1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) STMicroelectronics 2018
4 * Author: Christophe Kerello <christophe.kerello@st.com>
5 */
6
7#include <linux/bitfield.h>
8#include <linux/clk.h>
9#include <linux/dmaengine.h>
10#include <linux/dma-mapping.h>
11#include <linux/errno.h>
12#include <linux/gpio/consumer.h>
13#include <linux/interrupt.h>
14#include <linux/iopoll.h>
15#include <linux/mfd/syscon.h>
16#include <linux/module.h>
17#include <linux/mtd/rawnand.h>
18#include <linux/of_address.h>
19#include <linux/pinctrl/consumer.h>
20#include <linux/platform_device.h>
21#include <linux/regmap.h>
22#include <linux/reset.h>
23
24/* Bad block marker length */
25#define FMC2_BBM_LEN			2
26
27/* ECC step size */
28#define FMC2_ECC_STEP_SIZE		512
29
30/* BCHDSRx registers length */
31#define FMC2_BCHDSRS_LEN		20
32
33/* HECCR length */
34#define FMC2_HECCR_LEN			4
35
36/* Max requests done for a 8k nand page size */
37#define FMC2_MAX_SG			16
38
39/* Max chip enable */
40#define FMC2_MAX_CE			2
41
42/* Max ECC buffer length */
43#define FMC2_MAX_ECC_BUF_LEN		(FMC2_BCHDSRS_LEN * FMC2_MAX_SG)
44
45#define FMC2_TIMEOUT_MS			5000
46
47/* Timings */
48#define FMC2_THIZ			1
49#define FMC2_TIO			8000
50#define FMC2_TSYNC			3000
51#define FMC2_PCR_TIMING_MASK		0xf
52#define FMC2_PMEM_PATT_TIMING_MASK	0xff
53
54/* FMC2 Controller Registers */
55#define FMC2_BCR1			0x0
56#define FMC2_PCR			0x80
57#define FMC2_SR				0x84
58#define FMC2_PMEM			0x88
59#define FMC2_PATT			0x8c
60#define FMC2_HECCR			0x94
61#define FMC2_ISR			0x184
62#define FMC2_ICR			0x188
63#define FMC2_CSQCR			0x200
64#define FMC2_CSQCFGR1			0x204
65#define FMC2_CSQCFGR2			0x208
66#define FMC2_CSQCFGR3			0x20c
67#define FMC2_CSQAR1			0x210
68#define FMC2_CSQAR2			0x214
69#define FMC2_CSQIER			0x220
70#define FMC2_CSQISR			0x224
71#define FMC2_CSQICR			0x228
72#define FMC2_CSQEMSR			0x230
73#define FMC2_BCHIER			0x250
74#define FMC2_BCHISR			0x254
75#define FMC2_BCHICR			0x258
76#define FMC2_BCHPBR1			0x260
77#define FMC2_BCHPBR2			0x264
78#define FMC2_BCHPBR3			0x268
79#define FMC2_BCHPBR4			0x26c
80#define FMC2_BCHDSR0			0x27c
81#define FMC2_BCHDSR1			0x280
82#define FMC2_BCHDSR2			0x284
83#define FMC2_BCHDSR3			0x288
84#define FMC2_BCHDSR4			0x28c
85
86/* Register: FMC2_BCR1 */
87#define FMC2_BCR1_FMC2EN		BIT(31)
88
89/* Register: FMC2_PCR */
90#define FMC2_PCR_PWAITEN		BIT(1)
91#define FMC2_PCR_PBKEN			BIT(2)
92#define FMC2_PCR_PWID			GENMASK(5, 4)
93#define FMC2_PCR_PWID_BUSWIDTH_8	0
94#define FMC2_PCR_PWID_BUSWIDTH_16	1
95#define FMC2_PCR_ECCEN			BIT(6)
96#define FMC2_PCR_ECCALG			BIT(8)
97#define FMC2_PCR_TCLR			GENMASK(12, 9)
98#define FMC2_PCR_TCLR_DEFAULT		0xf
99#define FMC2_PCR_TAR			GENMASK(16, 13)
100#define FMC2_PCR_TAR_DEFAULT		0xf
101#define FMC2_PCR_ECCSS			GENMASK(19, 17)
102#define FMC2_PCR_ECCSS_512		1
103#define FMC2_PCR_ECCSS_2048		3
104#define FMC2_PCR_BCHECC			BIT(24)
105#define FMC2_PCR_WEN			BIT(25)
106
107/* Register: FMC2_SR */
108#define FMC2_SR_NWRF			BIT(6)
109
110/* Register: FMC2_PMEM */
111#define FMC2_PMEM_MEMSET		GENMASK(7, 0)
112#define FMC2_PMEM_MEMWAIT		GENMASK(15, 8)
113#define FMC2_PMEM_MEMHOLD		GENMASK(23, 16)
114#define FMC2_PMEM_MEMHIZ		GENMASK(31, 24)
115#define FMC2_PMEM_DEFAULT		0x0a0a0a0a
116
117/* Register: FMC2_PATT */
118#define FMC2_PATT_ATTSET		GENMASK(7, 0)
119#define FMC2_PATT_ATTWAIT		GENMASK(15, 8)
120#define FMC2_PATT_ATTHOLD		GENMASK(23, 16)
121#define FMC2_PATT_ATTHIZ		GENMASK(31, 24)
122#define FMC2_PATT_DEFAULT		0x0a0a0a0a
123
124/* Register: FMC2_ISR */
125#define FMC2_ISR_IHLF			BIT(1)
126
127/* Register: FMC2_ICR */
128#define FMC2_ICR_CIHLF			BIT(1)
129
130/* Register: FMC2_CSQCR */
131#define FMC2_CSQCR_CSQSTART		BIT(0)
132
133/* Register: FMC2_CSQCFGR1 */
134#define FMC2_CSQCFGR1_CMD2EN		BIT(1)
135#define FMC2_CSQCFGR1_DMADEN		BIT(2)
136#define FMC2_CSQCFGR1_ACYNBR		GENMASK(6, 4)
137#define FMC2_CSQCFGR1_CMD1		GENMASK(15, 8)
138#define FMC2_CSQCFGR1_CMD2		GENMASK(23, 16)
139#define FMC2_CSQCFGR1_CMD1T		BIT(24)
140#define FMC2_CSQCFGR1_CMD2T		BIT(25)
141
142/* Register: FMC2_CSQCFGR2 */
143#define FMC2_CSQCFGR2_SQSDTEN		BIT(0)
144#define FMC2_CSQCFGR2_RCMD2EN		BIT(1)
145#define FMC2_CSQCFGR2_DMASEN		BIT(2)
146#define FMC2_CSQCFGR2_RCMD1		GENMASK(15, 8)
147#define FMC2_CSQCFGR2_RCMD2		GENMASK(23, 16)
148#define FMC2_CSQCFGR2_RCMD1T		BIT(24)
149#define FMC2_CSQCFGR2_RCMD2T		BIT(25)
150
151/* Register: FMC2_CSQCFGR3 */
152#define FMC2_CSQCFGR3_SNBR		GENMASK(13, 8)
153#define FMC2_CSQCFGR3_AC1T		BIT(16)
154#define FMC2_CSQCFGR3_AC2T		BIT(17)
155#define FMC2_CSQCFGR3_AC3T		BIT(18)
156#define FMC2_CSQCFGR3_AC4T		BIT(19)
157#define FMC2_CSQCFGR3_AC5T		BIT(20)
158#define FMC2_CSQCFGR3_SDT		BIT(21)
159#define FMC2_CSQCFGR3_RAC1T		BIT(22)
160#define FMC2_CSQCFGR3_RAC2T		BIT(23)
161
162/* Register: FMC2_CSQCAR1 */
163#define FMC2_CSQCAR1_ADDC1		GENMASK(7, 0)
164#define FMC2_CSQCAR1_ADDC2		GENMASK(15, 8)
165#define FMC2_CSQCAR1_ADDC3		GENMASK(23, 16)
166#define FMC2_CSQCAR1_ADDC4		GENMASK(31, 24)
167
168/* Register: FMC2_CSQCAR2 */
169#define FMC2_CSQCAR2_ADDC5		GENMASK(7, 0)
170#define FMC2_CSQCAR2_NANDCEN		GENMASK(11, 10)
171#define FMC2_CSQCAR2_SAO		GENMASK(31, 16)
172
173/* Register: FMC2_CSQIER */
174#define FMC2_CSQIER_TCIE		BIT(0)
175
176/* Register: FMC2_CSQICR */
177#define FMC2_CSQICR_CLEAR_IRQ		GENMASK(4, 0)
178
179/* Register: FMC2_CSQEMSR */
180#define FMC2_CSQEMSR_SEM		GENMASK(15, 0)
181
182/* Register: FMC2_BCHIER */
183#define FMC2_BCHIER_DERIE		BIT(1)
184#define FMC2_BCHIER_EPBRIE		BIT(4)
185
186/* Register: FMC2_BCHICR */
187#define FMC2_BCHICR_CLEAR_IRQ		GENMASK(4, 0)
188
189/* Register: FMC2_BCHDSR0 */
190#define FMC2_BCHDSR0_DUE		BIT(0)
191#define FMC2_BCHDSR0_DEF		BIT(1)
192#define FMC2_BCHDSR0_DEN		GENMASK(7, 4)
193
194/* Register: FMC2_BCHDSR1 */
195#define FMC2_BCHDSR1_EBP1		GENMASK(12, 0)
196#define FMC2_BCHDSR1_EBP2		GENMASK(28, 16)
197
198/* Register: FMC2_BCHDSR2 */
199#define FMC2_BCHDSR2_EBP3		GENMASK(12, 0)
200#define FMC2_BCHDSR2_EBP4		GENMASK(28, 16)
201
202/* Register: FMC2_BCHDSR3 */
203#define FMC2_BCHDSR3_EBP5		GENMASK(12, 0)
204#define FMC2_BCHDSR3_EBP6		GENMASK(28, 16)
205
206/* Register: FMC2_BCHDSR4 */
207#define FMC2_BCHDSR4_EBP7		GENMASK(12, 0)
208#define FMC2_BCHDSR4_EBP8		GENMASK(28, 16)
209
210enum stm32_fmc2_ecc {
211	FMC2_ECC_HAM = 1,
212	FMC2_ECC_BCH4 = 4,
213	FMC2_ECC_BCH8 = 8
214};
215
216enum stm32_fmc2_irq_state {
217	FMC2_IRQ_UNKNOWN = 0,
218	FMC2_IRQ_BCH,
219	FMC2_IRQ_SEQ
220};
221
222struct stm32_fmc2_timings {
223	u8 tclr;
224	u8 tar;
225	u8 thiz;
226	u8 twait;
227	u8 thold_mem;
228	u8 tset_mem;
229	u8 thold_att;
230	u8 tset_att;
231};
232
233struct stm32_fmc2_nand {
234	struct nand_chip chip;
235	struct gpio_desc *wp_gpio;
236	struct stm32_fmc2_timings timings;
237	int ncs;
238	int cs_used[FMC2_MAX_CE];
239};
240
241static inline struct stm32_fmc2_nand *to_fmc2_nand(struct nand_chip *chip)
242{
243	return container_of(chip, struct stm32_fmc2_nand, chip);
244}
245
246struct stm32_fmc2_nfc {
247	struct nand_controller base;
248	struct stm32_fmc2_nand nand;
249	struct device *dev;
250	struct device *cdev;
251	struct regmap *regmap;
252	void __iomem *data_base[FMC2_MAX_CE];
253	void __iomem *cmd_base[FMC2_MAX_CE];
254	void __iomem *addr_base[FMC2_MAX_CE];
255	phys_addr_t io_phys_addr;
256	phys_addr_t data_phys_addr[FMC2_MAX_CE];
257	struct clk *clk;
258	u8 irq_state;
259
260	struct dma_chan *dma_tx_ch;
261	struct dma_chan *dma_rx_ch;
262	struct dma_chan *dma_ecc_ch;
263	struct sg_table dma_data_sg;
264	struct sg_table dma_ecc_sg;
265	u8 *ecc_buf;
266	int dma_ecc_len;
267
268	struct completion complete;
269	struct completion dma_data_complete;
270	struct completion dma_ecc_complete;
271
272	u8 cs_assigned;
273	int cs_sel;
274};
275
276static inline struct stm32_fmc2_nfc *to_stm32_nfc(struct nand_controller *base)
277{
278	return container_of(base, struct stm32_fmc2_nfc, base);
279}
280
281static void stm32_fmc2_nfc_timings_init(struct nand_chip *chip)
282{
283	struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
284	struct stm32_fmc2_nand *nand = to_fmc2_nand(chip);
285	struct stm32_fmc2_timings *timings = &nand->timings;
286	u32 pmem, patt;
