162306a36Sopenharmony_ci// SPDX-License-Identifier: GPL-2.0-or-later 262306a36Sopenharmony_ci/* 362306a36Sopenharmony_ci * Marvell 88E6xxx System Management Interface (SMI) support 462306a36Sopenharmony_ci * 562306a36Sopenharmony_ci * Copyright (c) 2008 Marvell Semiconductor 662306a36Sopenharmony_ci * 762306a36Sopenharmony_ci * Copyright (c) 2019 Vivien Didelot <vivien.didelot@gmail.com> 862306a36Sopenharmony_ci */ 962306a36Sopenharmony_ci 1062306a36Sopenharmony_ci#include "chip.h" 1162306a36Sopenharmony_ci#include "smi.h" 1262306a36Sopenharmony_ci 1362306a36Sopenharmony_ci/* The switch ADDR[4:1] configuration pins define the chip SMI device address 1462306a36Sopenharmony_ci * (ADDR[0] is always zero, thus only even SMI addresses can be strapped). 1562306a36Sopenharmony_ci * 1662306a36Sopenharmony_ci * When ADDR is all zero, the chip uses Single-chip Addressing Mode, assuming it 1762306a36Sopenharmony_ci * is the only device connected to the SMI master. In this mode it responds to 1862306a36Sopenharmony_ci * all 32 possible SMI addresses, and thus maps directly the internal devices. 1962306a36Sopenharmony_ci * 2062306a36Sopenharmony_ci * When ADDR is non-zero, the chip uses Multi-chip Addressing Mode, allowing 2162306a36Sopenharmony_ci * multiple devices to share the SMI interface. In this mode it responds to only 2262306a36Sopenharmony_ci * 2 registers, used to indirectly access the internal SMI devices. 2362306a36Sopenharmony_ci * 2462306a36Sopenharmony_ci * Some chips use a different scheme: Only the ADDR4 pin is used for 2562306a36Sopenharmony_ci * configuration, and the device responds to 16 of the 32 SMI 2662306a36Sopenharmony_ci * addresses, allowing two to coexist on the same SMI interface. 2762306a36Sopenharmony_ci */ 2862306a36Sopenharmony_ci 2962306a36Sopenharmony_cistatic int mv88e6xxx_smi_direct_read(struct mv88e6xxx_chip *chip, 3062306a36Sopenharmony_ci int dev, int reg, u16 *data) 3162306a36Sopenharmony_ci{ 3262306a36Sopenharmony_ci int ret; 3362306a36Sopenharmony_ci 3462306a36Sopenharmony_ci ret = mdiobus_read_nested(chip->bus, dev, reg); 3562306a36Sopenharmony_ci if (ret < 0) 3662306a36Sopenharmony_ci return ret; 3762306a36Sopenharmony_ci 3862306a36Sopenharmony_ci *data = ret & 0xffff; 3962306a36Sopenharmony_ci 4062306a36Sopenharmony_ci return 0; 4162306a36Sopenharmony_ci} 4262306a36Sopenharmony_ci 4362306a36Sopenharmony_cistatic int mv88e6xxx_smi_direct_write(struct mv88e6xxx_chip *chip, 4462306a36Sopenharmony_ci int dev, int reg, u16 data) 4562306a36Sopenharmony_ci{ 4662306a36Sopenharmony_ci int ret; 4762306a36Sopenharmony_ci 4862306a36Sopenharmony_ci ret = mdiobus_write_nested(chip->bus, dev, reg, data); 4962306a36Sopenharmony_ci if (ret < 0) 5062306a36Sopenharmony_ci return ret; 5162306a36Sopenharmony_ci 5262306a36Sopenharmony_ci return 0; 5362306a36Sopenharmony_ci} 5462306a36Sopenharmony_ci 5562306a36Sopenharmony_cistatic int mv88e6xxx_smi_direct_wait(struct mv88e6xxx_chip *chip, 5662306a36Sopenharmony_ci int dev, int reg, int bit, int val) 5762306a36Sopenharmony_ci{ 5862306a36Sopenharmony_ci const unsigned long timeout = jiffies + msecs_to_jiffies(50); 5962306a36Sopenharmony_ci u16 data; 6062306a36Sopenharmony_ci int err; 6162306a36Sopenharmony_ci int i; 6262306a36Sopenharmony_ci 6362306a36Sopenharmony_ci /* Even if the initial poll takes longer than 50ms, always do 6462306a36Sopenharmony_ci * at least one more attempt. 