1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2018 Stefan Agner <stefan@agner.ch>
4 * Copyright (C) 2014-2015 Lucas Stach <dev@lynxeye.de>
5 * Copyright (C) 2012 Avionic Design GmbH
6 */
7
8#include <linux/clk.h>
9#include <linux/completion.h>
10#include <linux/dma-mapping.h>
11#include <linux/err.h>
12#include <linux/gpio/consumer.h>
13#include <linux/interrupt.h>
14#include <linux/io.h>
15#include <linux/module.h>
16#include <linux/mtd/partitions.h>
17#include <linux/mtd/rawnand.h>
18#include <linux/of.h>
19#include <linux/platform_device.h>
20#include <linux/pm_runtime.h>
21#include <linux/reset.h>
22
23#include <soc/tegra/common.h>
24
25#define COMMAND					0x00
26#define   COMMAND_GO				BIT(31)
27#define   COMMAND_CLE				BIT(30)
28#define   COMMAND_ALE				BIT(29)
29#define   COMMAND_PIO				BIT(28)
30#define   COMMAND_TX				BIT(27)
31#define   COMMAND_RX				BIT(26)
32#define   COMMAND_SEC_CMD			BIT(25)
33#define   COMMAND_AFT_DAT			BIT(24)
34#define   COMMAND_TRANS_SIZE(size)		((((size) - 1) & 0xf) << 20)
35#define   COMMAND_A_VALID			BIT(19)
36#define   COMMAND_B_VALID			BIT(18)
37#define   COMMAND_RD_STATUS_CHK			BIT(17)
38#define   COMMAND_RBSY_CHK			BIT(16)
39#define   COMMAND_CE(x)				BIT(8 + ((x) & 0x7))
40#define   COMMAND_CLE_SIZE(size)		((((size) - 1) & 0x3) << 4)
41#define   COMMAND_ALE_SIZE(size)		((((size) - 1) & 0xf) << 0)
42
43#define STATUS					0x04
44
45#define ISR					0x08
46#define   ISR_CORRFAIL_ERR			BIT(24)
47#define   ISR_UND				BIT(7)
48#define   ISR_OVR				BIT(6)
49#define   ISR_CMD_DONE				BIT(5)
50#define   ISR_ECC_ERR				BIT(4)
51
52#define IER					0x0c
53#define   IER_ERR_TRIG_VAL(x)			(((x) & 0xf) << 16)
54#define   IER_UND				BIT(7)
55#define   IER_OVR				BIT(6)
56#define   IER_CMD_DONE				BIT(5)
57#define   IER_ECC_ERR				BIT(4)
58#define   IER_GIE				BIT(0)
59
60#define CONFIG					0x10
61#define   CONFIG_HW_ECC				BIT(31)
62#define   CONFIG_ECC_SEL			BIT(30)
63#define   CONFIG_ERR_COR			BIT(29)
64#define   CONFIG_PIPE_EN			BIT(28)
65#define   CONFIG_TVAL_4				(0 << 24)
66#define   CONFIG_TVAL_6				(1 << 24)
67#define   CONFIG_TVAL_8				(2 << 24)
68#define   CONFIG_SKIP_SPARE			BIT(23)
69#define   CONFIG_BUS_WIDTH_16			BIT(21)
70#define   CONFIG_COM_BSY			BIT(20)
71#define   CONFIG_PS_256				(0 << 16)
72#define   CONFIG_PS_512				(1 << 16)
73#define   CONFIG_PS_1024			(2 << 16)
74#define   CONFIG_PS_2048			(3 << 16)
75#define   CONFIG_PS_4096			(4 << 16)
76#define   CONFIG_SKIP_SPARE_SIZE_4		(0 << 14)
77#define   CONFIG_SKIP_SPARE_SIZE_8		(1 << 14)
78#define   CONFIG_SKIP_SPARE_SIZE_12		(2 << 14)
79#define   CONFIG_SKIP_SPARE_SIZE_16		(3 << 14)
80#define   CONFIG_TAG_BYTE_SIZE(x)			((x) & 0xff)
81
82#define TIMING_1				0x14
83#define   TIMING_TRP_RESP(x)			(((x) & 0xf) << 28)
84#define   TIMING_TWB(x)				(((x) & 0xf) << 24)
85#define   TIMING_TCR_TAR_TRR(x)			(((x) & 0xf) << 20)
86#define   TIMING_TWHR(x)			(((x) & 0xf) << 16)
87#define   TIMING_TCS(x)				(((x) & 0x3) << 14)
88#define   TIMING_TWH(x)				(((x) & 0x3) << 12)
89#define   TIMING_TWP(x)				(((x) & 0xf) <<  8)
90#define   TIMING_TRH(x)				(((x) & 0x3) <<  4)
91#define   TIMING_TRP(x)				(((x) & 0xf) <<  0)
92
93#define RESP					0x18
94
95#define TIMING_2				0x1c
96#define   TIMING_TADL(x)			((x) & 0xf)
97
98#define CMD_REG1				0x20
99#define CMD_REG2				0x24
100#define ADDR_REG1				0x28
101#define ADDR_REG2				0x2c
102
103#define DMA_MST_CTRL				0x30
104#define   DMA_MST_CTRL_GO			BIT(31)
105#define   DMA_MST_CTRL_IN			(0 << 30)
106#define   DMA_MST_CTRL_OUT			BIT(30)
107#define   DMA_MST_CTRL_PERF_EN			BIT(29)
108#define   DMA_MST_CTRL_IE_DONE			BIT(28)
109#define   DMA_MST_CTRL_REUSE			BIT(27)
110#define   DMA_MST_CTRL_BURST_1			(2 << 24)
111#define   DMA_MST_CTRL_BURST_4			(3 << 24)
112#define   DMA_MST_CTRL_BURST_8			(4 << 24)
113#define   DMA_MST_CTRL_BURST_16			(5 << 24)
114#define   DMA_MST_CTRL_IS_DONE			BIT(20)
115#define   DMA_MST_CTRL_EN_A			BIT(2)
116#define   DMA_MST_CTRL_EN_B			BIT(1)
117
118#define DMA_CFG_A				0x34
119#define DMA_CFG_B				0x38
120
121#define FIFO_CTRL				0x3c
122#define   FIFO_CTRL_CLR_ALL			BIT(3)
123
124#define DATA_PTR				0x40
125#define TAG_PTR					0x44
126#define ECC_PTR					0x48
127
128#define DEC_STATUS				0x4c
129#define   DEC_STATUS_A_ECC_FAIL			BIT(1)
