be32(&addr[0]), UMAC_MAC0);
3287	bcmgenet_umac_writel(priv, get_unaligned_be16(&addr[4]), UMAC_MAC1);
3288}
3289
3290static void bcmgenet_get_hw_addr(struct bcmgenet_priv *priv,
3291				 unsigned char *addr)
3292{
3293	u32 addr_tmp;
3294
3295	addr_tmp = bcmgenet_umac_readl(priv, UMAC_MAC0);
3296	put_unaligned_be32(addr_tmp, &addr[0]);
3297	addr_tmp = bcmgenet_umac_readl(priv, UMAC_MAC1);
3298	put_unaligned_be16(addr_tmp, &addr[4]);
3299}
3300
3301/* Returns a reusable dma control register value */
3302static u32 bcmgenet_dma_disable(struct bcmgenet_priv *priv)
3303{
3304	unsigned int i;
3305	u32 reg;
3306	u32 dma_ctrl;
3307
3308	/* disable DMA */
3309	dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
3310	for (i = 0; i < priv->hw_params->tx_queues; i++)
3311		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
3312	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
3313	reg &= ~dma_ctrl;
3314	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
3315
3316	dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
3317	for (i = 0; i < priv->hw_params->rx_queues; i++)
3318		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
3319	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
3320	reg &= ~dma_ctrl;
3321	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
3322
3323	bcmgenet_umac_writel(priv, 1, UMAC_TX_FLUSH);
3324	udelay(10);
3325	bcmgenet_umac_writel(priv, 0, UMAC_TX_FLUSH);
3326
3327	return dma_ctrl;
3328}
3329
3330static void bcmgenet_enable_dma(struct bcmgenet_priv *priv, u32 dma_ctrl)
3331{
3332	u32 reg;
3333
3334	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
3335	reg |= dma_ctrl;
3336	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
3337
3338	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
3339	reg |= dma_ctrl;
3340	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
3341}
3342
3343static void bcmgenet_netif_start(struct net_device *dev)
3344{
3345	struct bcmgenet_priv *priv = netdev_priv(dev);
3346
3347	/* Start the network engine */
3348	bcmgenet_set_rx_mode(dev);
3349	bcmgenet_enable_rx_napi(priv);
3350
3351	umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, true);
3352
3353	bcmgenet_enable_tx_napi(priv);
3354
3355	/* Monitor link interrupts now */
3356	bcmgenet_link_intr_enable(priv);
3357
3358	phy_start(dev->phydev);
3359}
3360
3361static int bcmgenet_open(struct net_device *dev)
3362{
3363	struct bcmgenet_priv *priv = netdev_priv(dev);
3364	unsigned long dma_ctrl;
3365	int ret;
3366
3367	netif_dbg(priv, ifup, dev, "bcmgenet_open\n");
3368
3369	/* Turn on the clock */
3370	clk_prepare_enable(priv->clk);
3371
3372	/* If this is an internal GPHY, power it back on now, before UniMAC is
3373	 * brought out of reset as absolutely no UniMAC activity is allowed
3374	 */
3375	if (priv->internal_phy)
3376		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3377
3378	/* take MAC out of reset */
3379	bcmgenet_umac_reset(priv);
3380
3381	init_umac(priv);
3382
3383	/* Apply features again in case we changed them while interface was
3384	 * down
3385	 */
3386	bcmgenet_set_features(dev, dev->features);
3387
3388	bcmgenet_set_hw_addr(priv, dev->dev_addr);
3389
3390	/* Disable RX/TX DMA and flush TX queues */
3391	dma_ctrl = bcmgenet_dma_disable(priv);
3392
3393	/* Reinitialize TDMA and RDMA and SW housekeeping */
3394	ret = bcmgenet_init_dma(priv);
3395	if (ret) {
3396		netdev_err(dev, "failed to initialize DMA\n");
3397		goto err_clk_disable;
3398	}
3399
3400	/* Always enable ring 16 - descriptor ring */
3401	bcmgenet_enable_dma(priv, dma_ctrl);
3402
3403	/* HFB init */
3404	bcmgenet_hfb_init(priv);
3405
3406	ret = request_irq(priv->irq0, bcmgenet_isr0, IRQF_SHARED,
3407			  dev->name, priv);
3408	if (ret < 0) {
3409		netdev_err(dev, "can't request IRQ %d\n", priv->irq0);
3410		goto err_fini_dma;
3411	}
3412
3413	ret = request_irq(priv->irq1, bcmgenet_isr1, IRQF_SHARED,
3414			  dev->name, priv);
3415	if (ret < 0) {
3416		netdev_err(dev, "can't request IRQ %d\n", priv->irq1);
3417		goto err_irq0;
3418	}
3419
3420	ret = bcmgenet_mii_probe(dev);
3421	if (ret) {
3422		netdev_err(dev, "failed to connect to PHY\n");
3423		goto err_irq1;
3424	}
3425
3426	bcmgenet_phy_pause_set(dev, priv->rx_pause, priv->tx_pause);
3427
3428	bcmgenet_netif_start(dev);
3429
3430	netif_tx_start_all_queues(dev);
3431
3432	return 0;
3433
3434err_irq1:
3435	free_irq(priv->irq1, priv);
3436err_irq0:
3437	free_irq(priv->irq0, priv);
3438err_fini_dma:
3439	bcmgenet_dma_teardown(priv);
3440	bcmgenet_fini_dma(priv);
3441err_clk_disable:
3442	if (priv->internal_phy)
3443		bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3444	clk_disable_unprepare(priv->clk);
3445	return ret;
3446}
3447
3448static void bcmgenet_netif_stop(struct net_device *dev, bool stop_phy)
3449{
3450	struct bcmgenet_priv *priv = netdev_priv(dev);
3451
3452	bcmgenet_disable_tx_napi(priv);
3453	netif_tx_disable(dev);
3454
3455	/* Disable MAC receive */
3456	umac_enable_set(priv, CMD_RX_EN, false);
3457
3458	bcmgenet_dma_teardown(priv);
3459
3460	/* Disable MAC transmit. TX DMA disabled must be done before this */
3461	umac_enable_set(priv, CMD_TX_EN, false);
3462
3463	if (stop_phy)
3464		phy_stop(dev->phydev);
3465	bcmgenet_disable_rx_napi(priv);
3466	bcmgenet_intr_disable(priv);
3467
3468	/* Wait for pending work items to complete. Since interrupts are
3469	 * disabled no new work will be scheduled.
