xref: /kernel/linux/linux-6.6/drivers/net/dsa/mt7530.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Mediatek MT7530 DSA Switch driver
4 * Copyright (C) 2017 Sean Wang <sean.wang@mediatek.com>
5 */
6#include <linux/etherdevice.h>
7#include <linux/if_bridge.h>
8#include <linux/iopoll.h>
9#include <linux/mdio.h>
10#include <linux/mfd/syscon.h>
11#include <linux/module.h>
12#include <linux/netdevice.h>
13#include <linux/of_irq.h>
14#include <linux/of_mdio.h>
15#include <linux/of_net.h>
16#include <linux/of_platform.h>
17#include <linux/phylink.h>
18#include <linux/regmap.h>
19#include <linux/regulator/consumer.h>
20#include <linux/reset.h>
21#include <linux/gpio/consumer.h>
22#include <linux/gpio/driver.h>
23#include <net/dsa.h>
24
25#include "mt7530.h"
26
27static struct mt753x_pcs *pcs_to_mt753x_pcs(struct phylink_pcs *pcs)
28{
29	return container_of(pcs, struct mt753x_pcs, pcs);
30}
31
32/* String, offset, and register size in bytes if different from 4 bytes */
33static const struct mt7530_mib_desc mt7530_mib[] = {
34	MIB_DESC(1, 0x00, "TxDrop"),
35	MIB_DESC(1, 0x04, "TxCrcErr"),
36	MIB_DESC(1, 0x08, "TxUnicast"),
37	MIB_DESC(1, 0x0c, "TxMulticast"),
38	MIB_DESC(1, 0x10, "TxBroadcast"),
39	MIB_DESC(1, 0x14, "TxCollision"),
40	MIB_DESC(1, 0x18, "TxSingleCollision"),
41	MIB_DESC(1, 0x1c, "TxMultipleCollision"),
42	MIB_DESC(1, 0x20, "TxDeferred"),
43	MIB_DESC(1, 0x24, "TxLateCollision"),
44	MIB_DESC(1, 0x28, "TxExcessiveCollistion"),
45	MIB_DESC(1, 0x2c, "TxPause"),
46	MIB_DESC(1, 0x30, "TxPktSz64"),
47	MIB_DESC(1, 0x34, "TxPktSz65To127"),
48	MIB_DESC(1, 0x38, "TxPktSz128To255"),
49	MIB_DESC(1, 0x3c, "TxPktSz256To511"),
50	MIB_DESC(1, 0x40, "TxPktSz512To1023"),
51	MIB_DESC(1, 0x44, "Tx1024ToMax"),
52	MIB_DESC(2, 0x48, "TxBytes"),
53	MIB_DESC(1, 0x60, "RxDrop"),
54	MIB_DESC(1, 0x64, "RxFiltering"),
55	MIB_DESC(1, 0x68, "RxUnicast"),
56	MIB_DESC(1, 0x6c, "RxMulticast"),
57	MIB_DESC(1, 0x70, "RxBroadcast"),
58	MIB_DESC(1, 0x74, "RxAlignErr"),
59	MIB_DESC(1, 0x78, "RxCrcErr"),
60	MIB_DESC(1, 0x7c, "RxUnderSizeErr"),
61	MIB_DESC(1, 0x80, "RxFragErr"),
62	MIB_DESC(1, 0x84, "RxOverSzErr"),
63	MIB_DESC(1, 0x88, "RxJabberErr"),
64	MIB_DESC(1, 0x8c, "RxPause"),
65	MIB_DESC(1, 0x90, "RxPktSz64"),
66	MIB_DESC(1, 0x94, "RxPktSz65To127"),
67	MIB_DESC(1, 0x98, "RxPktSz128To255"),
68	MIB_DESC(1, 0x9c, "RxPktSz256To511"),
69	MIB_DESC(1, 0xa0, "RxPktSz512To1023"),
70	MIB_DESC(1, 0xa4, "RxPktSz1024ToMax"),
71	MIB_DESC(2, 0xa8, "RxBytes"),
72	MIB_DESC(1, 0xb0, "RxCtrlDrop"),
73	MIB_DESC(1, 0xb4, "RxIngressDrop"),
74	MIB_DESC(1, 0xb8, "RxArlDrop"),
75};
76
77/* Since phy_device has not yet been created and
78 * phy_{read,write}_mmd_indirect is not available, we provide our own
79 * core_{read,write}_mmd_indirect with core_{clear,write,set} wrappers
80 * to complete this function.
81 */
82static int
83core_read_mmd_indirect(struct mt7530_priv *priv, int prtad, int devad)
84{
85	struct mii_bus *bus = priv->bus;
86	int value, ret;
87
88	/* Write the desired MMD Devad */
89	ret = bus->write(bus, 0, MII_MMD_CTRL, devad);
90	if (ret < 0)
91		goto err;
92
93	/* Write the desired MMD register address */
94	ret = bus->write(bus, 0, MII_MMD_DATA, prtad);
95	if (ret < 0)
96		goto err;
97
98	/* Select the Function : DATA with no post increment */
99	ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
100	if (ret < 0)
101		goto err;
102
103	/* Read the content of the MMD's selected register */
104	value = bus->read(bus, 0, MII_MMD_DATA);
105
106	return value;
107err:
108	dev_err(&bus->dev,  "failed to read mmd register\n");
109
110	return ret;
111}
112
113static int
114core_write_mmd_indirect(struct mt7530_priv *priv, int prtad,
115			int devad, u32 data)
116{
117	struct mii_bus *bus = priv->bus;
118	int ret;
119
120	/* Write the desired MMD Devad */
121	ret = bus->write(bus, 0, MII_MMD_CTRL, devad);
122	if (ret < 0)
123		goto err;
124
125	/* Write the desired MMD register address */
126	ret = bus->write(bus, 0, MII_MMD_DATA, prtad);
127	if (ret < 0)
128		goto err;
129
130	/* Select the Function : DATA with no post increment */
131	ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
132	if (ret < 0)
133		goto err;
134
135	/* Write the data into MMD's selected register */
136	ret = bus->write(bus, 0, MII_MMD_DATA, data);
137err:
138	if (ret < 0)
139		dev_err(&bus->dev,
140			"failed to write mmd register\n");
141	return ret;
142}
143
144static void
145mt7530_mutex_lock(struct mt7530_priv *priv)
146{
147	if (priv->bus)
148		mutex_lock_nested(&priv->bus->mdio_lock, MDIO_MUTEX_NESTED);
149}
150
151static void
152mt7530_mutex_unlock(struct mt7530_priv *priv)
153{
154	if (priv->bus)
155		mutex_unlock(&priv->bus->mdio_lock);
156}
157
158static void
159core_write(struct mt7530_priv *priv, u32 reg, u32 val)
160{
161	mt7530_mutex_lock(priv);
162
163	core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val);
164
165	mt7530_mutex_unlock(priv);
166}
167
168static void
169core_rmw(struct mt7530_priv *priv, u32 reg, u32 mask, u32 set)
170{
171	u32 val;
172
173	mt7530_mutex_lock(priv);
174
175	val = core_read_mmd_indirect(priv, reg, MDIO_MMD_VEND2);
176	val &= ~mask;
177	val |= set;
178	core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val);
179
180	mt7530_mutex_unlock(priv);
181}
182
183static void
184core_set(struct mt7530_priv *priv, u32 reg, u32 val)
185{
186	core_rmw(priv, reg, 0, val);
187}
188
189static void
190core_clear(struct mt7530_priv *priv, u32 reg, u32 val)
191{
192	core_rmw(priv, reg, val, 0);
193}
194
195static int
196mt7530_mii_write(struct mt7530_priv *priv, u32 reg, u32 val)
197{
198	int ret;
199
200	ret = regmap_write(priv->regmap, reg, val);
201
202	if (ret < 0)
203		dev_err(priv->dev,
204			"failed to write mt7530 register\n");
205
206	return ret;
207}
208
209static u32
210mt7530_mii_read(struct mt7530_priv *priv, u32 reg)
211{
212	int ret;
213	u32 val;
214
215	ret = regmap_read(priv->regmap, reg, &val);
216	if (ret) {
217		WARN_ON_ONCE(1);
218		dev_err(priv->dev,
219			"failed to read mt7530 register\n");
220		return 0;
221	}
222
223	return val;
224}
225
226static void
227mt7530_write(struct mt7530_priv *priv, u32 reg, u32 val)
228{
229	mt7530_mutex_lock(priv);
230
231	mt7530_mii_write(priv, reg, val);
232
233	mt7530_mutex_unlock(priv);
234}
235
236static u32
237_mt7530_unlocked_read(struct mt7530_dummy_poll *p)
238{
239	return mt7530_mii_read(p->priv, p->reg);
240}
241
242static u32
243_mt7530_read(struct mt7530_dummy_poll *p)
244{
245	u32 val;
246
247	mt7530_mutex_lock(p->priv);
248
249	val = mt7530_mii_read(p->priv, p->reg);
250
251	mt7530_mutex_unlock(p->priv);
252
253	return val;
254}
255
256static u32
257mt7530_read(struct mt7530_priv *priv, u32 reg)
258{
259	struct mt7530_dummy_poll p;
260
261	INIT_MT7530_DUMMY_POLL(&p, priv, reg);
262	return _mt7530_read(&p);
263}
264
265static void
266mt7530_rmw(struct mt7530_priv *priv, u32 reg,
267	   u32 mask, u32 set)
268{
269	mt7530_mutex_lock(priv);
270
271	regmap_update_bits(priv->regmap, reg, mask, set);
272
273	mt7530_mutex_unlock(priv);
274}
275
276static void
277mt7530_set(struct mt7530_priv *priv, u32 reg, u32 val)
278{
279	mt7530_rmw(priv, reg, val, val);
280}
281
282static void
283mt7530_clear(struct mt7530_priv *priv, u32 reg, u32 val)
284{
285	mt7530_rmw(priv, reg, val, 0);
286}
287
288static int
289mt7530_fdb_cmd(struct mt7530_priv *priv, enum mt7530_fdb_cmd cmd, u32 *rsp)
290{
291	u32 val;
292	int ret;
293	struct mt7530_dummy_poll p;
294
295	/* Set the command operating upon the MAC address entries */
296	val = ATC_BUSY | ATC_MAT(0) | cmd;
297	mt7530_write(priv, MT7530_ATC, val);
298
299	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_ATC);
300	ret = readx_poll_timeout(_mt7530_read, &p, val,
301				 !(val & ATC_BUSY), 20, 20000);
302	if (ret < 0) {
303		dev_err(priv->dev, "reset timeout\n");
304		return ret;
305	}
306
307	/* Additional sanity for read command if the specified
308	 * entry is invalid
309	 */
310	val = mt7530_read(priv, MT7530_ATC);
311	if ((cmd == MT7530_FDB_READ) && (val & ATC_INVALID))
312		return -EINVAL;
313
314	if (rsp)
315		*rsp = val;
316
317	return 0;
318}
319
320static void
321mt7530_fdb_read(struct mt7530_priv *priv, struct mt7530_fdb *fdb)
322{
323	u32 reg[3];
324	int i;
325
326	/* Read from ARL table into an array */
327	for (i = 0; i < 3; i++) {
328		reg[i] = mt7530_read(priv, MT7530_TSRA1 + (i * 4));
329
330		dev_dbg(priv->dev, "%s(%d) reg[%d]=0x%x\n",
331			__func__, __LINE__, i, reg[i]);
332	}
333
334	fdb->vid = (reg[1] >> CVID) & CVID_MASK;
335	fdb->aging = (reg[2] >> AGE_TIMER) & AGE_TIMER_MASK;
336	fdb->port_mask = (reg[2] >> PORT_MAP) & PORT_MAP_MASK;
337	fdb->mac[0] = (reg[0] >> MAC_BYTE_0) & MAC_BYTE_MASK;
338	fdb->mac[1] = (reg[0] >> MAC_BYTE_1) & MAC_BYTE_MASK;
339	fdb->mac[2] = (reg[0] >> MAC_BYTE_2) & MAC_BYTE_MASK;
340	fdb->mac[3] = (reg[0] >> MAC_BYTE_3) & MAC_BYTE_MASK;
341	fdb->mac[4] = (reg[1] >> MAC_BYTE_4) & MAC_BYTE_MASK;
342	fdb->mac[5] = (reg[1] >> MAC_BYTE_5) & MAC_BYTE_MASK;
343	fdb->noarp = ((reg[2] >> ENT_STATUS) & ENT_STATUS_MASK) == STATIC_ENT;
344}
345
346static void
347mt7530_fdb_write(struct mt7530_priv *priv, u16 vid,
348		 u8 port_mask, const u8 *mac,
349		 u8 aging, u8 type)
350{
351	u32 reg[3] = { 0 };
352	int i;
353
354	reg[1] |= vid & CVID_MASK;
355	reg[1] |= ATA2_IVL;
356	reg[1] |= ATA2_FID(FID_BRIDGED);
357	reg[2] |= (aging & AGE_TIMER_MASK) << AGE_TIMER;
358	reg[2] |= (port_mask & PORT_MAP_MASK) << PORT_MAP;
359	/* STATIC_ENT indicate that entry is static wouldn't
360	 * be aged out and STATIC_EMP specified as erasing an
361	 * entry
362	 */
363	reg[2] |= (type & ENT_STATUS_MASK) << ENT_STATUS;
364	reg[1] |= mac[5] << MAC_BYTE_5;
365	reg[1] |= mac[4] << MAC_BYTE_4;
366	reg[0] |= mac[3] << MAC_BYTE_3;
367	reg[0] |= mac[2] << MAC_BYTE_2;
368	reg[0] |= mac[1] << MAC_BYTE_1;
369	reg[0] |= mac[0] << MAC_BYTE_0;
370
371	/* Write array into the ARL table */
372	for (i = 0; i < 3; i++)
373		mt7530_write(priv, MT7530_ATA1 + (i * 4), reg[i]);
374}
375
376/* Set up switch core clock for MT7530 */
377static void mt7530_pll_setup(struct mt7530_priv *priv)
378{
379	/* Disable core clock */
380	core_clear(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN);
381
382	/* Disable PLL */
383	core_write(priv, CORE_GSWPLL_GRP1, 0);
384
385	/* Set core clock into 500Mhz */
386	core_write(priv, CORE_GSWPLL_GRP2,
387		   RG_GSWPLL_POSDIV_500M(1) |
388		   RG_GSWPLL_FBKDIV_500M(25));
389
390	/* Enable PLL */
391	core_write(priv, CORE_GSWPLL_GRP1,
392		   RG_GSWPLL_EN_PRE |
393		   RG_GSWPLL_POSDIV_200M(2) |
394		   RG_GSWPLL_FBKDIV_200M(32));
395
396	udelay(20);
397
398	/* Enable core clock */
399	core_set(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN);
400}
401
402/* If port 6 is available as a CPU port, always prefer that as the default,
403 * otherwise don't care.
