1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Network device driver for the BMAC ethernet controller on
4 * Apple Powermacs.  Assumes it's under a DBDMA controller.
5 *
6 * Copyright (C) 1998 Randy Gobbel.
7 *
8 * May 1999, Al Viro: proper release of /proc/net/bmac entry, switched to
9 * dynamic procfs inode.
10 */
11#include <linux/interrupt.h>
12#include <linux/module.h>
13#include <linux/kernel.h>
14#include <linux/netdevice.h>
15#include <linux/etherdevice.h>
16#include <linux/delay.h>
17#include <linux/string.h>
18#include <linux/timer.h>
19#include <linux/proc_fs.h>
20#include <linux/init.h>
21#include <linux/spinlock.h>
22#include <linux/crc32.h>
23#include <linux/crc32poly.h>
24#include <linux/bitrev.h>
25#include <linux/ethtool.h>
26#include <linux/slab.h>
27#include <linux/pgtable.h>
28#include <asm/dbdma.h>
29#include <asm/io.h>
30#include <asm/page.h>
31#include <asm/machdep.h>
32#include <asm/pmac_feature.h>
33#include <asm/macio.h>
34#include <asm/irq.h>
35
36#include "bmac.h"
37
38#define trunc_page(x)	((void *)(((unsigned long)(x)) & ~((unsigned long)(PAGE_SIZE - 1))))
39#define round_page(x)	trunc_page(((unsigned long)(x)) + ((unsigned long)(PAGE_SIZE - 1)))
40
41/* switch to use multicast code lifted from sunhme driver */
42#define SUNHME_MULTICAST
43
44#define N_RX_RING	64
45#define N_TX_RING	32
46#define MAX_TX_ACTIVE	1
47#define ETHERCRC	4
48#define ETHERMINPACKET	64
49#define ETHERMTU	1500
50#define RX_BUFLEN	(ETHERMTU + 14 + ETHERCRC + 2)
51#define TX_TIMEOUT	HZ	/* 1 second */
52
53/* Bits in transmit DMA status */
54#define TX_DMA_ERR	0x80
55
56#define XXDEBUG(args)
57
58struct bmac_data {
59	/* volatile struct bmac *bmac; */
60	struct sk_buff_head *queue;
61	volatile struct dbdma_regs __iomem *tx_dma;
62	int tx_dma_intr;
63	volatile struct dbdma_regs __iomem *rx_dma;
64	int rx_dma_intr;
65	volatile struct dbdma_cmd *tx_cmds;	/* xmit dma command list */
66	volatile struct dbdma_cmd *rx_cmds;	/* recv dma command list */
67	struct macio_dev *mdev;
68	int is_bmac_plus;
69	struct sk_buff *rx_bufs[N_RX_RING];
70	int rx_fill;
71	int rx_empty;
72	struct sk_buff *tx_bufs[N_TX_RING];
73	int tx_fill;
74	int tx_empty;
75	unsigned char tx_fullup;
76	struct timer_list tx_timeout;
77	int timeout_active;
78	int sleeping;
79	int opened;
80	unsigned short hash_use_count[64];
81	unsigned short hash_table_mask[4];
82	spinlock_t lock;
83};
84
85#if 0 /* Move that to ethtool */
86
87typedef struct bmac_reg_entry {
88	char *name;
89	unsigned short reg_offset;
90} bmac_reg_entry_t;
91
92#define N_REG_ENTRIES 31
93
94static bmac_reg_entry_t reg_entries[N_REG_ENTRIES] = {
95	{"MEMADD", MEMADD},
96	{"MEMDATAHI", MEMDATAHI},
97	{"MEMDATALO", MEMDATALO},
98	{"TXPNTR", TXPNTR},
99	{"RXPNTR", RXPNTR},
100	{"IPG1", IPG1},
101	{"IPG2", IPG2},
102	{"ALIMIT", ALIMIT},
103	{"SLOT", SLOT},
104	{"PALEN", PALEN},
105	{"PAPAT", PAPAT},
106	{"TXSFD", TXSFD},
107	{"JAM", JAM},
108	{"TXCFG", TXCFG},
109	{"TXMAX", TXMAX},
110	{"TXMIN", TXMIN},
111	{"PAREG", PAREG},
112	{"DCNT", DCNT},
113	{"NCCNT", NCCNT},
114	{"NTCNT", NTCNT},
115	{"EXCNT", EXCNT},
116	{"LTCNT", LTCNT},
117	{"TXSM", TXSM},
118	{"RXCFG", RXCFG},
119	{"RXMAX", RXMAX},
120	{"RXMIN", RXMIN},
121	{"FRCNT", FRCNT},
122	{"AECNT", AECNT},
123	{"FECNT", FECNT},
124	{"RXSM", RXSM},
125	{"RXCV", RXCV}
126};
127
128#endif
129
130static unsigned char *bmac_emergency_rxbuf;
131
132/*
133 * Number of bytes of private data per BMAC: allow enough for
134 * the rx and tx dma commands plus a branch dma command each,
135 * and another 16 bytes to allow us to align the dma command
136 * buffers on a 16 byte boundary.
137 */
138#define PRIV_BYTES	(sizeof(struct bmac_data) \
139	+ (N_RX_RING + N_TX_RING + 4) * sizeof(struct dbdma_cmd) \
140	+ sizeof(struct sk_buff_head))
141
142static int bmac_open(struct net_device *dev);
143static int bmac_close(struct net_device *dev);
144static int bmac_transmit_packet(struct sk_buff *skb, struct net_device *dev);
145static void bmac_set_multicast(struct net_device *dev);
146static void bmac_reset_and_enable(struct net_device *dev);
147static void bmac_start_chip(struct net_device *dev);
148static void bmac_init_chip(struct net_device *dev);
149static void bmac_init_registers(struct net_device *dev);
150static void bmac_enable_and_reset_chip(struct net_device *dev);
151static int bmac_set_address(struct net_device *dev, void *addr);
152static irqreturn_t bmac_misc_intr(int irq, void *dev_id);
153static irqreturn_t bmac_txdma_intr(int irq, void *dev_id);
154static irqreturn_t bmac_rxdma_intr(int irq, void *dev_id);
155static void bmac_set_timeout(struct net_device *dev);
156static void bmac_tx_timeout(struct timer_list *t);
157static netdev_tx_t bmac_output(struct sk_buff *skb, struct net_device *dev);
158static void bmac_start(struct net_device *dev);
159
160#define	DBDMA_SET(x)	( ((x) | (x) << 16) )
161#define	DBDMA_CLEAR(x)	( (x) << 16)
162
163static inline void
164dbdma_st32(volatile __u32 __iomem *a, unsigned long x)
165{
166	__asm__ volatile( "stwbrx %0,0,%1" : : "r" (x), "r" (a) : "memory");
167}
168
169static inline unsigned long
170dbdma_ld32(volatile __u32 __iomem *a)
171{
172	__u32 swap;
173	__asm__ volatile ("lwbrx %0,0,%1" :  "=r" (swap) : "r" (a));
174	return swap;
175}
176
177static void
178dbdma_continue(volatile struct dbdma_regs __iomem *dmap)
179{
180	dbdma_st32(&dmap->control,
181		   DBDMA_SET(RUN|WAKE) | DBDMA_CLEAR(PAUSE|DEAD));
182	eieio();
183}
184
185static void
186dbdma_reset(volatile struct dbdma_regs __iomem *dmap)
187{
188	dbdma_st32(&dmap->control,
189		   DBDMA_CLEAR(ACTIVE|DEAD|WAKE|FLUSH|PAUSE|RUN));
190	eieio();
191	while (dbdma_ld32(&dmap->status) & RUN)
192		eieio();
193}
194
195static void
196dbdma_setcmd(volatile struct dbdma_cmd *cp,
197	     unsigned short cmd, unsigned count, unsigned long addr,
198	     unsigned long cmd_dep)
199{
200	out_le16(&cp->command, cmd);
201	out_le16(&cp->req_count, count);