3470	 */
3471	cancel_work_sync(&priv->bcmgenet_irq_work);
3472
3473	/* tx reclaim */
3474	bcmgenet_tx_reclaim_all(dev);
3475	bcmgenet_fini_dma(priv);
3476}
3477
3478static int bcmgenet_close(struct net_device *dev)
3479{
3480	struct bcmgenet_priv *priv = netdev_priv(dev);
3481	int ret = 0;
3482
3483	netif_dbg(priv, ifdown, dev, "bcmgenet_close\n");
3484
3485	bcmgenet_netif_stop(dev, false);
3486
3487	/* Really kill the PHY state machine and disconnect from it */
3488	phy_disconnect(dev->phydev);
3489
3490	free_irq(priv->irq0, priv);
3491	free_irq(priv->irq1, priv);
3492
3493	if (priv->internal_phy)
3494		ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3495
3496	clk_disable_unprepare(priv->clk);
3497
3498	return ret;
3499}
3500
3501static void bcmgenet_dump_tx_queue(struct bcmgenet_tx_ring *ring)
3502{
3503	struct bcmgenet_priv *priv = ring->priv;
3504	u32 p_index, c_index, intsts, intmsk;
3505	struct netdev_queue *txq;
3506	unsigned int free_bds;
3507	bool txq_stopped;
3508
3509	if (!netif_msg_tx_err(priv))
3510		return;
3511
3512	txq = netdev_get_tx_queue(priv->dev, ring->queue);
3513
3514	spin_lock(&ring->lock);
3515	if (ring->index == DESC_INDEX) {
3516		intsts = ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
3517		intmsk = UMAC_IRQ_TXDMA_DONE | UMAC_IRQ_TXDMA_MBDONE;
3518	} else {
3519		intsts = ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
3520		intmsk = 1 << ring->index;
3521	}
3522	c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
3523	p_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_PROD_INDEX);
3524	txq_stopped = netif_tx_queue_stopped(txq);
3525	free_bds = ring->free_bds;
3526	spin_unlock(&ring->lock);
3527
3528	netif_err(priv, tx_err, priv->dev, "Ring %d queue %d status summary\n"
3529		  "TX queue status: %s, interrupts: %s\n"
3530		  "(sw)free_bds: %d (sw)size: %d\n"
3531		  "(sw)p_index: %d (hw)p_index: %d\n"
3532		  "(sw)c_index: %d (hw)c_index: %d\n"
3533		  "(sw)clean_p: %d (sw)write_p: %d\n"
3534		  "(sw)cb_ptr: %d (sw)end_ptr: %d\n",
3535		  ring->index, ring->queue,
3536		  txq_stopped ? "stopped" : "active",
3537		  intsts & intmsk ? "enabled" : "disabled",
3538		  free_bds, ring->size,
3539		  ring->prod_index, p_index & DMA_P_INDEX_MASK,
3540		  ring->c_index, c_index & DMA_C_INDEX_MASK,
3541		  ring->clean_ptr, ring->write_ptr,
3542		  ring->cb_ptr, ring->end_ptr);
3543}
3544
3545static void bcmgenet_timeout(struct net_device *dev, unsigned int txqueue)
3546{
3547	struct bcmgenet_priv *priv = netdev_priv(dev);
3548	u32 int0_enable = 0;
3549	u32 int1_enable = 0;
3550	unsigned int q;
3551
3552	netif_dbg(priv, tx_err, dev, "bcmgenet_timeout\n");
3553
3554	for (q = 0; q < priv->hw_params->tx_queues; q++)
3555		bcmgenet_dump_tx_queue(&priv->tx_rings[q]);
3556	bcmgenet_dump_tx_queue(&priv->tx_rings[DESC_INDEX]);
3557
3558	bcmgenet_tx_reclaim_all(dev);
3559
3560	for (q = 0; q < priv->hw_params->tx_queues; q++)
3561		int1_enable |= (1 << q);
3562
3563	int0_enable = UMAC_IRQ_TXDMA_DONE;
3564
3565	/* Re-enable TX interrupts if disabled */
3566	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
3567	bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
3568
3569	netif_trans_update(dev);
3570
3571	dev->stats.tx_errors++;
3572
3573	netif_tx_wake_all_queues(dev);
3574}
3575
3576#define MAX_MDF_FILTER	17
3577
3578static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv *priv,
3579					 const unsigned char *addr,
3580					 int *i)
3581{
3582	bcmgenet_umac_writel(priv, addr[0] << 8 | addr[1],
3583			     UMAC_MDF_ADDR + (*i * 4));
3584	bcmgenet_umac_writel(priv, addr[2] << 24 | addr[3] << 16 |
3585			     addr[4] << 8 | addr[5],
3586			     UMAC_MDF_ADDR + ((*i + 1) * 4));
3587	*i += 2;
3588}
3589
3590static void bcmgenet_set_rx_mode(struct net_device *dev)
3591{
3592	struct bcmgenet_priv *priv = netdev_priv(dev);
3593	struct netdev_hw_addr *ha;
3594	int i, nfilter;
3595	u32 reg;
3596
3597	netif_dbg(priv, hw, dev, "%s: %08X\n", __func__, dev->flags);
3598
3599	/* Number of filters needed */
3600	nfilter = netdev_uc_count(dev) + netdev_mc_count(dev) + 2;
3601
3602	/*
3603	 * Turn on promicuous mode for three scenarios
3604	 * 1. IFF_PROMISC flag is set
3605	 * 2. IFF_ALLMULTI flag is set
3606	 * 3. The number of filters needed exceeds the number filters
3607	 *    supported by the hardware.
