1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2005, Intec Automation Inc.
4 * Copyright (C) 2014, Freescale Semiconductor, Inc.
5 */
6
7#include <linux/mtd/spi-nor.h>
8
9#include "core.h"
10
11/* flash_info mfr_flag. Used to read proprietary FSR register. */
12#define USE_FSR		BIT(0)
13
14#define SPINOR_OP_RDFSR		0x70	/* Read flag status register */
15#define SPINOR_OP_CLFSR		0x50	/* Clear flag status register */
16#define SPINOR_OP_MT_DTR_RD	0xfd	/* Fast Read opcode in DTR mode */
17#define SPINOR_OP_MT_RD_ANY_REG	0x85	/* Read volatile register */
18#define SPINOR_OP_MT_WR_ANY_REG	0x81	/* Write volatile register */
19#define SPINOR_REG_MT_CFR0V	0x00	/* For setting octal DTR mode */
20#define SPINOR_REG_MT_CFR1V	0x01	/* For setting dummy cycles */
21#define SPINOR_REG_MT_CFR1V_DEF	0x1f	/* Default dummy cycles */
22#define SPINOR_MT_OCT_DTR	0xe7	/* Enable Octal DTR. */
23#define SPINOR_MT_EXSPI		0xff	/* Enable Extended SPI (default) */
24
25/* Flag Status Register bits */
26#define FSR_READY		BIT(7)	/* Device status, 0 = Busy, 1 = Ready */
27#define FSR_E_ERR		BIT(5)	/* Erase operation status */
28#define FSR_P_ERR		BIT(4)	/* Program operation status */
29#define FSR_PT_ERR		BIT(1)	/* Protection error bit */
30
31/* Micron ST SPI NOR flash operations. */
32#define MICRON_ST_NOR_WR_ANY_REG_OP(naddr, addr, ndata, buf)		\
33	SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_MT_WR_ANY_REG, 0),		\
34		   SPI_MEM_OP_ADDR(naddr, addr, 0),			\
35		   SPI_MEM_OP_NO_DUMMY,					\
36		   SPI_MEM_OP_DATA_OUT(ndata, buf, 0))
37
38#define MICRON_ST_RDFSR_OP(buf)						\
39	SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDFSR, 0),			\
40		   SPI_MEM_OP_NO_ADDR,					\
41		   SPI_MEM_OP_NO_DUMMY,					\
42		   SPI_MEM_OP_DATA_IN(1, buf, 0))
43
44#define MICRON_ST_CLFSR_OP						\
45	SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_CLFSR, 0),			\
46		   SPI_MEM_OP_NO_ADDR,					\
47		   SPI_MEM_OP_NO_DUMMY,					\
48		   SPI_MEM_OP_NO_DATA)
49
50static int micron_st_nor_octal_dtr_en(struct spi_nor *nor)
51{
52	struct spi_mem_op op;
53	u8 *buf = nor->bouncebuf;
54	int ret;
55	u8 addr_mode_nbytes = nor->params->addr_mode_nbytes;
56
57	/* Use 20 dummy cycles for memory array reads. */
58	*buf = 20;
59	op = (struct spi_mem_op)
60		MICRON_ST_NOR_WR_ANY_REG_OP(addr_mode_nbytes,
61					    SPINOR_REG_MT_CFR1V, 1, buf);
62	ret = spi_nor_write_any_volatile_reg(nor, &op, nor->reg_proto);
63	if (ret)
64		return ret;
65
66	buf[0] = SPINOR_MT_OCT_DTR;
67	op = (struct spi_mem_op)
68		MICRON_ST_NOR_WR_ANY_REG_OP(addr_mode_nbytes,
69					    SPINOR_REG_MT_CFR0V, 1, buf);
70	ret = spi_nor_write_any_volatile_reg(nor, &op, nor->reg_proto);
71	if (ret)
72		return ret;
73
74	/* Read flash ID to make sure the switch was successful. */
75	ret = spi_nor_read_id(nor, 0, 8, buf, SNOR_PROTO_8_8_8_DTR);
76	if (ret) {
77		dev_dbg(nor->dev, "error %d reading JEDEC ID after enabling 8D-8D-8D mode\n", ret);
78		return ret;
79	}
80
81	if (memcmp(buf, nor->info->id, nor->info->id_len))
82		return -EINVAL;
83
84	return 0;
85}
86
87static int micron_st_nor_octal_dtr_dis(struct spi_nor *nor)
88{
89	struct spi_mem_op op;
90	u8 *buf = nor->bouncebuf;
91	int ret;
92
93	/*
94	 * The register is 1-byte wide, but 1-byte transactions are not allowed
95	 * in 8D-8D-8D mode. The next register is the dummy cycle configuration
96	 * register. Since the transaction needs to be at least 2 bytes wide,
97	 * set the next register to its default value. This also makes sense
98	 * because the value was changed when enabling 8D-8D-8D mode, it should
99	 * be reset when disabling.