202	out_le32(&cp->phy_addr, addr);
203	out_le32(&cp->cmd_dep, cmd_dep);
204	out_le16(&cp->xfer_status, 0);
205	out_le16(&cp->res_count, 0);
206}
207
208static inline
209void bmwrite(struct net_device *dev, unsigned long reg_offset, unsigned data )
210{
211	out_le16((void __iomem *)dev->base_addr + reg_offset, data);
212}
213
214
215static inline
216unsigned short bmread(struct net_device *dev, unsigned long reg_offset )
217{
218	return in_le16((void __iomem *)dev->base_addr + reg_offset);
219}
220
221static void
222bmac_enable_and_reset_chip(struct net_device *dev)
223{
224	struct bmac_data *bp = netdev_priv(dev);
225	volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
226	volatile struct dbdma_regs __iomem *td = bp->tx_dma;
227
228	if (rd)
229		dbdma_reset(rd);
230	if (td)
231		dbdma_reset(td);
232
233	pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 1);
234}
235
236#define MIFDELAY	udelay(10)
237
238static unsigned int
239bmac_mif_readbits(struct net_device *dev, int nb)
240{
241	unsigned int val = 0;
242
243	while (--nb >= 0) {
244		bmwrite(dev, MIFCSR, 0);
245		MIFDELAY;
246		if (bmread(dev, MIFCSR) & 8)
247			val |= 1 << nb;
248		bmwrite(dev, MIFCSR, 1);
249		MIFDELAY;
250	}
251	bmwrite(dev, MIFCSR, 0);
252	MIFDELAY;
253	bmwrite(dev, MIFCSR, 1);
254	MIFDELAY;
255	return val;
256}
257
258static void
259bmac_mif_writebits(struct net_device *dev, unsigned int val, int nb)
260{
261	int b;
262
263	while (--nb >= 0) {
264		b = (val & (1 << nb))? 6: 4;
265		bmwrite(dev, MIFCSR, b);
266		MIFDELAY;
267		bmwrite(dev, MIFCSR, b|1);
268		MIFDELAY;
269	}
270}
271
272static unsigned int
273bmac_mif_read(struct net_device *dev, unsigned int addr)
274{
275	unsigned int val;
276
277	bmwrite(dev, MIFCSR, 4);
278	MIFDELAY;
279	bmac_mif_writebits(dev, ~0U, 32);
280	bmac_mif_writebits(dev, 6, 4);
281	bmac_mif_writebits(dev, addr, 10);
282	bmwrite(dev, MIFCSR, 2);
283	MIFDELAY;
284	bmwrite(dev, MIFCSR, 1);
285	MIFDELAY;
286	val = bmac_mif_readbits(dev, 17);
287	bmwrite(dev, MIFCSR, 4);
288	MIFDELAY;
289	return val;
290}
291
292static void
293bmac_mif_write(struct net_device *dev, unsigned int addr, unsigned int val)
294{
295	bmwrite(dev, MIFCSR, 4);
296	MIFDELAY;
297	bmac_mif_writebits(dev, ~0U, 32);
298	bmac_mif_writebits(dev, 5, 4);
299	bmac_mif_writebits(dev, addr, 10);
300	bmac_mif_writebits(dev, 2, 2);
301	bmac_mif_writebits(dev, val, 16);
302	bmac_mif_writebits(dev, 3, 2);
303}
304
305static void
306bmac_init_registers(struct net_device *dev)
307{
308	struct bmac_data *bp = netdev_priv(dev);
309	volatile unsigned short regValue;
310	const unsigned short *pWord16;
311	int i;
312
313	/* XXDEBUG(("bmac: enter init_registers\n")); */
314
315	bmwrite(dev, RXRST, RxResetValue);
316	bmwrite(dev, TXRST, TxResetBit);
317
318	i = 100;
319	do {
320		--i;
321		udelay(10000);
322		regValue = bmread(dev, TXRST); /* wait for reset to clear..acknowledge */
323	} while ((regValue & TxResetBit) && i > 0);
324
325	if (!bp->is_bmac_plus) {
326		regValue = bmread(dev, XCVRIF);
327		regValue |= ClkBit | SerialMode | COLActiveLow;
328		bmwrite(dev, XCVRIF, regValue);
329		udelay(10000);
330	}
331
332	bmwrite(dev, RSEED, (unsigned short)0x1968);
333
334	regValue = bmread(dev, XIFC);
335	regValue |= TxOutputEnable;
336	bmwrite(dev, XIFC, regValue);
337
338	bmread(dev, PAREG);
339
340	/* set collision counters to 0 */
341	bmwrite(dev, NCCNT, 0);
342	bmwrite(dev, NTCNT, 0);
343	bmwrite(dev, EXCNT, 0);
344	bmwrite(dev, LTCNT, 0);
345
346	/* set rx counters to 0 */
347	bmwrite(dev, FRCNT, 0);
348	bmwrite(dev, LECNT, 0);
349	bmwrite(dev, AECNT, 0);
350	bmwrite(dev, FECNT, 0);
351	bmwrite(dev, RXCV, 0);
352
353	/* set tx fifo information */
354	bmwrite(dev, TXTH, 4);	/* 4 octets before tx starts */
355
356	bmwrite(dev, TXFIFOCSR, 0);	/* first disable txFIFO */
357	bmwrite(dev, TXFIFOCSR, TxFIFOEnable );
358
359	/* set rx fifo information */
360	bmwrite(dev, RXFIFOCSR, 0);	/* first disable rxFIFO */
361	bmwrite(dev, RXFIFOCSR, RxFIFOEnable );
362
363	//bmwrite(dev, TXCFG, TxMACEnable);	       	/* TxNeverGiveUp maybe later */
364	bmread(dev, STATUS);		/* read it just to clear it */
365
366	/* zero out the chip Hash Filter registers */
367	for (i=0; i<4; i++) bp->hash_table_mask[i] = 0;
368	bmwrite(dev, BHASH3, bp->hash_table_mask[0]); 	/* bits 15 - 0 */
369	bmwrite(dev, BHASH2, bp->hash_table_mask[1]); 	/* bits 31 - 16 */
370	bmwrite(dev, BHASH1, bp->hash_table_mask[2]); 	/* bits 47 - 32 */
371	bmwrite(dev, BHASH0, bp->hash_table_mask[3]); 	/* bits 63 - 48 */
372
373	pWord16 = (const unsigned short *)dev->dev_addr;
374	bmwrite(dev, MADD0, *pWord16++);
375	bmwrite(dev, MADD1, *pWord16++);
376	bmwrite(dev, MADD2, *pWord16);
377
378	bmwrite(dev, RXCFG, RxCRCNoStrip | RxHashFilterEnable | RxRejectOwnPackets);
379
380	bmwrite(dev, INTDISABLE, EnableNormal);
381}
382
383#if 0
384static void
385bmac_disable_interrupts(struct net_device *dev)
386{
387	bmwrite(dev, INTDISABLE, DisableAll);
388}
389
390static void
391bmac_enable_interrupts(struct net_device *dev)
392{
393	bmwrite(dev, INTDISABLE, EnableNormal);
394}
395#endif
396
397
398static void
399bmac_start_chip(struct net_device *dev)
400{
401	struct bmac_data *bp = netdev_priv(dev);
402	volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
403	unsigned short	oldConfig;
404
405	/* enable rx dma channel */
406	dbdma_continue(rd);
407
408	oldConfig = bmread(dev, TXCFG);
409	bmwrite(dev, TXCFG, oldConfig | TxMACEnable );
410
411	/* turn on rx plus any other bits already on (promiscuous possibly) */
412	oldConfig = bmread(dev, RXCFG);
413	bmwrite(dev, RXCFG, oldConfig | RxMACEnable );
414	udelay(20000);
415}
416
417static void
418bmac_init_phy(struct net_device *dev)
419{
420	unsigned int addr;
421	struct bmac_data *bp = netdev_priv(dev);
422
423	printk(KERN_DEBUG "phy registers:");
424	for (addr = 0; addr < 32; ++addr) {
425		if ((addr & 7) == 0)
426			printk(KERN_DEBUG);
