1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 *  Overview:
4 *   This is the generic MTD driver for NAND flash devices. It should be
5 *   capable of working with almost all NAND chips currently available.
6 *
7 *	Additional technical information is available on
8 *	http://www.linux-mtd.infradead.org/doc/nand.html
9 *
10 *  Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
11 *		  2002-2006 Thomas Gleixner (tglx@linutronix.de)
12 *
13 *  Credits:
14 *	David Woodhouse for adding multichip support
15 *
16 *	Aleph One Ltd. and Toby Churchill Ltd. for supporting the
17 *	rework for 2K page size chips
18 *
19 *  TODO:
20 *	Enable cached programming for 2k page size chips
21 *	Check, if mtd->ecctype should be set to MTD_ECC_HW
22 *	if we have HW ECC support.
23 *	BBT table is not serialized, has to be fixed
24 */
25
26#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27
28#include <linux/module.h>
29#include <linux/delay.h>
30#include <linux/errno.h>
31#include <linux/err.h>
32#include <linux/sched.h>
33#include <linux/slab.h>
34#include <linux/mm.h>
35#include <linux/types.h>
36#include <linux/mtd/mtd.h>
37#include <linux/mtd/nand.h>
38#include <linux/mtd/nand-ecc-sw-hamming.h>
39#include <linux/mtd/nand-ecc-sw-bch.h>
40#include <linux/interrupt.h>
41#include <linux/bitops.h>
42#include <linux/io.h>
43#include <linux/mtd/partitions.h>
44#include <linux/of.h>
45#include <linux/of_gpio.h>
46#include <linux/gpio/consumer.h>
47
48#include "internals.h"
49
50static int nand_pairing_dist3_get_info(struct mtd_info *mtd, int page,
51				       struct mtd_pairing_info *info)
52{
53	int lastpage = (mtd->erasesize / mtd->writesize) - 1;
54	int dist = 3;
55
56	if (page == lastpage)
57		dist = 2;
58
59	if (!page || (page & 1)) {
60		info->group = 0;
61		info->pair = (page + 1) / 2;
62	} else {
63		info->group = 1;
64		info->pair = (page + 1 - dist) / 2;
65	}
66
67	return 0;
68}
69
70static int nand_pairing_dist3_get_wunit(struct mtd_info *mtd,
71					const struct mtd_pairing_info *info)
72{
73	int lastpair = ((mtd->erasesize / mtd->writesize) - 1) / 2;
74	int page = info->pair * 2;
75	int dist = 3;
76
77	if (!info->group && !info->pair)
78		return 0;
79
80	if (info->pair == lastpair && info->group)
81		dist = 2;
82
83	if (!info->group)
84		page--;
85	else if (info->pair)
86		page += dist - 1;
87
88	if (page >= mtd->erasesize / mtd->writesize)
89		return -EINVAL;
90
91	return page;
92}
93
94const struct mtd_pairing_scheme dist3_pairing_scheme = {
95	.ngroups = 2,
96	.get_info = nand_pairing_dist3_get_info,
97	.get_wunit = nand_pairing_dist3_get_wunit,
98};
99
100static int check_offs_len(struct nand_chip *chip, loff_t ofs, uint64_t len)
101{
102	int ret = 0;
103
104	/* Start address must align on block boundary */
105	if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) {
106		pr_debug("%s: unaligned address\n", __func__);
107		ret = -EINVAL;
108	}
109
110	/* Length must align on block boundary */
111	if (len & ((1ULL << chip->phys_erase_shift) - 1)) {
112		pr_debug("%s: length not block aligned\n", __func__);
113		ret = -EINVAL;
114	}
115
116	return ret;
117}
118
119/**
120 * nand_extract_bits - Copy unaligned bits from one buffer to another one
121 * @dst: destination buffer
122 * @dst_off: bit offset at which the writing starts
123 * @src: source buffer
124 * @src_off: bit offset at which the reading starts
125 * @nbits: number of bits to copy from @src to @dst
126 *
127 * Copy bits from one memory region to another (overlap authorized).
128 */
129void nand_extract_bits(u8 *dst, unsigned int dst_off, const u8 *src,
130		       unsigned int src_off, unsigned int nbits)
131{
132	unsigned int tmp, n;
133
134	dst += dst_off / 8;
135	dst_off %= 8;
136	src += src_off / 8;
137	src_off %= 8;
138
139	while (nbits) {
140		n = min3(8 - dst_off, 8 - src_off, nbits);
141
142		tmp = (*src >> src_off) & GENMASK(n - 1, 0);
143		*dst &= ~GENMASK(n - 1 + dst_off, dst_off);
144		*dst |= tmp << dst_off;
145
146		dst_off += n;
147		if (dst_off >= 8) {
148			dst++;
149			dst_off -= 8;
150		}
151
152		src_off += n;
153		if (src_off >= 8) {
154			src++;
155			src_off -= 8;
156		}
157
158		nbits -= n;
159	}
160}
161EXPORT_SYMBOL_GPL(nand_extract_bits);
162
163/**
164 * nand_select_target() - Select a NAND target (A.K.A. die)
165 * @chip: NAND chip object
166 * @cs: the CS line to select. Note that this CS id is always from the chip
167 *	PoV, not the controller one
168 *
169 * Select a NAND target so that further operations executed on @chip go to the
170 * selected NAND target.
171 */
172void nand_select_target(struct nand_chip *chip, unsigned int cs)
173{
174	/*
175	 * cs should always lie between 0 and nanddev_ntargets(), when that's
176	 * not the case it's a bug and the caller should be fixed.
177	 */
178	if (WARN_ON(cs > nanddev_ntargets(&chip->base)))
179		return;
180
181	chip->cur_cs = cs;
182
183	if (chip->legacy.select_chip)
184		chip->legacy.select_chip(chip, cs);
185}
186EXPORT_SYMBOL_GPL(nand_select_target);
187
188/**
189 * nand_deselect_target() - Deselect the currently selected target
190 * @chip: NAND chip object
191 *
192 * Deselect the currently selected NAND target. The result of operations
193 * executed on @chip after the target has been deselected is undefined.
194 */
195void nand_deselect_target(struct nand_chip *chip)
196{
197	if (chip->legacy.select_chip)
198		chip->legacy.select_chip(chip, -1);
199
200	chip->cur_cs = -1;
201}
202EXPORT_SYMBOL_GPL(nand_deselect_target);
203
204/**
205 * nand_release_device - [GENERIC] release chip
206 * @chip: NAND chip object
207 *
208 * Release chip lock and wake up anyone waiting on the device.
209 */
210static void nand_release_device(struct nand_chip *chip)
211{
212	/* Release the controller and the chip */
213	mutex_unlock(&chip->controller->lock);
214	mutex_unlock(&chip->lock);
215}
216
217/**
218 * nand_bbm_get_next_page - Get the next page for bad block markers
219 * @chip: NAND chip object
220 * @page: First page to start checking for bad block marker usage
221 *
222 * Returns an integer that corresponds to the page offset within a block, for
223 * a page that is used to store bad block markers. If no more pages are
224 * available, -EINVAL is returned.
225 */
226int nand_bbm_get_next_page(struct nand_chip *chip, int page)
227{
228	struct mtd_info *mtd = nand_to_mtd(chip);
229	int last_page = ((mtd->erasesize - mtd->writesize) >>
230			 chip->page_shift) & chip->pagemask;
231	unsigned int bbm_flags = NAND_BBM_FIRSTPAGE | NAND_BBM_SECONDPAGE
232		| NAND_BBM_LASTPAGE;
233
234	if (page == 0 && !(chip->options & bbm_flags))
235		return 0;
236	if (page == 0 && chip->options & NAND_BBM_FIRSTPAGE)
237		return 0;
238	if (page <= 1 && chip->options & NAND_BBM_SECONDPAGE)
239		return 1;
240	if (page <= last_page && chip->options & NAND_BBM_LASTPAGE)
241		return last_page;
242
243	return -EINVAL;
244}
245
246/**
247 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
248 * @chip: NAND chip object
249 * @ofs: offset from device start
250 *
251 * Check, if the block is bad.
252 */
253static int nand_block_bad(struct nand_chip *chip, loff_t ofs)
254{
255	int first_page, page_offset;
256	int res;
257	u8 bad;
258
259	first_page = (int)(ofs >> chip->page_shift) & chip->pagemask;
260	page_offset = nand_bbm_get_next_page(chip, 0);
261
262	while (page_offset >= 0) {
263		res = chip->ecc.read_oob(chip, first_page + page_offset);
264		if (res < 0)
265			return res;
266
267		bad = chip->oob_poi[chip->badblockpos];
268
269		if (likely(chip->badblockbits == 8))
270			res = bad != 0xFF;
271		else
272			res = hweight8(bad) < chip->badblockbits;
273		if (res)
274			return res;
275
276		page_offset = nand_bbm_get_next_page(chip, page_offset + 1);
277	}
278
279	return 0;
280}
281
282/**
283 * nand_region_is_secured() - Check if the region is secured
284 * @chip: NAND chip object
285 * @offset: Offset of the region to check
286 * @size: Size of the region to check
287 *
288 * Checks if the region is secured by comparing the offset and size with the
289 * list of secure regions obtained from DT. Returns true if the region is
290 * secured else false.
291 */
292static bool nand_region_is_secured(struct nand_chip *chip, loff_t offset, u64 size)
293{
294	int i;
295
296	/* Skip touching the secure regions if present */
297	for (i = 0; i < chip->nr_secure_regions; i++) {
298		const struct nand_secure_region *region = &chip->secure_regions[i];
299
300		if (offset + size <= region->offset ||
301		    offset >= region->offset + region->size)
302			continue;
303
304		pr_debug("%s: Region 0x%llx - 0x%llx is secured!",
305			 __func__, offset, offset + size);
306
307		return true;
308	}
309
310	return false;
311}
312
313static int nand_isbad_bbm(struct nand_chip *chip, loff_t ofs)
314{
315	struct mtd_info *mtd = nand_to_mtd(chip);
316
317	if (chip->options & NAND_NO_BBM_QUIRK)
318		return 0;
319
320	/* Check if the region is secured */
321	if (nand_region_is_secured(chip, ofs, mtd->erasesize))
322		return -EIO;
323
324	if (mtd_check_expert_analysis_mode())
325		return 0;
326
327	if (chip->legacy.block_bad)
328		return chip->legacy.block_bad(chip, ofs);
329
330	return nand_block_bad(chip, ofs);
331}
332
333/**
334 * nand_get_device - [GENERIC] Get chip for selected access
335 * @chip: NAND chip structure
336 *
337 * Lock the device and its controller for exclusive access
338 */
339static void nand_get_device(struct nand_chip *chip)
340{
341	/* Wait until the device is resumed. */
342	while (1) {
343		mutex_lock(&chip->lock);
344		if (!chip->suspended) {
345			mutex_lock(&chip->controller->lock);
346			return;
347		}
348		mutex_unlock(&chip->lock);
349
350		wait_event(chip->resume_wq, !chip->suspended);
351	}
352}
353
354/**
355 * nand_check_wp - [GENERIC] check if the chip is write protected
356 * @chip: NAND chip object
357 *
358 * Check, if the device is write protected. The function expects, that the
359 * device is already selected.
360 */
361static int nand_check_wp(struct nand_chip *chip)
362{
363	u8 status;
364	int ret;
365
366	/* Broken xD cards report WP despite being writable */
367	if (chip->options & NAND_BROKEN_XD)
368		return 0;
369
370	/* Check the WP bit */
371	ret = nand_status_op(chip, &status);
372	if (ret)
373		return ret;
374
375	return status & NAND_STATUS_WP ? 0 : 1;
376}
377
378/**
379 * nand_fill_oob - [INTERN] Transfer client buffer to oob
380 * @chip: NAND chip object
381 * @oob: oob data buffer
382 * @len: oob data write length
383 * @ops: oob ops structure
384 */
385static uint8_t *nand_fill_oob(struct nand_chip *chip, uint8_t *oob, size_t len,
386			      struct mtd_oob_ops *ops)
387{
388	struct mtd_info *mtd = nand_to_mtd(chip);
389	int ret;
390
391	/*
392	 * Initialise to all 0xFF, to avoid the possibility of left over OOB
393	 * data from a previous OOB read.
394	 */
395	memset(chip->oob_poi, 0xff, mtd->oobsize);
396
397	switch (ops->mode) {
398
399	case MTD_OPS_PLACE_OOB:
400	case MTD_OPS_RAW:
401		memcpy(chip->oob_poi + ops->ooboffs, oob, len);
402		return oob + len;
403
404	case MTD_OPS_AUTO_OOB:
405		ret = mtd_ooblayout_set_databytes(mtd, oob, chip->oob_poi,
406						  ops->ooboffs, len);
407		BUG_ON(ret);
408		return oob + len;
409
410	default:
411		BUG();
412	}
413	return NULL;
414}
415
416/**
417 * nand_do_write_oob - [MTD Interface] NAND write out-of-band
418 * @chip: NAND chip object
419 * @to: offset to write to
420 * @ops: oob operation description structure
421 *
422 * NAND write out-of-band.
423 */
424static int nand_do_write_oob(struct nand_chip *chip, loff_t to,
425			     struct mtd_oob_ops *ops)
426{
427	struct mtd_info *mtd = nand_to_mtd(chip);
428	int chipnr, page, status, len, ret;
429
430	pr_debug("%s: to = 0x%08x, len = %i\n",
431			 __func__, (unsigned int)to, (int)ops->ooblen);
432
433	len = mtd_oobavail(mtd, ops);
434
435	/* Do not allow write past end of page */
436	if ((ops->ooboffs + ops->ooblen) > len) {
437		pr_debug("%s: attempt to write past end of page\n",
438				__func__);
439		return -EINVAL;
440	}
441
442	/* Check if the region is secured */
443	if (nand_region_is_secured(chip, to, ops->ooblen))
444		return -EIO;
445
446	chipnr = (int)(to >> chip->chip_shift);
447
448	/*
449	 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
450	 * of my DiskOnChip 2000 test units) will clear the whole data page too
451	 * if we don't do this. I have no clue why, but I seem to have 'fixed'
452	 * it in the doc2000 driver in August 1999.  dwmw2.
453	 */
454	ret = nand_reset(chip, chipnr);
455	if (ret)
456		return ret;
457
458	nand_select_target(chip, chipnr);
459
460	/* Shift to get page */
461	page = (int)(to >> chip->page_shift);
462
463	/* Check, if it is write protected */
464	if (nand_check_wp(chip)) {
465		nand_deselect_target(chip);
466		return -EROFS;
467	}
468
469	/* Invalidate the page cache, if we write to the cached page */
470	if (page == chip->pagecache.page)
471		chip->pagecache.page = -1;
472
473	nand_fill_oob(chip, ops->oobbuf, ops->ooblen, ops);
474
475	if (ops->mode == MTD_OPS_RAW)
476		status = chip->ecc.write_oob_raw(chip, page & chip->pagemask);
477	else
478		status = chip->ecc.write_oob(chip, page & chip->pagemask);
479
480	nand_deselect_target(chip);
481
482	if (status)
483		return status;
484
485	ops->oobretlen = ops->ooblen;
486
487	return 0;
488}
489
490/**
491 * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker
492 * @chip: NAND chip object
493 * @ofs: offset from device start
494 *
495 * This is the default implementation, which can be overridden by a hardware
496 * specific driver. It provides the details for writing a bad block marker to a
497 * block.
498 */
499static int nand_default_block_markbad(struct nand_chip *chip, loff_t ofs)
500{
501	struct mtd_info *mtd = nand_to_mtd(chip);
502	struct mtd_oob_ops ops;
503	uint8_t buf[2] = { 0, 0 };
504	int ret = 0, res, page_offset;
505
506	memset(&ops, 0, sizeof(ops));
507	ops.oobbuf = buf;
508	ops.ooboffs = chip->badblockpos;
509	if (chip->options & NAND_BUSWIDTH_16) {
510		ops.ooboffs &= ~0x01;
511		ops.len = ops.ooblen = 2;
512	} else {
513		ops.len = ops.ooblen = 1;
514	}
515	ops.mode = MTD_OPS_PLACE_OOB;
516
517	page_offset = nand_bbm_get_next_page(chip, 0);
518
519	while (page_offset >= 0) {
520		res = nand_do_write_oob(chip,
521					ofs + (page_offset * mtd->writesize),
522					&ops);
523
524		if (!ret)
525			ret = res;
526
527		page_offset = nand_bbm_get_next_page(chip, page_offset + 1);
528	}
529
530	return ret;
531}
532
533/**
534 * nand_markbad_bbm - mark a block by updating the BBM
535 * @chip: NAND chip object
536 * @ofs: offset of the block to mark bad
537 */
538int nand_markbad_bbm(struct nand_chip *chip, loff_t ofs)
539{
540	if (chip->legacy.block_markbad)
541		return chip->legacy.block_markbad(chip, ofs);
542
543	return nand_default_block_markbad(chip, ofs);
544}
545
546/**
547 * nand_block_markbad_lowlevel - mark a block bad
548 * @chip: NAND chip object
549 * @ofs: offset from device start
550 *
551 * This function performs the generic NAND bad block marking steps (i.e., bad
552 * block table(s) and/or marker(s)). We only allow the hardware driver to
553 * specify how to write bad block markers to OOB (chip->legacy.block_markbad).
554 *
555 * We try operations in the following order:
556 *
557 *  (1) erase the affected block, to allow OOB marker to be written cleanly
558 *  (2) write bad block marker to OOB area of affected block (unless flag
559 *      NAND_BBT_NO_OOB_BBM is present)
560 *  (3) update the BBT
561 *
562 * Note that we retain the first error encountered in (2) or (3), finish the
563 * procedures, and dump the error in the end.
564*/
565static int nand_block_markbad_lowlevel(struct nand_chip *chip, loff_t ofs)
566{
567	struct mtd_info *mtd = nand_to_mtd(chip);
568	int res, ret = 0;
569
570	if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) {
571		struct erase_info einfo;
572
573		/* Attempt erase before marking OOB */
574		memset(&einfo, 0, sizeof(einfo));
575		einfo.addr = ofs;
576		einfo.len = 1ULL << chip->phys_erase_shift;
577		nand_erase_nand(chip, &einfo, 0);
578
579		/* Write bad block marker to OOB */
580		nand_get_device(chip);
581
582		ret = nand_markbad_bbm(chip, ofs);
583		nand_release_device(chip);
584	}
585
586	/* Mark block bad in BBT */
587	if (chip->bbt) {
588		res = nand_markbad_bbt(chip, ofs);
589		if (!ret)
590			ret = res;
591	}
592
593	if (!ret)
594		mtd->ecc_stats.badblocks++;
595
596	return ret;
597}
598
599/**
600 * nand_block_isreserved - [GENERIC] Check if a block is marked reserved.
601 * @mtd: MTD device structure
602 * @ofs: offset from device start
603 *
604 * Check if the block is marked as reserved.
605 */
606static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs)
607{
608	struct nand_chip *chip = mtd_to_nand(mtd);
609
610	if (!chip->bbt)
611		return 0;
612	/* Return info from the table */
613	return nand_isreserved_bbt(chip, ofs);
614}
615
616/**
617 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
618 * @chip: NAND chip object
619 * @ofs: offset from device start
620 * @allowbbt: 1, if its allowed to access the bbt area
621 *
622 * Check, if the block is bad. Either by reading the bad block table or
623 * calling of the scan function.
624 */
625static int nand_block_checkbad(struct nand_chip *chip, loff_t ofs, int allowbbt)
626{
627	/* Return info from the table */
628	if (chip->bbt)
629		return nand_isbad_bbt(chip, ofs, allowbbt);
630
631	return nand_isbad_bbm(chip, ofs);
632}
633
634/**
635 * nand_soft_waitrdy - Poll STATUS reg until RDY bit is set to 1
636 * @chip: NAND chip structure
637 * @timeout_ms: Timeout in ms
638 *
639 * Poll the STATUS register using ->exec_op() until the RDY bit becomes 1.
640 * If that does not happen whitin the specified timeout, -ETIMEDOUT is
641 * returned.
642 *
643 * This helper is intended to be used when the controller does not have access
644 * to the NAND R/B pin.
645 *
646 * Be aware that calling this helper from an ->exec_op() implementation means
647 * ->exec_op() must be re-entrant.
648 *
649 * Return 0 if the NAND chip is ready, a negative error otherwise.
650 */
651int nand_soft_waitrdy(struct nand_chip *chip, unsigned long timeout_ms)
652{
653	const struct nand_interface_config *conf;
654	u8 status = 0;
655	int ret;
656
657	if (!nand_has_exec_op(chip))
658		return -ENOTSUPP;
659
660	/* Wait tWB before polling the STATUS reg. */
661	conf = nand_get_interface_config(chip);
662	ndelay(NAND_COMMON_TIMING_NS(conf, tWB_max));
663
664	ret = nand_status_op(chip, NULL);
665	if (ret)
666		return ret;
667
668	/*
669	 * +1 below is necessary because if we are now in the last fraction
670	 * of jiffy and msecs_to_jiffies is 1 then we will wait only that
671	 * small jiffy fraction - possibly leading to false timeout
672	 */
673	timeout_ms = jiffies + msecs_to_jiffies(timeout_ms) + 1;
674	do {
675		ret = nand_read_data_op(chip, &status, sizeof(status), true,
676					false);
677		if (ret)
678			break;
679
680		if (status & NAND_STATUS_READY)
681			break;
682
683		/*
684		 * Typical lowest execution time for a tR on most NANDs is 10us,
685		 * use this as polling delay before doing something smarter (ie.
686		 * deriving a delay from the timeout value, timeout_ms/ratio).
687		 */
688		udelay(10);
689	} while	(time_before(jiffies, timeout_ms));
690
691	/*
692	 * We have to exit READ_STATUS mode in order to read real data on the
693	 * bus in case the WAITRDY instruction is preceding a DATA_IN
694	 * instruction.
695	 */
696	nand_exit_status_op(chip);
697
698	if (ret)
699		return ret;
700
701	return status & NAND_STATUS_READY ? 0 : -ETIMEDOUT;
702};
703EXPORT_SYMBOL_GPL(nand_soft_waitrdy);
704
705/**
706 * nand_gpio_waitrdy - Poll R/B GPIO pin until ready
707 * @chip: NAND chip structure
708 * @gpiod: GPIO descriptor of R/B pin
709 * @timeout_ms: Timeout in ms
710 *
711 * Poll the R/B GPIO pin until it becomes ready. If that does not happen
712 * whitin the specified timeout, -ETIMEDOUT is returned.