100	 */
101	buf[0] = SPINOR_MT_EXSPI;
102	buf[1] = SPINOR_REG_MT_CFR1V_DEF;
103	op = (struct spi_mem_op)
104		MICRON_ST_NOR_WR_ANY_REG_OP(nor->addr_nbytes,
105					    SPINOR_REG_MT_CFR0V, 2, buf);
106	ret = spi_nor_write_any_volatile_reg(nor, &op, SNOR_PROTO_8_8_8_DTR);
107	if (ret)
108		return ret;
109
110	/* Read flash ID to make sure the switch was successful. */
111	ret = spi_nor_read_id(nor, 0, 0, buf, SNOR_PROTO_1_1_1);
112	if (ret) {
113		dev_dbg(nor->dev, "error %d reading JEDEC ID after disabling 8D-8D-8D mode\n", ret);
114		return ret;
115	}
116
117	if (memcmp(buf, nor->info->id, nor->info->id_len))
118		return -EINVAL;
119
120	return 0;
121}
122
123static int micron_st_nor_set_octal_dtr(struct spi_nor *nor, bool enable)
124{
125	return enable ? micron_st_nor_octal_dtr_en(nor) :
126			micron_st_nor_octal_dtr_dis(nor);
127}
128
129static void mt35xu512aba_default_init(struct spi_nor *nor)
130{
131	nor->params->set_octal_dtr = micron_st_nor_set_octal_dtr;
132}
133
134static int mt35xu512aba_post_sfdp_fixup(struct spi_nor *nor)
135{
136	/* Set the Fast Read settings. */
137	nor->params->hwcaps.mask |= SNOR_HWCAPS_READ_8_8_8_DTR;
138	spi_nor_set_read_settings(&nor->params->reads[SNOR_CMD_READ_8_8_8_DTR],
139				  0, 20, SPINOR_OP_MT_DTR_RD,
140				  SNOR_PROTO_8_8_8_DTR);
141
142	nor->cmd_ext_type = SPI_NOR_EXT_REPEAT;
143	nor->params->rdsr_dummy = 8;
144	nor->params->rdsr_addr_nbytes = 0;
145
146	/*
147	 * The BFPT quad enable field is set to a reserved value so the quad
148	 * enable function is ignored by spi_nor_parse_bfpt(). Make sure we
149	 * disable it.
150	 */
151	nor->params->quad_enable = NULL;
152
153	return 0;
154}
155
156static const struct spi_nor_fixups mt35xu512aba_fixups = {
157	.default_init = mt35xu512aba_default_init,
158	.post_sfdp = mt35xu512aba_post_sfdp_fixup,
159};
160
161static const struct flash_info micron_nor_parts[] = {
162	{ "mt35xu512aba", INFO(0x2c5b1a, 0, 128 * 1024, 512)
163		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_OCTAL_READ |
164			   SPI_NOR_OCTAL_DTR_READ | SPI_NOR_OCTAL_DTR_PP)
165		FIXUP_FLAGS(SPI_NOR_4B_OPCODES | SPI_NOR_IO_MODE_EN_VOLATILE)
166		MFR_FLAGS(USE_FSR)
167		.fixups = &mt35xu512aba_fixups
168	},
169	{ "mt35xu02g", INFO(0x2c5b1c, 0, 128 * 1024, 2048)
170		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_OCTAL_READ)
171		FIXUP_FLAGS(SPI_NOR_4B_OPCODES)
172		MFR_FLAGS(USE_FSR)
173	},
174};
175
176static const struct flash_info st_nor_parts[] = {
177	{ "n25q016a",	 INFO(0x20bb15, 0, 64 * 1024,   32)
178		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_QUAD_READ) },
179	{ "n25q032",	 INFO(0x20ba16, 0, 64 * 1024,   64)
180		NO_SFDP_FLAGS(SPI_NOR_QUAD_READ) },
181	{ "n25q032a",	 INFO(0x20bb16, 0, 64 * 1024,   64)
182		NO_SFDP_FLAGS(SPI_NOR_QUAD_READ) },
183	{ "n25q064",     INFO(0x20ba17, 0, 64 * 1024,  128)
184		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_QUAD_READ) },
185	{ "n25q064a",    INFO(0x20bb17, 0, 64 * 1024,  128)