427		printk(KERN_CONT " %.4x", bmac_mif_read(dev, addr));
428	}
429	printk(KERN_CONT "\n");
430
431	if (bp->is_bmac_plus) {
432		unsigned int capable, ctrl;
433
434		ctrl = bmac_mif_read(dev, 0);
435		capable = ((bmac_mif_read(dev, 1) & 0xf800) >> 6) | 1;
436		if (bmac_mif_read(dev, 4) != capable ||
437		    (ctrl & 0x1000) == 0) {
438			bmac_mif_write(dev, 4, capable);
439			bmac_mif_write(dev, 0, 0x1200);
440		} else
441			bmac_mif_write(dev, 0, 0x1000);
442	}
443}
444
445static void bmac_init_chip(struct net_device *dev)
446{
447	bmac_init_phy(dev);
448	bmac_init_registers(dev);
449}
450
451#ifdef CONFIG_PM
452static int bmac_suspend(struct macio_dev *mdev, pm_message_t state)
453{
454	struct net_device* dev = macio_get_drvdata(mdev);
455	struct bmac_data *bp = netdev_priv(dev);
456	unsigned long flags;
457	unsigned short config;
458	int i;
459
460	netif_device_detach(dev);
461	/* prolly should wait for dma to finish & turn off the chip */
462	spin_lock_irqsave(&bp->lock, flags);
463	if (bp->timeout_active) {
464		del_timer(&bp->tx_timeout);
465		bp->timeout_active = 0;
466	}
467	disable_irq(dev->irq);
468	disable_irq(bp->tx_dma_intr);
469	disable_irq(bp->rx_dma_intr);
470	bp->sleeping = 1;
471	spin_unlock_irqrestore(&bp->lock, flags);
472	if (bp->opened) {
473		volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
474		volatile struct dbdma_regs __iomem *td = bp->tx_dma;
475
476		config = bmread(dev, RXCFG);
477		bmwrite(dev, RXCFG, (config & ~RxMACEnable));
478		config = bmread(dev, TXCFG);
479		bmwrite(dev, TXCFG, (config & ~TxMACEnable));
480		bmwrite(dev, INTDISABLE, DisableAll); /* disable all intrs */
481		/* disable rx and tx dma */
482		rd->control = cpu_to_le32(DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE));	/* clear run bit */
483		td->control = cpu_to_le32(DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE));	/* clear run bit */
484		/* free some skb's */
485		for (i=0; i<N_RX_RING; i++) {
486			if (bp->rx_bufs[i] != NULL) {
487				dev_kfree_skb(bp->rx_bufs[i]);
488				bp->rx_bufs[i] = NULL;
489			}
490		}
491		for (i = 0; i<N_TX_RING; i++) {
492			if (bp->tx_bufs[i] != NULL) {
493		       		dev_kfree_skb(bp->tx_bufs[i]);
494	       			bp->tx_bufs[i] = NULL;
495		       	}
496		}
497	}
498	pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 0);
499	return 0;
500}
501
502static int bmac_resume(struct macio_dev *mdev)
503{
504	struct net_device* dev = macio_get_drvdata(mdev);
505	struct bmac_data *bp = netdev_priv(dev);
506
507	/* see if this is enough */
508	if (bp->opened)
509		bmac_reset_and_enable(dev);
510
511	enable_irq(dev->irq);
512	enable_irq(bp->tx_dma_intr);
513	enable_irq(bp->rx_dma_intr);
514	netif_device_attach(dev);
515
516	return 0;
517}
518#endif /* CONFIG_PM */
519
520static int bmac_set_address(struct net_device *dev, void *addr)
521{
522	struct bmac_data *bp = netdev_priv(dev);
523	const unsigned short *pWord16;
524	unsigned long flags;
525
526	XXDEBUG(("bmac: enter set_address\n"));
527	spin_lock_irqsave(&bp->lock, flags);
528
529	eth_hw_addr_set(dev, addr);
530
531	/* load up the hardware address */
532	pWord16  = (const unsigned short *)dev->dev_addr;
533	bmwrite(dev, MADD0, *pWord16++);
534	bmwrite(dev, MADD1, *pWord16++);
535	bmwrite(dev, MADD2, *pWord16);
536
537	spin_unlock_irqrestore(&bp->lock, flags);
538	XXDEBUG(("bmac: exit set_address\n"));
539	return 0;
540}
541
542static inline void bmac_set_timeout(struct net_device *dev)
543{
544	struct bmac_data *bp = netdev_priv(dev);
545	unsigned long flags;
546
547	spin_lock_irqsave(&bp->lock, flags);
548	if (bp->timeout_active)
549		del_timer(&bp->tx_timeout);
550	bp->tx_timeout.expires = jiffies + TX_TIMEOUT;
551	add_timer(&bp->tx_timeout);
552	bp->timeout_active = 1;
553	spin_unlock_irqrestore(&bp->lock, flags);
554}
555
556static void
557bmac_construct_xmt(struct sk_buff *skb, volatile struct dbdma_cmd *cp)
558{
559	void *vaddr;
560	unsigned long baddr;
561	unsigned long len;
562
563	len = skb->len;
564	vaddr = skb->data;
565	baddr = virt_to_bus(vaddr);
566
567	dbdma_setcmd(cp, (OUTPUT_LAST | INTR_ALWAYS | WAIT_IFCLR), len, baddr, 0);
568}
569
570static void
571bmac_construct_rxbuff(struct sk_buff *skb, volatile struct dbdma_cmd *cp)
572{
573	unsigned char *addr = skb? skb->data: bmac_emergency_rxbuf;
574
575	dbdma_setcmd(cp, (INPUT_LAST | INTR_ALWAYS), RX_BUFLEN,
576		     virt_to_bus(addr), 0);
577}
578
579static void
580bmac_init_tx_ring(struct bmac_data *bp)
581{
582	volatile struct dbdma_regs __iomem *td = bp->tx_dma;
583
584	memset((char *)bp->tx_cmds, 0, (N_TX_RING+1) * sizeof(struct dbdma_cmd));
585
586	bp->tx_empty = 0;
587	bp->tx_fill = 0;
588	bp->tx_fullup = 0;
589
590	/* put a branch at the end of the tx command list */
591	dbdma_setcmd(&bp->tx_cmds[N_TX_RING],
592		     (DBDMA_NOP | BR_ALWAYS), 0, 0, virt_to_bus(bp->tx_cmds));
593
594	/* reset tx dma */
595	dbdma_reset(td);
596	out_le32(&td->wait_sel, 0x00200020);
597	out_le32(&td->cmdptr, virt_to_bus(bp->tx_cmds));
598}
599
600static int
601bmac_init_rx_ring(struct net_device *dev)
602{
603	struct bmac_data *bp = netdev_priv(dev);
604	volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
605	int i;
606	struct sk_buff *skb;
607
608	/* initialize list of sk_buffs for receiving and set up recv dma */
609	memset((char *)bp->rx_cmds, 0,
610	       (N_RX_RING + 1) * sizeof(struct dbdma_cmd));
611	for (i = 0; i < N_RX_RING; i++) {
612		if ((skb = bp->rx_bufs[i]) == NULL) {
613			bp->rx_bufs[i] = skb = netdev_alloc_skb(dev, RX_BUFLEN + 2);
614			if (skb != NULL)
615				skb_reserve(skb, 2);
616		}
617		bmac_construct_rxbuff(skb, &bp->rx_cmds[i]);
618	}
619
620	bp->rx_empty = 0;
621	bp->rx_fill = i;
622
623	/* Put a branch back to the beginning of the receive command list */
624	dbdma_setcmd(&bp->rx_cmds[N_RX_RING],
625		     (DBDMA_NOP | BR_ALWAYS), 0, 0, virt_to_bus(bp->rx_cmds));
626
627	/* start rx dma */
