xref: /kernel/linux/linux-6.6/drivers/mtd/ubi/wl.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Copyright (c) International Business Machines Corp., 2006
4 *
5 * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
6 */
7
8/*
9 * UBI wear-leveling sub-system.
10 *
11 * This sub-system is responsible for wear-leveling. It works in terms of
12 * physical eraseblocks and erase counters and knows nothing about logical
13 * eraseblocks, volumes, etc. From this sub-system's perspective all physical
14 * eraseblocks are of two types - used and free. Used physical eraseblocks are
15 * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
16 * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
17 *
18 * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
19 * header. The rest of the physical eraseblock contains only %0xFF bytes.
20 *
21 * When physical eraseblocks are returned to the WL sub-system by means of the
22 * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
23 * done asynchronously in context of the per-UBI device background thread,
24 * which is also managed by the WL sub-system.
25 *
26 * The wear-leveling is ensured by means of moving the contents of used
27 * physical eraseblocks with low erase counter to free physical eraseblocks
28 * with high erase counter.
29 *
30 * If the WL sub-system fails to erase a physical eraseblock, it marks it as
31 * bad.
32 *
33 * This sub-system is also responsible for scrubbing. If a bit-flip is detected
34 * in a physical eraseblock, it has to be moved. Technically this is the same
35 * as moving it for wear-leveling reasons.
36 *
37 * As it was said, for the UBI sub-system all physical eraseblocks are either
38 * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
39 * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
40 * RB-trees, as well as (temporarily) in the @wl->pq queue.
41 *
42 * When the WL sub-system returns a physical eraseblock, the physical
43 * eraseblock is protected from being moved for some "time". For this reason,
44 * the physical eraseblock is not directly moved from the @wl->free tree to the
45 * @wl->used tree. There is a protection queue in between where this
46 * physical eraseblock is temporarily stored (@wl->pq).
47 *
48 * All this protection stuff is needed because:
49 *  o we don't want to move physical eraseblocks just after we have given them
50 *    to the user; instead, we first want to let users fill them up with data;
51 *
52 *  o there is a chance that the user will put the physical eraseblock very
53 *    soon, so it makes sense not to move it for some time, but wait.
54 *
55 * Physical eraseblocks stay protected only for limited time. But the "time" is
56 * measured in erase cycles in this case. This is implemented with help of the
57 * protection queue. Eraseblocks are put to the tail of this queue when they
58 * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
59 * head of the queue on each erase operation (for any eraseblock). So the
60 * length of the queue defines how may (global) erase cycles PEBs are protected.
61 *
62 * To put it differently, each physical eraseblock has 2 main states: free and
63 * used. The former state corresponds to the @wl->free tree. The latter state
64 * is split up on several sub-states:
65 * o the WL movement is allowed (@wl->used tree);
66 * o the WL movement is disallowed (@wl->erroneous) because the PEB is
67 *   erroneous - e.g., there was a read error;
68 * o the WL movement is temporarily prohibited (@wl->pq queue);
69 * o scrubbing is needed (@wl->scrub tree).
70 *
71 * Depending on the sub-state, wear-leveling entries of the used physical
72 * eraseblocks may be kept in one of those structures.
73 *
74 * Note, in this implementation, we keep a small in-RAM object for each physical
75 * eraseblock. This is surely not a scalable solution. But it appears to be good
76 * enough for moderately large flashes and it is simple. In future, one may
77 * re-work this sub-system and make it more scalable.
78 *
79 * At the moment this sub-system does not utilize the sequence number, which
80 * was introduced relatively recently. But it would be wise to do this because
81 * the sequence number of a logical eraseblock characterizes how old is it. For
82 * example, when we move a PEB with low erase counter, and we need to pick the
83 * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
84 * pick target PEB with an average EC if our PEB is not very "old". This is a
85 * room for future re-works of the WL sub-system.
86 */
87
88#include <linux/slab.h>
89#include <linux/crc32.h>
90#include <linux/freezer.h>
91#include <linux/kthread.h>
92#include "ubi.h"
93#include "wl.h"
94
95/* Number of physical eraseblocks reserved for wear-leveling purposes */
96#define WL_RESERVED_PEBS 1
97
98/*
99 * Maximum difference between two erase counters. If this threshold is
100 * exceeded, the WL sub-system starts moving data from used physical
101 * eraseblocks with low erase counter to free physical eraseblocks with high
102 * erase counter.
103 */
104#define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
105
106/*
107 * When a physical eraseblock is moved, the WL sub-system has to pick the target
108 * physical eraseblock to move to. The simplest way would be just to pick the
109 * one with the highest erase counter. But in certain workloads this could lead
110 * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
111 * situation when the picked physical eraseblock is constantly erased after the
112 * data is written to it. So, we have a constant which limits the highest erase
113 * counter of the free physical eraseblock to pick. Namely, the WL sub-system
114 * does not pick eraseblocks with erase counter greater than the lowest erase
115 * counter plus %WL_FREE_MAX_DIFF.
116 */
117#define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
118
119/*
120 * Maximum number of consecutive background thread failures which is enough to
121 * switch to read-only mode.
122 */
123#define WL_MAX_FAILURES 32
124
125static int self_check_ec(struct ubi_device *ubi, int pnum, int ec);
126static int self_check_in_wl_tree(const struct ubi_device *ubi,
127				 struct ubi_wl_entry *e, struct rb_root *root);
128static int self_check_in_pq(const struct ubi_device *ubi,
129			    struct ubi_wl_entry *e);
130
131/**
132 * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
133 * @e: the wear-leveling entry to add
134 * @root: the root of the tree
135 *
136 * Note, we use (erase counter, physical eraseblock number) pairs as keys in
137 * the @ubi->used and @ubi->free RB-trees.
138 */
139static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
140{
141	struct rb_node **p, *parent = NULL;
142
143	p = &root->rb_node;
144	while (*p) {
145		struct ubi_wl_entry *e1;
146
147		parent = *p;
148		e1 = rb_entry(parent, struct ubi_wl_entry, u.rb);
149
150		if (e->ec < e1->ec)
151			p = &(*p)->rb_left;
152		else if (e->ec > e1->ec)
153			p = &(*p)->rb_right;
154		else {
155			ubi_assert(e->pnum != e1->pnum);
156			if (e->pnum < e1->pnum)
157				p = &(*p)->rb_left;
158			else
159				p = &(*p)->rb_right;
160		}
161	}
162
163	rb_link_node(&e->u.rb, parent, p);
164	rb_insert_color(&e->u.rb, root);
165}
166
167/**
168 * wl_entry_destroy - destroy a wear-leveling entry.
169 * @ubi: UBI device description object
170 * @e: the wear-leveling entry to add
171 *
172 * This function destroys a wear leveling entry and removes
173 * the reference from the lookup table.
174 */
175static void wl_entry_destroy(struct ubi_device *ubi, struct ubi_wl_entry *e)
176{
177	ubi->lookuptbl[e->pnum] = NULL;
178	kmem_cache_free(ubi_wl_entry_slab, e);
179}
180
181/**
182 * do_work - do one pending work.
183 * @ubi: UBI device description object
184 *
185 * This function returns zero in case of success and a negative error code in
186 * case of failure.
187 */
188static int do_work(struct ubi_device *ubi)
189{
190	int err;
191	struct ubi_work *wrk;
192
193	cond_resched();
194
195	/*
196	 * @ubi->work_sem is used to synchronize with the workers. Workers take
197	 * it in read mode, so many of them may be doing works at a time. But
198	 * the queue flush code has to be sure the whole queue of works is
199	 * done, and it takes the mutex in write mode.
200	 */
201	down_read(&ubi->work_sem);
202	spin_lock(&ubi->wl_lock);
203	if (list_empty(&ubi->works)) {
204		spin_unlock(&ubi->wl_lock);
205		up_read(&ubi->work_sem);
206		return 0;
207	}
208
209	wrk = list_entry(ubi->works.next, struct ubi_work, list);
210	list_del(&wrk->list);
211	ubi->works_count -= 1;
212	ubi_assert(ubi->works_count >= 0);
213	spin_unlock(&ubi->wl_lock);
214
215	/*
216	 * Call the worker function. Do not touch the work structure
217	 * after this call as it will have been freed or reused by that
218	 * time by the worker function.
219	 */
220	err = wrk->func(ubi, wrk, 0);
221	if (err)
222		ubi_err(ubi, "work failed with error code %d", err);
223	up_read(&ubi->work_sem);
224
225	return err;
226}
227
228/**
229 * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
230 * @e: the wear-leveling entry to check
231 * @root: the root of the tree
232 *
233 * This function returns non-zero if @e is in the @root RB-tree and zero if it
234 * is not.
235 */
236static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
237{
238	struct rb_node *p;
239
240	p = root->rb_node;
241	while (p) {
242		struct ubi_wl_entry *e1;
243
244		e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
245
246		if (e->pnum == e1->pnum) {
247			ubi_assert(e == e1);
248			return 1;
249		}
250
251		if (e->ec < e1->ec)
252			p = p->rb_left;
253		else if (e->ec > e1->ec)
254			p = p->rb_right;
255		else {
256			ubi_assert(e->pnum != e1->pnum);
257			if (e->pnum < e1->pnum)
258				p = p->rb_left;
259			else
260				p = p->rb_right;
261		}
262	}
263
264	return 0;
265}
266
267/**
268 * in_pq - check if a wear-leveling entry is present in the protection queue.