130#define   DEC_STATUS_ERR_COUNT_MASK		0x00ff0000
131#define   DEC_STATUS_ERR_COUNT_SHIFT		16
132
133#define HWSTATUS_CMD				0x50
134#define HWSTATUS_MASK				0x54
135#define   HWSTATUS_RDSTATUS_MASK(x)		(((x) & 0xff) << 24)
136#define   HWSTATUS_RDSTATUS_VALUE(x)		(((x) & 0xff) << 16)
137#define   HWSTATUS_RBSY_MASK(x)			(((x) & 0xff) << 8)
138#define   HWSTATUS_RBSY_VALUE(x)		(((x) & 0xff) << 0)
139
140#define BCH_CONFIG				0xcc
141#define   BCH_ENABLE				BIT(0)
142#define   BCH_TVAL_4				(0 << 4)
143#define   BCH_TVAL_8				(1 << 4)
144#define   BCH_TVAL_14				(2 << 4)
145#define   BCH_TVAL_16				(3 << 4)
146
147#define DEC_STAT_RESULT				0xd0
148#define DEC_STAT_BUF				0xd4
149#define   DEC_STAT_BUF_FAIL_SEC_FLAG_MASK	0xff000000
150#define   DEC_STAT_BUF_FAIL_SEC_FLAG_SHIFT	24
151#define   DEC_STAT_BUF_CORR_SEC_FLAG_MASK	0x00ff0000
152#define   DEC_STAT_BUF_CORR_SEC_FLAG_SHIFT	16
153#define   DEC_STAT_BUF_MAX_CORR_CNT_MASK	0x00001f00
154#define   DEC_STAT_BUF_MAX_CORR_CNT_SHIFT	8
155
156#define OFFSET(val, off)	((val) < (off) ? 0 : (val) - (off))
157
158#define SKIP_SPARE_BYTES	4
159#define BITS_PER_STEP_RS	18
160#define BITS_PER_STEP_BCH	13
161
162#define INT_MASK		(IER_UND | IER_OVR | IER_CMD_DONE | IER_GIE)
163#define HWSTATUS_CMD_DEFAULT	NAND_STATUS_READY
164#define HWSTATUS_MASK_DEFAULT	(HWSTATUS_RDSTATUS_MASK(1) | \
165				HWSTATUS_RDSTATUS_VALUE(0) | \
166				HWSTATUS_RBSY_MASK(NAND_STATUS_READY) | \
167				HWSTATUS_RBSY_VALUE(NAND_STATUS_READY))
168
169struct tegra_nand_controller {
170	struct nand_controller controller;
171	struct device *dev;
172	void __iomem *regs;
173	int irq;
174	struct clk *clk;
175	struct completion command_complete;
176	struct completion dma_complete;
177	bool last_read_error;
178	int cur_cs;
179	struct nand_chip *chip;
180};
181
182struct tegra_nand_chip {
183	struct nand_chip chip;
184	struct gpio_desc *wp_gpio;
185	struct mtd_oob_region ecc;
186	u32 config;
187	u32 config_ecc;
188	u32 bch_config;
189	int cs[1];
190};
191
192static inline struct tegra_nand_controller *
193			to_tegra_ctrl(struct nand_controller *hw_ctrl)
194{
195	return container_of(hw_ctrl, struct tegra_nand_controller, controller);
196}
197
198static inline struct tegra_nand_chip *to_tegra_chip(struct nand_chip *chip)
199{
200	return container_of(chip, struct tegra_nand_chip, chip);
201}
202
203static int tegra_nand_ooblayout_rs_ecc(struct mtd_info *mtd, int section,
204				       struct mtd_oob_region *oobregion)
205{
206	struct nand_chip *chip = mtd_to_nand(mtd);
207	int bytes_per_step = DIV_ROUND_UP(BITS_PER_STEP_RS * chip->ecc.strength,
208					  BITS_PER_BYTE);
209
210	if (section > 0)
211		return -ERANGE;
212
213	oobregion->offset = SKIP_SPARE_BYTES;
214	oobregion->length = round_up(bytes_per_step * chip->ecc.steps, 4);
215
216	return 0;
217}
218
219static int tegra_nand_ooblayout_no_free(struct mtd_info *mtd, int section,
220					struct mtd_oob_region *oobregion)
221{
222	return -ERANGE;
223}
224
225static const struct mtd_ooblayout_ops tegra_nand_oob_rs_ops = {
226	.ecc = tegra_nand_ooblayout_rs_ecc,
227	.free = tegra_nand_ooblayout_no_free,
228};
229
230static int tegra_nand_ooblayout_bch_ecc(struct mtd_info *mtd, int section,
231					struct mtd_oob_region *oobregion)
232{
233	struct nand_chip *chip = mtd_to_nand(mtd);
234	int bytes_per_step = DIV_ROUND_UP(BITS_PER_STEP_BCH * chip->ecc.strength,
235					  BITS_PER_BYTE);
236
237	if (section > 0)
238		return -ERANGE;
239
240	oobregion->offset = SKIP_SPARE_BYTES;
241	oobregion->length = round_up(bytes_per_step * chip->ecc.steps, 4);
242
243	return 0;
244}
245
246static const struct mtd_ooblayout_ops tegra_nand_oob_bch_ops = {
247	.ecc = tegra_nand_ooblayout_bch_ecc,
248	.free = tegra_nand_ooblayout_no_free,
249};
250
251static irqreturn_t tegra_nand_irq(int irq, void *data)
252{
253	struct tegra_nand_controller *ctrl = data;
254	u32 isr, dma;
255
256	isr = readl_relaxed(ctrl->regs + ISR);
257	dma = readl_relaxed(ctrl->regs + DMA_MST_CTRL);
258	dev_dbg(ctrl->dev, "isr %08x\n", isr);
259
260	if (!isr && !(dma & DMA_MST_CTRL_IS_DONE))
261		return IRQ_NONE;
262
263	/*
264	 * The bit name is somewhat missleading: This is also set when
265	 * HW ECC was successful. The data sheet states:
266	 * Correctable OR Un-correctable errors occurred in the DMA transfer...