404 */
405static struct dsa_port *
406mt753x_preferred_default_local_cpu_port(struct dsa_switch *ds)
407{
408	struct dsa_port *cpu_dp = dsa_to_port(ds, 6);
409
410	if (dsa_port_is_cpu(cpu_dp))
411		return cpu_dp;
412
413	return NULL;
414}
415
416/* Setup port 6 interface mode and TRGMII TX circuit */
417static int
418mt7530_pad_clk_setup(struct dsa_switch *ds, phy_interface_t interface)
419{
420	struct mt7530_priv *priv = ds->priv;
421	u32 ncpo1, ssc_delta, trgint, xtal;
422
423	xtal = mt7530_read(priv, MT7530_MHWTRAP) & HWTRAP_XTAL_MASK;
424
425	if (xtal == HWTRAP_XTAL_20MHZ) {
426		dev_err(priv->dev,
427			"%s: MT7530 with a 20MHz XTAL is not supported!\n",
428			__func__);
429		return -EINVAL;
430	}
431
432	switch (interface) {
433	case PHY_INTERFACE_MODE_RGMII:
434		trgint = 0;
435		break;
436	case PHY_INTERFACE_MODE_TRGMII:
437		trgint = 1;
438		if (xtal == HWTRAP_XTAL_25MHZ)
439			ssc_delta = 0x57;
440		else
441			ssc_delta = 0x87;
442		if (priv->id == ID_MT7621) {
443			/* PLL frequency: 125MHz: 1.0GBit */
444			if (xtal == HWTRAP_XTAL_40MHZ)
445				ncpo1 = 0x0640;
446			if (xtal == HWTRAP_XTAL_25MHZ)
447				ncpo1 = 0x0a00;
448		} else { /* PLL frequency: 250MHz: 2.0Gbit */
449			if (xtal == HWTRAP_XTAL_40MHZ)
450				ncpo1 = 0x0c80;
451			if (xtal == HWTRAP_XTAL_25MHZ)
452				ncpo1 = 0x1400;
453		}
454		break;
455	default:
456		dev_err(priv->dev, "xMII interface %d not supported\n",
457			interface);
458		return -EINVAL;
459	}
460
461	mt7530_rmw(priv, MT7530_P6ECR, P6_INTF_MODE_MASK,
462		   P6_INTF_MODE(trgint));
463
464	if (trgint) {
465		/* Disable the MT7530 TRGMII clocks */
466		core_clear(priv, CORE_TRGMII_GSW_CLK_CG, REG_TRGMIICK_EN);
467
468		/* Setup the MT7530 TRGMII Tx Clock */
469		core_write(priv, CORE_PLL_GROUP5, RG_LCDDS_PCW_NCPO1(ncpo1));
470		core_write(priv, CORE_PLL_GROUP6, RG_LCDDS_PCW_NCPO0(0));
471		core_write(priv, CORE_PLL_GROUP10, RG_LCDDS_SSC_DELTA(ssc_delta));
472		core_write(priv, CORE_PLL_GROUP11, RG_LCDDS_SSC_DELTA1(ssc_delta));
473		core_write(priv, CORE_PLL_GROUP4,
474			   RG_SYSPLL_DDSFBK_EN | RG_SYSPLL_BIAS_EN |
475			   RG_SYSPLL_BIAS_LPF_EN);
476		core_write(priv, CORE_PLL_GROUP2,
477			   RG_SYSPLL_EN_NORMAL | RG_SYSPLL_VODEN |
478			   RG_SYSPLL_POSDIV(1));
479		core_write(priv, CORE_PLL_GROUP7,
480			   RG_LCDDS_PCW_NCPO_CHG | RG_LCCDS_C(3) |
481			   RG_LCDDS_PWDB | RG_LCDDS_ISO_EN);
482
483		/* Enable the MT7530 TRGMII clocks */
484		core_set(priv, CORE_TRGMII_GSW_CLK_CG, REG_TRGMIICK_EN);
485	}
486
487	return 0;
488}
489
490static bool mt7531_dual_sgmii_supported(struct mt7530_priv *priv)
491{
492	u32 val;
493
494	val = mt7530_read(priv, MT7531_TOP_SIG_SR);
495
496	return (val & PAD_DUAL_SGMII_EN) != 0;
497}
498
499static int
500mt7531_pad_setup(struct dsa_switch *ds, phy_interface_t interface)
501{
502	return 0;
503}
504
505static void
506mt7531_pll_setup(struct mt7530_priv *priv)
507{
508	u32 top_sig;
509	u32 hwstrap;
510	u32 xtal;
511	u32 val;
512
513	if (mt7531_dual_sgmii_supported(priv))
514		return;
515
516	val = mt7530_read(priv, MT7531_CREV);
517	top_sig = mt7530_read(priv, MT7531_TOP_SIG_SR);
518	hwstrap = mt7530_read(priv, MT7531_HWTRAP);
519	if ((val & CHIP_REV_M) > 0)
520		xtal = (top_sig & PAD_MCM_SMI_EN) ? HWTRAP_XTAL_FSEL_40MHZ :
521						    HWTRAP_XTAL_FSEL_25MHZ;
522	else
523		xtal = hwstrap & HWTRAP_XTAL_FSEL_MASK;
524
525	/* Step 1 : Disable MT7531 COREPLL */
526	val = mt7530_read(priv, MT7531_PLLGP_EN);
527	val &= ~EN_COREPLL;
528	mt7530_write(priv, MT7531_PLLGP_EN, val);
529
530	/* Step 2: switch to XTAL output */
531	val = mt7530_read(priv, MT7531_PLLGP_EN);
532	val |= SW_CLKSW;
533	mt7530_write(priv, MT7531_PLLGP_EN, val);
534
535	val = mt7530_read(priv, MT7531_PLLGP_CR0);
536	val &= ~RG_COREPLL_EN;
537	mt7530_write(priv, MT7531_PLLGP_CR0, val);
538
539	/* Step 3: disable PLLGP and enable program PLLGP */
540	val = mt7530_read(priv, MT7531_PLLGP_EN);
541	val |= SW_PLLGP;
542	mt7530_write(priv, MT7531_PLLGP_EN, val);
543
544	/* Step 4: program COREPLL output frequency to 500MHz */
545	val = mt7530_read(priv, MT7531_PLLGP_CR0);
546	val &= ~RG_COREPLL_POSDIV_M;
547	val |= 2 << RG_COREPLL_POSDIV_S;
548	mt7530_write(priv, MT7531_PLLGP_CR0, val);
549	usleep_range(25, 35);
550
551	switch (xtal) {
552	case HWTRAP_XTAL_FSEL_25MHZ:
553		val = mt7530_read(priv, MT7531_PLLGP_CR0);
554		val &= ~RG_COREPLL_SDM_PCW_M;
555		val |= 0x140000 << RG_COREPLL_SDM_PCW_S;
556		mt7530_write(priv, MT7531_PLLGP_CR0, val);
557		break;
558	case HWTRAP_XTAL_FSEL_40MHZ:
559		val = mt7530_read(priv, MT7531_PLLGP_CR0);
560		val &= ~RG_COREPLL_SDM_PCW_M;
561		val |= 0x190000 << RG_COREPLL_SDM_PCW_S;
562		mt7530_write(priv, MT7531_PLLGP_CR0, val);
563		break;
564	}
565
566	/* Set feedback divide ratio update signal to high */
567	val = mt7530_read(priv, MT7531_PLLGP_CR0);
568	val |= RG_COREPLL_SDM_PCW_CHG;
569	mt7530_write(priv, MT7531_PLLGP_CR0, val);
570	/* Wait for at least 16 XTAL clocks */
571	usleep_range(10, 20);
572
573	/* Step 5: set feedback divide ratio update signal to low */
574	val = mt7530_read(priv, MT7531_PLLGP_CR0);
575	val &= ~RG_COREPLL_SDM_PCW_CHG;
576	mt7530_write(priv, MT7531_PLLGP_CR0, val);
577
578	/* Enable 325M clock for SGMII */
579	mt7530_write(priv, MT7531_ANA_PLLGP_CR5, 0xad0000);
580
581	/* Enable 250SSC clock for RGMII */
582	mt7530_write(priv, MT7531_ANA_PLLGP_CR2, 0x4f40000);
583
584	/* Step 6: Enable MT7531 PLL */
585	val = mt7530_read(priv, MT7531_PLLGP_CR0);
586	val |= RG_COREPLL_EN;
587	mt7530_write(priv, MT7531_PLLGP_CR0, val);
588
589	val = mt7530_read(priv, MT7531_PLLGP_EN);
590	val |= EN_COREPLL;
591	mt7530_write(priv, MT7531_PLLGP_EN, val);
592	usleep_range(25, 35);
593}
594
595static void
596mt7530_mib_reset(struct dsa_switch *ds)
597{
598	struct mt7530_priv *priv = ds->priv;
599
600	mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_FLUSH);
601	mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_ACTIVATE);
602}
603
604static int mt7530_phy_read_c22(struct mt7530_priv *priv, int port, int regnum)
605{
606	return mdiobus_read_nested(priv->bus, port, regnum);
607}
608
609static int mt7530_phy_write_c22(struct mt7530_priv *priv, int port, int regnum,
610				u16 val)
611{
612	return mdiobus_write_nested(priv->bus, port, regnum, val);
613}
614
615static int mt7530_phy_read_c45(struct mt7530_priv *priv, int port,
616			       int devad, int regnum)
617{
618	return mdiobus_c45_read_nested(priv->bus, port, devad, regnum);
619}
620
621static int mt7530_phy_write_c45(struct mt7530_priv *priv, int port, int devad,
622				int regnum, u16 val)
623{
624	return mdiobus_c45_write_nested(priv->bus, port, devad, regnum, val);
625}
626
627static int
628mt7531_ind_c45_phy_read(struct mt7530_priv *priv, int port, int devad,
629			int regnum)
630{
631	struct mt7530_dummy_poll p;
632	u32 reg, val;
633	int ret;
634
635	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
636
637	mt7530_mutex_lock(priv);
638
639	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
640				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
641	if (ret < 0) {
642		dev_err(priv->dev, "poll timeout\n");
643		goto out;
644	}
645
646	reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) |
647	      MT7531_MDIO_DEV_ADDR(devad) | regnum;
648	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
649
650	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
651				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
652	if (ret < 0) {
653		dev_err(priv->dev, "poll timeout\n");
654		goto out;
655	}
656
657	reg = MT7531_MDIO_CL45_READ | MT7531_MDIO_PHY_ADDR(port) |
658	      MT7531_MDIO_DEV_ADDR(devad);
659	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
660
661	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
662				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
663	if (ret < 0) {
664		dev_err(priv->dev, "poll timeout\n");
665		goto out;
666	}
667
668	ret = val & MT7531_MDIO_RW_DATA_MASK;
669out:
670	mt7530_mutex_unlock(priv);
671
672	return ret;
673}
674
675static int
676mt7531_ind_c45_phy_write(struct mt7530_priv *priv, int port, int devad,
677			 int regnum, u16 data)
678{
679	struct mt7530_dummy_poll p;
680	u32 val, reg;
681	int ret;
682
683	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
684
685	mt7530_mutex_lock(priv);
686
687	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
688				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
689	if (ret < 0) {
690		dev_err(priv->dev, "poll timeout\n");
691		goto out;
692	}
693
694	reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) |
695	      MT7531_MDIO_DEV_ADDR(devad) | regnum;
696	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
697
698	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
699				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
700	if (ret < 0) {
701		dev_err(priv->dev, "poll timeout\n");
702		goto out;
703	}
704
705	reg = MT7531_MDIO_CL45_WRITE | MT7531_MDIO_PHY_ADDR(port) |
706	      MT7531_MDIO_DEV_ADDR(devad) | data;
707	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
708
709	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
710				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
711	if (ret < 0) {
712		dev_err(priv->dev, "poll timeout\n");
713		goto out;
714	}
715
716out:
717	mt7530_mutex_unlock(priv);
718
719	return ret;
720}
721
722static int
723mt7531_ind_c22_phy_read(struct mt7530_priv *priv, int port, int regnum)
724{
725	struct mt7530_dummy_poll p;
726	int ret;
727	u32 val;
728
729	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
730
731	mt7530_mutex_lock(priv);
732
733	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
734				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
735	if (ret < 0) {
736		dev_err(priv->dev, "poll timeout\n");
737		goto out;
738	}
739
740	val = MT7531_MDIO_CL22_READ | MT7531_MDIO_PHY_ADDR(port) |
741	      MT7531_MDIO_REG_ADDR(regnum);
742
743	mt7530_mii_write(priv, MT7531_PHY_IAC, val | MT7531_PHY_ACS_ST);
744
745	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
746				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
747	if (ret < 0) {
748		dev_err(priv->dev, "poll timeout\n");
749		goto out;
750	}
751
752	ret = val & MT7531_MDIO_RW_DATA_MASK;
753out:
754	mt7530_mutex_unlock(priv);
755
756	return ret;
757}
758
759static int
760mt7531_ind_c22_phy_write(struct mt7530_priv *priv, int port, int regnum,
761			 u16 data)
762{
763	struct mt7530_dummy_poll p;
764	int ret;
765	u32 reg;
766
767	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
768
769	mt7530_mutex_lock(priv);
770
771	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg,
772				 !(reg & MT7531_PHY_ACS_ST), 20, 100000);
773	if (ret < 0) {
774		dev_err(priv->dev, "poll timeout\n");
775		goto out;
776	}
777
778	reg = MT7531_MDIO_CL22_WRITE | MT7531_MDIO_PHY_ADDR(port) |
779	      MT7531_MDIO_REG_ADDR(regnum) | data;
780
781	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
782
783	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg,
784				 !(reg & MT7531_PHY_ACS_ST), 20, 100000);
785	if (ret < 0) {
786		dev_err(priv->dev, "poll timeout\n");
787		goto out;
788	}
789
790out:
791	mt7530_mutex_unlock(priv);
792
793	return ret;
794}
795
796static int
797mt753x_phy_read_c22(struct mii_bus *bus, int port, int regnum)
798{
799	struct mt7530_priv *priv = bus->priv;
800
801	return priv->info->phy_read_c22(priv, port, regnum);
802}
803
804static int
805mt753x_phy_read_c45(struct mii_bus *bus, int port, int devad, int regnum)
806{
807	struct mt7530_priv *priv = bus->priv;
808
809	return priv->info->phy_read_c45(priv, port, devad, regnum);
810}
811
812static int
813mt753x_phy_write_c22(struct mii_bus *bus, int port, int regnum, u16 val)
814{
815	struct mt7530_priv *priv = bus->priv;
816
817	return priv->info->phy_write_c22(priv, port, regnum, val);
818}
819
820static int
821mt753x_phy_write_c45(struct mii_bus *bus, int port, int devad, int regnum,
822		     u16 val)
823{
824	struct mt7530_priv *priv = bus->priv;
825
826	return priv->info->phy_write_c45(priv, port, devad, regnum, val);
827}
828
829static void
830mt7530_get_strings(struct dsa_switch *ds, int port, u32 stringset,
831		   uint8_t *data)
832{
833	int i;
834
835	if (stringset != ETH_SS_STATS)
836		return;
837
838	for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++)
839		strncpy(data + i * ETH_GSTRING_LEN, mt7530_mib[i].name,
840			ETH_GSTRING_LEN);
841}
842
843static void
844mt7530_get_ethtool_stats(struct dsa_switch *ds, int port,
845			 uint64_t *data)
846{
847	struct mt7530_priv *priv = ds->priv;
848	const struct mt7530_mib_desc *mib;
849	u32 reg, i;
850	u64 hi;
851
852	for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++) {
853		mib = &mt7530_mib[i];
854		reg = MT7530_PORT_MIB_COUNTER(port) + mib->offset;
855
856		data[i] = mt7530_read(priv, reg);
857		if (mib->size == 2) {
858			hi = mt7530_read(priv, reg + 4);
859			data[i] |= hi << 32;
860		}
861	}
862}
863
864static int
865mt7530_get_sset_count(struct dsa_switch *ds, int port, int sset)
866{
867	if (sset != ETH_SS_STATS)
868		return 0;
869
870	return ARRAY_SIZE(mt7530_mib);
