1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2005, Intec Automation Inc.
4 * Copyright (C) 2014, Freescale Semiconductor, Inc.
5 */
6
7#include <linux/bitfield.h>
8#include <linux/mtd/spi-nor.h>
9#include <linux/slab.h>
10#include <linux/sort.h>
11
12#include "core.h"
13
14#define SFDP_PARAM_HEADER_ID(p)	(((p)->id_msb << 8) | (p)->id_lsb)
15#define SFDP_PARAM_HEADER_PTP(p) \
16	(((p)->parameter_table_pointer[2] << 16) | \
17	 ((p)->parameter_table_pointer[1] <<  8) | \
18	 ((p)->parameter_table_pointer[0] <<  0))
19#define SFDP_PARAM_HEADER_PARAM_LEN(p) ((p)->length * 4)
20
21#define SFDP_BFPT_ID		0xff00	/* Basic Flash Parameter Table */
22#define SFDP_SECTOR_MAP_ID	0xff81	/* Sector Map Table */
23#define SFDP_4BAIT_ID		0xff84  /* 4-byte Address Instruction Table */
24#define SFDP_PROFILE1_ID	0xff05	/* xSPI Profile 1.0 table. */
25#define SFDP_SCCR_MAP_ID	0xff87	/*
26					 * Status, Control and Configuration
27					 * Register Map.
28					 */
29#define SFDP_SCCR_MAP_MC_ID	0xff88	/*
30					 * Status, Control and Configuration
31					 * Register Map Offsets for Multi-Chip
32					 * SPI Memory Devices.
33					 */
34
35#define SFDP_SIGNATURE		0x50444653U
36
37struct sfdp_header {
38	u32		signature; /* Ox50444653U <=> "SFDP" */
39	u8		minor;
40	u8		major;
41	u8		nph; /* 0-base number of parameter headers */
42	u8		unused;
43
44	/* Basic Flash Parameter Table. */
45	struct sfdp_parameter_header	bfpt_header;
46};
47
48/* Fast Read settings. */
49struct sfdp_bfpt_read {
50	/* The Fast Read x-y-z hardware capability in params->hwcaps.mask. */
51	u32			hwcaps;
52
53	/*
54	 * The <supported_bit> bit in <supported_dword> BFPT DWORD tells us
55	 * whether the Fast Read x-y-z command is supported.
56	 */
57	u32			supported_dword;
58	u32			supported_bit;
59
60	/*
61	 * The half-word at offset <setting_shift> in <setting_dword> BFPT DWORD
62	 * encodes the op code, the number of mode clocks and the number of wait
63	 * states to be used by Fast Read x-y-z command.
64	 */
65	u32			settings_dword;
66	u32			settings_shift;
67
68	/* The SPI protocol for this Fast Read x-y-z command. */
69	enum spi_nor_protocol	proto;
70};
71
72struct sfdp_bfpt_erase {
73	/*
74	 * The half-word at offset <shift> in DWORD <dword> encodes the
75	 * op code and erase sector size to be used by Sector Erase commands.
76	 */
77	u32			dword;
78	u32			shift;
79};
80
81#define SMPT_CMD_ADDRESS_LEN_MASK		GENMASK(23, 22)
82#define SMPT_CMD_ADDRESS_LEN_0			(0x0UL << 22)
83#define SMPT_CMD_ADDRESS_LEN_3			(0x1UL << 22)
84#define SMPT_CMD_ADDRESS_LEN_4			(0x2UL << 22)
85#define SMPT_CMD_ADDRESS_LEN_USE_CURRENT	(0x3UL << 22)
86
87#define SMPT_CMD_READ_DUMMY_MASK		GENMASK(19, 16)
88#define SMPT_CMD_READ_DUMMY_SHIFT		16
89#define SMPT_CMD_READ_DUMMY(_cmd) \
90	(((_cmd) & SMPT_CMD_READ_DUMMY_MASK) >> SMPT_CMD_READ_DUMMY_SHIFT)
91#define SMPT_CMD_READ_DUMMY_IS_VARIABLE		0xfUL
92
93#define SMPT_CMD_READ_DATA_MASK			GENMASK(31, 24)
94#define SMPT_CMD_READ_DATA_SHIFT		24
95#define SMPT_CMD_READ_DATA(_cmd) \
96	(((_cmd) & SMPT_CMD_READ_DATA_MASK) >> SMPT_CMD_READ_DATA_SHIFT)
97
98#define SMPT_CMD_OPCODE_MASK			GENMASK(15, 8)
99#define SMPT_CMD_OPCODE_SHIFT			8
100#define SMPT_CMD_OPCODE(_cmd) \
101	(((_cmd) & SMPT_CMD_OPCODE_MASK) >> SMPT_CMD_OPCODE_SHIFT)
102
103#define SMPT_MAP_REGION_COUNT_MASK		GENMASK(23, 16)
104#define SMPT_MAP_REGION_COUNT_SHIFT		16
105#define SMPT_MAP_REGION_COUNT(_header) \
106	((((_header) & SMPT_MAP_REGION_COUNT_MASK) >> \
107	  SMPT_MAP_REGION_COUNT_SHIFT) + 1)
108
109#define SMPT_MAP_ID_MASK			GENMASK(15, 8)
110#define SMPT_MAP_ID_SHIFT			8
111#define SMPT_MAP_ID(_header) \
112	(((_header) & SMPT_MAP_ID_MASK) >> SMPT_MAP_ID_SHIFT)
113
114#define SMPT_MAP_REGION_SIZE_MASK		GENMASK(31, 8)
115#define SMPT_MAP_REGION_SIZE_SHIFT		8
116#define SMPT_MAP_REGION_SIZE(_region) \
117	(((((_region) & SMPT_MAP_REGION_SIZE_MASK) >> \
118	   SMPT_MAP_REGION_SIZE_SHIFT) + 1) * 256)
119
120#define SMPT_MAP_REGION_ERASE_TYPE_MASK		GENMASK(3, 0)
121#define SMPT_MAP_REGION_ERASE_TYPE(_region) \
122	((_region) & SMPT_MAP_REGION_ERASE_TYPE_MASK)
123
124#define SMPT_DESC_TYPE_MAP			BIT(1)
125#define SMPT_DESC_END				BIT(0)
126
127#define SFDP_4BAIT_DWORD_MAX	2
128
129struct sfdp_4bait {
130	/* The hardware capability. */
131	u32		hwcaps;
132
133	/*
134	 * The <supported_bit> bit in DWORD1 of the 4BAIT tells us whether
135	 * the associated 4-byte address op code is supported.
136	 */
137	u32		supported_bit;
138};
139
140/**
141 * spi_nor_read_raw() - raw read of serial flash memory. read_opcode,
142 *			addr_nbytes and read_dummy members of the struct spi_nor
143 *			should be previously set.
144 * @nor:	pointer to a 'struct spi_nor'
145 * @addr:	offset in the serial flash memory
146 * @len:	number of bytes to read
147 * @buf:	buffer where the data is copied into (dma-safe memory)
148 *
149 * Return: 0 on success, -errno otherwise.
150 */
151static int spi_nor_read_raw(struct spi_nor *nor, u32 addr, size_t len, u8 *buf)
152{
153	ssize_t ret;
154
155	while (len) {
156		ret = spi_nor_read_data(nor, addr, len, buf);
157		if (ret < 0)
158			return ret;
159		if (!ret || ret > len)
160			return -EIO;
161
162		buf += ret;
163		addr += ret;
164		len -= ret;
165	}
166	return 0;
167}
168
169/**
170 * spi_nor_read_sfdp() - read Serial Flash Discoverable Parameters.
171 * @nor:	pointer to a 'struct spi_nor'
172 * @addr:	offset in the SFDP area to start reading data from
173 * @len:	number of bytes to read
174 * @buf:	buffer where the SFDP data are copied into (dma-safe memory)
175 *
176 * Whatever the actual numbers of bytes for address and dummy cycles are
177 * for (Fast) Read commands, the Read SFDP (5Ah) instruction is always
178 * followed by a 3-byte address and 8 dummy clock cycles.
179 *
180 * Return: 0 on success, -errno otherwise.
