xref: /kernel/linux/linux-6.6/drivers/mtd/ubi/build.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Copyright (c) International Business Machines Corp., 2006
4 * Copyright (c) Nokia Corporation, 2007
5 *
6 * Author: Artem Bityutskiy (Битюцкий Артём),
7 *         Frank Haverkamp
8 */
9
10/*
11 * This file includes UBI initialization and building of UBI devices.
12 *
13 * When UBI is initialized, it attaches all the MTD devices specified as the
14 * module load parameters or the kernel boot parameters. If MTD devices were
15 * specified, UBI does not attach any MTD device, but it is possible to do
16 * later using the "UBI control device".
17 */
18
19#include <linux/err.h>
20#include <linux/module.h>
21#include <linux/moduleparam.h>
22#include <linux/stringify.h>
23#include <linux/namei.h>
24#include <linux/stat.h>
25#include <linux/miscdevice.h>
26#include <linux/mtd/partitions.h>
27#include <linux/log2.h>
28#include <linux/kthread.h>
29#include <linux/kernel.h>
30#include <linux/slab.h>
31#include <linux/major.h>
32#include "ubi.h"
33
34/* Maximum length of the 'mtd=' parameter */
35#define MTD_PARAM_LEN_MAX 64
36
37/* Maximum number of comma-separated items in the 'mtd=' parameter */
38#define MTD_PARAM_MAX_COUNT 5
39
40/* Maximum value for the number of bad PEBs per 1024 PEBs */
41#define MAX_MTD_UBI_BEB_LIMIT 768
42
43#ifdef CONFIG_MTD_UBI_MODULE
44#define ubi_is_module() 1
45#else
46#define ubi_is_module() 0
47#endif
48
49/**
50 * struct mtd_dev_param - MTD device parameter description data structure.
51 * @name: MTD character device node path, MTD device name, or MTD device number
52 *        string
53 * @ubi_num: UBI number
54 * @vid_hdr_offs: VID header offset
55 * @max_beb_per1024: maximum expected number of bad PEBs per 1024 PEBs
56 * @enable_fm: enable fastmap when value is non-zero
57 */
58struct mtd_dev_param {
59	char name[MTD_PARAM_LEN_MAX];
60	int ubi_num;
61	int vid_hdr_offs;
62	int max_beb_per1024;
63	int enable_fm;
64};
65
66/* Numbers of elements set in the @mtd_dev_param array */
67static int mtd_devs;
68
69/* MTD devices specification parameters */
70static struct mtd_dev_param mtd_dev_param[UBI_MAX_DEVICES];
71#ifdef CONFIG_MTD_UBI_FASTMAP
72/* UBI module parameter to enable fastmap automatically on non-fastmap images */
73static bool fm_autoconvert;
74static bool fm_debug;
75#endif
76
77/* Slab cache for wear-leveling entries */
78struct kmem_cache *ubi_wl_entry_slab;
79
80/* UBI control character device */
81static struct miscdevice ubi_ctrl_cdev = {
82	.minor = MISC_DYNAMIC_MINOR,
83	.name = "ubi_ctrl",
84	.fops = &ubi_ctrl_cdev_operations,
85};
86
87/* All UBI devices in system */
88static struct ubi_device *ubi_devices[UBI_MAX_DEVICES];
89
90/* Serializes UBI devices creations and removals */
91DEFINE_MUTEX(ubi_devices_mutex);
92
93/* Protects @ubi_devices and @ubi->ref_count */
94static DEFINE_SPINLOCK(ubi_devices_lock);
95
96/* "Show" method for files in '/<sysfs>/class/ubi/' */
97/* UBI version attribute ('/<sysfs>/class/ubi/version') */
98static ssize_t version_show(const struct class *class, const struct class_attribute *attr,
99			    char *buf)
100{
101	return sprintf(buf, "%d\n", UBI_VERSION);
102}
103static CLASS_ATTR_RO(version);
104
105static struct attribute *ubi_class_attrs[] = {
106	&class_attr_version.attr,
107	NULL,
108};
109ATTRIBUTE_GROUPS(ubi_class);
110
111/* Root UBI "class" object (corresponds to '/<sysfs>/class/ubi/') */
112struct class ubi_class = {
113	.name		= UBI_NAME_STR,
114	.class_groups	= ubi_class_groups,
115};
116
117static ssize_t dev_attribute_show(struct device *dev,
118				  struct device_attribute *attr, char *buf);
119
120/* UBI device attributes (correspond to files in '/<sysfs>/class/ubi/ubiX') */
121static struct device_attribute dev_eraseblock_size =
122	__ATTR(eraseblock_size, S_IRUGO, dev_attribute_show, NULL);
123static struct device_attribute dev_avail_eraseblocks =
124	__ATTR(avail_eraseblocks, S_IRUGO, dev_attribute_show, NULL);
125static struct device_attribute dev_total_eraseblocks =
126	__ATTR(total_eraseblocks, S_IRUGO, dev_attribute_show, NULL);
127static struct device_attribute dev_volumes_count =
128	__ATTR(volumes_count, S_IRUGO, dev_attribute_show, NULL);
129static struct device_attribute dev_max_ec =
130	__ATTR(max_ec, S_IRUGO, dev_attribute_show, NULL);
131static struct device_attribute dev_reserved_for_bad =
132	__ATTR(reserved_for_bad, S_IRUGO, dev_attribute_show, NULL);
133static struct device_attribute dev_bad_peb_count =
134	__ATTR(bad_peb_count, S_IRUGO, dev_attribute_show, NULL);
135static struct device_attribute dev_max_vol_count =
136	__ATTR(max_vol_count, S_IRUGO, dev_attribute_show, NULL);
137static struct device_attribute dev_min_io_size =
138	__ATTR(min_io_size, S_IRUGO, dev_attribute_show, NULL);
139static struct device_attribute dev_bgt_enabled =
140	__ATTR(bgt_enabled, S_IRUGO, dev_attribute_show, NULL);
141static struct device_attribute dev_mtd_num =
142	__ATTR(mtd_num, S_IRUGO, dev_attribute_show, NULL);
143static struct device_attribute dev_ro_mode =
144	__ATTR(ro_mode, S_IRUGO, dev_attribute_show, NULL);
145
146/**
147 * ubi_volume_notify - send a volume change notification.
148 * @ubi: UBI device description object
149 * @vol: volume description object of the changed volume
150 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc)
151 *
152 * This is a helper function which notifies all subscribers about a volume
153 * change event (creation, removal, re-sizing, re-naming, updating). Returns
154 * zero in case of success and a negative error code in case of failure.
155 */
156int ubi_volume_notify(struct ubi_device *ubi, struct ubi_volume *vol, int ntype)
157{
158	int ret;
159	struct ubi_notification nt;
160
161	ubi_do_get_device_info(ubi, &nt.di);
162	ubi_do_get_volume_info(ubi, vol, &nt.vi);
163
164	switch (ntype) {
165	case UBI_VOLUME_ADDED:
166	case UBI_VOLUME_REMOVED:
167	case UBI_VOLUME_RESIZED:
168	case UBI_VOLUME_RENAMED:
169		ret = ubi_update_fastmap(ubi);
170		if (ret)
171			ubi_msg(ubi, "Unable to write a new fastmap: %i", ret);
172	}
173
174	return blocking_notifier_call_chain(&ubi_notifiers, ntype, &nt);
175}
176
177/**
178 * ubi_notify_all - send a notification to all volumes.
179 * @ubi: UBI device description object
180 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc)
181 * @nb: the notifier to call
182 *
183 * This function walks all volumes of UBI device @ubi and sends the @ntype
184 * notification for each volume. If @nb is %NULL, then all registered notifiers
185 * are called, otherwise only the @nb notifier is called. Returns the number of
186 * sent notifications.