267	 */
268	if (isr & ISR_CORRFAIL_ERR)
269		ctrl->last_read_error = true;
270
271	if (isr & ISR_CMD_DONE)
272		complete(&ctrl->command_complete);
273
274	if (isr & ISR_UND)
275		dev_err(ctrl->dev, "FIFO underrun\n");
276
277	if (isr & ISR_OVR)
278		dev_err(ctrl->dev, "FIFO overrun\n");
279
280	/* handle DMA interrupts */
281	if (dma & DMA_MST_CTRL_IS_DONE) {
282		writel_relaxed(dma, ctrl->regs + DMA_MST_CTRL);
283		complete(&ctrl->dma_complete);
284	}
285
286	/* clear interrupts */
287	writel_relaxed(isr, ctrl->regs + ISR);
288
289	return IRQ_HANDLED;
290}
291
292static const char * const tegra_nand_reg_names[] = {
293	"COMMAND",
294	"STATUS",
295	"ISR",
296	"IER",
297	"CONFIG",
298	"TIMING",
299	NULL,
300	"TIMING2",
301	"CMD_REG1",
302	"CMD_REG2",
303	"ADDR_REG1",
304	"ADDR_REG2",
305	"DMA_MST_CTRL",
306	"DMA_CFG_A",
307	"DMA_CFG_B",
308	"FIFO_CTRL",
309};
310
311static void tegra_nand_dump_reg(struct tegra_nand_controller *ctrl)
312{
313	u32 reg;
314	int i;
315
316	dev_err(ctrl->dev, "Tegra NAND controller register dump\n");
317	for (i = 0; i < ARRAY_SIZE(tegra_nand_reg_names); i++) {
318		const char *reg_name = tegra_nand_reg_names[i];
319
320		if (!reg_name)
321			continue;
322
323		reg = readl_relaxed(ctrl->regs + (i * 4));
324		dev_err(ctrl->dev, "%s: 0x%08x\n", reg_name, reg);
325	}
326}
327
328static void tegra_nand_controller_abort(struct tegra_nand_controller *ctrl)
329{
330	u32 isr, dma;
331
332	disable_irq(ctrl->irq);
333
334	/* Abort current command/DMA operation */
335	writel_relaxed(0, ctrl->regs + DMA_MST_CTRL);
336	writel_relaxed(0, ctrl->regs + COMMAND);
337
338	/* clear interrupts */
339	isr = readl_relaxed(ctrl->regs + ISR);
340	writel_relaxed(isr, ctrl->regs + ISR);
341	dma = readl_relaxed(ctrl->regs + DMA_MST_CTRL);
342	writel_relaxed(dma, ctrl->regs + DMA_MST_CTRL);
343
344	reinit_completion(&ctrl->command_complete);
345	reinit_completion(&ctrl->dma_complete);
346
347	enable_irq(ctrl->irq);
348}
349
350static int tegra_nand_cmd(struct nand_chip *chip,
351			  const struct nand_subop *subop)
352{
353	const struct nand_op_instr *instr;
354	const struct nand_op_instr *instr_data_in = NULL;
355	struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller);
356	unsigned int op_id, size = 0, offset = 0;
357	bool first_cmd = true;
358	u32 reg, cmd = 0;
359	int ret;
360
361	for (op_id = 0; op_id < subop->ninstrs; op_id++) {
362		unsigned int naddrs, i;
363		const u8 *addrs;
364		u32 addr1 = 0, addr2 = 0;
365
366		instr = &subop->instrs[op_id];
367
368		switch (instr->type) {
369		case NAND_OP_CMD_INSTR:
370			if (first_cmd) {
371				cmd |= COMMAND_CLE;
372				writel_relaxed(instr->ctx.cmd.opcode,
373					       ctrl->regs + CMD_REG1);
374			} else {
375				cmd |= COMMAND_SEC_CMD;
376				writel_relaxed(instr->ctx.cmd.opcode,
377					       ctrl->regs + CMD_REG2);
378			}
379			first_cmd = false;
380			break;
381
382		case NAND_OP_ADDR_INSTR:
383			offset = nand_subop_get_addr_start_off(subop, op_id);
384			naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
385			addrs = &instr->ctx.addr.addrs[offset];
386
387			cmd |= COMMAND_ALE | COMMAND_ALE_SIZE(naddrs);
388			for (i = 0; i < min_t(unsigned int, 4, naddrs); i++)
389				addr1 |= *addrs++ << (BITS_PER_BYTE * i);
390			naddrs -= i;
391			for (i = 0; i < min_t(unsigned int, 4, naddrs); i++)
392				addr2 |= *addrs++ << (BITS_PER_BYTE * i);
393
394			writel_relaxed(addr1, ctrl->regs + ADDR_REG1);
395			writel_relaxed(addr2, ctrl->regs + ADDR_REG2);
396			break;
397
398		case NAND_OP_DATA_IN_INSTR:
399			size = nand_subop_get_data_len(subop, op_id);
400			offset = nand_subop_get_data_start_off(subop, op_id);
401
402			cmd |= COMMAND_TRANS_SIZE(size) | COMMAND_PIO |
403				COMMAND_RX | COMMAND_A_VALID;
404
405			instr_data_in = instr;
406			break;
407
408		case NAND_OP_DATA_OUT_INSTR:
409			size = nand_subop_get_data_len(subop, op_id);
410			offset = nand_subop_get_data_start_off(subop, op_id);
411
412			cmd |= COMMAND_TRANS_SIZE(size) | COMMAND_PIO |
413				COMMAND_TX | COMMAND_A_VALID;
414			memcpy(&reg, instr->ctx.data.buf.out + offset, size);
415
416			writel_relaxed(reg, ctrl->regs + RESP);
417			break;
418
419		case NAND_OP_WAITRDY_INSTR:
420			cmd |= COMMAND_RBSY_CHK;
421			break;
422		}
423	}
424
425	cmd |= COMMAND_GO | COMMAND_CE(ctrl->cur_cs);
426	writel_relaxed(cmd, ctrl->regs + COMMAND);
427	ret = wait_for_completion_timeout(&ctrl->command_complete,
428					  msecs_to_jiffies(500));
429	if (!ret) {
430		dev_err(ctrl->dev, "COMMAND timeout\n");
431		tegra_nand_dump_reg(ctrl);
432		tegra_nand_controller_abort(ctrl);
433		return -ETIMEDOUT;
434	}
435
436	if (instr_data_in) {
437		reg = readl_relaxed(ctrl->regs + RESP);
438		memcpy(instr_data_in->ctx.data.buf.in + offset, &reg, size);
439	}
440
441	return 0;
442}
443
444static const struct nand_op_parser tegra_nand_op_parser = NAND_OP_PARSER(
445	NAND_OP_PARSER_PATTERN(tegra_nand_cmd,
446		NAND_OP_PARSER_PAT_CMD_ELEM(true),
447		NAND_OP_PARSER_PAT_ADDR_ELEM(true, 8),
448		NAND_OP_PARSER_PAT_CMD_ELEM(true),
449		NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
450	NAND_OP_PARSER_PATTERN(tegra_nand_cmd,
451		NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, 4)),
452	NAND_OP_PARSER_PATTERN(tegra_nand_cmd,
453		NAND_OP_PARSER_PAT_CMD_ELEM(true),
454		NAND_OP_PARSER_PAT_ADDR_ELEM(true, 8),
455		NAND_OP_PARSER_PAT_CMD_ELEM(true),