181 */
182static int spi_nor_read_sfdp(struct spi_nor *nor, u32 addr,
183			     size_t len, void *buf)
184{
185	u8 addr_nbytes, read_opcode, read_dummy;
186	int ret;
187
188	read_opcode = nor->read_opcode;
189	addr_nbytes = nor->addr_nbytes;
190	read_dummy = nor->read_dummy;
191
192	nor->read_opcode = SPINOR_OP_RDSFDP;
193	nor->addr_nbytes = 3;
194	nor->read_dummy = 8;
195
196	ret = spi_nor_read_raw(nor, addr, len, buf);
197
198	nor->read_opcode = read_opcode;
199	nor->addr_nbytes = addr_nbytes;
200	nor->read_dummy = read_dummy;
201
202	return ret;
203}
204
205/**
206 * spi_nor_read_sfdp_dma_unsafe() - read Serial Flash Discoverable Parameters.
207 * @nor:	pointer to a 'struct spi_nor'
208 * @addr:	offset in the SFDP area to start reading data from
209 * @len:	number of bytes to read
210 * @buf:	buffer where the SFDP data are copied into
211 *
212 * Wrap spi_nor_read_sfdp() using a kmalloc'ed bounce buffer as @buf is now not
213 * guaranteed to be dma-safe.
214 *
215 * Return: -ENOMEM if kmalloc() fails, the return code of spi_nor_read_sfdp()
216 *          otherwise.
217 */
218static int spi_nor_read_sfdp_dma_unsafe(struct spi_nor *nor, u32 addr,
219					size_t len, void *buf)
220{
221	void *dma_safe_buf;
222	int ret;
223
224	dma_safe_buf = kmalloc(len, GFP_KERNEL);
225	if (!dma_safe_buf)
226		return -ENOMEM;
227
228	ret = spi_nor_read_sfdp(nor, addr, len, dma_safe_buf);
229	memcpy(buf, dma_safe_buf, len);
230	kfree(dma_safe_buf);
231
232	return ret;
233}
234
235static void
236spi_nor_set_read_settings_from_bfpt(struct spi_nor_read_command *read,
237				    u16 half,
238				    enum spi_nor_protocol proto)
239{
240	read->num_mode_clocks = (half >> 5) & 0x07;
241	read->num_wait_states = (half >> 0) & 0x1f;
242	read->opcode = (half >> 8) & 0xff;
243	read->proto = proto;
244}
245
246static const struct sfdp_bfpt_read sfdp_bfpt_reads[] = {
247	/* Fast Read 1-1-2 */
248	{
249		SNOR_HWCAPS_READ_1_1_2,
250		SFDP_DWORD(1), BIT(16),	/* Supported bit */
251		SFDP_DWORD(4), 0,	/* Settings */
252		SNOR_PROTO_1_1_2,
253	},
254
255	/* Fast Read 1-2-2 */
256	{
257		SNOR_HWCAPS_READ_1_2_2,
258		SFDP_DWORD(1), BIT(20),	/* Supported bit */
259		SFDP_DWORD(4), 16,	/* Settings */
260		SNOR_PROTO_1_2_2,
261	},
262
263	/* Fast Read 2-2-2 */
264	{
265		SNOR_HWCAPS_READ_2_2_2,
266		SFDP_DWORD(5),  BIT(0),	/* Supported bit */
267		SFDP_DWORD(6), 16,	/* Settings */
268		SNOR_PROTO_2_2_2,
269	},
270
271	/* Fast Read 1-1-4 */
272	{
273		SNOR_HWCAPS_READ_1_1_4,
274		SFDP_DWORD(1), BIT(22),	/* Supported bit */
275		SFDP_DWORD(3), 16,	/* Settings */
276		SNOR_PROTO_1_1_4,
277	},
278
279	/* Fast Read 1-4-4 */
280	{
281		SNOR_HWCAPS_READ_1_4_4,
282		SFDP_DWORD(1), BIT(21),	/* Supported bit */
283		SFDP_DWORD(3), 0,	/* Settings */
284		SNOR_PROTO_1_4_4,
285	},
286
287	/* Fast Read 4-4-4 */
288	{
289		SNOR_HWCAPS_READ_4_4_4,
290		SFDP_DWORD(5), BIT(4),	/* Supported bit */
291		SFDP_DWORD(7), 16,	/* Settings */
292		SNOR_PROTO_4_4_4,
293	},
294};
295
296static const struct sfdp_bfpt_erase sfdp_bfpt_erases[] = {
297	/* Erase Type 1 in DWORD8 bits[15:0] */
298	{SFDP_DWORD(8), 0},
299
300	/* Erase Type 2 in DWORD8 bits[31:16] */
301	{SFDP_DWORD(8), 16},
302
303	/* Erase Type 3 in DWORD9 bits[15:0] */
304	{SFDP_DWORD(9), 0},
305
306	/* Erase Type 4 in DWORD9 bits[31:16] */
307	{SFDP_DWORD(9), 16},
308};
309
310/**
311 * spi_nor_set_erase_settings_from_bfpt() - set erase type settings from BFPT
312 * @erase:	pointer to a structure that describes a SPI NOR erase type
313 * @size:	the size of the sector/block erased by the erase type
314 * @opcode:	the SPI command op code to erase the sector/block
315 * @i:		erase type index as sorted in the Basic Flash Parameter Table
316 *
317 * The supported Erase Types will be sorted at init in ascending order, with
318 * the smallest Erase Type size being the first member in the erase_type array
319 * of the spi_nor_erase_map structure. Save the Erase Type index as sorted in
320 * the Basic Flash Parameter Table since it will be used later on to
321 * synchronize with the supported Erase Types defined in SFDP optional tables.
322 */
323static void
324spi_nor_set_erase_settings_from_bfpt(struct spi_nor_erase_type *erase,
325				     u32 size, u8 opcode, u8 i)
326{
327	erase->idx = i;
328	spi_nor_set_erase_type(erase, size, opcode);
329}
330
331/**
332 * spi_nor_map_cmp_erase_type() - compare the map's erase types by size
333 * @l:	member in the left half of the map's erase_type array
334 * @r:	member in the right half of the map's erase_type array
335 *
336 * Comparison function used in the sort() call to sort in ascending order the
337 * map's erase types, the smallest erase type size being the first member in the
338 * sorted erase_type array.
339 *
340 * Return: the result of @l->size - @r->size
341 */
342static int spi_nor_map_cmp_erase_type(const void *l, const void *r)
343{
344	const struct spi_nor_erase_type *left = l, *right = r;
345
346	return left->size - right->size;
347}
348
349/**
350 * spi_nor_sort_erase_mask() - sort erase mask
351 * @map:	the erase map of the SPI NOR
352 * @erase_mask:	the erase type mask to be sorted
353 *
354 * Replicate the sort done for the map's erase types in BFPT: sort the erase
355 * mask in ascending order with the smallest erase type size starting from
356 * BIT(0) in the sorted erase mask.
357 *
358 * Return: sorted erase mask.
359 */
360static u8 spi_nor_sort_erase_mask(struct spi_nor_erase_map *map, u8 erase_mask)
361{
362	struct spi_nor_erase_type *erase_type = map->erase_type;
363	int i;
364	u8 sorted_erase_mask = 0;
365
366	if (!erase_mask)
367		return 0;
368
369	/* Replicate the sort done for the map's erase types. */
370	for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++)
371		if (erase_type[i].size && erase_mask & BIT(erase_type[i].idx))
372			sorted_erase_mask |= BIT(i);
373
374	return sorted_erase_mask;
375}
376
377/**
378 * spi_nor_regions_sort_erase_types() - sort erase types in each region
379 * @map:	the erase map of the SPI NOR
380 *
381 * Function assumes that the erase types defined in the erase map are already
382 * sorted in ascending order, with the smallest erase type size being the first
383 * member in the erase_type array. It replicates the sort done for the map's
384 * erase types. Each region's erase bitmask will indicate which erase types are
385 * supported from the sorted erase types defined in the erase map.
386 * Sort the all region's erase type at init in order to speed up the process of
387 * finding the best erase command at runtime.