713 *
714 * This helper is intended to be used when the controller has access to the
715 * NAND R/B pin over GPIO.
716 *
717 * Return 0 if the R/B pin indicates chip is ready, a negative error otherwise.
718 */
719int nand_gpio_waitrdy(struct nand_chip *chip, struct gpio_desc *gpiod,
720		      unsigned long timeout_ms)
721{
722
723	/*
724	 * Wait until R/B pin indicates chip is ready or timeout occurs.
725	 * +1 below is necessary because if we are now in the last fraction
726	 * of jiffy and msecs_to_jiffies is 1 then we will wait only that
727	 * small jiffy fraction - possibly leading to false timeout.
728	 */
729	timeout_ms = jiffies + msecs_to_jiffies(timeout_ms) + 1;
730	do {
731		if (gpiod_get_value_cansleep(gpiod))
732			return 0;
733
734		cond_resched();
735	} while	(time_before(jiffies, timeout_ms));
736
737	return gpiod_get_value_cansleep(gpiod) ? 0 : -ETIMEDOUT;
738};
739EXPORT_SYMBOL_GPL(nand_gpio_waitrdy);
740
741/**
742 * panic_nand_wait - [GENERIC] wait until the command is done
743 * @chip: NAND chip structure
744 * @timeo: timeout
745 *
746 * Wait for command done. This is a helper function for nand_wait used when
747 * we are in interrupt context. May happen when in panic and trying to write
748 * an oops through mtdoops.
749 */
750void panic_nand_wait(struct nand_chip *chip, unsigned long timeo)
751{
752	int i;
753	for (i = 0; i < timeo; i++) {
754		if (chip->legacy.dev_ready) {
755			if (chip->legacy.dev_ready(chip))
756				break;
757		} else {
758			int ret;
759			u8 status;
760
761			ret = nand_read_data_op(chip, &status, sizeof(status),
762						true, false);
763			if (ret)
764				return;
765
766			if (status & NAND_STATUS_READY)
767				break;
768		}
769		mdelay(1);
770	}
771}
772
773static bool nand_supports_get_features(struct nand_chip *chip, int addr)
774{
775	return (chip->parameters.supports_set_get_features &&
776		test_bit(addr, chip->parameters.get_feature_list));
777}
778
779static bool nand_supports_set_features(struct nand_chip *chip, int addr)
780{
781	return (chip->parameters.supports_set_get_features &&
782		test_bit(addr, chip->parameters.set_feature_list));
783}
784
785/**
786 * nand_reset_interface - Reset data interface and timings
787 * @chip: The NAND chip
788 * @chipnr: Internal die id
789 *
790 * Reset the Data interface and timings to ONFI mode 0.
791 *
792 * Returns 0 for success or negative error code otherwise.
793 */
794static int nand_reset_interface(struct nand_chip *chip, int chipnr)
795{
796	const struct nand_controller_ops *ops = chip->controller->ops;
797	int ret;
798
799	if (!nand_controller_can_setup_interface(chip))
800		return 0;
801
802	/*
803	 * The ONFI specification says:
804	 * "
805	 * To transition from NV-DDR or NV-DDR2 to the SDR data
806	 * interface, the host shall use the Reset (FFh) command
807	 * using SDR timing mode 0. A device in any timing mode is
808	 * required to recognize Reset (FFh) command issued in SDR
809	 * timing mode 0.
810	 * "
811	 *
812	 * Configure the data interface in SDR mode and set the
813	 * timings to timing mode 0.
814	 */
815
816	chip->current_interface_config = nand_get_reset_interface_config();
817	ret = ops->setup_interface(chip, chipnr,
818				   chip->current_interface_config);
819	if (ret)
820		pr_err("Failed to configure data interface to SDR timing mode 0\n");
821
822	return ret;
823}
824
825/**
826 * nand_setup_interface - Setup the best data interface and timings
827 * @chip: The NAND chip
828 * @chipnr: Internal die id
829 *
830 * Configure what has been reported to be the best data interface and NAND
831 * timings supported by the chip and the driver.
832 *
833 * Returns 0 for success or negative error code otherwise.
834 */
835static int nand_setup_interface(struct nand_chip *chip, int chipnr)
836{
837	const struct nand_controller_ops *ops = chip->controller->ops;
838	u8 tmode_param[ONFI_SUBFEATURE_PARAM_LEN] = { }, request;
839	int ret;
840
841	if (!nand_controller_can_setup_interface(chip))
842		return 0;
843
844	/*
845	 * A nand_reset_interface() put both the NAND chip and the NAND
846	 * controller in timings mode 0. If the default mode for this chip is
847	 * also 0, no need to proceed to the change again. Plus, at probe time,
848	 * nand_setup_interface() uses ->set/get_features() which would
849	 * fail anyway as the parameter page is not available yet.
850	 */
851	if (!chip->best_interface_config)
852		return 0;
853
854	request = chip->best_interface_config->timings.mode;
855	if (nand_interface_is_sdr(chip->best_interface_config))
856		request |= ONFI_DATA_INTERFACE_SDR;
857	else
858		request |= ONFI_DATA_INTERFACE_NVDDR;
859	tmode_param[0] = request;
860
861	/* Change the mode on the chip side (if supported by the NAND chip) */
862	if (nand_supports_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE)) {
863		nand_select_target(chip, chipnr);
864		ret = nand_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE,
865					tmode_param);
866		nand_deselect_target(chip);
867		if (ret)
868			return ret;
869	}
870
871	/* Change the mode on the controller side */
872	ret = ops->setup_interface(chip, chipnr, chip->best_interface_config);
873	if (ret)
874		return ret;
875
876	/* Check the mode has been accepted by the chip, if supported */
877	if (!nand_supports_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE))
878		goto update_interface_config;
879
880	memset(tmode_param, 0, ONFI_SUBFEATURE_PARAM_LEN);
881	nand_select_target(chip, chipnr);
882	ret = nand_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE,
883				tmode_param);
884	nand_deselect_target(chip);
885	if (ret)
886		goto err_reset_chip;
887
888	if (request != tmode_param[0]) {
889		pr_warn("%s timing mode %d not acknowledged by the NAND chip\n",
890			nand_interface_is_nvddr(chip->best_interface_config) ? "NV-DDR" : "SDR",
891			chip->best_interface_config->timings.mode);
892		pr_debug("NAND chip would work in %s timing mode %d\n",
893			 tmode_param[0] & ONFI_DATA_INTERFACE_NVDDR ? "NV-DDR" : "SDR",
894			 (unsigned int)ONFI_TIMING_MODE_PARAM(tmode_param[0]));
895		goto err_reset_chip;
896	}
897
898update_interface_config:
899	chip->current_interface_config = chip->best_interface_config;
900
901	return 0;
902
903err_reset_chip:
904	/*
905	 * Fallback to mode 0 if the chip explicitly did not ack the chosen
906	 * timing mode.
907	 */
908	nand_reset_interface(chip, chipnr);
909	nand_select_target(chip, chipnr);
910	nand_reset_op(chip);
911	nand_deselect_target(chip);
912
913	return ret;
914}
915
916/**
917 * nand_choose_best_sdr_timings - Pick up the best SDR timings that both the
918 *                                NAND controller and the NAND chip support
919 * @chip: the NAND chip
920 * @iface: the interface configuration (can eventually be updated)
921 * @spec_timings: specific timings, when not fitting the ONFI specification
922 *
923 * If specific timings are provided, use them. Otherwise, retrieve supported
924 * timing modes from ONFI information.
925 */
926int nand_choose_best_sdr_timings(struct nand_chip *chip,
927				 struct nand_interface_config *iface,
928				 struct nand_sdr_timings *spec_timings)
929{
930	const struct nand_controller_ops *ops = chip->controller->ops;
931	int best_mode = 0, mode, ret = -EOPNOTSUPP;
932
933	iface->type = NAND_SDR_IFACE;
934
935	if (spec_timings) {
936		iface->timings.sdr = *spec_timings;
937		iface->timings.mode = onfi_find_closest_sdr_mode(spec_timings);
938
939		/* Verify the controller supports the requested interface */
940		ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY,
941					   iface);
942		if (!ret) {
943			chip->best_interface_config = iface;
944			return ret;
945		}
946
947		/* Fallback to slower modes */
948		best_mode = iface->timings.mode;
949	} else if (chip->parameters.onfi) {
950		best_mode = fls(chip->parameters.onfi->sdr_timing_modes) - 1;
951	}
952
953	for (mode = best_mode; mode >= 0; mode--) {
954		onfi_fill_interface_config(chip, iface, NAND_SDR_IFACE, mode);
955
956		ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY,
957					   iface);
958		if (!ret) {
959			chip->best_interface_config = iface;
960			break;
961		}
962	}
963
964	return ret;
965}
966
967/**
968 * nand_choose_best_nvddr_timings - Pick up the best NVDDR timings that both the
969 *                                  NAND controller and the NAND chip support
970 * @chip: the NAND chip
971 * @iface: the interface configuration (can eventually be updated)
972 * @spec_timings: specific timings, when not fitting the ONFI specification
973 *
974 * If specific timings are provided, use them. Otherwise, retrieve supported
975 * timing modes from ONFI information.
976 */
977int nand_choose_best_nvddr_timings(struct nand_chip *chip,
978				   struct nand_interface_config *iface,
979				   struct nand_nvddr_timings *spec_timings)
980{
981	const struct nand_controller_ops *ops = chip->controller->ops;
982	int best_mode = 0, mode, ret = -EOPNOTSUPP;
983
984	iface->type = NAND_NVDDR_IFACE;
985
986	if (spec_timings) {
987		iface->timings.nvddr = *spec_timings;
988		iface->timings.mode = onfi_find_closest_nvddr_mode(spec_timings);
989
990		/* Verify the controller supports the requested interface */
991		ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY,
992					   iface);
993		if (!ret) {
994			chip->best_interface_config = iface;
995			return ret;
996		}
997
998		/* Fallback to slower modes */
999		best_mode = iface->timings.mode;
1000	} else if (chip->parameters.onfi) {
1001		best_mode = fls(chip->parameters.onfi->nvddr_timing_modes) - 1;
1002	}
1003
1004	for (mode = best_mode; mode >= 0; mode--) {
1005		onfi_fill_interface_config(chip, iface, NAND_NVDDR_IFACE, mode);
1006
1007		ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY,
1008					   iface);
1009		if (!ret) {
1010			chip->best_interface_config = iface;
1011			break;
1012		}
1013	}
1014
1015	return ret;
1016}
1017
1018/**
1019 * nand_choose_best_timings - Pick up the best NVDDR or SDR timings that both
1020 *                            NAND controller and the NAND chip support
1021 * @chip: the NAND chip
1022 * @iface: the interface configuration (can eventually be updated)
1023 *
1024 * If specific timings are provided, use them. Otherwise, retrieve supported
1025 * timing modes from ONFI information.
1026 */
1027static int nand_choose_best_timings(struct nand_chip *chip,
1028				    struct nand_interface_config *iface)
1029{
1030	int ret;
1031
1032	/* Try the fastest timings: NV-DDR */
1033	ret = nand_choose_best_nvddr_timings(chip, iface, NULL);
1034	if (!ret)
1035		return 0;
1036
1037	/* Fallback to SDR timings otherwise */
1038	return nand_choose_best_sdr_timings(chip, iface, NULL);
1039}
1040
1041/**
1042 * nand_choose_interface_config - find the best data interface and timings
1043 * @chip: The NAND chip
1044 *
1045 * Find the best data interface and NAND timings supported by the chip
1046 * and the driver. Eventually let the NAND manufacturer driver propose his own
1047 * set of timings.
1048 *
1049 * After this function nand_chip->interface_config is initialized with the best
1050 * timing mode available.
1051 *
1052 * Returns 0 for success or negative error code otherwise.
1053 */
1054static int nand_choose_interface_config(struct nand_chip *chip)
1055{
1056	struct nand_interface_config *iface;
1057	int ret;
1058
1059	if (!nand_controller_can_setup_interface(chip))
1060		return 0;
1061
1062	iface = kzalloc(sizeof(*iface), GFP_KERNEL);
1063	if (!iface)
1064		return -ENOMEM;
1065
1066	if (chip->ops.choose_interface_config)
1067		ret = chip->ops.choose_interface_config(chip, iface);
1068	else
1069		ret = nand_choose_best_timings(chip, iface);
1070
1071	if (ret)
1072		kfree(iface);
1073
1074	return ret;
1075}
1076
1077/**
1078 * nand_fill_column_cycles - fill the column cycles of an address
1079 * @chip: The NAND chip
1080 * @addrs: Array of address cycles to fill
1081 * @offset_in_page: The offset in the page
1082 *
1083 * Fills the first or the first two bytes of the @addrs field depending
1084 * on the NAND bus width and the page size.
1085 *
1086 * Returns the number of cycles needed to encode the column, or a negative
1087 * error code in case one of the arguments is invalid.
1088 */
1089static int nand_fill_column_cycles(struct nand_chip *chip, u8 *addrs,
1090				   unsigned int offset_in_page)
1091{
1092	struct mtd_info *mtd = nand_to_mtd(chip);
1093
1094	/* Make sure the offset is less than the actual page size. */
1095	if (offset_in_page > mtd->writesize + mtd->oobsize)
1096		return -EINVAL;
1097
1098	/*
1099	 * On small page NANDs, there's a dedicated command to access the OOB
1100	 * area, and the column address is relative to the start of the OOB
1101	 * area, not the start of the page. Asjust the address accordingly.
1102	 */
1103	if (mtd->writesize <= 512 && offset_in_page >= mtd->writesize)
1104		offset_in_page -= mtd->writesize;
1105
1106	/*
1107	 * The offset in page is expressed in bytes, if the NAND bus is 16-bit
1108	 * wide, then it must be divided by 2.
1109	 */
1110	if (chip->options & NAND_BUSWIDTH_16) {
1111		if (WARN_ON(offset_in_page % 2))
1112			return -EINVAL;
1113
1114		offset_in_page /= 2;
1115	}
1116
1117	addrs[0] = offset_in_page;
1118
1119	/*
1120	 * Small page NANDs use 1 cycle for the columns, while large page NANDs
1121	 * need 2
1122	 */
1123	if (mtd->writesize <= 512)
1124		return 1;
1125
1126	addrs[1] = offset_in_page >> 8;
1127
1128	return 2;
1129}
1130
1131static int nand_sp_exec_read_page_op(struct nand_chip *chip, unsigned int page,
1132				     unsigned int offset_in_page, void *buf,
1133				     unsigned int len)
1134{
1135	const struct nand_interface_config *conf =
1136		nand_get_interface_config(chip);
1137	struct mtd_info *mtd = nand_to_mtd(chip);
1138	u8 addrs[4];
1139	struct nand_op_instr instrs[] = {
1140		NAND_OP_CMD(NAND_CMD_READ0, 0),
1141		NAND_OP_ADDR(3, addrs, NAND_COMMON_TIMING_NS(conf, tWB_max)),
1142		NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max),
1143				 NAND_COMMON_TIMING_NS(conf, tRR_min)),
1144		NAND_OP_DATA_IN(len, buf, 0),
1145	};
1146	struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1147	int ret;
1148
1149	/* Drop the DATA_IN instruction if len is set to 0. */
1150	if (!len)
1151		op.ninstrs--;
1152
1153	if (offset_in_page >= mtd->writesize)
1154		instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB;
1155	else if (offset_in_page >= 256 &&
1156		 !(chip->options & NAND_BUSWIDTH_16))
1157		instrs[0].ctx.cmd.opcode = NAND_CMD_READ1;
1158
1159	ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1160	if (ret < 0)
1161		return ret;
1162
1163	addrs[1] = page;
1164	addrs[2] = page >> 8;
1165
1166	if (chip->options & NAND_ROW_ADDR_3) {
1167		addrs[3] = page >> 16;
1168		instrs[1].ctx.addr.naddrs++;
1169	}
1170
1171	return nand_exec_op(chip, &op);
1172}
1173
1174static int nand_lp_exec_read_page_op(struct nand_chip *chip, unsigned int page,
1175				     unsigned int offset_in_page, void *buf,
1176				     unsigned int len)
1177{
1178	const struct nand_interface_config *conf =
1179		nand_get_interface_config(chip);
1180	u8 addrs[5];
1181	struct nand_op_instr instrs[] = {
1182		NAND_OP_CMD(NAND_CMD_READ0, 0),
1183		NAND_OP_ADDR(4, addrs, 0),
1184		NAND_OP_CMD(NAND_CMD_READSTART, NAND_COMMON_TIMING_NS(conf, tWB_max)),
1185		NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max),
1186				 NAND_COMMON_TIMING_NS(conf, tRR_min)),
1187		NAND_OP_DATA_IN(len, buf, 0),
1188	};
1189	struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1190	int ret;
1191
1192	/* Drop the DATA_IN instruction if len is set to 0. */
1193	if (!len)
1194		op.ninstrs--;
1195
1196	ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1197	if (ret < 0)
1198		return ret;
1199
1200	addrs[2] = page;
1201	addrs[3] = page >> 8;
1202
1203	if (chip->options & NAND_ROW_ADDR_3) {
1204		addrs[4] = page >> 16;
1205		instrs[1].ctx.addr.naddrs++;
1206	}
1207
1208	return nand_exec_op(chip, &op);
1209}
1210
1211static void rawnand_cap_cont_reads(struct nand_chip *chip)
1212{
1213	struct nand_memory_organization *memorg;
1214	unsigned int pages_per_lun, first_lun, last_lun;
1215
1216	memorg = nanddev_get_memorg(&chip->base);
1217	pages_per_lun = memorg->pages_per_eraseblock * memorg->eraseblocks_per_lun;
1218	first_lun = chip->cont_read.first_page / pages_per_lun;
1219	last_lun = chip->cont_read.last_page / pages_per_lun;
1220
1221	/* Prevent sequential cache reads across LUN boundaries */
1222	if (first_lun != last_lun)
1223		chip->cont_read.pause_page = first_lun * pages_per_lun + pages_per_lun - 1;
1224	else
1225		chip->cont_read.pause_page = chip->cont_read.last_page;
1226}
1227
1228static int nand_lp_exec_cont_read_page_op(struct nand_chip *chip, unsigned int page,
1229					  unsigned int offset_in_page, void *buf,
1230					  unsigned int len, bool check_only)
1231{
1232	const struct nand_interface_config *conf =
1233		nand_get_interface_config(chip);
1234	u8 addrs[5];
1235	struct nand_op_instr start_instrs[] = {
1236		NAND_OP_CMD(NAND_CMD_READ0, 0),
1237		NAND_OP_ADDR(4, addrs, 0),
1238		NAND_OP_CMD(NAND_CMD_READSTART, NAND_COMMON_TIMING_NS(conf, tWB_max)),
1239		NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max), 0),
1240		NAND_OP_CMD(NAND_CMD_READCACHESEQ, NAND_COMMON_TIMING_NS(conf, tWB_max)),
1241		NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max),
1242				 NAND_COMMON_TIMING_NS(conf, tRR_min)),
1243		NAND_OP_DATA_IN(len, buf, 0),
1244	};
1245	struct nand_op_instr cont_instrs[] = {
1246		NAND_OP_CMD(page == chip->cont_read.pause_page ?
1247			    NAND_CMD_READCACHEEND : NAND_CMD_READCACHESEQ,
1248			    NAND_COMMON_TIMING_NS(conf, tWB_max)),
1249		NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max),
1250				 NAND_COMMON_TIMING_NS(conf, tRR_min)),
1251		NAND_OP_DATA_IN(len, buf, 0),
1252	};
1253	struct nand_operation start_op = NAND_OPERATION(chip->cur_cs, start_instrs);
1254	struct nand_operation cont_op = NAND_OPERATION(chip->cur_cs, cont_instrs);
1255	int ret;
1256
1257	if (!len) {
1258		start_op.ninstrs--;
1259		cont_op.ninstrs--;
1260	}
1261
1262	ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1263	if (ret < 0)
1264		return ret;
1265
1266	addrs[2] = page;
1267	addrs[3] = page >> 8;
1268
1269	if (chip->options & NAND_ROW_ADDR_3) {
1270		addrs[4] = page >> 16;
1271		start_instrs[1].ctx.addr.naddrs++;
1272	}
1273
1274	/* Check if cache reads are supported */
1275	if (check_only) {
1276		if (nand_check_op(chip, &start_op) || nand_check_op(chip, &cont_op))
1277			return -EOPNOTSUPP;
1278
1279		return 0;
1280	}
1281
1282	if (page == chip->cont_read.first_page)
1283		ret = nand_exec_op(chip, &start_op);
1284	else
1285		ret = nand_exec_op(chip, &cont_op);
1286	if (ret)
1287		return ret;
1288
1289	if (!chip->cont_read.ongoing)
1290		return 0;
1291
1292	if (page == chip->cont_read.pause_page &&
1293	    page != chip->cont_read.last_page) {
1294		chip->cont_read.first_page = chip->cont_read.pause_page + 1;
1295		rawnand_cap_cont_reads(chip);
1296	} else if (page == chip->cont_read.last_page) {
1297		chip->cont_read.ongoing = false;
1298	}
1299
1300	return 0;
1301}
1302
1303static bool rawnand_cont_read_ongoing(struct nand_chip *chip, unsigned int page)
1304{
1305	return chip->cont_read.ongoing && page >= chip->cont_read.first_page;
1306}
1307
1308/**
1309 * nand_read_page_op - Do a READ PAGE operation
1310 * @chip: The NAND chip
1311 * @page: page to read
1312 * @offset_in_page: offset within the page
1313 * @buf: buffer used to store the data
1314 * @len: length of the buffer
1315 *
1316 * This function issues a READ PAGE operation.
1317 * This function does not select/unselect the CS line.
1318 *
1319 * Returns 0 on success, a negative error code otherwise.