187 */
188int ubi_notify_all(struct ubi_device *ubi, int ntype, struct notifier_block *nb)
189{
190	struct ubi_notification nt;
191	int i, count = 0;
192
193	ubi_do_get_device_info(ubi, &nt.di);
194
195	mutex_lock(&ubi->device_mutex);
196	for (i = 0; i < ubi->vtbl_slots; i++) {
197		/*
198		 * Since the @ubi->device is locked, and we are not going to
199		 * change @ubi->volumes, we do not have to lock
200		 * @ubi->volumes_lock.
201		 */
202		if (!ubi->volumes[i])
203			continue;
204
205		ubi_do_get_volume_info(ubi, ubi->volumes[i], &nt.vi);
206		if (nb)
207			nb->notifier_call(nb, ntype, &nt);
208		else
209			blocking_notifier_call_chain(&ubi_notifiers, ntype,
210						     &nt);
211		count += 1;
212	}
213	mutex_unlock(&ubi->device_mutex);
214
215	return count;
216}
217
218/**
219 * ubi_enumerate_volumes - send "add" notification for all existing volumes.
220 * @nb: the notifier to call
221 *
222 * This function walks all UBI devices and volumes and sends the
223 * %UBI_VOLUME_ADDED notification for each volume. If @nb is %NULL, then all
224 * registered notifiers are called, otherwise only the @nb notifier is called.
225 * Returns the number of sent notifications.
226 */
227int ubi_enumerate_volumes(struct notifier_block *nb)
228{
229	int i, count = 0;
230
231	/*
232	 * Since the @ubi_devices_mutex is locked, and we are not going to
233	 * change @ubi_devices, we do not have to lock @ubi_devices_lock.
234	 */
235	for (i = 0; i < UBI_MAX_DEVICES; i++) {
236		struct ubi_device *ubi = ubi_devices[i];
237
238		if (!ubi)
239			continue;
240		count += ubi_notify_all(ubi, UBI_VOLUME_ADDED, nb);
241	}
242
243	return count;
244}
245
246/**
247 * ubi_get_device - get UBI device.
248 * @ubi_num: UBI device number
249 *
250 * This function returns UBI device description object for UBI device number
251 * @ubi_num, or %NULL if the device does not exist. This function increases the
252 * device reference count to prevent removal of the device. In other words, the
253 * device cannot be removed if its reference count is not zero.
254 */
255struct ubi_device *ubi_get_device(int ubi_num)
256{
257	struct ubi_device *ubi;
258
259	spin_lock(&ubi_devices_lock);
260	ubi = ubi_devices[ubi_num];
261	if (ubi) {
262		ubi_assert(ubi->ref_count >= 0);
263		ubi->ref_count += 1;
264		get_device(&ubi->dev);
265	}
266	spin_unlock(&ubi_devices_lock);
267
268	return ubi;
269}
270
271/**
272 * ubi_put_device - drop an UBI device reference.
273 * @ubi: UBI device description object
274 */
275void ubi_put_device(struct ubi_device *ubi)
276{
277	spin_lock(&ubi_devices_lock);
278	ubi->ref_count -= 1;
279	put_device(&ubi->dev);
280	spin_unlock(&ubi_devices_lock);
281}
282
283/**
284 * ubi_get_by_major - get UBI device by character device major number.
285 * @major: major number
286 *
287 * This function is similar to 'ubi_get_device()', but it searches the device
288 * by its major number.
289 */
290struct ubi_device *ubi_get_by_major(int major)
291{
292	int i;
293	struct ubi_device *ubi;
294
295	spin_lock(&ubi_devices_lock);
296	for (i = 0; i < UBI_MAX_DEVICES; i++) {
297		ubi = ubi_devices[i];
298		if (ubi && MAJOR(ubi->cdev.dev) == major) {
299			ubi_assert(ubi->ref_count >= 0);
300			ubi->ref_count += 1;
301			get_device(&ubi->dev);
302			spin_unlock(&ubi_devices_lock);
303			return ubi;
304		}
305	}
306	spin_unlock(&ubi_devices_lock);
307
308	return NULL;
309}
310
311/**
312 * ubi_major2num - get UBI device number by character device major number.
313 * @major: major number
314 *
315 * This function searches UBI device number object by its major number. If UBI
316 * device was not found, this function returns -ENODEV, otherwise the UBI device
317 * number is returned.
318 */
319int ubi_major2num(int major)
320{
321	int i, ubi_num = -ENODEV;
322
323	spin_lock(&ubi_devices_lock);
324	for (i = 0; i < UBI_MAX_DEVICES; i++) {
325		struct ubi_device *ubi = ubi_devices[i];
326
327		if (ubi && MAJOR(ubi->cdev.dev) == major) {
328			ubi_num = ubi->ubi_num;
329			break;
330		}
331	}
332	spin_unlock(&ubi_devices_lock);
333
334	return ubi_num;
335}
336
337/* "Show" method for files in '/<sysfs>/class/ubi/ubiX/' */
338static ssize_t dev_attribute_show(struct device *dev,
339				  struct device_attribute *attr, char *buf)
340{
341	ssize_t ret;
342	struct ubi_device *ubi;
343
344	/*
345	 * The below code looks weird, but it actually makes sense. We get the
346	 * UBI device reference from the contained 'struct ubi_device'. But it
347	 * is unclear if the device was removed or not yet. Indeed, if the
348	 * device was removed before we increased its reference count,
349	 * 'ubi_get_device()' will return -ENODEV and we fail.
350	 *
351	 * Remember, 'struct ubi_device' is freed in the release function, so
352	 * we still can use 'ubi->ubi_num'.
353	 */
354	ubi = container_of(dev, struct ubi_device, dev);
355
356	if (attr == &dev_eraseblock_size)
357		ret = sprintf(buf, "%d\n", ubi->leb_size);
358	else if (attr == &dev_avail_eraseblocks)
359		ret = sprintf(buf, "%d\n", ubi->avail_pebs);
360	else if (attr == &dev_total_eraseblocks)
361		ret = sprintf(buf, "%d\n", ubi->good_peb_count);
362	else if (attr == &dev_volumes_count)
363		ret = sprintf(buf, "%d\n", ubi->vol_count - UBI_INT_VOL_COUNT);
364	else if (attr == &dev_max_ec)
365		ret = sprintf(buf, "%d\n", ubi->max_ec);
366	else if (attr == &dev_reserved_for_bad)
367		ret = sprintf(buf, "%d\n", ubi->beb_rsvd_pebs);
368	else if (attr == &dev_bad_peb_count)
369		ret = sprintf(buf, "%d\n", ubi->bad_peb_count);
370	else if (attr == &dev_max_vol_count)
371		ret = sprintf(buf, "%d\n", ubi->vtbl_slots);
372	else if (attr == &dev_min_io_size)
373		ret = sprintf(buf, "%d\n", ubi->min_io_size);
374	else if (attr == &dev_bgt_enabled)
375		ret = sprintf(buf, "%d\n", ubi->thread_enabled);
376	else if (attr == &dev_mtd_num)
377		ret = sprintf(buf, "%d\n", ubi->mtd->index);
378	else if (attr == &dev_ro_mode)
379		ret = sprintf(buf, "%d\n", ubi->ro_mode);
380	else
381		ret = -EINVAL;
382
383	return ret;
384}
385
386static struct attribute *ubi_dev_attrs[] = {
387	&dev_eraseblock_size.attr,
388	&dev_avail_eraseblocks.attr,
389	&dev_total_eraseblocks.attr,
390	&dev_volumes_count.attr,
391	&dev_max_ec.attr,
392	&dev_reserved_for_bad.attr,
393	&dev_bad_peb_count.attr,
394	&dev_max_vol_count.attr,
395	&dev_min_io_size.attr,
396	&dev_bgt_enabled.attr,
397	&dev_mtd_num.attr,
398	&dev_ro_mode.attr,
399	NULL
400};
401ATTRIBUTE_GROUPS(ubi_dev);
402
403static void dev_release(struct device *dev)
404{
405	struct ubi_device *ubi = container_of(dev, struct ubi_device, dev);
406
407	kfree(ubi);
408}
409
410/**
411 * kill_volumes - destroy all user volumes.