456		NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
457		NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, 4)),
458	);
459
460static void tegra_nand_select_target(struct nand_chip *chip,
461				     unsigned int die_nr)
462{
463	struct tegra_nand_chip *nand = to_tegra_chip(chip);
464	struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller);
465
466	ctrl->cur_cs = nand->cs[die_nr];
467}
468
469static int tegra_nand_exec_op(struct nand_chip *chip,
470			      const struct nand_operation *op,
471			      bool check_only)
472{
473	if (!check_only)
474		tegra_nand_select_target(chip, op->cs);
475
476	return nand_op_parser_exec_op(chip, &tegra_nand_op_parser, op,
477				      check_only);
478}
479
480static void tegra_nand_hw_ecc(struct tegra_nand_controller *ctrl,
481			      struct nand_chip *chip, bool enable)
482{
483	struct tegra_nand_chip *nand = to_tegra_chip(chip);
484
485	if (chip->ecc.algo == NAND_ECC_ALGO_BCH && enable)
486		writel_relaxed(nand->bch_config, ctrl->regs + BCH_CONFIG);
487	else
488		writel_relaxed(0, ctrl->regs + BCH_CONFIG);
489
490	if (enable)
491		writel_relaxed(nand->config_ecc, ctrl->regs + CONFIG);
492	else
493		writel_relaxed(nand->config, ctrl->regs + CONFIG);
494}
495
496static int tegra_nand_page_xfer(struct mtd_info *mtd, struct nand_chip *chip,
497				void *buf, void *oob_buf, int oob_len, int page,
498				bool read)
499{
500	struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller);
501	enum dma_data_direction dir = read ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
502	dma_addr_t dma_addr = 0, dma_addr_oob = 0;
503	u32 addr1, cmd, dma_ctrl;
504	int ret;
505
506	tegra_nand_select_target(chip, chip->cur_cs);
507
508	if (read) {
509		writel_relaxed(NAND_CMD_READ0, ctrl->regs + CMD_REG1);
510		writel_relaxed(NAND_CMD_READSTART, ctrl->regs + CMD_REG2);
511	} else {
512		writel_relaxed(NAND_CMD_SEQIN, ctrl->regs + CMD_REG1);
513		writel_relaxed(NAND_CMD_PAGEPROG, ctrl->regs + CMD_REG2);
514	}
515	cmd = COMMAND_CLE | COMMAND_SEC_CMD;
516
517	/* Lower 16-bits are column, by default 0 */
518	addr1 = page << 16;
519
520	if (!buf)
521		addr1 |= mtd->writesize;
522	writel_relaxed(addr1, ctrl->regs + ADDR_REG1);
523
524	if (chip->options & NAND_ROW_ADDR_3) {
525		writel_relaxed(page >> 16, ctrl->regs + ADDR_REG2);
526		cmd |= COMMAND_ALE | COMMAND_ALE_SIZE(5);
527	} else {
528		cmd |= COMMAND_ALE | COMMAND_ALE_SIZE(4);
529	}
530
531	if (buf) {
532		dma_addr = dma_map_single(ctrl->dev, buf, mtd->writesize, dir);
533		ret = dma_mapping_error(ctrl->dev, dma_addr);
534		if (ret) {
535			dev_err(ctrl->dev, "dma mapping error\n");
536			return -EINVAL;
537		}
538
539		writel_relaxed(mtd->writesize - 1, ctrl->regs + DMA_CFG_A);
540		writel_relaxed(dma_addr, ctrl->regs + DATA_PTR);
541	}
542
543	if (oob_buf) {
544		dma_addr_oob = dma_map_single(ctrl->dev, oob_buf, mtd->oobsize,
545					      dir);
546		ret = dma_mapping_error(ctrl->dev, dma_addr_oob);
547		if (ret) {
548			dev_err(ctrl->dev, "dma mapping error\n");
549			ret = -EINVAL;
550			goto err_unmap_dma_page;
551		}
552
553		writel_relaxed(oob_len - 1, ctrl->regs + DMA_CFG_B);
554		writel_relaxed(dma_addr_oob, ctrl->regs + TAG_PTR);
555	}
556
557	dma_ctrl = DMA_MST_CTRL_GO | DMA_MST_CTRL_PERF_EN |
558		   DMA_MST_CTRL_IE_DONE | DMA_MST_CTRL_IS_DONE |
559		   DMA_MST_CTRL_BURST_16;
560
561	if (buf)
562		dma_ctrl |= DMA_MST_CTRL_EN_A;
563	if (oob_buf)
564		dma_ctrl |= DMA_MST_CTRL_EN_B;
565
566	if (read)
567		dma_ctrl |= DMA_MST_CTRL_IN | DMA_MST_CTRL_REUSE;
568	else
569		dma_ctrl |= DMA_MST_CTRL_OUT;
570
571	writel_relaxed(dma_ctrl, ctrl->regs + DMA_MST_CTRL);
572
573	cmd |= COMMAND_GO | COMMAND_RBSY_CHK | COMMAND_TRANS_SIZE(9) |
574	       COMMAND_CE(ctrl->cur_cs);
575
576	if (buf)
577		cmd |= COMMAND_A_VALID;
578	if (oob_buf)
579		cmd |= COMMAND_B_VALID;
580
581	if (read)
582		cmd |= COMMAND_RX;
583	else
584		cmd |= COMMAND_TX | COMMAND_AFT_DAT;
585
586	writel_relaxed(cmd, ctrl->regs + COMMAND);
587
588	ret = wait_for_completion_timeout(&ctrl->command_complete,
589					  msecs_to_jiffies(500));
590	if (!ret) {
591		dev_err(ctrl->dev, "COMMAND timeout\n");
592		tegra_nand_dump_reg(ctrl);
593		tegra_nand_controller_abort(ctrl);
594		ret = -ETIMEDOUT;
595		goto err_unmap_dma;
596	}
597
598	ret = wait_for_completion_timeout(&ctrl->dma_complete,
599					  msecs_to_jiffies(500));
600	if (!ret) {
601		dev_err(ctrl->dev, "DMA timeout\n");
602		tegra_nand_dump_reg(ctrl);
603		tegra_nand_controller_abort(ctrl);
604		ret = -ETIMEDOUT;
605		goto err_unmap_dma;
606	}
607	ret = 0;
608
609err_unmap_dma:
610	if (oob_buf)
611		dma_unmap_single(ctrl->dev, dma_addr_oob, mtd->oobsize, dir);
612err_unmap_dma_page:
613	if (buf)
614		dma_unmap_single(ctrl->dev, dma_addr, mtd->writesize, dir);
615
616	return ret;
617}
618
619static int tegra_nand_read_page_raw(struct nand_chip *chip, u8 *buf,
620				    int oob_required, int page)
621{
622	struct mtd_info *mtd = nand_to_mtd(chip);
623	void *oob_buf = oob_required ? chip->oob_poi : NULL;
624
625	return tegra_nand_page_xfer(mtd, chip, buf, oob_buf,
626				    mtd->oobsize, page, true);
627}
628
629static int tegra_nand_write_page_raw(struct nand_chip *chip, const u8 *buf,
630				     int oob_required, int page)
631{
632	struct mtd_info *mtd = nand_to_mtd(chip);
633	void *oob_buf = oob_required ? chip->oob_poi : NULL;