1320 */
1321int nand_read_page_op(struct nand_chip *chip, unsigned int page,
1322		      unsigned int offset_in_page, void *buf, unsigned int len)
1323{
1324	struct mtd_info *mtd = nand_to_mtd(chip);
1325
1326	if (len && !buf)
1327		return -EINVAL;
1328
1329	if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1330		return -EINVAL;
1331
1332	if (nand_has_exec_op(chip)) {
1333		if (mtd->writesize > 512) {
1334			if (rawnand_cont_read_ongoing(chip, page))
1335				return nand_lp_exec_cont_read_page_op(chip, page,
1336								      offset_in_page,
1337								      buf, len, false);
1338			else
1339				return nand_lp_exec_read_page_op(chip, page,
1340								 offset_in_page, buf,
1341								 len);
1342		}
1343
1344		return nand_sp_exec_read_page_op(chip, page, offset_in_page,
1345						 buf, len);
1346	}
1347
1348	chip->legacy.cmdfunc(chip, NAND_CMD_READ0, offset_in_page, page);
1349	if (len)
1350		chip->legacy.read_buf(chip, buf, len);
1351
1352	return 0;
1353}
1354EXPORT_SYMBOL_GPL(nand_read_page_op);
1355
1356/**
1357 * nand_read_param_page_op - Do a READ PARAMETER PAGE operation
1358 * @chip: The NAND chip
1359 * @page: parameter page to read
1360 * @buf: buffer used to store the data
1361 * @len: length of the buffer
1362 *
1363 * This function issues a READ PARAMETER PAGE operation.
1364 * This function does not select/unselect the CS line.
1365 *
1366 * Returns 0 on success, a negative error code otherwise.
1367 */
1368int nand_read_param_page_op(struct nand_chip *chip, u8 page, void *buf,
1369			    unsigned int len)
1370{
1371	unsigned int i;
1372	u8 *p = buf;
1373
1374	if (len && !buf)
1375		return -EINVAL;
1376
1377	if (nand_has_exec_op(chip)) {
1378		const struct nand_interface_config *conf =
1379			nand_get_interface_config(chip);
1380		struct nand_op_instr instrs[] = {
1381			NAND_OP_CMD(NAND_CMD_PARAM, 0),
1382			NAND_OP_ADDR(1, &page,
1383				     NAND_COMMON_TIMING_NS(conf, tWB_max)),
1384			NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max),
1385					 NAND_COMMON_TIMING_NS(conf, tRR_min)),
1386			NAND_OP_8BIT_DATA_IN(len, buf, 0),
1387		};
1388		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1389
1390		/* Drop the DATA_IN instruction if len is set to 0. */
1391		if (!len)
1392			op.ninstrs--;
1393
1394		return nand_exec_op(chip, &op);
1395	}
1396
1397	chip->legacy.cmdfunc(chip, NAND_CMD_PARAM, page, -1);
1398	for (i = 0; i < len; i++)
1399		p[i] = chip->legacy.read_byte(chip);
1400
1401	return 0;
1402}
1403
1404/**
1405 * nand_change_read_column_op - Do a CHANGE READ COLUMN operation
1406 * @chip: The NAND chip
1407 * @offset_in_page: offset within the page
1408 * @buf: buffer used to store the data
1409 * @len: length of the buffer
1410 * @force_8bit: force 8-bit bus access
1411 *
1412 * This function issues a CHANGE READ COLUMN operation.
1413 * This function does not select/unselect the CS line.
1414 *
1415 * Returns 0 on success, a negative error code otherwise.
1416 */
1417int nand_change_read_column_op(struct nand_chip *chip,
1418			       unsigned int offset_in_page, void *buf,
1419			       unsigned int len, bool force_8bit)
1420{
1421	struct mtd_info *mtd = nand_to_mtd(chip);
1422
1423	if (len && !buf)
1424		return -EINVAL;
1425
1426	if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1427		return -EINVAL;
1428
1429	/* Small page NANDs do not support column change. */
1430	if (mtd->writesize <= 512)
1431		return -ENOTSUPP;
1432
1433	if (nand_has_exec_op(chip)) {
1434		const struct nand_interface_config *conf =
1435			nand_get_interface_config(chip);
1436		u8 addrs[2] = {};
1437		struct nand_op_instr instrs[] = {
1438			NAND_OP_CMD(NAND_CMD_RNDOUT, 0),
1439			NAND_OP_ADDR(2, addrs, 0),
1440			NAND_OP_CMD(NAND_CMD_RNDOUTSTART,
1441				    NAND_COMMON_TIMING_NS(conf, tCCS_min)),
1442			NAND_OP_DATA_IN(len, buf, 0),
1443		};
1444		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1445		int ret;
1446
1447		ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1448		if (ret < 0)
1449			return ret;
1450
1451		/* Drop the DATA_IN instruction if len is set to 0. */
1452		if (!len)
1453			op.ninstrs--;
1454
1455		instrs[3].ctx.data.force_8bit = force_8bit;
1456
1457		return nand_exec_op(chip, &op);
1458	}
1459
1460	chip->legacy.cmdfunc(chip, NAND_CMD_RNDOUT, offset_in_page, -1);
1461	if (len)
1462		chip->legacy.read_buf(chip, buf, len);
1463
1464	return 0;
1465}
1466EXPORT_SYMBOL_GPL(nand_change_read_column_op);
1467
1468/**
1469 * nand_read_oob_op - Do a READ OOB operation
1470 * @chip: The NAND chip
1471 * @page: page to read
1472 * @offset_in_oob: offset within the OOB area
1473 * @buf: buffer used to store the data
1474 * @len: length of the buffer
1475 *
1476 * This function issues a READ OOB operation.
1477 * This function does not select/unselect the CS line.
1478 *
1479 * Returns 0 on success, a negative error code otherwise.
1480 */
1481int nand_read_oob_op(struct nand_chip *chip, unsigned int page,
1482		     unsigned int offset_in_oob, void *buf, unsigned int len)
1483{
1484	struct mtd_info *mtd = nand_to_mtd(chip);
1485
1486	if (len && !buf)
1487		return -EINVAL;
1488
1489	if (offset_in_oob + len > mtd->oobsize)
1490		return -EINVAL;
1491
1492	if (nand_has_exec_op(chip))
1493		return nand_read_page_op(chip, page,
1494					 mtd->writesize + offset_in_oob,
1495					 buf, len);
1496
1497	chip->legacy.cmdfunc(chip, NAND_CMD_READOOB, offset_in_oob, page);
1498	if (len)
1499		chip->legacy.read_buf(chip, buf, len);
1500
1501	return 0;
1502}
1503EXPORT_SYMBOL_GPL(nand_read_oob_op);
1504
1505static int nand_exec_prog_page_op(struct nand_chip *chip, unsigned int page,
1506				  unsigned int offset_in_page, const void *buf,
1507				  unsigned int len, bool prog)
1508{
1509	const struct nand_interface_config *conf =
1510		nand_get_interface_config(chip);
1511	struct mtd_info *mtd = nand_to_mtd(chip);
1512	u8 addrs[5] = {};
1513	struct nand_op_instr instrs[] = {
1514		/*
1515		 * The first instruction will be dropped if we're dealing
1516		 * with a large page NAND and adjusted if we're dealing
1517		 * with a small page NAND and the page offset is > 255.
1518		 */
1519		NAND_OP_CMD(NAND_CMD_READ0, 0),
1520		NAND_OP_CMD(NAND_CMD_SEQIN, 0),
1521		NAND_OP_ADDR(0, addrs, NAND_COMMON_TIMING_NS(conf, tADL_min)),
1522		NAND_OP_DATA_OUT(len, buf, 0),
1523		NAND_OP_CMD(NAND_CMD_PAGEPROG,
1524			    NAND_COMMON_TIMING_NS(conf, tWB_max)),
1525		NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tPROG_max), 0),
1526	};
1527	struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1528	int naddrs = nand_fill_column_cycles(chip, addrs, offset_in_page);
1529
1530	if (naddrs < 0)
1531		return naddrs;
1532
1533	addrs[naddrs++] = page;
1534	addrs[naddrs++] = page >> 8;
1535	if (chip->options & NAND_ROW_ADDR_3)
1536		addrs[naddrs++] = page >> 16;
1537
1538	instrs[2].ctx.addr.naddrs = naddrs;
1539
1540	/* Drop the last two instructions if we're not programming the page. */
1541	if (!prog) {
1542		op.ninstrs -= 2;
1543		/* Also drop the DATA_OUT instruction if empty. */
1544		if (!len)
1545			op.ninstrs--;
1546	}
1547
1548	if (mtd->writesize <= 512) {
1549		/*
1550		 * Small pages need some more tweaking: we have to adjust the
1551		 * first instruction depending on the page offset we're trying
1552		 * to access.
1553		 */
1554		if (offset_in_page >= mtd->writesize)
1555			instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB;
1556		else if (offset_in_page >= 256 &&
1557			 !(chip->options & NAND_BUSWIDTH_16))
1558			instrs[0].ctx.cmd.opcode = NAND_CMD_READ1;
1559	} else {
1560		/*
1561		 * Drop the first command if we're dealing with a large page
1562		 * NAND.
1563		 */
1564		op.instrs++;
1565		op.ninstrs--;
1566	}
1567
1568	return nand_exec_op(chip, &op);
1569}
1570
1571/**
1572 * nand_prog_page_begin_op - starts a PROG PAGE operation
1573 * @chip: The NAND chip
1574 * @page: page to write
1575 * @offset_in_page: offset within the page
1576 * @buf: buffer containing the data to write to the page
1577 * @len: length of the buffer
1578 *
1579 * This function issues the first half of a PROG PAGE operation.
1580 * This function does not select/unselect the CS line.
1581 *
1582 * Returns 0 on success, a negative error code otherwise.
1583 */
1584int nand_prog_page_begin_op(struct nand_chip *chip, unsigned int page,
1585			    unsigned int offset_in_page, const void *buf,
1586			    unsigned int len)
1587{
1588	struct mtd_info *mtd = nand_to_mtd(chip);
1589
1590	if (len && !buf)
1591		return -EINVAL;
1592
1593	if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1594		return -EINVAL;
1595
1596	if (nand_has_exec_op(chip))
1597		return nand_exec_prog_page_op(chip, page, offset_in_page, buf,
1598					      len, false);
1599
1600	chip->legacy.cmdfunc(chip, NAND_CMD_SEQIN, offset_in_page, page);
1601
1602	if (buf)
1603		chip->legacy.write_buf(chip, buf, len);
1604
1605	return 0;
1606}
1607EXPORT_SYMBOL_GPL(nand_prog_page_begin_op);
1608
1609/**
1610 * nand_prog_page_end_op - ends a PROG PAGE operation
1611 * @chip: The NAND chip
1612 *
1613 * This function issues the second half of a PROG PAGE operation.
1614 * This function does not select/unselect the CS line.
1615 *
1616 * Returns 0 on success, a negative error code otherwise.
1617 */
1618int nand_prog_page_end_op(struct nand_chip *chip)
1619{
1620	int ret;
1621	u8 status;
1622
1623	if (nand_has_exec_op(chip)) {
1624		const struct nand_interface_config *conf =
1625			nand_get_interface_config(chip);
1626		struct nand_op_instr instrs[] = {
1627			NAND_OP_CMD(NAND_CMD_PAGEPROG,
1628				    NAND_COMMON_TIMING_NS(conf, tWB_max)),
1629			NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tPROG_max),
1630					 0),
1631		};
1632		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1633
1634		ret = nand_exec_op(chip, &op);
1635		if (ret)
1636			return ret;
1637
1638		ret = nand_status_op(chip, &status);
1639		if (ret)
1640			return ret;
1641	} else {
1642		chip->legacy.cmdfunc(chip, NAND_CMD_PAGEPROG, -1, -1);
1643		ret = chip->legacy.waitfunc(chip);
1644		if (ret < 0)
1645			return ret;
1646
1647		status = ret;
1648	}
1649
1650	if (status & NAND_STATUS_FAIL)
1651		return -EIO;
1652
1653	return 0;
1654}
1655EXPORT_SYMBOL_GPL(nand_prog_page_end_op);
1656
1657/**
1658 * nand_prog_page_op - Do a full PROG PAGE operation
1659 * @chip: The NAND chip
1660 * @page: page to write
1661 * @offset_in_page: offset within the page
1662 * @buf: buffer containing the data to write to the page
1663 * @len: length of the buffer
1664 *
1665 * This function issues a full PROG PAGE operation.
1666 * This function does not select/unselect the CS line.
1667 *
1668 * Returns 0 on success, a negative error code otherwise.
1669 */
1670int nand_prog_page_op(struct nand_chip *chip, unsigned int page,
1671		      unsigned int offset_in_page, const void *buf,
1672		      unsigned int len)
1673{
1674	struct mtd_info *mtd = nand_to_mtd(chip);
1675	u8 status;
1676	int ret;
1677
1678	if (!len || !buf)
1679		return -EINVAL;
1680
1681	if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1682		return -EINVAL;
1683
1684	if (nand_has_exec_op(chip)) {
1685		ret = nand_exec_prog_page_op(chip, page, offset_in_page, buf,
1686						len, true);
1687		if (ret)
1688			return ret;
1689
1690		ret = nand_status_op(chip, &status);
1691		if (ret)
1692			return ret;
1693	} else {
1694		chip->legacy.cmdfunc(chip, NAND_CMD_SEQIN, offset_in_page,
1695				     page);
1696		chip->legacy.write_buf(chip, buf, len);
1697		chip->legacy.cmdfunc(chip, NAND_CMD_PAGEPROG, -1, -1);
1698		ret = chip->legacy.waitfunc(chip);
1699		if (ret < 0)
1700			return ret;
1701
1702		status = ret;
1703	}
1704
1705	if (status & NAND_STATUS_FAIL)
1706		return -EIO;
1707
1708	return 0;
1709}
1710EXPORT_SYMBOL_GPL(nand_prog_page_op);
1711
1712/**
1713 * nand_change_write_column_op - Do a CHANGE WRITE COLUMN operation
1714 * @chip: The NAND chip
1715 * @offset_in_page: offset within the page
1716 * @buf: buffer containing the data to send to the NAND
1717 * @len: length of the buffer
1718 * @force_8bit: force 8-bit bus access
1719 *
1720 * This function issues a CHANGE WRITE COLUMN operation.
1721 * This function does not select/unselect the CS line.
1722 *
1723 * Returns 0 on success, a negative error code otherwise.
1724 */
1725int nand_change_write_column_op(struct nand_chip *chip,
1726				unsigned int offset_in_page,
1727				const void *buf, unsigned int len,
1728				bool force_8bit)
1729{
1730	struct mtd_info *mtd = nand_to_mtd(chip);
1731
1732	if (len && !buf)
1733		return -EINVAL;
1734
1735	if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1736		return -EINVAL;
1737
1738	/* Small page NANDs do not support column change. */
1739	if (mtd->writesize <= 512)
1740		return -ENOTSUPP;
1741
1742	if (nand_has_exec_op(chip)) {
1743		const struct nand_interface_config *conf =
1744			nand_get_interface_config(chip);
1745		u8 addrs[2];
1746		struct nand_op_instr instrs[] = {
1747			NAND_OP_CMD(NAND_CMD_RNDIN, 0),
1748			NAND_OP_ADDR(2, addrs, NAND_COMMON_TIMING_NS(conf, tCCS_min)),
1749			NAND_OP_DATA_OUT(len, buf, 0),
1750		};
1751		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1752		int ret;
1753
1754		ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1755		if (ret < 0)
1756			return ret;
1757
1758		instrs[2].ctx.data.force_8bit = force_8bit;
1759
1760		/* Drop the DATA_OUT instruction if len is set to 0. */
1761		if (!len)
1762			op.ninstrs--;
1763
1764		return nand_exec_op(chip, &op);
1765	}
1766
1767	chip->legacy.cmdfunc(chip, NAND_CMD_RNDIN, offset_in_page, -1);
1768	if (len)
1769		chip->legacy.write_buf(chip, buf, len);
1770
1771	return 0;
1772}
1773EXPORT_SYMBOL_GPL(nand_change_write_column_op);
1774
1775/**
1776 * nand_readid_op - Do a READID operation
1777 * @chip: The NAND chip
1778 * @addr: address cycle to pass after the READID command
1779 * @buf: buffer used to store the ID
1780 * @len: length of the buffer
1781 *
1782 * This function sends a READID command and reads back the ID returned by the
1783 * NAND.
1784 * This function does not select/unselect the CS line.
1785 *
1786 * Returns 0 on success, a negative error code otherwise.
1787 */
1788int nand_readid_op(struct nand_chip *chip, u8 addr, void *buf,
1789		   unsigned int len)
1790{
1791	unsigned int i;
1792	u8 *id = buf, *ddrbuf = NULL;
1793
1794	if (len && !buf)
1795		return -EINVAL;
1796
1797	if (nand_has_exec_op(chip)) {
1798		const struct nand_interface_config *conf =
1799			nand_get_interface_config(chip);
1800		struct nand_op_instr instrs[] = {
1801			NAND_OP_CMD(NAND_CMD_READID, 0),
1802			NAND_OP_ADDR(1, &addr,
1803				     NAND_COMMON_TIMING_NS(conf, tADL_min)),
1804			NAND_OP_8BIT_DATA_IN(len, buf, 0),
1805		};
1806		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1807		int ret;
1808
1809		/* READ_ID data bytes are received twice in NV-DDR mode */
1810		if (len && nand_interface_is_nvddr(conf)) {
1811			ddrbuf = kzalloc(len * 2, GFP_KERNEL);
1812			if (!ddrbuf)
1813				return -ENOMEM;
1814
1815			instrs[2].ctx.data.len *= 2;
1816			instrs[2].ctx.data.buf.in = ddrbuf;
1817		}
1818
1819		/* Drop the DATA_IN instruction if len is set to 0. */
1820		if (!len)
1821			op.ninstrs--;
1822
1823		ret = nand_exec_op(chip, &op);
1824		if (!ret && len && nand_interface_is_nvddr(conf)) {
1825			for (i = 0; i < len; i++)
1826				id[i] = ddrbuf[i * 2];
1827		}
1828
1829		kfree(ddrbuf);
1830
1831		return ret;
1832	}
1833
1834	chip->legacy.cmdfunc(chip, NAND_CMD_READID, addr, -1);
1835
1836	for (i = 0; i < len; i++)
1837		id[i] = chip->legacy.read_byte(chip);
1838
1839	return 0;
1840}
1841EXPORT_SYMBOL_GPL(nand_readid_op);
1842
1843/**
1844 * nand_status_op - Do a STATUS operation
1845 * @chip: The NAND chip
1846 * @status: out variable to store the NAND status
1847 *
1848 * This function sends a STATUS command and reads back the status returned by
1849 * the NAND.
1850 * This function does not select/unselect the CS line.
1851 *
1852 * Returns 0 on success, a negative error code otherwise.
1853 */
1854int nand_status_op(struct nand_chip *chip, u8 *status)
1855{
1856	if (nand_has_exec_op(chip)) {
1857		const struct nand_interface_config *conf =
1858			nand_get_interface_config(chip);
1859		u8 ddrstatus[2];
1860		struct nand_op_instr instrs[] = {
1861			NAND_OP_CMD(NAND_CMD_STATUS,
1862				    NAND_COMMON_TIMING_NS(conf, tADL_min)),
1863			NAND_OP_8BIT_DATA_IN(1, status, 0),
1864		};
1865		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1866		int ret;
1867
1868		/* The status data byte will be received twice in NV-DDR mode */
1869		if (status && nand_interface_is_nvddr(conf)) {
1870			instrs[1].ctx.data.len *= 2;
1871			instrs[1].ctx.data.buf.in = ddrstatus;
1872		}
1873
1874		if (!status)
1875			op.ninstrs--;
1876
1877		ret = nand_exec_op(chip, &op);
1878		if (!ret && status && nand_interface_is_nvddr(conf))
1879			*status = ddrstatus[0];
1880
1881		return ret;
1882	}
1883
1884	chip->legacy.cmdfunc(chip, NAND_CMD_STATUS, -1, -1);
1885	if (status)
1886		*status = chip->legacy.read_byte(chip);
1887
1888	return 0;
1889}
1890EXPORT_SYMBOL_GPL(nand_status_op);
1891
1892/**
1893 * nand_exit_status_op - Exit a STATUS operation
1894 * @chip: The NAND chip
1895 *
1896 * This function sends a READ0 command to cancel the effect of the STATUS
1897 * command to avoid reading only the status until a new read command is sent.
1898 *
1899 * This function does not select/unselect the CS line.
1900 *
1901 * Returns 0 on success, a negative error code otherwise.
1902 */
1903int nand_exit_status_op(struct nand_chip *chip)
1904{
1905	if (nand_has_exec_op(chip)) {
1906		struct nand_op_instr instrs[] = {
1907			NAND_OP_CMD(NAND_CMD_READ0, 0),
1908		};
1909		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1910
1911		return nand_exec_op(chip, &op);
1912	}
1913
1914	chip->legacy.cmdfunc(chip, NAND_CMD_READ0, -1, -1);
1915
1916	return 0;
1917}
1918EXPORT_SYMBOL_GPL(nand_exit_status_op);
1919
1920/**
1921 * nand_erase_op - Do an erase operation
1922 * @chip: The NAND chip
1923 * @eraseblock: block to erase
1924 *
1925 * This function sends an ERASE command and waits for the NAND to be ready
1926 * before returning.
1927 * This function does not select/unselect the CS line.
1928 *
1929 * Returns 0 on success, a negative error code otherwise.
1930 */
1931int nand_erase_op(struct nand_chip *chip, unsigned int eraseblock)
1932{
1933	unsigned int page = eraseblock <<
1934			    (chip->phys_erase_shift - chip->page_shift);
1935	int ret;
1936	u8 status;
1937
1938	if (nand_has_exec_op(chip)) {
1939		const struct nand_interface_config *conf =
1940			nand_get_interface_config(chip);
1941		u8 addrs[3] = {	page, page >> 8, page >> 16 };
1942		struct nand_op_instr instrs[] = {
1943			NAND_OP_CMD(NAND_CMD_ERASE1, 0),
1944			NAND_OP_ADDR(2, addrs, 0),
1945			NAND_OP_CMD(NAND_CMD_ERASE2,
1946				    NAND_COMMON_TIMING_NS(conf, tWB_max)),
1947			NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tBERS_max),
1948					 0),
1949		};
1950		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1951
1952		if (chip->options & NAND_ROW_ADDR_3)
1953			instrs[1].ctx.addr.naddrs++;
1954
1955		ret = nand_exec_op(chip, &op);
1956		if (ret)
1957			return ret;
1958
1959		ret = nand_status_op(chip, &status);
1960		if (ret)
1961			return ret;
1962	} else {
1963		chip->legacy.cmdfunc(chip, NAND_CMD_ERASE1, -1, page);
1964		chip->legacy.cmdfunc(chip, NAND_CMD_ERASE2, -1, -1);
1965
1966		ret = chip->legacy.waitfunc(chip);
1967		if (ret < 0)
1968			return ret;
1969
1970		status = ret;
1971	}
1972
1973	if (status & NAND_STATUS_FAIL)
1974		return -EIO;
1975
1976	return 0;
1977}
1978EXPORT_SYMBOL_GPL(nand_erase_op);
1979
1980/**
1981 * nand_set_features_op - Do a SET FEATURES operation
1982 * @chip: The NAND chip
1983 * @feature: feature id
1984 * @data: 4 bytes of data
1985 *
1986 * This function sends a SET FEATURES command and waits for the NAND to be
1987 * ready before returning.
