xref: /kernel/linux/linux-6.6/drivers/mtd/ubi/eba.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Copyright (c) International Business Machines Corp., 2006
4 *
5 * Author: Artem Bityutskiy (Битюцкий Артём)
6 */
7
8/*
9 * The UBI Eraseblock Association (EBA) sub-system.
10 *
11 * This sub-system is responsible for I/O to/from logical eraseblock.
12 *
13 * Although in this implementation the EBA table is fully kept and managed in
14 * RAM, which assumes poor scalability, it might be (partially) maintained on
15 * flash in future implementations.
16 *
17 * The EBA sub-system implements per-logical eraseblock locking. Before
18 * accessing a logical eraseblock it is locked for reading or writing. The
19 * per-logical eraseblock locking is implemented by means of the lock tree. The
20 * lock tree is an RB-tree which refers all the currently locked logical
21 * eraseblocks. The lock tree elements are &struct ubi_ltree_entry objects.
22 * They are indexed by (@vol_id, @lnum) pairs.
23 *
24 * EBA also maintains the global sequence counter which is incremented each
25 * time a logical eraseblock is mapped to a physical eraseblock and it is
26 * stored in the volume identifier header. This means that each VID header has
27 * a unique sequence number. The sequence number is only increased an we assume
28 * 64 bits is enough to never overflow.
29 */
30
31#include <linux/slab.h>
32#include <linux/crc32.h>
33#include <linux/err.h>
34#include "ubi.h"
35
36/* Number of physical eraseblocks reserved for atomic LEB change operation */
37#define EBA_RESERVED_PEBS 1
38
39/**
40 * struct ubi_eba_entry - structure encoding a single LEB -> PEB association
41 * @pnum: the physical eraseblock number attached to the LEB
42 *
43 * This structure is encoding a LEB -> PEB association. Note that the LEB
44 * number is not stored here, because it is the index used to access the
45 * entries table.
46 */
47struct ubi_eba_entry {
48	int pnum;
49};
50
51/**
52 * struct ubi_eba_table - LEB -> PEB association information
53 * @entries: the LEB to PEB mapping (one entry per LEB).
54 *
55 * This structure is private to the EBA logic and should be kept here.
56 * It is encoding the LEB to PEB association table, and is subject to
57 * changes.
58 */
59struct ubi_eba_table {
60	struct ubi_eba_entry *entries;
61};
62
63/**
64 * ubi_next_sqnum - get next sequence number.
65 * @ubi: UBI device description object
66 *
67 * This function returns next sequence number to use, which is just the current
68 * global sequence counter value. It also increases the global sequence
69 * counter.
70 */
71unsigned long long ubi_next_sqnum(struct ubi_device *ubi)
72{
73	unsigned long long sqnum;
74
75	spin_lock(&ubi->ltree_lock);
76	sqnum = ubi->global_sqnum++;
77	spin_unlock(&ubi->ltree_lock);
78
79	return sqnum;
80}
81
82/**
83 * ubi_get_compat - get compatibility flags of a volume.
84 * @ubi: UBI device description object
85 * @vol_id: volume ID
86 *
87 * This function returns compatibility flags for an internal volume. User
88 * volumes have no compatibility flags, so %0 is returned.
89 */
90static int ubi_get_compat(const struct ubi_device *ubi, int vol_id)
91{
92	if (vol_id == UBI_LAYOUT_VOLUME_ID)
93		return UBI_LAYOUT_VOLUME_COMPAT;
94	return 0;
95}
96
97/**
98 * ubi_eba_get_ldesc - get information about a LEB
99 * @vol: volume description object
100 * @lnum: logical eraseblock number
101 * @ldesc: the LEB descriptor to fill
102 *
103 * Used to query information about a specific LEB.
104 * It is currently only returning the physical position of the LEB, but will be
105 * extended to provide more information.
106 */
107void ubi_eba_get_ldesc(struct ubi_volume *vol, int lnum,
108		       struct ubi_eba_leb_desc *ldesc)
109{
110	ldesc->lnum = lnum;
111	ldesc->pnum = vol->eba_tbl->entries[lnum].pnum;
112}
113
114/**
115 * ubi_eba_create_table - allocate a new EBA table and initialize it with all
116 *			  LEBs unmapped
117 * @vol: volume containing the EBA table to copy
118 * @nentries: number of entries in the table
119 *
120 * Allocate a new EBA table and initialize it with all LEBs unmapped.
121 * Returns a valid pointer if it succeed, an ERR_PTR() otherwise.
122 */
123struct ubi_eba_table *ubi_eba_create_table(struct ubi_volume *vol,
124					   int nentries)
125{
126	struct ubi_eba_table *tbl;
127	int err = -ENOMEM;
128	int i;
129
130	tbl = kzalloc(sizeof(*tbl), GFP_KERNEL);
131	if (!tbl)
132		return ERR_PTR(-ENOMEM);
133
134	tbl->entries = kmalloc_array(nentries, sizeof(*tbl->entries),
135				     GFP_KERNEL);
136	if (!tbl->entries)
137		goto err;
138
139	for (i = 0; i < nentries; i++)
140		tbl->entries[i].pnum = UBI_LEB_UNMAPPED;
141
142	return tbl;
143
144err:
145	kfree(tbl);
146
147	return ERR_PTR(err);
148}
149
150/**
151 * ubi_eba_destroy_table - destroy an EBA table
152 * @tbl: the table to destroy
153 *
154 * Destroy an EBA table.
155 */
156void ubi_eba_destroy_table(struct ubi_eba_table *tbl)
157{
158	if (!tbl)
159		return;
160
161	kfree(tbl->entries);
162	kfree(tbl);
163}
164
165/**
166 * ubi_eba_copy_table - copy the EBA table attached to vol into another table
167 * @vol: volume containing the EBA table to copy
168 * @dst: destination
169 * @nentries: number of entries to copy
170 *
171 * Copy the EBA table stored in vol into the one pointed by dst.
172 */
173void ubi_eba_copy_table(struct ubi_volume *vol, struct ubi_eba_table *dst,
174			int nentries)
175{
176	struct ubi_eba_table *src;
177	int i;
178
179	ubi_assert(dst && vol && vol->eba_tbl);
180
181	src = vol->eba_tbl;
182
183	for (i = 0; i < nentries; i++)
184		dst->entries[i].pnum = src->entries[i].pnum;
185}
186
187/**
188 * ubi_eba_replace_table - assign a new EBA table to a volume
189 * @vol: volume containing the EBA table to copy
190 * @tbl: new EBA table
191 *
192 * Assign a new EBA table to the volume and release the old one.
193 */
194void ubi_eba_replace_table(struct ubi_volume *vol, struct ubi_eba_table *tbl)
195{
196	ubi_eba_destroy_table(vol->eba_tbl);
197	vol->eba_tbl = tbl;
198}
199
200/**
201 * ltree_lookup - look up the lock tree.
202 * @ubi: UBI device description object
203 * @vol_id: volume ID
204 * @lnum: logical eraseblock number
205 *
206 * This function returns a pointer to the corresponding &struct ubi_ltree_entry
207 * object if the logical eraseblock is locked and %NULL if it is not.
208 * @ubi->ltree_lock has to be locked.
209 */
210static struct ubi_ltree_entry *ltree_lookup(struct ubi_device *ubi, int vol_id,
211					    int lnum)
212{
213	struct rb_node *p;
214
215	p = ubi->ltree.rb_node;
216	while (p) {
217		struct ubi_ltree_entry *le;
218
219		le = rb_entry(p, struct ubi_ltree_entry, rb);
220
221		if (vol_id < le->vol_id)
222			p = p->rb_left;
223		else if (vol_id > le->vol_id)
224			p = p->rb_right;
225		else {
226			if (lnum < le->lnum)
227				p = p->rb_left;
228			else if (lnum > le->lnum)
229				p = p->rb_right;
230			else
231				return le;
232		}
233	}
234
235	return NULL;
236}
237
238/**
239 * ltree_add_entry - add new entry to the lock tree.