269 * @ubi: UBI device description object
270 * @e: the wear-leveling entry to check
271 *
272 * This function returns non-zero if @e is in the protection queue and zero
273 * if it is not.
274 */
275static inline int in_pq(const struct ubi_device *ubi, struct ubi_wl_entry *e)
276{
277	struct ubi_wl_entry *p;
278	int i;
279
280	for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i)
281		list_for_each_entry(p, &ubi->pq[i], u.list)
282			if (p == e)
283				return 1;
284
285	return 0;
286}
287
288/**
289 * prot_queue_add - add physical eraseblock to the protection queue.
290 * @ubi: UBI device description object
291 * @e: the physical eraseblock to add
292 *
293 * This function adds @e to the tail of the protection queue @ubi->pq, where
294 * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
295 * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
296 * be locked.
297 */
298static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e)
299{
300	int pq_tail = ubi->pq_head - 1;
301
302	if (pq_tail < 0)
303		pq_tail = UBI_PROT_QUEUE_LEN - 1;
304	ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN);
305	list_add_tail(&e->u.list, &ubi->pq[pq_tail]);
306	dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec);
307}
308
309/**
310 * find_wl_entry - find wear-leveling entry closest to certain erase counter.
311 * @ubi: UBI device description object
312 * @root: the RB-tree where to look for
313 * @diff: maximum possible difference from the smallest erase counter
314 *
315 * This function looks for a wear leveling entry with erase counter closest to
316 * min + @diff, where min is the smallest erase counter.
317 */
318static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi,
319					  struct rb_root *root, int diff)
320{
321	struct rb_node *p;
322	struct ubi_wl_entry *e;
323	int max;
324
325	e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
326	max = e->ec + diff;
327
328	p = root->rb_node;
329	while (p) {
330		struct ubi_wl_entry *e1;
331
332		e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
333		if (e1->ec >= max)
334			p = p->rb_left;
335		else {
336			p = p->rb_right;
337			e = e1;
338		}
339	}
340
341	return e;
342}
343
344/**
345 * find_mean_wl_entry - find wear-leveling entry with medium erase counter.
346 * @ubi: UBI device description object
347 * @root: the RB-tree where to look for
348 *
349 * This function looks for a wear leveling entry with medium erase counter,
350 * but not greater or equivalent than the lowest erase counter plus
351 * %WL_FREE_MAX_DIFF/2.
352 */
353static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi,
354					       struct rb_root *root)
355{
356	struct ubi_wl_entry *e, *first, *last;
357
358	first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
359	last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb);
360
361	if (last->ec - first->ec < WL_FREE_MAX_DIFF) {
362		e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb);
363
364		/* If no fastmap has been written and this WL entry can be used
365		 * as anchor PEB, hold it back and return the second best
366		 * WL entry such that fastmap can use the anchor PEB later. */
367		e = may_reserve_for_fm(ubi, e, root);
368	} else
369		e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2);
370
371	return e;
372}
373
374/**
375 * wl_get_wle - get a mean wl entry to be used by ubi_wl_get_peb() or
376 * refill_wl_user_pool().
377 * @ubi: UBI device description object
378 *
379 * This function returns a wear leveling entry in case of success and
380 * NULL in case of failure.
381 */
382static struct ubi_wl_entry *wl_get_wle(struct ubi_device *ubi)
383{
384	struct ubi_wl_entry *e;
385
386	e = find_mean_wl_entry(ubi, &ubi->free);
387	if (!e) {
388		ubi_err(ubi, "no free eraseblocks");
389		return NULL;
390	}
391
392	self_check_in_wl_tree(ubi, e, &ubi->free);
393
394	/*
395	 * Move the physical eraseblock to the protection queue where it will
396	 * be protected from being moved for some time.
397	 */
398	rb_erase(&e->u.rb, &ubi->free);
399	ubi->free_count--;
400	dbg_wl("PEB %d EC %d", e->pnum, e->ec);
401
402	return e;
403}
404
405/**
406 * prot_queue_del - remove a physical eraseblock from the protection queue.
407 * @ubi: UBI device description object
408 * @pnum: the physical eraseblock to remove
409 *
410 * This function deletes PEB @pnum from the protection queue and returns zero
411 * in case of success and %-ENODEV if the PEB was not found.
412 */
413static int prot_queue_del(struct ubi_device *ubi, int pnum)
414{
415	struct ubi_wl_entry *e;
416
417	e = ubi->lookuptbl[pnum];
418	if (!e)
419		return -ENODEV;
420
421	if (self_check_in_pq(ubi, e))
422		return -ENODEV;
423
424	list_del(&e->u.list);
425	dbg_wl("deleted PEB %d from the protection queue", e->pnum);
426	return 0;
427}
428
429/**
430 * sync_erase - synchronously erase a physical eraseblock.
431 * @ubi: UBI device description object
432 * @e: the physical eraseblock to erase
433 * @torture: if the physical eraseblock has to be tortured
434 *
435 * This function returns zero in case of success and a negative error code in
436 * case of failure.
437 */
438static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
439		      int torture)
440{
441	int err;
442	struct ubi_ec_hdr *ec_hdr;
443	unsigned long long ec = e->ec;
444
445	dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
446
447	err = self_check_ec(ubi, e->pnum, e->ec);
448	if (err)
449		return -EINVAL;
450
451	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
452	if (!ec_hdr)
453		return -ENOMEM;
454
455	err = ubi_io_sync_erase(ubi, e->pnum, torture);
456	if (err < 0)
457		goto out_free;
458
459	ec += err;
460	if (ec > UBI_MAX_ERASECOUNTER) {
461		/*
462		 * Erase counter overflow. Upgrade UBI and use 64-bit
463		 * erase counters internally.
464		 */
465		ubi_err(ubi, "erase counter overflow at PEB %d, EC %llu",
466			e->pnum, ec);
467		err = -EINVAL;
468		goto out_free;
469	}
470
471	dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
472
473	ec_hdr->ec = cpu_to_be64(ec);
474
475	err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
476	if (err)
477		goto out_free;
478
479	e->ec = ec;
480	spin_lock(&ubi->wl_lock);
481	if (e->ec > ubi->max_ec)
482		ubi->max_ec = e->ec;
483	spin_unlock(&ubi->wl_lock);
484
485out_free:
486	kfree(ec_hdr);
487	return err;
488}
489
490/**
491 * serve_prot_queue - check if it is time to stop protecting PEBs.
492 * @ubi: UBI device description object
493 *
494 * This function is called after each erase operation and removes PEBs from the
495 * tail of the protection queue. These PEBs have been protected for long enough
496 * and should be moved to the used tree.
497 */
498static void serve_prot_queue(struct ubi_device *ubi)
499{
500	struct ubi_wl_entry *e, *tmp;
501	int count;
502
503	/*
504	 * There may be several protected physical eraseblock to remove,
505	 * process them all.
506	 */
507repeat:
508	count = 0;
509	spin_lock(&ubi->wl_lock);
510	list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) {
511		dbg_wl("PEB %d EC %d protection over, move to used tree",
512			e->pnum, e->ec);
513
514		list_del(&e->u.list);
515		wl_tree_add(e, &ubi->used);
516		if (count++ > 32) {
517			/*
518			 * Let's be nice and avoid holding the spinlock for
519			 * too long.
520			 */
521			spin_unlock(&ubi->wl_lock);
522			cond_resched();
523			goto repeat;
524		}
525	}
526
527	ubi->pq_head += 1;
528	if (ubi->pq_head == UBI_PROT_QUEUE_LEN)
529		ubi->pq_head = 0;
530	ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN);
531	spin_unlock(&ubi->wl_lock);
532}
533
534/**
535 * __schedule_ubi_work - schedule a work.
536 * @ubi: UBI device description object
537 * @wrk: the work to schedule
538 *
539 * This function adds a work defined by @wrk to the tail of the pending works
540 * list. Can only be used if ubi->work_sem is already held in read mode!
541 */
542static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
543{
544	spin_lock(&ubi->wl_lock);
545	list_add_tail(&wrk->list, &ubi->works);
546	ubi_assert(ubi->works_count >= 0);
547	ubi->works_count += 1;
548	if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi))
549		wake_up_process(ubi->bgt_thread);
550	spin_unlock(&ubi->wl_lock);
551}
552
553/**
554 * schedule_ubi_work - schedule a work.
555 * @ubi: UBI device description object
556 * @wrk: the work to schedule
557 *
558 * This function adds a work defined by @wrk to the tail of the pending works
559 * list.
560 */
561static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
562{
563	down_read(&ubi->work_sem);
564	__schedule_ubi_work(ubi, wrk);
565	up_read(&ubi->work_sem);
566}
567
568static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
569			int shutdown);
570
571/**
572 * schedule_erase - schedule an erase work.