1988 * This function does not select/unselect the CS line.
1989 *
1990 * Returns 0 on success, a negative error code otherwise.
1991 */
1992static int nand_set_features_op(struct nand_chip *chip, u8 feature,
1993				const void *data)
1994{
1995	const u8 *params = data;
1996	int i, ret;
1997
1998	if (nand_has_exec_op(chip)) {
1999		const struct nand_interface_config *conf =
2000			nand_get_interface_config(chip);
2001		struct nand_op_instr instrs[] = {
2002			NAND_OP_CMD(NAND_CMD_SET_FEATURES, 0),
2003			NAND_OP_ADDR(1, &feature, NAND_COMMON_TIMING_NS(conf,
2004									tADL_min)),
2005			NAND_OP_8BIT_DATA_OUT(ONFI_SUBFEATURE_PARAM_LEN, data,
2006					      NAND_COMMON_TIMING_NS(conf,
2007								    tWB_max)),
2008			NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tFEAT_max),
2009					 0),
2010		};
2011		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
2012
2013		return nand_exec_op(chip, &op);
2014	}
2015
2016	chip->legacy.cmdfunc(chip, NAND_CMD_SET_FEATURES, feature, -1);
2017	for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
2018		chip->legacy.write_byte(chip, params[i]);
2019
2020	ret = chip->legacy.waitfunc(chip);
2021	if (ret < 0)
2022		return ret;
2023
2024	if (ret & NAND_STATUS_FAIL)
2025		return -EIO;
2026
2027	return 0;
2028}
2029
2030/**
2031 * nand_get_features_op - Do a GET FEATURES operation
2032 * @chip: The NAND chip
2033 * @feature: feature id
2034 * @data: 4 bytes of data
2035 *
2036 * This function sends a GET FEATURES command and waits for the NAND to be
2037 * ready before returning.
2038 * This function does not select/unselect the CS line.
2039 *
2040 * Returns 0 on success, a negative error code otherwise.
2041 */
2042static int nand_get_features_op(struct nand_chip *chip, u8 feature,
2043				void *data)
2044{
2045	u8 *params = data, ddrbuf[ONFI_SUBFEATURE_PARAM_LEN * 2];
2046	int i;
2047
2048	if (nand_has_exec_op(chip)) {
2049		const struct nand_interface_config *conf =
2050			nand_get_interface_config(chip);
2051		struct nand_op_instr instrs[] = {
2052			NAND_OP_CMD(NAND_CMD_GET_FEATURES, 0),
2053			NAND_OP_ADDR(1, &feature,
2054				     NAND_COMMON_TIMING_NS(conf, tWB_max)),
2055			NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tFEAT_max),
2056					 NAND_COMMON_TIMING_NS(conf, tRR_min)),
2057			NAND_OP_8BIT_DATA_IN(ONFI_SUBFEATURE_PARAM_LEN,
2058					     data, 0),
2059		};
2060		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
2061		int ret;
2062
2063		/* GET_FEATURE data bytes are received twice in NV-DDR mode */
2064		if (nand_interface_is_nvddr(conf)) {
2065			instrs[3].ctx.data.len *= 2;
2066			instrs[3].ctx.data.buf.in = ddrbuf;
2067		}
2068
2069		ret = nand_exec_op(chip, &op);
2070		if (nand_interface_is_nvddr(conf)) {
2071			for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; i++)
2072				params[i] = ddrbuf[i * 2];
2073		}
2074
2075		return ret;
2076	}
2077
2078	chip->legacy.cmdfunc(chip, NAND_CMD_GET_FEATURES, feature, -1);
2079	for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
2080		params[i] = chip->legacy.read_byte(chip);
2081
2082	return 0;
2083}
2084
2085static int nand_wait_rdy_op(struct nand_chip *chip, unsigned int timeout_ms,
2086			    unsigned int delay_ns)
2087{
2088	if (nand_has_exec_op(chip)) {
2089		struct nand_op_instr instrs[] = {
2090			NAND_OP_WAIT_RDY(PSEC_TO_MSEC(timeout_ms),
2091					 PSEC_TO_NSEC(delay_ns)),
2092		};
2093		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
2094
2095		return nand_exec_op(chip, &op);
2096	}
2097
2098	/* Apply delay or wait for ready/busy pin */
2099	if (!chip->legacy.dev_ready)
2100		udelay(chip->legacy.chip_delay);
2101	else
2102		nand_wait_ready(chip);
2103
2104	return 0;
2105}
2106
2107/**
2108 * nand_reset_op - Do a reset operation
2109 * @chip: The NAND chip
2110 *
2111 * This function sends a RESET command and waits for the NAND to be ready
2112 * before returning.
2113 * This function does not select/unselect the CS line.
2114 *
2115 * Returns 0 on success, a negative error code otherwise.
2116 */
2117int nand_reset_op(struct nand_chip *chip)
2118{
2119	if (nand_has_exec_op(chip)) {
2120		const struct nand_interface_config *conf =
2121			nand_get_interface_config(chip);
2122		struct nand_op_instr instrs[] = {
2123			NAND_OP_CMD(NAND_CMD_RESET,
2124				    NAND_COMMON_TIMING_NS(conf, tWB_max)),
2125			NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tRST_max),
2126					 0),
2127		};
2128		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
2129
2130		return nand_exec_op(chip, &op);
2131	}
2132
2133	chip->legacy.cmdfunc(chip, NAND_CMD_RESET, -1, -1);
2134
2135	return 0;
2136}
2137EXPORT_SYMBOL_GPL(nand_reset_op);
2138
2139/**
2140 * nand_read_data_op - Read data from the NAND
2141 * @chip: The NAND chip
2142 * @buf: buffer used to store the data
2143 * @len: length of the buffer
2144 * @force_8bit: force 8-bit bus access
2145 * @check_only: do not actually run the command, only checks if the
2146 *              controller driver supports it
2147 *
2148 * This function does a raw data read on the bus. Usually used after launching
2149 * another NAND operation like nand_read_page_op().
2150 * This function does not select/unselect the CS line.
2151 *
2152 * Returns 0 on success, a negative error code otherwise.
2153 */
2154int nand_read_data_op(struct nand_chip *chip, void *buf, unsigned int len,
2155		      bool force_8bit, bool check_only)
2156{
2157	if (!len || !buf)
2158		return -EINVAL;
2159
2160	if (nand_has_exec_op(chip)) {
2161		const struct nand_interface_config *conf =
2162			nand_get_interface_config(chip);
2163		struct nand_op_instr instrs[] = {
2164			NAND_OP_DATA_IN(len, buf, 0),
2165		};
2166		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
2167		u8 *ddrbuf = NULL;
2168		int ret, i;
2169
2170		instrs[0].ctx.data.force_8bit = force_8bit;
2171
2172		/*
2173		 * Parameter payloads (ID, status, features, etc) do not go
2174		 * through the same pipeline as regular data, hence the
2175		 * force_8bit flag must be set and this also indicates that in
2176		 * case NV-DDR timings are being used the data will be received
2177		 * twice.
2178		 */
2179		if (force_8bit && nand_interface_is_nvddr(conf)) {
2180			ddrbuf = kzalloc(len * 2, GFP_KERNEL);
2181			if (!ddrbuf)
2182				return -ENOMEM;
2183
2184			instrs[0].ctx.data.len *= 2;
2185			instrs[0].ctx.data.buf.in = ddrbuf;
2186		}
2187
2188		if (check_only) {
2189			ret = nand_check_op(chip, &op);
2190			kfree(ddrbuf);
2191			return ret;
2192		}
2193
2194		ret = nand_exec_op(chip, &op);
2195		if (!ret && force_8bit && nand_interface_is_nvddr(conf)) {
2196			u8 *dst = buf;
2197
2198			for (i = 0; i < len; i++)
2199				dst[i] = ddrbuf[i * 2];
2200		}
2201
2202		kfree(ddrbuf);
2203
2204		return ret;
2205	}
2206
2207	if (check_only)
2208		return 0;
2209
2210	if (force_8bit) {
2211		u8 *p = buf;
2212		unsigned int i;
2213
2214		for (i = 0; i < len; i++)
2215			p[i] = chip->legacy.read_byte(chip);
2216	} else {
2217		chip->legacy.read_buf(chip, buf, len);
2218	}
2219
2220	return 0;
2221}
2222EXPORT_SYMBOL_GPL(nand_read_data_op);
2223
2224/**
2225 * nand_write_data_op - Write data from the NAND
2226 * @chip: The NAND chip
2227 * @buf: buffer containing the data to send on the bus
2228 * @len: length of the buffer
2229 * @force_8bit: force 8-bit bus access
2230 *
2231 * This function does a raw data write on the bus. Usually used after launching
2232 * another NAND operation like nand_write_page_begin_op().
2233 * This function does not select/unselect the CS line.
2234 *
2235 * Returns 0 on success, a negative error code otherwise.
2236 */
2237int nand_write_data_op(struct nand_chip *chip, const void *buf,
2238		       unsigned int len, bool force_8bit)
2239{
2240	if (!len || !buf)
2241		return -EINVAL;
2242
2243	if (nand_has_exec_op(chip)) {
2244		struct nand_op_instr instrs[] = {
2245			NAND_OP_DATA_OUT(len, buf, 0),
2246		};
2247		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
2248
2249		instrs[0].ctx.data.force_8bit = force_8bit;
2250
2251		return nand_exec_op(chip, &op);
2252	}
2253
2254	if (force_8bit) {
2255		const u8 *p = buf;
2256		unsigned int i;
2257
2258		for (i = 0; i < len; i++)
2259			chip->legacy.write_byte(chip, p[i]);
2260	} else {
2261		chip->legacy.write_buf(chip, buf, len);
2262	}
2263
2264	return 0;
2265}
2266EXPORT_SYMBOL_GPL(nand_write_data_op);
2267
2268/**
2269 * struct nand_op_parser_ctx - Context used by the parser
2270 * @instrs: array of all the instructions that must be addressed
2271 * @ninstrs: length of the @instrs array
2272 * @subop: Sub-operation to be passed to the NAND controller
2273 *
2274 * This structure is used by the core to split NAND operations into
2275 * sub-operations that can be handled by the NAND controller.
2276 */
2277struct nand_op_parser_ctx {
2278	const struct nand_op_instr *instrs;
2279	unsigned int ninstrs;
2280	struct nand_subop subop;
2281};
2282
2283/**
2284 * nand_op_parser_must_split_instr - Checks if an instruction must be split
2285 * @pat: the parser pattern element that matches @instr
2286 * @instr: pointer to the instruction to check
2287 * @start_offset: this is an in/out parameter. If @instr has already been
2288 *		  split, then @start_offset is the offset from which to start
2289 *		  (either an address cycle or an offset in the data buffer).
2290 *		  Conversely, if the function returns true (ie. instr must be
2291 *		  split), this parameter is updated to point to the first
2292 *		  data/address cycle that has not been taken care of.
2293 *
2294 * Some NAND controllers are limited and cannot send X address cycles with a
2295 * unique operation, or cannot read/write more than Y bytes at the same time.
2296 * In this case, split the instruction that does not fit in a single
2297 * controller-operation into two or more chunks.
2298 *
2299 * Returns true if the instruction must be split, false otherwise.
2300 * The @start_offset parameter is also updated to the offset at which the next
2301 * bundle of instruction must start (if an address or a data instruction).
2302 */
2303static bool
2304nand_op_parser_must_split_instr(const struct nand_op_parser_pattern_elem *pat,
2305				const struct nand_op_instr *instr,
2306				unsigned int *start_offset)
2307{
2308	switch (pat->type) {
2309	case NAND_OP_ADDR_INSTR:
2310		if (!pat->ctx.addr.maxcycles)
2311			break;
2312
2313		if (instr->ctx.addr.naddrs - *start_offset >
2314		    pat->ctx.addr.maxcycles) {
2315			*start_offset += pat->ctx.addr.maxcycles;
2316			return true;
2317		}
2318		break;
2319
2320	case NAND_OP_DATA_IN_INSTR:
2321	case NAND_OP_DATA_OUT_INSTR:
2322		if (!pat->ctx.data.maxlen)
2323			break;
2324
2325		if (instr->ctx.data.len - *start_offset >
2326		    pat->ctx.data.maxlen) {
2327			*start_offset += pat->ctx.data.maxlen;
2328			return true;
2329		}
2330		break;
2331
2332	default:
2333		break;
2334	}
2335
2336	return false;
2337}
2338
2339/**
2340 * nand_op_parser_match_pat - Checks if a pattern matches the instructions
2341 *			      remaining in the parser context
2342 * @pat: the pattern to test
2343 * @ctx: the parser context structure to match with the pattern @pat
2344 *
2345 * Check if @pat matches the set or a sub-set of instructions remaining in @ctx.
2346 * Returns true if this is the case, false ortherwise. When true is returned,
2347 * @ctx->subop is updated with the set of instructions to be passed to the
2348 * controller driver.
2349 */
2350static bool
2351nand_op_parser_match_pat(const struct nand_op_parser_pattern *pat,
2352			 struct nand_op_parser_ctx *ctx)
2353{
2354	unsigned int instr_offset = ctx->subop.first_instr_start_off;
2355	const struct nand_op_instr *end = ctx->instrs + ctx->ninstrs;
2356	const struct nand_op_instr *instr = ctx->subop.instrs;
2357	unsigned int i, ninstrs;
2358
2359	for (i = 0, ninstrs = 0; i < pat->nelems && instr < end; i++) {
2360		/*
2361		 * The pattern instruction does not match the operation
2362		 * instruction. If the instruction is marked optional in the
2363		 * pattern definition, we skip the pattern element and continue
2364		 * to the next one. If the element is mandatory, there's no
2365		 * match and we can return false directly.
2366		 */
2367		if (instr->type != pat->elems[i].type) {
2368			if (!pat->elems[i].optional)
2369				return false;
2370
2371			continue;
2372		}
2373
2374		/*
2375		 * Now check the pattern element constraints. If the pattern is
2376		 * not able to handle the whole instruction in a single step,
2377		 * we have to split it.
2378		 * The last_instr_end_off value comes back updated to point to
2379		 * the position where we have to split the instruction (the
2380		 * start of the next subop chunk).
2381		 */
2382		if (nand_op_parser_must_split_instr(&pat->elems[i], instr,
2383						    &instr_offset)) {
2384			ninstrs++;
2385			i++;
2386			break;
2387		}
2388
2389		instr++;
2390		ninstrs++;
2391		instr_offset = 0;
2392	}
2393
2394	/*
2395	 * This can happen if all instructions of a pattern are optional.
2396	 * Still, if there's not at least one instruction handled by this
2397	 * pattern, this is not a match, and we should try the next one (if
2398	 * any).
2399	 */
2400	if (!ninstrs)
2401		return false;
2402
2403	/*
2404	 * We had a match on the pattern head, but the pattern may be longer
2405	 * than the instructions we're asked to execute. We need to make sure
2406	 * there's no mandatory elements in the pattern tail.
2407	 */
2408	for (; i < pat->nelems; i++) {
2409		if (!pat->elems[i].optional)
2410			return false;
2411	}
2412
2413	/*
2414	 * We have a match: update the subop structure accordingly and return
2415	 * true.
2416	 */
2417	ctx->subop.ninstrs = ninstrs;
2418	ctx->subop.last_instr_end_off = instr_offset;
2419
2420	return true;
2421}
2422
2423#if IS_ENABLED(CONFIG_DYNAMIC_DEBUG) || defined(DEBUG)
2424static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx)
2425{
2426	const struct nand_op_instr *instr;
2427	char *prefix = "      ";
2428	unsigned int i;
2429
2430	pr_debug("executing subop (CS%d):\n", ctx->subop.cs);
2431
2432	for (i = 0; i < ctx->ninstrs; i++) {
2433		instr = &ctx->instrs[i];
2434
2435		if (instr == &ctx->subop.instrs[0])
2436			prefix = "    ->";
2437
2438		nand_op_trace(prefix, instr);
2439
2440		if (instr == &ctx->subop.instrs[ctx->subop.ninstrs - 1])
2441			prefix = "      ";
2442	}
2443}
2444#else
2445static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx)
2446{
2447	/* NOP */
2448}
2449#endif
2450
2451static int nand_op_parser_cmp_ctx(const struct nand_op_parser_ctx *a,
2452				  const struct nand_op_parser_ctx *b)
2453{
2454	if (a->subop.ninstrs < b->subop.ninstrs)
2455		return -1;
2456	else if (a->subop.ninstrs > b->subop.ninstrs)
2457		return 1;
2458
2459	if (a->subop.last_instr_end_off < b->subop.last_instr_end_off)
2460		return -1;
2461	else if (a->subop.last_instr_end_off > b->subop.last_instr_end_off)
2462		return 1;
2463
2464	return 0;
2465}
2466
2467/**
2468 * nand_op_parser_exec_op - exec_op parser
2469 * @chip: the NAND chip
2470 * @parser: patterns description provided by the controller driver
2471 * @op: the NAND operation to address
2472 * @check_only: when true, the function only checks if @op can be handled but
2473 *		does not execute the operation
2474 *
2475 * Helper function designed to ease integration of NAND controller drivers that
2476 * only support a limited set of instruction sequences. The supported sequences
2477 * are described in @parser, and the framework takes care of splitting @op into
2478 * multiple sub-operations (if required) and pass them back to the ->exec()
2479 * callback of the matching pattern if @check_only is set to false.
2480 *
2481 * NAND controller drivers should call this function from their own ->exec_op()
2482 * implementation.
2483 *
2484 * Returns 0 on success, a negative error code otherwise. A failure can be
2485 * caused by an unsupported operation (none of the supported patterns is able
2486 * to handle the requested operation), or an error returned by one of the
2487 * matching pattern->exec() hook.
2488 */
2489int nand_op_parser_exec_op(struct nand_chip *chip,
2490			   const struct nand_op_parser *parser,
2491			   const struct nand_operation *op, bool check_only)
2492{
2493	struct nand_op_parser_ctx ctx = {
2494		.subop.cs = op->cs,
2495		.subop.instrs = op->instrs,
2496		.instrs = op->instrs,
2497		.ninstrs = op->ninstrs,
2498	};
2499	unsigned int i;
2500
2501	while (ctx.subop.instrs < op->instrs + op->ninstrs) {
2502		const struct nand_op_parser_pattern *pattern;
2503		struct nand_op_parser_ctx best_ctx;
2504		int ret, best_pattern = -1;
2505
2506		for (i = 0; i < parser->npatterns; i++) {
2507			struct nand_op_parser_ctx test_ctx = ctx;
2508
2509			pattern = &parser->patterns[i];
2510			if (!nand_op_parser_match_pat(pattern, &test_ctx))
2511				continue;
2512
2513			if (best_pattern >= 0 &&
2514			    nand_op_parser_cmp_ctx(&test_ctx, &best_ctx) <= 0)
2515				continue;
2516
2517			best_pattern = i;
2518			best_ctx = test_ctx;
2519		}
2520
2521		if (best_pattern < 0) {
2522			pr_debug("->exec_op() parser: pattern not found!\n");
2523			return -ENOTSUPP;
2524		}
2525
2526		ctx = best_ctx;
2527		nand_op_parser_trace(&ctx);
2528
2529		if (!check_only) {
2530			pattern = &parser->patterns[best_pattern];
2531			ret = pattern->exec(chip, &ctx.subop);
2532			if (ret)
2533				return ret;
2534		}
2535
2536		/*
2537		 * Update the context structure by pointing to the start of the
2538		 * next subop.
2539		 */
2540		ctx.subop.instrs = ctx.subop.instrs + ctx.subop.ninstrs;
2541		if (ctx.subop.last_instr_end_off)
2542			ctx.subop.instrs -= 1;
2543
2544		ctx.subop.first_instr_start_off = ctx.subop.last_instr_end_off;
2545	}
2546
2547	return 0;
2548}
2549EXPORT_SYMBOL_GPL(nand_op_parser_exec_op);
2550
2551static bool nand_instr_is_data(const struct nand_op_instr *instr)
2552{
2553	return instr && (instr->type == NAND_OP_DATA_IN_INSTR ||
2554			 instr->type == NAND_OP_DATA_OUT_INSTR);
2555}
2556
2557static bool nand_subop_instr_is_valid(const struct nand_subop *subop,
2558				      unsigned int instr_idx)
2559{
2560	return subop && instr_idx < subop->ninstrs;
2561}
2562
2563static unsigned int nand_subop_get_start_off(const struct nand_subop *subop,
2564					     unsigned int instr_idx)
2565{
2566	if (instr_idx)
2567		return 0;
2568
2569	return subop->first_instr_start_off;
2570}
2571
2572/**
2573 * nand_subop_get_addr_start_off - Get the start offset in an address array
2574 * @subop: The entire sub-operation
2575 * @instr_idx: Index of the instruction inside the sub-operation
2576 *
2577 * During driver development, one could be tempted to directly use the
2578 * ->addr.addrs field of address instructions. This is wrong as address
2579 * instructions might be split.
2580 *
2581 * Given an address instruction, returns the offset of the first cycle to issue.
2582 */
2583unsigned int nand_subop_get_addr_start_off(const struct nand_subop *subop,
2584					   unsigned int instr_idx)
2585{
2586	if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2587		    subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR))
2588		return 0;
2589
2590	return nand_subop_get_start_off(subop, instr_idx);
2591}
2592EXPORT_SYMBOL_GPL(nand_subop_get_addr_start_off);
2593
2594/**
2595 * nand_subop_get_num_addr_cyc - Get the remaining address cycles to assert
2596 * @subop: The entire sub-operation
2597 * @instr_idx: Index of the instruction inside the sub-operation
2598 *
2599 * During driver development, one could be tempted to directly use the
2600 * ->addr->naddrs field of a data instruction. This is wrong as instructions
2601 * might be split.