240 * @ubi: UBI device description object
241 * @vol_id: volume ID
242 * @lnum: logical eraseblock number
243 *
244 * This function adds new entry for logical eraseblock (@vol_id, @lnum) to the
245 * lock tree. If such entry is already there, its usage counter is increased.
246 * Returns pointer to the lock tree entry or %-ENOMEM if memory allocation
247 * failed.
248 */
249static struct ubi_ltree_entry *ltree_add_entry(struct ubi_device *ubi,
250					       int vol_id, int lnum)
251{
252	struct ubi_ltree_entry *le, *le1, *le_free;
253
254	le = kmalloc(sizeof(struct ubi_ltree_entry), GFP_NOFS);
255	if (!le)
256		return ERR_PTR(-ENOMEM);
257
258	le->users = 0;
259	init_rwsem(&le->mutex);
260	le->vol_id = vol_id;
261	le->lnum = lnum;
262
263	spin_lock(&ubi->ltree_lock);
264	le1 = ltree_lookup(ubi, vol_id, lnum);
265
266	if (le1) {
267		/*
268		 * This logical eraseblock is already locked. The newly
269		 * allocated lock entry is not needed.
270		 */
271		le_free = le;
272		le = le1;
273	} else {
274		struct rb_node **p, *parent = NULL;
275
276		/*
277		 * No lock entry, add the newly allocated one to the
278		 * @ubi->ltree RB-tree.
279		 */
280		le_free = NULL;
281
282		p = &ubi->ltree.rb_node;
283		while (*p) {
284			parent = *p;
285			le1 = rb_entry(parent, struct ubi_ltree_entry, rb);
286
287			if (vol_id < le1->vol_id)
288				p = &(*p)->rb_left;
289			else if (vol_id > le1->vol_id)
290				p = &(*p)->rb_right;
291			else {
292				ubi_assert(lnum != le1->lnum);
293				if (lnum < le1->lnum)
294					p = &(*p)->rb_left;
295				else
296					p = &(*p)->rb_right;
297			}
298		}
299
300		rb_link_node(&le->rb, parent, p);
301		rb_insert_color(&le->rb, &ubi->ltree);
302	}
303	le->users += 1;
304	spin_unlock(&ubi->ltree_lock);
305
306	kfree(le_free);
307	return le;
308}
309
310/**
311 * leb_read_lock - lock logical eraseblock for reading.
312 * @ubi: UBI device description object
313 * @vol_id: volume ID
314 * @lnum: logical eraseblock number
315 *
316 * This function locks a logical eraseblock for reading. Returns zero in case
317 * of success and a negative error code in case of failure.
318 */
319static int leb_read_lock(struct ubi_device *ubi, int vol_id, int lnum)
320{
321	struct ubi_ltree_entry *le;
322
323	le = ltree_add_entry(ubi, vol_id, lnum);
324	if (IS_ERR(le))
325		return PTR_ERR(le);
326	down_read(&le->mutex);
327	return 0;
328}
329
330/**
331 * leb_read_unlock - unlock logical eraseblock.
332 * @ubi: UBI device description object
333 * @vol_id: volume ID
334 * @lnum: logical eraseblock number
335 */
336static void leb_read_unlock(struct ubi_device *ubi, int vol_id, int lnum)
337{
338	struct ubi_ltree_entry *le;
339
340	spin_lock(&ubi->ltree_lock);
341	le = ltree_lookup(ubi, vol_id, lnum);
342	le->users -= 1;
343	ubi_assert(le->users >= 0);
344	up_read(&le->mutex);
345	if (le->users == 0) {
346		rb_erase(&le->rb, &ubi->ltree);
347		kfree(le);
348	}
349	spin_unlock(&ubi->ltree_lock);
350}
351
352/**
353 * leb_write_lock - lock logical eraseblock for writing.
354 * @ubi: UBI device description object
355 * @vol_id: volume ID
356 * @lnum: logical eraseblock number
357 *
358 * This function locks a logical eraseblock for writing. Returns zero in case
359 * of success and a negative error code in case of failure.
360 */
361static int leb_write_lock(struct ubi_device *ubi, int vol_id, int lnum)
362{
363	struct ubi_ltree_entry *le;
364
365	le = ltree_add_entry(ubi, vol_id, lnum);
366	if (IS_ERR(le))
367		return PTR_ERR(le);
368	down_write(&le->mutex);
369	return 0;
370}
371
372/**
373 * leb_write_trylock - try to lock logical eraseblock for writing.
374 * @ubi: UBI device description object
375 * @vol_id: volume ID
376 * @lnum: logical eraseblock number
377 *
378 * This function locks a logical eraseblock for writing if there is no
379 * contention and does nothing if there is contention. Returns %0 in case of
380 * success, %1 in case of contention, and a negative error code in case of
381 * failure.
382 */
383static int leb_write_trylock(struct ubi_device *ubi, int vol_id, int lnum)
384{
385	struct ubi_ltree_entry *le;
386
387	le = ltree_add_entry(ubi, vol_id, lnum);
388	if (IS_ERR(le))
389		return PTR_ERR(le);
390	if (down_write_trylock(&le->mutex))
391		return 0;
392
393	/* Contention, cancel */
394	spin_lock(&ubi->ltree_lock);
395	le->users -= 1;
396	ubi_assert(le->users >= 0);
397	if (le->users == 0) {
398		rb_erase(&le->rb, &ubi->ltree);
399		kfree(le);
400	}
401	spin_unlock(&ubi->ltree_lock);
402
403	return 1;
404}
405
406/**
407 * leb_write_unlock - unlock logical eraseblock.
408 * @ubi: UBI device description object
409 * @vol_id: volume ID
410 * @lnum: logical eraseblock number
411 */
412static void leb_write_unlock(struct ubi_device *ubi, int vol_id, int lnum)
413{
414	struct ubi_ltree_entry *le;
415
416	spin_lock(&ubi->ltree_lock);
417	le = ltree_lookup(ubi, vol_id, lnum);
418	le->users -= 1;
419	ubi_assert(le->users >= 0);
420	up_write(&le->mutex);
421	if (le->users == 0) {
422		rb_erase(&le->rb, &ubi->ltree);
423		kfree(le);
424	}
425	spin_unlock(&ubi->ltree_lock);
426}
427
428/**
429 * ubi_eba_is_mapped - check if a LEB is mapped.
430 * @vol: volume description object
431 * @lnum: logical eraseblock number
432 *
433 * This function returns true if the LEB is mapped, false otherwise.
434 */
435bool ubi_eba_is_mapped(struct ubi_volume *vol, int lnum)
436{
437	return vol->eba_tbl->entries[lnum].pnum >= 0;
438}
439
440/**
441 * ubi_eba_unmap_leb - un-map logical eraseblock.
442 * @ubi: UBI device description object
443 * @vol: volume description object
444 * @lnum: logical eraseblock number
445 *
446 * This function un-maps logical eraseblock @lnum and schedules corresponding
447 * physical eraseblock for erasure. Returns zero in case of success and a
448 * negative error code in case of failure.
449 */
450int ubi_eba_unmap_leb(struct ubi_device *ubi, struct ubi_volume *vol,
451		      int lnum)
452{
453	int err, pnum, vol_id = vol->vol_id;
454
455	if (ubi->ro_mode)
456		return -EROFS;
457
458	err = leb_write_lock(ubi, vol_id, lnum);
459	if (err)
460		return err;
461
462	pnum = vol->eba_tbl->entries[lnum].pnum;
463	if (pnum < 0)
464		/* This logical eraseblock is already unmapped */
465		goto out_unlock;
466
467	dbg_eba("erase LEB %d:%d, PEB %d", vol_id, lnum, pnum);
468
469	down_read(&ubi->fm_eba_sem);
470	vol->eba_tbl->entries[lnum].pnum = UBI_LEB_UNMAPPED;
471	up_read(&ubi->fm_eba_sem);
472	err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 0);
473
474out_unlock:
475	leb_write_unlock(ubi, vol_id, lnum);
476	return err;
477}
478
479#ifdef CONFIG_MTD_UBI_FASTMAP
480/**
481 * check_mapping - check and fixup a mapping
482 * @ubi: UBI device description object
483 * @vol: volume description object
484 * @lnum: logical eraseblock number
485 * @pnum: physical eraseblock number
486 *
487 * Checks whether a given mapping is valid. Fastmap cannot track LEB unmap
488 * operations, if such an operation is interrupted the mapping still looks
489 * good, but upon first read an ECC is reported to the upper layer.