287
288	/* Set tclr/tar timings */
289	regmap_update_bits(nfc->regmap, FMC2_PCR,
290			   FMC2_PCR_TCLR | FMC2_PCR_TAR,
291			   FIELD_PREP(FMC2_PCR_TCLR, timings->tclr) |
292			   FIELD_PREP(FMC2_PCR_TAR, timings->tar));
293
294	/* Set tset/twait/thold/thiz timings in common bank */
295	pmem = FIELD_PREP(FMC2_PMEM_MEMSET, timings->tset_mem);
296	pmem |= FIELD_PREP(FMC2_PMEM_MEMWAIT, timings->twait);
297	pmem |= FIELD_PREP(FMC2_PMEM_MEMHOLD, timings->thold_mem);
298	pmem |= FIELD_PREP(FMC2_PMEM_MEMHIZ, timings->thiz);
299	regmap_write(nfc->regmap, FMC2_PMEM, pmem);
300
301	/* Set tset/twait/thold/thiz timings in attribut bank */
302	patt = FIELD_PREP(FMC2_PATT_ATTSET, timings->tset_att);
303	patt |= FIELD_PREP(FMC2_PATT_ATTWAIT, timings->twait);
304	patt |= FIELD_PREP(FMC2_PATT_ATTHOLD, timings->thold_att);
305	patt |= FIELD_PREP(FMC2_PATT_ATTHIZ, timings->thiz);
306	regmap_write(nfc->regmap, FMC2_PATT, patt);
307}
308
309static void stm32_fmc2_nfc_setup(struct nand_chip *chip)
310{
311	struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
312	u32 pcr = 0, pcr_mask;
313
314	/* Configure ECC algorithm (default configuration is Hamming) */
315	pcr_mask = FMC2_PCR_ECCALG;
316	pcr_mask |= FMC2_PCR_BCHECC;
317	if (chip->ecc.strength == FMC2_ECC_BCH8) {
318		pcr |= FMC2_PCR_ECCALG;
319		pcr |= FMC2_PCR_BCHECC;
320	} else if (chip->ecc.strength == FMC2_ECC_BCH4) {
321		pcr |= FMC2_PCR_ECCALG;
322	}
323
324	/* Set buswidth */
325	pcr_mask |= FMC2_PCR_PWID;
326	if (chip->options & NAND_BUSWIDTH_16)
327		pcr |= FIELD_PREP(FMC2_PCR_PWID, FMC2_PCR_PWID_BUSWIDTH_16);
328
329	/* Set ECC sector size */
330	pcr_mask |= FMC2_PCR_ECCSS;
331	pcr |= FIELD_PREP(FMC2_PCR_ECCSS, FMC2_PCR_ECCSS_512);
332
333	regmap_update_bits(nfc->regmap, FMC2_PCR, pcr_mask, pcr);
334}
335
336static int stm32_fmc2_nfc_select_chip(struct nand_chip *chip, int chipnr)
337{
338	struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
339	struct stm32_fmc2_nand *nand = to_fmc2_nand(chip);
340	struct dma_slave_config dma_cfg;
341	int ret;
342
343	if (nand->cs_used[chipnr] == nfc->cs_sel)
344		return 0;
345
346	nfc->cs_sel = nand->cs_used[chipnr];
347	stm32_fmc2_nfc_setup(chip);
348	stm32_fmc2_nfc_timings_init(chip);
349
350	if (nfc->dma_tx_ch && nfc->dma_rx_ch) {
351		memset(&dma_cfg, 0, sizeof(dma_cfg));
352		dma_cfg.src_addr = nfc->data_phys_addr[nfc->cs_sel];
353		dma_cfg.dst_addr = nfc->data_phys_addr[nfc->cs_sel];
354		dma_cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
355		dma_cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
356		dma_cfg.src_maxburst = 32;
357		dma_cfg.dst_maxburst = 32;
358
359		ret = dmaengine_slave_config(nfc->dma_tx_ch, &dma_cfg);
360		if (ret) {
361			dev_err(nfc->dev, "tx DMA engine slave config failed\n");
362			return ret;
363		}
364
365		ret = dmaengine_slave_config(nfc->dma_rx_ch, &dma_cfg);
366		if (ret) {
367			dev_err(nfc->dev, "rx DMA engine slave config failed\n");
368			return ret;
369		}
370	}
371
372	if (nfc->dma_ecc_ch) {
373		/*
374		 * Hamming: we read HECCR register
375		 * BCH4/BCH8: we read BCHDSRSx registers
376		 */
377		memset(&dma_cfg, 0, sizeof(dma_cfg));
378		dma_cfg.src_addr = nfc->io_phys_addr;
379		dma_cfg.src_addr += chip->ecc.strength == FMC2_ECC_HAM ?
380				    FMC2_HECCR : FMC2_BCHDSR0;
381		dma_cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
382
383		ret = dmaengine_slave_config(nfc->dma_ecc_ch, &dma_cfg);
384		if (ret) {
385			dev_err(nfc->dev, "ECC DMA engine slave config failed\n");
386			return ret;
387		}
388
389		/* Calculate ECC length needed for one sector */
390		nfc->dma_ecc_len = chip->ecc.strength == FMC2_ECC_HAM ?
391				   FMC2_HECCR_LEN : FMC2_BCHDSRS_LEN;
392	}
393
394	return 0;
395}
396
397static void stm32_fmc2_nfc_set_buswidth_16(struct stm32_fmc2_nfc *nfc, bool set)
398{
399	u32 pcr;
400
401	pcr = set ? FIELD_PREP(FMC2_PCR_PWID, FMC2_PCR_PWID_BUSWIDTH_16) :
402		    FIELD_PREP(FMC2_PCR_PWID, FMC2_PCR_PWID_BUSWIDTH_8);
403
404	regmap_update_bits(nfc->regmap, FMC2_PCR, FMC2_PCR_PWID, pcr);
405}
406
407static void stm32_fmc2_nfc_set_ecc(struct stm32_fmc2_nfc *nfc, bool enable)
408{
409	regmap_update_bits(nfc->regmap, FMC2_PCR, FMC2_PCR_ECCEN,
410			   enable ? FMC2_PCR_ECCEN : 0);
411}
412
413static void stm32_fmc2_nfc_enable_seq_irq(struct stm32_fmc2_nfc *nfc)
414{
415	nfc->irq_state = FMC2_IRQ_SEQ;
416
417	regmap_update_bits(nfc->regmap, FMC2_CSQIER,
418			   FMC2_CSQIER_TCIE, FMC2_CSQIER_TCIE);
419}
420
421static void stm32_fmc2_nfc_disable_seq_irq(struct stm32_fmc2_nfc *nfc)
422{
423	regmap_update_bits(nfc->regmap, FMC2_CSQIER, FMC2_CSQIER_TCIE, 0);
424
425	nfc->irq_state = FMC2_IRQ_UNKNOWN;
426}
427
428static void stm32_fmc2_nfc_clear_seq_irq(struct stm32_fmc2_nfc *nfc)
429{
430	regmap_write(nfc->regmap, FMC2_CSQICR, FMC2_CSQICR_CLEAR_IRQ);
431}
432
433static void stm32_fmc2_nfc_enable_bch_irq(struct stm32_fmc2_nfc *nfc, int mode)
434{
435	nfc->irq_state = FMC2_IRQ_BCH;
436
437	if (mode == NAND_ECC_WRITE)
438		regmap_update_bits(nfc->regmap, FMC2_BCHIER,
439				   FMC2_BCHIER_EPBRIE, FMC2_BCHIER_EPBRIE);
440	else
441		regmap_update_bits(nfc->regmap, FMC2_BCHIER,
442				   FMC2_BCHIER_DERIE, FMC2_BCHIER_DERIE);
443}
444
445static void stm32_fmc2_nfc_disable_bch_irq(struct stm32_fmc2_nfc *nfc)
446{
447	regmap_update_bits(nfc->regmap, FMC2_BCHIER,
448			   FMC2_BCHIER_DERIE | FMC2_BCHIER_EPBRIE, 0);
449
450	nfc->irq_state = FMC2_IRQ_UNKNOWN;
451}
452
453static void stm32_fmc2_nfc_clear_bch_irq(struct stm32_fmc2_nfc *nfc)
454{
455	regmap_write(nfc->regmap, FMC2_BCHICR, FMC2_BCHICR_CLEAR_IRQ);
456}
457
458/*
459 * Enable ECC logic and reset syndrome/parity bits previously calculated
460 * Syndrome/parity bits is cleared by setting the ECCEN bit to 0
461 */
462static void stm32_fmc2_nfc_hwctl(struct nand_chip *chip, int mode)
463{
464	struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
465
466	stm32_fmc2_nfc_set_ecc(nfc, false);
467
468	if (chip->ecc.strength != FMC2_ECC_HAM) {
469		regmap_update_bits(nfc->regmap, FMC2_PCR, FMC2_PCR_WEN,
470				   mode == NAND_ECC_WRITE ? FMC2_PCR_WEN : 0);
471
472		reinit_completion(&nfc->complete);
473		stm32_fmc2_nfc_clear_bch_irq(nfc);
474		stm32_fmc2_nfc_enable_bch_irq(nfc, mode);
475	}
476
477	stm32_fmc2_nfc_set_ecc(nfc, true);
478}
479
480/*
481 * ECC Hamming calculation
482 * ECC is 3 bytes for 512 bytes of data (supports error correction up to
483 * max of 1-bit)
484 */
485static void stm32_fmc2_nfc_ham_set_ecc(const u32 ecc_sta, u8 *ecc)
486{
487	ecc[0] = ecc_sta;
488	ecc[1] = ecc_sta >> 8;
489	ecc[2] = ecc_sta >> 16;
490}
491
492static int stm32_fmc2_nfc_ham_calculate(struct nand_chip *chip, const u8 *data,
493					u8 *ecc)
494{
495	struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
496	u32 sr, heccr;
497	int ret;
498
499	ret = regmap_read_poll_timeout(nfc->regmap, FMC2_SR, sr,
500				       sr & FMC2_SR_NWRF, 1,
501				       1000 * FMC2_TIMEOUT_MS);
502	if (ret) {
503		dev_err(nfc->dev, "ham timeout\n");
504		return ret;
505	}
506
507	regmap_read(nfc->regmap, FMC2_HECCR, &heccr);
508	stm32_fmc2_nfc_ham_set_ecc(heccr, ecc);
509	stm32_fmc2_nfc_set_ecc(nfc, false);
510
511	return 0;
512}
513
514static int stm32_fmc2_nfc_ham_correct(struct nand_chip *chip, u8 *dat,
515				      u8 *read_ecc, u8 *calc_ecc)
516{
517	u8 bit_position = 0, b0, b1, b2;
518	u32 byte_addr = 0, b;
519	u32 i, shifting = 1;
520
521	/* Indicate which bit and byte is faulty (if any) */
522	b0 = read_ecc[0] ^ calc_ecc[0];
523	b1 = read_ecc[1] ^ calc_ecc[1];
524	b2 = read_ecc[2] ^ calc_ecc[2];
525	b = b0 | (b1 << 8) | (b2 << 16);
526
527	/* No errors */
528	if (likely(!b))
529		return 0;
530
531	/* Calculate bit position */
532	for (i = 0; i < 3; i++) {
533		switch (b % 4) {
534		case 2:
535			bit_position += shifting;
536			break;
537		case 1:
538			break;
539		default:
540			return -EBADMSG;
541		}
542		shifting <<= 1;
543		b >>= 2;
544	}
545
546	/* Calculate byte position */
547	shifting = 1;
548	for (i = 0; i < 9; i++) {
549		switch (b % 4) {
550		case 2:
551			byte_addr += shifting;
552			break;
553		case 1:
554			break;
555		default:
556			return -EBADMSG;
557		}
558		shifting <<= 1;
559		b >>= 2;
560	}
561