2602 *
2603 * Given an address instruction, returns the number of address cycle to issue.
2604 */
2605unsigned int nand_subop_get_num_addr_cyc(const struct nand_subop *subop,
2606					 unsigned int instr_idx)
2607{
2608	int start_off, end_off;
2609
2610	if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2611		    subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR))
2612		return 0;
2613
2614	start_off = nand_subop_get_addr_start_off(subop, instr_idx);
2615
2616	if (instr_idx == subop->ninstrs - 1 &&
2617	    subop->last_instr_end_off)
2618		end_off = subop->last_instr_end_off;
2619	else
2620		end_off = subop->instrs[instr_idx].ctx.addr.naddrs;
2621
2622	return end_off - start_off;
2623}
2624EXPORT_SYMBOL_GPL(nand_subop_get_num_addr_cyc);
2625
2626/**
2627 * nand_subop_get_data_start_off - Get the start offset in a data array
2628 * @subop: The entire sub-operation
2629 * @instr_idx: Index of the instruction inside the sub-operation
2630 *
2631 * During driver development, one could be tempted to directly use the
2632 * ->data->buf.{in,out} field of data instructions. This is wrong as data
2633 * instructions might be split.
2634 *
2635 * Given a data instruction, returns the offset to start from.
2636 */
2637unsigned int nand_subop_get_data_start_off(const struct nand_subop *subop,
2638					   unsigned int instr_idx)
2639{
2640	if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2641		    !nand_instr_is_data(&subop->instrs[instr_idx])))
2642		return 0;
2643
2644	return nand_subop_get_start_off(subop, instr_idx);
2645}
2646EXPORT_SYMBOL_GPL(nand_subop_get_data_start_off);
2647
2648/**
2649 * nand_subop_get_data_len - Get the number of bytes to retrieve
2650 * @subop: The entire sub-operation
2651 * @instr_idx: Index of the instruction inside the sub-operation
2652 *
2653 * During driver development, one could be tempted to directly use the
2654 * ->data->len field of a data instruction. This is wrong as data instructions
2655 * might be split.
2656 *
2657 * Returns the length of the chunk of data to send/receive.
2658 */
2659unsigned int nand_subop_get_data_len(const struct nand_subop *subop,
2660				     unsigned int instr_idx)
2661{
2662	int start_off = 0, end_off;
2663
2664	if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2665		    !nand_instr_is_data(&subop->instrs[instr_idx])))
2666		return 0;
2667
2668	start_off = nand_subop_get_data_start_off(subop, instr_idx);
2669
2670	if (instr_idx == subop->ninstrs - 1 &&
2671	    subop->last_instr_end_off)
2672		end_off = subop->last_instr_end_off;
2673	else
2674		end_off = subop->instrs[instr_idx].ctx.data.len;
2675
2676	return end_off - start_off;
2677}
2678EXPORT_SYMBOL_GPL(nand_subop_get_data_len);
2679
2680/**
2681 * nand_reset - Reset and initialize a NAND device
2682 * @chip: The NAND chip
2683 * @chipnr: Internal die id
2684 *
2685 * Save the timings data structure, then apply SDR timings mode 0 (see
2686 * nand_reset_interface for details), do the reset operation, and apply
2687 * back the previous timings.
2688 *
2689 * Returns 0 on success, a negative error code otherwise.
2690 */
2691int nand_reset(struct nand_chip *chip, int chipnr)
2692{
2693	int ret;
2694
2695	ret = nand_reset_interface(chip, chipnr);
2696	if (ret)
2697		return ret;
2698
2699	/*
2700	 * The CS line has to be released before we can apply the new NAND
2701	 * interface settings, hence this weird nand_select_target()
2702	 * nand_deselect_target() dance.
2703	 */
2704	nand_select_target(chip, chipnr);
2705	ret = nand_reset_op(chip);
2706	nand_deselect_target(chip);
2707	if (ret)
2708		return ret;
2709
2710	ret = nand_setup_interface(chip, chipnr);
2711	if (ret)
2712		return ret;
2713
2714	return 0;
2715}
2716EXPORT_SYMBOL_GPL(nand_reset);
2717
2718/**
2719 * nand_get_features - wrapper to perform a GET_FEATURE
2720 * @chip: NAND chip info structure
2721 * @addr: feature address
2722 * @subfeature_param: the subfeature parameters, a four bytes array
2723 *
2724 * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the
2725 * operation cannot be handled.
2726 */
2727int nand_get_features(struct nand_chip *chip, int addr,
2728		      u8 *subfeature_param)
2729{
2730	if (!nand_supports_get_features(chip, addr))
2731		return -ENOTSUPP;
2732
2733	if (chip->legacy.get_features)
2734		return chip->legacy.get_features(chip, addr, subfeature_param);
2735
2736	return nand_get_features_op(chip, addr, subfeature_param);
2737}
2738
2739/**
2740 * nand_set_features - wrapper to perform a SET_FEATURE
2741 * @chip: NAND chip info structure
2742 * @addr: feature address
2743 * @subfeature_param: the subfeature parameters, a four bytes array
2744 *
2745 * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the
2746 * operation cannot be handled.
2747 */
2748int nand_set_features(struct nand_chip *chip, int addr,
2749		      u8 *subfeature_param)
2750{
2751	if (!nand_supports_set_features(chip, addr))
2752		return -ENOTSUPP;
2753
2754	if (chip->legacy.set_features)
2755		return chip->legacy.set_features(chip, addr, subfeature_param);
2756
2757	return nand_set_features_op(chip, addr, subfeature_param);
2758}
2759
2760/**
2761 * nand_check_erased_buf - check if a buffer contains (almost) only 0xff data
2762 * @buf: buffer to test
2763 * @len: buffer length
2764 * @bitflips_threshold: maximum number of bitflips
2765 *
2766 * Check if a buffer contains only 0xff, which means the underlying region
2767 * has been erased and is ready to be programmed.
2768 * The bitflips_threshold specify the maximum number of bitflips before
2769 * considering the region is not erased.
2770 * Note: The logic of this function has been extracted from the memweight
2771 * implementation, except that nand_check_erased_buf function exit before
2772 * testing the whole buffer if the number of bitflips exceed the
2773 * bitflips_threshold value.
2774 *
2775 * Returns a positive number of bitflips less than or equal to
2776 * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
2777 * threshold.
2778 */
2779static int nand_check_erased_buf(void *buf, int len, int bitflips_threshold)
2780{
2781	const unsigned char *bitmap = buf;
2782	int bitflips = 0;
2783	int weight;
2784
2785	for (; len && ((uintptr_t)bitmap) % sizeof(long);
2786	     len--, bitmap++) {
2787		weight = hweight8(*bitmap);
2788		bitflips += BITS_PER_BYTE - weight;
2789		if (unlikely(bitflips > bitflips_threshold))
2790			return -EBADMSG;
2791	}
2792
2793	for (; len >= sizeof(long);
2794	     len -= sizeof(long), bitmap += sizeof(long)) {
2795		unsigned long d = *((unsigned long *)bitmap);
2796		if (d == ~0UL)
2797			continue;
2798		weight = hweight_long(d);
2799		bitflips += BITS_PER_LONG - weight;
2800		if (unlikely(bitflips > bitflips_threshold))
2801			return -EBADMSG;
2802	}
2803
2804	for (; len > 0; len--, bitmap++) {
2805		weight = hweight8(*bitmap);
2806		bitflips += BITS_PER_BYTE - weight;
2807		if (unlikely(bitflips > bitflips_threshold))
2808			return -EBADMSG;
2809	}
2810
2811	return bitflips;
2812}
2813
2814/**
2815 * nand_check_erased_ecc_chunk - check if an ECC chunk contains (almost) only
2816 *				 0xff data
2817 * @data: data buffer to test
2818 * @datalen: data length
2819 * @ecc: ECC buffer
2820 * @ecclen: ECC length
2821 * @extraoob: extra OOB buffer
2822 * @extraooblen: extra OOB length
2823 * @bitflips_threshold: maximum number of bitflips
2824 *
2825 * Check if a data buffer and its associated ECC and OOB data contains only
2826 * 0xff pattern, which means the underlying region has been erased and is
2827 * ready to be programmed.
2828 * The bitflips_threshold specify the maximum number of bitflips before
2829 * considering the region as not erased.
2830 *
2831 * Note:
2832 * 1/ ECC algorithms are working on pre-defined block sizes which are usually
2833 *    different from the NAND page size. When fixing bitflips, ECC engines will
2834 *    report the number of errors per chunk, and the NAND core infrastructure
2835 *    expect you to return the maximum number of bitflips for the whole page.
2836 *    This is why you should always use this function on a single chunk and
2837 *    not on the whole page. After checking each chunk you should update your
2838 *    max_bitflips value accordingly.
2839 * 2/ When checking for bitflips in erased pages you should not only check
2840 *    the payload data but also their associated ECC data, because a user might
2841 *    have programmed almost all bits to 1 but a few. In this case, we
2842 *    shouldn't consider the chunk as erased, and checking ECC bytes prevent
2843 *    this case.
2844 * 3/ The extraoob argument is optional, and should be used if some of your OOB
2845 *    data are protected by the ECC engine.
2846 *    It could also be used if you support subpages and want to attach some
2847 *    extra OOB data to an ECC chunk.
2848 *
2849 * Returns a positive number of bitflips less than or equal to
2850 * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
2851 * threshold. In case of success, the passed buffers are filled with 0xff.
2852 */
2853int nand_check_erased_ecc_chunk(void *data, int datalen,
2854				void *ecc, int ecclen,
2855				void *extraoob, int extraooblen,
2856				int bitflips_threshold)
2857{
2858	int data_bitflips = 0, ecc_bitflips = 0, extraoob_bitflips = 0;
2859
2860	data_bitflips = nand_check_erased_buf(data, datalen,
2861					      bitflips_threshold);
2862	if (data_bitflips < 0)
2863		return data_bitflips;
2864
2865	bitflips_threshold -= data_bitflips;
2866
2867	ecc_bitflips = nand_check_erased_buf(ecc, ecclen, bitflips_threshold);
2868	if (ecc_bitflips < 0)
2869		return ecc_bitflips;
2870
2871	bitflips_threshold -= ecc_bitflips;
2872
2873	extraoob_bitflips = nand_check_erased_buf(extraoob, extraooblen,
2874						  bitflips_threshold);
2875	if (extraoob_bitflips < 0)
2876		return extraoob_bitflips;
2877
2878	if (data_bitflips)
2879		memset(data, 0xff, datalen);
2880
2881	if (ecc_bitflips)
2882		memset(ecc, 0xff, ecclen);
2883
2884	if (extraoob_bitflips)
2885		memset(extraoob, 0xff, extraooblen);
2886
2887	return data_bitflips + ecc_bitflips + extraoob_bitflips;
2888}
2889EXPORT_SYMBOL(nand_check_erased_ecc_chunk);
2890
2891/**
2892 * nand_read_page_raw_notsupp - dummy read raw page function
2893 * @chip: nand chip info structure
2894 * @buf: buffer to store read data
2895 * @oob_required: caller requires OOB data read to chip->oob_poi
2896 * @page: page number to read
2897 *
2898 * Returns -ENOTSUPP unconditionally.
2899 */
2900int nand_read_page_raw_notsupp(struct nand_chip *chip, u8 *buf,
2901			       int oob_required, int page)
2902{
2903	return -ENOTSUPP;
2904}
2905
2906/**
2907 * nand_read_page_raw - [INTERN] read raw page data without ecc
2908 * @chip: nand chip info structure
2909 * @buf: buffer to store read data
2910 * @oob_required: caller requires OOB data read to chip->oob_poi
2911 * @page: page number to read
2912 *
2913 * Not for syndrome calculating ECC controllers, which use a special oob layout.
2914 */
2915int nand_read_page_raw(struct nand_chip *chip, uint8_t *buf, int oob_required,
2916		       int page)
2917{
2918	struct mtd_info *mtd = nand_to_mtd(chip);
2919	int ret;
2920
2921	ret = nand_read_page_op(chip, page, 0, buf, mtd->writesize);
2922	if (ret)
2923		return ret;
2924
2925	if (oob_required) {
2926		ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize,
2927					false, false);
2928		if (ret)
2929			return ret;
2930	}
2931
2932	return 0;
2933}
2934EXPORT_SYMBOL(nand_read_page_raw);
2935
2936/**
2937 * nand_monolithic_read_page_raw - Monolithic page read in raw mode
2938 * @chip: NAND chip info structure
2939 * @buf: buffer to store read data
2940 * @oob_required: caller requires OOB data read to chip->oob_poi
2941 * @page: page number to read
2942 *
2943 * This is a raw page read, ie. without any error detection/correction.
2944 * Monolithic means we are requesting all the relevant data (main plus
2945 * eventually OOB) to be loaded in the NAND cache and sent over the
2946 * bus (from the NAND chip to the NAND controller) in a single
2947 * operation. This is an alternative to nand_read_page_raw(), which
2948 * first reads the main data, and if the OOB data is requested too,
2949 * then reads more data on the bus.
2950 */
2951int nand_monolithic_read_page_raw(struct nand_chip *chip, u8 *buf,
2952				  int oob_required, int page)
2953{
2954	struct mtd_info *mtd = nand_to_mtd(chip);
2955	unsigned int size = mtd->writesize;
2956	u8 *read_buf = buf;
2957	int ret;
2958
2959	if (oob_required) {
2960		size += mtd->oobsize;
2961
2962		if (buf != chip->data_buf)
2963			read_buf = nand_get_data_buf(chip);
2964	}
2965
2966	ret = nand_read_page_op(chip, page, 0, read_buf, size);
2967	if (ret)
2968		return ret;
2969
2970	if (buf != chip->data_buf)
2971		memcpy(buf, read_buf, mtd->writesize);
2972
2973	return 0;
2974}
2975EXPORT_SYMBOL(nand_monolithic_read_page_raw);
2976
2977/**
2978 * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
2979 * @chip: nand chip info structure
2980 * @buf: buffer to store read data
2981 * @oob_required: caller requires OOB data read to chip->oob_poi
2982 * @page: page number to read
2983 *
2984 * We need a special oob layout and handling even when OOB isn't used.
2985 */
2986static int nand_read_page_raw_syndrome(struct nand_chip *chip, uint8_t *buf,
2987				       int oob_required, int page)
2988{
2989	struct mtd_info *mtd = nand_to_mtd(chip);
2990	int eccsize = chip->ecc.size;
2991	int eccbytes = chip->ecc.bytes;
2992	uint8_t *oob = chip->oob_poi;
2993	int steps, size, ret;
2994
2995	ret = nand_read_page_op(chip, page, 0, NULL, 0);
2996	if (ret)
2997		return ret;
2998
2999	for (steps = chip->ecc.steps; steps > 0; steps--) {
3000		ret = nand_read_data_op(chip, buf, eccsize, false, false);
3001		if (ret)
3002			return ret;
3003
3004		buf += eccsize;
3005
3006		if (chip->ecc.prepad) {
3007			ret = nand_read_data_op(chip, oob, chip->ecc.prepad,
3008						false, false);
3009			if (ret)
3010				return ret;
3011
3012			oob += chip->ecc.prepad;
3013		}
3014
3015		ret = nand_read_data_op(chip, oob, eccbytes, false, false);
3016		if (ret)
3017			return ret;
3018
3019		oob += eccbytes;
3020
3021		if (chip->ecc.postpad) {
3022			ret = nand_read_data_op(chip, oob, chip->ecc.postpad,
3023						false, false);
3024			if (ret)
3025				return ret;
3026
3027			oob += chip->ecc.postpad;
3028		}
3029	}
3030
3031	size = mtd->oobsize - (oob - chip->oob_poi);
3032	if (size) {
3033		ret = nand_read_data_op(chip, oob, size, false, false);
3034		if (ret)
3035			return ret;
3036	}
3037
3038	return 0;
3039}
3040
3041/**
3042 * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
3043 * @chip: nand chip info structure
3044 * @buf: buffer to store read data
3045 * @oob_required: caller requires OOB data read to chip->oob_poi
3046 * @page: page number to read
3047 */
3048static int nand_read_page_swecc(struct nand_chip *chip, uint8_t *buf,
3049				int oob_required, int page)
3050{
3051	struct mtd_info *mtd = nand_to_mtd(chip);
3052	int i, eccsize = chip->ecc.size, ret;
3053	int eccbytes = chip->ecc.bytes;
3054	int eccsteps = chip->ecc.steps;
3055	uint8_t *p = buf;
3056	uint8_t *ecc_calc = chip->ecc.calc_buf;
3057	uint8_t *ecc_code = chip->ecc.code_buf;
3058	unsigned int max_bitflips = 0;
3059
3060	chip->ecc.read_page_raw(chip, buf, 1, page);
3061
3062	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
3063		chip->ecc.calculate(chip, p, &ecc_calc[i]);
3064
3065	ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
3066					 chip->ecc.total);
3067	if (ret)
3068		return ret;
3069
3070	eccsteps = chip->ecc.steps;
3071	p = buf;
3072
3073	for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3074		int stat;
3075
3076		stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]);
3077		if (stat < 0) {
3078			mtd->ecc_stats.failed++;
3079		} else {
3080			mtd->ecc_stats.corrected += stat;
3081			max_bitflips = max_t(unsigned int, max_bitflips, stat);
3082		}
3083	}
3084	return max_bitflips;
3085}
3086
3087/**
3088 * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function
3089 * @chip: nand chip info structure
3090 * @data_offs: offset of requested data within the page
3091 * @readlen: data length
3092 * @bufpoi: buffer to store read data
3093 * @page: page number to read
3094 */
3095static int nand_read_subpage(struct nand_chip *chip, uint32_t data_offs,
3096			     uint32_t readlen, uint8_t *bufpoi, int page)
3097{
3098	struct mtd_info *mtd = nand_to_mtd(chip);
3099	int start_step, end_step, num_steps, ret;
3100	uint8_t *p;
3101	int data_col_addr, i, gaps = 0;
3102	int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
3103	int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
3104	int index, section = 0;
3105	unsigned int max_bitflips = 0;
3106	struct mtd_oob_region oobregion = { };
3107
3108	/* Column address within the page aligned to ECC size (256bytes) */
3109	start_step = data_offs / chip->ecc.size;
3110	end_step = (data_offs + readlen - 1) / chip->ecc.size;
3111	num_steps = end_step - start_step + 1;
3112	index = start_step * chip->ecc.bytes;
3113
3114	/* Data size aligned to ECC ecc.size */
3115	datafrag_len = num_steps * chip->ecc.size;
3116	eccfrag_len = num_steps * chip->ecc.bytes;
3117
3118	data_col_addr = start_step * chip->ecc.size;
3119	/* If we read not a page aligned data */
3120	p = bufpoi + data_col_addr;
3121	ret = nand_read_page_op(chip, page, data_col_addr, p, datafrag_len);
3122	if (ret)
3123		return ret;
3124
3125	/* Calculate ECC */
3126	for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
3127		chip->ecc.calculate(chip, p, &chip->ecc.calc_buf[i]);
3128
3129	/*
3130	 * The performance is faster if we position offsets according to
3131	 * ecc.pos. Let's make sure that there are no gaps in ECC positions.
3132	 */
3133	ret = mtd_ooblayout_find_eccregion(mtd, index, &section, &oobregion);
3134	if (ret)
3135		return ret;
3136
3137	if (oobregion.length < eccfrag_len)
3138		gaps = 1;
3139
3140	if (gaps) {
3141		ret = nand_change_read_column_op(chip, mtd->writesize,
3142						 chip->oob_poi, mtd->oobsize,
3143						 false);
3144		if (ret)
3145			return ret;
3146	} else {
3147		/*
3148		 * Send the command to read the particular ECC bytes take care
3149		 * about buswidth alignment in read_buf.
3150		 */
3151		aligned_pos = oobregion.offset & ~(busw - 1);
3152		aligned_len = eccfrag_len;
3153		if (oobregion.offset & (busw - 1))
3154			aligned_len++;
3155		if ((oobregion.offset + (num_steps * chip->ecc.bytes)) &
3156		    (busw - 1))
3157			aligned_len++;
3158
3159		ret = nand_change_read_column_op(chip,
3160						 mtd->writesize + aligned_pos,
3161						 &chip->oob_poi[aligned_pos],
3162						 aligned_len, false);
3163		if (ret)
3164			return ret;
3165	}
3166
3167	ret = mtd_ooblayout_get_eccbytes(mtd, chip->ecc.code_buf,
3168					 chip->oob_poi, index, eccfrag_len);
3169	if (ret)
3170		return ret;
3171
3172	p = bufpoi + data_col_addr;
3173	for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
3174		int stat;
3175
3176		stat = chip->ecc.correct(chip, p, &chip->ecc.code_buf[i],
3177					 &chip->ecc.calc_buf[i]);
3178		if (stat == -EBADMSG &&
3179		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
3180			/* check for empty pages with bitflips */
3181			stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
3182						&chip->ecc.code_buf[i],
3183						chip->ecc.bytes,
3184						NULL, 0,
3185						chip->ecc.strength);
3186		}
3187
3188		if (stat < 0) {
3189			mtd->ecc_stats.failed++;
3190		} else {
3191			mtd->ecc_stats.corrected += stat;
3192			max_bitflips = max_t(unsigned int, max_bitflips, stat);
3193		}
3194	}
3195	return max_bitflips;
3196}
3197
3198/**
3199 * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
3200 * @chip: nand chip info structure
3201 * @buf: buffer to store read data
3202 * @oob_required: caller requires OOB data read to chip->oob_poi
3203 * @page: page number to read
3204 *
3205 * Not for syndrome calculating ECC controllers which need a special oob layout.