871}
872
873static int
874mt7530_set_ageing_time(struct dsa_switch *ds, unsigned int msecs)
875{
876	struct mt7530_priv *priv = ds->priv;
877	unsigned int secs = msecs / 1000;
878	unsigned int tmp_age_count;
879	unsigned int error = -1;
880	unsigned int age_count;
881	unsigned int age_unit;
882
883	/* Applied timer is (AGE_CNT + 1) * (AGE_UNIT + 1) seconds */
884	if (secs < 1 || secs > (AGE_CNT_MAX + 1) * (AGE_UNIT_MAX + 1))
885		return -ERANGE;
886
887	/* iterate through all possible age_count to find the closest pair */
888	for (tmp_age_count = 0; tmp_age_count <= AGE_CNT_MAX; ++tmp_age_count) {
889		unsigned int tmp_age_unit = secs / (tmp_age_count + 1) - 1;
890
891		if (tmp_age_unit <= AGE_UNIT_MAX) {
892			unsigned int tmp_error = secs -
893				(tmp_age_count + 1) * (tmp_age_unit + 1);
894
895			/* found a closer pair */
896			if (error > tmp_error) {
897				error = tmp_error;
898				age_count = tmp_age_count;
899				age_unit = tmp_age_unit;
900			}
901
902			/* found the exact match, so break the loop */
903			if (!error)
904				break;
905		}
906	}
907
908	mt7530_write(priv, MT7530_AAC, AGE_CNT(age_count) | AGE_UNIT(age_unit));
909
910	return 0;
911}
912
913static const char *p5_intf_modes(unsigned int p5_interface)
914{
915	switch (p5_interface) {
916	case P5_DISABLED:
917		return "DISABLED";
918	case P5_INTF_SEL_PHY_P0:
919		return "PHY P0";
920	case P5_INTF_SEL_PHY_P4:
921		return "PHY P4";
922	case P5_INTF_SEL_GMAC5:
923		return "GMAC5";
924	case P5_INTF_SEL_GMAC5_SGMII:
925		return "GMAC5_SGMII";
926	default:
927		return "unknown";
928	}
929}
930
931static void mt7530_setup_port5(struct dsa_switch *ds, phy_interface_t interface)
932{
933	struct mt7530_priv *priv = ds->priv;
934	u8 tx_delay = 0;
935	int val;
936
937	mutex_lock(&priv->reg_mutex);
938
939	val = mt7530_read(priv, MT7530_MHWTRAP);
940
941	val |= MHWTRAP_MANUAL | MHWTRAP_P5_MAC_SEL | MHWTRAP_P5_DIS;
942	val &= ~MHWTRAP_P5_RGMII_MODE & ~MHWTRAP_PHY0_SEL;
943
944	switch (priv->p5_intf_sel) {
945	case P5_INTF_SEL_PHY_P0:
946		/* MT7530_P5_MODE_GPHY_P0: 2nd GMAC -> P5 -> P0 */
947		val |= MHWTRAP_PHY0_SEL;
948		fallthrough;
949	case P5_INTF_SEL_PHY_P4:
950		/* MT7530_P5_MODE_GPHY_P4: 2nd GMAC -> P5 -> P4 */
951		val &= ~MHWTRAP_P5_MAC_SEL & ~MHWTRAP_P5_DIS;
952
953		/* Setup the MAC by default for the cpu port */
954		mt7530_write(priv, MT7530_PMCR_P(5), 0x56300);
955		break;
956	case P5_INTF_SEL_GMAC5:
957		/* MT7530_P5_MODE_GMAC: P5 -> External phy or 2nd GMAC */
958		val &= ~MHWTRAP_P5_DIS;
959		break;
960	case P5_DISABLED:
961		interface = PHY_INTERFACE_MODE_NA;
962		break;
963	default:
964		dev_err(ds->dev, "Unsupported p5_intf_sel %d\n",
965			priv->p5_intf_sel);
966		goto unlock_exit;
967	}
968
969	/* Setup RGMII settings */
970	if (phy_interface_mode_is_rgmii(interface)) {
971		val |= MHWTRAP_P5_RGMII_MODE;
972
973		/* P5 RGMII RX Clock Control: delay setting for 1000M */
974		mt7530_write(priv, MT7530_P5RGMIIRXCR, CSR_RGMII_EDGE_ALIGN);
975
976		/* Don't set delay in DSA mode */
977		if (!dsa_is_dsa_port(priv->ds, 5) &&
978		    (interface == PHY_INTERFACE_MODE_RGMII_TXID ||
979		     interface == PHY_INTERFACE_MODE_RGMII_ID))
980			tx_delay = 4; /* n * 0.5 ns */
981
982		/* P5 RGMII TX Clock Control: delay x */
983		mt7530_write(priv, MT7530_P5RGMIITXCR,
984			     CSR_RGMII_TXC_CFG(0x10 + tx_delay));
985
986		/* reduce P5 RGMII Tx driving, 8mA */
987		mt7530_write(priv, MT7530_IO_DRV_CR,
988			     P5_IO_CLK_DRV(1) | P5_IO_DATA_DRV(1));
989	}
990
991	mt7530_write(priv, MT7530_MHWTRAP, val);
992
993	dev_dbg(ds->dev, "Setup P5, HWTRAP=0x%x, intf_sel=%s, phy-mode=%s\n",
994		val, p5_intf_modes(priv->p5_intf_sel), phy_modes(interface));
995
996	priv->p5_interface = interface;
997
998unlock_exit:
999	mutex_unlock(&priv->reg_mutex);
1000}
1001
1002/* On page 205, section "8.6.3 Frame filtering" of the active standard, IEEE Std
1003 * 802.1Q™-2022, it is stated that frames with 01:80:C2:00:00:00-0F as MAC DA
1004 * must only be propagated to C-VLAN and MAC Bridge components. That means
1005 * VLAN-aware and VLAN-unaware bridges. On the switch designs with CPU ports,
1006 * these frames are supposed to be processed by the CPU (software). So we make
1007 * the switch only forward them to the CPU port. And if received from a CPU
1008 * port, forward to a single port. The software is responsible of making the
1009 * switch conform to the latter by setting a single port as destination port on
1010 * the special tag.
1011 *
1012 * This switch intellectual property cannot conform to this part of the standard
1013 * fully. Whilst the REV_UN frame tag covers the remaining :04-0D and :0F MAC
1014 * DAs, it also includes :22-FF which the scope of propagation is not supposed
1015 * to be restricted for these MAC DAs.
1016 */
1017static void
1018mt753x_trap_frames(struct mt7530_priv *priv)
1019{
1020	/* Trap 802.1X PAE frames and BPDUs to the CPU port(s) and egress them
1021	 * VLAN-untagged.
1022	 */
1023	mt7530_rmw(priv, MT753X_BPC, MT753X_PAE_EG_TAG_MASK |
1024		   MT753X_PAE_PORT_FW_MASK | MT753X_BPDU_EG_TAG_MASK |
1025		   MT753X_BPDU_PORT_FW_MASK,
1026		   MT753X_PAE_EG_TAG(MT7530_VLAN_EG_UNTAGGED) |
1027		   MT753X_PAE_PORT_FW(MT753X_BPDU_CPU_ONLY) |
1028		   MT753X_BPDU_EG_TAG(MT7530_VLAN_EG_UNTAGGED) |
1029		   MT753X_BPDU_CPU_ONLY);
1030
1031	/* Trap frames with :01 and :02 MAC DAs to the CPU port(s) and egress
1032	 * them VLAN-untagged.
1033	 */
1034	mt7530_rmw(priv, MT753X_RGAC1, MT753X_R02_EG_TAG_MASK |
1035		   MT753X_R02_PORT_FW_MASK | MT753X_R01_EG_TAG_MASK |
1036		   MT753X_R01_PORT_FW_MASK,
1037		   MT753X_R02_EG_TAG(MT7530_VLAN_EG_UNTAGGED) |
1038		   MT753X_R02_PORT_FW(MT753X_BPDU_CPU_ONLY) |
1039		   MT753X_R01_EG_TAG(MT7530_VLAN_EG_UNTAGGED) |
1040		   MT753X_BPDU_CPU_ONLY);
1041
1042	/* Trap frames with :03 and :0E MAC DAs to the CPU port(s) and egress
1043	 * them VLAN-untagged.
1044	 */
1045	mt7530_rmw(priv, MT753X_RGAC2, MT753X_R0E_EG_TAG_MASK |
1046		   MT753X_R0E_PORT_FW_MASK | MT753X_R03_EG_TAG_MASK |
1047		   MT753X_R03_PORT_FW_MASK,
1048		   MT753X_R0E_EG_TAG(MT7530_VLAN_EG_UNTAGGED) |
1049		   MT753X_R0E_PORT_FW(MT753X_BPDU_CPU_ONLY) |
1050		   MT753X_R03_EG_TAG(MT7530_VLAN_EG_UNTAGGED) |
1051		   MT753X_BPDU_CPU_ONLY);
1052}
1053
1054static int
1055mt753x_cpu_port_enable(struct dsa_switch *ds, int port)
1056{
1057	struct mt7530_priv *priv = ds->priv;
1058	int ret;
1059
1060	/* Setup max capability of CPU port at first */
1061	if (priv->info->cpu_port_config) {
1062		ret = priv->info->cpu_port_config(ds, port);
1063		if (ret)
1064			return ret;
1065	}
1066
1067	/* Enable Mediatek header mode on the cpu port */
1068	mt7530_write(priv, MT7530_PVC_P(port),
1069		     PORT_SPEC_TAG);
1070
1071	/* Enable flooding on the CPU port */
1072	mt7530_set(priv, MT7530_MFC, BC_FFP(BIT(port)) | UNM_FFP(BIT(port)) |
1073		   UNU_FFP(BIT(port)));
1074
1075	/* Set CPU port number */
1076	if (priv->id == ID_MT7530 || priv->id == ID_MT7621)
1077		mt7530_rmw(priv, MT7530_MFC, CPU_MASK, CPU_EN | CPU_PORT(port));
1078
1079	/* Add the CPU port to the CPU port bitmap for MT7531 and the switch on
1080	 * the MT7988 SoC. Trapped frames will be forwarded to the CPU port that
1081	 * is affine to the inbound user port.
1082	 */
1083	if (priv->id == ID_MT7531 || priv->id == ID_MT7988)
1084		mt7530_set(priv, MT7531_CFC, MT7531_CPU_PMAP(BIT(port)));
1085
1086	/* CPU port gets connected to all user ports of
1087	 * the switch.
1088	 */
1089	mt7530_write(priv, MT7530_PCR_P(port),
1090		     PCR_MATRIX(dsa_user_ports(priv->ds)));
1091
1092	/* Set to fallback mode for independent VLAN learning */
1093	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1094		   MT7530_PORT_FALLBACK_MODE);
1095
1096	return 0;
1097}
1098
1099static int
1100mt7530_port_enable(struct dsa_switch *ds, int port,
1101		   struct phy_device *phy)
1102{
1103	struct dsa_port *dp = dsa_to_port(ds, port);
1104	struct mt7530_priv *priv = ds->priv;
1105
1106	mutex_lock(&priv->reg_mutex);
1107
1108	/* Allow the user port gets connected to the cpu port and also
1109	 * restore the port matrix if the port is the member of a certain
1110	 * bridge.
1111	 */
1112	if (dsa_port_is_user(dp)) {
1113		struct dsa_port *cpu_dp = dp->cpu_dp;
1114
1115		priv->ports[port].pm |= PCR_MATRIX(BIT(cpu_dp->index));
1116	}
1117	priv->ports[port].enable = true;
1118	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1119		   priv->ports[port].pm);
1120	mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
1121
1122	mutex_unlock(&priv->reg_mutex);
1123
1124	return 0;
1125}
1126
1127static void
1128mt7530_port_disable(struct dsa_switch *ds, int port)
1129{
1130	struct mt7530_priv *priv = ds->priv;
1131
1132	mutex_lock(&priv->reg_mutex);
1133
1134	/* Clear up all port matrix which could be restored in the next
1135	 * enablement for the port.
1136	 */
1137	priv->ports[port].enable = false;
1138	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1139		   PCR_MATRIX_CLR);
1140	mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
1141
1142	mutex_unlock(&priv->reg_mutex);
1143}
1144
1145static int
1146mt7530_port_change_mtu(struct dsa_switch *ds, int port, int new_mtu)
1147{
1148	struct mt7530_priv *priv = ds->priv;
1149	int length;
1150	u32 val;
1151
1152	/* When a new MTU is set, DSA always set the CPU port's MTU to the
1153	 * largest MTU of the slave ports. Because the switch only has a global
1154	 * RX length register, only allowing CPU port here is enough.
1155	 */
1156	if (!dsa_is_cpu_port(ds, port))
1157		return 0;
1158
1159	mt7530_mutex_lock(priv);
1160
1161	val = mt7530_mii_read(priv, MT7530_GMACCR);
1162	val &= ~MAX_RX_PKT_LEN_MASK;
1163
1164	/* RX length also includes Ethernet header, MTK tag, and FCS length */
1165	length = new_mtu + ETH_HLEN + MTK_HDR_LEN + ETH_FCS_LEN;
1166	if (length <= 1522) {
1167		val |= MAX_RX_PKT_LEN_1522;
1168	} else if (length <= 1536) {
1169		val |= MAX_RX_PKT_LEN_1536;
1170	} else if (length <= 1552) {
1171		val |= MAX_RX_PKT_LEN_1552;
1172	} else {
1173		val &= ~MAX_RX_JUMBO_MASK;
1174		val |= MAX_RX_JUMBO(DIV_ROUND_UP(length, 1024));
1175		val |= MAX_RX_PKT_LEN_JUMBO;
1176	}
1177
1178	mt7530_mii_write(priv, MT7530_GMACCR, val);
1179
1180	mt7530_mutex_unlock(priv);
1181
1182	return 0;
1183}
1184
1185static int
1186mt7530_port_max_mtu(struct dsa_switch *ds, int port)
1187{
1188	return MT7530_MAX_MTU;
1189}
1190
1191static void
1192mt7530_stp_state_set(struct dsa_switch *ds, int port, u8 state)
1193{
1194	struct mt7530_priv *priv = ds->priv;
1195	u32 stp_state;
1196
1197	switch (state) {
1198	case BR_STATE_DISABLED:
1199		stp_state = MT7530_STP_DISABLED;
1200		break;
1201	case BR_STATE_BLOCKING:
1202		stp_state = MT7530_STP_BLOCKING;
1203		break;
1204	case BR_STATE_LISTENING:
1205		stp_state = MT7530_STP_LISTENING;
1206		break;
1207	case BR_STATE_LEARNING:
1208		stp_state = MT7530_STP_LEARNING;
1209		break;
1210	case BR_STATE_FORWARDING:
1211	default:
1212		stp_state = MT7530_STP_FORWARDING;
1213		break;
1214	}
1215
1216	mt7530_rmw(priv, MT7530_SSP_P(port), FID_PST_MASK(FID_BRIDGED),
1217		   FID_PST(FID_BRIDGED, stp_state));
1218}
1219
1220static int
1221mt7530_port_pre_bridge_flags(struct dsa_switch *ds, int port,
1222			     struct switchdev_brport_flags flags,
1223			     struct netlink_ext_ack *extack)
1224{
1225	if (flags.mask & ~(BR_LEARNING | BR_FLOOD | BR_MCAST_FLOOD |
1226			   BR_BCAST_FLOOD))
1227		return -EINVAL;
1228
1229	return 0;
1230}
1231
1232static int
1233mt7530_port_bridge_flags(struct dsa_switch *ds, int port,
1234			 struct switchdev_brport_flags flags,
1235			 struct netlink_ext_ack *extack)
1236{
1237	struct mt7530_priv *priv = ds->priv;
1238
1239	if (flags.mask & BR_LEARNING)
1240		mt7530_rmw(priv, MT7530_PSC_P(port), SA_DIS,
1241			   flags.val & BR_LEARNING ? 0 : SA_DIS);
1242
1243	if (flags.mask & BR_FLOOD)
1244		mt7530_rmw(priv, MT7530_MFC, UNU_FFP(BIT(port)),
1245			   flags.val & BR_FLOOD ? UNU_FFP(BIT(port)) : 0);
1246
1247	if (flags.mask & BR_MCAST_FLOOD)
1248		mt7530_rmw(priv, MT7530_MFC, UNM_FFP(BIT(port)),
1249			   flags.val & BR_MCAST_FLOOD ? UNM_FFP(BIT(port)) : 0);
1250
1251	if (flags.mask & BR_BCAST_FLOOD)
1252		mt7530_rmw(priv, MT7530_MFC, BC_FFP(BIT(port)),
1253			   flags.val & BR_BCAST_FLOOD ? BC_FFP(BIT(port)) : 0);
1254
1255	return 0;
1256}
1257
1258static int
1259mt7530_port_bridge_join(struct dsa_switch *ds, int port,
1260			struct dsa_bridge bridge, bool *tx_fwd_offload,
1261			struct netlink_ext_ack *extack)
1262{
1263	struct dsa_port *dp = dsa_to_port(ds, port), *other_dp;
1264	struct dsa_port *cpu_dp = dp->cpu_dp;
1265	u32 port_bitmap = BIT(cpu_dp->index);
1266	struct mt7530_priv *priv = ds->priv;
1267
1268	mutex_lock(&priv->reg_mutex);
1269
1270	dsa_switch_for_each_user_port(other_dp, ds) {
1271		int other_port = other_dp->index;
1272
1273		if (dp == other_dp)
1274			continue;
1275
1276		/* Add this port to the port matrix of the other ports in the
1277		 * same bridge. If the port is disabled, port matrix is kept
1278		 * and not being setup until the port becomes enabled.