573 * @ubi: UBI device description object
574 * @e: the WL entry of the physical eraseblock to erase
575 * @vol_id: the volume ID that last used this PEB
576 * @lnum: the last used logical eraseblock number for the PEB
577 * @torture: if the physical eraseblock has to be tortured
578 * @nested: denotes whether the work_sem is already held
579 *
580 * This function returns zero in case of success and a %-ENOMEM in case of
581 * failure.
582 */
583static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
584			  int vol_id, int lnum, int torture, bool nested)
585{
586	struct ubi_work *wl_wrk;
587
588	ubi_assert(e);
589
590	dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
591	       e->pnum, e->ec, torture);
592
593	wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
594	if (!wl_wrk)
595		return -ENOMEM;
596
597	wl_wrk->func = &erase_worker;
598	wl_wrk->e = e;
599	wl_wrk->vol_id = vol_id;
600	wl_wrk->lnum = lnum;
601	wl_wrk->torture = torture;
602
603	if (nested)
604		__schedule_ubi_work(ubi, wl_wrk);
605	else
606		schedule_ubi_work(ubi, wl_wrk);
607	return 0;
608}
609
610static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk);
611/**
612 * do_sync_erase - run the erase worker synchronously.
613 * @ubi: UBI device description object
614 * @e: the WL entry of the physical eraseblock to erase
615 * @vol_id: the volume ID that last used this PEB
616 * @lnum: the last used logical eraseblock number for the PEB
617 * @torture: if the physical eraseblock has to be tortured
618 *
619 */
620static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
621			 int vol_id, int lnum, int torture)
622{
623	struct ubi_work wl_wrk;
624
625	dbg_wl("sync erase of PEB %i", e->pnum);
626
627	wl_wrk.e = e;
628	wl_wrk.vol_id = vol_id;
629	wl_wrk.lnum = lnum;
630	wl_wrk.torture = torture;
631
632	return __erase_worker(ubi, &wl_wrk);
633}
634
635static int ensure_wear_leveling(struct ubi_device *ubi, int nested);
636/**
637 * wear_leveling_worker - wear-leveling worker function.
638 * @ubi: UBI device description object
639 * @wrk: the work object
640 * @shutdown: non-zero if the worker has to free memory and exit
641 * because the WL-subsystem is shutting down
642 *
643 * This function copies a more worn out physical eraseblock to a less worn out
644 * one. Returns zero in case of success and a negative error code in case of
645 * failure.
646 */
647static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
648				int shutdown)
649{
650	int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0;
651	int erase = 0, keep = 0, vol_id = -1, lnum = -1;
652	struct ubi_wl_entry *e1, *e2;
653	struct ubi_vid_io_buf *vidb;
654	struct ubi_vid_hdr *vid_hdr;
655	int dst_leb_clean = 0;
656
657	kfree(wrk);
658	if (shutdown)
659		return 0;
660
661	vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
662	if (!vidb)
663		return -ENOMEM;
664
665	vid_hdr = ubi_get_vid_hdr(vidb);
666
667	down_read(&ubi->fm_eba_sem);
668	mutex_lock(&ubi->move_mutex);
669	spin_lock(&ubi->wl_lock);
670	ubi_assert(!ubi->move_from && !ubi->move_to);
671	ubi_assert(!ubi->move_to_put);
672
673#ifdef CONFIG_MTD_UBI_FASTMAP
674	if (!next_peb_for_wl(ubi) ||
675#else
676	if (!ubi->free.rb_node ||
677#endif
678	    (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
679		/*
680		 * No free physical eraseblocks? Well, they must be waiting in
681		 * the queue to be erased. Cancel movement - it will be
682		 * triggered again when a free physical eraseblock appears.
683		 *
684		 * No used physical eraseblocks? They must be temporarily
685		 * protected from being moved. They will be moved to the
686		 * @ubi->used tree later and the wear-leveling will be
687		 * triggered again.
688		 */
689		dbg_wl("cancel WL, a list is empty: free %d, used %d",
690		       !ubi->free.rb_node, !ubi->used.rb_node);
691		goto out_cancel;
692	}
693
694#ifdef CONFIG_MTD_UBI_FASTMAP
695	e1 = find_anchor_wl_entry(&ubi->used);
696	if (e1 && ubi->fm_anchor &&
697	    (ubi->fm_anchor->ec - e1->ec >= UBI_WL_THRESHOLD)) {
698		ubi->fm_do_produce_anchor = 1;
699		/*
700		 * fm_anchor is no longer considered a good anchor.
701		 * NULL assignment also prevents multiple wear level checks
702		 * of this PEB.
703		 */
704		wl_tree_add(ubi->fm_anchor, &ubi->free);
705		ubi->fm_anchor = NULL;
706		ubi->free_count++;
707	}
708
709	if (ubi->fm_do_produce_anchor) {
710		if (!e1)
711			goto out_cancel;
712		e2 = get_peb_for_wl(ubi);
713		if (!e2)
714			goto out_cancel;
715
716		self_check_in_wl_tree(ubi, e1, &ubi->used);
717		rb_erase(&e1->u.rb, &ubi->used);
718		dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum);
719		ubi->fm_do_produce_anchor = 0;
720	} else if (!ubi->scrub.rb_node) {
721#else
722	if (!ubi->scrub.rb_node) {
723#endif
724		/*
725		 * Now pick the least worn-out used physical eraseblock and a
726		 * highly worn-out free physical eraseblock. If the erase
727		 * counters differ much enough, start wear-leveling.
728		 */
729		e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
730		e2 = get_peb_for_wl(ubi);
731		if (!e2)
732			goto out_cancel;
733
734		if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
735			dbg_wl("no WL needed: min used EC %d, max free EC %d",
736			       e1->ec, e2->ec);
737
738			/* Give the unused PEB back */
739			wl_tree_add(e2, &ubi->free);
740			ubi->free_count++;
741			goto out_cancel;
742		}
743		self_check_in_wl_tree(ubi, e1, &ubi->used);
744		rb_erase(&e1->u.rb, &ubi->used);
745		dbg_wl("move PEB %d EC %d to PEB %d EC %d",
746		       e1->pnum, e1->ec, e2->pnum, e2->ec);
747	} else {
748		/* Perform scrubbing */
749		scrubbing = 1;
750		e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb);
751		e2 = get_peb_for_wl(ubi);
752		if (!e2)
753			goto out_cancel;
754
755		self_check_in_wl_tree(ubi, e1, &ubi->scrub);
756		rb_erase(&e1->u.rb, &ubi->scrub);
757		dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
758	}
759
760	ubi->move_from = e1;
761	ubi->move_to = e2;
762	spin_unlock(&ubi->wl_lock);
763
764	/*
765	 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
766	 * We so far do not know which logical eraseblock our physical
767	 * eraseblock (@e1) belongs to. We have to read the volume identifier
768	 * header first.
769	 *
770	 * Note, we are protected from this PEB being unmapped and erased. The
771	 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
772	 * which is being moved was unmapped.
773	 */
774
775	err = ubi_io_read_vid_hdr(ubi, e1->pnum, vidb, 0);
776	if (err && err != UBI_IO_BITFLIPS) {
777		dst_leb_clean = 1;
778		if (err == UBI_IO_FF) {
779			/*
780			 * We are trying to move PEB without a VID header. UBI
781			 * always write VID headers shortly after the PEB was
782			 * given, so we have a situation when it has not yet
783			 * had a chance to write it, because it was preempted.
784			 * So add this PEB to the protection queue so far,
785			 * because presumably more data will be written there
786			 * (including the missing VID header), and then we'll
787			 * move it.
788			 */
789			dbg_wl("PEB %d has no VID header", e1->pnum);
790			protect = 1;
791			goto out_not_moved;
792		} else if (err == UBI_IO_FF_BITFLIPS) {
793			/*
794			 * The same situation as %UBI_IO_FF, but bit-flips were
795			 * detected. It is better to schedule this PEB for
796			 * scrubbing.
797			 */
798			dbg_wl("PEB %d has no VID header but has bit-flips",
799			       e1->pnum);
800			scrubbing = 1;
801			goto out_not_moved;
802		} else if (ubi->fast_attach && err == UBI_IO_BAD_HDR_EBADMSG) {
803			/*
804			 * While a full scan would detect interrupted erasures
805			 * at attach time we can face them here when attached from
806			 * Fastmap.
807			 */
808			dbg_wl("PEB %d has ECC errors, maybe from an interrupted erasure",
809			       e1->pnum);
810			erase = 1;
811			goto out_not_moved;
812		}
813
814		ubi_err(ubi, "error %d while reading VID header from PEB %d",
815			err, e1->pnum);
816		goto out_error;
817	}
818
819	vol_id = be32_to_cpu(vid_hdr->vol_id);
820	lnum = be32_to_cpu(vid_hdr->lnum);
821
822	err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vidb);
823	if (err) {
824		if (err == MOVE_CANCEL_RACE) {
825			/*
826			 * The LEB has not been moved because the volume is
827			 * being deleted or the PEB has been put meanwhile. We
828			 * should prevent this PEB from being selected for
829			 * wear-leveling movement again, so put it to the
830			 * protection queue.