3206 */
3207static int nand_read_page_hwecc(struct nand_chip *chip, uint8_t *buf,
3208				int oob_required, int page)
3209{
3210	struct mtd_info *mtd = nand_to_mtd(chip);
3211	int i, eccsize = chip->ecc.size, ret;
3212	int eccbytes = chip->ecc.bytes;
3213	int eccsteps = chip->ecc.steps;
3214	uint8_t *p = buf;
3215	uint8_t *ecc_calc = chip->ecc.calc_buf;
3216	uint8_t *ecc_code = chip->ecc.code_buf;
3217	unsigned int max_bitflips = 0;
3218
3219	ret = nand_read_page_op(chip, page, 0, NULL, 0);
3220	if (ret)
3221		return ret;
3222
3223	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3224		chip->ecc.hwctl(chip, NAND_ECC_READ);
3225
3226		ret = nand_read_data_op(chip, p, eccsize, false, false);
3227		if (ret)
3228			return ret;
3229
3230		chip->ecc.calculate(chip, p, &ecc_calc[i]);
3231	}
3232
3233	ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, false,
3234				false);
3235	if (ret)
3236		return ret;
3237
3238	ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
3239					 chip->ecc.total);
3240	if (ret)
3241		return ret;
3242
3243	eccsteps = chip->ecc.steps;
3244	p = buf;
3245
3246	for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3247		int stat;
3248
3249		stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]);
3250		if (stat == -EBADMSG &&
3251		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
3252			/* check for empty pages with bitflips */
3253			stat = nand_check_erased_ecc_chunk(p, eccsize,
3254						&ecc_code[i], eccbytes,
3255						NULL, 0,
3256						chip->ecc.strength);
3257		}
3258
3259		if (stat < 0) {
3260			mtd->ecc_stats.failed++;
3261		} else {
3262			mtd->ecc_stats.corrected += stat;
3263			max_bitflips = max_t(unsigned int, max_bitflips, stat);
3264		}
3265	}
3266	return max_bitflips;
3267}
3268
3269/**
3270 * nand_read_page_hwecc_oob_first - Hardware ECC page read with ECC
3271 *                                  data read from OOB area
3272 * @chip: nand chip info structure
3273 * @buf: buffer to store read data
3274 * @oob_required: caller requires OOB data read to chip->oob_poi
3275 * @page: page number to read
3276 *
3277 * Hardware ECC for large page chips, which requires the ECC data to be
3278 * extracted from the OOB before the actual data is read.
3279 */
3280int nand_read_page_hwecc_oob_first(struct nand_chip *chip, uint8_t *buf,
3281				   int oob_required, int page)
3282{
3283	struct mtd_info *mtd = nand_to_mtd(chip);
3284	int i, eccsize = chip->ecc.size, ret;
3285	int eccbytes = chip->ecc.bytes;
3286	int eccsteps = chip->ecc.steps;
3287	uint8_t *p = buf;
3288	uint8_t *ecc_code = chip->ecc.code_buf;
3289	unsigned int max_bitflips = 0;
3290
3291	/* Read the OOB area first */
3292	ret = nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
3293	if (ret)
3294		return ret;
3295
3296	/* Move read cursor to start of page */
3297	ret = nand_change_read_column_op(chip, 0, NULL, 0, false);
3298	if (ret)
3299		return ret;
3300
3301	ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
3302					 chip->ecc.total);
3303	if (ret)
3304		return ret;
3305
3306	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3307		int stat;
3308
3309		chip->ecc.hwctl(chip, NAND_ECC_READ);
3310
3311		ret = nand_read_data_op(chip, p, eccsize, false, false);
3312		if (ret)
3313			return ret;
3314
3315		stat = chip->ecc.correct(chip, p, &ecc_code[i], NULL);
3316		if (stat == -EBADMSG &&
3317		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
3318			/* check for empty pages with bitflips */
3319			stat = nand_check_erased_ecc_chunk(p, eccsize,
3320							   &ecc_code[i],
3321							   eccbytes, NULL, 0,
3322							   chip->ecc.strength);
3323		}
3324
3325		if (stat < 0) {
3326			mtd->ecc_stats.failed++;
3327		} else {
3328			mtd->ecc_stats.corrected += stat;
3329			max_bitflips = max_t(unsigned int, max_bitflips, stat);
3330		}
3331	}
3332	return max_bitflips;
3333}
3334EXPORT_SYMBOL_GPL(nand_read_page_hwecc_oob_first);
3335
3336/**
3337 * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
3338 * @chip: nand chip info structure
3339 * @buf: buffer to store read data
3340 * @oob_required: caller requires OOB data read to chip->oob_poi
3341 * @page: page number to read
3342 *
3343 * The hw generator calculates the error syndrome automatically. Therefore we
3344 * need a special oob layout and handling.
3345 */
3346static int nand_read_page_syndrome(struct nand_chip *chip, uint8_t *buf,
3347				   int oob_required, int page)
3348{
3349	struct mtd_info *mtd = nand_to_mtd(chip);
3350	int ret, i, eccsize = chip->ecc.size;
3351	int eccbytes = chip->ecc.bytes;
3352	int eccsteps = chip->ecc.steps;
3353	int eccpadbytes = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
3354	uint8_t *p = buf;
3355	uint8_t *oob = chip->oob_poi;
3356	unsigned int max_bitflips = 0;
3357
3358	ret = nand_read_page_op(chip, page, 0, NULL, 0);
3359	if (ret)
3360		return ret;
3361
3362	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3363		int stat;
3364
3365		chip->ecc.hwctl(chip, NAND_ECC_READ);
3366
3367		ret = nand_read_data_op(chip, p, eccsize, false, false);
3368		if (ret)
3369			return ret;
3370
3371		if (chip->ecc.prepad) {
3372			ret = nand_read_data_op(chip, oob, chip->ecc.prepad,
3373						false, false);
3374			if (ret)
3375				return ret;
3376
3377			oob += chip->ecc.prepad;
3378		}
3379
3380		chip->ecc.hwctl(chip, NAND_ECC_READSYN);
3381
3382		ret = nand_read_data_op(chip, oob, eccbytes, false, false);
3383		if (ret)
3384			return ret;
3385
3386		stat = chip->ecc.correct(chip, p, oob, NULL);
3387
3388		oob += eccbytes;
3389
3390		if (chip->ecc.postpad) {
3391			ret = nand_read_data_op(chip, oob, chip->ecc.postpad,
3392						false, false);
3393			if (ret)
3394				return ret;
3395
3396			oob += chip->ecc.postpad;
3397		}
3398
3399		if (stat == -EBADMSG &&
3400		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
3401			/* check for empty pages with bitflips */
3402			stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
3403							   oob - eccpadbytes,
3404							   eccpadbytes,
3405							   NULL, 0,
3406							   chip->ecc.strength);
3407		}
3408
3409		if (stat < 0) {
3410			mtd->ecc_stats.failed++;
3411		} else {
3412			mtd->ecc_stats.corrected += stat;
3413			max_bitflips = max_t(unsigned int, max_bitflips, stat);
3414		}
3415	}
3416
3417	/* Calculate remaining oob bytes */
3418	i = mtd->oobsize - (oob - chip->oob_poi);
3419	if (i) {
3420		ret = nand_read_data_op(chip, oob, i, false, false);
3421		if (ret)
3422			return ret;
3423	}
3424
3425	return max_bitflips;
3426}
3427
3428/**
3429 * nand_transfer_oob - [INTERN] Transfer oob to client buffer
3430 * @chip: NAND chip object
3431 * @oob: oob destination address
3432 * @ops: oob ops structure
3433 * @len: size of oob to transfer
3434 */
3435static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
3436				  struct mtd_oob_ops *ops, size_t len)
3437{
3438	struct mtd_info *mtd = nand_to_mtd(chip);
3439	int ret;
3440
3441	switch (ops->mode) {
3442
3443	case MTD_OPS_PLACE_OOB:
3444	case MTD_OPS_RAW:
3445		memcpy(oob, chip->oob_poi + ops->ooboffs, len);
3446		return oob + len;
3447
3448	case MTD_OPS_AUTO_OOB:
3449		ret = mtd_ooblayout_get_databytes(mtd, oob, chip->oob_poi,
3450						  ops->ooboffs, len);
3451		BUG_ON(ret);
3452		return oob + len;
3453
3454	default:
3455		BUG();
3456	}
3457	return NULL;
3458}
3459
3460static void rawnand_enable_cont_reads(struct nand_chip *chip, unsigned int page,
3461				      u32 readlen, int col)
3462{
3463	struct mtd_info *mtd = nand_to_mtd(chip);
3464	unsigned int end_page, end_col;
3465
3466	chip->cont_read.ongoing = false;
3467
3468	if (!chip->controller->supported_op.cont_read)
3469		return;
3470
3471	end_page = DIV_ROUND_UP(col + readlen, mtd->writesize);
3472	end_col = (col + readlen) % mtd->writesize;
3473
3474	if (col)
3475		page++;
3476
3477	if (end_col && end_page)
3478		end_page--;
3479
3480	if (page + 1 > end_page)
3481		return;
3482
3483	chip->cont_read.first_page = page;
3484	chip->cont_read.last_page = end_page;
3485	chip->cont_read.ongoing = true;
3486
3487	rawnand_cap_cont_reads(chip);
3488}
3489
3490static void rawnand_cont_read_skip_first_page(struct nand_chip *chip, unsigned int page)
3491{
3492	if (!chip->cont_read.ongoing || page != chip->cont_read.first_page)
3493		return;
3494
3495	chip->cont_read.first_page++;
3496	if (chip->cont_read.first_page == chip->cont_read.pause_page)
3497		chip->cont_read.first_page++;
3498	if (chip->cont_read.first_page >= chip->cont_read.last_page)
3499		chip->cont_read.ongoing = false;
3500}
3501
3502/**
3503 * nand_setup_read_retry - [INTERN] Set the READ RETRY mode
3504 * @chip: NAND chip object
3505 * @retry_mode: the retry mode to use
3506 *
3507 * Some vendors supply a special command to shift the Vt threshold, to be used
3508 * when there are too many bitflips in a page (i.e., ECC error). After setting
3509 * a new threshold, the host should retry reading the page.
3510 */
3511static int nand_setup_read_retry(struct nand_chip *chip, int retry_mode)
3512{
3513	pr_debug("setting READ RETRY mode %d\n", retry_mode);
3514
3515	if (retry_mode >= chip->read_retries)
3516		return -EINVAL;
3517
3518	if (!chip->ops.setup_read_retry)
3519		return -EOPNOTSUPP;
3520
3521	return chip->ops.setup_read_retry(chip, retry_mode);
3522}
3523
3524static void nand_wait_readrdy(struct nand_chip *chip)
3525{
3526	const struct nand_interface_config *conf;
3527
3528	if (!(chip->options & NAND_NEED_READRDY))
3529		return;
3530
3531	conf = nand_get_interface_config(chip);
3532	WARN_ON(nand_wait_rdy_op(chip, NAND_COMMON_TIMING_MS(conf, tR_max), 0));
3533}
3534
3535/**
3536 * nand_do_read_ops - [INTERN] Read data with ECC
3537 * @chip: NAND chip object
3538 * @from: offset to read from
3539 * @ops: oob ops structure
3540 *
3541 * Internal function. Called with chip held.
3542 */
3543static int nand_do_read_ops(struct nand_chip *chip, loff_t from,
3544			    struct mtd_oob_ops *ops)
3545{
3546	int chipnr, page, realpage, col, bytes, aligned, oob_required;
3547	struct mtd_info *mtd = nand_to_mtd(chip);
3548	int ret = 0;
3549	uint32_t readlen = ops->len;
3550	uint32_t oobreadlen = ops->ooblen;
3551	uint32_t max_oobsize = mtd_oobavail(mtd, ops);
3552
3553	uint8_t *bufpoi, *oob, *buf;
3554	int use_bounce_buf;
3555	unsigned int max_bitflips = 0;
3556	int retry_mode = 0;
3557	bool ecc_fail = false;
3558
3559	/* Check if the region is secured */
3560	if (nand_region_is_secured(chip, from, readlen))
3561		return -EIO;
3562
3563	chipnr = (int)(from >> chip->chip_shift);
3564	nand_select_target(chip, chipnr);
3565
3566	realpage = (int)(from >> chip->page_shift);
3567	page = realpage & chip->pagemask;
3568
3569	col = (int)(from & (mtd->writesize - 1));
3570
3571	buf = ops->datbuf;
3572	oob = ops->oobbuf;
3573	oob_required = oob ? 1 : 0;
3574
3575	rawnand_enable_cont_reads(chip, page, readlen, col);
3576
3577	while (1) {
3578		struct mtd_ecc_stats ecc_stats = mtd->ecc_stats;
3579
3580		bytes = min(mtd->writesize - col, readlen);
3581		aligned = (bytes == mtd->writesize);
3582
3583		if (!aligned)
3584			use_bounce_buf = 1;
3585		else if (chip->options & NAND_USES_DMA)
3586			use_bounce_buf = !virt_addr_valid(buf) ||
3587					 !IS_ALIGNED((unsigned long)buf,
3588						     chip->buf_align);
3589		else
3590			use_bounce_buf = 0;
3591
3592		/* Is the current page in the buffer? */
3593		if (realpage != chip->pagecache.page || oob) {
3594			bufpoi = use_bounce_buf ? chip->data_buf : buf;
3595
3596			if (use_bounce_buf && aligned)
3597				pr_debug("%s: using read bounce buffer for buf@%p\n",
3598						 __func__, buf);
3599
3600read_retry:
3601			/*
3602			 * Now read the page into the buffer.  Absent an error,
3603			 * the read methods return max bitflips per ecc step.
3604			 */
3605			if (unlikely(ops->mode == MTD_OPS_RAW))
3606				ret = chip->ecc.read_page_raw(chip, bufpoi,
3607							      oob_required,
3608							      page);
3609			else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) &&
3610				 !oob)
3611				ret = chip->ecc.read_subpage(chip, col, bytes,
3612							     bufpoi, page);
3613			else
3614				ret = chip->ecc.read_page(chip, bufpoi,
3615							  oob_required, page);
3616			if (ret < 0) {
3617				if (use_bounce_buf)
3618					/* Invalidate page cache */
3619					chip->pagecache.page = -1;
3620				break;
3621			}
3622
3623			/*
3624			 * Copy back the data in the initial buffer when reading
3625			 * partial pages or when a bounce buffer is required.
3626			 */
3627			if (use_bounce_buf) {
3628				if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
3629				    !(mtd->ecc_stats.failed - ecc_stats.failed) &&
3630				    (ops->mode != MTD_OPS_RAW)) {
3631					chip->pagecache.page = realpage;
3632					chip->pagecache.bitflips = ret;
3633				} else {
3634					/* Invalidate page cache */
3635					chip->pagecache.page = -1;
3636				}
3637				memcpy(buf, bufpoi + col, bytes);
3638			}
3639
3640			if (unlikely(oob)) {
3641				int toread = min(oobreadlen, max_oobsize);
3642
3643				if (toread) {
3644					oob = nand_transfer_oob(chip, oob, ops,
3645								toread);
3646					oobreadlen -= toread;
3647				}
3648			}
3649
3650			nand_wait_readrdy(chip);
3651
3652			if (mtd->ecc_stats.failed - ecc_stats.failed) {
3653				if (retry_mode + 1 < chip->read_retries) {
3654					retry_mode++;
3655					ret = nand_setup_read_retry(chip,
3656							retry_mode);
3657					if (ret < 0)
3658						break;
3659
3660					/* Reset ecc_stats; retry */
3661					mtd->ecc_stats = ecc_stats;
3662					goto read_retry;
3663				} else {
3664					/* No more retry modes; real failure */
3665					ecc_fail = true;
3666				}
3667			}
3668
3669			buf += bytes;
3670			max_bitflips = max_t(unsigned int, max_bitflips, ret);
3671		} else {
3672			memcpy(buf, chip->data_buf + col, bytes);
3673			buf += bytes;
3674			max_bitflips = max_t(unsigned int, max_bitflips,
3675					     chip->pagecache.bitflips);
3676
3677			rawnand_cont_read_skip_first_page(chip, page);
3678		}
3679
3680		readlen -= bytes;
3681
3682		/* Reset to retry mode 0 */
3683		if (retry_mode) {
3684			ret = nand_setup_read_retry(chip, 0);
3685			if (ret < 0)
3686				break;
3687			retry_mode = 0;
3688		}
3689
3690		if (!readlen)
3691			break;
3692
3693		/* For subsequent reads align to page boundary */
3694		col = 0;
3695		/* Increment page address */
3696		realpage++;
3697
3698		page = realpage & chip->pagemask;
3699		/* Check, if we cross a chip boundary */
3700		if (!page) {
3701			chipnr++;
3702			nand_deselect_target(chip);
3703			nand_select_target(chip, chipnr);
3704		}
3705	}
3706	nand_deselect_target(chip);
3707
3708	ops->retlen = ops->len - (size_t) readlen;
3709	if (oob)
3710		ops->oobretlen = ops->ooblen - oobreadlen;
3711
3712	if (ret < 0)
3713		return ret;
3714
3715	if (ecc_fail)
3716		return -EBADMSG;
3717
3718	return max_bitflips;
3719}
3720
3721/**
3722 * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
3723 * @chip: nand chip info structure
3724 * @page: page number to read
3725 */
3726int nand_read_oob_std(struct nand_chip *chip, int page)
3727{
3728	struct mtd_info *mtd = nand_to_mtd(chip);
3729
3730	return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
3731}
3732EXPORT_SYMBOL(nand_read_oob_std);
3733
3734/**
3735 * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
3736 *			    with syndromes
3737 * @chip: nand chip info structure
3738 * @page: page number to read
3739 */
3740static int nand_read_oob_syndrome(struct nand_chip *chip, int page)
3741{
3742	struct mtd_info *mtd = nand_to_mtd(chip);
3743	int length = mtd->oobsize;
3744	int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
3745	int eccsize = chip->ecc.size;
3746	uint8_t *bufpoi = chip->oob_poi;
3747	int i, toread, sndrnd = 0, pos, ret;
3748
3749	ret = nand_read_page_op(chip, page, chip->ecc.size, NULL, 0);
3750	if (ret)
3751		return ret;
3752
3753	for (i = 0; i < chip->ecc.steps; i++) {
3754		if (sndrnd) {
3755			int ret;
3756
3757			pos = eccsize + i * (eccsize + chunk);
3758			if (mtd->writesize > 512)
3759				ret = nand_change_read_column_op(chip, pos,
3760								 NULL, 0,
3761								 false);
3762			else
3763				ret = nand_read_page_op(chip, page, pos, NULL,
3764							0);
3765
3766			if (ret)
3767				return ret;
3768		} else
3769			sndrnd = 1;
3770		toread = min_t(int, length, chunk);
3771
3772		ret = nand_read_data_op(chip, bufpoi, toread, false, false);
3773		if (ret)
3774			return ret;
3775
3776		bufpoi += toread;
3777		length -= toread;
3778	}
3779	if (length > 0) {
3780		ret = nand_read_data_op(chip, bufpoi, length, false, false);
3781		if (ret)
3782			return ret;
3783	}
3784
3785	return 0;
3786}
3787
3788/**
3789 * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
3790 * @chip: nand chip info structure
3791 * @page: page number to write
3792 */
3793int nand_write_oob_std(struct nand_chip *chip, int page)
3794{
3795	struct mtd_info *mtd = nand_to_mtd(chip);
3796
3797	return nand_prog_page_op(chip, page, mtd->writesize, chip->oob_poi,
3798				 mtd->oobsize);
3799}
3800EXPORT_SYMBOL(nand_write_oob_std);
3801
3802/**
3803 * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
3804 *			     with syndrome - only for large page flash
3805 * @chip: nand chip info structure
3806 * @page: page number to write
3807 */
3808static int nand_write_oob_syndrome(struct nand_chip *chip, int page)
3809{
3810	struct mtd_info *mtd = nand_to_mtd(chip);
3811	int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
3812	int eccsize = chip->ecc.size, length = mtd->oobsize;
3813	int ret, i, len, pos, sndcmd = 0, steps = chip->ecc.steps;
3814	const uint8_t *bufpoi = chip->oob_poi;
3815
3816	/*
3817	 * data-ecc-data-ecc ... ecc-oob
3818	 * or
3819	 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
3820	 */
3821	if (!chip->ecc.prepad && !chip->ecc.postpad) {
3822		pos = steps * (eccsize + chunk);
3823		steps = 0;
3824	} else
3825		pos = eccsize;
3826
3827	ret = nand_prog_page_begin_op(chip, page, pos, NULL, 0);
3828	if (ret)
3829		return ret;
3830
3831	for (i = 0; i < steps; i++) {
3832		if (sndcmd) {
3833			if (mtd->writesize <= 512) {
3834				uint32_t fill = 0xFFFFFFFF;
3835
3836				len = eccsize;
3837				while (len > 0) {
3838					int num = min_t(int, len, 4);
3839
3840					ret = nand_write_data_op(chip, &fill,
3841								 num, false);
3842					if (ret)
3843						return ret;
3844
3845					len -= num;
3846				}
3847			} else {
3848				pos = eccsize + i * (eccsize + chunk);
3849				ret = nand_change_write_column_op(chip, pos,
3850								  NULL, 0,
3851								  false);
3852				if (ret)
3853					return ret;
3854			}
3855		} else
3856			sndcmd = 1;
3857		len = min_t(int, length, chunk);
3858
3859		ret = nand_write_data_op(chip, bufpoi, len, false);
3860		if (ret)
3861			return ret;
3862
3863		bufpoi += len;
3864		length -= len;
3865	}
3866	if (length > 0) {
3867		ret = nand_write_data_op(chip, bufpoi, length, false);
3868		if (ret)
3869			return ret;
3870	}
3871
3872	return nand_prog_page_end_op(chip);
3873}
3874
3875/**
3876 * nand_do_read_oob - [INTERN] NAND read out-of-band
3877 * @chip: NAND chip object
3878 * @from: offset to read from
3879 * @ops: oob operations description structure
3880 *
3881 * NAND read out-of-band data from the spare area.