388 */
389static void spi_nor_regions_sort_erase_types(struct spi_nor_erase_map *map)
390{
391	struct spi_nor_erase_region *region = map->regions;
392	u8 region_erase_mask, sorted_erase_mask;
393
394	while (region) {
395		region_erase_mask = region->offset & SNOR_ERASE_TYPE_MASK;
396
397		sorted_erase_mask = spi_nor_sort_erase_mask(map,
398							    region_erase_mask);
399
400		/* Overwrite erase mask. */
401		region->offset = (region->offset & ~SNOR_ERASE_TYPE_MASK) |
402				 sorted_erase_mask;
403
404		region = spi_nor_region_next(region);
405	}
406}
407
408/**
409 * spi_nor_parse_bfpt() - read and parse the Basic Flash Parameter Table.
410 * @nor:		pointer to a 'struct spi_nor'
411 * @bfpt_header:	pointer to the 'struct sfdp_parameter_header' describing
412 *			the Basic Flash Parameter Table length and version
413 *
414 * The Basic Flash Parameter Table is the main and only mandatory table as
415 * defined by the SFDP (JESD216) specification.
416 * It provides us with the total size (memory density) of the data array and
417 * the number of address bytes for Fast Read, Page Program and Sector Erase
418 * commands.
419 * For Fast READ commands, it also gives the number of mode clock cycles and
420 * wait states (regrouped in the number of dummy clock cycles) for each
421 * supported instruction op code.
422 * For Page Program, the page size is now available since JESD216 rev A, however
423 * the supported instruction op codes are still not provided.
424 * For Sector Erase commands, this table stores the supported instruction op
425 * codes and the associated sector sizes.
426 * Finally, the Quad Enable Requirements (QER) are also available since JESD216
427 * rev A. The QER bits encode the manufacturer dependent procedure to be
428 * executed to set the Quad Enable (QE) bit in some internal register of the
429 * Quad SPI memory. Indeed the QE bit, when it exists, must be set before
430 * sending any Quad SPI command to the memory. Actually, setting the QE bit
431 * tells the memory to reassign its WP# and HOLD#/RESET# pins to functions IO2
432 * and IO3 hence enabling 4 (Quad) I/O lines.
433 *
434 * Return: 0 on success, -errno otherwise.
435 */
436static int spi_nor_parse_bfpt(struct spi_nor *nor,
437			      const struct sfdp_parameter_header *bfpt_header)
438{
439	struct spi_nor_flash_parameter *params = nor->params;
440	struct spi_nor_erase_map *map = &params->erase_map;
441	struct spi_nor_erase_type *erase_type = map->erase_type;
442	struct sfdp_bfpt bfpt;
443	size_t len;
444	int i, cmd, err;
445	u32 addr, val;
446	u32 dword;
447	u16 half;
448	u8 erase_mask;
449
450	/* JESD216 Basic Flash Parameter Table length is at least 9 DWORDs. */
451	if (bfpt_header->length < BFPT_DWORD_MAX_JESD216)
452		return -EINVAL;
453
454	/* Read the Basic Flash Parameter Table. */
455	len = min_t(size_t, sizeof(bfpt),
456		    bfpt_header->length * sizeof(u32));
457	addr = SFDP_PARAM_HEADER_PTP(bfpt_header);
458	memset(&bfpt, 0, sizeof(bfpt));
459	err = spi_nor_read_sfdp_dma_unsafe(nor,  addr, len, &bfpt);
460	if (err < 0)
461		return err;
462
463	/* Fix endianness of the BFPT DWORDs. */
464	le32_to_cpu_array(bfpt.dwords, BFPT_DWORD_MAX);
465
466	/* Number of address bytes. */
467	switch (bfpt.dwords[SFDP_DWORD(1)] & BFPT_DWORD1_ADDRESS_BYTES_MASK) {
468	case BFPT_DWORD1_ADDRESS_BYTES_3_ONLY:
469	case BFPT_DWORD1_ADDRESS_BYTES_3_OR_4:
470		params->addr_nbytes = 3;
471		params->addr_mode_nbytes = 3;
472		break;
473
474	case BFPT_DWORD1_ADDRESS_BYTES_4_ONLY:
475		params->addr_nbytes = 4;
476		params->addr_mode_nbytes = 4;
477		break;
478
479	default:
480		break;
481	}
482
483	/* Flash Memory Density (in bits). */
484	val = bfpt.dwords[SFDP_DWORD(2)];
485	if (val & BIT(31)) {
486		val &= ~BIT(31);
487
488		/*
489		 * Prevent overflows on params->size. Anyway, a NOR of 2^64
490		 * bits is unlikely to exist so this error probably means
491		 * the BFPT we are reading is corrupted/wrong.
492		 */
493		if (val > 63)
494			return -EINVAL;
495
496		params->size = 1ULL << val;
497	} else {
498		params->size = val + 1;
499	}
500	params->size >>= 3; /* Convert to bytes. */
501
502	/* Fast Read settings. */
503	for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_reads); i++) {
504		const struct sfdp_bfpt_read *rd = &sfdp_bfpt_reads[i];
505		struct spi_nor_read_command *read;
506
507		if (!(bfpt.dwords[rd->supported_dword] & rd->supported_bit)) {
508			params->hwcaps.mask &= ~rd->hwcaps;
509			continue;
510		}
511
512		params->hwcaps.mask |= rd->hwcaps;
513		cmd = spi_nor_hwcaps_read2cmd(rd->hwcaps);
514		read = &params->reads[cmd];
515		half = bfpt.dwords[rd->settings_dword] >> rd->settings_shift;
516		spi_nor_set_read_settings_from_bfpt(read, half, rd->proto);
517	}
518
519	/*
520	 * Sector Erase settings. Reinitialize the uniform erase map using the
521	 * Erase Types defined in the bfpt table.
522	 */
523	erase_mask = 0;
524	memset(&params->erase_map, 0, sizeof(params->erase_map));
525	for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_erases); i++) {
526		const struct sfdp_bfpt_erase *er = &sfdp_bfpt_erases[i];
527		u32 erasesize;
528		u8 opcode;
529
530		half = bfpt.dwords[er->dword] >> er->shift;
531		erasesize = half & 0xff;
532
533		/* erasesize == 0 means this Erase Type is not supported. */
534		if (!erasesize)
535			continue;
536
537		erasesize = 1U << erasesize;
538		opcode = (half >> 8) & 0xff;
539		erase_mask |= BIT(i);
540		spi_nor_set_erase_settings_from_bfpt(&erase_type[i], erasesize,
541						     opcode, i);
542	}
543	spi_nor_init_uniform_erase_map(map, erase_mask, params->size);
544	/*
545	 * Sort all the map's Erase Types in ascending order with the smallest
546	 * erase size being the first member in the erase_type array.
547	 */
548	sort(erase_type, SNOR_ERASE_TYPE_MAX, sizeof(erase_type[0]),
549	     spi_nor_map_cmp_erase_type, NULL);
550	/*
551	 * Sort the erase types in the uniform region in order to update the
552	 * uniform_erase_type bitmask. The bitmask will be used later on when
553	 * selecting the uniform erase.
554	 */
555	spi_nor_regions_sort_erase_types(map);
556	map->uniform_erase_type = map->uniform_region.offset &
557				  SNOR_ERASE_TYPE_MASK;
558
559	/* Stop here if not JESD216 rev A or later. */
560	if (bfpt_header->length == BFPT_DWORD_MAX_JESD216)
561		return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt);
562
563	/* Page size: this field specifies 'N' so the page size = 2^N bytes. */
564	val = bfpt.dwords[SFDP_DWORD(11)];
565	val &= BFPT_DWORD11_PAGE_SIZE_MASK;
566	val >>= BFPT_DWORD11_PAGE_SIZE_SHIFT;
567	params->page_size = 1U << val;
568
569	/* Quad Enable Requirements. */
570	switch (bfpt.dwords[SFDP_DWORD(15)] & BFPT_DWORD15_QER_MASK) {
571	case BFPT_DWORD15_QER_NONE:
572		params->quad_enable = NULL;
573		break;
574
575	case BFPT_DWORD15_QER_SR2_BIT1_BUGGY:
576		/*
577		 * Writing only one byte to the Status Register has the
578		 * side-effect of clearing Status Register 2.
579		 */
580	case BFPT_DWORD15_QER_SR2_BIT1_NO_RD:
581		/*
582		 * Read Configuration Register (35h) instruction is not
583		 * supported.