412 * @ubi: UBI device description object
413 */
414static void kill_volumes(struct ubi_device *ubi)
415{
416	int i;
417
418	for (i = 0; i < ubi->vtbl_slots; i++)
419		if (ubi->volumes[i])
420			ubi_free_volume(ubi, ubi->volumes[i]);
421}
422
423/**
424 * uif_init - initialize user interfaces for an UBI device.
425 * @ubi: UBI device description object
426 *
427 * This function initializes various user interfaces for an UBI device. If the
428 * initialization fails at an early stage, this function frees all the
429 * resources it allocated, returns an error.
430 *
431 * This function returns zero in case of success and a negative error code in
432 * case of failure.
433 */
434static int uif_init(struct ubi_device *ubi)
435{
436	int i, err;
437	dev_t dev;
438
439	sprintf(ubi->ubi_name, UBI_NAME_STR "%d", ubi->ubi_num);
440
441	/*
442	 * Major numbers for the UBI character devices are allocated
443	 * dynamically. Major numbers of volume character devices are
444	 * equivalent to ones of the corresponding UBI character device. Minor
445	 * numbers of UBI character devices are 0, while minor numbers of
446	 * volume character devices start from 1. Thus, we allocate one major
447	 * number and ubi->vtbl_slots + 1 minor numbers.
448	 */
449	err = alloc_chrdev_region(&dev, 0, ubi->vtbl_slots + 1, ubi->ubi_name);
450	if (err) {
451		ubi_err(ubi, "cannot register UBI character devices");
452		return err;
453	}
454
455	ubi->dev.devt = dev;
456
457	ubi_assert(MINOR(dev) == 0);
458	cdev_init(&ubi->cdev, &ubi_cdev_operations);
459	dbg_gen("%s major is %u", ubi->ubi_name, MAJOR(dev));
460	ubi->cdev.owner = THIS_MODULE;
461
462	dev_set_name(&ubi->dev, UBI_NAME_STR "%d", ubi->ubi_num);
463	err = cdev_device_add(&ubi->cdev, &ubi->dev);
464	if (err)
465		goto out_unreg;
466
467	for (i = 0; i < ubi->vtbl_slots; i++)
468		if (ubi->volumes[i]) {
469			err = ubi_add_volume(ubi, ubi->volumes[i]);
470			if (err) {
471				ubi_err(ubi, "cannot add volume %d", i);
472				ubi->volumes[i] = NULL;
473				goto out_volumes;
474			}
475		}
476
477	return 0;
478
479out_volumes:
480	kill_volumes(ubi);
481	cdev_device_del(&ubi->cdev, &ubi->dev);
482out_unreg:
483	unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1);
484	ubi_err(ubi, "cannot initialize UBI %s, error %d",
485		ubi->ubi_name, err);
486	return err;
487}
488
489/**
490 * uif_close - close user interfaces for an UBI device.
491 * @ubi: UBI device description object
492 *
493 * Note, since this function un-registers UBI volume device objects (@vol->dev),
494 * the memory allocated voe the volumes is freed as well (in the release
495 * function).
496 */
497static void uif_close(struct ubi_device *ubi)
498{
499	kill_volumes(ubi);
500	cdev_device_del(&ubi->cdev, &ubi->dev);
501	unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1);
502}
503
504/**
505 * ubi_free_volumes_from - free volumes from specific index.
506 * @ubi: UBI device description object
507 * @from: the start index used for volume free.
508 */
509static void ubi_free_volumes_from(struct ubi_device *ubi, int from)
510{
511	int i;
512
513	for (i = from; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) {
514		if (!ubi->volumes[i])
515			continue;
516		ubi_eba_replace_table(ubi->volumes[i], NULL);
517		ubi_fastmap_destroy_checkmap(ubi->volumes[i]);
518		kfree(ubi->volumes[i]);
519		ubi->volumes[i] = NULL;
520	}
521}
522
523/**
524 * ubi_free_all_volumes - free all volumes.
525 * @ubi: UBI device description object
526 */
527void ubi_free_all_volumes(struct ubi_device *ubi)
528{
529	ubi_free_volumes_from(ubi, 0);
530}
531
532/**
533 * ubi_free_internal_volumes - free internal volumes.
534 * @ubi: UBI device description object
535 */
536void ubi_free_internal_volumes(struct ubi_device *ubi)
537{
538	ubi_free_volumes_from(ubi, ubi->vtbl_slots);
539}
540
541static int get_bad_peb_limit(const struct ubi_device *ubi, int max_beb_per1024)
542{
543	int limit, device_pebs;
544	uint64_t device_size;
545
546	if (!max_beb_per1024) {
547		/*
548		 * Since max_beb_per1024 has not been set by the user in either
549		 * the cmdline or Kconfig, use mtd_max_bad_blocks to set the
550		 * limit if it is supported by the device.
551		 */
552		limit = mtd_max_bad_blocks(ubi->mtd, 0, ubi->mtd->size);
553		if (limit < 0)
554			return 0;
555		return limit;
556	}
557
558	/*
559	 * Here we are using size of the entire flash chip and
560	 * not just the MTD partition size because the maximum
561	 * number of bad eraseblocks is a percentage of the
562	 * whole device and bad eraseblocks are not fairly
563	 * distributed over the flash chip. So the worst case
564	 * is that all the bad eraseblocks of the chip are in
565	 * the MTD partition we are attaching (ubi->mtd).
566	 */
567	device_size = mtd_get_device_size(ubi->mtd);
568	device_pebs = mtd_div_by_eb(device_size, ubi->mtd);
569	limit = mult_frac(device_pebs, max_beb_per1024, 1024);
570
571	/* Round it up */
572	if (mult_frac(limit, 1024, max_beb_per1024) < device_pebs)
573		limit += 1;
574
575	return limit;
576}
577
578/**
579 * io_init - initialize I/O sub-system for a given UBI device.
580 * @ubi: UBI device description object
581 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs
582 *
583 * If @ubi->vid_hdr_offset or @ubi->leb_start is zero, default offsets are
584 * assumed:
585 *   o EC header is always at offset zero - this cannot be changed;
586 *   o VID header starts just after the EC header at the closest address
587 *     aligned to @io->hdrs_min_io_size;
588 *   o data starts just after the VID header at the closest address aligned to
589 *     @io->min_io_size
590 *
591 * This function returns zero in case of success and a negative error code in
592 * case of failure.
593 */
594static int io_init(struct ubi_device *ubi, int max_beb_per1024)
595{
596	dbg_gen("sizeof(struct ubi_ainf_peb) %zu", sizeof(struct ubi_ainf_peb));
597	dbg_gen("sizeof(struct ubi_wl_entry) %zu", sizeof(struct ubi_wl_entry));
598
599	if (ubi->mtd->numeraseregions != 0) {
600		/*
601		 * Some flashes have several erase regions. Different regions
602		 * may have different eraseblock size and other
603		 * characteristics. It looks like mostly multi-region flashes
604		 * have one "main" region and one or more small regions to
605		 * store boot loader code or boot parameters or whatever. I
606		 * guess we should just pick the largest region. But this is
607		 * not implemented.
608		 */
609		ubi_err(ubi, "multiple regions, not implemented");
610		return -EINVAL;
611	}
612
613	if (ubi->vid_hdr_offset < 0)
614		return -EINVAL;
615
616	/*
617	 * Note, in this implementation we support MTD devices with 0x7FFFFFFF
618	 * physical eraseblocks maximum.