3882 */
3883static int nand_do_read_oob(struct nand_chip *chip, loff_t from,
3884			    struct mtd_oob_ops *ops)
3885{
3886	struct mtd_info *mtd = nand_to_mtd(chip);
3887	unsigned int max_bitflips = 0;
3888	int page, realpage, chipnr;
3889	struct mtd_ecc_stats stats;
3890	int readlen = ops->ooblen;
3891	int len;
3892	uint8_t *buf = ops->oobbuf;
3893	int ret = 0;
3894
3895	pr_debug("%s: from = 0x%08Lx, len = %i\n",
3896			__func__, (unsigned long long)from, readlen);
3897
3898	/* Check if the region is secured */
3899	if (nand_region_is_secured(chip, from, readlen))
3900		return -EIO;
3901
3902	stats = mtd->ecc_stats;
3903
3904	len = mtd_oobavail(mtd, ops);
3905
3906	chipnr = (int)(from >> chip->chip_shift);
3907	nand_select_target(chip, chipnr);
3908
3909	/* Shift to get page */
3910	realpage = (int)(from >> chip->page_shift);
3911	page = realpage & chip->pagemask;
3912
3913	while (1) {
3914		if (ops->mode == MTD_OPS_RAW)
3915			ret = chip->ecc.read_oob_raw(chip, page);
3916		else
3917			ret = chip->ecc.read_oob(chip, page);
3918
3919		if (ret < 0)
3920			break;
3921
3922		len = min(len, readlen);
3923		buf = nand_transfer_oob(chip, buf, ops, len);
3924
3925		nand_wait_readrdy(chip);
3926
3927		max_bitflips = max_t(unsigned int, max_bitflips, ret);
3928
3929		readlen -= len;
3930		if (!readlen)
3931			break;
3932
3933		/* Increment page address */
3934		realpage++;
3935
3936		page = realpage & chip->pagemask;
3937		/* Check, if we cross a chip boundary */
3938		if (!page) {
3939			chipnr++;
3940			nand_deselect_target(chip);
3941			nand_select_target(chip, chipnr);
3942		}
3943	}
3944	nand_deselect_target(chip);
3945
3946	ops->oobretlen = ops->ooblen - readlen;
3947
3948	if (ret < 0)
3949		return ret;
3950
3951	if (mtd->ecc_stats.failed - stats.failed)
3952		return -EBADMSG;
3953
3954	return max_bitflips;
3955}
3956
3957/**
3958 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
3959 * @mtd: MTD device structure
3960 * @from: offset to read from
3961 * @ops: oob operation description structure
3962 *
3963 * NAND read data and/or out-of-band data.
3964 */
3965static int nand_read_oob(struct mtd_info *mtd, loff_t from,
3966			 struct mtd_oob_ops *ops)
3967{
3968	struct nand_chip *chip = mtd_to_nand(mtd);
3969	struct mtd_ecc_stats old_stats;
3970	int ret;
3971
3972	ops->retlen = 0;
3973
3974	if (ops->mode != MTD_OPS_PLACE_OOB &&
3975	    ops->mode != MTD_OPS_AUTO_OOB &&
3976	    ops->mode != MTD_OPS_RAW)
3977		return -ENOTSUPP;
3978
3979	nand_get_device(chip);
3980
3981	old_stats = mtd->ecc_stats;
3982
3983	if (!ops->datbuf)
3984		ret = nand_do_read_oob(chip, from, ops);
3985	else
3986		ret = nand_do_read_ops(chip, from, ops);
3987
3988	if (ops->stats) {
3989		ops->stats->uncorrectable_errors +=
3990			mtd->ecc_stats.failed - old_stats.failed;
3991		ops->stats->corrected_bitflips +=
3992			mtd->ecc_stats.corrected - old_stats.corrected;
3993	}
3994
3995	nand_release_device(chip);
3996	return ret;
3997}
3998
3999/**
4000 * nand_write_page_raw_notsupp - dummy raw page write function
4001 * @chip: nand chip info structure
4002 * @buf: data buffer
4003 * @oob_required: must write chip->oob_poi to OOB
4004 * @page: page number to write
4005 *
4006 * Returns -ENOTSUPP unconditionally.
4007 */
4008int nand_write_page_raw_notsupp(struct nand_chip *chip, const u8 *buf,
4009				int oob_required, int page)
4010{
4011	return -ENOTSUPP;
4012}
4013
4014/**
4015 * nand_write_page_raw - [INTERN] raw page write function
4016 * @chip: nand chip info structure
4017 * @buf: data buffer
4018 * @oob_required: must write chip->oob_poi to OOB
4019 * @page: page number to write
4020 *
4021 * Not for syndrome calculating ECC controllers, which use a special oob layout.
4022 */
4023int nand_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
4024			int oob_required, int page)
4025{
4026	struct mtd_info *mtd = nand_to_mtd(chip);
4027	int ret;
4028
4029	ret = nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
4030	if (ret)
4031		return ret;
4032
4033	if (oob_required) {
4034		ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize,
4035					 false);
4036		if (ret)
4037			return ret;
4038	}
4039
4040	return nand_prog_page_end_op(chip);
4041}
4042EXPORT_SYMBOL(nand_write_page_raw);
4043
4044/**
4045 * nand_monolithic_write_page_raw - Monolithic page write in raw mode
4046 * @chip: NAND chip info structure
4047 * @buf: data buffer to write
4048 * @oob_required: must write chip->oob_poi to OOB
4049 * @page: page number to write
4050 *
4051 * This is a raw page write, ie. without any error detection/correction.
4052 * Monolithic means we are requesting all the relevant data (main plus
4053 * eventually OOB) to be sent over the bus and effectively programmed
4054 * into the NAND chip arrays in a single operation. This is an
4055 * alternative to nand_write_page_raw(), which first sends the main
4056 * data, then eventually send the OOB data by latching more data
4057 * cycles on the NAND bus, and finally sends the program command to
4058 * synchronyze the NAND chip cache.
4059 */
4060int nand_monolithic_write_page_raw(struct nand_chip *chip, const u8 *buf,
4061				   int oob_required, int page)
4062{
4063	struct mtd_info *mtd = nand_to_mtd(chip);
4064	unsigned int size = mtd->writesize;
4065	u8 *write_buf = (u8 *)buf;
4066
4067	if (oob_required) {
4068		size += mtd->oobsize;
4069
4070		if (buf != chip->data_buf) {
4071			write_buf = nand_get_data_buf(chip);
4072			memcpy(write_buf, buf, mtd->writesize);
4073		}
4074	}
4075
4076	return nand_prog_page_op(chip, page, 0, write_buf, size);
4077}
4078EXPORT_SYMBOL(nand_monolithic_write_page_raw);
4079
4080/**
4081 * nand_write_page_raw_syndrome - [INTERN] raw page write function
4082 * @chip: nand chip info structure
4083 * @buf: data buffer
4084 * @oob_required: must write chip->oob_poi to OOB
4085 * @page: page number to write
4086 *
4087 * We need a special oob layout and handling even when ECC isn't checked.
4088 */
4089static int nand_write_page_raw_syndrome(struct nand_chip *chip,
4090					const uint8_t *buf, int oob_required,
4091					int page)
4092{
4093	struct mtd_info *mtd = nand_to_mtd(chip);
4094	int eccsize = chip->ecc.size;
4095	int eccbytes = chip->ecc.bytes;
4096	uint8_t *oob = chip->oob_poi;
4097	int steps, size, ret;
4098
4099	ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
4100	if (ret)
4101		return ret;
4102
4103	for (steps = chip->ecc.steps; steps > 0; steps--) {
4104		ret = nand_write_data_op(chip, buf, eccsize, false);
4105		if (ret)
4106			return ret;
4107
4108		buf += eccsize;
4109
4110		if (chip->ecc.prepad) {
4111			ret = nand_write_data_op(chip, oob, chip->ecc.prepad,
4112						 false);
4113			if (ret)
4114				return ret;
4115
4116			oob += chip->ecc.prepad;
4117		}
4118
4119		ret = nand_write_data_op(chip, oob, eccbytes, false);
4120		if (ret)
4121			return ret;
4122
4123		oob += eccbytes;
4124
4125		if (chip->ecc.postpad) {
4126			ret = nand_write_data_op(chip, oob, chip->ecc.postpad,
4127						 false);
4128			if (ret)
4129				return ret;
4130
4131			oob += chip->ecc.postpad;
4132		}
4133	}
4134
4135	size = mtd->oobsize - (oob - chip->oob_poi);
4136	if (size) {
4137		ret = nand_write_data_op(chip, oob, size, false);
4138		if (ret)
4139			return ret;
4140	}
4141
4142	return nand_prog_page_end_op(chip);
4143}
4144/**
4145 * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
4146 * @chip: nand chip info structure
4147 * @buf: data buffer
4148 * @oob_required: must write chip->oob_poi to OOB
4149 * @page: page number to write
4150 */
4151static int nand_write_page_swecc(struct nand_chip *chip, const uint8_t *buf,
4152				 int oob_required, int page)
4153{
4154	struct mtd_info *mtd = nand_to_mtd(chip);
4155	int i, eccsize = chip->ecc.size, ret;
4156	int eccbytes = chip->ecc.bytes;
4157	int eccsteps = chip->ecc.steps;
4158	uint8_t *ecc_calc = chip->ecc.calc_buf;
4159	const uint8_t *p = buf;
4160
4161	/* Software ECC calculation */
4162	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
4163		chip->ecc.calculate(chip, p, &ecc_calc[i]);
4164
4165	ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
4166					 chip->ecc.total);
4167	if (ret)
4168		return ret;
4169
4170	return chip->ecc.write_page_raw(chip, buf, 1, page);
4171}
4172
4173/**
4174 * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
4175 * @chip: nand chip info structure
4176 * @buf: data buffer
4177 * @oob_required: must write chip->oob_poi to OOB
4178 * @page: page number to write
4179 */
4180static int nand_write_page_hwecc(struct nand_chip *chip, const uint8_t *buf,
4181				 int oob_required, int page)
4182{
4183	struct mtd_info *mtd = nand_to_mtd(chip);
4184	int i, eccsize = chip->ecc.size, ret;
4185	int eccbytes = chip->ecc.bytes;
4186	int eccsteps = chip->ecc.steps;
4187	uint8_t *ecc_calc = chip->ecc.calc_buf;
4188	const uint8_t *p = buf;
4189
4190	ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
4191	if (ret)
4192		return ret;
4193
4194	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
4195		chip->ecc.hwctl(chip, NAND_ECC_WRITE);
4196
4197		ret = nand_write_data_op(chip, p, eccsize, false);
4198		if (ret)
4199			return ret;
4200
4201		chip->ecc.calculate(chip, p, &ecc_calc[i]);
4202	}
4203
4204	ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
4205					 chip->ecc.total);
4206	if (ret)
4207		return ret;
4208
4209	ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
4210	if (ret)
4211		return ret;
4212
4213	return nand_prog_page_end_op(chip);
4214}
4215
4216
4217/**
4218 * nand_write_subpage_hwecc - [REPLACEABLE] hardware ECC based subpage write
4219 * @chip:	nand chip info structure
4220 * @offset:	column address of subpage within the page
4221 * @data_len:	data length
4222 * @buf:	data buffer
4223 * @oob_required: must write chip->oob_poi to OOB
4224 * @page: page number to write
4225 */
4226static int nand_write_subpage_hwecc(struct nand_chip *chip, uint32_t offset,
4227				    uint32_t data_len, const uint8_t *buf,
4228				    int oob_required, int page)
4229{
4230	struct mtd_info *mtd = nand_to_mtd(chip);
4231	uint8_t *oob_buf  = chip->oob_poi;
4232	uint8_t *ecc_calc = chip->ecc.calc_buf;
4233	int ecc_size      = chip->ecc.size;
4234	int ecc_bytes     = chip->ecc.bytes;
4235	int ecc_steps     = chip->ecc.steps;
4236	uint32_t start_step = offset / ecc_size;
4237	uint32_t end_step   = (offset + data_len - 1) / ecc_size;
4238	int oob_bytes       = mtd->oobsize / ecc_steps;
4239	int step, ret;
4240
4241	ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
4242	if (ret)
4243		return ret;
4244
4245	for (step = 0; step < ecc_steps; step++) {
4246		/* configure controller for WRITE access */
4247		chip->ecc.hwctl(chip, NAND_ECC_WRITE);
4248
4249		/* write data (untouched subpages already masked by 0xFF) */
4250		ret = nand_write_data_op(chip, buf, ecc_size, false);
4251		if (ret)
4252			return ret;
4253
4254		/* mask ECC of un-touched subpages by padding 0xFF */
4255		if ((step < start_step) || (step > end_step))
4256			memset(ecc_calc, 0xff, ecc_bytes);
4257		else
4258			chip->ecc.calculate(chip, buf, ecc_calc);
4259
4260		/* mask OOB of un-touched subpages by padding 0xFF */
4261		/* if oob_required, preserve OOB metadata of written subpage */
4262		if (!oob_required || (step < start_step) || (step > end_step))
4263			memset(oob_buf, 0xff, oob_bytes);
4264
4265		buf += ecc_size;
4266		ecc_calc += ecc_bytes;
4267		oob_buf  += oob_bytes;
4268	}
4269
4270	/* copy calculated ECC for whole page to chip->buffer->oob */
4271	/* this include masked-value(0xFF) for unwritten subpages */
4272	ecc_calc = chip->ecc.calc_buf;
4273	ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
4274					 chip->ecc.total);
4275	if (ret)
4276		return ret;
4277
4278	/* write OOB buffer to NAND device */
4279	ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
4280	if (ret)
4281		return ret;
4282
4283	return nand_prog_page_end_op(chip);
4284}
4285
4286
4287/**
4288 * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
4289 * @chip: nand chip info structure
4290 * @buf: data buffer
4291 * @oob_required: must write chip->oob_poi to OOB
4292 * @page: page number to write
4293 *
4294 * The hw generator calculates the error syndrome automatically. Therefore we
4295 * need a special oob layout and handling.
4296 */
4297static int nand_write_page_syndrome(struct nand_chip *chip, const uint8_t *buf,
4298				    int oob_required, int page)
4299{
4300	struct mtd_info *mtd = nand_to_mtd(chip);
4301	int i, eccsize = chip->ecc.size;
4302	int eccbytes = chip->ecc.bytes;
4303	int eccsteps = chip->ecc.steps;
4304	const uint8_t *p = buf;
4305	uint8_t *oob = chip->oob_poi;
4306	int ret;
4307
4308	ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
4309	if (ret)
4310		return ret;
4311
4312	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
4313		chip->ecc.hwctl(chip, NAND_ECC_WRITE);
4314
4315		ret = nand_write_data_op(chip, p, eccsize, false);
4316		if (ret)
4317			return ret;
4318
4319		if (chip->ecc.prepad) {
4320			ret = nand_write_data_op(chip, oob, chip->ecc.prepad,
4321						 false);
4322			if (ret)
4323				return ret;
4324
4325			oob += chip->ecc.prepad;
4326		}
4327
4328		chip->ecc.calculate(chip, p, oob);
4329
4330		ret = nand_write_data_op(chip, oob, eccbytes, false);
4331		if (ret)
4332			return ret;
4333
4334		oob += eccbytes;
4335
4336		if (chip->ecc.postpad) {
4337			ret = nand_write_data_op(chip, oob, chip->ecc.postpad,
4338						 false);
4339			if (ret)
4340				return ret;
4341
4342			oob += chip->ecc.postpad;
4343		}
4344	}
4345
4346	/* Calculate remaining oob bytes */
4347	i = mtd->oobsize - (oob - chip->oob_poi);
4348	if (i) {
4349		ret = nand_write_data_op(chip, oob, i, false);
4350		if (ret)
4351			return ret;
4352	}
4353
4354	return nand_prog_page_end_op(chip);
4355}
4356
4357/**
4358 * nand_write_page - write one page
4359 * @chip: NAND chip descriptor
4360 * @offset: address offset within the page
4361 * @data_len: length of actual data to be written
4362 * @buf: the data to write
4363 * @oob_required: must write chip->oob_poi to OOB
4364 * @page: page number to write
4365 * @raw: use _raw version of write_page
4366 */
4367static int nand_write_page(struct nand_chip *chip, uint32_t offset,
4368			   int data_len, const uint8_t *buf, int oob_required,
4369			   int page, int raw)
4370{
4371	struct mtd_info *mtd = nand_to_mtd(chip);
4372	int status, subpage;
4373
4374	if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
4375		chip->ecc.write_subpage)
4376		subpage = offset || (data_len < mtd->writesize);
4377	else
4378		subpage = 0;
4379
4380	if (unlikely(raw))
4381		status = chip->ecc.write_page_raw(chip, buf, oob_required,
4382						  page);
4383	else if (subpage)
4384		status = chip->ecc.write_subpage(chip, offset, data_len, buf,
4385						 oob_required, page);
4386	else
4387		status = chip->ecc.write_page(chip, buf, oob_required, page);
4388
4389	if (status < 0)
4390		return status;
4391
4392	return 0;
4393}
4394
4395#define NOTALIGNED(x)	((x & (chip->subpagesize - 1)) != 0)
4396
4397/**
4398 * nand_do_write_ops - [INTERN] NAND write with ECC
4399 * @chip: NAND chip object
4400 * @to: offset to write to
4401 * @ops: oob operations description structure
4402 *
4403 * NAND write with ECC.
4404 */
4405static int nand_do_write_ops(struct nand_chip *chip, loff_t to,
4406			     struct mtd_oob_ops *ops)
4407{
4408	struct mtd_info *mtd = nand_to_mtd(chip);
4409	int chipnr, realpage, page, column;
4410	uint32_t writelen = ops->len;
4411
4412	uint32_t oobwritelen = ops->ooblen;
4413	uint32_t oobmaxlen = mtd_oobavail(mtd, ops);
4414
4415	uint8_t *oob = ops->oobbuf;
4416	uint8_t *buf = ops->datbuf;
4417	int ret;
4418	int oob_required = oob ? 1 : 0;
4419
4420	ops->retlen = 0;
4421	if (!writelen)
4422		return 0;
4423
4424	/* Reject writes, which are not page aligned */
4425	if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
4426		pr_notice("%s: attempt to write non page aligned data\n",
4427			   __func__);
4428		return -EINVAL;
4429	}
4430
4431	/* Check if the region is secured */
4432	if (nand_region_is_secured(chip, to, writelen))
4433		return -EIO;
4434
4435	column = to & (mtd->writesize - 1);
4436
4437	chipnr = (int)(to >> chip->chip_shift);
4438	nand_select_target(chip, chipnr);
4439
4440	/* Check, if it is write protected */
4441	if (nand_check_wp(chip)) {
4442		ret = -EIO;
4443		goto err_out;
4444	}
4445
4446	realpage = (int)(to >> chip->page_shift);
4447	page = realpage & chip->pagemask;
4448
4449	/* Invalidate the page cache, when we write to the cached page */
4450	if (to <= ((loff_t)chip->pagecache.page << chip->page_shift) &&
4451	    ((loff_t)chip->pagecache.page << chip->page_shift) < (to + ops->len))
4452		chip->pagecache.page = -1;
4453
4454	/* Don't allow multipage oob writes with offset */
4455	if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) {
4456		ret = -EINVAL;
4457		goto err_out;
4458	}
4459
4460	while (1) {
4461		int bytes = mtd->writesize;
4462		uint8_t *wbuf = buf;
4463		int use_bounce_buf;
4464		int part_pagewr = (column || writelen < mtd->writesize);
4465
4466		if (part_pagewr)
4467			use_bounce_buf = 1;
4468		else if (chip->options & NAND_USES_DMA)
4469			use_bounce_buf = !virt_addr_valid(buf) ||
4470					 !IS_ALIGNED((unsigned long)buf,
4471						     chip->buf_align);
4472		else
4473			use_bounce_buf = 0;
4474
4475		/*
4476		 * Copy the data from the initial buffer when doing partial page
4477		 * writes or when a bounce buffer is required.
4478		 */
4479		if (use_bounce_buf) {
4480			pr_debug("%s: using write bounce buffer for buf@%p\n",
4481					 __func__, buf);
4482			if (part_pagewr)
4483				bytes = min_t(int, bytes - column, writelen);
4484			wbuf = nand_get_data_buf(chip);
4485			memset(wbuf, 0xff, mtd->writesize);
4486			memcpy(&wbuf[column], buf, bytes);
4487		}
4488
4489		if (unlikely(oob)) {
4490			size_t len = min(oobwritelen, oobmaxlen);
4491			oob = nand_fill_oob(chip, oob, len, ops);
4492			oobwritelen -= len;
4493		} else {
4494			/* We still need to erase leftover OOB data */
4495			memset(chip->oob_poi, 0xff, mtd->oobsize);
4496		}
4497
4498		ret = nand_write_page(chip, column, bytes, wbuf,
4499				      oob_required, page,
4500				      (ops->mode == MTD_OPS_RAW));
4501		if (ret)
4502			break;
4503
4504		writelen -= bytes;
4505		if (!writelen)
4506			break;
4507
4508		column = 0;
4509		buf += bytes;
4510		realpage++;
4511
4512		page = realpage & chip->pagemask;
4513		/* Check, if we cross a chip boundary */
4514		if (!page) {
4515			chipnr++;
4516			nand_deselect_target(chip);
4517			nand_select_target(chip, chipnr);
4518		}
4519	}
4520
4521	ops->retlen = ops->len - writelen;
4522	if (unlikely(oob))
4523		ops->oobretlen = ops->ooblen;
4524
4525err_out:
4526	nand_deselect_target(chip);
4527	return ret;
4528}
4529
4530/**
4531 * panic_nand_write - [MTD Interface] NAND write with ECC
4532 * @mtd: MTD device structure
4533 * @to: offset to write to
4534 * @len: number of bytes to write
4535 * @retlen: pointer to variable to store the number of written bytes
4536 * @buf: the data to write
4537 *
4538 * NAND write with ECC. Used when performing writes in interrupt context, this
4539 * may for example be called by mtdoops when writing an oops while in panic.
4540 */
4541static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
4542			    size_t *retlen, const uint8_t *buf)
4543{
4544	struct nand_chip *chip = mtd_to_nand(mtd);
4545	int chipnr = (int)(to >> chip->chip_shift);
4546	struct mtd_oob_ops ops;
4547	int ret;
4548
4549	nand_select_target(chip, chipnr);
4550
4551	/* Wait for the device to get ready */
4552	panic_nand_wait(chip, 400);
4553
4554	memset(&ops, 0, sizeof(ops));
4555	ops.len = len;
4556	ops.datbuf = (uint8_t *)buf;
4557	ops.mode = MTD_OPS_PLACE_OOB;
4558
4559	ret = nand_do_write_ops(chip, to, &ops);
4560
4561	*retlen = ops.retlen;
4562	return ret;
4563}
4564
4565/**
4566 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
4567 * @mtd: MTD device structure
4568 * @to: offset to write to
4569 * @ops: oob operation description structure
4570 */
4571static int nand_write_oob(struct mtd_info *mtd, loff_t to,
4572			  struct mtd_oob_ops *ops)
4573{
4574	struct nand_chip *chip = mtd_to_nand(mtd);
4575	int ret = 0;
4576
4577	ops->retlen = 0;
4578
4579	nand_get_device(chip);
4580
4581	switch (ops->mode) {
4582	case MTD_OPS_PLACE_OOB:
4583	case MTD_OPS_AUTO_OOB:
4584	case MTD_OPS_RAW:
4585		break;
4586
4587	default:
4588		goto out;
4589	}
4590
4591	if (!ops->datbuf)
4592		ret = nand_do_write_oob(chip, to, ops);
4593	else
4594		ret = nand_do_write_ops(chip, to, ops);
4595
4596out:
4597	nand_release_device(chip);
4598	return ret;
4599}
4600
4601/**
4602 * nand_erase - [MTD Interface] erase block(s)
4603 * @mtd: MTD device structure
4604 * @instr: erase instruction
4605 *
4606 * Erase one ore more blocks.