584		 */
585		nor->flags |= SNOR_F_HAS_16BIT_SR | SNOR_F_NO_READ_CR;
586		params->quad_enable = spi_nor_sr2_bit1_quad_enable;
587		break;
588
589	case BFPT_DWORD15_QER_SR1_BIT6:
590		nor->flags &= ~SNOR_F_HAS_16BIT_SR;
591		params->quad_enable = spi_nor_sr1_bit6_quad_enable;
592		break;
593
594	case BFPT_DWORD15_QER_SR2_BIT7:
595		nor->flags &= ~SNOR_F_HAS_16BIT_SR;
596		params->quad_enable = spi_nor_sr2_bit7_quad_enable;
597		break;
598
599	case BFPT_DWORD15_QER_SR2_BIT1:
600		/*
601		 * JESD216 rev B or later does not specify if writing only one
602		 * byte to the Status Register clears or not the Status
603		 * Register 2, so let's be cautious and keep the default
604		 * assumption of a 16-bit Write Status (01h) command.
605		 */
606		nor->flags |= SNOR_F_HAS_16BIT_SR;
607
608		params->quad_enable = spi_nor_sr2_bit1_quad_enable;
609		break;
610
611	default:
612		dev_dbg(nor->dev, "BFPT QER reserved value used\n");
613		break;
614	}
615
616	dword = bfpt.dwords[SFDP_DWORD(16)] & BFPT_DWORD16_4B_ADDR_MODE_MASK;
617	if (SFDP_MASK_CHECK(dword, BFPT_DWORD16_4B_ADDR_MODE_BRWR))
618		params->set_4byte_addr_mode = spi_nor_set_4byte_addr_mode_brwr;
619	else if (SFDP_MASK_CHECK(dword, BFPT_DWORD16_4B_ADDR_MODE_WREN_EN4B_EX4B))
620		params->set_4byte_addr_mode = spi_nor_set_4byte_addr_mode_wren_en4b_ex4b;
621	else if (SFDP_MASK_CHECK(dword, BFPT_DWORD16_4B_ADDR_MODE_EN4B_EX4B))
622		params->set_4byte_addr_mode = spi_nor_set_4byte_addr_mode_en4b_ex4b;
623	else
624		dev_dbg(nor->dev, "BFPT: 4-Byte Address Mode method is not recognized or not implemented\n");
625
626	/* Soft Reset support. */
627	if (bfpt.dwords[SFDP_DWORD(16)] & BFPT_DWORD16_SWRST_EN_RST)
628		nor->flags |= SNOR_F_SOFT_RESET;
629
630	/* Stop here if not JESD216 rev C or later. */
631	if (bfpt_header->length == BFPT_DWORD_MAX_JESD216B)
632		return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt);
633
634	/* 8D-8D-8D command extension. */
635	switch (bfpt.dwords[SFDP_DWORD(18)] & BFPT_DWORD18_CMD_EXT_MASK) {
636	case BFPT_DWORD18_CMD_EXT_REP:
637		nor->cmd_ext_type = SPI_NOR_EXT_REPEAT;
638		break;
639
640	case BFPT_DWORD18_CMD_EXT_INV:
641		nor->cmd_ext_type = SPI_NOR_EXT_INVERT;
642		break;
643
644	case BFPT_DWORD18_CMD_EXT_RES:
645		dev_dbg(nor->dev, "Reserved command extension used\n");
646		break;
647
648	case BFPT_DWORD18_CMD_EXT_16B:
649		dev_dbg(nor->dev, "16-bit opcodes not supported\n");
650		return -EOPNOTSUPP;
651	}
652
653	return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt);
654}
655
656/**
657 * spi_nor_smpt_addr_nbytes() - return the number of address bytes used in the
658 *			       configuration detection command.
659 * @nor:	pointer to a 'struct spi_nor'
660 * @settings:	configuration detection command descriptor, dword1
661 */
662static u8 spi_nor_smpt_addr_nbytes(const struct spi_nor *nor, const u32 settings)
663{
664	switch (settings & SMPT_CMD_ADDRESS_LEN_MASK) {
665	case SMPT_CMD_ADDRESS_LEN_0:
666		return 0;
667	case SMPT_CMD_ADDRESS_LEN_3:
668		return 3;
669	case SMPT_CMD_ADDRESS_LEN_4:
670		return 4;
671	case SMPT_CMD_ADDRESS_LEN_USE_CURRENT:
672	default:
673		return nor->params->addr_mode_nbytes;
674	}
675}
676
677/**
678 * spi_nor_smpt_read_dummy() - return the configuration detection command read
679 *			       latency, in clock cycles.
680 * @nor:	pointer to a 'struct spi_nor'
681 * @settings:	configuration detection command descriptor, dword1
682 *
683 * Return: the number of dummy cycles for an SMPT read
684 */
685static u8 spi_nor_smpt_read_dummy(const struct spi_nor *nor, const u32 settings)
686{
687	u8 read_dummy = SMPT_CMD_READ_DUMMY(settings);
688
689	if (read_dummy == SMPT_CMD_READ_DUMMY_IS_VARIABLE)
690		return nor->read_dummy;
691	return read_dummy;
692}
693
694/**
695 * spi_nor_get_map_in_use() - get the configuration map in use
696 * @nor:	pointer to a 'struct spi_nor'
697 * @smpt:	pointer to the sector map parameter table
698 * @smpt_len:	sector map parameter table length
699 *
700 * Return: pointer to the map in use, ERR_PTR(-errno) otherwise.
701 */
702static const u32 *spi_nor_get_map_in_use(struct spi_nor *nor, const u32 *smpt,
703					 u8 smpt_len)
704{
705	const u32 *ret;
706	u8 *buf;
707	u32 addr;
708	int err;
709	u8 i;
710	u8 addr_nbytes, read_opcode, read_dummy;
711	u8 read_data_mask, map_id;
712
713	/* Use a kmalloc'ed bounce buffer to guarantee it is DMA-able. */
714	buf = kmalloc(sizeof(*buf), GFP_KERNEL);
715	if (!buf)
716		return ERR_PTR(-ENOMEM);
717
718	addr_nbytes = nor->addr_nbytes;
719	read_dummy = nor->read_dummy;
720	read_opcode = nor->read_opcode;
721
722	map_id = 0;
723	/* Determine if there are any optional Detection Command Descriptors */
724	for (i = 0; i < smpt_len; i += 2) {
725		if (smpt[i] & SMPT_DESC_TYPE_MAP)
726			break;
727
728		read_data_mask = SMPT_CMD_READ_DATA(smpt[i]);
729		nor->addr_nbytes = spi_nor_smpt_addr_nbytes(nor, smpt[i]);
730		nor->read_dummy = spi_nor_smpt_read_dummy(nor, smpt[i]);
731		nor->read_opcode = SMPT_CMD_OPCODE(smpt[i]);
732		addr = smpt[i + 1];
733
734		err = spi_nor_read_raw(nor, addr, 1, buf);
735		if (err) {
736			ret = ERR_PTR(err);
737			goto out;
738		}
739
740		/*
741		 * Build an index value that is used to select the Sector Map
742		 * Configuration that is currently in use.
743		 */
744		map_id = map_id << 1 | !!(*buf & read_data_mask);
745	}
746
747	/*
748	 * If command descriptors are provided, they always precede map
749	 * descriptors in the table. There is no need to start the iteration
750	 * over smpt array all over again.
751	 *
752	 * Find the matching configuration map.
753	 */
754	ret = ERR_PTR(-EINVAL);
755	while (i < smpt_len) {
756		if (SMPT_MAP_ID(smpt[i]) == map_id) {
757			ret = smpt + i;
758			break;
759		}
760
761		/*
762		 * If there are no more configuration map descriptors and no
763		 * configuration ID matched the configuration identifier, the
764		 * sector address map is unknown.