628	dbdma_reset(rd);
629	out_le32(&rd->cmdptr, virt_to_bus(bp->rx_cmds));
630
631	return 1;
632}
633
634
635static int bmac_transmit_packet(struct sk_buff *skb, struct net_device *dev)
636{
637	struct bmac_data *bp = netdev_priv(dev);
638	volatile struct dbdma_regs __iomem *td = bp->tx_dma;
639	int i;
640
641	/* see if there's a free slot in the tx ring */
642	/* XXDEBUG(("bmac_xmit_start: empty=%d fill=%d\n", */
643	/* 	     bp->tx_empty, bp->tx_fill)); */
644	i = bp->tx_fill + 1;
645	if (i >= N_TX_RING)
646		i = 0;
647	if (i == bp->tx_empty) {
648		netif_stop_queue(dev);
649		bp->tx_fullup = 1;
650		XXDEBUG(("bmac_transmit_packet: tx ring full\n"));
651		return -1;		/* can't take it at the moment */
652	}
653
654	dbdma_setcmd(&bp->tx_cmds[i], DBDMA_STOP, 0, 0, 0);
655
656	bmac_construct_xmt(skb, &bp->tx_cmds[bp->tx_fill]);
657
658	bp->tx_bufs[bp->tx_fill] = skb;
659	bp->tx_fill = i;
660
661	dev->stats.tx_bytes += skb->len;
662
663	dbdma_continue(td);
664
665	return 0;
666}
667
668static int rxintcount;
669
670static irqreturn_t bmac_rxdma_intr(int irq, void *dev_id)
671{
672	struct net_device *dev = (struct net_device *) dev_id;
673	struct bmac_data *bp = netdev_priv(dev);
674	volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
675	volatile struct dbdma_cmd *cp;
676	int i, nb, stat;
677	struct sk_buff *skb;
678	unsigned int residual;
679	int last;
680	unsigned long flags;
681
682	spin_lock_irqsave(&bp->lock, flags);
683
684	if (++rxintcount < 10) {
685		XXDEBUG(("bmac_rxdma_intr\n"));
686	}
687
688	last = -1;
689	i = bp->rx_empty;
690
691	while (1) {
692		cp = &bp->rx_cmds[i];
693		stat = le16_to_cpu(cp->xfer_status);
694		residual = le16_to_cpu(cp->res_count);
695		if ((stat & ACTIVE) == 0)
696			break;
697		nb = RX_BUFLEN - residual - 2;
698		if (nb < (ETHERMINPACKET - ETHERCRC)) {
699			skb = NULL;
700			dev->stats.rx_length_errors++;
701			dev->stats.rx_errors++;
702		} else {
703			skb = bp->rx_bufs[i];
704			bp->rx_bufs[i] = NULL;
705		}
706		if (skb != NULL) {
707			nb -= ETHERCRC;
708			skb_put(skb, nb);
709			skb->protocol = eth_type_trans(skb, dev);
710			netif_rx(skb);
711			++dev->stats.rx_packets;
712			dev->stats.rx_bytes += nb;
713		} else {
714			++dev->stats.rx_dropped;
715		}
716		if ((skb = bp->rx_bufs[i]) == NULL) {
717			bp->rx_bufs[i] = skb = netdev_alloc_skb(dev, RX_BUFLEN + 2);
718			if (skb != NULL)
719				skb_reserve(bp->rx_bufs[i], 2);
720		}
721		bmac_construct_rxbuff(skb, &bp->rx_cmds[i]);
722		cp->res_count = cpu_to_le16(0);
723		cp->xfer_status = cpu_to_le16(0);
724		last = i;
725		if (++i >= N_RX_RING) i = 0;
726	}
727
728	if (last != -1) {
729		bp->rx_fill = last;
730		bp->rx_empty = i;
731	}
732
733	dbdma_continue(rd);
734	spin_unlock_irqrestore(&bp->lock, flags);
735
736	if (rxintcount < 10) {
737		XXDEBUG(("bmac_rxdma_intr done\n"));
738	}
739	return IRQ_HANDLED;
740}
741
742static int txintcount;
743
744static irqreturn_t bmac_txdma_intr(int irq, void *dev_id)
745{
746	struct net_device *dev = (struct net_device *) dev_id;
747	struct bmac_data *bp = netdev_priv(dev);
748	volatile struct dbdma_cmd *cp;
749	int stat;
750	unsigned long flags;
751
752	spin_lock_irqsave(&bp->lock, flags);
753
754	if (txintcount++ < 10) {
755		XXDEBUG(("bmac_txdma_intr\n"));
756	}
757
758	/*     del_timer(&bp->tx_timeout); */
759	/*     bp->timeout_active = 0; */
760
761	while (1) {
762		cp = &bp->tx_cmds[bp->tx_empty];
763		stat = le16_to_cpu(cp->xfer_status);
764		if (txintcount < 10) {
765			XXDEBUG(("bmac_txdma_xfer_stat=%#0x\n", stat));
766		}
767		if (!(stat & ACTIVE)) {
768			/*
769			 * status field might not have been filled by DBDMA
770			 */
771			if (cp == bus_to_virt(in_le32(&bp->tx_dma->cmdptr)))
772				break;
773		}
774
775		if (bp->tx_bufs[bp->tx_empty]) {
776			++dev->stats.tx_packets;
777			dev_consume_skb_irq(bp->tx_bufs[bp->tx_empty]);
778		}
779		bp->tx_bufs[bp->tx_empty] = NULL;
780		bp->tx_fullup = 0;
781		netif_wake_queue(dev);
782		if (++bp->tx_empty >= N_TX_RING)
783			bp->tx_empty = 0;
784		if (bp->tx_empty == bp->tx_fill)
785			break;
786	}
787
788	spin_unlock_irqrestore(&bp->lock, flags);
789
790	if (txintcount < 10) {
791		XXDEBUG(("bmac_txdma_intr done->bmac_start\n"));
792	}
793
794	bmac_start(dev);
795	return IRQ_HANDLED;
796}
797
798#ifndef SUNHME_MULTICAST
799/* Real fast bit-reversal algorithm, 6-bit values */
800static int reverse6[64] = {
801	0x0,0x20,0x10,0x30,0x8,0x28,0x18,0x38,
802	0x4,0x24,0x14,0x34,0xc,0x2c,0x1c,0x3c,
803	0x2,0x22,0x12,0x32,0xa,0x2a,0x1a,0x3a,
804	0x6,0x26,0x16,0x36,0xe,0x2e,0x1e,0x3e,
805	0x1,0x21,0x11,0x31,0x9,0x29,0x19,0x39,
806	0x5,0x25,0x15,0x35,0xd,0x2d,0x1d,0x3d,
807	0x3,0x23,0x13,0x33,0xb,0x2b,0x1b,0x3b,
808	0x7,0x27,0x17,0x37,0xf,0x2f,0x1f,0x3f
809};
810
811static unsigned int
812crc416(unsigned int curval, unsigned short nxtval)
813{
814	unsigned int counter, cur = curval, next = nxtval;
815	int high_crc_set, low_data_set;
816
817	/* Swap bytes */
818	next = ((next & 0x00FF) << 8) | (next >> 8);
819
820	/* Compute bit-by-bit */
821	for (counter = 0; counter < 16; ++counter) {
822		/* is high CRC bit set? */
823		if ((cur & 0x80000000) == 0) high_crc_set = 0;
824		else high_crc_set = 1;
825
826		cur = cur << 1;
827
828		if ((next & 0x0001) == 0) low_data_set = 0;
829		else low_data_set = 1;
830
831		next = next >> 1;
832
833		/* do the XOR */
834		if (high_crc_set ^ low_data_set) cur = cur ^ CRC32_POLY_BE;
835	}
836	return cur;
837}
838
839static unsigned int
840bmac_crc(unsigned short *address)
841{
842	unsigned int newcrc;
843
844	XXDEBUG(("bmac_crc: addr=%#04x, %#04x, %#04x\n", *address, address[1], address[2]));
845	newcrc = crc416(0xffffffff, *address);	/* address bits 47 - 32 */
846	newcrc = crc416(newcrc, address[1]);	/* address bits 31 - 16 */
847	newcrc = crc416(newcrc, address[2]);	/* address bits 15 - 0  */
848
849	return(newcrc);
850}
851
852/*
853 * Add requested mcast addr to BMac's hash table filter.