1279		 */
1280		if (!dsa_port_offloads_bridge(other_dp, &bridge))
1281			continue;
1282
1283		if (priv->ports[other_port].enable)
1284			mt7530_set(priv, MT7530_PCR_P(other_port),
1285				   PCR_MATRIX(BIT(port)));
1286		priv->ports[other_port].pm |= PCR_MATRIX(BIT(port));
1287
1288		port_bitmap |= BIT(other_port);
1289	}
1290
1291	/* Add the all other ports to this port matrix. */
1292	if (priv->ports[port].enable)
1293		mt7530_rmw(priv, MT7530_PCR_P(port),
1294			   PCR_MATRIX_MASK, PCR_MATRIX(port_bitmap));
1295	priv->ports[port].pm |= PCR_MATRIX(port_bitmap);
1296
1297	/* Set to fallback mode for independent VLAN learning */
1298	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1299		   MT7530_PORT_FALLBACK_MODE);
1300
1301	mutex_unlock(&priv->reg_mutex);
1302
1303	return 0;
1304}
1305
1306static void
1307mt7530_port_set_vlan_unaware(struct dsa_switch *ds, int port)
1308{
1309	struct mt7530_priv *priv = ds->priv;
1310	bool all_user_ports_removed = true;
1311	int i;
1312
1313	/* This is called after .port_bridge_leave when leaving a VLAN-aware
1314	 * bridge. Don't set standalone ports to fallback mode.
1315	 */
1316	if (dsa_port_bridge_dev_get(dsa_to_port(ds, port)))
1317		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1318			   MT7530_PORT_FALLBACK_MODE);
1319
1320	mt7530_rmw(priv, MT7530_PVC_P(port),
1321		   VLAN_ATTR_MASK | PVC_EG_TAG_MASK | ACC_FRM_MASK,
1322		   VLAN_ATTR(MT7530_VLAN_TRANSPARENT) |
1323		   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT) |
1324		   MT7530_VLAN_ACC_ALL);
1325
1326	/* Set PVID to 0 */
1327	mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1328		   G0_PORT_VID_DEF);
1329
1330	for (i = 0; i < MT7530_NUM_PORTS; i++) {
1331		if (dsa_is_user_port(ds, i) &&
1332		    dsa_port_is_vlan_filtering(dsa_to_port(ds, i))) {
1333			all_user_ports_removed = false;
1334			break;
1335		}
1336	}
1337
1338	/* CPU port also does the same thing until all user ports belonging to
1339	 * the CPU port get out of VLAN filtering mode.
1340	 */
1341	if (all_user_ports_removed) {
1342		struct dsa_port *dp = dsa_to_port(ds, port);
1343		struct dsa_port *cpu_dp = dp->cpu_dp;
1344
1345		mt7530_write(priv, MT7530_PCR_P(cpu_dp->index),
1346			     PCR_MATRIX(dsa_user_ports(priv->ds)));
1347		mt7530_write(priv, MT7530_PVC_P(cpu_dp->index), PORT_SPEC_TAG
1348			     | PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
1349	}
1350}
1351
1352static void
1353mt7530_port_set_vlan_aware(struct dsa_switch *ds, int port)
1354{
1355	struct mt7530_priv *priv = ds->priv;
1356
1357	/* Trapped into security mode allows packet forwarding through VLAN
1358	 * table lookup.
1359	 */
1360	if (dsa_is_user_port(ds, port)) {
1361		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1362			   MT7530_PORT_SECURITY_MODE);
1363		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1364			   G0_PORT_VID(priv->ports[port].pvid));
1365
1366		/* Only accept tagged frames if PVID is not set */
1367		if (!priv->ports[port].pvid)
1368			mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1369				   MT7530_VLAN_ACC_TAGGED);
1370
1371		/* Set the port as a user port which is to be able to recognize
1372		 * VID from incoming packets before fetching entry within the
1373		 * VLAN table.
1374		 */
1375		mt7530_rmw(priv, MT7530_PVC_P(port),
1376			   VLAN_ATTR_MASK | PVC_EG_TAG_MASK,
1377			   VLAN_ATTR(MT7530_VLAN_USER) |
1378			   PVC_EG_TAG(MT7530_VLAN_EG_DISABLED));
1379	} else {
1380		/* Also set CPU ports to the "user" VLAN port attribute, to
1381		 * allow VLAN classification, but keep the EG_TAG attribute as
1382		 * "consistent" (i.o.w. don't change its value) for packets
1383		 * received by the switch from the CPU, so that tagged packets
1384		 * are forwarded to user ports as tagged, and untagged as
1385		 * untagged.
1386		 */
1387		mt7530_rmw(priv, MT7530_PVC_P(port), VLAN_ATTR_MASK,
1388			   VLAN_ATTR(MT7530_VLAN_USER));
1389	}
1390}
1391
1392static void
1393mt7530_port_bridge_leave(struct dsa_switch *ds, int port,
1394			 struct dsa_bridge bridge)
1395{
1396	struct dsa_port *dp = dsa_to_port(ds, port), *other_dp;
1397	struct dsa_port *cpu_dp = dp->cpu_dp;
1398	struct mt7530_priv *priv = ds->priv;
1399
1400	mutex_lock(&priv->reg_mutex);
1401
1402	dsa_switch_for_each_user_port(other_dp, ds) {
1403		int other_port = other_dp->index;
1404
1405		if (dp == other_dp)
1406			continue;
1407
1408		/* Remove this port from the port matrix of the other ports
1409		 * in the same bridge. If the port is disabled, port matrix
1410		 * is kept and not being setup until the port becomes enabled.
1411		 */
1412		if (!dsa_port_offloads_bridge(other_dp, &bridge))
1413			continue;
1414
1415		if (priv->ports[other_port].enable)
1416			mt7530_clear(priv, MT7530_PCR_P(other_port),
1417				     PCR_MATRIX(BIT(port)));
1418		priv->ports[other_port].pm &= ~PCR_MATRIX(BIT(port));
1419	}
1420
1421	/* Set the cpu port to be the only one in the port matrix of
1422	 * this port.
1423	 */
1424	if (priv->ports[port].enable)
1425		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1426			   PCR_MATRIX(BIT(cpu_dp->index)));
1427	priv->ports[port].pm = PCR_MATRIX(BIT(cpu_dp->index));
1428
1429	/* When a port is removed from the bridge, the port would be set up
1430	 * back to the default as is at initial boot which is a VLAN-unaware
1431	 * port.
1432	 */
1433	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1434		   MT7530_PORT_MATRIX_MODE);
1435
1436	mutex_unlock(&priv->reg_mutex);
1437}
1438
1439static int
1440mt7530_port_fdb_add(struct dsa_switch *ds, int port,
1441		    const unsigned char *addr, u16 vid,
1442		    struct dsa_db db)
1443{
1444	struct mt7530_priv *priv = ds->priv;
1445	int ret;
1446	u8 port_mask = BIT(port);
1447
1448	mutex_lock(&priv->reg_mutex);
1449	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT);
1450	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1451	mutex_unlock(&priv->reg_mutex);
1452
1453	return ret;
1454}
1455
1456static int
1457mt7530_port_fdb_del(struct dsa_switch *ds, int port,
1458		    const unsigned char *addr, u16 vid,
1459		    struct dsa_db db)
1460{
1461	struct mt7530_priv *priv = ds->priv;
1462	int ret;
1463	u8 port_mask = BIT(port);
1464
1465	mutex_lock(&priv->reg_mutex);
1466	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_EMP);
1467	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1468	mutex_unlock(&priv->reg_mutex);
1469
1470	return ret;
1471}
1472
1473static int
1474mt7530_port_fdb_dump(struct dsa_switch *ds, int port,
1475		     dsa_fdb_dump_cb_t *cb, void *data)
1476{
1477	struct mt7530_priv *priv = ds->priv;
1478	struct mt7530_fdb _fdb = { 0 };
1479	int cnt = MT7530_NUM_FDB_RECORDS;
1480	int ret = 0;
1481	u32 rsp = 0;
1482
1483	mutex_lock(&priv->reg_mutex);
1484
1485	ret = mt7530_fdb_cmd(priv, MT7530_FDB_START, &rsp);
1486	if (ret < 0)
1487		goto err;
1488
1489	do {
1490		if (rsp & ATC_SRCH_HIT) {
1491			mt7530_fdb_read(priv, &_fdb);
1492			if (_fdb.port_mask & BIT(port)) {
1493				ret = cb(_fdb.mac, _fdb.vid, _fdb.noarp,
1494					 data);
1495				if (ret < 0)
1496					break;
1497			}
1498		}
1499	} while (--cnt &&
1500		 !(rsp & ATC_SRCH_END) &&
1501		 !mt7530_fdb_cmd(priv, MT7530_FDB_NEXT, &rsp));
1502err:
1503	mutex_unlock(&priv->reg_mutex);
1504
1505	return 0;
1506}
1507
1508static int
1509mt7530_port_mdb_add(struct dsa_switch *ds, int port,
1510		    const struct switchdev_obj_port_mdb *mdb,
1511		    struct dsa_db db)
1512{
1513	struct mt7530_priv *priv = ds->priv;
1514	const u8 *addr = mdb->addr;
1515	u16 vid = mdb->vid;
1516	u8 port_mask = 0;
1517	int ret;
1518
1519	mutex_lock(&priv->reg_mutex);
1520
1521	mt7530_fdb_write(priv, vid, 0, addr, 0, STATIC_EMP);
1522	if (!mt7530_fdb_cmd(priv, MT7530_FDB_READ, NULL))
1523		port_mask = (mt7530_read(priv, MT7530_ATRD) >> PORT_MAP)
1524			    & PORT_MAP_MASK;
1525
1526	port_mask |= BIT(port);
1527	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT);
1528	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1529
1530	mutex_unlock(&priv->reg_mutex);
1531
1532	return ret;
1533}
1534
1535static int
1536mt7530_port_mdb_del(struct dsa_switch *ds, int port,
1537		    const struct switchdev_obj_port_mdb *mdb,
1538		    struct dsa_db db)
1539{
1540	struct mt7530_priv *priv = ds->priv;
1541	const u8 *addr = mdb->addr;
1542	u16 vid = mdb->vid;
1543	u8 port_mask = 0;
1544	int ret;
1545
1546	mutex_lock(&priv->reg_mutex);
1547
1548	mt7530_fdb_write(priv, vid, 0, addr, 0, STATIC_EMP);
1549	if (!mt7530_fdb_cmd(priv, MT7530_FDB_READ, NULL))
1550		port_mask = (mt7530_read(priv, MT7530_ATRD) >> PORT_MAP)
1551			    & PORT_MAP_MASK;
1552
1553	port_mask &= ~BIT(port);
1554	mt7530_fdb_write(priv, vid, port_mask, addr, -1,
1555			 port_mask ? STATIC_ENT : STATIC_EMP);
1556	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1557
1558	mutex_unlock(&priv->reg_mutex);
1559
1560	return ret;
1561}
1562
1563static int
1564mt7530_vlan_cmd(struct mt7530_priv *priv, enum mt7530_vlan_cmd cmd, u16 vid)
1565{
1566	struct mt7530_dummy_poll p;
1567	u32 val;
1568	int ret;
1569
1570	val = VTCR_BUSY | VTCR_FUNC(cmd) | vid;
1571	mt7530_write(priv, MT7530_VTCR, val);
1572
1573	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_VTCR);
1574	ret = readx_poll_timeout(_mt7530_read, &p, val,
1575				 !(val & VTCR_BUSY), 20, 20000);
1576	if (ret < 0) {
1577		dev_err(priv->dev, "poll timeout\n");
1578		return ret;
1579	}
1580
1581	val = mt7530_read(priv, MT7530_VTCR);
1582	if (val & VTCR_INVALID) {
1583		dev_err(priv->dev, "read VTCR invalid\n");
1584		return -EINVAL;
1585	}
1586
1587	return 0;
1588}
1589
1590static int
1591mt7530_port_vlan_filtering(struct dsa_switch *ds, int port, bool vlan_filtering,
1592			   struct netlink_ext_ack *extack)
1593{
1594	struct dsa_port *dp = dsa_to_port(ds, port);
1595	struct dsa_port *cpu_dp = dp->cpu_dp;
1596
1597	if (vlan_filtering) {
1598		/* The port is being kept as VLAN-unaware port when bridge is
1599		 * set up with vlan_filtering not being set, Otherwise, the
1600		 * port and the corresponding CPU port is required the setup
1601		 * for becoming a VLAN-aware port.
1602		 */
1603		mt7530_port_set_vlan_aware(ds, port);
1604		mt7530_port_set_vlan_aware(ds, cpu_dp->index);
1605	} else {
1606		mt7530_port_set_vlan_unaware(ds, port);
1607	}
1608
1609	return 0;
1610}
1611
1612static void
1613mt7530_hw_vlan_add(struct mt7530_priv *priv,
1614		   struct mt7530_hw_vlan_entry *entry)
1615{
1616	struct dsa_port *dp = dsa_to_port(priv->ds, entry->port);
1617	u8 new_members;
1618	u32 val;
1619
1620	new_members = entry->old_members | BIT(entry->port);
1621
1622	/* Validate the entry with independent learning, create egress tag per
1623	 * VLAN and joining the port as one of the port members.
1624	 */
1625	val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) | FID(FID_BRIDGED) |
1626	      VLAN_VALID;
1627	mt7530_write(priv, MT7530_VAWD1, val);
1628
1629	/* Decide whether adding tag or not for those outgoing packets from the
1630	 * port inside the VLAN.
1631	 * CPU port is always taken as a tagged port for serving more than one
1632	 * VLANs across and also being applied with egress type stack mode for
1633	 * that VLAN tags would be appended after hardware special tag used as
1634	 * DSA tag.