765		 */
766		if (smpt[i] & SMPT_DESC_END)
767			break;
768
769		/* increment the table index to the next map */
770		i += SMPT_MAP_REGION_COUNT(smpt[i]) + 1;
771	}
772
773	/* fall through */
774out:
775	kfree(buf);
776	nor->addr_nbytes = addr_nbytes;
777	nor->read_dummy = read_dummy;
778	nor->read_opcode = read_opcode;
779	return ret;
780}
781
782static void spi_nor_region_mark_end(struct spi_nor_erase_region *region)
783{
784	region->offset |= SNOR_LAST_REGION;
785}
786
787static void spi_nor_region_mark_overlay(struct spi_nor_erase_region *region)
788{
789	region->offset |= SNOR_OVERLAID_REGION;
790}
791
792/**
793 * spi_nor_region_check_overlay() - set overlay bit when the region is overlaid
794 * @region:	pointer to a structure that describes a SPI NOR erase region
795 * @erase:	pointer to a structure that describes a SPI NOR erase type
796 * @erase_type:	erase type bitmask
797 */
798static void
799spi_nor_region_check_overlay(struct spi_nor_erase_region *region,
800			     const struct spi_nor_erase_type *erase,
801			     const u8 erase_type)
802{
803	int i;
804
805	for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
806		if (!(erase[i].size && erase_type & BIT(erase[i].idx)))
807			continue;
808		if (region->size & erase[i].size_mask) {
809			spi_nor_region_mark_overlay(region);
810			return;
811		}
812	}
813}
814
815/**
816 * spi_nor_init_non_uniform_erase_map() - initialize the non-uniform erase map
817 * @nor:	pointer to a 'struct spi_nor'
818 * @smpt:	pointer to the sector map parameter table
819 *
820 * Return: 0 on success, -errno otherwise.
821 */
822static int spi_nor_init_non_uniform_erase_map(struct spi_nor *nor,
823					      const u32 *smpt)
824{
825	struct spi_nor_erase_map *map = &nor->params->erase_map;
826	struct spi_nor_erase_type *erase = map->erase_type;
827	struct spi_nor_erase_region *region;
828	u64 offset;
829	u32 region_count;
830	int i, j;
831	u8 uniform_erase_type, save_uniform_erase_type;
832	u8 erase_type, regions_erase_type;
833
834	region_count = SMPT_MAP_REGION_COUNT(*smpt);
835	/*
836	 * The regions will be freed when the driver detaches from the
837	 * device.
838	 */
839	region = devm_kcalloc(nor->dev, region_count, sizeof(*region),
840			      GFP_KERNEL);
841	if (!region)
842		return -ENOMEM;
843	map->regions = region;
844
845	uniform_erase_type = 0xff;
846	regions_erase_type = 0;
847	offset = 0;
848	/* Populate regions. */
849	for (i = 0; i < region_count; i++) {
850		j = i + 1; /* index for the region dword */
851		region[i].size = SMPT_MAP_REGION_SIZE(smpt[j]);
852		erase_type = SMPT_MAP_REGION_ERASE_TYPE(smpt[j]);
853		region[i].offset = offset | erase_type;
854
855		spi_nor_region_check_overlay(&region[i], erase, erase_type);
856
857		/*
858		 * Save the erase types that are supported in all regions and
859		 * can erase the entire flash memory.
860		 */
861		uniform_erase_type &= erase_type;
862
863		/*
864		 * regions_erase_type mask will indicate all the erase types
865		 * supported in this configuration map.
866		 */
867		regions_erase_type |= erase_type;
868
869		offset = (region[i].offset & ~SNOR_ERASE_FLAGS_MASK) +
870			 region[i].size;
871	}
872	spi_nor_region_mark_end(&region[i - 1]);
873
874	save_uniform_erase_type = map->uniform_erase_type;
875	map->uniform_erase_type = spi_nor_sort_erase_mask(map,
876							  uniform_erase_type);
877
878	if (!regions_erase_type) {
879		/*
880		 * Roll back to the previous uniform_erase_type mask, SMPT is
881		 * broken.
882		 */
883		map->uniform_erase_type = save_uniform_erase_type;
884		return -EINVAL;
885	}
886
887	/*
888	 * BFPT advertises all the erase types supported by all the possible
889	 * map configurations. Mask out the erase types that are not supported
890	 * by the current map configuration.
891	 */
892	for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++)
893		if (!(regions_erase_type & BIT(erase[i].idx)))
894			spi_nor_mask_erase_type(&erase[i]);
895
896	return 0;
897}
898
899/**
900 * spi_nor_parse_smpt() - parse Sector Map Parameter Table
901 * @nor:		pointer to a 'struct spi_nor'
902 * @smpt_header:	sector map parameter table header
903 *
904 * This table is optional, but when available, we parse it to identify the
905 * location and size of sectors within the main data array of the flash memory
906 * device and to identify which Erase Types are supported by each sector.
907 *
908 * Return: 0 on success, -errno otherwise.
909 */
910static int spi_nor_parse_smpt(struct spi_nor *nor,
911			      const struct sfdp_parameter_header *smpt_header)
912{
913	const u32 *sector_map;
914	u32 *smpt;
915	size_t len;
916	u32 addr;
917	int ret;
918
919	/* Read the Sector Map Parameter Table. */
920	len = smpt_header->length * sizeof(*smpt);
921	smpt = kmalloc(len, GFP_KERNEL);
922	if (!smpt)
923		return -ENOMEM;
924
925	addr = SFDP_PARAM_HEADER_PTP(smpt_header);
926	ret = spi_nor_read_sfdp(nor, addr, len, smpt);
927	if (ret)
928		goto out;
929
930	/* Fix endianness of the SMPT DWORDs. */
931	le32_to_cpu_array(smpt, smpt_header->length);
932
933	sector_map = spi_nor_get_map_in_use(nor, smpt, smpt_header->length);
934	if (IS_ERR(sector_map)) {
935		ret = PTR_ERR(sector_map);
936		goto out;
937	}
938
939	ret = spi_nor_init_non_uniform_erase_map(nor, sector_map);
940	if (ret)
941		goto out;
942
943	spi_nor_regions_sort_erase_types(&nor->params->erase_map);
944	/* fall through */
945out:
946	kfree(smpt);
947	return ret;
948}
949
950/**
951 * spi_nor_parse_4bait() - parse the 4-Byte Address Instruction Table
952 * @nor:		pointer to a 'struct spi_nor'.
953 * @param_header:	pointer to the 'struct sfdp_parameter_header' describing
954 *			the 4-Byte Address Instruction Table length and version.
955 *
956 * Return: 0 on success, -errno otherwise.
957 */
958static int spi_nor_parse_4bait(struct spi_nor *nor,
959			       const struct sfdp_parameter_header *param_header)
960{
961	static const struct sfdp_4bait reads[] = {
962		{ SNOR_HWCAPS_READ,		BIT(0) },
963		{ SNOR_HWCAPS_READ_FAST,	BIT(1) },
964		{ SNOR_HWCAPS_READ_1_1_2,	BIT(2) },
965		{ SNOR_HWCAPS_READ_1_2_2,	BIT(3) },
966		{ SNOR_HWCAPS_READ_1_1_4,	BIT(4) },
967		{ SNOR_HWCAPS_READ_1_4_4,	BIT(5) },
968		{ SNOR_HWCAPS_READ_1_1_1_DTR,	BIT(13) },
969		{ SNOR_HWCAPS_READ_1_2_2_DTR,	BIT(14) },
970		{ SNOR_HWCAPS_READ_1_4_4_DTR,	BIT(15) },
971	};
972	static const struct sfdp_4bait programs[] = {
973		{ SNOR_HWCAPS_PP,		BIT(6) },
974		{ SNOR_HWCAPS_PP_1_1_4,		BIT(7) },
975		{ SNOR_HWCAPS_PP_1_4_4,		BIT(8) },
976	};
977	static const struct sfdp_4bait erases[SNOR_ERASE_TYPE_MAX] = {
978		{ 0u /* not used */,		BIT(9) },
979		{ 0u /* not used */,		BIT(10) },
980		{ 0u /* not used */,		BIT(11) },
981		{ 0u /* not used */,		BIT(12) },
982	};
983	struct spi_nor_flash_parameter *params = nor->params;
984	struct spi_nor_pp_command *params_pp = params->page_programs;
985	struct spi_nor_erase_map *map = &params->erase_map;
986	struct spi_nor_erase_type *erase_type = map->erase_type;
987	u32 *dwords;
988	size_t len;
989	u32 addr, discard_hwcaps, read_hwcaps, pp_hwcaps, erase_mask;
990	int i, ret;
991
992	if (param_header->major != SFDP_JESD216_MAJOR ||
993	    param_header->length < SFDP_4BAIT_DWORD_MAX)
994		return -EINVAL;
995
996	/* Read the 4-byte Address Instruction Table. */
997	len = sizeof(*dwords) * SFDP_4BAIT_DWORD_MAX;
998
999	/* Use a kmalloc'ed bounce buffer to guarantee it is DMA-able. */
1000	dwords = kmalloc(len, GFP_KERNEL);
1001	if (!dwords)
1002		return -ENOMEM;
1003
1004	addr = SFDP_PARAM_HEADER_PTP(param_header);
1005	ret = spi_nor_read_sfdp(nor, addr, len, dwords);
1006	if (ret)
1007		goto out;
1008
1009	/* Fix endianness of the 4BAIT DWORDs. */
1010	le32_to_cpu_array(dwords, SFDP_4BAIT_DWORD_MAX);
1011
1012	/*
1013	 * Compute the subset of (Fast) Read commands for which the 4-byte
1014	 * version is supported.