186		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_QUAD_READ) },
187	{ "n25q128a11",  INFO(0x20bb18, 0, 64 * 1024,  256)
188		FLAGS(SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB | SPI_NOR_4BIT_BP |
189		      SPI_NOR_BP3_SR_BIT6)
190		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_QUAD_READ)
191		MFR_FLAGS(USE_FSR)
192	},
193	{ "n25q128a13",  INFO(0x20ba18, 0, 64 * 1024,  256)
194		FLAGS(SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB | SPI_NOR_4BIT_BP |
195		      SPI_NOR_BP3_SR_BIT6)
196		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_QUAD_READ)
197		MFR_FLAGS(USE_FSR)
198	},
199	{ "mt25ql256a",  INFO6(0x20ba19, 0x104400, 64 * 1024,  512)
200		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
201		FIXUP_FLAGS(SPI_NOR_4B_OPCODES)
202		MFR_FLAGS(USE_FSR)
203	},
204	{ "n25q256a",    INFO(0x20ba19, 0, 64 * 1024,  512)
205		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ |
206			      SPI_NOR_QUAD_READ)
207		MFR_FLAGS(USE_FSR)
208	},
209	{ "mt25qu256a",  INFO6(0x20bb19, 0x104400, 64 * 1024,  512)
210		FLAGS(SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB | SPI_NOR_4BIT_BP |
211		      SPI_NOR_BP3_SR_BIT6)
212		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
213		FIXUP_FLAGS(SPI_NOR_4B_OPCODES)
214		MFR_FLAGS(USE_FSR)
215	},
216	{ "n25q256ax1",  INFO(0x20bb19, 0, 64 * 1024,  512)
217		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_QUAD_READ)
218		MFR_FLAGS(USE_FSR)
219	},
220	{ "mt25ql512a",  INFO6(0x20ba20, 0x104400, 64 * 1024, 1024)
221		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
222		FIXUP_FLAGS(SPI_NOR_4B_OPCODES)
223		MFR_FLAGS(USE_FSR)
224	},
225	{ "n25q512ax3",  INFO(0x20ba20, 0, 64 * 1024, 1024)
226		FLAGS(SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB | SPI_NOR_4BIT_BP |
227		      SPI_NOR_BP3_SR_BIT6)
228		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_QUAD_READ)
229		MFR_FLAGS(USE_FSR)
230	},
231	{ "mt25qu512a",  INFO6(0x20bb20, 0x104400, 64 * 1024, 1024)
232		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
233		FIXUP_FLAGS(SPI_NOR_4B_OPCODES)
234		MFR_FLAGS(USE_FSR)
235	},
236	{ "n25q512a",    INFO(0x20bb20, 0, 64 * 1024, 1024)
237		FLAGS(SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB | SPI_NOR_4BIT_BP |
238		      SPI_NOR_BP3_SR_BIT6)
239		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_QUAD_READ)
240		MFR_FLAGS(USE_FSR)
241	},
242	{ "n25q00",      INFO(0x20ba21, 0, 64 * 1024, 2048)
243		FLAGS(SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB | SPI_NOR_4BIT_BP |
244		      SPI_NOR_BP3_SR_BIT6 | NO_CHIP_ERASE)
245		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_QUAD_READ)
246		MFR_FLAGS(USE_FSR)
247	},
248	{ "n25q00a",     INFO(0x20bb21, 0, 64 * 1024, 2048)
249		FLAGS(NO_CHIP_ERASE)
250		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_QUAD_READ)
251		MFR_FLAGS(USE_FSR)
252	},
253	{ "mt25ql02g",   INFO(0x20ba22, 0, 64 * 1024, 4096)
254		FLAGS(NO_CHIP_ERASE)