831			 */
832			protect = 1;
833			dst_leb_clean = 1;
834			goto out_not_moved;
835		}
836		if (err == MOVE_RETRY) {
837			scrubbing = 1;
838			dst_leb_clean = 1;
839			goto out_not_moved;
840		}
841		if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR ||
842		    err == MOVE_TARGET_RD_ERR) {
843			/*
844			 * Target PEB had bit-flips or write error - torture it.
845			 */
846			torture = 1;
847			keep = 1;
848			goto out_not_moved;
849		}
850
851		if (err == MOVE_SOURCE_RD_ERR) {
852			/*
853			 * An error happened while reading the source PEB. Do
854			 * not switch to R/O mode in this case, and give the
855			 * upper layers a possibility to recover from this,
856			 * e.g. by unmapping corresponding LEB. Instead, just
857			 * put this PEB to the @ubi->erroneous list to prevent
858			 * UBI from trying to move it over and over again.
859			 */
860			if (ubi->erroneous_peb_count > ubi->max_erroneous) {
861				ubi_err(ubi, "too many erroneous eraseblocks (%d)",
862					ubi->erroneous_peb_count);
863				goto out_error;
864			}
865			dst_leb_clean = 1;
866			erroneous = 1;
867			goto out_not_moved;
868		}
869
870		if (err < 0)
871			goto out_error;
872
873		ubi_assert(0);
874	}
875
876	/* The PEB has been successfully moved */
877	if (scrubbing)
878		ubi_msg(ubi, "scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
879			e1->pnum, vol_id, lnum, e2->pnum);
880	ubi_free_vid_buf(vidb);
881
882	spin_lock(&ubi->wl_lock);
883	if (!ubi->move_to_put) {
884		wl_tree_add(e2, &ubi->used);
885		e2 = NULL;
886	}
887	ubi->move_from = ubi->move_to = NULL;
888	ubi->move_to_put = ubi->wl_scheduled = 0;
889	spin_unlock(&ubi->wl_lock);
890
891	err = do_sync_erase(ubi, e1, vol_id, lnum, 0);
892	if (err) {
893		if (e2) {
894			spin_lock(&ubi->wl_lock);
895			wl_entry_destroy(ubi, e2);
896			spin_unlock(&ubi->wl_lock);
897		}
898		goto out_ro;
899	}
900
901	if (e2) {
902		/*
903		 * Well, the target PEB was put meanwhile, schedule it for
904		 * erasure.
905		 */
906		dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
907		       e2->pnum, vol_id, lnum);
908		err = do_sync_erase(ubi, e2, vol_id, lnum, 0);
909		if (err)
910			goto out_ro;
911	}
912
913	dbg_wl("done");
914	mutex_unlock(&ubi->move_mutex);
915	up_read(&ubi->fm_eba_sem);
916	return 0;
917
918	/*
919	 * For some reasons the LEB was not moved, might be an error, might be
920	 * something else. @e1 was not changed, so return it back. @e2 might
921	 * have been changed, schedule it for erasure.
922	 */
923out_not_moved:
924	if (vol_id != -1)
925		dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
926		       e1->pnum, vol_id, lnum, e2->pnum, err);
927	else
928		dbg_wl("cancel moving PEB %d to PEB %d (%d)",
929		       e1->pnum, e2->pnum, err);
930	spin_lock(&ubi->wl_lock);
931	if (protect)
932		prot_queue_add(ubi, e1);
933	else if (erroneous) {
934		wl_tree_add(e1, &ubi->erroneous);
935		ubi->erroneous_peb_count += 1;
936	} else if (scrubbing)
937		wl_tree_add(e1, &ubi->scrub);
938	else if (keep)
939		wl_tree_add(e1, &ubi->used);
940	if (dst_leb_clean) {
941		wl_tree_add(e2, &ubi->free);
942		ubi->free_count++;
943	}
944
945	ubi_assert(!ubi->move_to_put);
946	ubi->move_from = ubi->move_to = NULL;
947	ubi->wl_scheduled = 0;
948	spin_unlock(&ubi->wl_lock);
949
950	ubi_free_vid_buf(vidb);
951	if (dst_leb_clean) {
952		ensure_wear_leveling(ubi, 1);
953	} else {
954		err = do_sync_erase(ubi, e2, vol_id, lnum, torture);
955		if (err)
956			goto out_ro;
957	}
958
959	if (erase) {
960		err = do_sync_erase(ubi, e1, vol_id, lnum, 1);
961		if (err)
962			goto out_ro;
963	}
964
965	mutex_unlock(&ubi->move_mutex);
966	up_read(&ubi->fm_eba_sem);
967	return 0;
968
969out_error:
970	if (vol_id != -1)
971		ubi_err(ubi, "error %d while moving PEB %d to PEB %d",
972			err, e1->pnum, e2->pnum);
973	else
974		ubi_err(ubi, "error %d while moving PEB %d (LEB %d:%d) to PEB %d",
975			err, e1->pnum, vol_id, lnum, e2->pnum);
976	spin_lock(&ubi->wl_lock);
977	ubi->move_from = ubi->move_to = NULL;
978	ubi->move_to_put = ubi->wl_scheduled = 0;
979	wl_entry_destroy(ubi, e1);
980	wl_entry_destroy(ubi, e2);
981	spin_unlock(&ubi->wl_lock);
982
983	ubi_free_vid_buf(vidb);
984
985out_ro:
986	ubi_ro_mode(ubi);
987	mutex_unlock(&ubi->move_mutex);
988	up_read(&ubi->fm_eba_sem);
989	ubi_assert(err != 0);
990	return err < 0 ? err : -EIO;
991
992out_cancel:
993	ubi->wl_scheduled = 0;
994	spin_unlock(&ubi->wl_lock);
995	mutex_unlock(&ubi->move_mutex);
996	up_read(&ubi->fm_eba_sem);
997	ubi_free_vid_buf(vidb);
998	return 0;
999}
1000
1001/**
1002 * ensure_wear_leveling - schedule wear-leveling if it is needed.
1003 * @ubi: UBI device description object
1004 * @nested: set to non-zero if this function is called from UBI worker
1005 *
1006 * This function checks if it is time to start wear-leveling and schedules it
1007 * if yes. This function returns zero in case of success and a negative error
1008 * code in case of failure.
1009 */
1010static int ensure_wear_leveling(struct ubi_device *ubi, int nested)
1011{
1012	int err = 0;
1013	struct ubi_work *wrk;
1014
1015	spin_lock(&ubi->wl_lock);
1016	if (ubi->wl_scheduled)
1017		/* Wear-leveling is already in the work queue */
1018		goto out_unlock;
1019
1020	/*
1021	 * If the ubi->scrub tree is not empty, scrubbing is needed, and the
1022	 * WL worker has to be scheduled anyway.
1023	 */
1024	if (!ubi->scrub.rb_node) {
1025#ifdef CONFIG_MTD_UBI_FASTMAP
1026		if (!need_wear_leveling(ubi))
1027			goto out_unlock;
1028#else
1029		struct ubi_wl_entry *e1;
1030		struct ubi_wl_entry *e2;
1031
1032		if (!ubi->used.rb_node || !ubi->free.rb_node)
1033			/* No physical eraseblocks - no deal */
1034			goto out_unlock;
1035
1036		/*
1037		 * We schedule wear-leveling only if the difference between the
1038		 * lowest erase counter of used physical eraseblocks and a high
1039		 * erase counter of free physical eraseblocks is greater than
1040		 * %UBI_WL_THRESHOLD.
1041		 */
1042		e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
1043		e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
1044
1045		if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
1046			goto out_unlock;
1047#endif
1048		dbg_wl("schedule wear-leveling");
1049	} else
1050		dbg_wl("schedule scrubbing");
1051
1052	ubi->wl_scheduled = 1;
1053	spin_unlock(&ubi->wl_lock);
1054
1055	wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1056	if (!wrk) {
1057		err = -ENOMEM;
1058		goto out_cancel;
1059	}
1060
1061	wrk->func = &wear_leveling_worker;
1062	if (nested)
1063		__schedule_ubi_work(ubi, wrk);
1064	else
1065		schedule_ubi_work(ubi, wrk);
1066	return err;
1067
1068out_cancel:
1069	spin_lock(&ubi->wl_lock);
1070	ubi->wl_scheduled = 0;
1071out_unlock:
1072	spin_unlock(&ubi->wl_lock);
1073	return err;
1074}
1075
1076/**
1077 * __erase_worker - physical eraseblock erase worker function.
1078 * @ubi: UBI device description object
1079 * @wl_wrk: the work object
1080 *
1081 * This function erases a physical eraseblock and perform torture testing if
1082 * needed. It also takes care about marking the physical eraseblock bad if
1083 * needed. Returns zero in case of success and a negative error code in case of
1084 * failure.