490 * Normaly during the full-scan at attach time this is fixed, for Fastmap
491 * we have to deal with it while reading.
492 * If the PEB behind a LEB shows this symthom we change the mapping to
493 * %UBI_LEB_UNMAPPED and schedule the PEB for erasure.
494 *
495 * Returns 0 on success, negative error code in case of failure.
496 */
497static int check_mapping(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
498			 int *pnum)
499{
500	int err;
501	struct ubi_vid_io_buf *vidb;
502	struct ubi_vid_hdr *vid_hdr;
503
504	if (!ubi->fast_attach)
505		return 0;
506
507	if (!vol->checkmap || test_bit(lnum, vol->checkmap))
508		return 0;
509
510	vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
511	if (!vidb)
512		return -ENOMEM;
513
514	err = ubi_io_read_vid_hdr(ubi, *pnum, vidb, 0);
515	if (err > 0 && err != UBI_IO_BITFLIPS) {
516		int torture = 0;
517
518		switch (err) {
519			case UBI_IO_FF:
520			case UBI_IO_FF_BITFLIPS:
521			case UBI_IO_BAD_HDR:
522			case UBI_IO_BAD_HDR_EBADMSG:
523				break;
524			default:
525				ubi_assert(0);
526		}
527
528		if (err == UBI_IO_BAD_HDR_EBADMSG || err == UBI_IO_FF_BITFLIPS)
529			torture = 1;
530
531		down_read(&ubi->fm_eba_sem);
532		vol->eba_tbl->entries[lnum].pnum = UBI_LEB_UNMAPPED;
533		up_read(&ubi->fm_eba_sem);
534		ubi_wl_put_peb(ubi, vol->vol_id, lnum, *pnum, torture);
535
536		*pnum = UBI_LEB_UNMAPPED;
537	} else if (err < 0) {
538		ubi_err(ubi, "unable to read VID header back from PEB %i: %i",
539			*pnum, err);
540
541		goto out_free;
542	} else {
543		int found_vol_id, found_lnum;
544
545		ubi_assert(err == 0 || err == UBI_IO_BITFLIPS);
546
547		vid_hdr = ubi_get_vid_hdr(vidb);
548		found_vol_id = be32_to_cpu(vid_hdr->vol_id);
549		found_lnum = be32_to_cpu(vid_hdr->lnum);
550
551		if (found_lnum != lnum || found_vol_id != vol->vol_id) {
552			ubi_err(ubi, "EBA mismatch! PEB %i is LEB %i:%i instead of LEB %i:%i",
553				*pnum, found_vol_id, found_lnum, vol->vol_id, lnum);
554			ubi_ro_mode(ubi);
555			err = -EINVAL;
556			goto out_free;
557		}
558	}
559
560	set_bit(lnum, vol->checkmap);
561	err = 0;
562
563out_free:
564	ubi_free_vid_buf(vidb);
565
566	return err;
567}
568#else
569static int check_mapping(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
570		  int *pnum)
571{
572	return 0;
573}
574#endif
575
576/**
577 * ubi_eba_read_leb - read data.
578 * @ubi: UBI device description object
579 * @vol: volume description object
580 * @lnum: logical eraseblock number
581 * @buf: buffer to store the read data
582 * @offset: offset from where to read
583 * @len: how many bytes to read
584 * @check: data CRC check flag
585 *
586 * If the logical eraseblock @lnum is unmapped, @buf is filled with 0xFF
587 * bytes. The @check flag only makes sense for static volumes and forces
588 * eraseblock data CRC checking.
589 *
590 * In case of success this function returns zero. In case of a static volume,
591 * if data CRC mismatches - %-EBADMSG is returned. %-EBADMSG may also be
592 * returned for any volume type if an ECC error was detected by the MTD device
593 * driver. Other negative error cored may be returned in case of other errors.
594 */
595int ubi_eba_read_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
596		     void *buf, int offset, int len, int check)
597{
598	int err, pnum, scrub = 0, vol_id = vol->vol_id;
599	struct ubi_vid_io_buf *vidb;
600	struct ubi_vid_hdr *vid_hdr;
601	uint32_t crc;
602
603	err = leb_read_lock(ubi, vol_id, lnum);
604	if (err)
605		return err;
606
607	pnum = vol->eba_tbl->entries[lnum].pnum;
608	if (pnum >= 0) {
609		err = check_mapping(ubi, vol, lnum, &pnum);
610		if (err < 0)
611			goto out_unlock;
612	}
613
614	if (pnum == UBI_LEB_UNMAPPED) {
615		/*
616		 * The logical eraseblock is not mapped, fill the whole buffer
617		 * with 0xFF bytes. The exception is static volumes for which
618		 * it is an error to read unmapped logical eraseblocks.
619		 */
620		dbg_eba("read %d bytes from offset %d of LEB %d:%d (unmapped)",
621			len, offset, vol_id, lnum);
622		leb_read_unlock(ubi, vol_id, lnum);
623		ubi_assert(vol->vol_type != UBI_STATIC_VOLUME);
624		memset(buf, 0xFF, len);
625		return 0;
626	}
627
628	dbg_eba("read %d bytes from offset %d of LEB %d:%d, PEB %d",
629		len, offset, vol_id, lnum, pnum);
630
631	if (vol->vol_type == UBI_DYNAMIC_VOLUME)
632		check = 0;
633
634retry:
635	if (check) {
636		vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
637		if (!vidb) {
638			err = -ENOMEM;
639			goto out_unlock;
640		}
641
642		vid_hdr = ubi_get_vid_hdr(vidb);
643
644		err = ubi_io_read_vid_hdr(ubi, pnum, vidb, 1);
645		if (err && err != UBI_IO_BITFLIPS) {
646			if (err > 0) {
647				/*
648				 * The header is either absent or corrupted.
649				 * The former case means there is a bug -
650				 * switch to read-only mode just in case.
651				 * The latter case means a real corruption - we
652				 * may try to recover data. FIXME: but this is
653				 * not implemented.
654				 */
655				if (err == UBI_IO_BAD_HDR_EBADMSG ||
656				    err == UBI_IO_BAD_HDR) {
657					ubi_warn(ubi, "corrupted VID header at PEB %d, LEB %d:%d",
658						 pnum, vol_id, lnum);
659					err = -EBADMSG;
660				} else {
661					/*
662					 * Ending up here in the non-Fastmap case
663					 * is a clear bug as the VID header had to
664					 * be present at scan time to have it referenced.
665					 * With fastmap the story is more complicated.
666					 * Fastmap has the mapping info without the need
667					 * of a full scan. So the LEB could have been
668					 * unmapped, Fastmap cannot know this and keeps
669					 * the LEB referenced.
670					 * This is valid and works as the layer above UBI
671					 * has to do bookkeeping about used/referenced
672					 * LEBs in any case.