619	 */
620
621	ubi->peb_size   = ubi->mtd->erasesize;
622	ubi->peb_count  = mtd_div_by_eb(ubi->mtd->size, ubi->mtd);
623	ubi->flash_size = ubi->mtd->size;
624
625	if (mtd_can_have_bb(ubi->mtd)) {
626		ubi->bad_allowed = 1;
627		ubi->bad_peb_limit = get_bad_peb_limit(ubi, max_beb_per1024);
628	}
629
630	if (ubi->mtd->type == MTD_NORFLASH)
631		ubi->nor_flash = 1;
632
633	ubi->min_io_size = ubi->mtd->writesize;
634	ubi->hdrs_min_io_size = ubi->mtd->writesize >> ubi->mtd->subpage_sft;
635
636	/*
637	 * Make sure minimal I/O unit is power of 2. Note, there is no
638	 * fundamental reason for this assumption. It is just an optimization
639	 * which allows us to avoid costly division operations.
640	 */
641	if (!is_power_of_2(ubi->min_io_size)) {
642		ubi_err(ubi, "min. I/O unit (%d) is not power of 2",
643			ubi->min_io_size);
644		return -EINVAL;
645	}
646
647	ubi_assert(ubi->hdrs_min_io_size > 0);
648	ubi_assert(ubi->hdrs_min_io_size <= ubi->min_io_size);
649	ubi_assert(ubi->min_io_size % ubi->hdrs_min_io_size == 0);
650
651	ubi->max_write_size = ubi->mtd->writebufsize;
652	/*
653	 * Maximum write size has to be greater or equivalent to min. I/O
654	 * size, and be multiple of min. I/O size.
655	 */
656	if (ubi->max_write_size < ubi->min_io_size ||
657	    ubi->max_write_size % ubi->min_io_size ||
658	    !is_power_of_2(ubi->max_write_size)) {
659		ubi_err(ubi, "bad write buffer size %d for %d min. I/O unit",
660			ubi->max_write_size, ubi->min_io_size);
661		return -EINVAL;
662	}
663
664	/* Calculate default aligned sizes of EC and VID headers */
665	ubi->ec_hdr_alsize = ALIGN(UBI_EC_HDR_SIZE, ubi->hdrs_min_io_size);
666	ubi->vid_hdr_alsize = ALIGN(UBI_VID_HDR_SIZE, ubi->hdrs_min_io_size);
667
668	dbg_gen("min_io_size      %d", ubi->min_io_size);
669	dbg_gen("max_write_size   %d", ubi->max_write_size);
670	dbg_gen("hdrs_min_io_size %d", ubi->hdrs_min_io_size);
671	dbg_gen("ec_hdr_alsize    %d", ubi->ec_hdr_alsize);
672	dbg_gen("vid_hdr_alsize   %d", ubi->vid_hdr_alsize);
673
674	if (ubi->vid_hdr_offset == 0)
675		/* Default offset */
676		ubi->vid_hdr_offset = ubi->vid_hdr_aloffset =
677				      ubi->ec_hdr_alsize;
678	else {
679		ubi->vid_hdr_aloffset = ubi->vid_hdr_offset &
680						~(ubi->hdrs_min_io_size - 1);
681		ubi->vid_hdr_shift = ubi->vid_hdr_offset -
682						ubi->vid_hdr_aloffset;
683	}
684
685	/*
686	 * Memory allocation for VID header is ubi->vid_hdr_alsize
687	 * which is described in comments in io.c.
688	 * Make sure VID header shift + UBI_VID_HDR_SIZE not exceeds
689	 * ubi->vid_hdr_alsize, so that all vid header operations
690	 * won't access memory out of bounds.
691	 */
692	if ((ubi->vid_hdr_shift + UBI_VID_HDR_SIZE) > ubi->vid_hdr_alsize) {
693		ubi_err(ubi, "Invalid VID header offset %d, VID header shift(%d)"
694			" + VID header size(%zu) > VID header aligned size(%d).",
695			ubi->vid_hdr_offset, ubi->vid_hdr_shift,
696			UBI_VID_HDR_SIZE, ubi->vid_hdr_alsize);
697		return -EINVAL;
698	}
699
700	/* Similar for the data offset */
701	ubi->leb_start = ubi->vid_hdr_offset + UBI_VID_HDR_SIZE;
702	ubi->leb_start = ALIGN(ubi->leb_start, ubi->min_io_size);
703
704	dbg_gen("vid_hdr_offset   %d", ubi->vid_hdr_offset);
705	dbg_gen("vid_hdr_aloffset %d", ubi->vid_hdr_aloffset);
706	dbg_gen("vid_hdr_shift    %d", ubi->vid_hdr_shift);
707	dbg_gen("leb_start        %d", ubi->leb_start);
708
709	/* The shift must be aligned to 32-bit boundary */
710	if (ubi->vid_hdr_shift % 4) {
711		ubi_err(ubi, "unaligned VID header shift %d",
712			ubi->vid_hdr_shift);
713		return -EINVAL;
714	}
715
716	/* Check sanity */
717	if (ubi->vid_hdr_offset < UBI_EC_HDR_SIZE ||
718	    ubi->leb_start < ubi->vid_hdr_offset + UBI_VID_HDR_SIZE ||
719	    ubi->leb_start > ubi->peb_size - UBI_VID_HDR_SIZE ||
720	    ubi->leb_start & (ubi->min_io_size - 1)) {
721		ubi_err(ubi, "bad VID header (%d) or data offsets (%d)",
722			ubi->vid_hdr_offset, ubi->leb_start);
723		return -EINVAL;
724	}
725
726	/*
727	 * Set maximum amount of physical erroneous eraseblocks to be 10%.
728	 * Erroneous PEB are those which have read errors.
729	 */
730	ubi->max_erroneous = ubi->peb_count / 10;
731	if (ubi->max_erroneous < 16)
732		ubi->max_erroneous = 16;
733	dbg_gen("max_erroneous    %d", ubi->max_erroneous);
734
735	/*
736	 * It may happen that EC and VID headers are situated in one minimal
737	 * I/O unit. In this case we can only accept this UBI image in
738	 * read-only mode.
739	 */
740	if (ubi->vid_hdr_offset + UBI_VID_HDR_SIZE <= ubi->hdrs_min_io_size) {
741		ubi_warn(ubi, "EC and VID headers are in the same minimal I/O unit, switch to read-only mode");
742		ubi->ro_mode = 1;
743	}
744
745	ubi->leb_size = ubi->peb_size - ubi->leb_start;
746
747	if (!(ubi->mtd->flags & MTD_WRITEABLE)) {
748		ubi_msg(ubi, "MTD device %d is write-protected, attach in read-only mode",
749			ubi->mtd->index);
750		ubi->ro_mode = 1;
751	}
752
753	/*
754	 * Note, ideally, we have to initialize @ubi->bad_peb_count here. But
755	 * unfortunately, MTD does not provide this information. We should loop
756	 * over all physical eraseblocks and invoke mtd->block_is_bad() for
757	 * each physical eraseblock. So, we leave @ubi->bad_peb_count
758	 * uninitialized so far.
759	 */
760
761	return 0;
762}
763
764/**
765 * autoresize - re-size the volume which has the "auto-resize" flag set.
766 * @ubi: UBI device description object
767 * @vol_id: ID of the volume to re-size
768 *
769 * This function re-sizes the volume marked by the %UBI_VTBL_AUTORESIZE_FLG in
770 * the volume table to the largest possible size. See comments in ubi-header.h
771 * for more description of the flag. Returns zero in case of success and a
772 * negative error code in case of failure.