6562306a36Sopenharmony_ci */ 6662306a36Sopenharmony_ci for (i = 0; time_before(jiffies, timeout) || (i < 2); i++) { 6762306a36Sopenharmony_ci err = mv88e6xxx_smi_direct_read(chip, dev, reg, &data); 6862306a36Sopenharmony_ci if (err) 6962306a36Sopenharmony_ci return err; 7062306a36Sopenharmony_ci 7162306a36Sopenharmony_ci if (!!(data & BIT(bit)) == !!val) 7262306a36Sopenharmony_ci return 0; 7362306a36Sopenharmony_ci 7462306a36Sopenharmony_ci if (i < 2) 7562306a36Sopenharmony_ci cpu_relax(); 7662306a36Sopenharmony_ci else 7762306a36Sopenharmony_ci usleep_range(1000, 2000); 7862306a36Sopenharmony_ci } 7962306a36Sopenharmony_ci 8062306a36Sopenharmony_ci return -ETIMEDOUT; 8162306a36Sopenharmony_ci} 8262306a36Sopenharmony_ci 8362306a36Sopenharmony_cistatic const struct mv88e6xxx_bus_ops mv88e6xxx_smi_direct_ops = { 8462306a36Sopenharmony_ci .read = mv88e6xxx_smi_direct_read, 8562306a36Sopenharmony_ci .write = mv88e6xxx_smi_direct_write, 8662306a36Sopenharmony_ci}; 8762306a36Sopenharmony_ci 8862306a36Sopenharmony_cistatic int mv88e6xxx_smi_dual_direct_read(struct mv88e6xxx_chip *chip, 8962306a36Sopenharmony_ci int dev, int reg, u16 *data) 9062306a36Sopenharmony_ci{ 9162306a36Sopenharmony_ci return mv88e6xxx_smi_direct_read(chip, chip->sw_addr + dev, reg, data); 9262306a36Sopenharmony_ci} 9362306a36Sopenharmony_ci 9462306a36Sopenharmony_cistatic int mv88e6xxx_smi_dual_direct_write(struct mv88e6xxx_chip *chip, 9562306a36Sopenharmony_ci int dev, int reg, u16 data) 9662306a36Sopenharmony_ci{ 9762306a36Sopenharmony_ci return mv88e6xxx_smi_direct_write(chip, chip->sw_addr + dev, reg, data); 9862306a36Sopenharmony_ci} 9962306a36Sopenharmony_ci 10062306a36Sopenharmony_cistatic const struct mv88e6xxx_bus_ops mv88e6xxx_smi_dual_direct_ops = { 10162306a36Sopenharmony_ci .read = mv88e6xxx_smi_dual_direct_read, 10262306a36Sopenharmony_ci .write = mv88e6xxx_smi_dual_direct_write, 10362306a36Sopenharmony_ci}; 10462306a36Sopenharmony_ci 10562306a36Sopenharmony_ci/* Offset 0x00: SMI Command Register 10662306a36Sopenharmony_ci * Offset 0x01: SMI Data Register 10762306a36Sopenharmony_ci */ 10862306a36Sopenharmony_ci 10962306a36Sopenharmony_cistatic int mv88e6xxx_smi_indirect_read(struct mv88e6xxx_chip *chip, 11062306a36Sopenharmony_ci int dev, int reg, u16 *data) 11162306a36Sopenharmony_ci{ 11262306a36Sopenharmony_ci int err; 11362306a36Sopenharmony_ci 11462306a36Sopenharmony_ci err = mv88e6xxx_smi_direct_write(chip, chip->sw_addr, 11562306a36Sopenharmony_ci MV88E6XXX_SMI_CMD, 11662306a36Sopenharmony_ci MV88E6XXX_SMI_CMD_BUSY | 11762306a36Sopenharmony_ci MV88E6XXX_SMI_CMD_MODE_22 | 11862306a36Sopenharmony_ci MV88E6XXX_SMI_CMD_OP_22_READ | 11962306a36Sopenharmony_ci (dev << 5) | reg); 12062306a36Sopenharmony_ci if (err) 12162306a36Sopenharmony_ci return err; 12262306a36Sopenharmony_ci 12362306a36Sopenharmony_ci err = mv88e6xxx_smi_direct_wait(chip, chip->sw_addr, 12462306a36Sopenharmony_ci MV88E6XXX_SMI_CMD, 15, 0); 12562306a36Sopenharmony_ci if (err) 12662306a36Sopenharmony_ci return err; 12762306a36Sopenharmony_ci 