3608	*/
3609	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
3610	if ((dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) ||
3611	    (nfilter > MAX_MDF_FILTER)) {
3612		reg |= CMD_PROMISC;
3613		bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3614		bcmgenet_umac_writel(priv, 0, UMAC_MDF_CTRL);
3615		return;
3616	} else {
3617		reg &= ~CMD_PROMISC;
3618		bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3619	}
3620
3621	/* update MDF filter */
3622	i = 0;
3623	/* Broadcast */
3624	bcmgenet_set_mdf_addr(priv, dev->broadcast, &i);
3625	/* my own address.*/
3626	bcmgenet_set_mdf_addr(priv, dev->dev_addr, &i);
3627
3628	/* Unicast */
3629	netdev_for_each_uc_addr(ha, dev)
3630		bcmgenet_set_mdf_addr(priv, ha->addr, &i);
3631
3632	/* Multicast */
3633	netdev_for_each_mc_addr(ha, dev)
3634		bcmgenet_set_mdf_addr(priv, ha->addr, &i);
3635
3636	/* Enable filters */
3637	reg = GENMASK(MAX_MDF_FILTER - 1, MAX_MDF_FILTER - nfilter);
3638	bcmgenet_umac_writel(priv, reg, UMAC_MDF_CTRL);
3639}
3640
3641/* Set the hardware MAC address. */
3642static int bcmgenet_set_mac_addr(struct net_device *dev, void *p)
3643{
3644	struct sockaddr *addr = p;
3645
3646	/* Setting the MAC address at the hardware level is not possible
3647	 * without disabling the UniMAC RX/TX enable bits.
3648	 */
3649	if (netif_running(dev))
3650		return -EBUSY;
3651
3652	eth_hw_addr_set(dev, addr->sa_data);
3653
3654	return 0;
3655}
3656
3657static struct net_device_stats *bcmgenet_get_stats(struct net_device *dev)
3658{
3659	struct bcmgenet_priv *priv = netdev_priv(dev);
3660	unsigned long tx_bytes = 0, tx_packets = 0;
3661	unsigned long rx_bytes = 0, rx_packets = 0;
3662	unsigned long rx_errors = 0, rx_dropped = 0;
3663	struct bcmgenet_tx_ring *tx_ring;
3664	struct bcmgenet_rx_ring *rx_ring;
3665	unsigned int q;
3666
3667	for (q = 0; q < priv->hw_params->tx_queues; q++) {
3668		tx_ring = &priv->tx_rings[q];
3669		tx_bytes += tx_ring->bytes;
3670		tx_packets += tx_ring->packets;
3671	}
3672	tx_ring = &priv->tx_rings[DESC_INDEX];
3673	tx_bytes += tx_ring->bytes;
3674	tx_packets += tx_ring->packets;
3675
3676	for (q = 0; q < priv->hw_params->rx_queues; q++) {
3677		rx_ring = &priv->rx_rings[q];
3678
3679		rx_bytes += rx_ring->bytes;
3680		rx_packets += rx_ring->packets;
3681		rx_errors += rx_ring->errors;
3682		rx_dropped += rx_ring->dropped;
3683	}
3684	rx_ring = &priv->rx_rings[DESC_INDEX];
3685	rx_bytes += rx_ring->bytes;
3686	rx_packets += rx_ring->packets;
3687	rx_errors += rx_ring->errors;
3688	rx_dropped += rx_ring->dropped;
3689
3690	dev->stats.tx_bytes = tx_bytes;
3691	dev->stats.tx_packets = tx_packets;
3692	dev->stats.rx_bytes = rx_bytes;
3693	dev->stats.rx_packets = rx_packets;
3694	dev->stats.rx_errors = rx_errors;
3695	dev->stats.rx_missed_errors = rx_errors;
3696	dev->stats.rx_dropped = rx_dropped;
3697	return &dev->stats;
3698}
3699
3700static int bcmgenet_change_carrier(struct net_device *dev, bool new_carrier)
3701{
3702	struct bcmgenet_priv *priv = netdev_priv(dev);
3703
3704	if (!dev->phydev || !phy_is_pseudo_fixed_link(dev->phydev) ||
3705	    priv->phy_interface != PHY_INTERFACE_MODE_MOCA)
3706		return -EOPNOTSUPP;
3707
3708	if (new_carrier)
3709		netif_carrier_on(dev);
3710	else
3711		netif_carrier_off(dev);
3712
3713	return 0;
3714}
3715
3716static const struct net_device_ops bcmgenet_netdev_ops = {
3717	.ndo_open		= bcmgenet_open,
3718	.ndo_stop		= bcmgenet_close,
3719	.ndo_start_xmit		= bcmgenet_xmit,
3720	.ndo_tx_timeout		= bcmgenet_timeout,
3721	.ndo_set_rx_mode	= bcmgenet_set_rx_mode,
3722	.ndo_set_mac_address	= bcmgenet_set_mac_addr,
3723	.ndo_eth_ioctl		= phy_do_ioctl_running,
3724	.ndo_set_features	= bcmgenet_set_features,
3725#ifdef CONFIG_NET_POLL_CONTROLLER
3726	.ndo_poll_controller	= bcmgenet_poll_controller,
3727#endif
3728	.ndo_get_stats		= bcmgenet_get_stats,
3729	.ndo_change_carrier	= bcmgenet_change_carrier,
3730};
3731
3732/* Array of GENET hardware parameters/characteristics */