854 *
855 */
856
857static void
858bmac_addhash(struct bmac_data *bp, unsigned char *addr)
859{
860	unsigned int	 crc;
861	unsigned short	 mask;
862
863	if (!(*addr)) return;
864	crc = bmac_crc((unsigned short *)addr) & 0x3f; /* Big-endian alert! */
865	crc = reverse6[crc];	/* Hyperfast bit-reversing algorithm */
866	if (bp->hash_use_count[crc]++) return; /* This bit is already set */
867	mask = crc % 16;
868	mask = (unsigned char)1 << mask;
869	bp->hash_use_count[crc/16] |= mask;
870}
871
872static void
873bmac_removehash(struct bmac_data *bp, unsigned char *addr)
874{
875	unsigned int crc;
876	unsigned char mask;
877
878	/* Now, delete the address from the filter copy, as indicated */
879	crc = bmac_crc((unsigned short *)addr) & 0x3f; /* Big-endian alert! */
880	crc = reverse6[crc];	/* Hyperfast bit-reversing algorithm */
881	if (bp->hash_use_count[crc] == 0) return; /* That bit wasn't in use! */
882	if (--bp->hash_use_count[crc]) return; /* That bit is still in use */
883	mask = crc % 16;
884	mask = ((unsigned char)1 << mask) ^ 0xffff; /* To turn off bit */
885	bp->hash_table_mask[crc/16] &= mask;
886}
887
888/*
889 * Sync the adapter with the software copy of the multicast mask
890 *  (logical address filter).
891 */
892
893static void
894bmac_rx_off(struct net_device *dev)
895{
896	unsigned short rx_cfg;
897
898	rx_cfg = bmread(dev, RXCFG);
899	rx_cfg &= ~RxMACEnable;
900	bmwrite(dev, RXCFG, rx_cfg);
901	do {
902		rx_cfg = bmread(dev, RXCFG);
903	}  while (rx_cfg & RxMACEnable);
904}
905
906unsigned short
907bmac_rx_on(struct net_device *dev, int hash_enable, int promisc_enable)
908{
909	unsigned short rx_cfg;
910
911	rx_cfg = bmread(dev, RXCFG);
912	rx_cfg |= RxMACEnable;
913	if (hash_enable) rx_cfg |= RxHashFilterEnable;
914	else rx_cfg &= ~RxHashFilterEnable;
915	if (promisc_enable) rx_cfg |= RxPromiscEnable;
916	else rx_cfg &= ~RxPromiscEnable;
917	bmwrite(dev, RXRST, RxResetValue);
918	bmwrite(dev, RXFIFOCSR, 0);	/* first disable rxFIFO */
919	bmwrite(dev, RXFIFOCSR, RxFIFOEnable );
920	bmwrite(dev, RXCFG, rx_cfg );
921	return rx_cfg;
922}
923
924static void
925bmac_update_hash_table_mask(struct net_device *dev, struct bmac_data *bp)
926{
927	bmwrite(dev, BHASH3, bp->hash_table_mask[0]); /* bits 15 - 0 */
928	bmwrite(dev, BHASH2, bp->hash_table_mask[1]); /* bits 31 - 16 */
929	bmwrite(dev, BHASH1, bp->hash_table_mask[2]); /* bits 47 - 32 */
930	bmwrite(dev, BHASH0, bp->hash_table_mask[3]); /* bits 63 - 48 */
931}
932
933#if 0
934static void
935bmac_add_multi(struct net_device *dev,
936	       struct bmac_data *bp, unsigned char *addr)
937{
938	/* XXDEBUG(("bmac: enter bmac_add_multi\n")); */
939	bmac_addhash(bp, addr);
940	bmac_rx_off(dev);
941	bmac_update_hash_table_mask(dev, bp);
942	bmac_rx_on(dev, 1, (dev->flags & IFF_PROMISC)? 1 : 0);
943	/* XXDEBUG(("bmac: exit bmac_add_multi\n")); */
944}
945
946static void
947bmac_remove_multi(struct net_device *dev,
948		  struct bmac_data *bp, unsigned char *addr)
949{
950	bmac_removehash(bp, addr);
951	bmac_rx_off(dev);
952	bmac_update_hash_table_mask(dev, bp);
953	bmac_rx_on(dev, 1, (dev->flags & IFF_PROMISC)? 1 : 0);
954}
955#endif
956
957/* Set or clear the multicast filter for this adaptor.
958    num_addrs == -1	Promiscuous mode, receive all packets
959    num_addrs == 0	Normal mode, clear multicast list
960    num_addrs > 0	Multicast mode, receive normal and MC packets, and do
961			best-effort filtering.
962 */
963static void bmac_set_multicast(struct net_device *dev)
964{
965	struct netdev_hw_addr *ha;
966	struct bmac_data *bp = netdev_priv(dev);
967	int num_addrs = netdev_mc_count(dev);
968	unsigned short rx_cfg;
969	int i;
970
971	if (bp->sleeping)
972		return;
973
974	XXDEBUG(("bmac: enter bmac_set_multicast, n_addrs=%d\n", num_addrs));
975
976	if((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 64)) {
977		for (i=0; i<4; i++) bp->hash_table_mask[i] = 0xffff;
978		bmac_update_hash_table_mask(dev, bp);
979		rx_cfg = bmac_rx_on(dev, 1, 0);
980		XXDEBUG(("bmac: all multi, rx_cfg=%#08x\n"));
981	} else if ((dev->flags & IFF_PROMISC) || (num_addrs < 0)) {
982		rx_cfg = bmread(dev, RXCFG);
983		rx_cfg |= RxPromiscEnable;
984		bmwrite(dev, RXCFG, rx_cfg);
985		rx_cfg = bmac_rx_on(dev, 0, 1);
986		XXDEBUG(("bmac: promisc mode enabled, rx_cfg=%#08x\n", rx_cfg));
987	} else {
988		for (i=0; i<4; i++) bp->hash_table_mask[i] = 0;
989		for (i=0; i<64; i++) bp->hash_use_count[i] = 0;
990		if (num_addrs == 0) {
991			rx_cfg = bmac_rx_on(dev, 0, 0);
992			XXDEBUG(("bmac: multi disabled, rx_cfg=%#08x\n", rx_cfg));
993		} else {
994			netdev_for_each_mc_addr(ha, dev)
995				bmac_addhash(bp, ha->addr);
996			bmac_update_hash_table_mask(dev, bp);
997			rx_cfg = bmac_rx_on(dev, 1, 0);
998			XXDEBUG(("bmac: multi enabled, rx_cfg=%#08x\n", rx_cfg));
999		}
1000	}
1001	/* XXDEBUG(("bmac: exit bmac_set_multicast\n")); */
1002}
1003#else /* ifdef SUNHME_MULTICAST */
1004
1005/* The version of set_multicast below was lifted from sunhme.c */
1006
1007static void bmac_set_multicast(struct net_device *dev)
1008{
1009	struct netdev_hw_addr *ha;
1010	unsigned short rx_cfg;
1011	u32 crc;
1012
1013	if((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 64)) {
1014		bmwrite(dev, BHASH0, 0xffff);
1015		bmwrite(dev, BHASH1, 0xffff);
1016		bmwrite(dev, BHASH2, 0xffff);
1017		bmwrite(dev, BHASH3, 0xffff);
1018	} else if(dev->flags & IFF_PROMISC) {