1635	 */
1636	if (dsa_port_is_cpu(dp))
1637		val = MT7530_VLAN_EGRESS_STACK;
1638	else if (entry->untagged)
1639		val = MT7530_VLAN_EGRESS_UNTAG;
1640	else
1641		val = MT7530_VLAN_EGRESS_TAG;
1642	mt7530_rmw(priv, MT7530_VAWD2,
1643		   ETAG_CTRL_P_MASK(entry->port),
1644		   ETAG_CTRL_P(entry->port, val));
1645}
1646
1647static void
1648mt7530_hw_vlan_del(struct mt7530_priv *priv,
1649		   struct mt7530_hw_vlan_entry *entry)
1650{
1651	u8 new_members;
1652	u32 val;
1653
1654	new_members = entry->old_members & ~BIT(entry->port);
1655
1656	val = mt7530_read(priv, MT7530_VAWD1);
1657	if (!(val & VLAN_VALID)) {
1658		dev_err(priv->dev,
1659			"Cannot be deleted due to invalid entry\n");
1660		return;
1661	}
1662
1663	if (new_members) {
1664		val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) |
1665		      VLAN_VALID;
1666		mt7530_write(priv, MT7530_VAWD1, val);
1667	} else {
1668		mt7530_write(priv, MT7530_VAWD1, 0);
1669		mt7530_write(priv, MT7530_VAWD2, 0);
1670	}
1671}
1672
1673static void
1674mt7530_hw_vlan_update(struct mt7530_priv *priv, u16 vid,
1675		      struct mt7530_hw_vlan_entry *entry,
1676		      mt7530_vlan_op vlan_op)
1677{
1678	u32 val;
1679
1680	/* Fetch entry */
1681	mt7530_vlan_cmd(priv, MT7530_VTCR_RD_VID, vid);
1682
1683	val = mt7530_read(priv, MT7530_VAWD1);
1684
1685	entry->old_members = (val >> PORT_MEM_SHFT) & PORT_MEM_MASK;
1686
1687	/* Manipulate entry */
1688	vlan_op(priv, entry);
1689
1690	/* Flush result to hardware */
1691	mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, vid);
1692}
1693
1694static int
1695mt7530_setup_vlan0(struct mt7530_priv *priv)
1696{
1697	u32 val;
1698
1699	/* Validate the entry with independent learning, keep the original
1700	 * ingress tag attribute.
1701	 */
1702	val = IVL_MAC | EG_CON | PORT_MEM(MT7530_ALL_MEMBERS) | FID(FID_BRIDGED) |
1703	      VLAN_VALID;
1704	mt7530_write(priv, MT7530_VAWD1, val);
1705
1706	return mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, 0);
1707}
1708
1709static int
1710mt7530_port_vlan_add(struct dsa_switch *ds, int port,
1711		     const struct switchdev_obj_port_vlan *vlan,
1712		     struct netlink_ext_ack *extack)
1713{
1714	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1715	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1716	struct mt7530_hw_vlan_entry new_entry;
1717	struct mt7530_priv *priv = ds->priv;
1718
1719	mutex_lock(&priv->reg_mutex);
1720
1721	mt7530_hw_vlan_entry_init(&new_entry, port, untagged);
1722	mt7530_hw_vlan_update(priv, vlan->vid, &new_entry, mt7530_hw_vlan_add);
1723
1724	if (pvid) {
1725		priv->ports[port].pvid = vlan->vid;
1726
1727		/* Accept all frames if PVID is set */
1728		mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1729			   MT7530_VLAN_ACC_ALL);
1730
1731		/* Only configure PVID if VLAN filtering is enabled */
1732		if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
1733			mt7530_rmw(priv, MT7530_PPBV1_P(port),
1734				   G0_PORT_VID_MASK,
1735				   G0_PORT_VID(vlan->vid));
1736	} else if (vlan->vid && priv->ports[port].pvid == vlan->vid) {
1737		/* This VLAN is overwritten without PVID, so unset it */
1738		priv->ports[port].pvid = G0_PORT_VID_DEF;
1739
1740		/* Only accept tagged frames if the port is VLAN-aware */
1741		if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
1742			mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1743				   MT7530_VLAN_ACC_TAGGED);
1744
1745		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1746			   G0_PORT_VID_DEF);
1747	}
1748
1749	mutex_unlock(&priv->reg_mutex);
1750
1751	return 0;
1752}
1753
1754static int
1755mt7530_port_vlan_del(struct dsa_switch *ds, int port,
1756		     const struct switchdev_obj_port_vlan *vlan)
1757{
1758	struct mt7530_hw_vlan_entry target_entry;
1759	struct mt7530_priv *priv = ds->priv;
1760
1761	mutex_lock(&priv->reg_mutex);
1762
1763	mt7530_hw_vlan_entry_init(&target_entry, port, 0);
1764	mt7530_hw_vlan_update(priv, vlan->vid, &target_entry,
1765			      mt7530_hw_vlan_del);
1766
1767	/* PVID is being restored to the default whenever the PVID port
1768	 * is being removed from the VLAN.
1769	 */
1770	if (priv->ports[port].pvid == vlan->vid) {
1771		priv->ports[port].pvid = G0_PORT_VID_DEF;
1772
1773		/* Only accept tagged frames if the port is VLAN-aware */
1774		if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
1775			mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1776				   MT7530_VLAN_ACC_TAGGED);
1777
1778		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1779			   G0_PORT_VID_DEF);
1780	}
1781
1782
1783	mutex_unlock(&priv->reg_mutex);
1784
1785	return 0;
1786}
1787
1788static int mt753x_mirror_port_get(unsigned int id, u32 val)
1789{
1790	return (id == ID_MT7531) ? MT7531_MIRROR_PORT_GET(val) :
1791				   MIRROR_PORT(val);
1792}
1793
1794static int mt753x_mirror_port_set(unsigned int id, u32 val)
1795{
1796	return (id == ID_MT7531) ? MT7531_MIRROR_PORT_SET(val) :
1797				   MIRROR_PORT(val);
1798}
1799
1800static int mt753x_port_mirror_add(struct dsa_switch *ds, int port,
1801				  struct dsa_mall_mirror_tc_entry *mirror,
1802				  bool ingress, struct netlink_ext_ack *extack)
1803{
1804	struct mt7530_priv *priv = ds->priv;
1805	int monitor_port;
1806	u32 val;
1807
1808	/* Check for existent entry */
1809	if ((ingress ? priv->mirror_rx : priv->mirror_tx) & BIT(port))
1810		return -EEXIST;
1811
1812	val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id));
1813
1814	/* MT7530 only supports one monitor port */
1815	monitor_port = mt753x_mirror_port_get(priv->id, val);
1816	if (val & MT753X_MIRROR_EN(priv->id) &&
1817	    monitor_port != mirror->to_local_port)
1818		return -EEXIST;
1819
1820	val |= MT753X_MIRROR_EN(priv->id);
1821	val &= ~MT753X_MIRROR_MASK(priv->id);
1822	val |= mt753x_mirror_port_set(priv->id, mirror->to_local_port);
1823	mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val);
1824
1825	val = mt7530_read(priv, MT7530_PCR_P(port));
1826	if (ingress) {
1827		val |= PORT_RX_MIR;
1828		priv->mirror_rx |= BIT(port);
1829	} else {
1830		val |= PORT_TX_MIR;
1831		priv->mirror_tx |= BIT(port);
1832	}
1833	mt7530_write(priv, MT7530_PCR_P(port), val);
1834
1835	return 0;
1836}
1837
1838static void mt753x_port_mirror_del(struct dsa_switch *ds, int port,
1839				   struct dsa_mall_mirror_tc_entry *mirror)
1840{
1841	struct mt7530_priv *priv = ds->priv;
1842	u32 val;
1843
1844	val = mt7530_read(priv, MT7530_PCR_P(port));
1845	if (mirror->ingress) {
1846		val &= ~PORT_RX_MIR;
1847		priv->mirror_rx &= ~BIT(port);
1848	} else {
1849		val &= ~PORT_TX_MIR;
1850		priv->mirror_tx &= ~BIT(port);
1851	}
1852	mt7530_write(priv, MT7530_PCR_P(port), val);
1853
1854	if (!priv->mirror_rx && !priv->mirror_tx) {
1855		val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id));
1856		val &= ~MT753X_MIRROR_EN(priv->id);
1857		mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val);
1858	}
1859}
1860
1861static enum dsa_tag_protocol
1862mtk_get_tag_protocol(struct dsa_switch *ds, int port,
1863		     enum dsa_tag_protocol mp)
1864{
1865	return DSA_TAG_PROTO_MTK;
1866}
1867
1868#ifdef CONFIG_GPIOLIB
1869static inline u32
1870mt7530_gpio_to_bit(unsigned int offset)
1871{
1872	/* Map GPIO offset to register bit
1873	 * [ 2: 0]  port 0 LED 0..2 as GPIO 0..2
1874	 * [ 6: 4]  port 1 LED 0..2 as GPIO 3..5
1875	 * [10: 8]  port 2 LED 0..2 as GPIO 6..8
1876	 * [14:12]  port 3 LED 0..2 as GPIO 9..11
1877	 * [18:16]  port 4 LED 0..2 as GPIO 12..14
1878	 */
1879	return BIT(offset + offset / 3);
1880}
1881
1882static int
1883mt7530_gpio_get(struct gpio_chip *gc, unsigned int offset)
1884{
1885	struct mt7530_priv *priv = gpiochip_get_data(gc);
1886	u32 bit = mt7530_gpio_to_bit(offset);
1887
1888	return !!(mt7530_read(priv, MT7530_LED_GPIO_DATA) & bit);
1889}
1890
1891static void
1892mt7530_gpio_set(struct gpio_chip *gc, unsigned int offset, int value)
1893{
1894	struct mt7530_priv *priv = gpiochip_get_data(gc);
1895	u32 bit = mt7530_gpio_to_bit(offset);
1896
1897	if (value)
1898		mt7530_set(priv, MT7530_LED_GPIO_DATA, bit);
1899	else
1900		mt7530_clear(priv, MT7530_LED_GPIO_DATA, bit);
1901}
1902
1903static int
1904mt7530_gpio_get_direction(struct gpio_chip *gc, unsigned int offset)
1905{
1906	struct mt7530_priv *priv = gpiochip_get_data(gc);
1907	u32 bit = mt7530_gpio_to_bit(offset);
1908
1909	return (mt7530_read(priv, MT7530_LED_GPIO_DIR) & bit) ?
1910		GPIO_LINE_DIRECTION_OUT : GPIO_LINE_DIRECTION_IN;
1911}
1912
1913static int
1914mt7530_gpio_direction_input(struct gpio_chip *gc, unsigned int offset)
1915{
1916	struct mt7530_priv *priv = gpiochip_get_data(gc);
1917	u32 bit = mt7530_gpio_to_bit(offset);
1918
1919	mt7530_clear(priv, MT7530_LED_GPIO_OE, bit);
1920	mt7530_clear(priv, MT7530_LED_GPIO_DIR, bit);
1921
1922	return 0;
1923}
1924
1925static int
1926mt7530_gpio_direction_output(struct gpio_chip *gc, unsigned int offset, int value)
1927{
1928	struct mt7530_priv *priv = gpiochip_get_data(gc);
1929	u32 bit = mt7530_gpio_to_bit(offset);
1930
1931	mt7530_set(priv, MT7530_LED_GPIO_DIR, bit);
1932
1933	if (value)
1934		mt7530_set(priv, MT7530_LED_GPIO_DATA, bit);
1935	else
1936		mt7530_clear(priv, MT7530_LED_GPIO_DATA, bit);
1937
1938	mt7530_set(priv, MT7530_LED_GPIO_OE, bit);
1939
1940	return 0;
1941}
1942
1943static int
1944mt7530_setup_gpio(struct mt7530_priv *priv)
1945{
1946	struct device *dev = priv->dev;
1947	struct gpio_chip *gc;
1948
1949	gc = devm_kzalloc(dev, sizeof(*gc), GFP_KERNEL);
1950	if (!gc)
1951		return -ENOMEM;
1952
1953	mt7530_write(priv, MT7530_LED_GPIO_OE, 0);
1954	mt7530_write(priv, MT7530_LED_GPIO_DIR, 0);
1955	mt7530_write(priv, MT7530_LED_IO_MODE, 0);
1956
1957	gc->label = "mt7530";
1958	gc->parent = dev;
1959	gc->owner = THIS_MODULE;
1960	gc->get_direction = mt7530_gpio_get_direction;
1961	gc->direction_input = mt7530_gpio_direction_input;
1962	gc->direction_output = mt7530_gpio_direction_output;
1963	gc->get = mt7530_gpio_get;
1964	gc->set = mt7530_gpio_set;
1965	gc->base = -1;
1966	gc->ngpio = 15;
1967	gc->can_sleep = true;
1968
1969	return devm_gpiochip_add_data(dev, gc, priv);
1970}
1971#endif /* CONFIG_GPIOLIB */
1972
1973static irqreturn_t
1974mt7530_irq_thread_fn(int irq, void *dev_id)
1975{
1976	struct mt7530_priv *priv = dev_id;
1977	bool handled = false;
1978	u32 val;
1979	int p;
1980
1981	mt7530_mutex_lock(priv);
1982	val = mt7530_mii_read(priv, MT7530_SYS_INT_STS);
1983	mt7530_mii_write(priv, MT7530_SYS_INT_STS, val);
1984	mt7530_mutex_unlock(priv);
1985
1986	for (p = 0; p < MT7530_NUM_PHYS; p++) {
1987		if (BIT(p) & val) {
1988			unsigned int irq;
1989
1990			irq = irq_find_mapping(priv->irq_domain, p);
1991			handle_nested_irq(irq);
1992			handled = true;
1993		}
1994	}
1995
1996	return IRQ_RETVAL(handled);
1997}
1998
1999static void
2000mt7530_irq_mask(struct irq_data *d)
2001{
2002	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
2003
2004	priv->irq_enable &= ~BIT(d->hwirq);
2005}
2006
2007static void
2008mt7530_irq_unmask(struct irq_data *d)
2009{
2010	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
2011
2012	priv->irq_enable |= BIT(d->hwirq);
2013}
2014
2015static void
2016mt7530_irq_bus_lock(struct irq_data *d)
2017{
2018	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
2019
2020	mt7530_mutex_lock(priv);
2021}
2022
2023static void
2024mt7530_irq_bus_sync_unlock(struct irq_data *d)
2025{
2026	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
2027
2028	mt7530_mii_write(priv, MT7530_SYS_INT_EN, priv->irq_enable);
2029	mt7530_mutex_unlock(priv);
2030}
2031
2032static struct irq_chip mt7530_irq_chip = {
2033	.name = KBUILD_MODNAME,
2034	.irq_mask = mt7530_irq_mask,
2035	.irq_unmask = mt7530_irq_unmask,
2036	.irq_bus_lock = mt7530_irq_bus_lock,
2037	.irq_bus_sync_unlock = mt7530_irq_bus_sync_unlock,
2038};
2039
2040static int
2041mt7530_irq_map(struct irq_domain *domain, unsigned int irq,
2042	       irq_hw_number_t hwirq)
2043{
2044	irq_set_chip_data(irq, domain->host_data);
2045	irq_set_chip_and_handler(irq, &mt7530_irq_chip, handle_simple_irq);
2046	irq_set_nested_thread(irq, true);
2047	irq_set_noprobe(irq);
2048
2049	return 0;
2050}
2051
2052static const struct irq_domain_ops mt7530_irq_domain_ops = {
2053	.map = mt7530_irq_map,
2054	.xlate = irq_domain_xlate_onecell,
2055};
2056
2057static void
2058mt7988_irq_mask(struct irq_data *d)
2059{
2060	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
2061
2062	priv->irq_enable &= ~BIT(d->hwirq);
2063	mt7530_mii_write(priv, MT7530_SYS_INT_EN, priv->irq_enable);
2064}
2065
2066static void
2067mt7988_irq_unmask(struct irq_data *d)
2068{
2069	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
2070
2071	priv->irq_enable |= BIT(d->hwirq);
2072	mt7530_mii_write(priv, MT7530_SYS_INT_EN, priv->irq_enable);
2073}
2074
2075static struct irq_chip mt7988_irq_chip = {
2076	.name = KBUILD_MODNAME,
2077	.irq_mask = mt7988_irq_mask,
2078	.irq_unmask = mt7988_irq_unmask,
2079};
2080
2081static int
2082mt7988_irq_map(struct irq_domain *domain, unsigned int irq,
2083	       irq_hw_number_t hwirq)
2084{
2085	irq_set_chip_data(irq, domain->host_data);
2086	irq_set_chip_and_handler(irq, &mt7988_irq_chip, handle_simple_irq);
2087	irq_set_nested_thread(irq, true);
2088	irq_set_noprobe(irq);
2089
2090	return 0;
2091}
2092
2093static const struct irq_domain_ops mt7988_irq_domain_ops = {