673					 */
674					if (ubi->fast_attach) {
675						err = -EBADMSG;
676					} else {
677						err = -EINVAL;
678						ubi_ro_mode(ubi);
679					}
680				}
681			}
682			goto out_free;
683		} else if (err == UBI_IO_BITFLIPS)
684			scrub = 1;
685
686		ubi_assert(lnum < be32_to_cpu(vid_hdr->used_ebs));
687		ubi_assert(len == be32_to_cpu(vid_hdr->data_size));
688
689		crc = be32_to_cpu(vid_hdr->data_crc);
690		ubi_free_vid_buf(vidb);
691	}
692
693	err = ubi_io_read_data(ubi, buf, pnum, offset, len);
694	if (err) {
695		if (err == UBI_IO_BITFLIPS)
696			scrub = 1;
697		else if (mtd_is_eccerr(err)) {
698			if (vol->vol_type == UBI_DYNAMIC_VOLUME)
699				goto out_unlock;
700			scrub = 1;
701			if (!check) {
702				ubi_msg(ubi, "force data checking");
703				check = 1;
704				goto retry;
705			}
706		} else
707			goto out_unlock;
708	}
709
710	if (check) {
711		uint32_t crc1 = crc32(UBI_CRC32_INIT, buf, len);
712		if (crc1 != crc) {
713			ubi_warn(ubi, "CRC error: calculated %#08x, must be %#08x",
714				 crc1, crc);
715			err = -EBADMSG;
716			goto out_unlock;
717		}
718	}
719
720	if (scrub)
721		err = ubi_wl_scrub_peb(ubi, pnum);
722
723	leb_read_unlock(ubi, vol_id, lnum);
724	return err;
725
726out_free:
727	ubi_free_vid_buf(vidb);
728out_unlock:
729	leb_read_unlock(ubi, vol_id, lnum);
730	return err;
731}
732
733/**
734 * ubi_eba_read_leb_sg - read data into a scatter gather list.
735 * @ubi: UBI device description object
736 * @vol: volume description object
737 * @lnum: logical eraseblock number
738 * @sgl: UBI scatter gather list to store the read data
739 * @offset: offset from where to read
740 * @len: how many bytes to read
741 * @check: data CRC check flag
742 *
743 * This function works exactly like ubi_eba_read_leb(). But instead of
744 * storing the read data into a buffer it writes to an UBI scatter gather
745 * list.
746 */
747int ubi_eba_read_leb_sg(struct ubi_device *ubi, struct ubi_volume *vol,
748			struct ubi_sgl *sgl, int lnum, int offset, int len,
749			int check)
750{
751	int to_read;
752	int ret;
753	struct scatterlist *sg;
754
755	for (;;) {
756		ubi_assert(sgl->list_pos < UBI_MAX_SG_COUNT);
757		sg = &sgl->sg[sgl->list_pos];
758		if (len < sg->length - sgl->page_pos)
759			to_read = len;
760		else
761			to_read = sg->length - sgl->page_pos;
762
763		ret = ubi_eba_read_leb(ubi, vol, lnum,
764				       sg_virt(sg) + sgl->page_pos, offset,
765				       to_read, check);
766		if (ret < 0)
767			return ret;
768
769		offset += to_read;
770		len -= to_read;
771		if (!len) {
772			sgl->page_pos += to_read;
773			if (sgl->page_pos == sg->length) {
774				sgl->list_pos++;
775				sgl->page_pos = 0;
776			}
777
778			break;
779		}
780
781		sgl->list_pos++;
782		sgl->page_pos = 0;
783	}
784
785	return ret;
786}
787
788/**
789 * try_recover_peb - try to recover from write failure.
790 * @vol: volume description object
791 * @pnum: the physical eraseblock to recover
792 * @lnum: logical eraseblock number
793 * @buf: data which was not written because of the write failure
794 * @offset: offset of the failed write
795 * @len: how many bytes should have been written
796 * @vidb: VID buffer
797 * @retry: whether the caller should retry in case of failure
798 *
799 * This function is called in case of a write failure and moves all good data
800 * from the potentially bad physical eraseblock to a good physical eraseblock.
801 * This function also writes the data which was not written due to the failure.
802 * Returns 0 in case of success, and a negative error code in case of failure.
803 * In case of failure, the %retry parameter is set to false if this is a fatal
804 * error (retrying won't help), and true otherwise.
805 */
806static int try_recover_peb(struct ubi_volume *vol, int pnum, int lnum,
807			   const void *buf, int offset, int len,
808			   struct ubi_vid_io_buf *vidb, bool *retry)
809{
810	struct ubi_device *ubi = vol->ubi;
811	struct ubi_vid_hdr *vid_hdr;
812	int new_pnum, err, vol_id = vol->vol_id, data_size;
813	uint32_t crc;
814
815	*retry = false;
816
817	new_pnum = ubi_wl_get_peb(ubi);
818	if (new_pnum < 0) {
819		err = new_pnum;
820		goto out_put;
821	}
822
823	ubi_msg(ubi, "recover PEB %d, move data to PEB %d",
824		pnum, new_pnum);
825
826	err = ubi_io_read_vid_hdr(ubi, pnum, vidb, 1);
827	if (err && err != UBI_IO_BITFLIPS) {
828		if (err > 0)
829			err = -EIO;
830		goto out_put;
831	}
832
833	vid_hdr = ubi_get_vid_hdr(vidb);
834	ubi_assert(vid_hdr->vol_type == UBI_VID_DYNAMIC);
835
836	mutex_lock(&ubi->buf_mutex);
837	memset(ubi->peb_buf + offset, 0xFF, len);
838
839	/* Read everything before the area where the write failure happened */
840	if (offset > 0) {
841		err = ubi_io_read_data(ubi, ubi->peb_buf, pnum, 0, offset);
842		if (err && err != UBI_IO_BITFLIPS)
843			goto out_unlock;
844	}
845
846	*retry = true;
847
848	memcpy(ubi->peb_buf + offset, buf, len);
849
850	data_size = offset + len;
851	crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, data_size);
852	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
853	vid_hdr->copy_flag = 1;
854	vid_hdr->data_size = cpu_to_be32(data_size);
855	vid_hdr->data_crc = cpu_to_be32(crc);
856	err = ubi_io_write_vid_hdr(ubi, new_pnum, vidb);
857	if (err)
858		goto out_unlock;
859
860	err = ubi_io_write_data(ubi, ubi->peb_buf, new_pnum, 0, data_size);
861
862out_unlock:
863	mutex_unlock(&ubi->buf_mutex);
864
865	if (!err)
866		vol->eba_tbl->entries[lnum].pnum = new_pnum;
867
868out_put:
869	up_read(&ubi->fm_eba_sem);
870
871	if (!err) {
872		ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
873		ubi_msg(ubi, "data was successfully recovered");
874	} else if (new_pnum >= 0) {
875		/*
876		 * Bad luck? This physical eraseblock is bad too? Crud. Let's
877		 * try to get another one.
878		 */
879		ubi_wl_put_peb(ubi, vol_id, lnum, new_pnum, 1);
880		ubi_warn(ubi, "failed to write to PEB %d", new_pnum);
881	}
882
883	return err;
884}
885
886/**
887 * recover_peb - recover from write failure.
888 * @ubi: UBI device description object
889 * @pnum: the physical eraseblock to recover
890 * @vol_id: volume ID
891 * @lnum: logical eraseblock number
892 * @buf: data which was not written because of the write failure
893 * @offset: offset of the failed write
894 * @len: how many bytes should have been written
895 *
896 * This function is called in case of a write failure and moves all good data
897 * from the potentially bad physical eraseblock to a good physical eraseblock.
898 * This function also writes the data which was not written due to the failure.
899 * Returns 0 in case of success, and a negative error code in case of failure.
900 * This function tries %UBI_IO_RETRIES before giving up.
901 */
902static int recover_peb(struct ubi_device *ubi, int pnum, int vol_id, int lnum,
903		       const void *buf, int offset, int len)
904{
905	int err, idx = vol_id2idx(ubi, vol_id), tries;
906	struct ubi_volume *vol = ubi->volumes[idx];
907	struct ubi_vid_io_buf *vidb;
908
909	vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
910	if (!vidb)
911		return -ENOMEM;
912
913	for (tries = 0; tries <= UBI_IO_RETRIES; tries++) {
914		bool retry;
915
916		err = try_recover_peb(vol, pnum, lnum, buf, offset, len, vidb,
917				      &retry);
918		if (!err || !retry)
919			break;
920
921		ubi_msg(ubi, "try again");
922	}
923
924	ubi_free_vid_buf(vidb);
925
926	return err;
927}
928
929/**
930 * try_write_vid_and_data - try to write VID header and data to a new PEB.