255		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_QUAD_READ)
256		MFR_FLAGS(USE_FSR)
257	},
258	{ "mt25qu02g",   INFO(0x20bb22, 0, 64 * 1024, 4096)
259		FLAGS(NO_CHIP_ERASE)
260		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ |
261			      SPI_NOR_QUAD_READ)
262		MFR_FLAGS(USE_FSR)
263	},
264
265	{ "m25p05",  INFO(0x202010,  0,  32 * 1024,   2) },
266	{ "m25p10",  INFO(0x202011,  0,  32 * 1024,   4) },
267	{ "m25p20",  INFO(0x202012,  0,  64 * 1024,   4) },
268	{ "m25p40",  INFO(0x202013,  0,  64 * 1024,   8) },
269	{ "m25p80",  INFO(0x202014,  0,  64 * 1024,  16) },
270	{ "m25p16",  INFO(0x202015,  0,  64 * 1024,  32) },
271	{ "m25p32",  INFO(0x202016,  0,  64 * 1024,  64) },
272	{ "m25p64",  INFO(0x202017,  0,  64 * 1024, 128) },
273	{ "m25p128", INFO(0x202018,  0, 256 * 1024,  64) },
274
275	{ "m25p05-nonjedec",  INFO(0, 0,  32 * 1024,   2) },
276	{ "m25p10-nonjedec",  INFO(0, 0,  32 * 1024,   4) },
277	{ "m25p20-nonjedec",  INFO(0, 0,  64 * 1024,   4) },
278	{ "m25p40-nonjedec",  INFO(0, 0,  64 * 1024,   8) },
279	{ "m25p80-nonjedec",  INFO(0, 0,  64 * 1024,  16) },
280	{ "m25p16-nonjedec",  INFO(0, 0,  64 * 1024,  32) },
281	{ "m25p32-nonjedec",  INFO(0, 0,  64 * 1024,  64) },
282	{ "m25p64-nonjedec",  INFO(0, 0,  64 * 1024, 128) },
283	{ "m25p128-nonjedec", INFO(0, 0, 256 * 1024,  64) },
284
285	{ "m45pe10", INFO(0x204011,  0, 64 * 1024,    2) },
286	{ "m45pe80", INFO(0x204014,  0, 64 * 1024,   16) },
287	{ "m45pe16", INFO(0x204015,  0, 64 * 1024,   32) },
288
289	{ "m25pe20", INFO(0x208012,  0, 64 * 1024,  4) },
290	{ "m25pe80", INFO(0x208014,  0, 64 * 1024, 16) },
291	{ "m25pe16", INFO(0x208015,  0, 64 * 1024, 32)
292		NO_SFDP_FLAGS(SECT_4K) },
293
294	{ "m25px16",    INFO(0x207115,  0, 64 * 1024, 32)
295		NO_SFDP_FLAGS(SECT_4K) },
296	{ "m25px32",    INFO(0x207116,  0, 64 * 1024, 64)
297		NO_SFDP_FLAGS(SECT_4K) },
298	{ "m25px32-s0", INFO(0x207316,  0, 64 * 1024, 64)
299		NO_SFDP_FLAGS(SECT_4K) },
300	{ "m25px32-s1", INFO(0x206316,  0, 64 * 1024, 64)
301		NO_SFDP_FLAGS(SECT_4K) },
302	{ "m25px64",    INFO(0x207117,  0, 64 * 1024, 128) },
303	{ "m25px80",    INFO(0x207114,  0, 64 * 1024, 16) },
304};
305
306/**
307 * micron_st_nor_read_fsr() - Read the Flag Status Register.
308 * @nor:	pointer to 'struct spi_nor'
309 * @fsr:	pointer to a DMA-able buffer where the value of the
310 *              Flag Status Register will be written. Should be at least 2
311 *              bytes.
312 *
313 * Return: 0 on success, -errno otherwise.
314 */
315static int micron_st_nor_read_fsr(struct spi_nor *nor, u8 *fsr)
316{
317	int ret;
318
319	if (nor->spimem) {
320		struct spi_mem_op op = MICRON_ST_RDFSR_OP(fsr);
321
322		if (nor->reg_proto == SNOR_PROTO_8_8_8_DTR) {
323			op.addr.nbytes = nor->params->rdsr_addr_nbytes;
324			op.dummy.nbytes = nor->params->rdsr_dummy;
325			/*
326			 * We don't want to read only one byte in DTR mode. So,
327			 * read 2 and then discard the second byte.