2094	.map = mt7988_irq_map,
2095	.xlate = irq_domain_xlate_onecell,
2096};
2097
2098static void
2099mt7530_setup_mdio_irq(struct mt7530_priv *priv)
2100{
2101	struct dsa_switch *ds = priv->ds;
2102	int p;
2103
2104	for (p = 0; p < MT7530_NUM_PHYS; p++) {
2105		if (BIT(p) & ds->phys_mii_mask) {
2106			unsigned int irq;
2107
2108			irq = irq_create_mapping(priv->irq_domain, p);
2109			ds->slave_mii_bus->irq[p] = irq;
2110		}
2111	}
2112}
2113
2114static int
2115mt7530_setup_irq(struct mt7530_priv *priv)
2116{
2117	struct device *dev = priv->dev;
2118	struct device_node *np = dev->of_node;
2119	int ret;
2120
2121	if (!of_property_read_bool(np, "interrupt-controller")) {
2122		dev_info(dev, "no interrupt support\n");
2123		return 0;
2124	}
2125
2126	priv->irq = of_irq_get(np, 0);
2127	if (priv->irq <= 0) {
2128		dev_err(dev, "failed to get parent IRQ: %d\n", priv->irq);
2129		return priv->irq ? : -EINVAL;
2130	}
2131
2132	if (priv->id == ID_MT7988)
2133		priv->irq_domain = irq_domain_add_linear(np, MT7530_NUM_PHYS,
2134							 &mt7988_irq_domain_ops,
2135							 priv);
2136	else
2137		priv->irq_domain = irq_domain_add_linear(np, MT7530_NUM_PHYS,
2138							 &mt7530_irq_domain_ops,
2139							 priv);
2140
2141	if (!priv->irq_domain) {
2142		dev_err(dev, "failed to create IRQ domain\n");
2143		return -ENOMEM;
2144	}
2145
2146	/* This register must be set for MT7530 to properly fire interrupts */
2147	if (priv->id != ID_MT7531)
2148		mt7530_set(priv, MT7530_TOP_SIG_CTRL, TOP_SIG_CTRL_NORMAL);
2149
2150	ret = request_threaded_irq(priv->irq, NULL, mt7530_irq_thread_fn,
2151				   IRQF_ONESHOT, KBUILD_MODNAME, priv);
2152	if (ret) {
2153		irq_domain_remove(priv->irq_domain);
2154		dev_err(dev, "failed to request IRQ: %d\n", ret);
2155		return ret;
2156	}
2157
2158	return 0;
2159}
2160
2161static void
2162mt7530_free_mdio_irq(struct mt7530_priv *priv)
2163{
2164	int p;
2165
2166	for (p = 0; p < MT7530_NUM_PHYS; p++) {
2167		if (BIT(p) & priv->ds->phys_mii_mask) {
2168			unsigned int irq;
2169
2170			irq = irq_find_mapping(priv->irq_domain, p);
2171			irq_dispose_mapping(irq);
2172		}
2173	}
2174}
2175
2176static void
2177mt7530_free_irq_common(struct mt7530_priv *priv)
2178{
2179	free_irq(priv->irq, priv);
2180	irq_domain_remove(priv->irq_domain);
2181}
2182
2183static void
2184mt7530_free_irq(struct mt7530_priv *priv)
2185{
2186	mt7530_free_mdio_irq(priv);
2187	mt7530_free_irq_common(priv);
2188}
2189
2190static int
2191mt7530_setup_mdio(struct mt7530_priv *priv)
2192{
2193	struct dsa_switch *ds = priv->ds;
2194	struct device *dev = priv->dev;
2195	struct mii_bus *bus;
2196	static int idx;
2197	int ret;
2198
2199	bus = devm_mdiobus_alloc(dev);
2200	if (!bus)
2201		return -ENOMEM;
2202
2203	ds->slave_mii_bus = bus;
2204	bus->priv = priv;
2205	bus->name = KBUILD_MODNAME "-mii";
2206	snprintf(bus->id, MII_BUS_ID_SIZE, KBUILD_MODNAME "-%d", idx++);
2207	bus->read = mt753x_phy_read_c22;
2208	bus->write = mt753x_phy_write_c22;
2209	bus->read_c45 = mt753x_phy_read_c45;
2210	bus->write_c45 = mt753x_phy_write_c45;
2211	bus->parent = dev;
2212	bus->phy_mask = ~ds->phys_mii_mask;
2213
2214	if (priv->irq)
2215		mt7530_setup_mdio_irq(priv);
2216
2217	ret = devm_mdiobus_register(dev, bus);
2218	if (ret) {
2219		dev_err(dev, "failed to register MDIO bus: %d\n", ret);
2220		if (priv->irq)
2221			mt7530_free_mdio_irq(priv);
2222	}
2223
2224	return ret;
2225}
2226
2227static int
2228mt7530_setup(struct dsa_switch *ds)
2229{
2230	struct mt7530_priv *priv = ds->priv;
2231	struct device_node *dn = NULL;
2232	struct device_node *phy_node;
2233	struct device_node *mac_np;
2234	struct mt7530_dummy_poll p;
2235	phy_interface_t interface;
2236	struct dsa_port *cpu_dp;
2237	u32 id, val;
2238	int ret, i;
2239
2240	/* The parent node of master netdev which holds the common system
2241	 * controller also is the container for two GMACs nodes representing
2242	 * as two netdev instances.
2243	 */
2244	dsa_switch_for_each_cpu_port(cpu_dp, ds) {
2245		dn = cpu_dp->master->dev.of_node->parent;
2246		/* It doesn't matter which CPU port is found first,
2247		 * their masters should share the same parent OF node
2248		 */
2249		break;
2250	}
2251
2252	if (!dn) {
2253		dev_err(ds->dev, "parent OF node of DSA master not found");
2254		return -EINVAL;
2255	}
2256
2257	ds->assisted_learning_on_cpu_port = true;
2258	ds->mtu_enforcement_ingress = true;
2259
2260	if (priv->id == ID_MT7530) {
2261		regulator_set_voltage(priv->core_pwr, 1000000, 1000000);
2262		ret = regulator_enable(priv->core_pwr);
2263		if (ret < 0) {
2264			dev_err(priv->dev,
2265				"Failed to enable core power: %d\n", ret);
2266			return ret;
2267		}
2268
2269		regulator_set_voltage(priv->io_pwr, 3300000, 3300000);
2270		ret = regulator_enable(priv->io_pwr);
2271		if (ret < 0) {
2272			dev_err(priv->dev, "Failed to enable io pwr: %d\n",
2273				ret);
2274			return ret;
2275		}
2276	}
2277
2278	/* Reset whole chip through gpio pin or memory-mapped registers for
2279	 * different type of hardware
2280	 */
2281	if (priv->mcm) {
2282		reset_control_assert(priv->rstc);
2283		usleep_range(5000, 5100);
2284		reset_control_deassert(priv->rstc);
2285	} else {
2286		gpiod_set_value_cansleep(priv->reset, 0);
2287		usleep_range(5000, 5100);
2288		gpiod_set_value_cansleep(priv->reset, 1);
2289	}
2290
2291	/* Waiting for MT7530 got to stable */
2292	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP);
2293	ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
2294				 20, 1000000);
2295	if (ret < 0) {
2296		dev_err(priv->dev, "reset timeout\n");
2297		return ret;
2298	}
2299
2300	id = mt7530_read(priv, MT7530_CREV);
2301	id >>= CHIP_NAME_SHIFT;
2302	if (id != MT7530_ID) {
2303		dev_err(priv->dev, "chip %x can't be supported\n", id);
2304		return -ENODEV;
2305	}
2306
2307	/* Reset the switch through internal reset */
2308	mt7530_write(priv, MT7530_SYS_CTRL,
2309		     SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST |
2310		     SYS_CTRL_REG_RST);
2311
2312	mt7530_pll_setup(priv);
2313
2314	/* Lower Tx driving for TRGMII path */
2315	for (i = 0; i < NUM_TRGMII_CTRL; i++)
2316		mt7530_write(priv, MT7530_TRGMII_TD_ODT(i),
2317			     TD_DM_DRVP(8) | TD_DM_DRVN(8));
2318
2319	for (i = 0; i < NUM_TRGMII_CTRL; i++)
2320		mt7530_rmw(priv, MT7530_TRGMII_RD(i),
2321			   RD_TAP_MASK, RD_TAP(16));
2322
2323	/* Enable port 6 */
2324	val = mt7530_read(priv, MT7530_MHWTRAP);
2325	val &= ~MHWTRAP_P6_DIS & ~MHWTRAP_PHY_ACCESS;
2326	val |= MHWTRAP_MANUAL;
2327	mt7530_write(priv, MT7530_MHWTRAP, val);
2328
2329	priv->p6_interface = PHY_INTERFACE_MODE_NA;
2330
2331	mt753x_trap_frames(priv);
2332
2333	/* Enable and reset MIB counters */
2334	mt7530_mib_reset(ds);
2335
2336	for (i = 0; i < MT7530_NUM_PORTS; i++) {
2337		/* Disable forwarding by default on all ports */
2338		mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
2339			   PCR_MATRIX_CLR);
2340
2341		/* Disable learning by default on all ports */
2342		mt7530_set(priv, MT7530_PSC_P(i), SA_DIS);
2343
2344		if (dsa_is_cpu_port(ds, i)) {
2345			ret = mt753x_cpu_port_enable(ds, i);
2346			if (ret)
2347				return ret;
2348		} else {
2349			mt7530_port_disable(ds, i);
2350
2351			/* Set default PVID to 0 on all user ports */
2352			mt7530_rmw(priv, MT7530_PPBV1_P(i), G0_PORT_VID_MASK,
2353				   G0_PORT_VID_DEF);
2354		}
2355		/* Enable consistent egress tag */
2356		mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK,
2357			   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
2358	}
2359
2360	/* Setup VLAN ID 0 for VLAN-unaware bridges */
2361	ret = mt7530_setup_vlan0(priv);
2362	if (ret)
2363		return ret;
2364
2365	/* Setup port 5 */
2366	priv->p5_intf_sel = P5_DISABLED;
2367	interface = PHY_INTERFACE_MODE_NA;
2368
2369	if (!dsa_is_unused_port(ds, 5)) {
2370		priv->p5_intf_sel = P5_INTF_SEL_GMAC5;
2371		ret = of_get_phy_mode(dsa_to_port(ds, 5)->dn, &interface);
2372		if (ret && ret != -ENODEV)
2373			return ret;
2374	} else {
2375		/* Scan the ethernet nodes. look for GMAC1, lookup used phy */
2376		for_each_child_of_node(dn, mac_np) {
2377			if (!of_device_is_compatible(mac_np,
2378						     "mediatek,eth-mac"))
2379				continue;
2380
2381			ret = of_property_read_u32(mac_np, "reg", &id);
2382			if (ret < 0 || id != 1)
2383				continue;
2384
2385			phy_node = of_parse_phandle(mac_np, "phy-handle", 0);
2386			if (!phy_node)
2387				continue;
2388
2389			if (phy_node->parent == priv->dev->of_node->parent) {
2390				ret = of_get_phy_mode(mac_np, &interface);
2391				if (ret && ret != -ENODEV) {
2392					of_node_put(mac_np);
2393					of_node_put(phy_node);
2394					return ret;
2395				}
2396				id = of_mdio_parse_addr(ds->dev, phy_node);
2397				if (id == 0)
2398					priv->p5_intf_sel = P5_INTF_SEL_PHY_P0;
2399				if (id == 4)
2400					priv->p5_intf_sel = P5_INTF_SEL_PHY_P4;
2401			}
2402			of_node_put(mac_np);
2403			of_node_put(phy_node);
2404			break;
2405		}
2406	}
2407
2408#ifdef CONFIG_GPIOLIB
2409	if (of_property_read_bool(priv->dev->of_node, "gpio-controller")) {
2410		ret = mt7530_setup_gpio(priv);
2411		if (ret)
2412			return ret;
2413	}
2414#endif /* CONFIG_GPIOLIB */
2415
2416	mt7530_setup_port5(ds, interface);
2417
2418	/* Flush the FDB table */
2419	ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL);
2420	if (ret < 0)
2421		return ret;
2422
2423	return 0;
2424}
2425
2426static int
2427mt7531_setup_common(struct dsa_switch *ds)
2428{
2429	struct mt7530_priv *priv = ds->priv;
2430	int ret, i;
2431
2432	mt753x_trap_frames(priv);
2433
2434	/* Enable and reset MIB counters */
2435	mt7530_mib_reset(ds);
2436
2437	/* Disable flooding on all ports */
2438	mt7530_clear(priv, MT7530_MFC, BC_FFP_MASK | UNM_FFP_MASK |
2439		     UNU_FFP_MASK);
2440
2441	for (i = 0; i < MT7530_NUM_PORTS; i++) {
2442		/* Disable forwarding by default on all ports */
2443		mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
2444			   PCR_MATRIX_CLR);
2445
2446		/* Disable learning by default on all ports */
2447		mt7530_set(priv, MT7530_PSC_P(i), SA_DIS);
2448
2449		mt7530_set(priv, MT7531_DBG_CNT(i), MT7531_DIS_CLR);
2450
2451		if (dsa_is_cpu_port(ds, i)) {
2452			ret = mt753x_cpu_port_enable(ds, i);
2453			if (ret)
2454				return ret;
2455		} else {
2456			mt7530_port_disable(ds, i);
2457
2458			/* Set default PVID to 0 on all user ports */
2459			mt7530_rmw(priv, MT7530_PPBV1_P(i), G0_PORT_VID_MASK,
2460				   G0_PORT_VID_DEF);
2461		}
2462
2463		/* Enable consistent egress tag */
2464		mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK,
2465			   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
2466	}
2467
2468	/* Flush the FDB table */
2469	ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL);
2470	if (ret < 0)
2471		return ret;
2472
2473	return 0;
2474}
2475
2476static int
2477mt7531_setup(struct dsa_switch *ds)
2478{
2479	struct mt7530_priv *priv = ds->priv;
2480	struct mt7530_dummy_poll p;
2481	u32 val, id;
2482	int ret, i;
2483
2484	/* Reset whole chip through gpio pin or memory-mapped registers for
2485	 * different type of hardware
2486	 */
2487	if (priv->mcm) {
2488		reset_control_assert(priv->rstc);
2489		usleep_range(5000, 5100);
2490		reset_control_deassert(priv->rstc);
2491	} else {
2492		gpiod_set_value_cansleep(priv->reset, 0);
2493		usleep_range(5000, 5100);
2494		gpiod_set_value_cansleep(priv->reset, 1);
2495	}
2496
2497	/* Waiting for MT7530 got to stable */
2498	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP);
2499	ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
2500				 20, 1000000);
2501	if (ret < 0) {
2502		dev_err(priv->dev, "reset timeout\n");
2503		return ret;
2504	}
2505
2506	id = mt7530_read(priv, MT7531_CREV);
2507	id >>= CHIP_NAME_SHIFT;
2508
2509	if (id != MT7531_ID) {
2510		dev_err(priv->dev, "chip %x can't be supported\n", id);
2511		return -ENODEV;
2512	}
2513
2514	/* all MACs must be forced link-down before sw reset */
2515	for (i = 0; i < MT7530_NUM_PORTS; i++)
2516		mt7530_write(priv, MT7530_PMCR_P(i), MT7531_FORCE_LNK);
2517
2518	/* Reset the switch through internal reset */
2519	mt7530_write(priv, MT7530_SYS_CTRL,
2520		     SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST |
2521		     SYS_CTRL_REG_RST);
2522
2523	mt7531_pll_setup(priv);
2524
2525	if (mt7531_dual_sgmii_supported(priv)) {
2526		priv->p5_intf_sel = P5_INTF_SEL_GMAC5_SGMII;
2527
2528		/* Let ds->slave_mii_bus be able to access external phy. */
2529		mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO11_RG_RXD2_MASK,
2530			   MT7531_EXT_P_MDC_11);
2531		mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO12_RG_RXD3_MASK,
2532			   MT7531_EXT_P_MDIO_12);
2533	} else {
2534		priv->p5_intf_sel = P5_INTF_SEL_GMAC5;
2535	}
2536	dev_dbg(ds->dev, "P5 support %s interface\n",
2537		p5_intf_modes(priv->p5_intf_sel));
2538
2539	mt7530_rmw(priv, MT7531_GPIO_MODE0, MT7531_GPIO0_MASK,
2540		   MT7531_GPIO0_INTERRUPT);
2541
2542	/* Let phylink decide the interface later. */
2543	priv->p5_interface = PHY_INTERFACE_MODE_NA;
2544	priv->p6_interface = PHY_INTERFACE_MODE_NA;
2545
2546	/* Enable PHY core PLL, since phy_device has not yet been created
2547	 * provided for phy_[read,write]_mmd_indirect is called, we provide
2548	 * our own mt7531_ind_mmd_phy_[read,write] to complete this
2549	 * function.