931 * @vol: volume description object
932 * @lnum: logical eraseblock number
933 * @vidb: the VID buffer to write
934 * @buf: buffer containing the data
935 * @offset: where to start writing data
936 * @len: how many bytes should be written
937 *
938 * This function tries to write VID header and data belonging to logical
939 * eraseblock @lnum of volume @vol to a new physical eraseblock. Returns zero
940 * in case of success and a negative error code in case of failure.
941 * In case of error, it is possible that something was still written to the
942 * flash media, but may be some garbage.
943 */
944static int try_write_vid_and_data(struct ubi_volume *vol, int lnum,
945				  struct ubi_vid_io_buf *vidb, const void *buf,
946				  int offset, int len)
947{
948	struct ubi_device *ubi = vol->ubi;
949	int pnum, opnum, err, err2, vol_id = vol->vol_id;
950
951	pnum = ubi_wl_get_peb(ubi);
952	if (pnum < 0) {
953		err = pnum;
954		goto out_put;
955	}
956
957	opnum = vol->eba_tbl->entries[lnum].pnum;
958
959	dbg_eba("write VID hdr and %d bytes at offset %d of LEB %d:%d, PEB %d",
960		len, offset, vol_id, lnum, pnum);
961
962	err = ubi_io_write_vid_hdr(ubi, pnum, vidb);
963	if (err) {
964		ubi_warn(ubi, "failed to write VID header to LEB %d:%d, PEB %d",
965			 vol_id, lnum, pnum);
966		goto out_put;
967	}
968
969	if (len) {
970		err = ubi_io_write_data(ubi, buf, pnum, offset, len);
971		if (err) {
972			ubi_warn(ubi,
973				 "failed to write %d bytes at offset %d of LEB %d:%d, PEB %d",
974				 len, offset, vol_id, lnum, pnum);
975			goto out_put;
976		}
977	}
978
979	vol->eba_tbl->entries[lnum].pnum = pnum;
980
981out_put:
982	up_read(&ubi->fm_eba_sem);
983
984	if (err && pnum >= 0) {
985		err2 = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
986		if (err2) {
987			ubi_warn(ubi, "failed to return physical eraseblock %d, error %d",
988				 pnum, err2);
989		}
990	} else if (!err && opnum >= 0) {
991		err2 = ubi_wl_put_peb(ubi, vol_id, lnum, opnum, 0);
992		if (err2) {
993			ubi_warn(ubi, "failed to return physical eraseblock %d, error %d",
994				 opnum, err2);
995		}
996	}
997
998	return err;
999}
1000
1001/**
1002 * ubi_eba_write_leb - write data to dynamic volume.
1003 * @ubi: UBI device description object
1004 * @vol: volume description object
1005 * @lnum: logical eraseblock number
1006 * @buf: the data to write
1007 * @offset: offset within the logical eraseblock where to write
1008 * @len: how many bytes to write
1009 *
1010 * This function writes data to logical eraseblock @lnum of a dynamic volume
1011 * @vol. Returns zero in case of success and a negative error code in case
1012 * of failure. In case of error, it is possible that something was still
1013 * written to the flash media, but may be some garbage.
1014 * This function retries %UBI_IO_RETRIES times before giving up.
1015 */
1016int ubi_eba_write_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
1017		      const void *buf, int offset, int len)
1018{
1019	int err, pnum, tries, vol_id = vol->vol_id;
1020	struct ubi_vid_io_buf *vidb;
1021	struct ubi_vid_hdr *vid_hdr;
1022
1023	if (ubi->ro_mode)
1024		return -EROFS;
1025
1026	err = leb_write_lock(ubi, vol_id, lnum);
1027	if (err)
1028		return err;
1029
1030	pnum = vol->eba_tbl->entries[lnum].pnum;
1031	if (pnum >= 0) {
1032		err = check_mapping(ubi, vol, lnum, &pnum);
1033		if (err < 0)
1034			goto out;
1035	}
1036
1037	if (pnum >= 0) {
1038		dbg_eba("write %d bytes at offset %d of LEB %d:%d, PEB %d",
1039			len, offset, vol_id, lnum, pnum);
1040
1041		err = ubi_io_write_data(ubi, buf, pnum, offset, len);
1042		if (err) {
1043			ubi_warn(ubi, "failed to write data to PEB %d", pnum);
1044			if (err == -EIO && ubi->bad_allowed)
1045				err = recover_peb(ubi, pnum, vol_id, lnum, buf,
1046						  offset, len);
1047		}
1048
1049		goto out;
1050	}
1051
1052	/*
1053	 * The logical eraseblock is not mapped. We have to get a free physical
1054	 * eraseblock and write the volume identifier header there first.
1055	 */
1056	vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
1057	if (!vidb) {
1058		leb_write_unlock(ubi, vol_id, lnum);
1059		return -ENOMEM;
1060	}
1061
1062	vid_hdr = ubi_get_vid_hdr(vidb);
1063
1064	vid_hdr->vol_type = UBI_VID_DYNAMIC;
1065	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1066	vid_hdr->vol_id = cpu_to_be32(vol_id);
1067	vid_hdr->lnum = cpu_to_be32(lnum);
1068	vid_hdr->compat = ubi_get_compat(ubi, vol_id);
1069	vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
1070
1071	for (tries = 0; tries <= UBI_IO_RETRIES; tries++) {
1072		err = try_write_vid_and_data(vol, lnum, vidb, buf, offset, len);
1073		if (err != -EIO || !ubi->bad_allowed)
1074			break;
1075
1076		/*
1077		 * Fortunately, this is the first write operation to this
1078		 * physical eraseblock, so just put it and request a new one.
1079		 * We assume that if this physical eraseblock went bad, the
1080		 * erase code will handle that.
1081		 */
1082		vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1083		ubi_msg(ubi, "try another PEB");
1084	}
1085
1086	ubi_free_vid_buf(vidb);
1087
1088out:
1089	if (err)
1090		ubi_ro_mode(ubi);
1091
1092	leb_write_unlock(ubi, vol_id, lnum);
1093
1094	return err;
1095}
1096
1097/**
1098 * ubi_eba_write_leb_st - write data to static volume.
1099 * @ubi: UBI device description object
1100 * @vol: volume description object
1101 * @lnum: logical eraseblock number
1102 * @buf: data to write
1103 * @len: how many bytes to write
1104 * @used_ebs: how many logical eraseblocks will this volume contain
1105 *
1106 * This function writes data to logical eraseblock @lnum of static volume
1107 * @vol. The @used_ebs argument should contain total number of logical
1108 * eraseblock in this static volume.
1109 *
1110 * When writing to the last logical eraseblock, the @len argument doesn't have
1111 * to be aligned to the minimal I/O unit size. Instead, it has to be equivalent
1112 * to the real data size, although the @buf buffer has to contain the
1113 * alignment. In all other cases, @len has to be aligned.
1114 *
1115 * It is prohibited to write more than once to logical eraseblocks of static
1116 * volumes. This function returns zero in case of success and a negative error
1117 * code in case of failure.