12862306a36Sopenharmony_ci return mv88e6xxx_smi_direct_read(chip, chip->sw_addr, 12962306a36Sopenharmony_ci MV88E6XXX_SMI_DATA, data); 13062306a36Sopenharmony_ci} 13162306a36Sopenharmony_ci 13262306a36Sopenharmony_cistatic int mv88e6xxx_smi_indirect_write(struct mv88e6xxx_chip *chip, 13362306a36Sopenharmony_ci int dev, int reg, u16 data) 13462306a36Sopenharmony_ci{ 13562306a36Sopenharmony_ci int err; 13662306a36Sopenharmony_ci 13762306a36Sopenharmony_ci err = mv88e6xxx_smi_direct_write(chip, chip->sw_addr, 13862306a36Sopenharmony_ci MV88E6XXX_SMI_DATA, data); 13962306a36Sopenharmony_ci if (err) 14062306a36Sopenharmony_ci return err; 14162306a36Sopenharmony_ci 14262306a36Sopenharmony_ci err = mv88e6xxx_smi_direct_write(chip, chip->sw_addr, 14362306a36Sopenharmony_ci MV88E6XXX_SMI_CMD, 14462306a36Sopenharmony_ci MV88E6XXX_SMI_CMD_BUSY | 14562306a36Sopenharmony_ci MV88E6XXX_SMI_CMD_MODE_22 | 14662306a36Sopenharmony_ci MV88E6XXX_SMI_CMD_OP_22_WRITE | 14762306a36Sopenharmony_ci (dev << 5) | reg); 14862306a36Sopenharmony_ci if (err) 14962306a36Sopenharmony_ci return err; 15062306a36Sopenharmony_ci 15162306a36Sopenharmony_ci return mv88e6xxx_smi_direct_wait(chip, chip->sw_addr, 15262306a36Sopenharmony_ci MV88E6XXX_SMI_CMD, 15, 0); 15362306a36Sopenharmony_ci} 15462306a36Sopenharmony_ci 15562306a36Sopenharmony_cistatic int mv88e6xxx_smi_indirect_init(struct mv88e6xxx_chip *chip) 15662306a36Sopenharmony_ci{ 15762306a36Sopenharmony_ci /* Ensure that the chip starts out in the ready state. As both 15862306a36Sopenharmony_ci * reads and writes always ensure this on return, they can 15962306a36Sopenharmony_ci * safely depend on the chip not being busy on entry. 16062306a36Sopenharmony_ci */ 16162306a36Sopenharmony_ci return mv88e6xxx_smi_direct_wait(chip, chip->sw_addr, 16262306a36Sopenharmony_ci MV88E6XXX_SMI_CMD, 15, 0); 16362306a36Sopenharmony_ci} 16462306a36Sopenharmony_ci 16562306a36Sopenharmony_cistatic const struct mv88e6xxx_bus_ops mv88e6xxx_smi_indirect_ops = { 16662306a36Sopenharmony_ci .read = mv88e6xxx_smi_indirect_read, 16762306a36Sopenharmony_ci .write = mv88e6xxx_smi_indirect_write, 16862306a36Sopenharmony_ci .init = mv88e6xxx_smi_indirect_init, 16962306a36Sopenharmony_ci}; 17062306a36Sopenharmony_ci 17162306a36Sopenharmony_ciint mv88e6xxx_smi_init(struct mv88e6xxx_chip *chip, 17262306a36Sopenharmony_ci struct mii_bus *bus, int sw_addr) 17362306a36Sopenharmony_ci{ 17462306a36Sopenharmony_ci if (chip->info->dual_chip) 17562306a36Sopenharmony_ci chip->smi_ops = &mv88e6xxx_smi_dual_direct_ops; 17662306a36Sopenharmony_ci else if (sw_addr == 0) 17762306a36Sopenharmony_ci chip->smi_ops = &mv88e6xxx_smi_direct_ops; 17862306a36Sopenharmony_ci else if (chip->info->multi_chip) 17962306a36Sopenharmony_ci chip->smi_ops = &mv88e6xxx_smi_indirect_ops; 18062306a36Sopenharmony_ci else 18162306a36Sopenharmony_ci return -EINVAL; 18262306a36Sopenharmony_ci 18362306a36Sopenharmony_ci chip->bus = bus; 18462306a36Sopenharmony_ci chip->sw_addr = sw_addr; 18562306a36Sopenharmony_ci 18662306a36Sopenharmony_ci if (chip->smi_ops->init) 18762306a36Sopenharmony_ci return chip->smi_ops->init(chip); 18862306a36Sopenharmony_ci 18962306a36Sopenharmony_ci return 0; 19062306a36Sopenharmony_ci} 191