328			 */
329			op.data.nbytes = 2;
330		}
331
332		spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
333
334		ret = spi_mem_exec_op(nor->spimem, &op);
335	} else {
336		ret = spi_nor_controller_ops_read_reg(nor, SPINOR_OP_RDFSR, fsr,
337						      1);
338	}
339
340	if (ret)
341		dev_dbg(nor->dev, "error %d reading FSR\n", ret);
342
343	return ret;
344}
345
346/**
347 * micron_st_nor_clear_fsr() - Clear the Flag Status Register.
348 * @nor:	pointer to 'struct spi_nor'.
349 */
350static void micron_st_nor_clear_fsr(struct spi_nor *nor)
351{
352	int ret;
353
354	if (nor->spimem) {
355		struct spi_mem_op op = MICRON_ST_CLFSR_OP;
356
357		spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
358
359		ret = spi_mem_exec_op(nor->spimem, &op);
360	} else {
361		ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_CLFSR,
362						       NULL, 0);
363	}
364
365	if (ret)
366		dev_dbg(nor->dev, "error %d clearing FSR\n", ret);
367}
368
369/**
370 * micron_st_nor_ready() - Query the Status Register as well as the Flag Status
371 * Register to see if the flash is ready for new commands. If there are any
372 * errors in the FSR clear them.
373 * @nor:	pointer to 'struct spi_nor'.
374 *
375 * Return: 1 if ready, 0 if not ready, -errno on errors.
376 */
377static int micron_st_nor_ready(struct spi_nor *nor)
378{
379	int sr_ready, ret;
380
381	sr_ready = spi_nor_sr_ready(nor);
382	if (sr_ready < 0)
383		return sr_ready;
384
385	ret = micron_st_nor_read_fsr(nor, nor->bouncebuf);
386	if (ret) {
387		/*
388		 * Some controllers, such as Intel SPI, do not support low
389		 * level operations such as reading the flag status
390		 * register. They only expose small amount of high level
391		 * operations to the software. If this is the case we use
392		 * only the status register value.
393		 */
394		return ret == -EOPNOTSUPP ? sr_ready : ret;
395	}
396
397	if (nor->bouncebuf[0] & (FSR_E_ERR | FSR_P_ERR)) {
398		if (nor->bouncebuf[0] & FSR_E_ERR)
399			dev_err(nor->dev, "Erase operation failed.\n");
400		else
401			dev_err(nor->dev, "Program operation failed.\n");
402
403		if (nor->bouncebuf[0] & FSR_PT_ERR)
404			dev_err(nor->dev,
405				"Attempted to modify a protected sector.\n");
406
407		micron_st_nor_clear_fsr(nor);
408
409		/*
410		 * WEL bit remains set to one when an erase or page program
411		 * error occurs. Issue a Write Disable command to protect
412		 * against inadvertent writes that can possibly corrupt the
413		 * contents of the memory.
414		 */
415		ret = spi_nor_write_disable(nor);
416		if (ret)
417			return ret;
418
419		return -EIO;
420	}
421
422	return sr_ready && !!(nor->bouncebuf[0] & FSR_READY);
423}
424
425static void micron_st_nor_default_init(struct spi_nor *nor)
426{
427	nor->flags |= SNOR_F_HAS_LOCK;
428	nor->flags &= ~SNOR_F_HAS_16BIT_SR;
429	nor->params->quad_enable = NULL;
430}
431
432static int micron_st_nor_late_init(struct spi_nor *nor)
433{
434	struct spi_nor_flash_parameter *params = nor->params;
435
436	if (nor->info->mfr_flags & USE_FSR)
437		params->ready = micron_st_nor_ready;
438
439	if (!params->set_4byte_addr_mode)
440		params->set_4byte_addr_mode = spi_nor_set_4byte_addr_mode_wren_en4b_ex4b;
441
442	return 0;
443}
444
445static const struct spi_nor_fixups micron_st_nor_fixups = {
446	.default_init = micron_st_nor_default_init,
447	.late_init = micron_st_nor_late_init,
448};
449
450const struct spi_nor_manufacturer spi_nor_micron = {
451	.name = "micron",
452	.parts = micron_nor_parts,
453	.nparts = ARRAY_SIZE(micron_nor_parts),
454	.fixups = &micron_st_nor_fixups,
455};
456
457const struct spi_nor_manufacturer spi_nor_st = {
458	.name = "st",
459	.parts = st_nor_parts,
460	.nparts = ARRAY_SIZE(st_nor_parts),
461	.fixups = &micron_st_nor_fixups,
462};
463