1085 */
1086static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk)
1087{
1088	struct ubi_wl_entry *e = wl_wrk->e;
1089	int pnum = e->pnum;
1090	int vol_id = wl_wrk->vol_id;
1091	int lnum = wl_wrk->lnum;
1092	int err, available_consumed = 0;
1093
1094	dbg_wl("erase PEB %d EC %d LEB %d:%d",
1095	       pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum);
1096
1097	err = sync_erase(ubi, e, wl_wrk->torture);
1098	if (!err) {
1099		spin_lock(&ubi->wl_lock);
1100
1101		if (!ubi->fm_disabled && !ubi->fm_anchor &&
1102		    e->pnum < UBI_FM_MAX_START) {
1103			/*
1104			 * Abort anchor production, if needed it will be
1105			 * enabled again in the wear leveling started below.
1106			 */
1107			ubi->fm_anchor = e;
1108			ubi->fm_do_produce_anchor = 0;
1109		} else {
1110			wl_tree_add(e, &ubi->free);
1111			ubi->free_count++;
1112		}
1113
1114		spin_unlock(&ubi->wl_lock);
1115
1116		/*
1117		 * One more erase operation has happened, take care about
1118		 * protected physical eraseblocks.
1119		 */
1120		serve_prot_queue(ubi);
1121
1122		/* And take care about wear-leveling */
1123		err = ensure_wear_leveling(ubi, 1);
1124		return err;
1125	}
1126
1127	ubi_err(ubi, "failed to erase PEB %d, error %d", pnum, err);
1128
1129	if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1130	    err == -EBUSY) {
1131		int err1;
1132
1133		/* Re-schedule the LEB for erasure */
1134		err1 = schedule_erase(ubi, e, vol_id, lnum, 0, true);
1135		if (err1) {
1136			spin_lock(&ubi->wl_lock);
1137			wl_entry_destroy(ubi, e);
1138			spin_unlock(&ubi->wl_lock);
1139			err = err1;
1140			goto out_ro;
1141		}
1142		return err;
1143	}
1144
1145	spin_lock(&ubi->wl_lock);
1146	wl_entry_destroy(ubi, e);
1147	spin_unlock(&ubi->wl_lock);
1148	if (err != -EIO)
1149		/*
1150		 * If this is not %-EIO, we have no idea what to do. Scheduling
1151		 * this physical eraseblock for erasure again would cause
1152		 * errors again and again. Well, lets switch to R/O mode.
1153		 */
1154		goto out_ro;
1155
1156	/* It is %-EIO, the PEB went bad */
1157
1158	if (!ubi->bad_allowed) {
1159		ubi_err(ubi, "bad physical eraseblock %d detected", pnum);
1160		goto out_ro;
1161	}
1162
1163	spin_lock(&ubi->volumes_lock);
1164	if (ubi->beb_rsvd_pebs == 0) {
1165		if (ubi->avail_pebs == 0) {
1166			spin_unlock(&ubi->volumes_lock);
1167			ubi_err(ubi, "no reserved/available physical eraseblocks");
1168			goto out_ro;
1169		}
1170		ubi->avail_pebs -= 1;
1171		available_consumed = 1;
1172	}
1173	spin_unlock(&ubi->volumes_lock);
1174
1175	ubi_msg(ubi, "mark PEB %d as bad", pnum);
1176	err = ubi_io_mark_bad(ubi, pnum);
1177	if (err)
1178		goto out_ro;
1179
1180	spin_lock(&ubi->volumes_lock);
1181	if (ubi->beb_rsvd_pebs > 0) {
1182		if (available_consumed) {
1183			/*
1184			 * The amount of reserved PEBs increased since we last
1185			 * checked.
1186			 */
1187			ubi->avail_pebs += 1;
1188			available_consumed = 0;
1189		}
1190		ubi->beb_rsvd_pebs -= 1;
1191	}
1192	ubi->bad_peb_count += 1;
1193	ubi->good_peb_count -= 1;
1194	ubi_calculate_reserved(ubi);
1195	if (available_consumed)
1196		ubi_warn(ubi, "no PEBs in the reserved pool, used an available PEB");
1197	else if (ubi->beb_rsvd_pebs)
1198		ubi_msg(ubi, "%d PEBs left in the reserve",
1199			ubi->beb_rsvd_pebs);
1200	else
1201		ubi_warn(ubi, "last PEB from the reserve was used");
1202	spin_unlock(&ubi->volumes_lock);
1203
1204	return err;
1205
1206out_ro:
1207	if (available_consumed) {
1208		spin_lock(&ubi->volumes_lock);
1209		ubi->avail_pebs += 1;
1210		spin_unlock(&ubi->volumes_lock);
1211	}
1212	ubi_ro_mode(ubi);
1213	return err;
1214}
1215
1216static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1217			  int shutdown)
1218{
1219	int ret;
1220
1221	if (shutdown) {
1222		struct ubi_wl_entry *e = wl_wrk->e;
1223
1224		dbg_wl("cancel erasure of PEB %d EC %d", e->pnum, e->ec);
1225		kfree(wl_wrk);
1226		wl_entry_destroy(ubi, e);
1227		return 0;
1228	}
1229
1230	ret = __erase_worker(ubi, wl_wrk);
1231	kfree(wl_wrk);
1232	return ret;
1233}
1234
1235/**
1236 * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1237 * @ubi: UBI device description object
1238 * @vol_id: the volume ID that last used this PEB
1239 * @lnum: the last used logical eraseblock number for the PEB
1240 * @pnum: physical eraseblock to return
1241 * @torture: if this physical eraseblock has to be tortured
1242 *
1243 * This function is called to return physical eraseblock @pnum to the pool of
1244 * free physical eraseblocks. The @torture flag has to be set if an I/O error
1245 * occurred to this @pnum and it has to be tested. This function returns zero
1246 * in case of success, and a negative error code in case of failure.
1247 */
1248int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum,
1249		   int pnum, int torture)
1250{
1251	int err;
1252	struct ubi_wl_entry *e;
1253
1254	dbg_wl("PEB %d", pnum);
1255	ubi_assert(pnum >= 0);
1256	ubi_assert(pnum < ubi->peb_count);
1257
1258	down_read(&ubi->fm_protect);
1259
1260retry:
1261	spin_lock(&ubi->wl_lock);
1262	e = ubi->lookuptbl[pnum];
1263	if (!e) {
1264		/*
1265		 * This wl entry has been removed for some errors by other
1266		 * process (eg. wear leveling worker), corresponding process
1267		 * (except __erase_worker, which cannot concurrent with
1268		 * ubi_wl_put_peb) will set ubi ro_mode at the same time,
1269		 * just ignore this wl entry.
1270		 */
1271		spin_unlock(&ubi->wl_lock);
1272		up_read(&ubi->fm_protect);
1273		return 0;
1274	}
1275	if (e == ubi->move_from) {
1276		/*
1277		 * User is putting the physical eraseblock which was selected to
1278		 * be moved. It will be scheduled for erasure in the
1279		 * wear-leveling worker.
1280		 */
1281		dbg_wl("PEB %d is being moved, wait", pnum);
1282		spin_unlock(&ubi->wl_lock);
1283
1284		/* Wait for the WL worker by taking the @ubi->move_mutex */
1285		mutex_lock(&ubi->move_mutex);
1286		mutex_unlock(&ubi->move_mutex);
1287		goto retry;
1288	} else if (e == ubi->move_to) {
1289		/*
1290		 * User is putting the physical eraseblock which was selected
1291		 * as the target the data is moved to. It may happen if the EBA
1292		 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1293		 * but the WL sub-system has not put the PEB to the "used" tree
1294		 * yet, but it is about to do this. So we just set a flag which
1295		 * will tell the WL worker that the PEB is not needed anymore
1296		 * and should be scheduled for erasure.
1297		 */
1298		dbg_wl("PEB %d is the target of data moving", pnum);
1299		ubi_assert(!ubi->move_to_put);
1300		ubi->move_to_put = 1;
1301		spin_unlock(&ubi->wl_lock);
1302		up_read(&ubi->fm_protect);
1303		return 0;
1304	} else {
1305		if (in_wl_tree(e, &ubi->used)) {
1306			self_check_in_wl_tree(ubi, e, &ubi->used);
1307			rb_erase(&e->u.rb, &ubi->used);
1308		} else if (in_wl_tree(e, &ubi->scrub)) {
1309			self_check_in_wl_tree(ubi, e, &ubi->scrub);
1310			rb_erase(&e->u.rb, &ubi->scrub);
1311		} else if (in_wl_tree(e, &ubi->erroneous)) {
1312			self_check_in_wl_tree(ubi, e, &ubi->erroneous);
1313			rb_erase(&e->u.rb, &ubi->erroneous);
1314			ubi->erroneous_peb_count -= 1;
1315			ubi_assert(ubi->erroneous_peb_count >= 0);
1316			/* Erroneous PEBs should be tortured */
1317			torture = 1;
1318		} else {
1319			err = prot_queue_del(ubi, e->pnum);
1320			if (err) {
1321				ubi_err(ubi, "PEB %d not found", pnum);
1322				ubi_ro_mode(ubi);
1323				spin_unlock(&ubi->wl_lock);
1324				up_read(&ubi->fm_protect);
1325				return err;
1326			}
1327		}
1328	}
1329	spin_unlock(&ubi->wl_lock);
1330
1331	err = schedule_erase(ubi, e, vol_id, lnum, torture, false);
1332	if (err) {
1333		spin_lock(&ubi->wl_lock);
1334		wl_tree_add(e, &ubi->used);
1335		spin_unlock(&ubi->wl_lock);
1336	}
1337
1338	up_read(&ubi->fm_protect);
1339	return err;
1340}
1341
1342/**
1343 * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1344 * @ubi: UBI device description object
1345 * @pnum: the physical eraseblock to schedule
1346 *
1347 * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1348 * needs scrubbing. This function schedules a physical eraseblock for
1349 * scrubbing which is done in background. This function returns zero in case of
1350 * success and a negative error code in case of failure.