2550	 */
2551	val = mt7531_ind_c45_phy_read(priv, MT753X_CTRL_PHY_ADDR,
2552				      MDIO_MMD_VEND2, CORE_PLL_GROUP4);
2553	val |= MT7531_PHY_PLL_BYPASS_MODE;
2554	val &= ~MT7531_PHY_PLL_OFF;
2555	mt7531_ind_c45_phy_write(priv, MT753X_CTRL_PHY_ADDR, MDIO_MMD_VEND2,
2556				 CORE_PLL_GROUP4, val);
2557
2558	mt7531_setup_common(ds);
2559
2560	/* Setup VLAN ID 0 for VLAN-unaware bridges */
2561	ret = mt7530_setup_vlan0(priv);
2562	if (ret)
2563		return ret;
2564
2565	ds->assisted_learning_on_cpu_port = true;
2566	ds->mtu_enforcement_ingress = true;
2567
2568	return 0;
2569}
2570
2571static void mt7530_mac_port_get_caps(struct dsa_switch *ds, int port,
2572				     struct phylink_config *config)
2573{
2574	switch (port) {
2575	case 0 ... 4: /* Internal phy */
2576		__set_bit(PHY_INTERFACE_MODE_GMII,
2577			  config->supported_interfaces);
2578		break;
2579
2580	case 5: /* 2nd cpu port with phy of port 0 or 4 / external phy */
2581		phy_interface_set_rgmii(config->supported_interfaces);
2582		__set_bit(PHY_INTERFACE_MODE_MII,
2583			  config->supported_interfaces);
2584		__set_bit(PHY_INTERFACE_MODE_GMII,
2585			  config->supported_interfaces);
2586		break;
2587
2588	case 6: /* 1st cpu port */
2589		__set_bit(PHY_INTERFACE_MODE_RGMII,
2590			  config->supported_interfaces);
2591		__set_bit(PHY_INTERFACE_MODE_TRGMII,
2592			  config->supported_interfaces);
2593		break;
2594	}
2595}
2596
2597static bool mt7531_is_rgmii_port(struct mt7530_priv *priv, u32 port)
2598{
2599	return (port == 5) && (priv->p5_intf_sel != P5_INTF_SEL_GMAC5_SGMII);
2600}
2601
2602static void mt7531_mac_port_get_caps(struct dsa_switch *ds, int port,
2603				     struct phylink_config *config)
2604{
2605	struct mt7530_priv *priv = ds->priv;
2606
2607	switch (port) {
2608	case 0 ... 4: /* Internal phy */
2609		__set_bit(PHY_INTERFACE_MODE_GMII,
2610			  config->supported_interfaces);
2611		break;
2612
2613	case 5: /* 2nd cpu port supports either rgmii or sgmii/8023z */
2614		if (mt7531_is_rgmii_port(priv, port)) {
2615			phy_interface_set_rgmii(config->supported_interfaces);
2616			break;
2617		}
2618		fallthrough;
2619
2620	case 6: /* 1st cpu port supports sgmii/8023z only */
2621		__set_bit(PHY_INTERFACE_MODE_SGMII,
2622			  config->supported_interfaces);
2623		__set_bit(PHY_INTERFACE_MODE_1000BASEX,
2624			  config->supported_interfaces);
2625		__set_bit(PHY_INTERFACE_MODE_2500BASEX,
2626			  config->supported_interfaces);
2627
2628		config->mac_capabilities |= MAC_2500FD;
2629		break;
2630	}
2631}
2632
2633static void mt7988_mac_port_get_caps(struct dsa_switch *ds, int port,
2634				     struct phylink_config *config)
2635{
2636	phy_interface_zero(config->supported_interfaces);
2637
2638	switch (port) {
2639	case 0 ... 4: /* Internal phy */
2640		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
2641			  config->supported_interfaces);
2642		break;
2643
2644	case 6:
2645		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
2646			  config->supported_interfaces);
2647		config->mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
2648					   MAC_10000FD;
2649	}
2650}
2651
2652static int
2653mt753x_pad_setup(struct dsa_switch *ds, const struct phylink_link_state *state)
2654{
2655	struct mt7530_priv *priv = ds->priv;
2656
2657	return priv->info->pad_setup(ds, state->interface);
2658}
2659
2660static int
2661mt7530_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2662		  phy_interface_t interface)
2663{
2664	struct mt7530_priv *priv = ds->priv;
2665
2666	/* Only need to setup port5. */
2667	if (port != 5)
2668		return 0;
2669
2670	mt7530_setup_port5(priv->ds, interface);
2671
2672	return 0;
2673}
2674
2675static int mt7531_rgmii_setup(struct mt7530_priv *priv, u32 port,
2676			      phy_interface_t interface,
2677			      struct phy_device *phydev)
2678{
2679	u32 val;
2680
2681	if (!mt7531_is_rgmii_port(priv, port)) {
2682		dev_err(priv->dev, "RGMII mode is not available for port %d\n",
2683			port);
2684		return -EINVAL;
2685	}
2686
2687	val = mt7530_read(priv, MT7531_CLKGEN_CTRL);
2688	val |= GP_CLK_EN;
2689	val &= ~GP_MODE_MASK;
2690	val |= GP_MODE(MT7531_GP_MODE_RGMII);
2691	val &= ~CLK_SKEW_IN_MASK;
2692	val |= CLK_SKEW_IN(MT7531_CLK_SKEW_NO_CHG);
2693	val &= ~CLK_SKEW_OUT_MASK;
2694	val |= CLK_SKEW_OUT(MT7531_CLK_SKEW_NO_CHG);
2695	val |= TXCLK_NO_REVERSE | RXCLK_NO_DELAY;
2696
2697	/* Do not adjust rgmii delay when vendor phy driver presents. */
2698	if (!phydev || phy_driver_is_genphy(phydev)) {
2699		val &= ~(TXCLK_NO_REVERSE | RXCLK_NO_DELAY);
2700		switch (interface) {
2701		case PHY_INTERFACE_MODE_RGMII:
2702			val |= TXCLK_NO_REVERSE;
2703			val |= RXCLK_NO_DELAY;
2704			break;
2705		case PHY_INTERFACE_MODE_RGMII_RXID:
2706			val |= TXCLK_NO_REVERSE;
2707			break;
2708		case PHY_INTERFACE_MODE_RGMII_TXID:
2709			val |= RXCLK_NO_DELAY;
2710			break;
2711		case PHY_INTERFACE_MODE_RGMII_ID:
2712			break;
2713		default:
2714			return -EINVAL;
2715		}
2716	}
2717	mt7530_write(priv, MT7531_CLKGEN_CTRL, val);
2718
2719	return 0;
2720}
2721
2722static bool mt753x_is_mac_port(u32 port)
2723{
2724	return (port == 5 || port == 6);
2725}
2726
2727static int
2728mt7988_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2729		  phy_interface_t interface)
2730{
2731	if (dsa_is_cpu_port(ds, port) &&
2732	    interface == PHY_INTERFACE_MODE_INTERNAL)
2733		return 0;
2734
2735	return -EINVAL;
2736}
2737
2738static int
2739mt7531_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2740		  phy_interface_t interface)
2741{
2742	struct mt7530_priv *priv = ds->priv;
2743	struct phy_device *phydev;
2744	struct dsa_port *dp;
2745
2746	if (!mt753x_is_mac_port(port)) {
2747		dev_err(priv->dev, "port %d is not a MAC port\n", port);
2748		return -EINVAL;
2749	}
2750
2751	switch (interface) {
2752	case PHY_INTERFACE_MODE_RGMII:
2753	case PHY_INTERFACE_MODE_RGMII_ID:
2754	case PHY_INTERFACE_MODE_RGMII_RXID:
2755	case PHY_INTERFACE_MODE_RGMII_TXID:
2756		dp = dsa_to_port(ds, port);
2757		phydev = dp->slave->phydev;
2758		return mt7531_rgmii_setup(priv, port, interface, phydev);
2759	case PHY_INTERFACE_MODE_SGMII:
2760	case PHY_INTERFACE_MODE_NA:
2761	case PHY_INTERFACE_MODE_1000BASEX:
2762	case PHY_INTERFACE_MODE_2500BASEX:
2763		/* handled in SGMII PCS driver */
2764		return 0;
2765	default:
2766		return -EINVAL;
2767	}
2768
2769	return -EINVAL;
2770}
2771
2772static int
2773mt753x_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2774		  const struct phylink_link_state *state)
2775{
2776	struct mt7530_priv *priv = ds->priv;
2777
2778	return priv->info->mac_port_config(ds, port, mode, state->interface);
2779}
2780
2781static struct phylink_pcs *
2782mt753x_phylink_mac_select_pcs(struct dsa_switch *ds, int port,
2783			      phy_interface_t interface)
2784{
2785	struct mt7530_priv *priv = ds->priv;
2786
2787	switch (interface) {
2788	case PHY_INTERFACE_MODE_TRGMII:
2789		return &priv->pcs[port].pcs;
2790	case PHY_INTERFACE_MODE_SGMII:
2791	case PHY_INTERFACE_MODE_1000BASEX:
2792	case PHY_INTERFACE_MODE_2500BASEX:
2793		return priv->ports[port].sgmii_pcs;
2794	default:
2795		return NULL;
2796	}
2797}
2798
2799static void
2800mt753x_phylink_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2801			  const struct phylink_link_state *state)
2802{
2803	struct mt7530_priv *priv = ds->priv;
2804	u32 mcr_cur, mcr_new;
2805
2806	switch (port) {
2807	case 0 ... 4: /* Internal phy */
2808		if (state->interface != PHY_INTERFACE_MODE_GMII &&
2809		    state->interface != PHY_INTERFACE_MODE_INTERNAL)
2810			goto unsupported;
2811		break;
2812	case 5: /* 2nd cpu port with phy of port 0 or 4 / external phy */
2813		if (priv->p5_interface == state->interface)
2814			break;
2815
2816		if (mt753x_mac_config(ds, port, mode, state) < 0)
2817			goto unsupported;
2818
2819		if (priv->p5_intf_sel != P5_DISABLED)
2820			priv->p5_interface = state->interface;
2821		break;
2822	case 6: /* 1st cpu port */
2823		if (priv->p6_interface == state->interface)
2824			break;
2825
2826		mt753x_pad_setup(ds, state);
2827
2828		if (mt753x_mac_config(ds, port, mode, state) < 0)
2829			goto unsupported;
2830
2831		priv->p6_interface = state->interface;
2832		break;
2833	default:
2834unsupported:
2835		dev_err(ds->dev, "%s: unsupported %s port: %i\n",
2836			__func__, phy_modes(state->interface), port);
2837		return;
2838	}
2839
2840	mcr_cur = mt7530_read(priv, MT7530_PMCR_P(port));
2841	mcr_new = mcr_cur;
2842	mcr_new &= ~PMCR_LINK_SETTINGS_MASK;
2843	mcr_new |= PMCR_IFG_XMIT(1) | PMCR_MAC_MODE | PMCR_BACKOFF_EN |
2844		   PMCR_BACKPR_EN | PMCR_FORCE_MODE_ID(priv->id);
2845
2846	/* Are we connected to external phy */
2847	if (port == 5 && dsa_is_user_port(ds, 5))
2848		mcr_new |= PMCR_EXT_PHY;
2849
2850	if (mcr_new != mcr_cur)
2851		mt7530_write(priv, MT7530_PMCR_P(port), mcr_new);
2852}
2853
2854static void mt753x_phylink_mac_link_down(struct dsa_switch *ds, int port,
2855					 unsigned int mode,
2856					 phy_interface_t interface)
2857{
2858	struct mt7530_priv *priv = ds->priv;
2859
2860	mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
2861}
2862
2863static void mt753x_phylink_pcs_link_up(struct phylink_pcs *pcs,
2864				       unsigned int mode,
2865				       phy_interface_t interface,
2866				       int speed, int duplex)
2867{
2868	if (pcs->ops->pcs_link_up)
2869		pcs->ops->pcs_link_up(pcs, mode, interface, speed, duplex);
2870}
2871
2872static void mt753x_phylink_mac_link_up(struct dsa_switch *ds, int port,
2873				       unsigned int mode,
2874				       phy_interface_t interface,
2875				       struct phy_device *phydev,
2876				       int speed, int duplex,
2877				       bool tx_pause, bool rx_pause)
2878{
2879	struct mt7530_priv *priv = ds->priv;
2880	u32 mcr;
2881
2882	mcr = PMCR_RX_EN | PMCR_TX_EN | PMCR_FORCE_LNK;
2883
2884	/* MT753x MAC works in 1G full duplex mode for all up-clocked
2885	 * variants.