773 */
774static int autoresize(struct ubi_device *ubi, int vol_id)
775{
776	struct ubi_volume_desc desc;
777	struct ubi_volume *vol = ubi->volumes[vol_id];
778	int err, old_reserved_pebs = vol->reserved_pebs;
779
780	if (ubi->ro_mode) {
781		ubi_warn(ubi, "skip auto-resize because of R/O mode");
782		return 0;
783	}
784
785	/*
786	 * Clear the auto-resize flag in the volume in-memory copy of the
787	 * volume table, and 'ubi_resize_volume()' will propagate this change
788	 * to the flash.
789	 */
790	ubi->vtbl[vol_id].flags &= ~UBI_VTBL_AUTORESIZE_FLG;
791
792	if (ubi->avail_pebs == 0) {
793		struct ubi_vtbl_record vtbl_rec;
794
795		/*
796		 * No available PEBs to re-size the volume, clear the flag on
797		 * flash and exit.
798		 */
799		vtbl_rec = ubi->vtbl[vol_id];
800		err = ubi_change_vtbl_record(ubi, vol_id, &vtbl_rec);
801		if (err)
802			ubi_err(ubi, "cannot clean auto-resize flag for volume %d",
803				vol_id);
804	} else {
805		desc.vol = vol;
806		err = ubi_resize_volume(&desc,
807					old_reserved_pebs + ubi->avail_pebs);
808		if (err)
809			ubi_err(ubi, "cannot auto-resize volume %d",
810				vol_id);
811	}
812
813	if (err)
814		return err;
815
816	ubi_msg(ubi, "volume %d (\"%s\") re-sized from %d to %d LEBs",
817		vol_id, vol->name, old_reserved_pebs, vol->reserved_pebs);
818	return 0;
819}
820
821/**
822 * ubi_attach_mtd_dev - attach an MTD device.
823 * @mtd: MTD device description object
824 * @ubi_num: number to assign to the new UBI device
825 * @vid_hdr_offset: VID header offset
826 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs
827 * @disable_fm: whether disable fastmap
828 *
829 * This function attaches MTD device @mtd_dev to UBI and assign @ubi_num number
830 * to the newly created UBI device, unless @ubi_num is %UBI_DEV_NUM_AUTO, in
831 * which case this function finds a vacant device number and assigns it
832 * automatically. Returns the new UBI device number in case of success and a
833 * negative error code in case of failure.
834 *
835 * If @disable_fm is true, ubi doesn't create new fastmap even the module param
836 * 'fm_autoconvert' is set, and existed old fastmap will be destroyed after
837 * doing full scanning.
838 *
839 * Note, the invocations of this function has to be serialized by the
840 * @ubi_devices_mutex.
841 */
842int ubi_attach_mtd_dev(struct mtd_info *mtd, int ubi_num,
843		       int vid_hdr_offset, int max_beb_per1024, bool disable_fm)
844{
845	struct ubi_device *ubi;
846	int i, err;
847
848	if (max_beb_per1024 < 0 || max_beb_per1024 > MAX_MTD_UBI_BEB_LIMIT)
849		return -EINVAL;
850
851	if (!max_beb_per1024)
852		max_beb_per1024 = CONFIG_MTD_UBI_BEB_LIMIT;
853
854	/*
855	 * Check if we already have the same MTD device attached.
856	 *
857	 * Note, this function assumes that UBI devices creations and deletions
858	 * are serialized, so it does not take the &ubi_devices_lock.
859	 */
860	for (i = 0; i < UBI_MAX_DEVICES; i++) {
861		ubi = ubi_devices[i];
862		if (ubi && mtd->index == ubi->mtd->index) {
863			pr_err("ubi: mtd%d is already attached to ubi%d\n",
864				mtd->index, i);
865			return -EEXIST;
866		}
867	}
868
869	/*
870	 * Make sure this MTD device is not emulated on top of an UBI volume
871	 * already. Well, generally this recursion works fine, but there are
872	 * different problems like the UBI module takes a reference to itself
873	 * by attaching (and thus, opening) the emulated MTD device. This
874	 * results in inability to unload the module. And in general it makes
875	 * no sense to attach emulated MTD devices, so we prohibit this.
876	 */
877	if (mtd->type == MTD_UBIVOLUME) {
878		pr_err("ubi: refuse attaching mtd%d - it is already emulated on top of UBI\n",
879			mtd->index);
880		return -EINVAL;
881	}
882
883	/*
884	 * Both UBI and UBIFS have been designed for SLC NAND and NOR flashes.
885	 * MLC NAND is different and needs special care, otherwise UBI or UBIFS
886	 * will die soon and you will lose all your data.
887	 * Relax this rule if the partition we're attaching to operates in SLC
888	 * mode.
889	 */
890	if (mtd->type == MTD_MLCNANDFLASH &&
891	    !(mtd->flags & MTD_SLC_ON_MLC_EMULATION)) {
892		pr_err("ubi: refuse attaching mtd%d - MLC NAND is not supported\n",
893			mtd->index);
894		return -EINVAL;
895	}
896
897	/* UBI cannot work on flashes with zero erasesize. */
898	if (!mtd->erasesize) {
899		pr_err("ubi: refuse attaching mtd%d - zero erasesize flash is not supported\n",
900			mtd->index);
901		return -EINVAL;
902	}
903
904	if (ubi_num == UBI_DEV_NUM_AUTO) {
905		/* Search for an empty slot in the @ubi_devices array */
906		for (ubi_num = 0; ubi_num < UBI_MAX_DEVICES; ubi_num++)
907			if (!ubi_devices[ubi_num])
908				break;
909		if (ubi_num == UBI_MAX_DEVICES) {
910			pr_err("ubi: only %d UBI devices may be created\n",
911				UBI_MAX_DEVICES);
912			return -ENFILE;
913		}
914	} else {
915		if (ubi_num >= UBI_MAX_DEVICES)
916			return -EINVAL;
917
918		/* Make sure ubi_num is not busy */
919		if (ubi_devices[ubi_num]) {
920			pr_err("ubi: ubi%i already exists\n", ubi_num);
921			return -EEXIST;
922		}
923	}
924
925	ubi = kzalloc(sizeof(struct ubi_device), GFP_KERNEL);
926	if (!ubi)
927		return -ENOMEM;
928
929	device_initialize(&ubi->dev);
930	ubi->dev.release = dev_release;
931	ubi->dev.class = &ubi_class;
932	ubi->dev.groups = ubi_dev_groups;
933	ubi->dev.parent = &mtd->dev;
934
935	ubi->mtd = mtd;
936	ubi->ubi_num = ubi_num;
937	ubi->vid_hdr_offset = vid_hdr_offset;
938	ubi->autoresize_vol_id = -1;
939
940#ifdef CONFIG_MTD_UBI_FASTMAP
941	ubi->fm_pool.used = ubi->fm_pool.size = 0;
942	ubi->fm_wl_pool.used = ubi->fm_wl_pool.size = 0;
943
944	/*
945	 * fm_pool.max_size is 5% of the total number of PEBs but it's also
946	 * between UBI_FM_MAX_POOL_SIZE and UBI_FM_MIN_POOL_SIZE.