1019		rx_cfg = bmread(dev, RXCFG);
1020		rx_cfg |= RxPromiscEnable;
1021		bmwrite(dev, RXCFG, rx_cfg);
1022	} else {
1023		u16 hash_table[4] = { 0 };
1024
1025		rx_cfg = bmread(dev, RXCFG);
1026		rx_cfg &= ~RxPromiscEnable;
1027		bmwrite(dev, RXCFG, rx_cfg);
1028
1029		netdev_for_each_mc_addr(ha, dev) {
1030			crc = ether_crc_le(6, ha->addr);
1031			crc >>= 26;
1032			hash_table[crc >> 4] |= 1 << (crc & 0xf);
1033		}
1034		bmwrite(dev, BHASH0, hash_table[0]);
1035		bmwrite(dev, BHASH1, hash_table[1]);
1036		bmwrite(dev, BHASH2, hash_table[2]);
1037		bmwrite(dev, BHASH3, hash_table[3]);
1038	}
1039}
1040#endif /* SUNHME_MULTICAST */
1041
1042static int miscintcount;
1043
1044static irqreturn_t bmac_misc_intr(int irq, void *dev_id)
1045{
1046	struct net_device *dev = (struct net_device *) dev_id;
1047	unsigned int status = bmread(dev, STATUS);
1048	if (miscintcount++ < 10) {
1049		XXDEBUG(("bmac_misc_intr\n"));
1050	}
1051	/* XXDEBUG(("bmac_misc_intr, status=%#08x\n", status)); */
1052	/*     bmac_txdma_intr_inner(irq, dev_id); */
1053	/*   if (status & FrameReceived) dev->stats.rx_dropped++; */
1054	if (status & RxErrorMask) dev->stats.rx_errors++;
1055	if (status & RxCRCCntExp) dev->stats.rx_crc_errors++;
1056	if (status & RxLenCntExp) dev->stats.rx_length_errors++;
1057	if (status & RxOverFlow) dev->stats.rx_over_errors++;
1058	if (status & RxAlignCntExp) dev->stats.rx_frame_errors++;
1059
1060	/*   if (status & FrameSent) dev->stats.tx_dropped++; */
1061	if (status & TxErrorMask) dev->stats.tx_errors++;
1062	if (status & TxUnderrun) dev->stats.tx_fifo_errors++;
1063	if (status & TxNormalCollExp) dev->stats.collisions++;
1064	return IRQ_HANDLED;
1065}
1066
1067/*
1068 * Procedure for reading EEPROM
1069 */
1070#define SROMAddressLength	5
1071#define DataInOn		0x0008
1072#define DataInOff		0x0000
1073#define Clk			0x0002
1074#define ChipSelect		0x0001
1075#define SDIShiftCount		3
1076#define SD0ShiftCount		2
1077#define	DelayValue		1000	/* number of microseconds */
1078#define SROMStartOffset		10	/* this is in words */
1079#define SROMReadCount		3	/* number of words to read from SROM */
1080#define SROMAddressBits		6
1081#define EnetAddressOffset	20
1082
1083static unsigned char
1084bmac_clock_out_bit(struct net_device *dev)
1085{
1086	unsigned short         data;
1087	unsigned short         val;
1088
1089	bmwrite(dev, SROMCSR, ChipSelect | Clk);
1090	udelay(DelayValue);
1091
1092	data = bmread(dev, SROMCSR);
1093	udelay(DelayValue);
1094	val = (data >> SD0ShiftCount) & 1;
1095
1096	bmwrite(dev, SROMCSR, ChipSelect);
1097	udelay(DelayValue);
1098
1099	return val;
1100}
1101
1102static void
1103bmac_clock_in_bit(struct net_device *dev, unsigned int val)
1104{
1105	unsigned short data;
1106
1107	if (val != 0 && val != 1) return;
1108
1109	data = (val << SDIShiftCount);
1110	bmwrite(dev, SROMCSR, data | ChipSelect  );
1111	udelay(DelayValue);
1112
1113	bmwrite(dev, SROMCSR, data | ChipSelect | Clk );
1114	udelay(DelayValue);
1115
1116	bmwrite(dev, SROMCSR, data | ChipSelect);
1117	udelay(DelayValue);
1118}
1119
1120static void
1121reset_and_select_srom(struct net_device *dev)
1122{
1123	/* first reset */
1124	bmwrite(dev, SROMCSR, 0);
1125	udelay(DelayValue);
1126
1127	/* send it the read command (110) */
1128	bmac_clock_in_bit(dev, 1);
1129	bmac_clock_in_bit(dev, 1);
1130	bmac_clock_in_bit(dev, 0);
1131}
1132
1133static unsigned short
1134read_srom(struct net_device *dev, unsigned int addr, unsigned int addr_len)
1135{
1136	unsigned short data, val;
1137	int i;
1138
1139	/* send out the address we want to read from */
1140	for (i = 0; i < addr_len; i++)	{
1141		val = addr >> (addr_len-i-1);
1142		bmac_clock_in_bit(dev, val & 1);
1143	}
1144
1145	/* Now read in the 16-bit data */
1146	data = 0;
1147	for (i = 0; i < 16; i++)	{
1148		val = bmac_clock_out_bit(dev);
1149		data <<= 1;
1150		data |= val;
1151	}
1152	bmwrite(dev, SROMCSR, 0);
1153
1154	return data;
1155}
1156
1157/*
1158 * It looks like Cogent and SMC use different methods for calculating
1159 * checksums. What a pain..
1160 */
1161
1162static int
1163bmac_verify_checksum(struct net_device *dev)
1164{
1165	unsigned short data, storedCS;
1166
1167	reset_and_select_srom(dev);
1168	data = read_srom(dev, 3, SROMAddressBits);
1169	storedCS = ((data >> 8) & 0x0ff) | ((data << 8) & 0xff00);
1170
1171	return 0;
1172}
1173
1174
1175static void
1176bmac_get_station_address(struct net_device *dev, unsigned char *ea)
1177{
1178	int i;
1179	unsigned short data;
1180
1181	for (i = 0; i < 3; i++)
1182		{
1183			reset_and_select_srom(dev);
1184			data = read_srom(dev, i + EnetAddressOffset/2, SROMAddressBits);
1185			ea[2*i]   = bitrev8(data & 0x0ff);
1186			ea[2*i+1] = bitrev8((data >> 8) & 0x0ff);
1187		}
1188}
1189
1190static void bmac_reset_and_enable(struct net_device *dev)
1191{
1192	struct bmac_data *bp = netdev_priv(dev);
1193	unsigned long flags;
1194	struct sk_buff *skb;
1195	unsigned char *data;
1196
1197	spin_lock_irqsave(&bp->lock, flags);
1198	bmac_enable_and_reset_chip(dev);
1199	bmac_init_tx_ring(bp);
1200	bmac_init_rx_ring(dev);
1201	bmac_init_chip(dev);
1202	bmac_start_chip(dev);
1203	bmwrite(dev, INTDISABLE, EnableNormal);
1204	bp->sleeping = 0;
1205
1206	/*
1207	 * It seems that the bmac can't receive until it's transmitted
1208	 * a packet.  So we give it a dummy packet to transmit.