1118 */
1119int ubi_eba_write_leb_st(struct ubi_device *ubi, struct ubi_volume *vol,
1120			 int lnum, const void *buf, int len, int used_ebs)
1121{
1122	int err, tries, data_size = len, vol_id = vol->vol_id;
1123	struct ubi_vid_io_buf *vidb;
1124	struct ubi_vid_hdr *vid_hdr;
1125	uint32_t crc;
1126
1127	if (ubi->ro_mode)
1128		return -EROFS;
1129
1130	if (lnum == used_ebs - 1)
1131		/* If this is the last LEB @len may be unaligned */
1132		len = ALIGN(data_size, ubi->min_io_size);
1133	else
1134		ubi_assert(!(len & (ubi->min_io_size - 1)));
1135
1136	vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
1137	if (!vidb)
1138		return -ENOMEM;
1139
1140	vid_hdr = ubi_get_vid_hdr(vidb);
1141
1142	err = leb_write_lock(ubi, vol_id, lnum);
1143	if (err)
1144		goto out;
1145
1146	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1147	vid_hdr->vol_id = cpu_to_be32(vol_id);
1148	vid_hdr->lnum = cpu_to_be32(lnum);
1149	vid_hdr->compat = ubi_get_compat(ubi, vol_id);
1150	vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
1151
1152	crc = crc32(UBI_CRC32_INIT, buf, data_size);
1153	vid_hdr->vol_type = UBI_VID_STATIC;
1154	vid_hdr->data_size = cpu_to_be32(data_size);
1155	vid_hdr->used_ebs = cpu_to_be32(used_ebs);
1156	vid_hdr->data_crc = cpu_to_be32(crc);
1157
1158	ubi_assert(vol->eba_tbl->entries[lnum].pnum < 0);
1159
1160	for (tries = 0; tries <= UBI_IO_RETRIES; tries++) {
1161		err = try_write_vid_and_data(vol, lnum, vidb, buf, 0, len);
1162		if (err != -EIO || !ubi->bad_allowed)
1163			break;
1164
1165		vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1166		ubi_msg(ubi, "try another PEB");
1167	}
1168
1169	if (err)
1170		ubi_ro_mode(ubi);
1171
1172	leb_write_unlock(ubi, vol_id, lnum);
1173
1174out:
1175	ubi_free_vid_buf(vidb);
1176
1177	return err;
1178}
1179
1180/*
1181 * ubi_eba_atomic_leb_change - change logical eraseblock atomically.
1182 * @ubi: UBI device description object
1183 * @vol: volume description object
1184 * @lnum: logical eraseblock number
1185 * @buf: data to write
1186 * @len: how many bytes to write
1187 *
1188 * This function changes the contents of a logical eraseblock atomically. @buf
1189 * has to contain new logical eraseblock data, and @len - the length of the
1190 * data, which has to be aligned. This function guarantees that in case of an
1191 * unclean reboot the old contents is preserved. Returns zero in case of
1192 * success and a negative error code in case of failure.
1193 *
1194 * UBI reserves one LEB for the "atomic LEB change" operation, so only one
1195 * LEB change may be done at a time. This is ensured by @ubi->alc_mutex.
1196 */
1197int ubi_eba_atomic_leb_change(struct ubi_device *ubi, struct ubi_volume *vol,
1198			      int lnum, const void *buf, int len)
1199{
1200	int err, tries, vol_id = vol->vol_id;
1201	struct ubi_vid_io_buf *vidb;
1202	struct ubi_vid_hdr *vid_hdr;
1203	uint32_t crc;
1204
1205	if (ubi->ro_mode)
1206		return -EROFS;
1207
1208	if (len == 0) {
1209		/*
1210		 * Special case when data length is zero. In this case the LEB
1211		 * has to be unmapped and mapped somewhere else.
1212		 */
1213		err = ubi_eba_unmap_leb(ubi, vol, lnum);
1214		if (err)
1215			return err;
1216		return ubi_eba_write_leb(ubi, vol, lnum, NULL, 0, 0);
1217	}
1218
1219	vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
1220	if (!vidb)
1221		return -ENOMEM;
1222
1223	vid_hdr = ubi_get_vid_hdr(vidb);
1224
1225	mutex_lock(&ubi->alc_mutex);
1226	err = leb_write_lock(ubi, vol_id, lnum);
1227	if (err)
1228		goto out_mutex;
1229
1230	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1231	vid_hdr->vol_id = cpu_to_be32(vol_id);
1232	vid_hdr->lnum = cpu_to_be32(lnum);
1233	vid_hdr->compat = ubi_get_compat(ubi, vol_id);
1234	vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
1235
1236	crc = crc32(UBI_CRC32_INIT, buf, len);
1237	vid_hdr->vol_type = UBI_VID_DYNAMIC;
1238	vid_hdr->data_size = cpu_to_be32(len);
1239	vid_hdr->copy_flag = 1;
1240	vid_hdr->data_crc = cpu_to_be32(crc);
1241
1242	dbg_eba("change LEB %d:%d", vol_id, lnum);
1243
1244	for (tries = 0; tries <= UBI_IO_RETRIES; tries++) {
1245		err = try_write_vid_and_data(vol, lnum, vidb, buf, 0, len);
1246		if (err != -EIO || !ubi->bad_allowed)
1247			break;
1248
1249		vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1250		ubi_msg(ubi, "try another PEB");
1251	}
1252
1253	/*
1254	 * This flash device does not admit of bad eraseblocks or
1255	 * something nasty and unexpected happened. Switch to read-only
1256	 * mode just in case.
1257	 */
1258	if (err)
1259		ubi_ro_mode(ubi);
1260
1261	leb_write_unlock(ubi, vol_id, lnum);
1262
1263out_mutex:
1264	mutex_unlock(&ubi->alc_mutex);
1265	ubi_free_vid_buf(vidb);
1266	return err;
1267}
1268
1269/**
1270 * is_error_sane - check whether a read error is sane.
1271 * @err: code of the error happened during reading
1272 *
1273 * This is a helper function for 'ubi_eba_copy_leb()' which is called when we
1274 * cannot read data from the target PEB (an error @err happened). If the error
1275 * code is sane, then we treat this error as non-fatal. Otherwise the error is
1276 * fatal and UBI will be switched to R/O mode later.
1277 *
1278 * The idea is that we try not to switch to R/O mode if the read error is
1279 * something which suggests there was a real read problem. E.g., %-EIO. Or a
1280 * memory allocation failed (-%ENOMEM). Otherwise, it is safer to switch to R/O
1281 * mode, simply because we do not know what happened at the MTD level, and we
1282 * cannot handle this. E.g., the underlying driver may have become crazy, and
1283 * it is safer to switch to R/O mode to preserve the data.
1284 *
1285 * And bear in mind, this is about reading from the target PEB, i.e. the PEB
1286 * which we have just written.
1287 */
1288static int is_error_sane(int err)
1289{
1290	if (err == -EIO || err == -ENOMEM || err == UBI_IO_BAD_HDR ||
1291	    err == UBI_IO_BAD_HDR_EBADMSG || err == -ETIMEDOUT)
1292		return 0;
1293	return 1;
1294}
1295
1296/**
1297 * ubi_eba_copy_leb - copy logical eraseblock.
1298 * @ubi: UBI device description object
1299 * @from: physical eraseblock number from where to copy
1300 * @to: physical eraseblock number where to copy
1301 * @vidb: data structure from where the VID header is derived
1302 *
1303 * This function copies logical eraseblock from physical eraseblock @from to
1304 * physical eraseblock @to. The @vid_hdr buffer may be changed by this
1305 * function. Returns:
1306 *   o %0 in case of success;
1307 *   o %MOVE_CANCEL_RACE, %MOVE_TARGET_WR_ERR, %MOVE_TARGET_BITFLIPS, etc;
1308 *   o a negative error code in case of failure.