1351 */
1352int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1353{
1354	struct ubi_wl_entry *e;
1355
1356	ubi_msg(ubi, "schedule PEB %d for scrubbing", pnum);
1357
1358retry:
1359	spin_lock(&ubi->wl_lock);
1360	e = ubi->lookuptbl[pnum];
1361	if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) ||
1362				   in_wl_tree(e, &ubi->erroneous)) {
1363		spin_unlock(&ubi->wl_lock);
1364		return 0;
1365	}
1366
1367	if (e == ubi->move_to) {
1368		/*
1369		 * This physical eraseblock was used to move data to. The data
1370		 * was moved but the PEB was not yet inserted to the proper
1371		 * tree. We should just wait a little and let the WL worker
1372		 * proceed.
1373		 */
1374		spin_unlock(&ubi->wl_lock);
1375		dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1376		yield();
1377		goto retry;
1378	}
1379
1380	if (in_wl_tree(e, &ubi->used)) {
1381		self_check_in_wl_tree(ubi, e, &ubi->used);
1382		rb_erase(&e->u.rb, &ubi->used);
1383	} else {
1384		int err;
1385
1386		err = prot_queue_del(ubi, e->pnum);
1387		if (err) {
1388			ubi_err(ubi, "PEB %d not found", pnum);
1389			ubi_ro_mode(ubi);
1390			spin_unlock(&ubi->wl_lock);
1391			return err;
1392		}
1393	}
1394
1395	wl_tree_add(e, &ubi->scrub);
1396	spin_unlock(&ubi->wl_lock);
1397
1398	/*
1399	 * Technically scrubbing is the same as wear-leveling, so it is done
1400	 * by the WL worker.
1401	 */
1402	return ensure_wear_leveling(ubi, 0);
1403}
1404
1405/**
1406 * ubi_wl_flush - flush all pending works.
1407 * @ubi: UBI device description object
1408 * @vol_id: the volume id to flush for
1409 * @lnum: the logical eraseblock number to flush for
1410 *
1411 * This function executes all pending works for a particular volume id /
1412 * logical eraseblock number pair. If either value is set to %UBI_ALL, then it
1413 * acts as a wildcard for all of the corresponding volume numbers or logical
1414 * eraseblock numbers. It returns zero in case of success and a negative error
1415 * code in case of failure.
1416 */
1417int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum)
1418{
1419	int err = 0;
1420	int found = 1;
1421
1422	/*
1423	 * Erase while the pending works queue is not empty, but not more than
1424	 * the number of currently pending works.
1425	 */
1426	dbg_wl("flush pending work for LEB %d:%d (%d pending works)",
1427	       vol_id, lnum, ubi->works_count);
1428
1429	while (found) {
1430		struct ubi_work *wrk, *tmp;
1431		found = 0;
1432
1433		down_read(&ubi->work_sem);
1434		spin_lock(&ubi->wl_lock);
1435		list_for_each_entry_safe(wrk, tmp, &ubi->works, list) {
1436			if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) &&
1437			    (lnum == UBI_ALL || wrk->lnum == lnum)) {
1438				list_del(&wrk->list);
1439				ubi->works_count -= 1;
1440				ubi_assert(ubi->works_count >= 0);
1441				spin_unlock(&ubi->wl_lock);
1442
1443				err = wrk->func(ubi, wrk, 0);
1444				if (err) {
1445					up_read(&ubi->work_sem);
1446					return err;
1447				}
1448
1449				spin_lock(&ubi->wl_lock);
1450				found = 1;
1451				break;
1452			}
1453		}
1454		spin_unlock(&ubi->wl_lock);
1455		up_read(&ubi->work_sem);
1456	}
1457
1458	/*
1459	 * Make sure all the works which have been done in parallel are
1460	 * finished.
1461	 */
1462	down_write(&ubi->work_sem);
1463	up_write(&ubi->work_sem);
1464
1465	return err;
1466}
1467
1468static bool scrub_possible(struct ubi_device *ubi, struct ubi_wl_entry *e)
1469{
1470	if (in_wl_tree(e, &ubi->scrub))
1471		return false;
1472	else if (in_wl_tree(e, &ubi->erroneous))
1473		return false;
1474	else if (ubi->move_from == e)
1475		return false;
1476	else if (ubi->move_to == e)
1477		return false;
1478
1479	return true;
1480}
1481
1482/**
1483 * ubi_bitflip_check - Check an eraseblock for bitflips and scrub it if needed.
1484 * @ubi: UBI device description object
1485 * @pnum: the physical eraseblock to schedule
1486 * @force: don't read the block, assume bitflips happened and take action.
1487 *
1488 * This function reads the given eraseblock and checks if bitflips occured.
1489 * In case of bitflips, the eraseblock is scheduled for scrubbing.
1490 * If scrubbing is forced with @force, the eraseblock is not read,
1491 * but scheduled for scrubbing right away.
1492 *
1493 * Returns:
1494 * %EINVAL, PEB is out of range
1495 * %ENOENT, PEB is no longer used by UBI
1496 * %EBUSY, PEB cannot be checked now or a check is currently running on it
1497 * %EAGAIN, bit flips happened but scrubbing is currently not possible
1498 * %EUCLEAN, bit flips happened and PEB is scheduled for scrubbing
1499 * %0, no bit flips detected
1500 */
1501int ubi_bitflip_check(struct ubi_device *ubi, int pnum, int force)
1502{
1503	int err = 0;
1504	struct ubi_wl_entry *e;
1505
1506	if (pnum < 0 || pnum >= ubi->peb_count) {
1507		err = -EINVAL;
1508		goto out;
1509	}
1510
1511	/*
1512	 * Pause all parallel work, otherwise it can happen that the
1513	 * erase worker frees a wl entry under us.
1514	 */
1515	down_write(&ubi->work_sem);
1516
1517	/*
1518	 * Make sure that the wl entry does not change state while
1519	 * inspecting it.
1520	 */
1521	spin_lock(&ubi->wl_lock);
1522	e = ubi->lookuptbl[pnum];
1523	if (!e) {
1524		spin_unlock(&ubi->wl_lock);
1525		err = -ENOENT;
1526		goto out_resume;
1527	}
1528
1529	/*
1530	 * Does it make sense to check this PEB?
1531	 */
1532	if (!scrub_possible(ubi, e)) {
1533		spin_unlock(&ubi->wl_lock);
1534		err = -EBUSY;
1535		goto out_resume;
1536	}
1537	spin_unlock(&ubi->wl_lock);
1538
1539	if (!force) {
1540		mutex_lock(&ubi->buf_mutex);
1541		err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
1542		mutex_unlock(&ubi->buf_mutex);
1543	}
1544
1545	if (force || err == UBI_IO_BITFLIPS) {
1546		/*
1547		 * Okay, bit flip happened, let's figure out what we can do.
1548		 */
1549		spin_lock(&ubi->wl_lock);
1550
1551		/*
1552		 * Recheck. We released wl_lock, UBI might have killed the
1553		 * wl entry under us.
1554		 */
1555		e = ubi->lookuptbl[pnum];
1556		if (!e) {
1557			spin_unlock(&ubi->wl_lock);
1558			err = -ENOENT;
1559			goto out_resume;
1560		}
1561
1562		/*
1563		 * Need to re-check state
1564		 */
1565		if (!scrub_possible(ubi, e)) {
1566			spin_unlock(&ubi->wl_lock);
1567			err = -EBUSY;
1568			goto out_resume;
1569		}
1570
1571		if (in_pq(ubi, e)) {
1572			prot_queue_del(ubi, e->pnum);
1573			wl_tree_add(e, &ubi->scrub);
1574			spin_unlock(&ubi->wl_lock);
1575
1576			err = ensure_wear_leveling(ubi, 1);
1577		} else if (in_wl_tree(e, &ubi->used)) {
1578			rb_erase(&e->u.rb, &ubi->used);
1579			wl_tree_add(e, &ubi->scrub);
1580			spin_unlock(&ubi->wl_lock);
1581
1582			err = ensure_wear_leveling(ubi, 1);
1583		} else if (in_wl_tree(e, &ubi->free)) {
1584			rb_erase(&e->u.rb, &ubi->free);
1585			ubi->free_count--;
1586			spin_unlock(&ubi->wl_lock);
1587
1588			/*
1589			 * This PEB is empty we can schedule it for
1590			 * erasure right away. No wear leveling needed.