3733static struct bcmgenet_hw_params bcmgenet_hw_params[] = {
3734	[GENET_V1] = {
3735		.tx_queues = 0,
3736		.tx_bds_per_q = 0,
3737		.rx_queues = 0,
3738		.rx_bds_per_q = 0,
3739		.bp_in_en_shift = 16,
3740		.bp_in_mask = 0xffff,
3741		.hfb_filter_cnt = 16,
3742		.qtag_mask = 0x1F,
3743		.hfb_offset = 0x1000,
3744		.rdma_offset = 0x2000,
3745		.tdma_offset = 0x3000,
3746		.words_per_bd = 2,
3747	},
3748	[GENET_V2] = {
3749		.tx_queues = 4,
3750		.tx_bds_per_q = 32,
3751		.rx_queues = 0,
3752		.rx_bds_per_q = 0,
3753		.bp_in_en_shift = 16,
3754		.bp_in_mask = 0xffff,
3755		.hfb_filter_cnt = 16,
3756		.qtag_mask = 0x1F,
3757		.tbuf_offset = 0x0600,
3758		.hfb_offset = 0x1000,
3759		.hfb_reg_offset = 0x2000,
3760		.rdma_offset = 0x3000,
3761		.tdma_offset = 0x4000,
3762		.words_per_bd = 2,
3763		.flags = GENET_HAS_EXT,
3764	},
3765	[GENET_V3] = {
3766		.tx_queues = 4,
3767		.tx_bds_per_q = 32,
3768		.rx_queues = 0,
3769		.rx_bds_per_q = 0,
3770		.bp_in_en_shift = 17,
3771		.bp_in_mask = 0x1ffff,
3772		.hfb_filter_cnt = 48,
3773		.hfb_filter_size = 128,
3774		.qtag_mask = 0x3F,
3775		.tbuf_offset = 0x0600,
3776		.hfb_offset = 0x8000,
3777		.hfb_reg_offset = 0xfc00,
3778		.rdma_offset = 0x10000,
3779		.tdma_offset = 0x11000,
3780		.words_per_bd = 2,
3781		.flags = GENET_HAS_EXT | GENET_HAS_MDIO_INTR |
3782			 GENET_HAS_MOCA_LINK_DET,
3783	},
3784	[GENET_V4] = {
3785		.tx_queues = 4,
3786		.tx_bds_per_q = 32,
3787		.rx_queues = 0,
3788		.rx_bds_per_q = 0,
3789		.bp_in_en_shift = 17,
3790		.bp_in_mask = 0x1ffff,
3791		.hfb_filter_cnt = 48,
3792		.hfb_filter_size = 128,
3793		.qtag_mask = 0x3F,
3794		.tbuf_offset = 0x0600,
3795		.hfb_offset = 0x8000,
3796		.hfb_reg_offset = 0xfc00,
3797		.rdma_offset = 0x2000,
3798		.tdma_offset = 0x4000,
3799		.words_per_bd = 3,
3800		.flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3801			 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3802	},
3803	[GENET_V5] = {
3804		.tx_queues = 4,
3805		.tx_bds_per_q = 32,
3806		.rx_queues = 0,
3807		.rx_bds_per_q = 0,
3808		.bp_in_en_shift = 17,
3809		.bp_in_mask = 0x1ffff,
3810		.hfb_filter_cnt = 48,
3811		.hfb_filter_size = 128,
3812		.qtag_mask = 0x3F,
3813		.tbuf_offset = 0x0600,
3814		.hfb_offset = 0x8000,
3815		.hfb_reg_offset = 0xfc00,
3816		.rdma_offset = 0x2000,
3817		.tdma_offset = 0x4000,
3818		.words_per_bd = 3,
3819		.flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3820			 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3821	},
3822};
3823
3824/* Infer hardware parameters from the detected GENET version */
3825static void bcmgenet_set_hw_params(struct bcmgenet_priv *priv)
3826{
3827	struct bcmgenet_hw_params *params;
3828	u32 reg;
3829	u8 major;
3830	u16 gphy_rev;
3831
3832	if (GENET_IS_V5(priv) || GENET_IS_V4(priv)) {
3833		bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3834		genet_dma_ring_regs = genet_dma_ring_regs_v4;
3835	} else if (GENET_IS_V3(priv)) {
3836		bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3837		genet_dma_ring_regs = genet_dma_ring_regs_v123;
3838	} else if (GENET_IS_V2(priv)) {
3839		bcmgenet_dma_regs = bcmgenet_dma_regs_v2;
3840		genet_dma_ring_regs = genet_dma_ring_regs_v123;
3841	} else if (GENET_IS_V1(priv)) {
3842		bcmgenet_dma_regs = bcmgenet_dma_regs_v1;
3843		genet_dma_ring_regs = genet_dma_ring_regs_v123;
3844	}
3845
3846	/* enum genet_version starts at 1 */
3847	priv->hw_params = &bcmgenet_hw_params[priv->version];
3848	params = priv->hw_params;
3849
3850	/* Read GENET HW version */
3851	reg = bcmgenet_sys_readl(priv, SYS_REV_CTRL);
3852	major = (reg >> 24 & 0x0f);
3853	if (major == 6)
3854		major = 5;
3855	else if (major == 5)
3856		major = 4;
3857	else if (major == 0)
3858		major = 1;
3859	if (major != priv->version) {
3860		dev_err(&priv->pdev->dev,
3861			"GENET version mismatch, got: %d, configured for: %d\n",
3862			major, priv->version);
3863	}
3864
3865	/* Print the GENET core version */
3866	dev_info(&priv->pdev->dev, "GENET " GENET_VER_FMT,
3867		 major, (reg >> 16) & 0x0f, reg & 0xffff);