562	/* Flip the bit */
563	dat[byte_addr] ^= (1 << bit_position);
564
565	return 1;
566}
567
568/*
569 * ECC BCH calculation and correction
570 * ECC is 7/13 bytes for 512 bytes of data (supports error correction up to
571 * max of 4-bit/8-bit)
572 */
573static int stm32_fmc2_nfc_bch_calculate(struct nand_chip *chip, const u8 *data,
574					u8 *ecc)
575{
576	struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
577	u32 bchpbr;
578
579	/* Wait until the BCH code is ready */
580	if (!wait_for_completion_timeout(&nfc->complete,
581					 msecs_to_jiffies(FMC2_TIMEOUT_MS))) {
582		dev_err(nfc->dev, "bch timeout\n");
583		stm32_fmc2_nfc_disable_bch_irq(nfc);
584		return -ETIMEDOUT;
585	}
586
587	/* Read parity bits */
588	regmap_read(nfc->regmap, FMC2_BCHPBR1, &bchpbr);
589	ecc[0] = bchpbr;
590	ecc[1] = bchpbr >> 8;
591	ecc[2] = bchpbr >> 16;
592	ecc[3] = bchpbr >> 24;
593
594	regmap_read(nfc->regmap, FMC2_BCHPBR2, &bchpbr);
595	ecc[4] = bchpbr;
596	ecc[5] = bchpbr >> 8;
597	ecc[6] = bchpbr >> 16;
598
599	if (chip->ecc.strength == FMC2_ECC_BCH8) {
600		ecc[7] = bchpbr >> 24;
601
602		regmap_read(nfc->regmap, FMC2_BCHPBR3, &bchpbr);
603		ecc[8] = bchpbr;
604		ecc[9] = bchpbr >> 8;
605		ecc[10] = bchpbr >> 16;
606		ecc[11] = bchpbr >> 24;
607
608		regmap_read(nfc->regmap, FMC2_BCHPBR4, &bchpbr);
609		ecc[12] = bchpbr;
610	}
611
612	stm32_fmc2_nfc_set_ecc(nfc, false);
613
614	return 0;
615}
616
617static int stm32_fmc2_nfc_bch_decode(int eccsize, u8 *dat, u32 *ecc_sta)
618{
619	u32 bchdsr0 = ecc_sta[0];
620	u32 bchdsr1 = ecc_sta[1];
621	u32 bchdsr2 = ecc_sta[2];
622	u32 bchdsr3 = ecc_sta[3];
623	u32 bchdsr4 = ecc_sta[4];
624	u16 pos[8];
625	int i, den;
626	unsigned int nb_errs = 0;
627
628	/* No errors found */
629	if (likely(!(bchdsr0 & FMC2_BCHDSR0_DEF)))
630		return 0;
631
632	/* Too many errors detected */
633	if (unlikely(bchdsr0 & FMC2_BCHDSR0_DUE))
634		return -EBADMSG;
635
636	pos[0] = FIELD_GET(FMC2_BCHDSR1_EBP1, bchdsr1);
637	pos[1] = FIELD_GET(FMC2_BCHDSR1_EBP2, bchdsr1);
638	pos[2] = FIELD_GET(FMC2_BCHDSR2_EBP3, bchdsr2);
639	pos[3] = FIELD_GET(FMC2_BCHDSR2_EBP4, bchdsr2);
640	pos[4] = FIELD_GET(FMC2_BCHDSR3_EBP5, bchdsr3);
641	pos[5] = FIELD_GET(FMC2_BCHDSR3_EBP6, bchdsr3);
642	pos[6] = FIELD_GET(FMC2_BCHDSR4_EBP7, bchdsr4);
643	pos[7] = FIELD_GET(FMC2_BCHDSR4_EBP8, bchdsr4);
644
645	den = FIELD_GET(FMC2_BCHDSR0_DEN, bchdsr0);
646	for (i = 0; i < den; i++) {
647		if (pos[i] < eccsize * 8) {
648			change_bit(pos[i], (unsigned long *)dat);
649			nb_errs++;
650		}
651	}
652
653	return nb_errs;
654}
655
656static int stm32_fmc2_nfc_bch_correct(struct nand_chip *chip, u8 *dat,
657				      u8 *read_ecc, u8 *calc_ecc)
658{
659	struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
660	u32 ecc_sta[5];
661
662	/* Wait until the decoding error is ready */
663	if (!wait_for_completion_timeout(&nfc->complete,
664					 msecs_to_jiffies(FMC2_TIMEOUT_MS))) {
665		dev_err(nfc->dev, "bch timeout\n");
666		stm32_fmc2_nfc_disable_bch_irq(nfc);
667		return -ETIMEDOUT;
668	}
669
670	regmap_bulk_read(nfc->regmap, FMC2_BCHDSR0, ecc_sta, 5);
671
672	stm32_fmc2_nfc_set_ecc(nfc, false);
673
674	return stm32_fmc2_nfc_bch_decode(chip->ecc.size, dat, ecc_sta);
675}
676
677static int stm32_fmc2_nfc_read_page(struct nand_chip *chip, u8 *buf,
678				    int oob_required, int page)
679{
680	struct mtd_info *mtd = nand_to_mtd(chip);
681	int ret, i, s, stat, eccsize = chip->ecc.size;
682	int eccbytes = chip->ecc.bytes;
683	int eccsteps = chip->ecc.steps;
684	int eccstrength = chip->ecc.strength;
685	u8 *p = buf;
686	u8 *ecc_calc = chip->ecc.calc_buf;
687	u8 *ecc_code = chip->ecc.code_buf;
688	unsigned int max_bitflips = 0;
689
690	ret = nand_read_page_op(chip, page, 0, NULL, 0);
691	if (ret)
692		return ret;
693
694	for (i = mtd->writesize + FMC2_BBM_LEN, s = 0; s < eccsteps;
695	     s++, i += eccbytes, p += eccsize) {
696		chip->ecc.hwctl(chip, NAND_ECC_READ);
697
698		/* Read the nand page sector (512 bytes) */
699		ret = nand_change_read_column_op(chip, s * eccsize, p,
700						 eccsize, false);
701		if (ret)
702			return ret;
703
704		/* Read the corresponding ECC bytes */
705		ret = nand_change_read_column_op(chip, i, ecc_code,
706						 eccbytes, false);
707		if (ret)
708			return ret;
709
710		/* Correct the data */
711		stat = chip->ecc.correct(chip, p, ecc_code, ecc_calc);
712		if (stat == -EBADMSG)
713			/* Check for empty pages with bitflips */
714			stat = nand_check_erased_ecc_chunk(p, eccsize,
715							   ecc_code, eccbytes,
716							   NULL, 0,
717							   eccstrength);
718
719		if (stat < 0) {
720			mtd->ecc_stats.failed++;
721		} else {
722			mtd->ecc_stats.corrected += stat;
723			max_bitflips = max_t(unsigned int, max_bitflips, stat);
724		}
725	}
726
727	/* Read oob */
728	if (oob_required) {
729		ret = nand_change_read_column_op(chip, mtd->writesize,
730						 chip->oob_poi, mtd->oobsize,
731						 false);
732		if (ret)
733			return ret;
734	}
735
736	return max_bitflips;
737}
738
739/* Sequencer read/write configuration */
740static void stm32_fmc2_nfc_rw_page_init(struct nand_chip *chip, int page,
741					int raw, bool write_data)
742{
743	struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
744	struct mtd_info *mtd = nand_to_mtd(chip);
745	u32 ecc_offset = mtd->writesize + FMC2_BBM_LEN;
746	/*
747	 * cfg[0] => csqcfgr1, cfg[1] => csqcfgr2, cfg[2] => csqcfgr3
748	 * cfg[3] => csqar1, cfg[4] => csqar2
749	 */
750	u32 cfg[5];
751
752	regmap_update_bits(nfc->regmap, FMC2_PCR, FMC2_PCR_WEN,
753			   write_data ? FMC2_PCR_WEN : 0);
754
755	/*
756	 * - Set Program Page/Page Read command
757	 * - Enable DMA request data
758	 * - Set timings
759	 */
760	cfg[0] = FMC2_CSQCFGR1_DMADEN | FMC2_CSQCFGR1_CMD1T;
761	if (write_data)
762		cfg[0] |= FIELD_PREP(FMC2_CSQCFGR1_CMD1, NAND_CMD_SEQIN);
763	else
764		cfg[0] |= FIELD_PREP(FMC2_CSQCFGR1_CMD1, NAND_CMD_READ0) |
765			  FMC2_CSQCFGR1_CMD2EN |
766			  FIELD_PREP(FMC2_CSQCFGR1_CMD2, NAND_CMD_READSTART) |
767			  FMC2_CSQCFGR1_CMD2T;
768
769	/*
770	 * - Set Random Data Input/Random Data Read command
771	 * - Enable the sequencer to access the Spare data area
772	 * - Enable  DMA request status decoding for read
773	 * - Set timings
774	 */
775	if (write_data)
776		cfg[1] = FIELD_PREP(FMC2_CSQCFGR2_RCMD1, NAND_CMD_RNDIN);
777	else
778		cfg[1] = FIELD_PREP(FMC2_CSQCFGR2_RCMD1, NAND_CMD_RNDOUT) |
779			 FMC2_CSQCFGR2_RCMD2EN |
780			 FIELD_PREP(FMC2_CSQCFGR2_RCMD2, NAND_CMD_RNDOUTSTART) |
781			 FMC2_CSQCFGR2_RCMD1T |
782			 FMC2_CSQCFGR2_RCMD2T;
783	if (!raw) {
784		cfg[1] |= write_data ? 0 : FMC2_CSQCFGR2_DMASEN;
785		cfg[1] |= FMC2_CSQCFGR2_SQSDTEN;
786	}
787
788	/*
789	 * - Set the number of sectors to be written
790	 * - Set timings
791	 */
792	cfg[2] = FIELD_PREP(FMC2_CSQCFGR3_SNBR, chip->ecc.steps - 1);
793	if (write_data) {
794		cfg[2] |= FMC2_CSQCFGR3_RAC2T;
795		if (chip->options & NAND_ROW_ADDR_3)
796			cfg[2] |= FMC2_CSQCFGR3_AC5T;
797		else
798			cfg[2] |= FMC2_CSQCFGR3_AC4T;
799	}
800
801	/*
802	 * Set the fourth first address cycles
803	 * Byte 1 and byte 2 => column, we start at 0x0
804	 * Byte 3 and byte 4 => page
805	 */
806	cfg[3] = FIELD_PREP(FMC2_CSQCAR1_ADDC3, page);
807	cfg[3] |= FIELD_PREP(FMC2_CSQCAR1_ADDC4, page >> 8);
808
809	/*
810	 * - Set chip enable number
811	 * - Set ECC byte offset in the spare area
812	 * - Calculate the number of address cycles to be issued
813	 * - Set byte 5 of address cycle if needed
814	 */
815	cfg[4] = FIELD_PREP(FMC2_CSQCAR2_NANDCEN, nfc->cs_sel);
816	if (chip->options & NAND_BUSWIDTH_16)
817		cfg[4] |= FIELD_PREP(FMC2_CSQCAR2_SAO, ecc_offset >> 1);
818	else
819		cfg[4] |= FIELD_PREP(FMC2_CSQCAR2_SAO, ecc_offset);
820	if (chip->options & NAND_ROW_ADDR_3) {
821		cfg[0] |= FIELD_PREP(FMC2_CSQCFGR1_ACYNBR, 5);
822		cfg[4] |= FIELD_PREP(FMC2_CSQCAR2_ADDC5, page >> 16);
823	} else {
824		cfg[0] |= FIELD_PREP(FMC2_CSQCFGR1_ACYNBR, 4);
825	}
826
827	regmap_bulk_write(nfc->regmap, FMC2_CSQCFGR1, cfg, 5);
828}
829
830static void stm32_fmc2_nfc_dma_callback(void *arg)
831{
832	complete((struct completion *)arg);
833}
834
835/* Read/write data from/to a page */
836static int stm32_fmc2_nfc_xfer(struct nand_chip *chip, const u8 *buf,