1209	 */
1210	skb = netdev_alloc_skb(dev, ETHERMINPACKET);
1211	if (skb != NULL) {
1212		data = skb_put_zero(skb, ETHERMINPACKET);
1213		memcpy(data, dev->dev_addr, ETH_ALEN);
1214		memcpy(data + ETH_ALEN, dev->dev_addr, ETH_ALEN);
1215		bmac_transmit_packet(skb, dev);
1216	}
1217	spin_unlock_irqrestore(&bp->lock, flags);
1218}
1219
1220static const struct ethtool_ops bmac_ethtool_ops = {
1221	.get_link		= ethtool_op_get_link,
1222};
1223
1224static const struct net_device_ops bmac_netdev_ops = {
1225	.ndo_open		= bmac_open,
1226	.ndo_stop		= bmac_close,
1227	.ndo_start_xmit		= bmac_output,
1228	.ndo_set_rx_mode	= bmac_set_multicast,
1229	.ndo_set_mac_address	= bmac_set_address,
1230	.ndo_validate_addr	= eth_validate_addr,
1231};
1232
1233static int bmac_probe(struct macio_dev *mdev, const struct of_device_id *match)
1234{
1235	int j, rev, ret;
1236	struct bmac_data *bp;
1237	const unsigned char *prop_addr;
1238	unsigned char addr[6];
1239	u8 macaddr[6];
1240	struct net_device *dev;
1241	int is_bmac_plus = ((int)match->data) != 0;
1242
1243	if (macio_resource_count(mdev) != 3 || macio_irq_count(mdev) != 3) {
1244		printk(KERN_ERR "BMAC: can't use, need 3 addrs and 3 intrs\n");
1245		return -ENODEV;
1246	}
1247	prop_addr = of_get_property(macio_get_of_node(mdev),
1248			"mac-address", NULL);
1249	if (prop_addr == NULL) {
1250		prop_addr = of_get_property(macio_get_of_node(mdev),
1251				"local-mac-address", NULL);
1252		if (prop_addr == NULL) {
1253			printk(KERN_ERR "BMAC: Can't get mac-address\n");
1254			return -ENODEV;
1255		}
1256	}
1257	memcpy(addr, prop_addr, sizeof(addr));
1258
1259	dev = alloc_etherdev(PRIV_BYTES);
1260	if (!dev)
1261		return -ENOMEM;
1262
1263	bp = netdev_priv(dev);
1264	SET_NETDEV_DEV(dev, &mdev->ofdev.dev);
1265	macio_set_drvdata(mdev, dev);
1266
1267	bp->mdev = mdev;
1268	spin_lock_init(&bp->lock);
1269
1270	if (macio_request_resources(mdev, "bmac")) {
1271		printk(KERN_ERR "BMAC: can't request IO resource !\n");
1272		goto out_free;
1273	}
1274
1275	dev->base_addr = (unsigned long)
1276		ioremap(macio_resource_start(mdev, 0), macio_resource_len(mdev, 0));
1277	if (dev->base_addr == 0)
1278		goto out_release;
1279
1280	dev->irq = macio_irq(mdev, 0);
1281
1282	bmac_enable_and_reset_chip(dev);
1283	bmwrite(dev, INTDISABLE, DisableAll);
1284
1285	rev = addr[0] == 0 && addr[1] == 0xA0;
1286	for (j = 0; j < 6; ++j)
1287		macaddr[j] = rev ? bitrev8(addr[j]): addr[j];
1288
1289	eth_hw_addr_set(dev, macaddr);
1290
1291	/* Enable chip without interrupts for now */
1292	bmac_enable_and_reset_chip(dev);
1293	bmwrite(dev, INTDISABLE, DisableAll);
1294
1295	dev->netdev_ops = &bmac_netdev_ops;
1296	dev->ethtool_ops = &bmac_ethtool_ops;
1297
1298	bmac_get_station_address(dev, addr);
1299	if (bmac_verify_checksum(dev) != 0)
1300		goto err_out_iounmap;
1301
1302	bp->is_bmac_plus = is_bmac_plus;
1303	bp->tx_dma = ioremap(macio_resource_start(mdev, 1), macio_resource_len(mdev, 1));
1304	if (!bp->tx_dma)
1305		goto err_out_iounmap;
1306	bp->tx_dma_intr = macio_irq(mdev, 1);
1307	bp->rx_dma = ioremap(macio_resource_start(mdev, 2), macio_resource_len(mdev, 2));
1308	if (!bp->rx_dma)
1309		goto err_out_iounmap_tx;
1310	bp->rx_dma_intr = macio_irq(mdev, 2);
1311
1312	bp->tx_cmds = (volatile struct dbdma_cmd *) DBDMA_ALIGN(bp + 1);
1313	bp->rx_cmds = bp->tx_cmds + N_TX_RING + 1;
1314
1315	bp->queue = (struct sk_buff_head *)(bp->rx_cmds + N_RX_RING + 1);
1316	skb_queue_head_init(bp->queue);
1317
1318	timer_setup(&bp->tx_timeout, bmac_tx_timeout, 0);
1319
1320	ret = request_irq(dev->irq, bmac_misc_intr, 0, "BMAC-misc", dev);
1321	if (ret) {
1322		printk(KERN_ERR "BMAC: can't get irq %d\n", dev->irq);
1323		goto err_out_iounmap_rx;
1324	}
1325	ret = request_irq(bp->tx_dma_intr, bmac_txdma_intr, 0, "BMAC-txdma", dev);
1326	if (ret) {
1327		printk(KERN_ERR "BMAC: can't get irq %d\n", bp->tx_dma_intr);
1328		goto err_out_irq0;
1329	}
1330	ret = request_irq(bp->rx_dma_intr, bmac_rxdma_intr, 0, "BMAC-rxdma", dev);
1331	if (ret) {
1332		printk(KERN_ERR "BMAC: can't get irq %d\n", bp->rx_dma_intr);
1333		goto err_out_irq1;
1334	}
1335
1336	/* Mask chip interrupts and disable chip, will be
1337	 * re-enabled on open()
1338	 */
1339	disable_irq(dev->irq);
1340	pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 0);
1341
1342	if (register_netdev(dev) != 0) {
1343		printk(KERN_ERR "BMAC: Ethernet registration failed\n");
1344		goto err_out_irq2;
1345	}
1346
1347	printk(KERN_INFO "%s: BMAC%s at %pM",
1348	       dev->name, (is_bmac_plus ? "+" : ""), dev->dev_addr);
1349	XXDEBUG((", base_addr=%#0lx", dev->base_addr));
1350	printk("\n");
1351
1352	return 0;
1353
1354err_out_irq2:
1355	free_irq(bp->rx_dma_intr, dev);
1356err_out_irq1:
1357	free_irq(bp->tx_dma_intr, dev);
1358err_out_irq0:
1359	free_irq(dev->irq, dev);
1360err_out_iounmap_rx:
1361	iounmap(bp->rx_dma);
1362err_out_iounmap_tx:
1363	iounmap(bp->tx_dma);
1364err_out_iounmap:
1365	iounmap((void __iomem *)dev->base_addr);
1366out_release:
1367	macio_release_resources(mdev);
1368out_free:
1369	pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 0);
1370	free_netdev(dev);
1371
1372	return -ENODEV;
1373}
1374
1375static int bmac_open(struct net_device *dev)
1376{
1377	struct bmac_data *bp = netdev_priv(dev);
1378	/* XXDEBUG(("bmac: enter open\n")); */
1379	/* reset the chip */
1380	bp->opened = 1;
1381	bmac_reset_and_enable(dev);
1382	enable_irq(dev->irq);
1383	return 0;
1384}
1385
1386static int bmac_close(struct net_device *dev)
1387{
1388	struct bmac_data *bp = netdev_priv(dev);
1389	volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
1390	volatile struct dbdma_regs __iomem *td = bp->tx_dma;
1391	unsigned short config;
1392	int i;
1393
1394	bp->sleeping = 1;
1395
1396	/* disable rx and tx */
1397	config = bmread(dev, RXCFG);
1398	bmwrite(dev, RXCFG, (config & ~RxMACEnable));
1399
1400	config = bmread(dev, TXCFG);
1401	bmwrite(dev, TXCFG, (config & ~TxMACEnable));
1402
1403	bmwrite(dev, INTDISABLE, DisableAll); /* disable all intrs */
1404
1405	/* disable rx and tx dma */
1406	rd->control = cpu_to_le32(DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE));	/* clear run bit */
1407	td->control = cpu_to_le32(DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE));	/* clear run bit */
1408
1409	/* free some skb's */
1410	XXDEBUG(("bmac: free rx bufs\n"));
1411	for (i=0; i<N_RX_RING; i++) {
1412		if (bp->rx_bufs[i] != NULL) {
1413			dev_kfree_skb(bp->rx_bufs[i]);
1414			bp->rx_bufs[i] = NULL;
1415		}
1416	}
1417	XXDEBUG(("bmac: free tx bufs\n"));
1418	for (i = 0; i<N_TX_RING; i++) {
1419		if (bp->tx_bufs[i] != NULL) {
1420			dev_kfree_skb(bp->tx_bufs[i]);