3868
3869	/* Store the integrated PHY revision for the MDIO probing function
3870	 * to pass this information to the PHY driver. The PHY driver expects
3871	 * to find the PHY major revision in bits 15:8 while the GENET register
3872	 * stores that information in bits 7:0, account for that.
3873	 *
3874	 * On newer chips, starting with PHY revision G0, a new scheme is
3875	 * deployed similar to the Starfighter 2 switch with GPHY major
3876	 * revision in bits 15:8 and patch level in bits 7:0. Major revision 0
3877	 * is reserved as well as special value 0x01ff, we have a small
3878	 * heuristic to check for the new GPHY revision and re-arrange things
3879	 * so the GPHY driver is happy.
3880	 */
3881	gphy_rev = reg & 0xffff;
3882
3883	if (GENET_IS_V5(priv)) {
3884		/* The EPHY revision should come from the MDIO registers of
3885		 * the PHY not from GENET.
3886		 */
3887		if (gphy_rev != 0) {
3888			pr_warn("GENET is reporting EPHY revision: 0x%04x\n",
3889				gphy_rev);
3890		}
3891	/* This is reserved so should require special treatment */
3892	} else if (gphy_rev == 0 || gphy_rev == 0x01ff) {
3893		pr_warn("Invalid GPHY revision detected: 0x%04x\n", gphy_rev);
3894		return;
3895	/* This is the good old scheme, just GPHY major, no minor nor patch */
3896	} else if ((gphy_rev & 0xf0) != 0) {
3897		priv->gphy_rev = gphy_rev << 8;
3898	/* This is the new scheme, GPHY major rolls over with 0x10 = rev G0 */
3899	} else if ((gphy_rev & 0xff00) != 0) {
3900		priv->gphy_rev = gphy_rev;
3901	}
3902
3903#ifdef CONFIG_PHYS_ADDR_T_64BIT
3904	if (!(params->flags & GENET_HAS_40BITS))
3905		pr_warn("GENET does not support 40-bits PA\n");
3906#endif
3907
3908	pr_debug("Configuration for version: %d\n"
3909		"TXq: %1d, TXqBDs: %1d, RXq: %1d, RXqBDs: %1d\n"
3910		"BP << en: %2d, BP msk: 0x%05x\n"
3911		"HFB count: %2d, QTAQ msk: 0x%05x\n"
3912		"TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n"
3913		"RDMA: 0x%05x, TDMA: 0x%05x\n"
3914		"Words/BD: %d\n",
3915		priv->version,
3916		params->tx_queues, params->tx_bds_per_q,
3917		params->rx_queues, params->rx_bds_per_q,
3918		params->bp_in_en_shift, params->bp_in_mask,
3919		params->hfb_filter_cnt, params->qtag_mask,
3920		params->tbuf_offset, params->hfb_offset,
3921		params->hfb_reg_offset,
3922		params->rdma_offset, params->tdma_offset,
3923		params->words_per_bd);
3924}
3925
3926struct bcmgenet_plat_data {
3927	enum bcmgenet_version version;
3928	u32 dma_max_burst_length;
3929	bool ephy_16nm;
3930};
3931
3932static const struct bcmgenet_plat_data v1_plat_data = {
3933	.version = GENET_V1,
3934	.dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3935};
3936
3937static const struct bcmgenet_plat_data v2_plat_data = {
3938	.version = GENET_V2,
3939	.dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3940};
3941
3942static const struct bcmgenet_plat_data v3_plat_data = {
3943	.version = GENET_V3,
3944	.dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3945};
3946
3947static const struct bcmgenet_plat_data v4_plat_data = {
3948	.version = GENET_V4,
3949	.dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3950};
3951
3952static const struct bcmgenet_plat_data v5_plat_data = {
3953	.version = GENET_V5,
3954	.dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3955};
3956
3957static const struct bcmgenet_plat_data bcm2711_plat_data = {
3958	.version = GENET_V5,
3959	.dma_max_burst_length = 0x08,
3960};
3961
3962static const struct bcmgenet_plat_data bcm7712_plat_data = {
3963	.version = GENET_V5,
3964	.dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3965	.ephy_16nm = true,
3966};
3967
3968static const struct of_device_id bcmgenet_match[] = {
3969	{ .compatible = "brcm,genet-v1", .data = &v1_plat_data },
3970	{ .compatible = "brcm,genet-v2", .data = &v2_plat_data },
3971	{ .compatible = "brcm,genet-v3", .data = &v3_plat_data },
3972	{ .compatible = "brcm,genet-v4", .data = &v4_plat_data },
3973	{ .compatible = "brcm,genet-v5", .data = &v5_plat_data },