837			       int raw, bool write_data)
838{
839	struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
840	struct dma_async_tx_descriptor *desc_data, *desc_ecc;
841	struct scatterlist *sg;
842	struct dma_chan *dma_ch = nfc->dma_rx_ch;
843	enum dma_data_direction dma_data_dir = DMA_FROM_DEVICE;
844	enum dma_transfer_direction dma_transfer_dir = DMA_DEV_TO_MEM;
845	int eccsteps = chip->ecc.steps;
846	int eccsize = chip->ecc.size;
847	unsigned long timeout = msecs_to_jiffies(FMC2_TIMEOUT_MS);
848	const u8 *p = buf;
849	int s, ret;
850
851	/* Configure DMA data */
852	if (write_data) {
853		dma_data_dir = DMA_TO_DEVICE;
854		dma_transfer_dir = DMA_MEM_TO_DEV;
855		dma_ch = nfc->dma_tx_ch;
856	}
857
858	for_each_sg(nfc->dma_data_sg.sgl, sg, eccsteps, s) {
859		sg_set_buf(sg, p, eccsize);
860		p += eccsize;
861	}
862
863	ret = dma_map_sg(nfc->dev, nfc->dma_data_sg.sgl,
864			 eccsteps, dma_data_dir);
865	if (!ret)
866		return -EIO;
867
868	desc_data = dmaengine_prep_slave_sg(dma_ch, nfc->dma_data_sg.sgl,
869					    eccsteps, dma_transfer_dir,
870					    DMA_PREP_INTERRUPT);
871	if (!desc_data) {
872		ret = -ENOMEM;
873		goto err_unmap_data;
874	}
875
876	reinit_completion(&nfc->dma_data_complete);
877	reinit_completion(&nfc->complete);
878	desc_data->callback = stm32_fmc2_nfc_dma_callback;
879	desc_data->callback_param = &nfc->dma_data_complete;
880	ret = dma_submit_error(dmaengine_submit(desc_data));
881	if (ret)
882		goto err_unmap_data;
883
884	dma_async_issue_pending(dma_ch);
885
886	if (!write_data && !raw) {
887		/* Configure DMA ECC status */
888		p = nfc->ecc_buf;
889		for_each_sg(nfc->dma_ecc_sg.sgl, sg, eccsteps, s) {
890			sg_set_buf(sg, p, nfc->dma_ecc_len);
891			p += nfc->dma_ecc_len;
892		}
893
894		ret = dma_map_sg(nfc->dev, nfc->dma_ecc_sg.sgl,
895				 eccsteps, dma_data_dir);
896		if (!ret) {
897			ret = -EIO;
898			goto err_unmap_data;
899		}
900
901		desc_ecc = dmaengine_prep_slave_sg(nfc->dma_ecc_ch,
902						   nfc->dma_ecc_sg.sgl,
903						   eccsteps, dma_transfer_dir,
904						   DMA_PREP_INTERRUPT);
905		if (!desc_ecc) {
906			ret = -ENOMEM;
907			goto err_unmap_ecc;
908		}
909
910		reinit_completion(&nfc->dma_ecc_complete);
911		desc_ecc->callback = stm32_fmc2_nfc_dma_callback;
912		desc_ecc->callback_param = &nfc->dma_ecc_complete;
913		ret = dma_submit_error(dmaengine_submit(desc_ecc));
914		if (ret)
915			goto err_unmap_ecc;
916
917		dma_async_issue_pending(nfc->dma_ecc_ch);
918	}
919
920	stm32_fmc2_nfc_clear_seq_irq(nfc);
921	stm32_fmc2_nfc_enable_seq_irq(nfc);
922
923	/* Start the transfer */
924	regmap_update_bits(nfc->regmap, FMC2_CSQCR,
925			   FMC2_CSQCR_CSQSTART, FMC2_CSQCR_CSQSTART);
926
927	/* Wait end of sequencer transfer */
928	if (!wait_for_completion_timeout(&nfc->complete, timeout)) {
929		dev_err(nfc->dev, "seq timeout\n");
930		stm32_fmc2_nfc_disable_seq_irq(nfc);
931		dmaengine_terminate_all(dma_ch);
932		if (!write_data && !raw)
933			dmaengine_terminate_all(nfc->dma_ecc_ch);
934		ret = -ETIMEDOUT;
935		goto err_unmap_ecc;
936	}
937
938	/* Wait DMA data transfer completion */
939	if (!wait_for_completion_timeout(&nfc->dma_data_complete, timeout)) {
940		dev_err(nfc->dev, "data DMA timeout\n");
941		dmaengine_terminate_all(dma_ch);
942		ret = -ETIMEDOUT;
943	}
944
945	/* Wait DMA ECC transfer completion */
946	if (!write_data && !raw) {
947		if (!wait_for_completion_timeout(&nfc->dma_ecc_complete,
948						 timeout)) {
949			dev_err(nfc->dev, "ECC DMA timeout\n");
950			dmaengine_terminate_all(nfc->dma_ecc_ch);
951			ret = -ETIMEDOUT;
952		}
953	}
954
955err_unmap_ecc:
956	if (!write_data && !raw)
957		dma_unmap_sg(nfc->dev, nfc->dma_ecc_sg.sgl,
958			     eccsteps, dma_data_dir);
959
960err_unmap_data:
961	dma_unmap_sg(nfc->dev, nfc->dma_data_sg.sgl, eccsteps, dma_data_dir);
962
963	return ret;
964}
965
966static int stm32_fmc2_nfc_seq_write(struct nand_chip *chip, const u8 *buf,
967				    int oob_required, int page, int raw)
968{
969	struct mtd_info *mtd = nand_to_mtd(chip);
970	int ret;
971
972	/* Configure the sequencer */
973	stm32_fmc2_nfc_rw_page_init(chip, page, raw, true);
974
975	/* Write the page */
976	ret = stm32_fmc2_nfc_xfer(chip, buf, raw, true);
977	if (ret)
978		return ret;
979
980	/* Write oob */
981	if (oob_required) {
982		ret = nand_change_write_column_op(chip, mtd->writesize,
983						  chip->oob_poi, mtd->oobsize,
984						  false);
985		if (ret)
986			return ret;
987	}
988
989	return nand_prog_page_end_op(chip);
990}
991
992static int stm32_fmc2_nfc_seq_write_page(struct nand_chip *chip, const u8 *buf,
993					 int oob_required, int page)
994{
995	int ret;
996
997	ret = stm32_fmc2_nfc_select_chip(chip, chip->cur_cs);
998	if (ret)
999		return ret;
1000
1001	return stm32_fmc2_nfc_seq_write(chip, buf, oob_required, page, false);
1002}
1003
1004static int stm32_fmc2_nfc_seq_write_page_raw(struct nand_chip *chip,
1005					     const u8 *buf, int oob_required,
1006					     int page)
1007{
1008	int ret;
1009
1010	ret = stm32_fmc2_nfc_select_chip(chip, chip->cur_cs);
1011	if (ret)
1012		return ret;
1013
1014	return stm32_fmc2_nfc_seq_write(chip, buf, oob_required, page, true);
1015}
1016
1017/* Get a status indicating which sectors have errors */
1018static u16 stm32_fmc2_nfc_get_mapping_status(struct stm32_fmc2_nfc *nfc)
1019{
1020	u32 csqemsr;
1021
1022	regmap_read(nfc->regmap, FMC2_CSQEMSR, &csqemsr);
1023
1024	return FIELD_GET(FMC2_CSQEMSR_SEM, csqemsr);
1025}
1026
1027static int stm32_fmc2_nfc_seq_correct(struct nand_chip *chip, u8 *dat,
1028				      u8 *read_ecc, u8 *calc_ecc)
1029{
1030	struct mtd_info *mtd = nand_to_mtd(chip);
1031	struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
1032	int eccbytes = chip->ecc.bytes;
1033	int eccsteps = chip->ecc.steps;
1034	int eccstrength = chip->ecc.strength;
1035	int i, s, eccsize = chip->ecc.size;
1036	u32 *ecc_sta = (u32 *)nfc->ecc_buf;
1037	u16 sta_map = stm32_fmc2_nfc_get_mapping_status(nfc);
1038	unsigned int max_bitflips = 0;
1039
1040	for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, dat += eccsize) {
1041		int stat = 0;
1042
1043		if (eccstrength == FMC2_ECC_HAM) {
1044			/* Ecc_sta = FMC2_HECCR */
1045			if (sta_map & BIT(s)) {
1046				stm32_fmc2_nfc_ham_set_ecc(*ecc_sta,
1047							   &calc_ecc[i]);
1048				stat = stm32_fmc2_nfc_ham_correct(chip, dat,
1049								  &read_ecc[i],
1050								  &calc_ecc[i]);
1051			}
1052			ecc_sta++;
1053		} else {
1054			/*
1055			 * Ecc_sta[0] = FMC2_BCHDSR0
1056			 * Ecc_sta[1] = FMC2_BCHDSR1
1057			 * Ecc_sta[2] = FMC2_BCHDSR2
1058			 * Ecc_sta[3] = FMC2_BCHDSR3
1059			 * Ecc_sta[4] = FMC2_BCHDSR4
1060			 */
1061			if (sta_map & BIT(s))
1062				stat = stm32_fmc2_nfc_bch_decode(eccsize, dat,
1063								 ecc_sta);
1064			ecc_sta += 5;
1065		}
1066
1067		if (stat == -EBADMSG)
1068			/* Check for empty pages with bitflips */
1069			stat = nand_check_erased_ecc_chunk(dat, eccsize,
1070							   &read_ecc[i],
1071							   eccbytes,
1072							   NULL, 0,
1073							   eccstrength);
1074
1075		if (stat < 0) {
1076			mtd->ecc_stats.failed++;
1077		} else {
1078			mtd->ecc_stats.corrected += stat;
1079			max_bitflips = max_t(unsigned int, max_bitflips, stat);
1080		}
1081	}
1082
1083	return max_bitflips;
1084}
1085
1086static int stm32_fmc2_nfc_seq_read_page(struct nand_chip *chip, u8 *buf,
1087					int oob_required, int page)
1088{
1089	struct mtd_info *mtd = nand_to_mtd(chip);
1090	struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
1091	u8 *ecc_calc = chip->ecc.calc_buf;
1092	u8 *ecc_code = chip->ecc.code_buf;
1093	u16 sta_map;
1094	int ret;
1095
1096	ret = stm32_fmc2_nfc_select_chip(chip, chip->cur_cs);
1097	if (ret)
1098		return ret;
1099
1100	/* Configure the sequencer */
1101	stm32_fmc2_nfc_rw_page_init(chip, page, 0, false);
1102
1103	/* Read the page */
1104	ret = stm32_fmc2_nfc_xfer(chip, buf, 0, false);
1105	if (ret)
1106		return ret;
1107
1108	sta_map = stm32_fmc2_nfc_get_mapping_status(nfc);
1109
1110	/* Check if errors happen */
1111	if (likely(!sta_map)) {
1112		if (oob_required)
1113			return nand_change_read_column_op(chip, mtd->writesize,
1114							  chip->oob_poi,
1115							  mtd->oobsize, false);
1116