947	 */
948	ubi->fm_pool.max_size = min(((int)mtd_div_by_eb(ubi->mtd->size,
949		ubi->mtd) / 100) * 5, UBI_FM_MAX_POOL_SIZE);
950	ubi->fm_pool.max_size = max(ubi->fm_pool.max_size,
951		UBI_FM_MIN_POOL_SIZE);
952
953	ubi->fm_wl_pool.max_size = ubi->fm_pool.max_size / 2;
954	ubi->fm_disabled = (!fm_autoconvert || disable_fm) ? 1 : 0;
955	if (fm_debug)
956		ubi_enable_dbg_chk_fastmap(ubi);
957
958	if (!ubi->fm_disabled && (int)mtd_div_by_eb(ubi->mtd->size, ubi->mtd)
959	    <= UBI_FM_MAX_START) {
960		ubi_err(ubi, "More than %i PEBs are needed for fastmap, sorry.",
961			UBI_FM_MAX_START);
962		ubi->fm_disabled = 1;
963	}
964
965	ubi_msg(ubi, "default fastmap pool size: %d", ubi->fm_pool.max_size);
966	ubi_msg(ubi, "default fastmap WL pool size: %d",
967		ubi->fm_wl_pool.max_size);
968#else
969	ubi->fm_disabled = 1;
970#endif
971	mutex_init(&ubi->buf_mutex);
972	mutex_init(&ubi->ckvol_mutex);
973	mutex_init(&ubi->device_mutex);
974	spin_lock_init(&ubi->volumes_lock);
975	init_rwsem(&ubi->fm_protect);
976	init_rwsem(&ubi->fm_eba_sem);
977
978	ubi_msg(ubi, "attaching mtd%d", mtd->index);
979
980	err = io_init(ubi, max_beb_per1024);
981	if (err)
982		goto out_free;
983
984	err = -ENOMEM;
985	ubi->peb_buf = vmalloc(ubi->peb_size);
986	if (!ubi->peb_buf)
987		goto out_free;
988
989#ifdef CONFIG_MTD_UBI_FASTMAP
990	ubi->fm_size = ubi_calc_fm_size(ubi);
991	ubi->fm_buf = vzalloc(ubi->fm_size);
992	if (!ubi->fm_buf)
993		goto out_free;
994#endif
995	err = ubi_attach(ubi, disable_fm ? 1 : 0);
996	if (err) {
997		ubi_err(ubi, "failed to attach mtd%d, error %d",
998			mtd->index, err);
999		goto out_free;
1000	}
1001
1002	if (ubi->autoresize_vol_id != -1) {
1003		err = autoresize(ubi, ubi->autoresize_vol_id);
1004		if (err)
1005			goto out_detach;
1006	}
1007
1008	err = uif_init(ubi);
1009	if (err)
1010		goto out_detach;
1011
1012	err = ubi_debugfs_init_dev(ubi);
1013	if (err)
1014		goto out_uif;
1015
1016	ubi->bgt_thread = kthread_create(ubi_thread, ubi, "%s", ubi->bgt_name);
1017	if (IS_ERR(ubi->bgt_thread)) {
1018		err = PTR_ERR(ubi->bgt_thread);
1019		ubi_err(ubi, "cannot spawn \"%s\", error %d",
1020			ubi->bgt_name, err);
1021		goto out_debugfs;
1022	}
1023
1024	ubi_msg(ubi, "attached mtd%d (name \"%s\", size %llu MiB)",
1025		mtd->index, mtd->name, ubi->flash_size >> 20);
1026	ubi_msg(ubi, "PEB size: %d bytes (%d KiB), LEB size: %d bytes",
1027		ubi->peb_size, ubi->peb_size >> 10, ubi->leb_size);
1028	ubi_msg(ubi, "min./max. I/O unit sizes: %d/%d, sub-page size %d",
1029		ubi->min_io_size, ubi->max_write_size, ubi->hdrs_min_io_size);
1030	ubi_msg(ubi, "VID header offset: %d (aligned %d), data offset: %d",
1031		ubi->vid_hdr_offset, ubi->vid_hdr_aloffset, ubi->leb_start);
1032	ubi_msg(ubi, "good PEBs: %d, bad PEBs: %d, corrupted PEBs: %d",
1033		ubi->good_peb_count, ubi->bad_peb_count, ubi->corr_peb_count);
1034	ubi_msg(ubi, "user volume: %d, internal volumes: %d, max. volumes count: %d",
1035		ubi->vol_count - UBI_INT_VOL_COUNT, UBI_INT_VOL_COUNT,
1036		ubi->vtbl_slots);
1037	ubi_msg(ubi, "max/mean erase counter: %d/%d, WL threshold: %d, image sequence number: %u",
1038		ubi->max_ec, ubi->mean_ec, CONFIG_MTD_UBI_WL_THRESHOLD,
1039		ubi->image_seq);
1040	ubi_msg(ubi, "available PEBs: %d, total reserved PEBs: %d, PEBs reserved for bad PEB handling: %d",
1041		ubi->avail_pebs, ubi->rsvd_pebs, ubi->beb_rsvd_pebs);
1042
1043	/*
1044	 * The below lock makes sure we do not race with 'ubi_thread()' which
1045	 * checks @ubi->thread_enabled. Otherwise we may fail to wake it up.
1046	 */
1047	spin_lock(&ubi->wl_lock);
1048	ubi->thread_enabled = 1;
1049	wake_up_process(ubi->bgt_thread);
1050	spin_unlock(&ubi->wl_lock);
1051
1052	ubi_devices[ubi_num] = ubi;
1053	ubi_notify_all(ubi, UBI_VOLUME_ADDED, NULL);
1054	return ubi_num;
1055
1056out_debugfs:
1057	ubi_debugfs_exit_dev(ubi);
1058out_uif:
1059	uif_close(ubi);
1060out_detach:
1061	ubi_wl_close(ubi);
1062	ubi_free_all_volumes(ubi);
1063	vfree(ubi->vtbl);
1064out_free:
1065	vfree(ubi->peb_buf);
1066	vfree(ubi->fm_buf);
1067	put_device(&ubi->dev);
1068	return err;
1069}
1070
1071/**
1072 * ubi_detach_mtd_dev - detach an MTD device.
1073 * @ubi_num: UBI device number to detach from
1074 * @anyway: detach MTD even if device reference count is not zero
1075 *
1076 * This function destroys an UBI device number @ubi_num and detaches the
1077 * underlying MTD device. Returns zero in case of success and %-EBUSY if the
1078 * UBI device is busy and cannot be destroyed, and %-EINVAL if it does not
1079 * exist.
1080 *
1081 * Note, the invocations of this function has to be serialized by the
1082 * @ubi_devices_mutex.
1083 */
1084int ubi_detach_mtd_dev(int ubi_num, int anyway)
1085{
1086	struct ubi_device *ubi;
1087
1088	if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES)
1089		return -EINVAL;
1090
1091	ubi = ubi_get_device(ubi_num);
1092	if (!ubi)
1093		return -EINVAL;
1094
1095	spin_lock(&ubi_devices_lock);
1096	put_device(&ubi->dev);
1097	ubi->ref_count -= 1;
1098	if (ubi->ref_count) {
1099		if (!anyway) {
1100			spin_unlock(&ubi_devices_lock);
1101			return -EBUSY;
1102		}
1103		/* This may only happen if there is a bug */
1104		ubi_err(ubi, "%s reference count %d, destroy anyway",
1105			ubi->ubi_name, ubi->ref_count);
1106	}
1107	ubi_devices[ubi_num] = NULL;
1108	spin_unlock(&ubi_devices_lock);
1109
1110	ubi_assert(ubi_num == ubi->ubi_num);
1111	ubi_notify_all(ubi, UBI_VOLUME_REMOVED, NULL);
1112	ubi_msg(ubi, "detaching mtd%d", ubi->mtd->index);
1113#ifdef CONFIG_MTD_UBI_FASTMAP
1114	/* If we don't write a new fastmap at detach time we lose all
1115	 * EC updates that have been made since the last written fastmap.
1116	 * In case of fastmap debugging we omit the update to simulate an
1117	 * unclean shutdown. */
1118	if (!ubi_dbg_chk_fastmap(ubi))
1119		ubi_update_fastmap(ubi);
1120#endif
1121	/*
1122	 * Before freeing anything, we have to stop the background thread to
1123	 * prevent it from doing anything on this device while we are freeing.