1421			bp->tx_bufs[i] = NULL;
1422		}
1423	}
1424	XXDEBUG(("bmac: all bufs freed\n"));
1425
1426	bp->opened = 0;
1427	disable_irq(dev->irq);
1428	pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 0);
1429
1430	return 0;
1431}
1432
1433static void
1434bmac_start(struct net_device *dev)
1435{
1436	struct bmac_data *bp = netdev_priv(dev);
1437	int i;
1438	struct sk_buff *skb;
1439	unsigned long flags;
1440
1441	if (bp->sleeping)
1442		return;
1443
1444	spin_lock_irqsave(&bp->lock, flags);
1445	while (1) {
1446		i = bp->tx_fill + 1;
1447		if (i >= N_TX_RING)
1448			i = 0;
1449		if (i == bp->tx_empty)
1450			break;
1451		skb = skb_dequeue(bp->queue);
1452		if (skb == NULL)
1453			break;
1454		bmac_transmit_packet(skb, dev);
1455	}
1456	spin_unlock_irqrestore(&bp->lock, flags);
1457}
1458
1459static netdev_tx_t
1460bmac_output(struct sk_buff *skb, struct net_device *dev)
1461{
1462	struct bmac_data *bp = netdev_priv(dev);
1463	skb_queue_tail(bp->queue, skb);
1464	bmac_start(dev);
1465	return NETDEV_TX_OK;
1466}
1467
1468static void bmac_tx_timeout(struct timer_list *t)
1469{
1470	struct bmac_data *bp = from_timer(bp, t, tx_timeout);
1471	struct net_device *dev = macio_get_drvdata(bp->mdev);
1472	volatile struct dbdma_regs __iomem *td = bp->tx_dma;
1473	volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
1474	volatile struct dbdma_cmd *cp;
1475	unsigned long flags;
1476	unsigned short config, oldConfig;
1477	int i;
1478
1479	XXDEBUG(("bmac: tx_timeout called\n"));
1480	spin_lock_irqsave(&bp->lock, flags);
1481	bp->timeout_active = 0;
1482
1483	/* update various counters */
1484/*     	bmac_handle_misc_intrs(bp, 0); */
1485
1486	cp = &bp->tx_cmds[bp->tx_empty];
1487/*	XXDEBUG((KERN_DEBUG "bmac: tx dmastat=%x %x runt=%d pr=%x fs=%x fc=%x\n", */
1488/* 	   le32_to_cpu(td->status), le16_to_cpu(cp->xfer_status), bp->tx_bad_runt, */
1489/* 	   mb->pr, mb->xmtfs, mb->fifofc)); */
1490
1491	/* turn off both tx and rx and reset the chip */
1492	config = bmread(dev, RXCFG);
1493	bmwrite(dev, RXCFG, (config & ~RxMACEnable));
1494	config = bmread(dev, TXCFG);
1495	bmwrite(dev, TXCFG, (config & ~TxMACEnable));
1496	out_le32(&td->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE|ACTIVE|DEAD));
1497	printk(KERN_ERR "bmac: transmit timeout - resetting\n");
1498	bmac_enable_and_reset_chip(dev);
1499
1500	/* restart rx dma */
1501	cp = bus_to_virt(le32_to_cpu(rd->cmdptr));
1502	out_le32(&rd->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE|ACTIVE|DEAD));
1503	out_le16(&cp->xfer_status, 0);
1504	out_le32(&rd->cmdptr, virt_to_bus(cp));
1505	out_le32(&rd->control, DBDMA_SET(RUN|WAKE));
1506
1507	/* fix up the transmit side */
1508	XXDEBUG((KERN_DEBUG "bmac: tx empty=%d fill=%d fullup=%d\n",
1509		 bp->tx_empty, bp->tx_fill, bp->tx_fullup));
1510	i = bp->tx_empty;
1511	++dev->stats.tx_errors;
1512	if (i != bp->tx_fill) {
1513		dev_kfree_skb_irq(bp->tx_bufs[i]);
1514		bp->tx_bufs[i] = NULL;
1515		if (++i >= N_TX_RING) i = 0;
1516		bp->tx_empty = i;
1517	}
1518	bp->tx_fullup = 0;
1519	netif_wake_queue(dev);
1520	if (i != bp->tx_fill) {
1521		cp = &bp->tx_cmds[i];
1522		out_le16(&cp->xfer_status, 0);
1523		out_le16(&cp->command, OUTPUT_LAST);
1524		out_le32(&td->cmdptr, virt_to_bus(cp));
1525		out_le32(&td->control, DBDMA_SET(RUN));
1526		/* 	bmac_set_timeout(dev); */
1527		XXDEBUG((KERN_DEBUG "bmac: starting %d\n", i));
1528	}
1529
1530	/* turn it back on */
1531	oldConfig = bmread(dev, RXCFG);
1532	bmwrite(dev, RXCFG, oldConfig | RxMACEnable );
1533	oldConfig = bmread(dev, TXCFG);
1534	bmwrite(dev, TXCFG, oldConfig | TxMACEnable );
1535
1536	spin_unlock_irqrestore(&bp->lock, flags);
1537}
1538
1539#if 0
1540static void dump_dbdma(volatile struct dbdma_cmd *cp,int count)
1541{
1542	int i,*ip;
1543
1544	for (i=0;i< count;i++) {
1545		ip = (int*)(cp+i);
1546
1547		printk("dbdma req 0x%x addr 0x%x baddr 0x%x xfer/res 0x%x\n",
1548		       le32_to_cpup(ip+0),
1549		       le32_to_cpup(ip+1),
1550		       le32_to_cpup(ip+2),
1551		       le32_to_cpup(ip+3));
1552	}
1553
1554}
1555#endif
1556
1557#if 0
1558static int
1559bmac_proc_info(char *buffer, char **start, off_t offset, int length)
1560{
1561	int len = 0;
1562	off_t pos   = 0;
1563	off_t begin = 0;
1564	int i;
1565
1566	if (bmac_devs == NULL)
1567		return -ENOSYS;
1568
1569	len += sprintf(buffer, "BMAC counters & registers\n");
1570
1571	for (i = 0; i<N_REG_ENTRIES; i++) {
1572		len += sprintf(buffer + len, "%s: %#08x\n",
1573			       reg_entries[i].name,
1574			       bmread(bmac_devs, reg_entries[i].reg_offset));
1575		pos = begin + len;
1576
1577		if (pos < offset) {
1578			len = 0;
1579			begin = pos;
1580		}
1581
1582		if (pos > offset+length) break;
1583	}
1584
1585	*start = buffer + (offset - begin);
1586	len -= (offset - begin);
1587
1588	if (len > length) len = length;
1589
1590	return len;
1591}
1592#endif
1593
1594static int bmac_remove(struct macio_dev *mdev)
1595{
1596	struct net_device *dev = macio_get_drvdata(mdev);
1597	struct bmac_data *bp = netdev_priv(dev);
1598
1599	unregister_netdev(dev);
1600
1601	free_irq(dev->irq, dev);
1602	free_irq(bp->tx_dma_intr, dev);
1603	free_irq(bp->rx_dma_intr, dev);
1604
1605	iounmap((void __iomem *)dev->base_addr);
1606	iounmap(bp->tx_dma);
1607	iounmap(bp->rx_dma);
1608
1609	macio_release_resources(mdev);
1610
1611	free_netdev(dev);
1612
1613	return 0;
1614}
1615
1616static const struct of_device_id bmac_match[] =
1617{
1618	{
1619	.name 		= "bmac",
1620	.data		= (void *)0,
1621	},
1622	{
1623	.type		= "network",
1624	.compatible	= "bmac+",
1625	.data		= (void *)1,
1626	},
1627	{},
1628};
1629MODULE_DEVICE_TABLE (of, bmac_match);
1630
1631static struct macio_driver bmac_driver =
1632{
1633	.driver = {
1634		.name 		= "bmac",
1635		.owner		= THIS_MODULE,
1636		.of_match_table	= bmac_match,
1637	},
1638	.probe		= bmac_probe,
1639	.remove		= bmac_remove,
1640#ifdef CONFIG_PM
1641	.suspend	= bmac_suspend,
1642	.resume		= bmac_resume,
1643#endif
1644};
1645
1646
1647static int __init bmac_init(void)
1648{
1649	if (bmac_emergency_rxbuf == NULL) {
1650		bmac_emergency_rxbuf = kmalloc(RX_BUFLEN, GFP_KERNEL);
1651		if (bmac_emergency_rxbuf == NULL)
1652			return -ENOMEM;
1653	}
1654
1655	return macio_register_driver(&bmac_driver);
1656}
1657
1658static void __exit bmac_exit(void)
1659{
1660	macio_unregister_driver(&bmac_driver);
1661
1662	kfree(bmac_emergency_rxbuf);
1663	bmac_emergency_rxbuf = NULL;
1664}
1665
1666MODULE_AUTHOR("Randy Gobbel/Paul Mackerras");
1667MODULE_DESCRIPTION("PowerMac BMAC ethernet driver.");
1668MODULE_LICENSE("GPL");
1669
1670module_init(bmac_init);
1671module_exit(bmac_exit);
1672