3974	{ .compatible = "brcm,bcm2711-genet-v5", .data = &bcm2711_plat_data },
3975	{ .compatible = "brcm,bcm7712-genet-v5", .data = &bcm7712_plat_data },
3976	{ },
3977};
3978MODULE_DEVICE_TABLE(of, bcmgenet_match);
3979
3980static int bcmgenet_probe(struct platform_device *pdev)
3981{
3982	struct bcmgenet_platform_data *pd = pdev->dev.platform_data;
3983	const struct bcmgenet_plat_data *pdata;
3984	struct bcmgenet_priv *priv;
3985	struct net_device *dev;
3986	unsigned int i;
3987	int err = -EIO;
3988
3989	/* Up to GENET_MAX_MQ_CNT + 1 TX queues and RX queues */
3990	dev = alloc_etherdev_mqs(sizeof(*priv), GENET_MAX_MQ_CNT + 1,
3991				 GENET_MAX_MQ_CNT + 1);
3992	if (!dev) {
3993		dev_err(&pdev->dev, "can't allocate net device\n");
3994		return -ENOMEM;
3995	}
3996
3997	priv = netdev_priv(dev);
3998	priv->irq0 = platform_get_irq(pdev, 0);
3999	if (priv->irq0 < 0) {
4000		err = priv->irq0;
4001		goto err;
4002	}
4003	priv->irq1 = platform_get_irq(pdev, 1);
4004	if (priv->irq1 < 0) {
4005		err = priv->irq1;
4006		goto err;
4007	}
4008	priv->wol_irq = platform_get_irq_optional(pdev, 2);
4009	if (priv->wol_irq == -EPROBE_DEFER) {
4010		err = priv->wol_irq;
4011		goto err;
4012	}
4013
4014	priv->base = devm_platform_ioremap_resource(pdev, 0);
4015	if (IS_ERR(priv->base)) {
4016		err = PTR_ERR(priv->base);
4017		goto err;
4018	}
4019
4020	spin_lock_init(&priv->lock);
4021
4022	/* Set default pause parameters */
4023	priv->autoneg_pause = 1;
4024	priv->tx_pause = 1;
4025	priv->rx_pause = 1;
4026
4027	SET_NETDEV_DEV(dev, &pdev->dev);
4028	dev_set_drvdata(&pdev->dev, dev);
4029	dev->watchdog_timeo = 2 * HZ;
4030	dev->ethtool_ops = &bcmgenet_ethtool_ops;
4031	dev->netdev_ops = &bcmgenet_netdev_ops;
4032
4033	priv->msg_enable = netif_msg_init(-1, GENET_MSG_DEFAULT);
4034
4035	/* Set default features */
4036	dev->features |= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_HW_CSUM |
4037			 NETIF_F_RXCSUM;
4038	dev->hw_features |= dev->features;
4039	dev->vlan_features |= dev->features;
4040
4041	/* Request the WOL interrupt and advertise suspend if available */
4042	priv->wol_irq_disabled = true;
4043	if (priv->wol_irq > 0) {
4044		err = devm_request_irq(&pdev->dev, priv->wol_irq,
4045				       bcmgenet_wol_isr, 0, dev->name, priv);
4046		if (!err)
4047			device_set_wakeup_capable(&pdev->dev, 1);
4048	}
4049
4050	/* Set the needed headroom to account for any possible
4051	 * features enabling/disabling at runtime
4052	 */
4053	dev->needed_headroom += 64;
4054
4055	priv->dev = dev;
4056	priv->pdev = pdev;
4057
4058	pdata = device_get_match_data(&pdev->dev);
4059	if (pdata) {
4060		priv->version = pdata->version;
4061		priv->dma_max_burst_length = pdata->dma_max_burst_length;
4062		priv->ephy_16nm = pdata->ephy_16nm;
4063	} else {
4064		priv->version = pd->genet_version;
4065		priv->dma_max_burst_length = DMA_MAX_BURST_LENGTH;
4066	}
4067
4068	priv->clk = devm_clk_get_optional(&priv->pdev->dev, "enet");
4069	if (IS_ERR(priv->clk)) {
4070		dev_dbg(&priv->pdev->dev, "failed to get enet clock\n");
4071		err = PTR_ERR(priv->clk);
4072		goto err;
4073	}
4074
4075	err = clk_prepare_enable(priv->clk);
4076	if (err)
4077		goto err;
4078
4079	bcmgenet_set_hw_params(priv);
4080
4081	err = -EIO;
4082	if (priv->hw_params->flags & GENET_HAS_40BITS)
4083		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(40));
4084	if (err)
4085		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
4086	if (err)
4087		goto err_clk_disable;
4088
4089	/* Mii wait queue */
4090	init_waitqueue_head(&priv->wq);
4091	/* Always use RX_BUF_LENGTH (2KB) buffer for all chips */
4092	priv->rx_buf_len = RX_BUF_LENGTH;
4093	INIT_WORK(&priv->bcmgenet_irq_work, bcmgenet_irq_task);
4094
4095	priv->clk_wol = devm_clk_get_optional(&priv->pdev->dev, "enet-wol");
4096	if (IS_ERR(priv->clk_wol)) {
4097		dev_dbg(&priv->pdev->dev, "failed to get enet-wol clock\n");
4098		err = PTR_ERR(priv->clk_wol);
4099		goto err_clk_disable;
4100	}
4101