2886	 */
2887	if (interface == PHY_INTERFACE_MODE_TRGMII ||
2888	    (phy_interface_mode_is_8023z(interface))) {
2889		speed = SPEED_1000;
2890		duplex = DUPLEX_FULL;
2891	}
2892
2893	switch (speed) {
2894	case SPEED_1000:
2895		mcr |= PMCR_FORCE_SPEED_1000;
2896		break;
2897	case SPEED_100:
2898		mcr |= PMCR_FORCE_SPEED_100;
2899		break;
2900	}
2901	if (duplex == DUPLEX_FULL) {
2902		mcr |= PMCR_FORCE_FDX;
2903		if (tx_pause)
2904			mcr |= PMCR_TX_FC_EN;
2905		if (rx_pause)
2906			mcr |= PMCR_RX_FC_EN;
2907	}
2908
2909	if (mode == MLO_AN_PHY && phydev && phy_init_eee(phydev, false) >= 0) {
2910		switch (speed) {
2911		case SPEED_1000:
2912			mcr |= PMCR_FORCE_EEE1G;
2913			break;
2914		case SPEED_100:
2915			mcr |= PMCR_FORCE_EEE100;
2916			break;
2917		}
2918	}
2919
2920	mt7530_set(priv, MT7530_PMCR_P(port), mcr);
2921}
2922
2923static int
2924mt7531_cpu_port_config(struct dsa_switch *ds, int port)
2925{
2926	struct mt7530_priv *priv = ds->priv;
2927	phy_interface_t interface;
2928	int speed;
2929	int ret;
2930
2931	switch (port) {
2932	case 5:
2933		if (mt7531_is_rgmii_port(priv, port))
2934			interface = PHY_INTERFACE_MODE_RGMII;
2935		else
2936			interface = PHY_INTERFACE_MODE_2500BASEX;
2937
2938		priv->p5_interface = interface;
2939		break;
2940	case 6:
2941		interface = PHY_INTERFACE_MODE_2500BASEX;
2942
2943		priv->p6_interface = interface;
2944		break;
2945	default:
2946		return -EINVAL;
2947	}
2948
2949	if (interface == PHY_INTERFACE_MODE_2500BASEX)
2950		speed = SPEED_2500;
2951	else
2952		speed = SPEED_1000;
2953
2954	ret = mt7531_mac_config(ds, port, MLO_AN_FIXED, interface);
2955	if (ret)
2956		return ret;
2957	mt7530_write(priv, MT7530_PMCR_P(port),
2958		     PMCR_CPU_PORT_SETTING(priv->id));
2959	mt753x_phylink_pcs_link_up(&priv->pcs[port].pcs, MLO_AN_FIXED,
2960				   interface, speed, DUPLEX_FULL);
2961	mt753x_phylink_mac_link_up(ds, port, MLO_AN_FIXED, interface, NULL,
2962				   speed, DUPLEX_FULL, true, true);
2963
2964	return 0;
2965}
2966
2967static int
2968mt7988_cpu_port_config(struct dsa_switch *ds, int port)
2969{
2970	struct mt7530_priv *priv = ds->priv;
2971
2972	mt7530_write(priv, MT7530_PMCR_P(port),
2973		     PMCR_CPU_PORT_SETTING(priv->id));
2974
2975	mt753x_phylink_mac_link_up(ds, port, MLO_AN_FIXED,
2976				   PHY_INTERFACE_MODE_INTERNAL, NULL,
2977				   SPEED_10000, DUPLEX_FULL, true, true);
2978
2979	return 0;
2980}
2981
2982static void mt753x_phylink_get_caps(struct dsa_switch *ds, int port,
2983				    struct phylink_config *config)
2984{
2985	struct mt7530_priv *priv = ds->priv;
2986
2987	/* This switch only supports full-duplex at 1Gbps */
2988	config->mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
2989				   MAC_10 | MAC_100 | MAC_1000FD;
2990
2991	priv->info->mac_port_get_caps(ds, port, config);
2992}
2993
2994static int mt753x_pcs_validate(struct phylink_pcs *pcs,
2995			       unsigned long *supported,
2996			       const struct phylink_link_state *state)
2997{
2998	/* Autonegotiation is not supported in TRGMII nor 802.3z modes */
2999	if (state->interface == PHY_INTERFACE_MODE_TRGMII ||
3000	    phy_interface_mode_is_8023z(state->interface))
3001		phylink_clear(supported, Autoneg);
3002
3003	return 0;
3004}
3005
3006static void mt7530_pcs_get_state(struct phylink_pcs *pcs,
3007				 struct phylink_link_state *state)
3008{
3009	struct mt7530_priv *priv = pcs_to_mt753x_pcs(pcs)->priv;
3010	int port = pcs_to_mt753x_pcs(pcs)->port;
3011	u32 pmsr;
3012
3013	pmsr = mt7530_read(priv, MT7530_PMSR_P(port));
3014
3015	state->link = (pmsr & PMSR_LINK);
3016	state->an_complete = state->link;
3017	state->duplex = !!(pmsr & PMSR_DPX);
3018
3019	switch (pmsr & PMSR_SPEED_MASK) {
3020	case PMSR_SPEED_10:
3021		state->speed = SPEED_10;
3022		break;
3023	case PMSR_SPEED_100:
3024		state->speed = SPEED_100;
3025		break;
3026	case PMSR_SPEED_1000:
3027		state->speed = SPEED_1000;
3028		break;
3029	default:
3030		state->speed = SPEED_UNKNOWN;
3031		break;
3032	}
3033
3034	state->pause &= ~(MLO_PAUSE_RX | MLO_PAUSE_TX);
3035	if (pmsr & PMSR_RX_FC)
3036		state->pause |= MLO_PAUSE_RX;
3037	if (pmsr & PMSR_TX_FC)
3038		state->pause |= MLO_PAUSE_TX;
3039}
3040
3041static int mt753x_pcs_config(struct phylink_pcs *pcs, unsigned int neg_mode,
3042			     phy_interface_t interface,
3043			     const unsigned long *advertising,
3044			     bool permit_pause_to_mac)
3045{
3046	return 0;
3047}
3048
3049static void mt7530_pcs_an_restart(struct phylink_pcs *pcs)
3050{
3051}
3052
3053static const struct phylink_pcs_ops mt7530_pcs_ops = {
3054	.pcs_validate = mt753x_pcs_validate,
3055	.pcs_get_state = mt7530_pcs_get_state,
3056	.pcs_config = mt753x_pcs_config,
3057	.pcs_an_restart = mt7530_pcs_an_restart,
3058};
3059
3060static int
3061mt753x_setup(struct dsa_switch *ds)
3062{
3063	struct mt7530_priv *priv = ds->priv;
3064	int i, ret;
3065
3066	/* Initialise the PCS devices */
3067	for (i = 0; i < priv->ds->num_ports; i++) {
3068		priv->pcs[i].pcs.ops = priv->info->pcs_ops;
3069		priv->pcs[i].pcs.neg_mode = true;
3070		priv->pcs[i].priv = priv;
3071		priv->pcs[i].port = i;
3072	}
3073
3074	ret = priv->info->sw_setup(ds);
3075	if (ret)
3076		return ret;
3077
3078	ret = mt7530_setup_irq(priv);
3079	if (ret)
3080		return ret;
3081
3082	ret = mt7530_setup_mdio(priv);
3083	if (ret && priv->irq)
3084		mt7530_free_irq_common(priv);
3085
3086	if (priv->create_sgmii) {
3087		ret = priv->create_sgmii(priv, mt7531_dual_sgmii_supported(priv));
3088		if (ret && priv->irq)
3089			mt7530_free_irq(priv);
3090	}
3091
3092	return ret;
3093}
3094
3095static int mt753x_get_mac_eee(struct dsa_switch *ds, int port,
3096			      struct ethtool_eee *e)
3097{
3098	struct mt7530_priv *priv = ds->priv;
3099	u32 eeecr = mt7530_read(priv, MT7530_PMEEECR_P(port));
3100
3101	e->tx_lpi_enabled = !(eeecr & LPI_MODE_EN);
3102	e->tx_lpi_timer = GET_LPI_THRESH(eeecr);
3103
3104	return 0;
3105}
3106
3107static int mt753x_set_mac_eee(struct dsa_switch *ds, int port,
3108			      struct ethtool_eee *e)
3109{
3110	struct mt7530_priv *priv = ds->priv;
3111	u32 set, mask = LPI_THRESH_MASK | LPI_MODE_EN;
3112
3113	if (e->tx_lpi_timer > 0xFFF)
3114		return -EINVAL;
3115
3116	set = SET_LPI_THRESH(e->tx_lpi_timer);
3117	if (!e->tx_lpi_enabled)
3118		/* Force LPI Mode without a delay */
3119		set |= LPI_MODE_EN;
3120	mt7530_rmw(priv, MT7530_PMEEECR_P(port), mask, set);
3121
3122	return 0;
3123}
3124
3125static int mt7988_pad_setup(struct dsa_switch *ds, phy_interface_t interface)
3126{
3127	return 0;
3128}
3129
3130static int mt7988_setup(struct dsa_switch *ds)
3131{
3132	struct mt7530_priv *priv = ds->priv;
3133
3134	/* Reset the switch */
3135	reset_control_assert(priv->rstc);
3136	usleep_range(20, 50);
3137	reset_control_deassert(priv->rstc);
3138	usleep_range(20, 50);
3139
3140	/* Reset the switch PHYs */
3141	mt7530_write(priv, MT7530_SYS_CTRL, SYS_CTRL_PHY_RST);
3142
3143	return mt7531_setup_common(ds);
3144}
3145
3146const struct dsa_switch_ops mt7530_switch_ops = {
3147	.get_tag_protocol	= mtk_get_tag_protocol,
3148	.setup			= mt753x_setup,
3149	.preferred_default_local_cpu_port = mt753x_preferred_default_local_cpu_port,
3150	.get_strings		= mt7530_get_strings,
3151	.get_ethtool_stats	= mt7530_get_ethtool_stats,
3152	.get_sset_count		= mt7530_get_sset_count,
3153	.set_ageing_time	= mt7530_set_ageing_time,
3154	.port_enable		= mt7530_port_enable,
3155	.port_disable		= mt7530_port_disable,
3156	.port_change_mtu	= mt7530_port_change_mtu,
3157	.port_max_mtu		= mt7530_port_max_mtu,
3158	.port_stp_state_set	= mt7530_stp_state_set,
3159	.port_pre_bridge_flags	= mt7530_port_pre_bridge_flags,
3160	.port_bridge_flags	= mt7530_port_bridge_flags,
3161	.port_bridge_join	= mt7530_port_bridge_join,
3162	.port_bridge_leave	= mt7530_port_bridge_leave,
3163	.port_fdb_add		= mt7530_port_fdb_add,
3164	.port_fdb_del		= mt7530_port_fdb_del,
3165	.port_fdb_dump		= mt7530_port_fdb_dump,
3166	.port_mdb_add		= mt7530_port_mdb_add,
3167	.port_mdb_del		= mt7530_port_mdb_del,
3168	.port_vlan_filtering	= mt7530_port_vlan_filtering,
3169	.port_vlan_add		= mt7530_port_vlan_add,
3170	.port_vlan_del		= mt7530_port_vlan_del,
3171	.port_mirror_add	= mt753x_port_mirror_add,
3172	.port_mirror_del	= mt753x_port_mirror_del,
3173	.phylink_get_caps	= mt753x_phylink_get_caps,
3174	.phylink_mac_select_pcs	= mt753x_phylink_mac_select_pcs,
3175	.phylink_mac_config	= mt753x_phylink_mac_config,
3176	.phylink_mac_link_down	= mt753x_phylink_mac_link_down,
3177	.phylink_mac_link_up	= mt753x_phylink_mac_link_up,
3178	.get_mac_eee		= mt753x_get_mac_eee,
3179	.set_mac_eee		= mt753x_set_mac_eee,
3180};
3181EXPORT_SYMBOL_GPL(mt7530_switch_ops);
3182
3183const struct mt753x_info mt753x_table[] = {
3184	[ID_MT7621] = {
3185		.id = ID_MT7621,
3186		.pcs_ops = &mt7530_pcs_ops,
3187		.sw_setup = mt7530_setup,
3188		.phy_read_c22 = mt7530_phy_read_c22,
3189		.phy_write_c22 = mt7530_phy_write_c22,
3190		.phy_read_c45 = mt7530_phy_read_c45,
3191		.phy_write_c45 = mt7530_phy_write_c45,
3192		.pad_setup = mt7530_pad_clk_setup,
3193		.mac_port_get_caps = mt7530_mac_port_get_caps,
3194		.mac_port_config = mt7530_mac_config,
3195	},
3196	[ID_MT7530] = {
3197		.id = ID_MT7530,
3198		.pcs_ops = &mt7530_pcs_ops,
3199		.sw_setup = mt7530_setup,
3200		.phy_read_c22 = mt7530_phy_read_c22,
3201		.phy_write_c22 = mt7530_phy_write_c22,
3202		.phy_read_c45 = mt7530_phy_read_c45,
3203		.phy_write_c45 = mt7530_phy_write_c45,
3204		.pad_setup = mt7530_pad_clk_setup,
3205		.mac_port_get_caps = mt7530_mac_port_get_caps,
3206		.mac_port_config = mt7530_mac_config,
3207	},
3208	[ID_MT7531] = {
3209		.id = ID_MT7531,
3210		.pcs_ops = &mt7530_pcs_ops,
3211		.sw_setup = mt7531_setup,
3212		.phy_read_c22 = mt7531_ind_c22_phy_read,
3213		.phy_write_c22 = mt7531_ind_c22_phy_write,
3214		.phy_read_c45 = mt7531_ind_c45_phy_read,
3215		.phy_write_c45 = mt7531_ind_c45_phy_write,
3216		.pad_setup = mt7531_pad_setup,
3217		.cpu_port_config = mt7531_cpu_port_config,
3218		.mac_port_get_caps = mt7531_mac_port_get_caps,
3219		.mac_port_config = mt7531_mac_config,
3220	},
3221	[ID_MT7988] = {
3222		.id = ID_MT7988,
3223		.pcs_ops = &mt7530_pcs_ops,
3224		.sw_setup = mt7988_setup,
3225		.phy_read_c22 = mt7531_ind_c22_phy_read,
3226		.phy_write_c22 = mt7531_ind_c22_phy_write,
3227		.phy_read_c45 = mt7531_ind_c45_phy_read,
3228		.phy_write_c45 = mt7531_ind_c45_phy_write,
3229		.pad_setup = mt7988_pad_setup,
3230		.cpu_port_config = mt7988_cpu_port_config,
3231		.mac_port_get_caps = mt7988_mac_port_get_caps,
3232		.mac_port_config = mt7988_mac_config,
3233	},
3234};
3235EXPORT_SYMBOL_GPL(mt753x_table);
3236
3237int
3238mt7530_probe_common(struct mt7530_priv *priv)
3239{
3240	struct device *dev = priv->dev;
3241
3242	priv->ds = devm_kzalloc(dev, sizeof(*priv->ds), GFP_KERNEL);
3243	if (!priv->ds)
3244		return -ENOMEM;
3245
3246	priv->ds->dev = dev;
3247	priv->ds->num_ports = MT7530_NUM_PORTS;
3248
3249	/* Get the hardware identifier from the devicetree node.
3250	 * We will need it for some of the clock and regulator setup.
3251	 */
3252	priv->info = of_device_get_match_data(dev);
3253	if (!priv->info)
3254		return -EINVAL;
3255
3256	/* Sanity check if these required device operations are filled
3257	 * properly.
3258	 */
3259	if (!priv->info->sw_setup || !priv->info->pad_setup ||
3260	    !priv->info->phy_read_c22 || !priv->info->phy_write_c22 ||
3261	    !priv->info->mac_port_get_caps ||
3262	    !priv->info->mac_port_config)
3263		return -EINVAL;
3264
3265	priv->id = priv->info->id;
3266	priv->dev = dev;
3267	priv->ds->priv = priv;
3268	priv->ds->ops = &mt7530_switch_ops;
3269	mutex_init(&priv->reg_mutex);
3270	dev_set_drvdata(dev, priv);
3271
3272	return 0;
3273}
3274EXPORT_SYMBOL_GPL(mt7530_probe_common);
3275
3276void
3277mt7530_remove_common(struct mt7530_priv *priv)
3278{
3279	if (priv->irq)
3280		mt7530_free_irq(priv);
3281
3282	dsa_unregister_switch(priv->ds);
3283
3284	mutex_destroy(&priv->reg_mutex);
3285}
3286EXPORT_SYMBOL_GPL(mt7530_remove_common);
3287
3288MODULE_AUTHOR("Sean Wang <sean.wang@mediatek.com>");
3289MODULE_DESCRIPTION("Driver for Mediatek MT7530 Switch");
3290MODULE_LICENSE("GPL");
3291