1117		return 0;
1118	}
1119
1120	/* Read oob */
1121	ret = nand_change_read_column_op(chip, mtd->writesize,
1122					 chip->oob_poi, mtd->oobsize, false);
1123	if (ret)
1124		return ret;
1125
1126	ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
1127					 chip->ecc.total);
1128	if (ret)
1129		return ret;
1130
1131	/* Correct data */
1132	return chip->ecc.correct(chip, buf, ecc_code, ecc_calc);
1133}
1134
1135static int stm32_fmc2_nfc_seq_read_page_raw(struct nand_chip *chip, u8 *buf,
1136					    int oob_required, int page)
1137{
1138	struct mtd_info *mtd = nand_to_mtd(chip);
1139	int ret;
1140
1141	ret = stm32_fmc2_nfc_select_chip(chip, chip->cur_cs);
1142	if (ret)
1143		return ret;
1144
1145	/* Configure the sequencer */
1146	stm32_fmc2_nfc_rw_page_init(chip, page, 1, false);
1147
1148	/* Read the page */
1149	ret = stm32_fmc2_nfc_xfer(chip, buf, 1, false);
1150	if (ret)
1151		return ret;
1152
1153	/* Read oob */
1154	if (oob_required)
1155		return nand_change_read_column_op(chip, mtd->writesize,
1156						  chip->oob_poi, mtd->oobsize,
1157						  false);
1158
1159	return 0;
1160}
1161
1162static irqreturn_t stm32_fmc2_nfc_irq(int irq, void *dev_id)
1163{
1164	struct stm32_fmc2_nfc *nfc = (struct stm32_fmc2_nfc *)dev_id;
1165
1166	if (nfc->irq_state == FMC2_IRQ_SEQ)
1167		/* Sequencer is used */
1168		stm32_fmc2_nfc_disable_seq_irq(nfc);
1169	else if (nfc->irq_state == FMC2_IRQ_BCH)
1170		/* BCH is used */
1171		stm32_fmc2_nfc_disable_bch_irq(nfc);
1172
1173	complete(&nfc->complete);
1174
1175	return IRQ_HANDLED;
1176}
1177
1178static void stm32_fmc2_nfc_read_data(struct nand_chip *chip, void *buf,
1179				     unsigned int len, bool force_8bit)
1180{
1181	struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
1182	void __iomem *io_addr_r = nfc->data_base[nfc->cs_sel];
1183
1184	if (force_8bit && chip->options & NAND_BUSWIDTH_16)
1185		/* Reconfigure bus width to 8-bit */
1186		stm32_fmc2_nfc_set_buswidth_16(nfc, false);
1187
1188	if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32))) {
1189		if (!IS_ALIGNED((uintptr_t)buf, sizeof(u16)) && len) {
1190			*(u8 *)buf = readb_relaxed(io_addr_r);
1191			buf += sizeof(u8);
1192			len -= sizeof(u8);
1193		}
1194
1195		if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32)) &&
1196		    len >= sizeof(u16)) {
1197			*(u16 *)buf = readw_relaxed(io_addr_r);
1198			buf += sizeof(u16);
1199			len -= sizeof(u16);
1200		}
1201	}
1202
1203	/* Buf is aligned */
1204	while (len >= sizeof(u32)) {
1205		*(u32 *)buf = readl_relaxed(io_addr_r);
1206		buf += sizeof(u32);
1207		len -= sizeof(u32);
1208	}
1209
1210	/* Read remaining bytes */
1211	if (len >= sizeof(u16)) {
1212		*(u16 *)buf = readw_relaxed(io_addr_r);
1213		buf += sizeof(u16);
1214		len -= sizeof(u16);
1215	}
1216
1217	if (len)
1218		*(u8 *)buf = readb_relaxed(io_addr_r);
1219
1220	if (force_8bit && chip->options & NAND_BUSWIDTH_16)
1221		/* Reconfigure bus width to 16-bit */
1222		stm32_fmc2_nfc_set_buswidth_16(nfc, true);
1223}
1224
1225static void stm32_fmc2_nfc_write_data(struct nand_chip *chip, const void *buf,
1226				      unsigned int len, bool force_8bit)
1227{
1228	struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
1229	void __iomem *io_addr_w = nfc->data_base[nfc->cs_sel];
1230
1231	if (force_8bit && chip->options & NAND_BUSWIDTH_16)
1232		/* Reconfigure bus width to 8-bit */
1233		stm32_fmc2_nfc_set_buswidth_16(nfc, false);
1234
1235	if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32))) {
1236		if (!IS_ALIGNED((uintptr_t)buf, sizeof(u16)) && len) {
1237			writeb_relaxed(*(u8 *)buf, io_addr_w);
1238			buf += sizeof(u8);
1239			len -= sizeof(u8);
1240		}
1241
1242		if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32)) &&
1243		    len >= sizeof(u16)) {
1244			writew_relaxed(*(u16 *)buf, io_addr_w);
1245			buf += sizeof(u16);
1246			len -= sizeof(u16);
1247		}
1248	}
1249
1250	/* Buf is aligned */
1251	while (len >= sizeof(u32)) {
1252		writel_relaxed(*(u32 *)buf, io_addr_w);
1253		buf += sizeof(u32);
1254		len -= sizeof(u32);
1255	}
1256
1257	/* Write remaining bytes */
1258	if (len >= sizeof(u16)) {
1259		writew_relaxed(*(u16 *)buf, io_addr_w);
1260		buf += sizeof(u16);
1261		len -= sizeof(u16);
1262	}
1263
1264	if (len)
1265		writeb_relaxed(*(u8 *)buf, io_addr_w);
1266
1267	if (force_8bit && chip->options & NAND_BUSWIDTH_16)
1268		/* Reconfigure bus width to 16-bit */
1269		stm32_fmc2_nfc_set_buswidth_16(nfc, true);
1270}
1271
1272static int stm32_fmc2_nfc_waitrdy(struct nand_chip *chip,
1273				  unsigned long timeout_ms)
1274{
1275	struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
1276	const struct nand_sdr_timings *timings;
1277	u32 isr, sr;
1278
1279	/* Check if there is no pending requests to the NAND flash */
1280	if (regmap_read_poll_timeout(nfc->regmap, FMC2_SR, sr,
1281				     sr & FMC2_SR_NWRF, 1,
1282				     1000 * FMC2_TIMEOUT_MS))
1283		dev_warn(nfc->dev, "Waitrdy timeout\n");
1284
1285	/* Wait tWB before R/B# signal is low */
1286	timings = nand_get_sdr_timings(nand_get_interface_config(chip));
1287	ndelay(PSEC_TO_NSEC(timings->tWB_max));
1288
1289	/* R/B# signal is low, clear high level flag */
1290	regmap_write(nfc->regmap, FMC2_ICR, FMC2_ICR_CIHLF);
1291
1292	/* Wait R/B# signal is high */
1293	return regmap_read_poll_timeout(nfc->regmap, FMC2_ISR, isr,
1294					isr & FMC2_ISR_IHLF, 5,
1295					1000 * FMC2_TIMEOUT_MS);
1296}
1297
1298static int stm32_fmc2_nfc_exec_op(struct nand_chip *chip,
1299				  const struct nand_operation *op,
1300				  bool check_only)
1301{
1302	struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
1303	const struct nand_op_instr *instr = NULL;
1304	unsigned int op_id, i, timeout;
1305	int ret;
1306
1307	if (check_only)
1308		return 0;
1309
1310	ret = stm32_fmc2_nfc_select_chip(chip, op->cs);
1311	if (ret)
1312		return ret;
1313
1314	for (op_id = 0; op_id < op->ninstrs; op_id++) {
1315		instr = &op->instrs[op_id];
1316
1317		switch (instr->type) {
1318		case NAND_OP_CMD_INSTR:
1319			writeb_relaxed(instr->ctx.cmd.opcode,
1320				       nfc->cmd_base[nfc->cs_sel]);
1321			break;
1322
1323		case NAND_OP_ADDR_INSTR:
1324			for (i = 0; i < instr->ctx.addr.naddrs; i++)
1325				writeb_relaxed(instr->ctx.addr.addrs[i],
1326					       nfc->addr_base[nfc->cs_sel]);
1327			break;
1328
1329		case NAND_OP_DATA_IN_INSTR:
1330			stm32_fmc2_nfc_read_data(chip, instr->ctx.data.buf.in,
1331						 instr->ctx.data.len,
1332						 instr->ctx.data.force_8bit);
1333			break;
1334
1335		case NAND_OP_DATA_OUT_INSTR:
1336			stm32_fmc2_nfc_write_data(chip, instr->ctx.data.buf.out,
1337						  instr->ctx.data.len,
1338						  instr->ctx.data.force_8bit);
1339			break;
1340
1341		case NAND_OP_WAITRDY_INSTR:
1342			timeout = instr->ctx.waitrdy.timeout_ms;
1343			ret = stm32_fmc2_nfc_waitrdy(chip, timeout);
1344			break;
1345		}
1346	}
1347
1348	return ret;
1349}
1350
1351static void stm32_fmc2_nfc_init(struct stm32_fmc2_nfc *nfc)
1352{
1353	u32 pcr;
1354
1355	regmap_read(nfc->regmap, FMC2_PCR, &pcr);
1356
1357	/* Set CS used to undefined */
1358	nfc->cs_sel = -1;
1359
1360	/* Enable wait feature and nand flash memory bank */
1361	pcr |= FMC2_PCR_PWAITEN;
1362	pcr |= FMC2_PCR_PBKEN;
1363
1364	/* Set buswidth to 8 bits mode for identification */
1365	pcr &= ~FMC2_PCR_PWID;
1366
1367	/* ECC logic is disabled */
1368	pcr &= ~FMC2_PCR_ECCEN;
1369
1370	/* Default mode */
1371	pcr &= ~FMC2_PCR_ECCALG;
1372	pcr &= ~FMC2_PCR_BCHECC;
1373	pcr &= ~FMC2_PCR_WEN;
1374
1375	/* Set default ECC sector size */
1376	pcr &= ~FMC2_PCR_ECCSS;
1377	pcr |= FIELD_PREP(FMC2_PCR_ECCSS, FMC2_PCR_ECCSS_2048);
1378
1379	/* Set default tclr/tar timings */
1380	pcr &= ~FMC2_PCR_TCLR;
1381	pcr |= FIELD_PREP(FMC2_PCR_TCLR, FMC2_PCR_TCLR_DEFAULT);
1382	pcr &= ~FMC2_PCR_TAR;
1383	pcr |= FIELD_PREP(FMC2_PCR_TAR, FMC2_PCR_TAR_DEFAULT);
1384
1385	/* Enable FMC2 controller */
1386	if (nfc->dev == nfc->cdev)
1387		regmap_update_bits(nfc->regmap, FMC2_BCR1,
1388				   FMC2_BCR1_FMC2EN, FMC2_BCR1_FMC2EN);
1389
1390	regmap_write(nfc->regmap, FMC2_PCR, pcr);
1391	regmap_write(nfc->regmap, FMC2_PMEM, FMC2_PMEM_DEFAULT);
1392	regmap_write(nfc->regmap, FMC2_PATT, FMC2_PATT_DEFAULT);
1393}