634
635	return tegra_nand_page_xfer(mtd, chip, (void *)buf, oob_buf,
636				     mtd->oobsize, page, false);
637}
638
639static int tegra_nand_read_oob(struct nand_chip *chip, int page)
640{
641	struct mtd_info *mtd = nand_to_mtd(chip);
642
643	return tegra_nand_page_xfer(mtd, chip, NULL, chip->oob_poi,
644				    mtd->oobsize, page, true);
645}
646
647static int tegra_nand_write_oob(struct nand_chip *chip, int page)
648{
649	struct mtd_info *mtd = nand_to_mtd(chip);
650
651	return tegra_nand_page_xfer(mtd, chip, NULL, chip->oob_poi,
652				    mtd->oobsize, page, false);
653}
654
655static int tegra_nand_read_page_hwecc(struct nand_chip *chip, u8 *buf,
656				      int oob_required, int page)
657{
658	struct mtd_info *mtd = nand_to_mtd(chip);
659	struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller);
660	struct tegra_nand_chip *nand = to_tegra_chip(chip);
661	void *oob_buf = oob_required ? chip->oob_poi : NULL;
662	u32 dec_stat, max_corr_cnt;
663	unsigned long fail_sec_flag;
664	int ret;
665
666	tegra_nand_hw_ecc(ctrl, chip, true);
667	ret = tegra_nand_page_xfer(mtd, chip, buf, oob_buf, 0, page, true);
668	tegra_nand_hw_ecc(ctrl, chip, false);
669	if (ret)
670		return ret;
671
672	/* No correctable or un-correctable errors, page must have 0 bitflips */
673	if (!ctrl->last_read_error)
674		return 0;
675
676	/*
677	 * Correctable or un-correctable errors occurred. Use DEC_STAT_BUF
678	 * which contains information for all ECC selections.
679	 *
680	 * Note that since we do not use Command Queues DEC_RESULT does not
681	 * state the number of pages we can read from the DEC_STAT_BUF. But
682	 * since CORRFAIL_ERR did occur during page read we do have a valid
683	 * result in DEC_STAT_BUF.
684	 */
685	ctrl->last_read_error = false;
686	dec_stat = readl_relaxed(ctrl->regs + DEC_STAT_BUF);
687
688	fail_sec_flag = (dec_stat & DEC_STAT_BUF_FAIL_SEC_FLAG_MASK) >>
689			DEC_STAT_BUF_FAIL_SEC_FLAG_SHIFT;
690
691	max_corr_cnt = (dec_stat & DEC_STAT_BUF_MAX_CORR_CNT_MASK) >>
692		       DEC_STAT_BUF_MAX_CORR_CNT_SHIFT;
693
694	if (fail_sec_flag) {
695		int bit, max_bitflips = 0;
696
697		/*
698		 * Since we do not support subpage writes, a complete page
699		 * is either written or not. We can take a shortcut here by
700		 * checking wheather any of the sector has been successful
701		 * read. If at least one sectors has been read successfully,
702		 * the page must have been a written previously. It cannot
703		 * be an erased page.
704		 *
705		 * E.g. controller might return fail_sec_flag with 0x4, which
706		 * would mean only the third sector failed to correct. The
707		 * page must have been written and the third sector is really
708		 * not correctable anymore.
709		 */
710		if (fail_sec_flag ^ GENMASK(chip->ecc.steps - 1, 0)) {
711			mtd->ecc_stats.failed += hweight8(fail_sec_flag);
712			return max_corr_cnt;
713		}
714
715		/*
716		 * All sectors failed to correct, but the ECC isn't smart
717		 * enough to figure out if a page is really just erased.
718		 * Read OOB data and check whether data/OOB is completely
719		 * erased or if error correction just failed for all sub-
720		 * pages.
721		 */
722		ret = tegra_nand_read_oob(chip, page);
723		if (ret < 0)
724			return ret;
725
726		for_each_set_bit(bit, &fail_sec_flag, chip->ecc.steps) {
727			u8 *data = buf + (chip->ecc.size * bit);
728			u8 *oob = chip->oob_poi + nand->ecc.offset +
729				  (chip->ecc.bytes * bit);
730
731			ret = nand_check_erased_ecc_chunk(data, chip->ecc.size,
732							  oob, chip->ecc.bytes,
733							  NULL, 0,
734							  chip->ecc.strength);
735			if (ret < 0) {
736				mtd->ecc_stats.failed++;
737			} else {
738				mtd->ecc_stats.corrected += ret;
739				max_bitflips = max(ret, max_bitflips);
740			}
741		}
742
743		return max_t(unsigned int, max_corr_cnt, max_bitflips);
744	} else {
745		int corr_sec_flag;
746
747		corr_sec_flag = (dec_stat & DEC_STAT_BUF_CORR_SEC_FLAG_MASK) >>
748				DEC_STAT_BUF_CORR_SEC_FLAG_SHIFT;
749
750		/*
751		 * The value returned in the register is the maximum of
752		 * bitflips encountered in any of the ECC regions. As there is
753		 * no way to get the number of bitflips in a specific regions
754		 * we are not able to deliver correct stats but instead
755		 * overestimate the number of corrected bitflips by assuming
756		 * that all regions where errors have been corrected
757		 * encountered the maximum number of bitflips.
758		 */
759		mtd->ecc_stats.corrected += max_corr_cnt * hweight8(corr_sec_flag);
760
761		return max_corr_cnt;
762	}
763}
764
765static int tegra_nand_write_page_hwecc(struct nand_chip *chip, const u8 *buf,
766				       int oob_required, int page)
767{
768	struct mtd_info *mtd = nand_to_mtd(chip);
769	struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller);
770	void *oob_buf = oob_required ? chip->oob_poi : NULL;
771	int ret;
772
773	tegra_nand_hw_ecc(ctrl, chip, true);
774	ret = tegra_nand_page_xfer(mtd, chip, (void *)buf, oob_buf,
775				   0, page, false);
776	tegra_nand_hw_ecc(ctrl, chip, false);
777
778	return ret;
779}
780
781static void tegra_nand_setup_timing(struct tegra_nand_controller *ctrl,
782				    const struct nand_sdr_timings *timings)
783{
784	/*
785	 * The period (and all other timings in this function) is in ps,
786	 * so need to take care here to avoid integer overflows.