1591			 */
1592			err = schedule_erase(ubi, e, UBI_UNKNOWN, UBI_UNKNOWN,
1593					     force ? 0 : 1, true);
1594		} else {
1595			spin_unlock(&ubi->wl_lock);
1596			err = -EAGAIN;
1597		}
1598
1599		if (!err && !force)
1600			err = -EUCLEAN;
1601	} else {
1602		err = 0;
1603	}
1604
1605out_resume:
1606	up_write(&ubi->work_sem);
1607out:
1608
1609	return err;
1610}
1611
1612/**
1613 * tree_destroy - destroy an RB-tree.
1614 * @ubi: UBI device description object
1615 * @root: the root of the tree to destroy
1616 */
1617static void tree_destroy(struct ubi_device *ubi, struct rb_root *root)
1618{
1619	struct rb_node *rb;
1620	struct ubi_wl_entry *e;
1621
1622	rb = root->rb_node;
1623	while (rb) {
1624		if (rb->rb_left)
1625			rb = rb->rb_left;
1626		else if (rb->rb_right)
1627			rb = rb->rb_right;
1628		else {
1629			e = rb_entry(rb, struct ubi_wl_entry, u.rb);
1630
1631			rb = rb_parent(rb);
1632			if (rb) {
1633				if (rb->rb_left == &e->u.rb)
1634					rb->rb_left = NULL;
1635				else
1636					rb->rb_right = NULL;
1637			}
1638
1639			wl_entry_destroy(ubi, e);
1640		}
1641	}
1642}
1643
1644/**
1645 * ubi_thread - UBI background thread.
1646 * @u: the UBI device description object pointer
1647 */
1648int ubi_thread(void *u)
1649{
1650	int failures = 0;
1651	struct ubi_device *ubi = u;
1652
1653	ubi_msg(ubi, "background thread \"%s\" started, PID %d",
1654		ubi->bgt_name, task_pid_nr(current));
1655
1656	set_freezable();
1657	for (;;) {
1658		int err;
1659
1660		if (kthread_should_stop())
1661			break;
1662
1663		if (try_to_freeze())
1664			continue;
1665
1666		spin_lock(&ubi->wl_lock);
1667		if (list_empty(&ubi->works) || ubi->ro_mode ||
1668		    !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) {
1669			set_current_state(TASK_INTERRUPTIBLE);
1670			spin_unlock(&ubi->wl_lock);
1671
1672			/*
1673			 * Check kthread_should_stop() after we set the task
1674			 * state to guarantee that we either see the stop bit
1675			 * and exit or the task state is reset to runnable such
1676			 * that it's not scheduled out indefinitely and detects
1677			 * the stop bit at kthread_should_stop().
1678			 */
1679			if (kthread_should_stop()) {
1680				set_current_state(TASK_RUNNING);
1681				break;
1682			}
1683
1684			schedule();
1685			continue;
1686		}
1687		spin_unlock(&ubi->wl_lock);
1688
1689		err = do_work(ubi);
1690		if (err) {
1691			ubi_err(ubi, "%s: work failed with error code %d",
1692				ubi->bgt_name, err);
1693			if (failures++ > WL_MAX_FAILURES) {
1694				/*
1695				 * Too many failures, disable the thread and
1696				 * switch to read-only mode.
1697				 */
1698				ubi_msg(ubi, "%s: %d consecutive failures",
1699					ubi->bgt_name, WL_MAX_FAILURES);
1700				ubi_ro_mode(ubi);
1701				ubi->thread_enabled = 0;
1702				continue;
1703			}
1704		} else
1705			failures = 0;
1706
1707		cond_resched();
1708	}
1709
1710	dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1711	ubi->thread_enabled = 0;
1712	return 0;
1713}
1714
1715/**
1716 * shutdown_work - shutdown all pending works.
1717 * @ubi: UBI device description object
1718 */
1719static void shutdown_work(struct ubi_device *ubi)
1720{
1721	while (!list_empty(&ubi->works)) {
1722		struct ubi_work *wrk;
1723
1724		wrk = list_entry(ubi->works.next, struct ubi_work, list);
1725		list_del(&wrk->list);
1726		wrk->func(ubi, wrk, 1);
1727		ubi->works_count -= 1;
1728		ubi_assert(ubi->works_count >= 0);
1729	}
1730}
1731
1732/**
1733 * erase_aeb - erase a PEB given in UBI attach info PEB
1734 * @ubi: UBI device description object
1735 * @aeb: UBI attach info PEB
1736 * @sync: If true, erase synchronously. Otherwise schedule for erasure
1737 */
1738static int erase_aeb(struct ubi_device *ubi, struct ubi_ainf_peb *aeb, bool sync)
1739{
1740	struct ubi_wl_entry *e;
1741	int err;
1742
1743	e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1744	if (!e)
1745		return -ENOMEM;
1746
1747	e->pnum = aeb->pnum;
1748	e->ec = aeb->ec;
1749	ubi->lookuptbl[e->pnum] = e;
1750
1751	if (sync) {
1752		err = sync_erase(ubi, e, false);
1753		if (err)
1754			goto out_free;
1755
1756		wl_tree_add(e, &ubi->free);
1757		ubi->free_count++;
1758	} else {
1759		err = schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0, false);
1760		if (err)
1761			goto out_free;
1762	}
1763
1764	return 0;
1765
1766out_free:
1767	wl_entry_destroy(ubi, e);
1768
1769	return err;
1770}
1771
1772/**
1773 * ubi_wl_init - initialize the WL sub-system using attaching information.
1774 * @ubi: UBI device description object
1775 * @ai: attaching information
1776 *
1777 * This function returns zero in case of success, and a negative error code in
1778 * case of failure.
1779 */
1780int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1781{
1782	int err, i, reserved_pebs, found_pebs = 0;
1783	struct rb_node *rb1, *rb2;
1784	struct ubi_ainf_volume *av;
1785	struct ubi_ainf_peb *aeb, *tmp;
1786	struct ubi_wl_entry *e;
1787
1788	ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT;
1789	spin_lock_init(&ubi->wl_lock);
1790	mutex_init(&ubi->move_mutex);
1791	init_rwsem(&ubi->work_sem);
1792	ubi->max_ec = ai->max_ec;
1793	INIT_LIST_HEAD(&ubi->works);
1794
1795	sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1796
1797	err = -ENOMEM;
1798	ubi->lookuptbl = kcalloc(ubi->peb_count, sizeof(void *), GFP_KERNEL);
1799	if (!ubi->lookuptbl)
1800		return err;
1801
1802	for (i = 0; i < UBI_PROT_QUEUE_LEN; i++)
1803		INIT_LIST_HEAD(&ubi->pq[i]);
1804	ubi->pq_head = 0;
1805
1806	ubi->free_count = 0;
1807	list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) {
1808		cond_resched();
1809
1810		err = erase_aeb(ubi, aeb, false);
1811		if (err)
1812			goto out_free;
1813
1814		found_pebs++;
1815	}
1816
1817	list_for_each_entry(aeb, &ai->free, u.list) {
1818		cond_resched();
1819
1820		e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1821		if (!e) {
1822			err = -ENOMEM;
1823			goto out_free;
1824		}
1825
1826		e->pnum = aeb->pnum;
1827		e->ec = aeb->ec;
1828		ubi_assert(e->ec >= 0);
1829
1830		wl_tree_add(e, &ubi->free);
1831		ubi->free_count++;
1832
1833		ubi->lookuptbl[e->pnum] = e;
1834
1835		found_pebs++;
1836	}
1837
1838	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1839		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1840			cond_resched();
1841
1842			e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1843			if (!e) {
1844				err = -ENOMEM;
1845				goto out_free;
1846			}
1847
1848			e->pnum = aeb->pnum;
1849			e->ec = aeb->ec;
1850			ubi->lookuptbl[e->pnum] = e;
1851
1852			if (!aeb->scrub) {
1853				dbg_wl("add PEB %d EC %d to the used tree",
1854				       e->pnum, e->ec);
1855				wl_tree_add(e, &ubi->used);
1856			} else {
1857				dbg_wl("add PEB %d EC %d to the scrub tree",
1858				       e->pnum, e->ec);
1859				wl_tree_add(e, &ubi->scrub);
1860			}
1861
1862			found_pebs++;
1863		}
1864	}
1865
1866	list_for_each_entry(aeb, &ai->fastmap, u.list) {
1867		cond_resched();
1868
1869		e = ubi_find_fm_block(ubi, aeb->pnum);
1870
1871		if (e) {
1872			ubi_assert(!ubi->lookuptbl[e->pnum]);
1873			ubi->lookuptbl[e->pnum] = e;
1874		} else {
1875			bool sync = false;
1876
1877			/*
1878			 * Usually old Fastmap PEBs are scheduled for erasure
1879			 * and we don't have to care about them but if we face
1880			 * an power cut before scheduling them we need to
1881			 * take care of them here.
1882			 */
1883			if (ubi->lookuptbl[aeb->pnum])
1884				continue;
1885
1886			/*
1887			 * The fastmap update code might not find a free PEB for
1888			 * writing the fastmap anchor to and then reuses the
1889			 * current fastmap anchor PEB. When this PEB gets erased
1890			 * and a power cut happens before it is written again we
1891			 * must make sure that the fastmap attach code doesn't
1892			 * find any outdated fastmap anchors, hence we erase the
1893			 * outdated fastmap anchor PEBs synchronously here.