1394
1395static void stm32_fmc2_nfc_calc_timings(struct nand_chip *chip,
1396					const struct nand_sdr_timings *sdrt)
1397{
1398	struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
1399	struct stm32_fmc2_nand *nand = to_fmc2_nand(chip);
1400	struct stm32_fmc2_timings *tims = &nand->timings;
1401	unsigned long hclk = clk_get_rate(nfc->clk);
1402	unsigned long hclkp = NSEC_PER_SEC / (hclk / 1000);
1403	unsigned long timing, tar, tclr, thiz, twait;
1404	unsigned long tset_mem, tset_att, thold_mem, thold_att;
1405
1406	tar = max_t(unsigned long, hclkp, sdrt->tAR_min);
1407	timing = DIV_ROUND_UP(tar, hclkp) - 1;
1408	tims->tar = min_t(unsigned long, timing, FMC2_PCR_TIMING_MASK);
1409
1410	tclr = max_t(unsigned long, hclkp, sdrt->tCLR_min);
1411	timing = DIV_ROUND_UP(tclr, hclkp) - 1;
1412	tims->tclr = min_t(unsigned long, timing, FMC2_PCR_TIMING_MASK);
1413
1414	tims->thiz = FMC2_THIZ;
1415	thiz = (tims->thiz + 1) * hclkp;
1416
1417	/*
1418	 * tWAIT > tRP
1419	 * tWAIT > tWP
1420	 * tWAIT > tREA + tIO
1421	 */
1422	twait = max_t(unsigned long, hclkp, sdrt->tRP_min);
1423	twait = max_t(unsigned long, twait, sdrt->tWP_min);
1424	twait = max_t(unsigned long, twait, sdrt->tREA_max + FMC2_TIO);
1425	timing = DIV_ROUND_UP(twait, hclkp);
1426	tims->twait = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
1427
1428	/*
1429	 * tSETUP_MEM > tCS - tWAIT
1430	 * tSETUP_MEM > tALS - tWAIT
1431	 * tSETUP_MEM > tDS - (tWAIT - tHIZ)
1432	 */
1433	tset_mem = hclkp;
1434	if (sdrt->tCS_min > twait && (tset_mem < sdrt->tCS_min - twait))
1435		tset_mem = sdrt->tCS_min - twait;
1436	if (sdrt->tALS_min > twait && (tset_mem < sdrt->tALS_min - twait))
1437		tset_mem = sdrt->tALS_min - twait;
1438	if (twait > thiz && (sdrt->tDS_min > twait - thiz) &&
1439	    (tset_mem < sdrt->tDS_min - (twait - thiz)))
1440		tset_mem = sdrt->tDS_min - (twait - thiz);
1441	timing = DIV_ROUND_UP(tset_mem, hclkp);
1442	tims->tset_mem = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
1443
1444	/*
1445	 * tHOLD_MEM > tCH
1446	 * tHOLD_MEM > tREH - tSETUP_MEM
1447	 * tHOLD_MEM > max(tRC, tWC) - (tSETUP_MEM + tWAIT)
1448	 */
1449	thold_mem = max_t(unsigned long, hclkp, sdrt->tCH_min);
1450	if (sdrt->tREH_min > tset_mem &&
1451	    (thold_mem < sdrt->tREH_min - tset_mem))
1452		thold_mem = sdrt->tREH_min - tset_mem;
1453	if ((sdrt->tRC_min > tset_mem + twait) &&
1454	    (thold_mem < sdrt->tRC_min - (tset_mem + twait)))
1455		thold_mem = sdrt->tRC_min - (tset_mem + twait);
1456	if ((sdrt->tWC_min > tset_mem + twait) &&
1457	    (thold_mem < sdrt->tWC_min - (tset_mem + twait)))
1458		thold_mem = sdrt->tWC_min - (tset_mem + twait);
1459	timing = DIV_ROUND_UP(thold_mem, hclkp);
1460	tims->thold_mem = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
1461
1462	/*
1463	 * tSETUP_ATT > tCS - tWAIT
1464	 * tSETUP_ATT > tCLS - tWAIT
1465	 * tSETUP_ATT > tALS - tWAIT
1466	 * tSETUP_ATT > tRHW - tHOLD_MEM
1467	 * tSETUP_ATT > tDS - (tWAIT - tHIZ)
1468	 */
1469	tset_att = hclkp;
1470	if (sdrt->tCS_min > twait && (tset_att < sdrt->tCS_min - twait))
1471		tset_att = sdrt->tCS_min - twait;
1472	if (sdrt->tCLS_min > twait && (tset_att < sdrt->tCLS_min - twait))
1473		tset_att = sdrt->tCLS_min - twait;
1474	if (sdrt->tALS_min > twait && (tset_att < sdrt->tALS_min - twait))
1475		tset_att = sdrt->tALS_min - twait;
1476	if (sdrt->tRHW_min > thold_mem &&
1477	    (tset_att < sdrt->tRHW_min - thold_mem))
1478		tset_att = sdrt->tRHW_min - thold_mem;
1479	if (twait > thiz && (sdrt->tDS_min > twait - thiz) &&
1480	    (tset_att < sdrt->tDS_min - (twait - thiz)))
1481		tset_att = sdrt->tDS_min - (twait - thiz);
1482	timing = DIV_ROUND_UP(tset_att, hclkp);
1483	tims->tset_att = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
1484
1485	/*
1486	 * tHOLD_ATT > tALH
1487	 * tHOLD_ATT > tCH
1488	 * tHOLD_ATT > tCLH
1489	 * tHOLD_ATT > tCOH
1490	 * tHOLD_ATT > tDH
1491	 * tHOLD_ATT > tWB + tIO + tSYNC - tSETUP_MEM
1492	 * tHOLD_ATT > tADL - tSETUP_MEM
1493	 * tHOLD_ATT > tWH - tSETUP_MEM
1494	 * tHOLD_ATT > tWHR - tSETUP_MEM
1495	 * tHOLD_ATT > tRC - (tSETUP_ATT + tWAIT)
1496	 * tHOLD_ATT > tWC - (tSETUP_ATT + tWAIT)
1497	 */
1498	thold_att = max_t(unsigned long, hclkp, sdrt->tALH_min);
1499	thold_att = max_t(unsigned long, thold_att, sdrt->tCH_min);
1500	thold_att = max_t(unsigned long, thold_att, sdrt->tCLH_min);
1501	thold_att = max_t(unsigned long, thold_att, sdrt->tCOH_min);
1502	thold_att = max_t(unsigned long, thold_att, sdrt->tDH_min);
1503	if ((sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC > tset_mem) &&
1504	    (thold_att < sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC - tset_mem))
1505		thold_att = sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC - tset_mem;
1506	if (sdrt->tADL_min > tset_mem &&
1507	    (thold_att < sdrt->tADL_min - tset_mem))
1508		thold_att = sdrt->tADL_min - tset_mem;
1509	if (sdrt->tWH_min > tset_mem &&
1510	    (thold_att < sdrt->tWH_min - tset_mem))
1511		thold_att = sdrt->tWH_min - tset_mem;
1512	if (sdrt->tWHR_min > tset_mem &&
1513	    (thold_att < sdrt->tWHR_min - tset_mem))
1514		thold_att = sdrt->tWHR_min - tset_mem;
1515	if ((sdrt->tRC_min > tset_att + twait) &&
1516	    (thold_att < sdrt->tRC_min - (tset_att + twait)))
1517		thold_att = sdrt->tRC_min - (tset_att + twait);
1518	if ((sdrt->tWC_min > tset_att + twait) &&
1519	    (thold_att < sdrt->tWC_min - (tset_att + twait)))
1520		thold_att = sdrt->tWC_min - (tset_att + twait);
1521	timing = DIV_ROUND_UP(thold_att, hclkp);
1522	tims->thold_att = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
1523}
1524
1525static int stm32_fmc2_nfc_setup_interface(struct nand_chip *chip, int chipnr,
1526					  const struct nand_interface_config *conf)
1527{
1528	const struct nand_sdr_timings *sdrt;
1529
1530	sdrt = nand_get_sdr_timings(conf);
1531	if (IS_ERR(sdrt))
1532		return PTR_ERR(sdrt);
1533
1534	if (conf->timings.mode > 3)
1535		return -EOPNOTSUPP;
1536
1537	if (chipnr == NAND_DATA_IFACE_CHECK_ONLY)
1538		return 0;
1539
1540	stm32_fmc2_nfc_calc_timings(chip, sdrt);
1541	stm32_fmc2_nfc_timings_init(chip);
1542
1543	return 0;
1544}
1545
1546static int stm32_fmc2_nfc_dma_setup(struct stm32_fmc2_nfc *nfc)
1547{
1548	int ret = 0;
1549
1550	nfc->dma_tx_ch = dma_request_chan(nfc->dev, "tx");
1551	if (IS_ERR(nfc->dma_tx_ch)) {
1552		ret = PTR_ERR(nfc->dma_tx_ch);
1553		if (ret != -ENODEV && ret != -EPROBE_DEFER)
1554			dev_err(nfc->dev,
1555				"failed to request tx DMA channel: %d\n", ret);
1556		nfc->dma_tx_ch = NULL;
1557		goto err_dma;
1558	}
1559
1560	nfc->dma_rx_ch = dma_request_chan(nfc->dev, "rx");
1561	if (IS_ERR(nfc->dma_rx_ch)) {
1562		ret = PTR_ERR(nfc->dma_rx_ch);
1563		if (ret != -ENODEV && ret != -EPROBE_DEFER)
1564			dev_err(nfc->dev,
1565				"failed to request rx DMA channel: %d\n", ret);
1566		nfc->dma_rx_ch = NULL;
1567		goto err_dma;
1568	}
1569
1570	nfc->dma_ecc_ch = dma_request_chan(nfc->dev, "ecc");
1571	if (IS_ERR(nfc->dma_ecc_ch)) {
1572		ret = PTR_ERR(nfc->dma_ecc_ch);
1573		if (ret != -ENODEV && ret != -EPROBE_DEFER)
1574			dev_err(nfc->dev,
1575				"failed to request ecc DMA channel: %d\n", ret);
1576		nfc->dma_ecc_ch = NULL;
1577		goto err_dma;
1578	}
1579
1580	ret = sg_alloc_table(&nfc->dma_ecc_sg, FMC2_MAX_SG, GFP_KERNEL);
1581	if (ret)
1582		return ret;
1583
1584	/* Allocate a buffer to store ECC status registers */
1585	nfc->ecc_buf = devm_kzalloc(nfc->dev, FMC2_MAX_ECC_BUF_LEN, GFP_KERNEL);
1586	if (!nfc->ecc_buf)
1587		return -ENOMEM;
1588
1589	ret = sg_alloc_table(&nfc->dma_data_sg, FMC2_MAX_SG, GFP_KERNEL);
1590	if (ret)
1591		return ret;
1592
1593	init_completion(&nfc->dma_data_complete);
1594	init_completion(&nfc->dma_ecc_complete);
1595
1596	return 0;
1597
1598err_dma:
1599	if (ret == -ENODEV) {
1600		dev_warn(nfc->dev,
1601			 "DMAs not defined in the DT, polling mode is used\n");
1602		ret = 0;
1603	}
1604
1605	return ret;
1606}
1607
1608static void stm32_fmc2_nfc_nand_callbacks_setup(struct nand_chip *chip)
1609{
1610	struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
1611
1612	/*
1613	 * Specific callbacks to read/write a page depending on
1614	 * the mode (polling/sequencer) and the algo used (Hamming, BCH).