1309 */
1310int ubi_eba_copy_leb(struct ubi_device *ubi, int from, int to,
1311		     struct ubi_vid_io_buf *vidb)
1312{
1313	int err, vol_id, lnum, data_size, aldata_size, idx;
1314	struct ubi_vid_hdr *vid_hdr = ubi_get_vid_hdr(vidb);
1315	struct ubi_volume *vol;
1316	uint32_t crc;
1317
1318	ubi_assert(rwsem_is_locked(&ubi->fm_eba_sem));
1319
1320	vol_id = be32_to_cpu(vid_hdr->vol_id);
1321	lnum = be32_to_cpu(vid_hdr->lnum);
1322
1323	dbg_wl("copy LEB %d:%d, PEB %d to PEB %d", vol_id, lnum, from, to);
1324
1325	if (vid_hdr->vol_type == UBI_VID_STATIC) {
1326		data_size = be32_to_cpu(vid_hdr->data_size);
1327		aldata_size = ALIGN(data_size, ubi->min_io_size);
1328	} else
1329		data_size = aldata_size =
1330			    ubi->leb_size - be32_to_cpu(vid_hdr->data_pad);
1331
1332	idx = vol_id2idx(ubi, vol_id);
1333	spin_lock(&ubi->volumes_lock);
1334	/*
1335	 * Note, we may race with volume deletion, which means that the volume
1336	 * this logical eraseblock belongs to might be being deleted. Since the
1337	 * volume deletion un-maps all the volume's logical eraseblocks, it will
1338	 * be locked in 'ubi_wl_put_peb()' and wait for the WL worker to finish.
1339	 */
1340	vol = ubi->volumes[idx];
1341	spin_unlock(&ubi->volumes_lock);
1342	if (!vol) {
1343		/* No need to do further work, cancel */
1344		dbg_wl("volume %d is being removed, cancel", vol_id);
1345		return MOVE_CANCEL_RACE;
1346	}
1347
1348	/*
1349	 * We do not want anybody to write to this logical eraseblock while we
1350	 * are moving it, so lock it.
1351	 *
1352	 * Note, we are using non-waiting locking here, because we cannot sleep
1353	 * on the LEB, since it may cause deadlocks. Indeed, imagine a task is
1354	 * unmapping the LEB which is mapped to the PEB we are going to move
1355	 * (@from). This task locks the LEB and goes sleep in the
1356	 * 'ubi_wl_put_peb()' function on the @ubi->move_mutex. In turn, we are
1357	 * holding @ubi->move_mutex and go sleep on the LEB lock. So, if the
1358	 * LEB is already locked, we just do not move it and return
1359	 * %MOVE_RETRY. Note, we do not return %MOVE_CANCEL_RACE here because
1360	 * we do not know the reasons of the contention - it may be just a
1361	 * normal I/O on this LEB, so we want to re-try.
1362	 */
1363	err = leb_write_trylock(ubi, vol_id, lnum);
1364	if (err) {
1365		dbg_wl("contention on LEB %d:%d, cancel", vol_id, lnum);
1366		return MOVE_RETRY;
1367	}
1368
1369	/*
1370	 * The LEB might have been put meanwhile, and the task which put it is
1371	 * probably waiting on @ubi->move_mutex. No need to continue the work,
1372	 * cancel it.
1373	 */
1374	if (vol->eba_tbl->entries[lnum].pnum != from) {
1375		dbg_wl("LEB %d:%d is no longer mapped to PEB %d, mapped to PEB %d, cancel",
1376		       vol_id, lnum, from, vol->eba_tbl->entries[lnum].pnum);
1377		err = MOVE_CANCEL_RACE;
1378		goto out_unlock_leb;
1379	}
1380
1381	/*
1382	 * OK, now the LEB is locked and we can safely start moving it. Since
1383	 * this function utilizes the @ubi->peb_buf buffer which is shared
1384	 * with some other functions - we lock the buffer by taking the
1385	 * @ubi->buf_mutex.
1386	 */
1387	mutex_lock(&ubi->buf_mutex);
1388	dbg_wl("read %d bytes of data", aldata_size);
1389	err = ubi_io_read_data(ubi, ubi->peb_buf, from, 0, aldata_size);
1390	if (err && err != UBI_IO_BITFLIPS) {
1391		ubi_warn(ubi, "error %d while reading data from PEB %d",
1392			 err, from);
1393		err = MOVE_SOURCE_RD_ERR;
1394		goto out_unlock_buf;
1395	}
1396
1397	/*
1398	 * Now we have got to calculate how much data we have to copy. In
1399	 * case of a static volume it is fairly easy - the VID header contains
1400	 * the data size. In case of a dynamic volume it is more difficult - we
1401	 * have to read the contents, cut 0xFF bytes from the end and copy only
1402	 * the first part. We must do this to avoid writing 0xFF bytes as it
1403	 * may have some side-effects. And not only this. It is important not
1404	 * to include those 0xFFs to CRC because later the they may be filled
1405	 * by data.
1406	 */
1407	if (vid_hdr->vol_type == UBI_VID_DYNAMIC)
1408		aldata_size = data_size =
1409			ubi_calc_data_len(ubi, ubi->peb_buf, data_size);
1410
1411	cond_resched();
1412	crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, data_size);
1413	cond_resched();
1414
1415	/*
1416	 * It may turn out to be that the whole @from physical eraseblock
1417	 * contains only 0xFF bytes. Then we have to only write the VID header
1418	 * and do not write any data. This also means we should not set
1419	 * @vid_hdr->copy_flag, @vid_hdr->data_size, and @vid_hdr->data_crc.
1420	 */
1421	if (data_size > 0) {
1422		vid_hdr->copy_flag = 1;
1423		vid_hdr->data_size = cpu_to_be32(data_size);
1424		vid_hdr->data_crc = cpu_to_be32(crc);
1425	}
1426	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1427
1428	err = ubi_io_write_vid_hdr(ubi, to, vidb);
1429	if (err) {
1430		if (err == -EIO)
1431			err = MOVE_TARGET_WR_ERR;
1432		goto out_unlock_buf;
1433	}
1434
1435	cond_resched();
1436
1437	/* Read the VID header back and check if it was written correctly */
1438	err = ubi_io_read_vid_hdr(ubi, to, vidb, 1);
1439	if (err) {
1440		if (err != UBI_IO_BITFLIPS) {
1441			ubi_warn(ubi, "error %d while reading VID header back from PEB %d",
1442				 err, to);
1443			if (is_error_sane(err))
1444				err = MOVE_TARGET_RD_ERR;
1445		} else
1446			err = MOVE_TARGET_BITFLIPS;
1447		goto out_unlock_buf;
1448	}
1449
1450	if (data_size > 0) {
1451		err = ubi_io_write_data(ubi, ubi->peb_buf, to, 0, aldata_size);
1452		if (err) {
1453			if (err == -EIO)
1454				err = MOVE_TARGET_WR_ERR;
1455			goto out_unlock_buf;
1456		}
1457
1458		cond_resched();
1459	}
1460
1461	ubi_assert(vol->eba_tbl->entries[lnum].pnum == from);
1462	vol->eba_tbl->entries[lnum].pnum = to;
1463
1464out_unlock_buf:
1465	mutex_unlock(&ubi->buf_mutex);
1466out_unlock_leb:
1467	leb_write_unlock(ubi, vol_id, lnum);
1468	return err;
1469}
1470
1471/**
1472 * print_rsvd_warning - warn about not having enough reserved PEBs.
1473 * @ubi: UBI device description object
1474 * @ai: UBI attach info object
1475 *
1476 * This is a helper function for 'ubi_eba_init()' which is called when UBI
1477 * cannot reserve enough PEBs for bad block handling. This function makes a
1478 * decision whether we have to print a warning or not. The algorithm is as
1479 * follows:
1480 *   o if this is a new UBI image, then just print the warning
1481 *   o if this is an UBI image which has already been used for some time, print
1482 *     a warning only if we can reserve less than 10% of the expected amount of
1483 *     the reserved PEB.
1484 *
1485 * The idea is that when UBI is used, PEBs become bad, and the reserved pool
1486 * of PEBs becomes smaller, which is normal and we do not want to scare users
1487 * with a warning every time they attach the MTD device. This was an issue
1488 * reported by real users.
1489 */
1490static void print_rsvd_warning(struct ubi_device *ubi,
1491			       struct ubi_attach_info *ai)
1492{
1493	/*
1494	 * The 1 << 18 (256KiB) number is picked randomly, just a reasonably
1495	 * large number to distinguish between newly flashed and used images.