1124	 */
1125	if (ubi->bgt_thread)
1126		kthread_stop(ubi->bgt_thread);
1127
1128#ifdef CONFIG_MTD_UBI_FASTMAP
1129	cancel_work_sync(&ubi->fm_work);
1130#endif
1131	ubi_debugfs_exit_dev(ubi);
1132	uif_close(ubi);
1133
1134	ubi_wl_close(ubi);
1135	ubi_free_internal_volumes(ubi);
1136	vfree(ubi->vtbl);
1137	vfree(ubi->peb_buf);
1138	vfree(ubi->fm_buf);
1139	ubi_msg(ubi, "mtd%d is detached", ubi->mtd->index);
1140	put_mtd_device(ubi->mtd);
1141	put_device(&ubi->dev);
1142	return 0;
1143}
1144
1145/**
1146 * open_mtd_by_chdev - open an MTD device by its character device node path.
1147 * @mtd_dev: MTD character device node path
1148 *
1149 * This helper function opens an MTD device by its character node device path.
1150 * Returns MTD device description object in case of success and a negative
1151 * error code in case of failure.
1152 */
1153static struct mtd_info * __init open_mtd_by_chdev(const char *mtd_dev)
1154{
1155	int err, minor;
1156	struct path path;
1157	struct kstat stat;
1158
1159	/* Probably this is an MTD character device node path */
1160	err = kern_path(mtd_dev, LOOKUP_FOLLOW, &path);
1161	if (err)
1162		return ERR_PTR(err);
1163
1164	err = vfs_getattr(&path, &stat, STATX_TYPE, AT_STATX_SYNC_AS_STAT);
1165	path_put(&path);
1166	if (err)
1167		return ERR_PTR(err);
1168
1169	/* MTD device number is defined by the major / minor numbers */
1170	if (MAJOR(stat.rdev) != MTD_CHAR_MAJOR || !S_ISCHR(stat.mode))
1171		return ERR_PTR(-EINVAL);
1172
1173	minor = MINOR(stat.rdev);
1174
1175	if (minor & 1)
1176		/*
1177		 * Just do not think the "/dev/mtdrX" devices support is need,
1178		 * so do not support them to avoid doing extra work.
1179		 */
1180		return ERR_PTR(-EINVAL);
1181
1182	return get_mtd_device(NULL, minor / 2);
1183}
1184
1185/**
1186 * open_mtd_device - open MTD device by name, character device path, or number.
1187 * @mtd_dev: name, character device node path, or MTD device device number
1188 *
1189 * This function tries to open and MTD device described by @mtd_dev string,
1190 * which is first treated as ASCII MTD device number, and if it is not true, it
1191 * is treated as MTD device name, and if that is also not true, it is treated
1192 * as MTD character device node path. Returns MTD device description object in
1193 * case of success and a negative error code in case of failure.
1194 */
1195static struct mtd_info * __init open_mtd_device(const char *mtd_dev)
1196{
1197	struct mtd_info *mtd;
1198	int mtd_num;
1199	char *endp;
1200
1201	mtd_num = simple_strtoul(mtd_dev, &endp, 0);
1202	if (*endp != '\0' || mtd_dev == endp) {
1203		/*
1204		 * This does not look like an ASCII integer, probably this is
1205		 * MTD device name.
1206		 */
1207		mtd = get_mtd_device_nm(mtd_dev);
1208		if (PTR_ERR(mtd) == -ENODEV)
1209			/* Probably this is an MTD character device node path */
1210			mtd = open_mtd_by_chdev(mtd_dev);
1211	} else
1212		mtd = get_mtd_device(NULL, mtd_num);
1213
1214	return mtd;
1215}
1216
1217static int __init ubi_init(void)
1218{
1219	int err, i, k;
1220
1221	/* Ensure that EC and VID headers have correct size */
1222	BUILD_BUG_ON(sizeof(struct ubi_ec_hdr) != 64);
1223	BUILD_BUG_ON(sizeof(struct ubi_vid_hdr) != 64);
1224
1225	if (mtd_devs > UBI_MAX_DEVICES) {
1226		pr_err("UBI error: too many MTD devices, maximum is %d\n",
1227		       UBI_MAX_DEVICES);
1228		return -EINVAL;
1229	}
1230
1231	/* Create base sysfs directory and sysfs files */
1232	err = class_register(&ubi_class);
1233	if (err < 0)
1234		return err;
1235
1236	err = misc_register(&ubi_ctrl_cdev);
1237	if (err) {
1238		pr_err("UBI error: cannot register device\n");
1239		goto out;
1240	}
1241
1242	ubi_wl_entry_slab = kmem_cache_create("ubi_wl_entry_slab",
1243					      sizeof(struct ubi_wl_entry),
1244					      0, 0, NULL);
1245	if (!ubi_wl_entry_slab) {
1246		err = -ENOMEM;
1247		goto out_dev_unreg;
1248	}
1249
1250	err = ubi_debugfs_init();
1251	if (err)
1252		goto out_slab;
1253
1254
1255	/* Attach MTD devices */
1256	for (i = 0; i < mtd_devs; i++) {
1257		struct mtd_dev_param *p = &mtd_dev_param[i];
1258		struct mtd_info *mtd;
1259
1260		cond_resched();
1261
1262		mtd = open_mtd_device(p->name);
1263		if (IS_ERR(mtd)) {
1264			err = PTR_ERR(mtd);
1265			pr_err("UBI error: cannot open mtd %s, error %d\n",
1266			       p->name, err);
1267			/* See comment below re-ubi_is_module(). */
1268			if (ubi_is_module())
1269				goto out_detach;
1270			continue;
1271		}
1272
1273		mutex_lock(&ubi_devices_mutex);
1274		err = ubi_attach_mtd_dev(mtd, p->ubi_num,
1275					 p->vid_hdr_offs, p->max_beb_per1024,
1276					 p->enable_fm == 0);
1277		mutex_unlock(&ubi_devices_mutex);
1278		if (err < 0) {
1279			pr_err("UBI error: cannot attach mtd%d\n",
1280			       mtd->index);
1281			put_mtd_device(mtd);
1282
1283			/*
1284			 * Originally UBI stopped initializing on any error.
1285			 * However, later on it was found out that this
1286			 * behavior is not very good when UBI is compiled into
1287			 * the kernel and the MTD devices to attach are passed
1288			 * through the command line. Indeed, UBI failure
1289			 * stopped whole boot sequence.
1290			 *
1291			 * To fix this, we changed the behavior for the
1292			 * non-module case, but preserved the old behavior for
1293			 * the module case, just for compatibility. This is a
1294			 * little inconsistent, though.
1295			 */
1296			if (ubi_is_module())
1297				goto out_detach;
1298		}
1299	}
1300
1301	err = ubiblock_init();
1302	if (err) {
1303		pr_err("UBI error: block: cannot initialize, error %d\n", err);
1304
1305		/* See comment above re-ubi_is_module(). */
1306		if (ubi_is_module())
1307			goto out_detach;
1308	}
1309
1310	return 0;
1311
1312out_detach:
1313	for (k = 0; k < i; k++)
1314		if (ubi_devices[k]) {
1315			mutex_lock(&ubi_devices_mutex);
1316			ubi_detach_mtd_dev(ubi_devices[k]->ubi_num, 1);
1317			mutex_unlock(&ubi_devices_mutex);
1318		}
1319	ubi_debugfs_exit();
1320out_slab:
1321	kmem_cache_destroy(ubi_wl_entry_slab);
1322out_dev_unreg:
1323	misc_deregister(&ubi_ctrl_cdev);
1324out:
1325	class_unregister(&ubi_class);
1326	pr_err("UBI error: cannot initialize UBI, error %d\n", err);
1327	return err;
1328}
1329late_initcall(ubi_init);
1330
1331static void __exit ubi_exit(void)
1332{
1333	int i;
1334
1335	ubiblock_exit();
1336
1337	for (i = 0; i < UBI_MAX_DEVICES; i++)
1338		if (ubi_devices[i]) {
1339			mutex_lock(&ubi_devices_mutex);
1340			ubi_detach_mtd_dev(ubi_devices[i]->ubi_num, 1);
1341			mutex_unlock(&ubi_devices_mutex);
1342		}
1343	ubi_debugfs_exit();
1344	kmem_cache_destroy(ubi_wl_entry_slab);
1345	misc_deregister(&ubi_ctrl_cdev);
1346	class_unregister(&ubi_class);
1347}
1348module_exit(ubi_exit);
1349
1350/**
1351 * bytes_str_to_int - convert a number of bytes string into an integer.