1015	 */
1016	discard_hwcaps = 0;
1017	read_hwcaps = 0;
1018	for (i = 0; i < ARRAY_SIZE(reads); i++) {
1019		const struct sfdp_4bait *read = &reads[i];
1020
1021		discard_hwcaps |= read->hwcaps;
1022		if ((params->hwcaps.mask & read->hwcaps) &&
1023		    (dwords[SFDP_DWORD(1)] & read->supported_bit))
1024			read_hwcaps |= read->hwcaps;
1025	}
1026
1027	/*
1028	 * Compute the subset of Page Program commands for which the 4-byte
1029	 * version is supported.
1030	 */
1031	pp_hwcaps = 0;
1032	for (i = 0; i < ARRAY_SIZE(programs); i++) {
1033		const struct sfdp_4bait *program = &programs[i];
1034
1035		/*
1036		 * The 4 Byte Address Instruction (Optional) Table is the only
1037		 * SFDP table that indicates support for Page Program Commands.
1038		 * Bypass the params->hwcaps.mask and consider 4BAIT the biggest
1039		 * authority for specifying Page Program support.
1040		 */
1041		discard_hwcaps |= program->hwcaps;
1042		if (dwords[SFDP_DWORD(1)] & program->supported_bit)
1043			pp_hwcaps |= program->hwcaps;
1044	}
1045
1046	/*
1047	 * Compute the subset of Sector Erase commands for which the 4-byte
1048	 * version is supported.
1049	 */
1050	erase_mask = 0;
1051	for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
1052		const struct sfdp_4bait *erase = &erases[i];
1053
1054		if (dwords[SFDP_DWORD(1)] & erase->supported_bit)
1055			erase_mask |= BIT(i);
1056	}
1057
1058	/* Replicate the sort done for the map's erase types in BFPT. */
1059	erase_mask = spi_nor_sort_erase_mask(map, erase_mask);
1060
1061	/*
1062	 * We need at least one 4-byte op code per read, program and erase
1063	 * operation; the .read(), .write() and .erase() hooks share the
1064	 * nor->addr_nbytes value.
1065	 */
1066	if (!read_hwcaps || !pp_hwcaps || !erase_mask)
1067		goto out;
1068
1069	/*
1070	 * Discard all operations from the 4-byte instruction set which are
1071	 * not supported by this memory.
1072	 */
1073	params->hwcaps.mask &= ~discard_hwcaps;
1074	params->hwcaps.mask |= (read_hwcaps | pp_hwcaps);
1075
1076	/* Use the 4-byte address instruction set. */
1077	for (i = 0; i < SNOR_CMD_READ_MAX; i++) {
1078		struct spi_nor_read_command *read_cmd = &params->reads[i];
1079
1080		read_cmd->opcode = spi_nor_convert_3to4_read(read_cmd->opcode);
1081	}
1082
1083	/* 4BAIT is the only SFDP table that indicates page program support. */
1084	if (pp_hwcaps & SNOR_HWCAPS_PP) {
1085		spi_nor_set_pp_settings(&params_pp[SNOR_CMD_PP],
1086					SPINOR_OP_PP_4B, SNOR_PROTO_1_1_1);
1087		/*
1088		 * Since xSPI Page Program opcode is backward compatible with
1089		 * Legacy SPI, use Legacy SPI opcode there as well.
1090		 */
1091		spi_nor_set_pp_settings(&params_pp[SNOR_CMD_PP_8_8_8_DTR],
1092					SPINOR_OP_PP_4B, SNOR_PROTO_8_8_8_DTR);
1093	}
1094	if (pp_hwcaps & SNOR_HWCAPS_PP_1_1_4)
1095		spi_nor_set_pp_settings(&params_pp[SNOR_CMD_PP_1_1_4],
1096					SPINOR_OP_PP_1_1_4_4B,
1097					SNOR_PROTO_1_1_4);
1098	if (pp_hwcaps & SNOR_HWCAPS_PP_1_4_4)
1099		spi_nor_set_pp_settings(&params_pp[SNOR_CMD_PP_1_4_4],
1100					SPINOR_OP_PP_1_4_4_4B,
1101					SNOR_PROTO_1_4_4);
1102
1103	for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
1104		if (erase_mask & BIT(i))
1105			erase_type[i].opcode = (dwords[SFDP_DWORD(2)] >>
1106						erase_type[i].idx * 8) & 0xFF;
1107		else
1108			spi_nor_mask_erase_type(&erase_type[i]);
1109	}
1110
1111	/*
1112	 * We set SNOR_F_HAS_4BAIT in order to skip spi_nor_set_4byte_opcodes()
1113	 * later because we already did the conversion to 4byte opcodes. Also,
1114	 * this latest function implements a legacy quirk for the erase size of
1115	 * Spansion memory. However this quirk is no longer needed with new
1116	 * SFDP compliant memories.
1117	 */
1118	params->addr_nbytes = 4;
1119	nor->flags |= SNOR_F_4B_OPCODES | SNOR_F_HAS_4BAIT;
1120
1121	/* fall through */
1122out:
1123	kfree(dwords);
1124	return ret;
1125}
1126
1127#define PROFILE1_DWORD1_RDSR_ADDR_BYTES		BIT(29)
1128#define PROFILE1_DWORD1_RDSR_DUMMY		BIT(28)
1129#define PROFILE1_DWORD1_RD_FAST_CMD		GENMASK(15, 8)
1130#define PROFILE1_DWORD4_DUMMY_200MHZ		GENMASK(11, 7)
1131#define PROFILE1_DWORD5_DUMMY_166MHZ		GENMASK(31, 27)
1132#define PROFILE1_DWORD5_DUMMY_133MHZ		GENMASK(21, 17)
1133#define PROFILE1_DWORD5_DUMMY_100MHZ		GENMASK(11, 7)
1134
1135/**
1136 * spi_nor_parse_profile1() - parse the xSPI Profile 1.0 table
1137 * @nor:		pointer to a 'struct spi_nor'
1138 * @profile1_header:	pointer to the 'struct sfdp_parameter_header' describing
1139 *			the Profile 1.0 Table length and version.
1140 *
1141 * Return: 0 on success, -errno otherwise.
1142 */
1143static int spi_nor_parse_profile1(struct spi_nor *nor,
1144				  const struct sfdp_parameter_header *profile1_header)
1145{
1146	u32 *dwords, addr;
1147	size_t len;
1148	int ret;
1149	u8 dummy, opcode;
1150
1151	len = profile1_header->length * sizeof(*dwords);
1152	dwords = kmalloc(len, GFP_KERNEL);
1153	if (!dwords)
1154		return -ENOMEM;
1155
1156	addr = SFDP_PARAM_HEADER_PTP(profile1_header);
1157	ret = spi_nor_read_sfdp(nor, addr, len, dwords);
1158	if (ret)
1159		goto out;
1160
1161	le32_to_cpu_array(dwords, profile1_header->length);
1162
1163	/* Get 8D-8D-8D fast read opcode and dummy cycles. */
1164	opcode = FIELD_GET(PROFILE1_DWORD1_RD_FAST_CMD, dwords[SFDP_DWORD(1)]);
1165
1166	 /* Set the Read Status Register dummy cycles and dummy address bytes. */
1167	if (dwords[SFDP_DWORD(1)] & PROFILE1_DWORD1_RDSR_DUMMY)
1168		nor->params->rdsr_dummy = 8;
1169	else
1170		nor->params->rdsr_dummy = 4;
1171
1172	if (dwords[SFDP_DWORD(1)] & PROFILE1_DWORD1_RDSR_ADDR_BYTES)
1173		nor->params->rdsr_addr_nbytes = 4;
1174	else
1175		nor->params->rdsr_addr_nbytes = 0;
1176
1177	/*
1178	 * We don't know what speed the controller is running at. Find the
1179	 * dummy cycles for the fastest frequency the flash can run at to be
1180	 * sure we are never short of dummy cycles. A value of 0 means the
1181	 * frequency is not supported.