1496	 */
1497	if (ai->max_sqnum > (1 << 18)) {
1498		int min = ubi->beb_rsvd_level / 10;
1499
1500		if (!min)
1501			min = 1;
1502		if (ubi->beb_rsvd_pebs > min)
1503			return;
1504	}
1505
1506	ubi_warn(ubi, "cannot reserve enough PEBs for bad PEB handling, reserved %d, need %d",
1507		 ubi->beb_rsvd_pebs, ubi->beb_rsvd_level);
1508	if (ubi->corr_peb_count)
1509		ubi_warn(ubi, "%d PEBs are corrupted and not used",
1510			 ubi->corr_peb_count);
1511}
1512
1513/**
1514 * self_check_eba - run a self check on the EBA table constructed by fastmap.
1515 * @ubi: UBI device description object
1516 * @ai_fastmap: UBI attach info object created by fastmap
1517 * @ai_scan: UBI attach info object created by scanning
1518 *
1519 * Returns < 0 in case of an internal error, 0 otherwise.
1520 * If a bad EBA table entry was found it will be printed out and
1521 * ubi_assert() triggers.
1522 */
1523int self_check_eba(struct ubi_device *ubi, struct ubi_attach_info *ai_fastmap,
1524		   struct ubi_attach_info *ai_scan)
1525{
1526	int i, j, num_volumes, ret = 0;
1527	int **scan_eba, **fm_eba;
1528	struct ubi_ainf_volume *av;
1529	struct ubi_volume *vol;
1530	struct ubi_ainf_peb *aeb;
1531	struct rb_node *rb;
1532
1533	num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT;
1534
1535	scan_eba = kmalloc_array(num_volumes, sizeof(*scan_eba), GFP_KERNEL);
1536	if (!scan_eba)
1537		return -ENOMEM;
1538
1539	fm_eba = kmalloc_array(num_volumes, sizeof(*fm_eba), GFP_KERNEL);
1540	if (!fm_eba) {
1541		kfree(scan_eba);
1542		return -ENOMEM;
1543	}
1544
1545	for (i = 0; i < num_volumes; i++) {
1546		vol = ubi->volumes[i];
1547		if (!vol)
1548			continue;
1549
1550		scan_eba[i] = kmalloc_array(vol->reserved_pebs,
1551					    sizeof(**scan_eba),
1552					    GFP_KERNEL);
1553		if (!scan_eba[i]) {
1554			ret = -ENOMEM;
1555			goto out_free;
1556		}
1557
1558		fm_eba[i] = kmalloc_array(vol->reserved_pebs,
1559					  sizeof(**fm_eba),
1560					  GFP_KERNEL);
1561		if (!fm_eba[i]) {
1562			ret = -ENOMEM;
1563			goto out_free;
1564		}
1565
1566		for (j = 0; j < vol->reserved_pebs; j++)
1567			scan_eba[i][j] = fm_eba[i][j] = UBI_LEB_UNMAPPED;
1568
1569		av = ubi_find_av(ai_scan, idx2vol_id(ubi, i));
1570		if (!av)
1571			continue;
1572
1573		ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb)
1574			scan_eba[i][aeb->lnum] = aeb->pnum;
1575
1576		av = ubi_find_av(ai_fastmap, idx2vol_id(ubi, i));
1577		if (!av)
1578			continue;
1579
1580		ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb)
1581			fm_eba[i][aeb->lnum] = aeb->pnum;
1582
1583		for (j = 0; j < vol->reserved_pebs; j++) {
1584			if (scan_eba[i][j] != fm_eba[i][j]) {
1585				if (scan_eba[i][j] == UBI_LEB_UNMAPPED ||
1586					fm_eba[i][j] == UBI_LEB_UNMAPPED)
1587					continue;
1588
1589				ubi_err(ubi, "LEB:%i:%i is PEB:%i instead of %i!",
1590					vol->vol_id, j, fm_eba[i][j],
1591					scan_eba[i][j]);
1592				ubi_assert(0);
1593			}
1594		}
1595	}
1596
1597out_free:
1598	for (i = 0; i < num_volumes; i++) {
1599		if (!ubi->volumes[i])
1600			continue;
1601
1602		kfree(scan_eba[i]);
1603		kfree(fm_eba[i]);
1604	}
1605
1606	kfree(scan_eba);
1607	kfree(fm_eba);
1608	return ret;
1609}
1610
1611/**
1612 * ubi_eba_init - initialize the EBA sub-system using attaching information.
1613 * @ubi: UBI device description object
1614 * @ai: attaching information
1615 *
1616 * This function returns zero in case of success and a negative error code in
1617 * case of failure.
1618 */
1619int ubi_eba_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1620{
1621	int i, err, num_volumes;
1622	struct ubi_ainf_volume *av;
1623	struct ubi_volume *vol;
1624	struct ubi_ainf_peb *aeb;
1625	struct rb_node *rb;
1626
1627	dbg_eba("initialize EBA sub-system");
1628
1629	spin_lock_init(&ubi->ltree_lock);
1630	mutex_init(&ubi->alc_mutex);
1631	ubi->ltree = RB_ROOT;
1632
1633	ubi->global_sqnum = ai->max_sqnum + 1;
1634	num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT;
1635
1636	for (i = 0; i < num_volumes; i++) {
1637		struct ubi_eba_table *tbl;
1638
1639		vol = ubi->volumes[i];
1640		if (!vol)
1641			continue;
1642
1643		cond_resched();
1644
1645		tbl = ubi_eba_create_table(vol, vol->reserved_pebs);
1646		if (IS_ERR(tbl)) {
1647			err = PTR_ERR(tbl);
1648			goto out_free;
1649		}
1650
1651		ubi_eba_replace_table(vol, tbl);
1652
1653		av = ubi_find_av(ai, idx2vol_id(ubi, i));
1654		if (!av)
1655			continue;
1656
1657		ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb) {
1658			if (aeb->lnum >= vol->reserved_pebs) {
1659				/*
1660				 * This may happen in case of an unclean reboot
1661				 * during re-size.
1662				 */
1663				ubi_move_aeb_to_list(av, aeb, &ai->erase);
1664			} else {
1665				struct ubi_eba_entry *entry;
1666
1667				entry = &vol->eba_tbl->entries[aeb->lnum];
1668				entry->pnum = aeb->pnum;
1669			}
1670		}
1671	}
1672
1673	if (ubi->avail_pebs < EBA_RESERVED_PEBS) {
1674		ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)",
1675			ubi->avail_pebs, EBA_RESERVED_PEBS);
1676		if (ubi->corr_peb_count)
1677			ubi_err(ubi, "%d PEBs are corrupted and not used",
1678				ubi->corr_peb_count);
1679		err = -ENOSPC;
1680		goto out_free;
1681	}
1682	ubi->avail_pebs -= EBA_RESERVED_PEBS;
1683	ubi->rsvd_pebs += EBA_RESERVED_PEBS;
1684
1685	if (ubi->bad_allowed) {
1686		ubi_calculate_reserved(ubi);
1687
1688		if (ubi->avail_pebs < ubi->beb_rsvd_level) {
1689			/* No enough free physical eraseblocks */
1690			ubi->beb_rsvd_pebs = ubi->avail_pebs;
1691			print_rsvd_warning(ubi, ai);
1692		} else
1693			ubi->beb_rsvd_pebs = ubi->beb_rsvd_level;
1694
1695		ubi->avail_pebs -= ubi->beb_rsvd_pebs;
1696		ubi->rsvd_pebs  += ubi->beb_rsvd_pebs;
1697	}
1698
1699	dbg_eba("EBA sub-system is initialized");
1700	return 0;
1701
1702out_free:
1703	for (i = 0; i < num_volumes; i++) {
1704		if (!ubi->volumes[i])
1705			continue;
1706		ubi_eba_replace_table(ubi->volumes[i], NULL);
1707	}
1708	return err;
1709}
1710