787	 */
788	unsigned int rate = clk_get_rate(ctrl->clk) / 1000000;
789	unsigned int period = DIV_ROUND_UP(1000000, rate);
790	u32 val, reg = 0;
791
792	val = DIV_ROUND_UP(max3(timings->tAR_min, timings->tRR_min,
793				timings->tRC_min), period);
794	reg |= TIMING_TCR_TAR_TRR(OFFSET(val, 3));
795
796	val = DIV_ROUND_UP(max(max(timings->tCS_min, timings->tCH_min),
797			       max(timings->tALS_min, timings->tALH_min)),
798			   period);
799	reg |= TIMING_TCS(OFFSET(val, 2));
800
801	val = DIV_ROUND_UP(max(timings->tRP_min, timings->tREA_max) + 6000,
802			   period);
803	reg |= TIMING_TRP(OFFSET(val, 1)) | TIMING_TRP_RESP(OFFSET(val, 1));
804
805	reg |= TIMING_TWB(OFFSET(DIV_ROUND_UP(timings->tWB_max, period), 1));
806	reg |= TIMING_TWHR(OFFSET(DIV_ROUND_UP(timings->tWHR_min, period), 1));
807	reg |= TIMING_TWH(OFFSET(DIV_ROUND_UP(timings->tWH_min, period), 1));
808	reg |= TIMING_TWP(OFFSET(DIV_ROUND_UP(timings->tWP_min, period), 1));
809	reg |= TIMING_TRH(OFFSET(DIV_ROUND_UP(timings->tREH_min, period), 1));
810
811	writel_relaxed(reg, ctrl->regs + TIMING_1);
812
813	val = DIV_ROUND_UP(timings->tADL_min, period);
814	reg = TIMING_TADL(OFFSET(val, 3));
815
816	writel_relaxed(reg, ctrl->regs + TIMING_2);
817}
818
819static int tegra_nand_setup_interface(struct nand_chip *chip, int csline,
820				      const struct nand_interface_config *conf)
821{
822	struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller);
823	const struct nand_sdr_timings *timings;
824
825	timings = nand_get_sdr_timings(conf);
826	if (IS_ERR(timings))
827		return PTR_ERR(timings);
828
829	if (csline == NAND_DATA_IFACE_CHECK_ONLY)
830		return 0;
831
832	tegra_nand_setup_timing(ctrl, timings);
833
834	return 0;
835}
836
837static const int rs_strength_bootable[] = { 4 };
838static const int rs_strength[] = { 4, 6, 8 };
839static const int bch_strength_bootable[] = { 8, 16 };
840static const int bch_strength[] = { 4, 8, 14, 16 };
841
842static int tegra_nand_get_strength(struct nand_chip *chip, const int *strength,
843				   int strength_len, int bits_per_step,
844				   int oobsize)
845{
846	struct nand_device *base = mtd_to_nanddev(nand_to_mtd(chip));
847	const struct nand_ecc_props *requirements =
848		nanddev_get_ecc_requirements(base);
849	bool maximize = base->ecc.user_conf.flags & NAND_ECC_MAXIMIZE_STRENGTH;
850	int i;
851
852	/*
853	 * Loop through available strengths. Backwards in case we try to
854	 * maximize the BCH strength.
855	 */
856	for (i = 0; i < strength_len; i++) {
857		int strength_sel, bytes_per_step, bytes_per_page;
858
859		if (maximize) {
860			strength_sel = strength[strength_len - i - 1];
861		} else {
862			strength_sel = strength[i];
863
864			if (strength_sel < requirements->strength)
865				continue;
866		}
867
868		bytes_per_step = DIV_ROUND_UP(bits_per_step * strength_sel,
869					      BITS_PER_BYTE);
870		bytes_per_page = round_up(bytes_per_step * chip->ecc.steps, 4);
871
872		/* Check whether strength fits OOB */
873		if (bytes_per_page < (oobsize - SKIP_SPARE_BYTES))
874			return strength_sel;
875	}
876
877	return -EINVAL;
878}
879
880static int tegra_nand_select_strength(struct nand_chip *chip, int oobsize)
881{
882	const int *strength;
883	int strength_len, bits_per_step;
884
885	switch (chip->ecc.algo) {
886	case NAND_ECC_ALGO_RS:
887		bits_per_step = BITS_PER_STEP_RS;
888		if (chip->options & NAND_IS_BOOT_MEDIUM) {
889			strength = rs_strength_bootable;
890			strength_len = ARRAY_SIZE(rs_strength_bootable);
891		} else {
892			strength = rs_strength;
893			strength_len = ARRAY_SIZE(rs_strength);
894		}
895		break;
896	case NAND_ECC_ALGO_BCH:
897		bits_per_step = BITS_PER_STEP_BCH;
898		if (chip->options & NAND_IS_BOOT_MEDIUM) {
899			strength = bch_strength_bootable;
900			strength_len = ARRAY_SIZE(bch_strength_bootable);
901		} else {
902			strength = bch_strength;
903			strength_len = ARRAY_SIZE(bch_strength);
904		}
905		break;
906	default:
907		return -EINVAL;
908	}
909
910	return tegra_nand_get_strength(chip, strength, strength_len,
911				       bits_per_step, oobsize);
912}
913
914static int tegra_nand_attach_chip(struct nand_chip *chip)
915{
916	struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller);
917	const struct nand_ecc_props *requirements =
918		nanddev_get_ecc_requirements(&chip->base);
919	struct tegra_nand_chip *nand = to_tegra_chip(chip);
920	struct mtd_info *mtd = nand_to_mtd(chip);
921	int bits_per_step;
922	int ret;
923
924	if (chip->bbt_options & NAND_BBT_USE_FLASH)
925		chip->bbt_options |= NAND_BBT_NO_OOB;
926
927	chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
928	chip->ecc.size = 512;
929	chip->ecc.steps = mtd->writesize / chip->ecc.size;
930	if (requirements->step_size != 512) {
931		dev_err(ctrl->dev, "Unsupported step size %d\n",
932			requirements->step_size);
933		return -EINVAL;
934	}
935
936	chip->ecc.read_page = tegra_nand_read_page_hwecc;
937	chip->ecc.write_page = tegra_nand_write_page_hwecc;