1615	 */
1616	if (nfc->dma_tx_ch && nfc->dma_rx_ch && nfc->dma_ecc_ch) {
1617		/* DMA => use sequencer mode callbacks */
1618		chip->ecc.correct = stm32_fmc2_nfc_seq_correct;
1619		chip->ecc.write_page = stm32_fmc2_nfc_seq_write_page;
1620		chip->ecc.read_page = stm32_fmc2_nfc_seq_read_page;
1621		chip->ecc.write_page_raw = stm32_fmc2_nfc_seq_write_page_raw;
1622		chip->ecc.read_page_raw = stm32_fmc2_nfc_seq_read_page_raw;
1623	} else {
1624		/* No DMA => use polling mode callbacks */
1625		chip->ecc.hwctl = stm32_fmc2_nfc_hwctl;
1626		if (chip->ecc.strength == FMC2_ECC_HAM) {
1627			/* Hamming is used */
1628			chip->ecc.calculate = stm32_fmc2_nfc_ham_calculate;
1629			chip->ecc.correct = stm32_fmc2_nfc_ham_correct;
1630			chip->ecc.options |= NAND_ECC_GENERIC_ERASED_CHECK;
1631		} else {
1632			/* BCH is used */
1633			chip->ecc.calculate = stm32_fmc2_nfc_bch_calculate;
1634			chip->ecc.correct = stm32_fmc2_nfc_bch_correct;
1635			chip->ecc.read_page = stm32_fmc2_nfc_read_page;
1636		}
1637	}
1638
1639	/* Specific configurations depending on the algo used */
1640	if (chip->ecc.strength == FMC2_ECC_HAM)
1641		chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 4 : 3;
1642	else if (chip->ecc.strength == FMC2_ECC_BCH8)
1643		chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 14 : 13;
1644	else
1645		chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 8 : 7;
1646}
1647
1648static int stm32_fmc2_nfc_ooblayout_ecc(struct mtd_info *mtd, int section,
1649					struct mtd_oob_region *oobregion)
1650{
1651	struct nand_chip *chip = mtd_to_nand(mtd);
1652	struct nand_ecc_ctrl *ecc = &chip->ecc;
1653
1654	if (section)
1655		return -ERANGE;
1656
1657	oobregion->length = ecc->total;
1658	oobregion->offset = FMC2_BBM_LEN;
1659
1660	return 0;
1661}
1662
1663static int stm32_fmc2_nfc_ooblayout_free(struct mtd_info *mtd, int section,
1664					 struct mtd_oob_region *oobregion)
1665{
1666	struct nand_chip *chip = mtd_to_nand(mtd);
1667	struct nand_ecc_ctrl *ecc = &chip->ecc;
1668
1669	if (section)
1670		return -ERANGE;
1671
1672	oobregion->length = mtd->oobsize - ecc->total - FMC2_BBM_LEN;
1673	oobregion->offset = ecc->total + FMC2_BBM_LEN;
1674
1675	return 0;
1676}
1677
1678static const struct mtd_ooblayout_ops stm32_fmc2_nfc_ooblayout_ops = {
1679	.ecc = stm32_fmc2_nfc_ooblayout_ecc,
1680	.free = stm32_fmc2_nfc_ooblayout_free,
1681};
1682
1683static int stm32_fmc2_nfc_calc_ecc_bytes(int step_size, int strength)
1684{
1685	/* Hamming */
1686	if (strength == FMC2_ECC_HAM)
1687		return 4;
1688
1689	/* BCH8 */
1690	if (strength == FMC2_ECC_BCH8)
1691		return 14;
1692
1693	/* BCH4 */
1694	return 8;
1695}
1696
1697NAND_ECC_CAPS_SINGLE(stm32_fmc2_nfc_ecc_caps, stm32_fmc2_nfc_calc_ecc_bytes,
1698		     FMC2_ECC_STEP_SIZE,
1699		     FMC2_ECC_HAM, FMC2_ECC_BCH4, FMC2_ECC_BCH8);
1700
1701static int stm32_fmc2_nfc_attach_chip(struct nand_chip *chip)
1702{
1703	struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
1704	struct mtd_info *mtd = nand_to_mtd(chip);
1705	int ret;
1706
1707	/*
1708	 * Only NAND_ECC_ENGINE_TYPE_ON_HOST mode is actually supported
1709	 * Hamming => ecc.strength = 1
1710	 * BCH4 => ecc.strength = 4
1711	 * BCH8 => ecc.strength = 8
1712	 * ECC sector size = 512
1713	 */
1714	if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST) {
1715		dev_err(nfc->dev,
1716			"nand_ecc_engine_type is not well defined in the DT\n");
1717		return -EINVAL;
1718	}
1719
1720	/* Default ECC settings in case they are not set in the device tree */
1721	if (!chip->ecc.size)
1722		chip->ecc.size = FMC2_ECC_STEP_SIZE;
1723
1724	if (!chip->ecc.strength)
1725		chip->ecc.strength = FMC2_ECC_BCH8;
1726
1727	ret = nand_ecc_choose_conf(chip, &stm32_fmc2_nfc_ecc_caps,
1728				   mtd->oobsize - FMC2_BBM_LEN);
1729	if (ret) {
1730		dev_err(nfc->dev, "no valid ECC settings set\n");
1731		return ret;
1732	}
1733
1734	if (mtd->writesize / chip->ecc.size > FMC2_MAX_SG) {
1735		dev_err(nfc->dev, "nand page size is not supported\n");
1736		return -EINVAL;
1737	}
1738
1739	if (chip->bbt_options & NAND_BBT_USE_FLASH)
1740		chip->bbt_options |= NAND_BBT_NO_OOB;
1741
1742	stm32_fmc2_nfc_nand_callbacks_setup(chip);
1743
1744	mtd_set_ooblayout(mtd, &stm32_fmc2_nfc_ooblayout_ops);
1745
1746	stm32_fmc2_nfc_setup(chip);
1747
1748	return 0;
1749}
1750
1751static const struct nand_controller_ops stm32_fmc2_nfc_controller_ops = {
1752	.attach_chip = stm32_fmc2_nfc_attach_chip,
1753	.exec_op = stm32_fmc2_nfc_exec_op,
1754	.setup_interface = stm32_fmc2_nfc_setup_interface,
1755};
1756
1757static void stm32_fmc2_nfc_wp_enable(struct stm32_fmc2_nand *nand)
1758{
1759	if (nand->wp_gpio)
1760		gpiod_set_value(nand->wp_gpio, 1);
1761}
1762
1763static void stm32_fmc2_nfc_wp_disable(struct stm32_fmc2_nand *nand)
1764{
1765	if (nand->wp_gpio)
1766		gpiod_set_value(nand->wp_gpio, 0);
1767}
1768
1769static int stm32_fmc2_nfc_parse_child(struct stm32_fmc2_nfc *nfc,
1770				      struct device_node *dn)
1771{
1772	struct stm32_fmc2_nand *nand = &nfc->nand;
1773	u32 cs;
1774	int ret, i;
1775
1776	if (!of_get_property(dn, "reg", &nand->ncs))
1777		return -EINVAL;
1778
1779	nand->ncs /= sizeof(u32);
1780	if (!nand->ncs) {
1781		dev_err(nfc->dev, "invalid reg property size\n");
1782		return -EINVAL;
1783	}
1784
1785	for (i = 0; i < nand->ncs; i++) {
1786		ret = of_property_read_u32_index(dn, "reg", i, &cs);
1787		if (ret) {
1788			dev_err(nfc->dev, "could not retrieve reg property: %d\n",
1789				ret);
1790			return ret;
1791		}
1792
1793		if (cs >= FMC2_MAX_CE) {
1794			dev_err(nfc->dev, "invalid reg value: %d\n", cs);
1795			return -EINVAL;
1796		}
1797
1798		if (nfc->cs_assigned & BIT(cs)) {
1799			dev_err(nfc->dev, "cs already assigned: %d\n", cs);
1800			return -EINVAL;
1801		}
1802
1803		nfc->cs_assigned |= BIT(cs);
1804		nand->cs_used[i] = cs;
1805	}
1806
1807	nand->wp_gpio = devm_fwnode_gpiod_get(nfc->dev, of_fwnode_handle(dn),
1808					      "wp", GPIOD_OUT_HIGH, "wp");
1809	if (IS_ERR(nand->wp_gpio)) {
1810		ret = PTR_ERR(nand->wp_gpio);
1811		if (ret != -ENOENT)
1812			return dev_err_probe(nfc->dev, ret,
1813					     "failed to request WP GPIO\n");
1814
1815		nand->wp_gpio = NULL;
1816	}
1817
1818	nand_set_flash_node(&nand->chip, dn);
1819
1820	return 0;
1821}
1822
1823static int stm32_fmc2_nfc_parse_dt(struct stm32_fmc2_nfc *nfc)
1824{
1825	struct device_node *dn = nfc->dev->of_node;
1826	struct device_node *child;
1827	int nchips = of_get_child_count(dn);
1828	int ret = 0;
1829
1830	if (!nchips) {
1831		dev_err(nfc->dev, "NAND chip not defined\n");
1832		return -EINVAL;
1833	}
1834
1835	if (nchips > 1) {
1836		dev_err(nfc->dev, "too many NAND chips defined\n");
1837		return -EINVAL;
1838	}
1839
1840	for_each_child_of_node(dn, child) {
1841		ret = stm32_fmc2_nfc_parse_child(nfc, child);
1842		if (ret < 0) {
1843			of_node_put(child);
1844			return ret;
1845		}
1846	}
1847
1848	return ret;
1849}
1850
1851static int stm32_fmc2_nfc_set_cdev(struct stm32_fmc2_nfc *nfc)