4102	priv->clk_eee = devm_clk_get_optional(&priv->pdev->dev, "enet-eee");
4103	if (IS_ERR(priv->clk_eee)) {
4104		dev_dbg(&priv->pdev->dev, "failed to get enet-eee clock\n");
4105		err = PTR_ERR(priv->clk_eee);
4106		goto err_clk_disable;
4107	}
4108
4109	/* If this is an internal GPHY, power it on now, before UniMAC is
4110	 * brought out of reset as absolutely no UniMAC activity is allowed
4111	 */
4112	if (device_get_phy_mode(&pdev->dev) == PHY_INTERFACE_MODE_INTERNAL)
4113		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
4114
4115	if (pd && !IS_ERR_OR_NULL(pd->mac_address))
4116		eth_hw_addr_set(dev, pd->mac_address);
4117	else
4118		if (device_get_ethdev_address(&pdev->dev, dev))
4119			if (has_acpi_companion(&pdev->dev)) {
4120				u8 addr[ETH_ALEN];
4121
4122				bcmgenet_get_hw_addr(priv, addr);
4123				eth_hw_addr_set(dev, addr);
4124			}
4125
4126	if (!is_valid_ether_addr(dev->dev_addr)) {
4127		dev_warn(&pdev->dev, "using random Ethernet MAC\n");
4128		eth_hw_addr_random(dev);
4129	}
4130
4131	reset_umac(priv);
4132
4133	err = bcmgenet_mii_init(dev);
4134	if (err)
4135		goto err_clk_disable;
4136
4137	/* setup number of real queues  + 1 (GENET_V1 has 0 hardware queues
4138	 * just the ring 16 descriptor based TX
4139	 */
4140	netif_set_real_num_tx_queues(priv->dev, priv->hw_params->tx_queues + 1);
4141	netif_set_real_num_rx_queues(priv->dev, priv->hw_params->rx_queues + 1);
4142
4143	/* Set default coalescing parameters */
4144	for (i = 0; i < priv->hw_params->rx_queues; i++)
4145		priv->rx_rings[i].rx_max_coalesced_frames = 1;
4146	priv->rx_rings[DESC_INDEX].rx_max_coalesced_frames = 1;
4147
4148	/* libphy will determine the link state */
4149	netif_carrier_off(dev);
4150
4151	/* Turn off the main clock, WOL clock is handled separately */
4152	clk_disable_unprepare(priv->clk);
4153
4154	err = register_netdev(dev);
4155	if (err) {
4156		bcmgenet_mii_exit(dev);
4157		goto err;
4158	}
4159
4160	return err;
4161
4162err_clk_disable:
4163	clk_disable_unprepare(priv->clk);
4164err:
4165	free_netdev(dev);
4166	return err;
4167}
4168
4169static int bcmgenet_remove(struct platform_device *pdev)
4170{
4171	struct bcmgenet_priv *priv = dev_to_priv(&pdev->dev);
4172
4173	dev_set_drvdata(&pdev->dev, NULL);
4174	unregister_netdev(priv->dev);
4175	bcmgenet_mii_exit(priv->dev);
4176	free_netdev(priv->dev);
4177
4178	return 0;
4179}
4180
4181static void bcmgenet_shutdown(struct platform_device *pdev)
4182{
4183	bcmgenet_remove(pdev);
4184}
4185
4186#ifdef CONFIG_PM_SLEEP
4187static int bcmgenet_resume_noirq(struct device *d)
4188{
4189	struct net_device *dev = dev_get_drvdata(d);
4190	struct bcmgenet_priv *priv = netdev_priv(dev);
4191	int ret;
4192	u32 reg;
4193
4194	if (!netif_running(dev))
4195		return 0;
4196
4197	/* Turn on the clock */
4198	ret = clk_prepare_enable(priv->clk);
4199	if (ret)
4200		return ret;
4201
4202	if (device_may_wakeup(d) && priv->wolopts) {
4203		/* Account for Wake-on-LAN events and clear those events
4204		 * (Some devices need more time between enabling the clocks
4205		 *  and the interrupt register reflecting the wake event so
4206		 *  read the register twice)
4207		 */
4208		reg = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT);
4209		reg = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT);
4210		if (reg & UMAC_IRQ_WAKE_EVENT)
4211			pm_wakeup_event(&priv->pdev->dev, 0);
4212	}
4213
4214	bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_WAKE_EVENT, INTRL2_CPU_CLEAR);
4215
4216	return 0;
4217}
4218
4219static int bcmgenet_resume(struct device *d)
4220{
4221	struct net_device *dev = dev_get_drvdata(d);
4222	struct bcmgenet_priv *priv = netdev_priv(dev);
4223	struct bcmgenet_rxnfc_rule *rule;
4224	unsigned long dma_ctrl;
4225	int ret;
4226
4227	if (!netif_running(dev))
4228		return 0;
4229
4230	/* From WOL-enabled suspend, switch to regular clock */
4231	if (device_may_wakeup(d) && priv->wolopts)
4232		bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
4233