1894			 */
1895			if (aeb->vol_id == UBI_FM_SB_VOLUME_ID)
1896				sync = true;
1897
1898			err = erase_aeb(ubi, aeb, sync);
1899			if (err)
1900				goto out_free;
1901		}
1902
1903		found_pebs++;
1904	}
1905
1906	dbg_wl("found %i PEBs", found_pebs);
1907
1908	ubi_assert(ubi->good_peb_count == found_pebs);
1909
1910	reserved_pebs = WL_RESERVED_PEBS;
1911	ubi_fastmap_init(ubi, &reserved_pebs);
1912
1913	if (ubi->avail_pebs < reserved_pebs) {
1914		ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)",
1915			ubi->avail_pebs, reserved_pebs);
1916		if (ubi->corr_peb_count)
1917			ubi_err(ubi, "%d PEBs are corrupted and not used",
1918				ubi->corr_peb_count);
1919		err = -ENOSPC;
1920		goto out_free;
1921	}
1922	ubi->avail_pebs -= reserved_pebs;
1923	ubi->rsvd_pebs += reserved_pebs;
1924
1925	/* Schedule wear-leveling if needed */
1926	err = ensure_wear_leveling(ubi, 0);
1927	if (err)
1928		goto out_free;
1929
1930#ifdef CONFIG_MTD_UBI_FASTMAP
1931	if (!ubi->ro_mode && !ubi->fm_disabled)
1932		ubi_ensure_anchor_pebs(ubi);
1933#endif
1934	return 0;
1935
1936out_free:
1937	shutdown_work(ubi);
1938	tree_destroy(ubi, &ubi->used);
1939	tree_destroy(ubi, &ubi->free);
1940	tree_destroy(ubi, &ubi->scrub);
1941	kfree(ubi->lookuptbl);
1942	return err;
1943}
1944
1945/**
1946 * protection_queue_destroy - destroy the protection queue.
1947 * @ubi: UBI device description object
1948 */
1949static void protection_queue_destroy(struct ubi_device *ubi)
1950{
1951	int i;
1952	struct ubi_wl_entry *e, *tmp;
1953
1954	for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) {
1955		list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) {
1956			list_del(&e->u.list);
1957			wl_entry_destroy(ubi, e);
1958		}
1959	}
1960}
1961
1962/**
1963 * ubi_wl_close - close the wear-leveling sub-system.
1964 * @ubi: UBI device description object
1965 */
1966void ubi_wl_close(struct ubi_device *ubi)
1967{
1968	dbg_wl("close the WL sub-system");
1969	ubi_fastmap_close(ubi);
1970	shutdown_work(ubi);
1971	protection_queue_destroy(ubi);
1972	tree_destroy(ubi, &ubi->used);
1973	tree_destroy(ubi, &ubi->erroneous);
1974	tree_destroy(ubi, &ubi->free);
1975	tree_destroy(ubi, &ubi->scrub);
1976	kfree(ubi->lookuptbl);
1977}
1978
1979/**
1980 * self_check_ec - make sure that the erase counter of a PEB is correct.
1981 * @ubi: UBI device description object
1982 * @pnum: the physical eraseblock number to check
1983 * @ec: the erase counter to check
1984 *
1985 * This function returns zero if the erase counter of physical eraseblock @pnum
1986 * is equivalent to @ec, and a negative error code if not or if an error
1987 * occurred.
1988 */
1989static int self_check_ec(struct ubi_device *ubi, int pnum, int ec)
1990{
1991	int err;
1992	long long read_ec;
1993	struct ubi_ec_hdr *ec_hdr;
1994
1995	if (!ubi_dbg_chk_gen(ubi))
1996		return 0;
1997
1998	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1999	if (!ec_hdr)
2000		return -ENOMEM;
2001
2002	err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
2003	if (err && err != UBI_IO_BITFLIPS) {
2004		/* The header does not have to exist */
2005		err = 0;
2006		goto out_free;
2007	}
2008
2009	read_ec = be64_to_cpu(ec_hdr->ec);
2010	if (ec != read_ec && read_ec - ec > 1) {
2011		ubi_err(ubi, "self-check failed for PEB %d", pnum);
2012		ubi_err(ubi, "read EC is %lld, should be %d", read_ec, ec);
2013		dump_stack();
2014		err = 1;
2015	} else
2016		err = 0;
2017
2018out_free:
2019	kfree(ec_hdr);
2020	return err;
2021}
2022
2023/**
2024 * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
2025 * @ubi: UBI device description object
2026 * @e: the wear-leveling entry to check
2027 * @root: the root of the tree
2028 *
2029 * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it
2030 * is not.
2031 */
2032static int self_check_in_wl_tree(const struct ubi_device *ubi,
2033				 struct ubi_wl_entry *e, struct rb_root *root)
2034{
2035	if (!ubi_dbg_chk_gen(ubi))
2036		return 0;
2037
2038	if (in_wl_tree(e, root))
2039		return 0;
2040
2041	ubi_err(ubi, "self-check failed for PEB %d, EC %d, RB-tree %p ",
2042		e->pnum, e->ec, root);
2043	dump_stack();
2044	return -EINVAL;
2045}
2046
2047/**
2048 * self_check_in_pq - check if wear-leveling entry is in the protection
2049 *                        queue.
2050 * @ubi: UBI device description object
2051 * @e: the wear-leveling entry to check
2052 *
2053 * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not.
2054 */
2055static int self_check_in_pq(const struct ubi_device *ubi,
2056			    struct ubi_wl_entry *e)
2057{
2058	if (!ubi_dbg_chk_gen(ubi))
2059		return 0;
2060
2061	if (in_pq(ubi, e))
2062		return 0;
2063
2064	ubi_err(ubi, "self-check failed for PEB %d, EC %d, Protect queue",
2065		e->pnum, e->ec);
2066	dump_stack();
2067	return -EINVAL;
2068}
2069#ifndef CONFIG_MTD_UBI_FASTMAP
2070static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
2071{
2072	struct ubi_wl_entry *e;
2073
2074	e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
2075	self_check_in_wl_tree(ubi, e, &ubi->free);
2076	ubi->free_count--;
2077	ubi_assert(ubi->free_count >= 0);
2078	rb_erase(&e->u.rb, &ubi->free);
2079
2080	return e;
2081}
2082
2083/**
2084 * produce_free_peb - produce a free physical eraseblock.
2085 * @ubi: UBI device description object
2086 *
2087 * This function tries to make a free PEB by means of synchronous execution of
2088 * pending works. This may be needed if, for example the background thread is
2089 * disabled. Returns zero in case of success and a negative error code in case
2090 * of failure.
2091 */
2092static int produce_free_peb(struct ubi_device *ubi)
2093{
2094	int err;
2095
2096	while (!ubi->free.rb_node && ubi->works_count) {
2097		spin_unlock(&ubi->wl_lock);
2098
2099		dbg_wl("do one work synchronously");
2100		err = do_work(ubi);
2101
2102		spin_lock(&ubi->wl_lock);
2103		if (err)
2104			return err;
2105	}
2106
2107	return 0;
2108}
2109
2110/**
2111 * ubi_wl_get_peb - get a physical eraseblock.
2112 * @ubi: UBI device description object
2113 *
2114 * This function returns a physical eraseblock in case of success and a
2115 * negative error code in case of failure.
2116 * Returns with ubi->fm_eba_sem held in read mode!
2117 */
2118int ubi_wl_get_peb(struct ubi_device *ubi)
2119{
2120	int err;
2121	struct ubi_wl_entry *e;
2122
2123retry:
2124	down_read(&ubi->fm_eba_sem);
2125	spin_lock(&ubi->wl_lock);
2126	if (!ubi->free.rb_node) {
2127		if (ubi->works_count == 0) {
2128			ubi_err(ubi, "no free eraseblocks");
2129			ubi_assert(list_empty(&ubi->works));
2130			spin_unlock(&ubi->wl_lock);
2131			return -ENOSPC;
2132		}
2133
2134		err = produce_free_peb(ubi);
2135		if (err < 0) {
2136			spin_unlock(&ubi->wl_lock);
2137			return err;
2138		}
2139		spin_unlock(&ubi->wl_lock);
2140		up_read(&ubi->fm_eba_sem);
2141		goto retry;
2142
2143	}
2144	e = wl_get_wle(ubi);
2145	prot_queue_add(ubi, e);
2146	spin_unlock(&ubi->wl_lock);
2147
2148	err = ubi_self_check_all_ff(ubi, e->pnum, ubi->vid_hdr_aloffset,
2149				    ubi->peb_size - ubi->vid_hdr_aloffset);
2150	if (err) {
2151		ubi_err(ubi, "new PEB %d does not contain all 0xFF bytes", e->pnum);
2152		return err;
2153	}
2154
2155	return e->pnum;
2156}
2157#else
2158#include "fastmap-wl.c"
2159#endif
2160