938	chip->ecc.read_page_raw = tegra_nand_read_page_raw;
939	chip->ecc.write_page_raw = tegra_nand_write_page_raw;
940	chip->ecc.read_oob = tegra_nand_read_oob;
941	chip->ecc.write_oob = tegra_nand_write_oob;
942
943	if (chip->options & NAND_BUSWIDTH_16)
944		nand->config |= CONFIG_BUS_WIDTH_16;
945
946	if (chip->ecc.algo == NAND_ECC_ALGO_UNKNOWN) {
947		if (mtd->writesize < 2048)
948			chip->ecc.algo = NAND_ECC_ALGO_RS;
949		else
950			chip->ecc.algo = NAND_ECC_ALGO_BCH;
951	}
952
953	if (chip->ecc.algo == NAND_ECC_ALGO_BCH && mtd->writesize < 2048) {
954		dev_err(ctrl->dev, "BCH supports 2K or 4K page size only\n");
955		return -EINVAL;
956	}
957
958	if (!chip->ecc.strength) {
959		ret = tegra_nand_select_strength(chip, mtd->oobsize);
960		if (ret < 0) {
961			dev_err(ctrl->dev,
962				"No valid strength found, minimum %d\n",
963				requirements->strength);
964			return ret;
965		}
966
967		chip->ecc.strength = ret;
968	}
969
970	nand->config_ecc = CONFIG_PIPE_EN | CONFIG_SKIP_SPARE |
971			   CONFIG_SKIP_SPARE_SIZE_4;
972
973	switch (chip->ecc.algo) {
974	case NAND_ECC_ALGO_RS:
975		bits_per_step = BITS_PER_STEP_RS * chip->ecc.strength;
976		mtd_set_ooblayout(mtd, &tegra_nand_oob_rs_ops);
977		nand->config_ecc |= CONFIG_HW_ECC | CONFIG_ECC_SEL |
978				    CONFIG_ERR_COR;
979		switch (chip->ecc.strength) {
980		case 4:
981			nand->config_ecc |= CONFIG_TVAL_4;
982			break;
983		case 6:
984			nand->config_ecc |= CONFIG_TVAL_6;
985			break;
986		case 8:
987			nand->config_ecc |= CONFIG_TVAL_8;
988			break;
989		default:
990			dev_err(ctrl->dev, "ECC strength %d not supported\n",
991				chip->ecc.strength);
992			return -EINVAL;
993		}
994		break;
995	case NAND_ECC_ALGO_BCH:
996		bits_per_step = BITS_PER_STEP_BCH * chip->ecc.strength;
997		mtd_set_ooblayout(mtd, &tegra_nand_oob_bch_ops);
998		nand->bch_config = BCH_ENABLE;
999		switch (chip->ecc.strength) {
1000		case 4:
1001			nand->bch_config |= BCH_TVAL_4;
1002			break;
1003		case 8:
1004			nand->bch_config |= BCH_TVAL_8;
1005			break;
1006		case 14:
1007			nand->bch_config |= BCH_TVAL_14;
1008			break;
1009		case 16:
1010			nand->bch_config |= BCH_TVAL_16;
1011			break;
1012		default:
1013			dev_err(ctrl->dev, "ECC strength %d not supported\n",
1014				chip->ecc.strength);
1015			return -EINVAL;
1016		}
1017		break;
1018	default:
1019		dev_err(ctrl->dev, "ECC algorithm not supported\n");
1020		return -EINVAL;
1021	}
1022
1023	dev_info(ctrl->dev, "Using %s with strength %d per 512 byte step\n",
1024		 chip->ecc.algo == NAND_ECC_ALGO_BCH ? "BCH" : "RS",
1025		 chip->ecc.strength);
1026
1027	chip->ecc.bytes = DIV_ROUND_UP(bits_per_step, BITS_PER_BYTE);
1028
1029	switch (mtd->writesize) {
1030	case 256:
1031		nand->config |= CONFIG_PS_256;
1032		break;
1033	case 512:
1034		nand->config |= CONFIG_PS_512;
1035		break;
1036	case 1024:
1037		nand->config |= CONFIG_PS_1024;
1038		break;
1039	case 2048:
1040		nand->config |= CONFIG_PS_2048;
1041		break;
1042	case 4096:
1043		nand->config |= CONFIG_PS_4096;
1044		break;
1045	default:
1046		dev_err(ctrl->dev, "Unsupported writesize %d\n",
1047			mtd->writesize);
1048		return -ENODEV;
1049	}
1050
1051	/* Store complete configuration for HW ECC in config_ecc */
1052	nand->config_ecc |= nand->config;
1053
1054	/* Non-HW ECC read/writes complete OOB */
1055	nand->config |= CONFIG_TAG_BYTE_SIZE(mtd->oobsize - 1);
1056	writel_relaxed(nand->config, ctrl->regs + CONFIG);
1057
1058	return 0;
1059}
1060
1061static const struct nand_controller_ops tegra_nand_controller_ops = {
1062	.attach_chip = &tegra_nand_attach_chip,
1063	.exec_op = tegra_nand_exec_op,
1064	.setup_interface = tegra_nand_setup_interface,
1065};
1066
1067static int tegra_nand_chips_init(struct device *dev,
1068				 struct tegra_nand_controller *ctrl)
1069{
1070	struct device_node *np = dev->of_node;
1071	struct device_node *np_nand;
1072	int nsels, nchips = of_get_child_count(np);
1073	struct tegra_nand_chip *nand;
1074	struct mtd_info *mtd;
1075	struct nand_chip *chip;
1076	int ret;
1077	u32 cs;
1078
1079	if (nchips != 1) {
1080		dev_err(dev, "Currently only one NAND chip supported\n");
1081		return -EINVAL;
1082	}
1083
1084	np_nand = of_get_next_child(np, NULL);
1085
1086	nsels = of_property_count_elems_of_size(np_nand, "reg", sizeof(u32));
1087	if (nsels != 1) {
1088		dev_err(dev, "Missing/invalid reg property\n");
1089		return -EINVAL;
1090	}
1091
1092	/* Retrieve CS id, currently only single die NAND supported */
1093	ret = of_property_read_u32(np_nand, "reg", &cs);
1094	if (ret) {
1095		dev_err(dev, "could not retrieve reg property: %d\n", ret);
1096		return ret;
1097	}
1098
1099	nand = devm_kzalloc(dev, sizeof(*nand), GFP_KERNEL);
1100	if (!nand)
1101		return -ENOMEM;
1102
1103	nand->cs[0] = cs;
1104
1105	nand->wp_gpio = devm_gpiod_get_optional(dev, "wp", GPIOD_OUT_LOW);
1106
1107	if (IS_ERR(nand->wp_gpio)) {
1108		ret = PTR_ERR(nand->wp_gpio);
1109		dev_err(dev, "Failed to request WP GPIO: %d\n", ret);