4234	/* If this is an internal GPHY, power it back on now, before UniMAC is
4235	 * brought out of reset as absolutely no UniMAC activity is allowed
4236	 */
4237	if (priv->internal_phy)
4238		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
4239
4240	bcmgenet_umac_reset(priv);
4241
4242	init_umac(priv);
4243
4244	phy_init_hw(dev->phydev);
4245
4246	/* Speed settings must be restored */
4247	genphy_config_aneg(dev->phydev);
4248	bcmgenet_mii_config(priv->dev, false);
4249
4250	/* Restore enabled features */
4251	bcmgenet_set_features(dev, dev->features);
4252
4253	bcmgenet_set_hw_addr(priv, dev->dev_addr);
4254
4255	/* Restore hardware filters */
4256	bcmgenet_hfb_clear(priv);
4257	list_for_each_entry(rule, &priv->rxnfc_list, list)
4258		if (rule->state != BCMGENET_RXNFC_STATE_UNUSED)
4259			bcmgenet_hfb_create_rxnfc_filter(priv, rule);
4260
4261	/* Disable RX/TX DMA and flush TX queues */
4262	dma_ctrl = bcmgenet_dma_disable(priv);
4263
4264	/* Reinitialize TDMA and RDMA and SW housekeeping */
4265	ret = bcmgenet_init_dma(priv);
4266	if (ret) {
4267		netdev_err(dev, "failed to initialize DMA\n");
4268		goto out_clk_disable;
4269	}
4270
4271	/* Always enable ring 16 - descriptor ring */
4272	bcmgenet_enable_dma(priv, dma_ctrl);
4273
4274	if (!device_may_wakeup(d))
4275		phy_resume(dev->phydev);
4276
4277	bcmgenet_netif_start(dev);
4278
4279	netif_device_attach(dev);
4280
4281	return 0;
4282
4283out_clk_disable:
4284	if (priv->internal_phy)
4285		bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
4286	clk_disable_unprepare(priv->clk);
4287	return ret;
4288}
4289
4290static int bcmgenet_suspend(struct device *d)
4291{
4292	struct net_device *dev = dev_get_drvdata(d);
4293	struct bcmgenet_priv *priv = netdev_priv(dev);
4294
4295	if (!netif_running(dev))
4296		return 0;
4297
4298	netif_device_detach(dev);
4299
4300	bcmgenet_netif_stop(dev, true);
4301
4302	if (!device_may_wakeup(d))
4303		phy_suspend(dev->phydev);
4304
4305	/* Disable filtering */
4306	bcmgenet_hfb_reg_writel(priv, 0, HFB_CTRL);
4307
4308	return 0;
4309}
4310
4311static int bcmgenet_suspend_noirq(struct device *d)
4312{
4313	struct net_device *dev = dev_get_drvdata(d);
4314	struct bcmgenet_priv *priv = netdev_priv(dev);
4315	int ret = 0;
4316
4317	if (!netif_running(dev))
4318		return 0;
4319
4320	/* Prepare the device for Wake-on-LAN and switch to the slow clock */
4321	if (device_may_wakeup(d) && priv->wolopts)
4322		ret = bcmgenet_power_down(priv, GENET_POWER_WOL_MAGIC);
4323	else if (priv->internal_phy)
4324		ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
4325
4326	/* Let the framework handle resumption and leave the clocks on */
4327	if (ret)
4328		return ret;
4329
4330	/* Turn off the clocks */
4331	clk_disable_unprepare(priv->clk);
4332
4333	return 0;
4334}
4335#else
4336#define bcmgenet_suspend	NULL
4337#define bcmgenet_suspend_noirq	NULL
4338#define bcmgenet_resume		NULL
4339#define bcmgenet_resume_noirq	NULL
4340#endif /* CONFIG_PM_SLEEP */
4341
4342static const struct dev_pm_ops bcmgenet_pm_ops = {
4343	.suspend	= bcmgenet_suspend,
4344	.suspend_noirq	= bcmgenet_suspend_noirq,
4345	.resume		= bcmgenet_resume,
4346	.resume_noirq	= bcmgenet_resume_noirq,
4347};
4348
4349static const struct acpi_device_id genet_acpi_match[] = {
4350	{ "BCM6E4E", (kernel_ulong_t)&bcm2711_plat_data },
4351	{ },
4352};
4353MODULE_DEVICE_TABLE(acpi, genet_acpi_match);
4354
4355static struct platform_driver bcmgenet_driver = {
4356	.probe	= bcmgenet_probe,
4357	.remove	= bcmgenet_remove,
4358	.shutdown = bcmgenet_shutdown,
4359	.driver	= {
4360		.name	= "bcmgenet",
4361		.of_match_table = bcmgenet_match,
4362		.pm	= &bcmgenet_pm_ops,
4363		.acpi_match_table = genet_acpi_match,
4364	},
4365};
4366module_platform_driver(bcmgenet_driver);
4367
4368MODULE_AUTHOR("Broadcom Corporation");
4369MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver");
4370MODULE_ALIAS("platform:bcmgenet");
4371MODULE_LICENSE("GPL");
4372MODULE_SOFTDEP("pre: mdio-bcm-unimac");
4373