1352 * @str: the string to convert
1353 *
1354 * This function returns positive resulting integer in case of success and a
1355 * negative error code in case of failure.
1356 */
1357static int bytes_str_to_int(const char *str)
1358{
1359	char *endp;
1360	unsigned long result;
1361
1362	result = simple_strtoul(str, &endp, 0);
1363	if (str == endp || result >= INT_MAX) {
1364		pr_err("UBI error: incorrect bytes count: \"%s\"\n", str);
1365		return -EINVAL;
1366	}
1367
1368	switch (*endp) {
1369	case 'G':
1370		result *= 1024;
1371		fallthrough;
1372	case 'M':
1373		result *= 1024;
1374		fallthrough;
1375	case 'K':
1376		result *= 1024;
1377		break;
1378	case '\0':
1379		break;
1380	default:
1381		pr_err("UBI error: incorrect bytes count: \"%s\"\n", str);
1382		return -EINVAL;
1383	}
1384
1385	return result;
1386}
1387
1388/**
1389 * ubi_mtd_param_parse - parse the 'mtd=' UBI parameter.
1390 * @val: the parameter value to parse
1391 * @kp: not used
1392 *
1393 * This function returns zero in case of success and a negative error code in
1394 * case of error.
1395 */
1396static int ubi_mtd_param_parse(const char *val, const struct kernel_param *kp)
1397{
1398	int i, len;
1399	struct mtd_dev_param *p;
1400	char buf[MTD_PARAM_LEN_MAX];
1401	char *pbuf = &buf[0];
1402	char *tokens[MTD_PARAM_MAX_COUNT], *token;
1403
1404	if (!val)
1405		return -EINVAL;
1406
1407	if (mtd_devs == UBI_MAX_DEVICES) {
1408		pr_err("UBI error: too many parameters, max. is %d\n",
1409		       UBI_MAX_DEVICES);
1410		return -EINVAL;
1411	}
1412
1413	len = strnlen(val, MTD_PARAM_LEN_MAX);
1414	if (len == MTD_PARAM_LEN_MAX) {
1415		pr_err("UBI error: parameter \"%s\" is too long, max. is %d\n",
1416		       val, MTD_PARAM_LEN_MAX);
1417		return -EINVAL;
1418	}
1419
1420	if (len == 0) {
1421		pr_warn("UBI warning: empty 'mtd=' parameter - ignored\n");
1422		return 0;
1423	}
1424
1425	strcpy(buf, val);
1426
1427	/* Get rid of the final newline */
1428	if (buf[len - 1] == '\n')
1429		buf[len - 1] = '\0';
1430
1431	for (i = 0; i < MTD_PARAM_MAX_COUNT; i++)
1432		tokens[i] = strsep(&pbuf, ",");
1433
1434	if (pbuf) {
1435		pr_err("UBI error: too many arguments at \"%s\"\n", val);
1436		return -EINVAL;
1437	}
1438
1439	p = &mtd_dev_param[mtd_devs];
1440	strcpy(&p->name[0], tokens[0]);
1441
1442	token = tokens[1];
1443	if (token) {
1444		p->vid_hdr_offs = bytes_str_to_int(token);
1445
1446		if (p->vid_hdr_offs < 0)
1447			return p->vid_hdr_offs;
1448	}
1449
1450	token = tokens[2];
1451	if (token) {
1452		int err = kstrtoint(token, 10, &p->max_beb_per1024);
1453
1454		if (err) {
1455			pr_err("UBI error: bad value for max_beb_per1024 parameter: %s\n",
1456			       token);
1457			return -EINVAL;
1458		}
1459	}
1460
1461	token = tokens[3];
1462	if (token) {
1463		int err = kstrtoint(token, 10, &p->ubi_num);
1464
1465		if (err) {
1466			pr_err("UBI error: bad value for ubi_num parameter: %s\n",
1467			       token);
1468			return -EINVAL;
1469		}
1470	} else
1471		p->ubi_num = UBI_DEV_NUM_AUTO;
1472
1473	token = tokens[4];
1474	if (token) {
1475		int err = kstrtoint(token, 10, &p->enable_fm);
1476
1477		if (err) {
1478			pr_err("UBI error: bad value for enable_fm parameter: %s\n",
1479				token);
1480			return -EINVAL;
1481		}
1482	} else
1483		p->enable_fm = 0;
1484
1485	mtd_devs += 1;
1486	return 0;
1487}
1488
1489module_param_call(mtd, ubi_mtd_param_parse, NULL, NULL, 0400);
1490MODULE_PARM_DESC(mtd, "MTD devices to attach. Parameter format: mtd=<name|num|path>[,<vid_hdr_offs>[,max_beb_per1024[,ubi_num]]].\n"
1491		      "Multiple \"mtd\" parameters may be specified.\n"
1492		      "MTD devices may be specified by their number, name, or path to the MTD character device node.\n"
1493		      "Optional \"vid_hdr_offs\" parameter specifies UBI VID header position to be used by UBI. (default value if 0)\n"
1494		      "Optional \"max_beb_per1024\" parameter specifies the maximum expected bad eraseblock per 1024 eraseblocks. (default value ("
1495		      __stringify(CONFIG_MTD_UBI_BEB_LIMIT) ") if 0)\n"
1496		      "Optional \"ubi_num\" parameter specifies UBI device number which have to be assigned to the newly created UBI device (assigned automatically by default)\n"
1497		      "Optional \"enable_fm\" parameter determines whether to enable fastmap during attach. If the value is non-zero, fastmap is enabled. Default value is 0.\n"
1498		      "\n"
1499		      "Example 1: mtd=/dev/mtd0 - attach MTD device /dev/mtd0.\n"
1500		      "Example 2: mtd=content,1984 mtd=4 - attach MTD device with name \"content\" using VID header offset 1984, and MTD device number 4 with default VID header offset.\n"
1501		      "Example 3: mtd=/dev/mtd1,0,25 - attach MTD device /dev/mtd1 using default VID header offset and reserve 25*nand_size_in_blocks/1024 erase blocks for bad block handling.\n"
1502		      "Example 4: mtd=/dev/mtd1,0,0,5 - attach MTD device /dev/mtd1 to UBI 5 and using default values for the other fields.\n"
1503		      "example 5: mtd=1,0,0,5 mtd=2,0,0,6,1 - attach MTD device /dev/mtd1 to UBI 5 and disable fastmap; attach MTD device /dev/mtd2 to UBI 6 and enable fastmap.(only works when fastmap is enabled and fm_autoconvert=Y).\n"
1504		      "\t(e.g. if the NAND *chipset* has 4096 PEB, 100 will be reserved for this UBI device).");
1505#ifdef CONFIG_MTD_UBI_FASTMAP
1506module_param(fm_autoconvert, bool, 0644);
1507MODULE_PARM_DESC(fm_autoconvert, "Set this parameter to enable fastmap automatically on images without a fastmap.");
1508module_param(fm_debug, bool, 0);
1509MODULE_PARM_DESC(fm_debug, "Set this parameter to enable fastmap debugging by default. Warning, this will make fastmap slow!");
1510#endif
1511MODULE_VERSION(__stringify(UBI_VERSION));
1512MODULE_DESCRIPTION("UBI - Unsorted Block Images");
1513MODULE_AUTHOR("Artem Bityutskiy");
1514MODULE_LICENSE("GPL");
1515