1110		return ret;
1111	}
1112
1113	chip = &nand->chip;
1114	chip->controller = &ctrl->controller;
1115
1116	mtd = nand_to_mtd(chip);
1117
1118	mtd->dev.parent = dev;
1119	mtd->owner = THIS_MODULE;
1120
1121	nand_set_flash_node(chip, np_nand);
1122
1123	if (!mtd->name)
1124		mtd->name = "tegra_nand";
1125
1126	chip->options = NAND_NO_SUBPAGE_WRITE | NAND_USES_DMA;
1127
1128	ret = nand_scan(chip, 1);
1129	if (ret)
1130		return ret;
1131
1132	mtd_ooblayout_ecc(mtd, 0, &nand->ecc);
1133
1134	ret = mtd_device_register(mtd, NULL, 0);
1135	if (ret) {
1136		dev_err(dev, "Failed to register mtd device: %d\n", ret);
1137		nand_cleanup(chip);
1138		return ret;
1139	}
1140
1141	ctrl->chip = chip;
1142
1143	return 0;
1144}
1145
1146static int tegra_nand_probe(struct platform_device *pdev)
1147{
1148	struct reset_control *rst;
1149	struct tegra_nand_controller *ctrl;
1150	int err = 0;
1151
1152	ctrl = devm_kzalloc(&pdev->dev, sizeof(*ctrl), GFP_KERNEL);
1153	if (!ctrl)
1154		return -ENOMEM;
1155
1156	ctrl->dev = &pdev->dev;
1157	platform_set_drvdata(pdev, ctrl);
1158	nand_controller_init(&ctrl->controller);
1159	ctrl->controller.ops = &tegra_nand_controller_ops;
1160
1161	ctrl->regs = devm_platform_ioremap_resource(pdev, 0);
1162	if (IS_ERR(ctrl->regs))
1163		return PTR_ERR(ctrl->regs);
1164
1165	rst = devm_reset_control_get(&pdev->dev, "nand");
1166	if (IS_ERR(rst))
1167		return PTR_ERR(rst);
1168
1169	ctrl->clk = devm_clk_get(&pdev->dev, "nand");
1170	if (IS_ERR(ctrl->clk))
1171		return PTR_ERR(ctrl->clk);
1172
1173	err = devm_tegra_core_dev_init_opp_table_common(&pdev->dev);
1174	if (err)
1175		return err;
1176
1177	/*
1178	 * This driver doesn't support active power management yet,
1179	 * so we will simply keep device resumed.
1180	 */
1181	pm_runtime_enable(&pdev->dev);
1182	err = pm_runtime_resume_and_get(&pdev->dev);
1183	if (err)
1184		goto err_dis_pm;
1185
1186	err = reset_control_reset(rst);
1187	if (err) {
1188		dev_err(ctrl->dev, "Failed to reset HW: %d\n", err);
1189		goto err_put_pm;
1190	}
1191
1192	writel_relaxed(HWSTATUS_CMD_DEFAULT, ctrl->regs + HWSTATUS_CMD);
1193	writel_relaxed(HWSTATUS_MASK_DEFAULT, ctrl->regs + HWSTATUS_MASK);
1194	writel_relaxed(INT_MASK, ctrl->regs + IER);
1195
1196	init_completion(&ctrl->command_complete);
1197	init_completion(&ctrl->dma_complete);
1198
1199	ctrl->irq = platform_get_irq(pdev, 0);
1200	if (ctrl->irq < 0) {
1201		err = ctrl->irq;
1202		goto err_put_pm;
1203	}
1204	err = devm_request_irq(&pdev->dev, ctrl->irq, tegra_nand_irq, 0,
1205			       dev_name(&pdev->dev), ctrl);
1206	if (err) {
1207		dev_err(ctrl->dev, "Failed to get IRQ: %d\n", err);
1208		goto err_put_pm;
1209	}
1210
1211	writel_relaxed(DMA_MST_CTRL_IS_DONE, ctrl->regs + DMA_MST_CTRL);
1212
1213	err = tegra_nand_chips_init(ctrl->dev, ctrl);
1214	if (err)
1215		goto err_put_pm;
1216
1217	return 0;
1218
1219err_put_pm:
1220	pm_runtime_put_sync_suspend(ctrl->dev);
1221	pm_runtime_force_suspend(ctrl->dev);
1222err_dis_pm:
1223	pm_runtime_disable(&pdev->dev);
1224	return err;
1225}
1226
1227static void tegra_nand_remove(struct platform_device *pdev)
1228{
1229	struct tegra_nand_controller *ctrl = platform_get_drvdata(pdev);
1230	struct nand_chip *chip = ctrl->chip;
1231	struct mtd_info *mtd = nand_to_mtd(chip);
1232
1233	WARN_ON(mtd_device_unregister(mtd));
1234
1235	nand_cleanup(chip);
1236
1237	pm_runtime_put_sync_suspend(ctrl->dev);
1238	pm_runtime_force_suspend(ctrl->dev);
1239}
1240
1241static int __maybe_unused tegra_nand_runtime_resume(struct device *dev)
1242{
1243	struct tegra_nand_controller *ctrl = dev_get_drvdata(dev);
1244	int err;
1245
1246	err = clk_prepare_enable(ctrl->clk);
1247	if (err) {
1248		dev_err(dev, "Failed to enable clock: %d\n", err);
1249		return err;
1250	}
1251
1252	return 0;
1253}
1254
1255static int __maybe_unused tegra_nand_runtime_suspend(struct device *dev)
1256{
1257	struct tegra_nand_controller *ctrl = dev_get_drvdata(dev);
1258
1259	clk_disable_unprepare(ctrl->clk);
1260
1261	return 0;
1262}
1263
1264static const struct dev_pm_ops tegra_nand_pm = {
1265	SET_RUNTIME_PM_OPS(tegra_nand_runtime_suspend, tegra_nand_runtime_resume,
1266			   NULL)
1267};
1268
1269static const struct of_device_id tegra_nand_of_match[] = {
1270	{ .compatible = "nvidia,tegra20-nand" },
1271	{ /* sentinel */ }
1272};
1273MODULE_DEVICE_TABLE(of, tegra_nand_of_match);
1274
1275static struct platform_driver tegra_nand_driver = {
1276	.driver = {
1277		.name = "tegra-nand",
1278		.of_match_table = tegra_nand_of_match,
1279		.pm = &tegra_nand_pm,
1280	},
1281	.probe = tegra_nand_probe,
1282	.remove_new = tegra_nand_remove,
1283};
1284module_platform_driver(tegra_nand_driver);
1285
1286MODULE_DESCRIPTION("NVIDIA Tegra NAND driver");
1287MODULE_AUTHOR("Thierry Reding <thierry.reding@nvidia.com>");
1288MODULE_AUTHOR("Lucas Stach <dev@lynxeye.de>");
1289MODULE_AUTHOR("Stefan Agner <stefan@agner.ch>");
1290MODULE_LICENSE("GPL v2");
1291