1852{
1853	struct device *dev = nfc->dev;
1854	bool ebi_found = false;
1855
1856	if (dev->parent && of_device_is_compatible(dev->parent->of_node,
1857						   "st,stm32mp1-fmc2-ebi"))
1858		ebi_found = true;
1859
1860	if (of_device_is_compatible(dev->of_node, "st,stm32mp1-fmc2-nfc")) {
1861		if (ebi_found) {
1862			nfc->cdev = dev->parent;
1863
1864			return 0;
1865		}
1866
1867		return -EINVAL;
1868	}
1869
1870	if (ebi_found)
1871		return -EINVAL;
1872
1873	nfc->cdev = dev;
1874
1875	return 0;
1876}
1877
1878static int stm32_fmc2_nfc_probe(struct platform_device *pdev)
1879{
1880	struct device *dev = &pdev->dev;
1881	struct reset_control *rstc;
1882	struct stm32_fmc2_nfc *nfc;
1883	struct stm32_fmc2_nand *nand;
1884	struct resource *res;
1885	struct mtd_info *mtd;
1886	struct nand_chip *chip;
1887	struct resource cres;
1888	int chip_cs, mem_region, ret, irq;
1889	int start_region = 0;
1890
1891	nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL);
1892	if (!nfc)
1893		return -ENOMEM;
1894
1895	nfc->dev = dev;
1896	nand_controller_init(&nfc->base);
1897	nfc->base.ops = &stm32_fmc2_nfc_controller_ops;
1898
1899	ret = stm32_fmc2_nfc_set_cdev(nfc);
1900	if (ret)
1901		return ret;
1902
1903	ret = stm32_fmc2_nfc_parse_dt(nfc);
1904	if (ret)
1905		return ret;
1906
1907	ret = of_address_to_resource(nfc->cdev->of_node, 0, &cres);
1908	if (ret)
1909		return ret;
1910
1911	nfc->io_phys_addr = cres.start;
1912
1913	nfc->regmap = device_node_to_regmap(nfc->cdev->of_node);
1914	if (IS_ERR(nfc->regmap))
1915		return PTR_ERR(nfc->regmap);
1916
1917	if (nfc->dev == nfc->cdev)
1918		start_region = 1;
1919
1920	for (chip_cs = 0, mem_region = start_region; chip_cs < FMC2_MAX_CE;
1921	     chip_cs++, mem_region += 3) {
1922		if (!(nfc->cs_assigned & BIT(chip_cs)))
1923			continue;
1924
1925		nfc->data_base[chip_cs] = devm_platform_get_and_ioremap_resource(pdev,
1926						mem_region, &res);
1927		if (IS_ERR(nfc->data_base[chip_cs]))
1928			return PTR_ERR(nfc->data_base[chip_cs]);
1929
1930		nfc->data_phys_addr[chip_cs] = res->start;
1931
1932		nfc->cmd_base[chip_cs] = devm_platform_ioremap_resource(pdev, mem_region + 1);
1933		if (IS_ERR(nfc->cmd_base[chip_cs]))
1934			return PTR_ERR(nfc->cmd_base[chip_cs]);
1935
1936		nfc->addr_base[chip_cs] = devm_platform_ioremap_resource(pdev, mem_region + 2);
1937		if (IS_ERR(nfc->addr_base[chip_cs]))
1938			return PTR_ERR(nfc->addr_base[chip_cs]);
1939	}
1940
1941	irq = platform_get_irq(pdev, 0);
1942	if (irq < 0)
1943		return irq;
1944
1945	ret = devm_request_irq(dev, irq, stm32_fmc2_nfc_irq, 0,
1946			       dev_name(dev), nfc);
1947	if (ret) {
1948		dev_err(dev, "failed to request irq\n");
1949		return ret;
1950	}
1951
1952	init_completion(&nfc->complete);
1953
1954	nfc->clk = devm_clk_get_enabled(nfc->cdev, NULL);
1955	if (IS_ERR(nfc->clk)) {
1956		dev_err(dev, "can not get and enable the clock\n");
1957		return PTR_ERR(nfc->clk);
1958	}
1959
1960	rstc = devm_reset_control_get(dev, NULL);
1961	if (IS_ERR(rstc)) {
1962		ret = PTR_ERR(rstc);
1963		if (ret == -EPROBE_DEFER)
1964			return ret;
1965	} else {
1966		reset_control_assert(rstc);
1967		reset_control_deassert(rstc);
1968	}
1969
1970	ret = stm32_fmc2_nfc_dma_setup(nfc);
1971	if (ret)
1972		goto err_release_dma;
1973
1974	stm32_fmc2_nfc_init(nfc);
1975
1976	nand = &nfc->nand;
1977	chip = &nand->chip;
1978	mtd = nand_to_mtd(chip);
1979	mtd->dev.parent = dev;
1980
1981	chip->controller = &nfc->base;
1982	chip->options |= NAND_BUSWIDTH_AUTO | NAND_NO_SUBPAGE_WRITE |
1983			 NAND_USES_DMA;
1984
1985	stm32_fmc2_nfc_wp_disable(nand);
1986
1987	/* Scan to find existence of the device */
1988	ret = nand_scan(chip, nand->ncs);
1989	if (ret)
1990		goto err_wp_enable;
1991
1992	ret = mtd_device_register(mtd, NULL, 0);
1993	if (ret)
1994		goto err_nand_cleanup;
1995
1996	platform_set_drvdata(pdev, nfc);
1997
1998	return 0;
1999
2000err_nand_cleanup:
2001	nand_cleanup(chip);
2002
2003err_wp_enable:
2004	stm32_fmc2_nfc_wp_enable(nand);
2005
2006err_release_dma:
2007	if (nfc->dma_ecc_ch)
2008		dma_release_channel(nfc->dma_ecc_ch);
2009	if (nfc->dma_tx_ch)
2010		dma_release_channel(nfc->dma_tx_ch);
2011	if (nfc->dma_rx_ch)
2012		dma_release_channel(nfc->dma_rx_ch);
2013
2014	sg_free_table(&nfc->dma_data_sg);
2015	sg_free_table(&nfc->dma_ecc_sg);
2016
2017	return ret;
2018}
2019
2020static void stm32_fmc2_nfc_remove(struct platform_device *pdev)
2021{
2022	struct stm32_fmc2_nfc *nfc = platform_get_drvdata(pdev);
2023	struct stm32_fmc2_nand *nand = &nfc->nand;
2024	struct nand_chip *chip = &nand->chip;
2025	int ret;
2026
2027	ret = mtd_device_unregister(nand_to_mtd(chip));
2028	WARN_ON(ret);
2029	nand_cleanup(chip);
2030
2031	if (nfc->dma_ecc_ch)
2032		dma_release_channel(nfc->dma_ecc_ch);
2033	if (nfc->dma_tx_ch)
2034		dma_release_channel(nfc->dma_tx_ch);
2035	if (nfc->dma_rx_ch)
2036		dma_release_channel(nfc->dma_rx_ch);
2037
2038	sg_free_table(&nfc->dma_data_sg);
2039	sg_free_table(&nfc->dma_ecc_sg);
2040
2041	stm32_fmc2_nfc_wp_enable(nand);
2042}
2043
2044static int __maybe_unused stm32_fmc2_nfc_suspend(struct device *dev)
2045{
2046	struct stm32_fmc2_nfc *nfc = dev_get_drvdata(dev);
2047	struct stm32_fmc2_nand *nand = &nfc->nand;
2048
2049	clk_disable_unprepare(nfc->clk);
2050
2051	stm32_fmc2_nfc_wp_enable(nand);
2052
2053	pinctrl_pm_select_sleep_state(dev);
2054
2055	return 0;
2056}
2057
2058static int __maybe_unused stm32_fmc2_nfc_resume(struct device *dev)
2059{
2060	struct stm32_fmc2_nfc *nfc = dev_get_drvdata(dev);
2061	struct stm32_fmc2_nand *nand = &nfc->nand;
2062	int chip_cs, ret;
2063
2064	pinctrl_pm_select_default_state(dev);
2065
2066	ret = clk_prepare_enable(nfc->clk);
2067	if (ret) {
2068		dev_err(dev, "can not enable the clock\n");
2069		return ret;
2070	}
2071
2072	stm32_fmc2_nfc_init(nfc);
2073
2074	stm32_fmc2_nfc_wp_disable(nand);
2075
2076	for (chip_cs = 0; chip_cs < FMC2_MAX_CE; chip_cs++) {
2077		if (!(nfc->cs_assigned & BIT(chip_cs)))
2078			continue;
2079
2080		nand_reset(&nand->chip, chip_cs);
2081	}
2082
2083	return 0;
2084}
2085
2086static SIMPLE_DEV_PM_OPS(stm32_fmc2_nfc_pm_ops, stm32_fmc2_nfc_suspend,
2087			 stm32_fmc2_nfc_resume);
2088
2089static const struct of_device_id stm32_fmc2_nfc_match[] = {
2090	{.compatible = "st,stm32mp15-fmc2"},
2091	{.compatible = "st,stm32mp1-fmc2-nfc"},
2092	{}
2093};
2094MODULE_DEVICE_TABLE(of, stm32_fmc2_nfc_match);
2095
2096static struct platform_driver stm32_fmc2_nfc_driver = {
2097	.probe	= stm32_fmc2_nfc_probe,
2098	.remove_new = stm32_fmc2_nfc_remove,
2099	.driver	= {
2100		.name = "stm32_fmc2_nfc",
2101		.of_match_table = stm32_fmc2_nfc_match,
2102		.pm = &stm32_fmc2_nfc_pm_ops,
2103	},
2104};
2105module_platform_driver(stm32_fmc2_nfc_driver);
2106
2107MODULE_ALIAS("platform:stm32_fmc2_nfc");
2108MODULE_AUTHOR("Christophe Kerello <christophe.kerello@st.com>");
2109MODULE_DESCRIPTION("STMicroelectronics STM32 FMC2 NFC driver");
2110MODULE_LICENSE("GPL v2");
2111