1182	 *
1183	 * Default to PROFILE1_DUMMY_DEFAULT if we don't find anything, and let
1184	 * flashes set the correct value if needed in their fixup hooks.
1185	 */
1186	dummy = FIELD_GET(PROFILE1_DWORD4_DUMMY_200MHZ, dwords[SFDP_DWORD(4)]);
1187	if (!dummy)
1188		dummy = FIELD_GET(PROFILE1_DWORD5_DUMMY_166MHZ,
1189				  dwords[SFDP_DWORD(5)]);
1190	if (!dummy)
1191		dummy = FIELD_GET(PROFILE1_DWORD5_DUMMY_133MHZ,
1192				  dwords[SFDP_DWORD(5)]);
1193	if (!dummy)
1194		dummy = FIELD_GET(PROFILE1_DWORD5_DUMMY_100MHZ,
1195				  dwords[SFDP_DWORD(5)]);
1196	if (!dummy)
1197		dev_dbg(nor->dev,
1198			"Can't find dummy cycles from Profile 1.0 table\n");
1199
1200	/* Round up to an even value to avoid tripping controllers up. */
1201	dummy = round_up(dummy, 2);
1202
1203	/* Update the fast read settings. */
1204	nor->params->hwcaps.mask |= SNOR_HWCAPS_READ_8_8_8_DTR;
1205	spi_nor_set_read_settings(&nor->params->reads[SNOR_CMD_READ_8_8_8_DTR],
1206				  0, dummy, opcode,
1207				  SNOR_PROTO_8_8_8_DTR);
1208
1209	/*
1210	 * Page Program is "Required Command" in the xSPI Profile 1.0. Update
1211	 * the params->hwcaps.mask here.
1212	 */
1213	nor->params->hwcaps.mask |= SNOR_HWCAPS_PP_8_8_8_DTR;
1214
1215out:
1216	kfree(dwords);
1217	return ret;
1218}
1219
1220#define SCCR_DWORD22_OCTAL_DTR_EN_VOLATILE		BIT(31)
1221
1222/**
1223 * spi_nor_parse_sccr() - Parse the Status, Control and Configuration Register
1224 *                        Map.
1225 * @nor:		pointer to a 'struct spi_nor'
1226 * @sccr_header:	pointer to the 'struct sfdp_parameter_header' describing
1227 *			the SCCR Map table length and version.
1228 *
1229 * Return: 0 on success, -errno otherwise.
1230 */
1231static int spi_nor_parse_sccr(struct spi_nor *nor,
1232			      const struct sfdp_parameter_header *sccr_header)
1233{
1234	struct spi_nor_flash_parameter *params = nor->params;
1235	u32 *dwords, addr;
1236	size_t len;
1237	int ret;
1238
1239	len = sccr_header->length * sizeof(*dwords);
1240	dwords = kmalloc(len, GFP_KERNEL);
1241	if (!dwords)
1242		return -ENOMEM;
1243
1244	addr = SFDP_PARAM_HEADER_PTP(sccr_header);
1245	ret = spi_nor_read_sfdp(nor, addr, len, dwords);
1246	if (ret)
1247		goto out;
1248
1249	le32_to_cpu_array(dwords, sccr_header->length);
1250
1251	/* Address offset for volatile registers (die 0) */
1252	if (!params->vreg_offset) {
1253		params->vreg_offset = devm_kmalloc(nor->dev, sizeof(*dwords),
1254						   GFP_KERNEL);
1255		if (!params->vreg_offset) {
1256			ret = -ENOMEM;
1257			goto out;
1258		}
1259	}
1260	params->vreg_offset[0] = dwords[SFDP_DWORD(1)];
1261	params->n_dice = 1;
1262
1263	if (FIELD_GET(SCCR_DWORD22_OCTAL_DTR_EN_VOLATILE,
1264		      dwords[SFDP_DWORD(22)]))
1265		nor->flags |= SNOR_F_IO_MODE_EN_VOLATILE;
1266
1267out:
1268	kfree(dwords);
1269	return ret;
1270}
1271
1272/**
1273 * spi_nor_parse_sccr_mc() - Parse the Status, Control and Configuration
1274 *                           Register Map Offsets for Multi-Chip SPI Memory
1275 *                           Devices.
1276 * @nor:		pointer to a 'struct spi_nor'
1277 * @sccr_mc_header:	pointer to the 'struct sfdp_parameter_header' describing
1278 *			the SCCR Map offsets table length and version.
1279 *
1280 * Return: 0 on success, -errno otherwise.
1281 */
1282static int spi_nor_parse_sccr_mc(struct spi_nor *nor,
1283				 const struct sfdp_parameter_header *sccr_mc_header)
1284{
1285	struct spi_nor_flash_parameter *params = nor->params;
1286	u32 *dwords, addr;
1287	u8 i, n_dice;
1288	size_t len;
1289	int ret;
1290
1291	len = sccr_mc_header->length * sizeof(*dwords);
1292	dwords = kmalloc(len, GFP_KERNEL);
1293	if (!dwords)
1294		return -ENOMEM;
1295
1296	addr = SFDP_PARAM_HEADER_PTP(sccr_mc_header);
1297	ret = spi_nor_read_sfdp(nor, addr, len, dwords);
1298	if (ret)
1299		goto out;
1300
1301	le32_to_cpu_array(dwords, sccr_mc_header->length);
1302
1303	/*
1304	 * Pair of DOWRDs (volatile and non-volatile register offsets) per
1305	 * additional die. Hence, length = 2 * (number of additional dice).
1306	 */
1307	n_dice = 1 + sccr_mc_header->length / 2;
1308
1309	/* Address offset for volatile registers of additional dice */
1310	params->vreg_offset =
1311			devm_krealloc(nor->dev, params->vreg_offset,
1312				      n_dice * sizeof(*dwords),
1313				      GFP_KERNEL);
1314	if (!params->vreg_offset) {
1315		ret = -ENOMEM;
1316		goto out;
1317	}
1318
1319	for (i = 1; i < n_dice; i++)
1320		params->vreg_offset[i] = dwords[SFDP_DWORD(i) * 2];
1321
1322	params->n_dice = n_dice;
1323
1324out:
1325	kfree(dwords);
1326	return ret;
1327}
1328
1329/**
1330 * spi_nor_post_sfdp_fixups() - Updates the flash's parameters and settings
1331 * after SFDP has been parsed. Called only for flashes that define JESD216 SFDP
1332 * tables.
1333 * @nor:	pointer to a 'struct spi_nor'
1334 *
1335 * Used to tweak various flash parameters when information provided by the SFDP
1336 * tables are wrong.
1337 */
1338static int spi_nor_post_sfdp_fixups(struct spi_nor *nor)
1339{
1340	int ret;
1341
1342	if (nor->manufacturer && nor->manufacturer->fixups &&
1343	    nor->manufacturer->fixups->post_sfdp) {
1344		ret = nor->manufacturer->fixups->post_sfdp(nor);
1345		if (ret)
1346			return ret;
1347	}
1348
1349	if (nor->info->fixups && nor->info->fixups->post_sfdp)
1350		return nor->info->fixups->post_sfdp(nor);
1351
1352	return 0;
1353}
1354
1355/**
1356 * spi_nor_check_sfdp_signature() - check for a valid SFDP signature
1357 * @nor:	pointer to a 'struct spi_nor'
1358 *
1359 * Used to detect if the flash supports the RDSFDP command as well as the
1360 * presence of a valid SFDP table.
1361 *
1362 * Return: 0 on success, -errno otherwise.
1363 */
1364int spi_nor_check_sfdp_signature(struct spi_nor *nor)
1365{
1366	u32 signature;
1367	int err;
1368
1369	/* Get the SFDP header. */
1370	err = spi_nor_read_sfdp_dma_unsafe(nor, 0, sizeof(signature),
1371					   &signature);
1372	if (err < 0)
1373		return err;
1374
1375	/* Check the SFDP signature. */
1376	if (le32_to_cpu(signature) != SFDP_SIGNATURE)
1377		return -EINVAL;
1378
1379	return 0;
1380}
1381
1382/**
1383 * spi_nor_parse_sfdp() - parse the Serial Flash Discoverable Parameters.
1384 * @nor:		pointer to a 'struct spi_nor'
1385 *
1386 * The Serial Flash Discoverable Parameters are described by the JEDEC JESD216
1387 * specification. This is a standard which tends to supported by almost all
1388 * (Q)SPI memory manufacturers. Those hard-coded tables allow us to learn at
1389 * runtime the main parameters needed to perform basic SPI flash operations such
1390 * as Fast Read, Page Program or Sector Erase commands.
1391 *
1392 * Return: 0 on success, -errno otherwise.
1393 */
1394int spi_nor_parse_sfdp(struct spi_nor *nor)
1395{
1396	const struct sfdp_parameter_header *param_header, *bfpt_header;
1397	struct sfdp_parameter_header *param_headers = NULL;
1398	struct sfdp_header header;
1399	struct device *dev = nor->dev;
1400	struct sfdp *sfdp;
1401	size_t sfdp_size;
1402	size_t psize;
1403	int i, err;
1404
1405	/* Get the SFDP header. */
1406	err = spi_nor_read_sfdp_dma_unsafe(nor, 0, sizeof(header), &header);
1407	if (err < 0)
1408		return err;
1409
1410	/* Check the SFDP header version. */
1411	if (le32_to_cpu(header.signature) != SFDP_SIGNATURE ||
1412	    header.major != SFDP_JESD216_MAJOR)
1413		return -EINVAL;
1414
1415	/*
1416	 * Verify that the first and only mandatory parameter header is a
1417	 * Basic Flash Parameter Table header as specified in JESD216.
1418	 */
1419	bfpt_header = &header.bfpt_header;
1420	if (SFDP_PARAM_HEADER_ID(bfpt_header) != SFDP_BFPT_ID ||
1421	    bfpt_header->major != SFDP_JESD216_MAJOR)
1422		return -EINVAL;
1423
1424	sfdp_size = SFDP_PARAM_HEADER_PTP(bfpt_header) +
1425		    SFDP_PARAM_HEADER_PARAM_LEN(bfpt_header);
1426
1427	/*
1428	 * Allocate memory then read all parameter headers with a single
1429	 * Read SFDP command. These parameter headers will actually be parsed
1430	 * twice: a first time to get the latest revision of the basic flash
1431	 * parameter table, then a second time to handle the supported optional
1432	 * tables.
1433	 * Hence we read the parameter headers once for all to reduce the
1434	 * processing time. Also we use kmalloc() instead of devm_kmalloc()
1435	 * because we don't need to keep these parameter headers: the allocated
1436	 * memory is always released with kfree() before exiting this function.
1437	 */
1438	if (header.nph) {
1439		psize = header.nph * sizeof(*param_headers);
1440
1441		param_headers = kmalloc(psize, GFP_KERNEL);
1442		if (!param_headers)
1443			return -ENOMEM;
1444
1445		err = spi_nor_read_sfdp(nor, sizeof(header),
1446					psize, param_headers);
1447		if (err < 0) {
1448			dev_dbg(dev, "failed to read SFDP parameter headers\n");
1449			goto exit;
1450		}
1451	}
1452
1453	/*
1454	 * Cache the complete SFDP data. It is not (easily) possible to fetch
1455	 * SFDP after probe time and we need it for the sysfs access.
1456	 */
1457	for (i = 0; i < header.nph; i++) {
1458		param_header = &param_headers[i];
1459		sfdp_size = max_t(size_t, sfdp_size,
1460				  SFDP_PARAM_HEADER_PTP(param_header) +
1461				  SFDP_PARAM_HEADER_PARAM_LEN(param_header));
1462	}
1463
1464	/*
1465	 * Limit the total size to a reasonable value to avoid allocating too
1466	 * much memory just of because the flash returned some insane values.
1467	 */
1468	if (sfdp_size > PAGE_SIZE) {
1469		dev_dbg(dev, "SFDP data (%zu) too big, truncating\n",
1470			sfdp_size);
1471		sfdp_size = PAGE_SIZE;
1472	}
1473
1474	sfdp = devm_kzalloc(dev, sizeof(*sfdp), GFP_KERNEL);
1475	if (!sfdp) {
1476		err = -ENOMEM;
1477		goto exit;
1478	}
1479
1480	/*
1481	 * The SFDP is organized in chunks of DWORDs. Thus, in theory, the
1482	 * sfdp_size should be a multiple of DWORDs. But in case a flash
1483	 * is not spec compliant, make sure that we have enough space to store
1484	 * the complete SFDP data.
1485	 */
1486	sfdp->num_dwords = DIV_ROUND_UP(sfdp_size, sizeof(*sfdp->dwords));
1487	sfdp->dwords = devm_kcalloc(dev, sfdp->num_dwords,
1488				    sizeof(*sfdp->dwords), GFP_KERNEL);
1489	if (!sfdp->dwords) {
1490		err = -ENOMEM;
1491		devm_kfree(dev, sfdp);
1492		goto exit;
1493	}
1494
1495	err = spi_nor_read_sfdp(nor, 0, sfdp_size, sfdp->dwords);
1496	if (err < 0) {
1497		dev_dbg(dev, "failed to read SFDP data\n");
1498		devm_kfree(dev, sfdp->dwords);
1499		devm_kfree(dev, sfdp);
1500		goto exit;
1501	}
1502
1503	nor->sfdp = sfdp;
1504
1505	/*
1506	 * Check other parameter headers to get the latest revision of
1507	 * the basic flash parameter table.
1508	 */
1509	for (i = 0; i < header.nph; i++) {
1510		param_header = &param_headers[i];
1511
1512		if (SFDP_PARAM_HEADER_ID(param_header) == SFDP_BFPT_ID &&
1513		    param_header->major == SFDP_JESD216_MAJOR &&
1514		    (param_header->minor > bfpt_header->minor ||
1515		     (param_header->minor == bfpt_header->minor &&
1516		      param_header->length > bfpt_header->length)))
1517			bfpt_header = param_header;
1518	}
1519
1520	err = spi_nor_parse_bfpt(nor, bfpt_header);
1521	if (err)
1522		goto exit;
1523
1524	/* Parse optional parameter tables. */
1525	for (i = 0; i < header.nph; i++) {
1526		param_header = &param_headers[i];
1527
1528		switch (SFDP_PARAM_HEADER_ID(param_header)) {
1529		case SFDP_SECTOR_MAP_ID:
1530			err = spi_nor_parse_smpt(nor, param_header);
1531			break;
1532
1533		case SFDP_4BAIT_ID:
1534			err = spi_nor_parse_4bait(nor, param_header);
1535			break;
1536
1537		case SFDP_PROFILE1_ID:
1538			err = spi_nor_parse_profile1(nor, param_header);
1539			break;
1540
1541		case SFDP_SCCR_MAP_ID:
1542			err = spi_nor_parse_sccr(nor, param_header);
1543			break;
1544
1545		case SFDP_SCCR_MAP_MC_ID:
1546			err = spi_nor_parse_sccr_mc(nor, param_header);
1547			break;
1548
1549		default:
1550			break;
1551		}
1552
1553		if (err) {
1554			dev_warn(dev, "Failed to parse optional parameter table: %04x\n",
1555				 SFDP_PARAM_HEADER_ID(param_header));
1556			/*
1557			 * Let's not drop all information we extracted so far
1558			 * if optional table parsers fail. In case of failing,
1559			 * each optional parser is responsible to roll back to
1560			 * the previously known spi_nor data.
1561			 */
1562			err = 0;
1563		}
1564	}
1565
1566	err = spi_nor_post_sfdp_fixups(nor);
1567exit:
1568	kfree(param_headers);
1569	return err;
1570}
1571