4607 */
4608static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
4609{
4610	return nand_erase_nand(mtd_to_nand(mtd), instr, 0);
4611}
4612
4613/**
4614 * nand_erase_nand - [INTERN] erase block(s)
4615 * @chip: NAND chip object
4616 * @instr: erase instruction
4617 * @allowbbt: allow erasing the bbt area
4618 *
4619 * Erase one ore more blocks.
4620 */
4621int nand_erase_nand(struct nand_chip *chip, struct erase_info *instr,
4622		    int allowbbt)
4623{
4624	int page, pages_per_block, ret, chipnr;
4625	loff_t len;
4626
4627	pr_debug("%s: start = 0x%012llx, len = %llu\n",
4628			__func__, (unsigned long long)instr->addr,
4629			(unsigned long long)instr->len);
4630
4631	if (check_offs_len(chip, instr->addr, instr->len))
4632		return -EINVAL;
4633
4634	/* Check if the region is secured */
4635	if (nand_region_is_secured(chip, instr->addr, instr->len))
4636		return -EIO;
4637
4638	/* Grab the lock and see if the device is available */
4639	nand_get_device(chip);
4640
4641	/* Shift to get first page */
4642	page = (int)(instr->addr >> chip->page_shift);
4643	chipnr = (int)(instr->addr >> chip->chip_shift);
4644
4645	/* Calculate pages in each block */
4646	pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
4647
4648	/* Select the NAND device */
4649	nand_select_target(chip, chipnr);
4650
4651	/* Check, if it is write protected */
4652	if (nand_check_wp(chip)) {
4653		pr_debug("%s: device is write protected!\n",
4654				__func__);
4655		ret = -EIO;
4656		goto erase_exit;
4657	}
4658
4659	/* Loop through the pages */
4660	len = instr->len;
4661
4662	while (len) {
4663		loff_t ofs = (loff_t)page << chip->page_shift;
4664
4665		/* Check if we have a bad block, we do not erase bad blocks! */
4666		if (nand_block_checkbad(chip, ((loff_t) page) <<
4667					chip->page_shift, allowbbt)) {
4668			pr_warn("%s: attempt to erase a bad block at 0x%08llx\n",
4669				    __func__, (unsigned long long)ofs);
4670			ret = -EIO;
4671			goto erase_exit;
4672		}
4673
4674		/*
4675		 * Invalidate the page cache, if we erase the block which
4676		 * contains the current cached page.
4677		 */
4678		if (page <= chip->pagecache.page && chip->pagecache.page <
4679		    (page + pages_per_block))
4680			chip->pagecache.page = -1;
4681
4682		ret = nand_erase_op(chip, (page & chip->pagemask) >>
4683				    (chip->phys_erase_shift - chip->page_shift));
4684		if (ret) {
4685			pr_debug("%s: failed erase, page 0x%08x\n",
4686					__func__, page);
4687			instr->fail_addr = ofs;
4688			goto erase_exit;
4689		}
4690
4691		/* Increment page address and decrement length */
4692		len -= (1ULL << chip->phys_erase_shift);
4693		page += pages_per_block;
4694
4695		/* Check, if we cross a chip boundary */
4696		if (len && !(page & chip->pagemask)) {
4697			chipnr++;
4698			nand_deselect_target(chip);
4699			nand_select_target(chip, chipnr);
4700		}
4701	}
4702
4703	ret = 0;
4704erase_exit:
4705
4706	/* Deselect and wake up anyone waiting on the device */
4707	nand_deselect_target(chip);
4708	nand_release_device(chip);
4709
4710	/* Return more or less happy */
4711	return ret;
4712}
4713
4714/**
4715 * nand_sync - [MTD Interface] sync
4716 * @mtd: MTD device structure
4717 *
4718 * Sync is actually a wait for chip ready function.
4719 */
4720static void nand_sync(struct mtd_info *mtd)
4721{
4722	struct nand_chip *chip = mtd_to_nand(mtd);
4723
4724	pr_debug("%s: called\n", __func__);
4725
4726	/* Grab the lock and see if the device is available */
4727	nand_get_device(chip);
4728	/* Release it and go back */
4729	nand_release_device(chip);
4730}
4731
4732/**
4733 * nand_block_isbad - [MTD Interface] Check if block at offset is bad
4734 * @mtd: MTD device structure
4735 * @offs: offset relative to mtd start
4736 */
4737static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
4738{
4739	struct nand_chip *chip = mtd_to_nand(mtd);
4740	int chipnr = (int)(offs >> chip->chip_shift);
4741	int ret;
4742
4743	/* Select the NAND device */
4744	nand_get_device(chip);
4745
4746	nand_select_target(chip, chipnr);
4747
4748	ret = nand_block_checkbad(chip, offs, 0);
4749
4750	nand_deselect_target(chip);
4751	nand_release_device(chip);
4752
4753	return ret;
4754}
4755
4756/**
4757 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
4758 * @mtd: MTD device structure
4759 * @ofs: offset relative to mtd start
4760 */
4761static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
4762{
4763	int ret;
4764
4765	ret = nand_block_isbad(mtd, ofs);
4766	if (ret) {
4767		/* If it was bad already, return success and do nothing */
4768		if (ret > 0)
4769			return 0;
4770		return ret;
4771	}
4772
4773	return nand_block_markbad_lowlevel(mtd_to_nand(mtd), ofs);
4774}
4775
4776/**
4777 * nand_suspend - [MTD Interface] Suspend the NAND flash
4778 * @mtd: MTD device structure
4779 *
4780 * Returns 0 for success or negative error code otherwise.
4781 */
4782static int nand_suspend(struct mtd_info *mtd)
4783{
4784	struct nand_chip *chip = mtd_to_nand(mtd);
4785	int ret = 0;
4786
4787	mutex_lock(&chip->lock);
4788	if (chip->ops.suspend)
4789		ret = chip->ops.suspend(chip);
4790	if (!ret)
4791		chip->suspended = 1;
4792	mutex_unlock(&chip->lock);
4793
4794	return ret;
4795}
4796
4797/**
4798 * nand_resume - [MTD Interface] Resume the NAND flash
4799 * @mtd: MTD device structure
4800 */
4801static void nand_resume(struct mtd_info *mtd)
4802{
4803	struct nand_chip *chip = mtd_to_nand(mtd);
4804
4805	mutex_lock(&chip->lock);
4806	if (chip->suspended) {
4807		if (chip->ops.resume)
4808			chip->ops.resume(chip);
4809		chip->suspended = 0;
4810	} else {
4811		pr_err("%s called for a chip which is not in suspended state\n",
4812			__func__);
4813	}
4814	mutex_unlock(&chip->lock);
4815
4816	wake_up_all(&chip->resume_wq);
4817}
4818
4819/**
4820 * nand_shutdown - [MTD Interface] Finish the current NAND operation and
4821 *                 prevent further operations
4822 * @mtd: MTD device structure
4823 */
4824static void nand_shutdown(struct mtd_info *mtd)
4825{
4826	nand_suspend(mtd);
4827}
4828
4829/**
4830 * nand_lock - [MTD Interface] Lock the NAND flash
4831 * @mtd: MTD device structure
4832 * @ofs: offset byte address
4833 * @len: number of bytes to lock (must be a multiple of block/page size)
4834 */
4835static int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
4836{
4837	struct nand_chip *chip = mtd_to_nand(mtd);
4838
4839	if (!chip->ops.lock_area)
4840		return -ENOTSUPP;
4841
4842	return chip->ops.lock_area(chip, ofs, len);
4843}
4844
4845/**
4846 * nand_unlock - [MTD Interface] Unlock the NAND flash
4847 * @mtd: MTD device structure
4848 * @ofs: offset byte address
4849 * @len: number of bytes to unlock (must be a multiple of block/page size)
4850 */
4851static int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
4852{
4853	struct nand_chip *chip = mtd_to_nand(mtd);
4854
4855	if (!chip->ops.unlock_area)
4856		return -ENOTSUPP;
4857
4858	return chip->ops.unlock_area(chip, ofs, len);
4859}
4860
4861/* Set default functions */
4862static void nand_set_defaults(struct nand_chip *chip)
4863{
4864	/* If no controller is provided, use the dummy, legacy one. */
4865	if (!chip->controller) {
4866		chip->controller = &chip->legacy.dummy_controller;
4867		nand_controller_init(chip->controller);
4868	}
4869
4870	nand_legacy_set_defaults(chip);
4871
4872	if (!chip->buf_align)
4873		chip->buf_align = 1;
4874}
4875
4876/* Sanitize ONFI strings so we can safely print them */
4877void sanitize_string(uint8_t *s, size_t len)
4878{
4879	ssize_t i;
4880
4881	/* Null terminate */
4882	s[len - 1] = 0;
4883
4884	/* Remove non printable chars */
4885	for (i = 0; i < len - 1; i++) {
4886		if (s[i] < ' ' || s[i] > 127)
4887			s[i] = '?';
4888	}
4889
4890	/* Remove trailing spaces */
4891	strim(s);
4892}
4893
4894/*
4895 * nand_id_has_period - Check if an ID string has a given wraparound period
4896 * @id_data: the ID string
4897 * @arrlen: the length of the @id_data array
4898 * @period: the period of repitition
4899 *
4900 * Check if an ID string is repeated within a given sequence of bytes at
4901 * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
4902 * period of 3). This is a helper function for nand_id_len(). Returns non-zero
4903 * if the repetition has a period of @period; otherwise, returns zero.
4904 */
4905static int nand_id_has_period(u8 *id_data, int arrlen, int period)
4906{
4907	int i, j;
4908	for (i = 0; i < period; i++)
4909		for (j = i + period; j < arrlen; j += period)
4910			if (id_data[i] != id_data[j])
4911				return 0;
4912	return 1;
4913}
4914
4915/*
4916 * nand_id_len - Get the length of an ID string returned by CMD_READID
4917 * @id_data: the ID string
4918 * @arrlen: the length of the @id_data array
4919
4920 * Returns the length of the ID string, according to known wraparound/trailing
4921 * zero patterns. If no pattern exists, returns the length of the array.
4922 */
4923static int nand_id_len(u8 *id_data, int arrlen)
4924{
4925	int last_nonzero, period;
4926
4927	/* Find last non-zero byte */
4928	for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--)
4929		if (id_data[last_nonzero])
4930			break;
4931
4932	/* All zeros */
4933	if (last_nonzero < 0)
4934		return 0;
4935
4936	/* Calculate wraparound period */
4937	for (period = 1; period < arrlen; period++)
4938		if (nand_id_has_period(id_data, arrlen, period))
4939			break;
4940
4941	/* There's a repeated pattern */
4942	if (period < arrlen)
4943		return period;
4944
4945	/* There are trailing zeros */
4946	if (last_nonzero < arrlen - 1)
4947		return last_nonzero + 1;
4948
4949	/* No pattern detected */
4950	return arrlen;
4951}
4952
4953/* Extract the bits of per cell from the 3rd byte of the extended ID */
4954static int nand_get_bits_per_cell(u8 cellinfo)
4955{
4956	int bits;
4957
4958	bits = cellinfo & NAND_CI_CELLTYPE_MSK;
4959	bits >>= NAND_CI_CELLTYPE_SHIFT;
4960	return bits + 1;
4961}
4962
4963/*
4964 * Many new NAND share similar device ID codes, which represent the size of the
4965 * chip. The rest of the parameters must be decoded according to generic or
4966 * manufacturer-specific "extended ID" decoding patterns.
4967 */
4968void nand_decode_ext_id(struct nand_chip *chip)
4969{
4970	struct nand_memory_organization *memorg;
4971	struct mtd_info *mtd = nand_to_mtd(chip);
4972	int extid;
4973	u8 *id_data = chip->id.data;
4974
4975	memorg = nanddev_get_memorg(&chip->base);
4976
4977	/* The 3rd id byte holds MLC / multichip data */
4978	memorg->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
4979	/* The 4th id byte is the important one */
4980	extid = id_data[3];
4981
4982	/* Calc pagesize */
4983	memorg->pagesize = 1024 << (extid & 0x03);
4984	mtd->writesize = memorg->pagesize;
4985	extid >>= 2;
4986	/* Calc oobsize */
4987	memorg->oobsize = (8 << (extid & 0x01)) * (mtd->writesize >> 9);
4988	mtd->oobsize = memorg->oobsize;
4989	extid >>= 2;
4990	/* Calc blocksize. Blocksize is multiples of 64KiB */
4991	memorg->pages_per_eraseblock = ((64 * 1024) << (extid & 0x03)) /
4992				       memorg->pagesize;
4993	mtd->erasesize = (64 * 1024) << (extid & 0x03);
4994	extid >>= 2;
4995	/* Get buswidth information */
4996	if (extid & 0x1)
4997		chip->options |= NAND_BUSWIDTH_16;
4998}
4999EXPORT_SYMBOL_GPL(nand_decode_ext_id);
5000
5001/*
5002 * Old devices have chip data hardcoded in the device ID table. nand_decode_id
5003 * decodes a matching ID table entry and assigns the MTD size parameters for
5004 * the chip.
5005 */
5006static void nand_decode_id(struct nand_chip *chip, struct nand_flash_dev *type)
5007{
5008	struct mtd_info *mtd = nand_to_mtd(chip);
5009	struct nand_memory_organization *memorg;
5010
5011	memorg = nanddev_get_memorg(&chip->base);
5012
5013	memorg->pages_per_eraseblock = type->erasesize / type->pagesize;
5014	mtd->erasesize = type->erasesize;
5015	memorg->pagesize = type->pagesize;
5016	mtd->writesize = memorg->pagesize;
5017	memorg->oobsize = memorg->pagesize / 32;
5018	mtd->oobsize = memorg->oobsize;
5019
5020	/* All legacy ID NAND are small-page, SLC */
5021	memorg->bits_per_cell = 1;
5022}
5023
5024/*
5025 * Set the bad block marker/indicator (BBM/BBI) patterns according to some
5026 * heuristic patterns using various detected parameters (e.g., manufacturer,
5027 * page size, cell-type information).
5028 */
5029static void nand_decode_bbm_options(struct nand_chip *chip)
5030{
5031	struct mtd_info *mtd = nand_to_mtd(chip);
5032
5033	/* Set the bad block position */
5034	if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
5035		chip->badblockpos = NAND_BBM_POS_LARGE;
5036	else
5037		chip->badblockpos = NAND_BBM_POS_SMALL;
5038}
5039
5040static inline bool is_full_id_nand(struct nand_flash_dev *type)
5041{
5042	return type->id_len;
5043}
5044
5045static bool find_full_id_nand(struct nand_chip *chip,
5046			      struct nand_flash_dev *type)
5047{
5048	struct nand_device *base = &chip->base;
5049	struct nand_ecc_props requirements;
5050	struct mtd_info *mtd = nand_to_mtd(chip);
5051	struct nand_memory_organization *memorg;
5052	u8 *id_data = chip->id.data;
5053
5054	memorg = nanddev_get_memorg(&chip->base);
5055
5056	if (!strncmp(type->id, id_data, type->id_len)) {
5057		memorg->pagesize = type->pagesize;
5058		mtd->writesize = memorg->pagesize;
5059		memorg->pages_per_eraseblock = type->erasesize /
5060					       type->pagesize;
5061		mtd->erasesize = type->erasesize;
5062		memorg->oobsize = type->oobsize;
5063		mtd->oobsize = memorg->oobsize;
5064
5065		memorg->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
5066		memorg->eraseblocks_per_lun =
5067			DIV_ROUND_DOWN_ULL((u64)type->chipsize << 20,
5068					   memorg->pagesize *
5069					   memorg->pages_per_eraseblock);
5070		chip->options |= type->options;
5071		requirements.strength = NAND_ECC_STRENGTH(type);
5072		requirements.step_size = NAND_ECC_STEP(type);
5073		nanddev_set_ecc_requirements(base, &requirements);
5074
5075		chip->parameters.model = kstrdup(type->name, GFP_KERNEL);
5076		if (!chip->parameters.model)
5077			return false;
5078
5079		return true;
5080	}
5081	return false;
5082}
5083
5084/*
5085 * Manufacturer detection. Only used when the NAND is not ONFI or JEDEC
5086 * compliant and does not have a full-id or legacy-id entry in the nand_ids
5087 * table.
5088 */
5089static void nand_manufacturer_detect(struct nand_chip *chip)
5090{
5091	/*
5092	 * Try manufacturer detection if available and use
5093	 * nand_decode_ext_id() otherwise.
5094	 */
5095	if (chip->manufacturer.desc && chip->manufacturer.desc->ops &&
5096	    chip->manufacturer.desc->ops->detect) {
5097		struct nand_memory_organization *memorg;
5098
5099		memorg = nanddev_get_memorg(&chip->base);
5100
5101		/* The 3rd id byte holds MLC / multichip data */
5102		memorg->bits_per_cell = nand_get_bits_per_cell(chip->id.data[2]);
5103		chip->manufacturer.desc->ops->detect(chip);
5104	} else {
5105		nand_decode_ext_id(chip);
5106	}
5107}
5108
5109/*
5110 * Manufacturer initialization. This function is called for all NANDs including
5111 * ONFI and JEDEC compliant ones.
5112 * Manufacturer drivers should put all their specific initialization code in
5113 * their ->init() hook.
5114 */
5115static int nand_manufacturer_init(struct nand_chip *chip)
5116{
5117	if (!chip->manufacturer.desc || !chip->manufacturer.desc->ops ||
5118	    !chip->manufacturer.desc->ops->init)
5119		return 0;
5120
5121	return chip->manufacturer.desc->ops->init(chip);
5122}
5123
5124/*
5125 * Manufacturer cleanup. This function is called for all NANDs including
5126 * ONFI and JEDEC compliant ones.
5127 * Manufacturer drivers should put all their specific cleanup code in their
5128 * ->cleanup() hook.
5129 */
5130static void nand_manufacturer_cleanup(struct nand_chip *chip)
5131{
5132	/* Release manufacturer private data */
5133	if (chip->manufacturer.desc && chip->manufacturer.desc->ops &&
5134	    chip->manufacturer.desc->ops->cleanup)
5135		chip->manufacturer.desc->ops->cleanup(chip);
5136}
5137
5138static const char *
5139nand_manufacturer_name(const struct nand_manufacturer_desc *manufacturer_desc)
5140{
5141	return manufacturer_desc ? manufacturer_desc->name : "Unknown";
5142}
5143
5144static void rawnand_check_data_only_read_support(struct nand_chip *chip)
5145{
5146	/* Use an arbitrary size for the check */
5147	if (!nand_read_data_op(chip, NULL, SZ_512, true, true))
5148		chip->controller->supported_op.data_only_read = 1;
5149}
5150
5151static void rawnand_early_check_supported_ops(struct nand_chip *chip)
5152{
5153	/* The supported_op fields should not be set by individual drivers */
5154	WARN_ON_ONCE(chip->controller->supported_op.data_only_read);
5155
5156	if (!nand_has_exec_op(chip))
5157		return;
5158
5159	rawnand_check_data_only_read_support(chip);
5160}
5161
5162static void rawnand_check_cont_read_support(struct nand_chip *chip)
5163{
5164	struct mtd_info *mtd = nand_to_mtd(chip);
5165
5166	if (!chip->parameters.supports_read_cache)
5167		return;
5168
5169	if (chip->read_retries)
5170		return;
5171
5172	if (!nand_lp_exec_cont_read_page_op(chip, 0, 0, NULL,
5173					    mtd->writesize, true))
5174		chip->controller->supported_op.cont_read = 1;
5175}
5176
5177static void rawnand_late_check_supported_ops(struct nand_chip *chip)
5178{
5179	/* The supported_op fields should not be set by individual drivers */
5180	WARN_ON_ONCE(chip->controller->supported_op.cont_read);
5181
5182	/*
5183	 * Too many devices do not support sequential cached reads with on-die
5184	 * ECC correction enabled, so in this case refuse to perform the
5185	 * automation.
5186	 */
5187	if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_DIE)
5188		return;
5189
5190	if (!nand_has_exec_op(chip))
5191		return;
5192
5193	rawnand_check_cont_read_support(chip);
5194}
5195
5196/*
5197 * Get the flash and manufacturer id and lookup if the type is supported.
5198 */
5199static int nand_detect(struct nand_chip *chip, struct nand_flash_dev *type)
5200{
5201	const struct nand_manufacturer_desc *manufacturer_desc;
5202	struct mtd_info *mtd = nand_to_mtd(chip);
5203	struct nand_memory_organization *memorg;
5204	int busw, ret;
5205	u8 *id_data = chip->id.data;
5206	u8 maf_id, dev_id;
5207	u64 targetsize;
5208
5209	/*
5210	 * Let's start by initializing memorg fields that might be left
5211	 * unassigned by the ID-based detection logic.
5212	 */
5213	memorg = nanddev_get_memorg(&chip->base);
5214	memorg->planes_per_lun = 1;
5215	memorg->luns_per_target = 1;
5216
5217	/*
5218	 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
5219	 * after power-up.
5220	 */
5221	ret = nand_reset(chip, 0);
5222	if (ret)
5223		return ret;
5224
5225	/* Select the device */
5226	nand_select_target(chip, 0);
5227
5228	rawnand_early_check_supported_ops(chip);
5229
5230	/* Send the command for reading device ID */
5231	ret = nand_readid_op(chip, 0, id_data, 2);
5232	if (ret)
5233		return ret;
5234
5235	/* Read manufacturer and device IDs */
5236	maf_id = id_data[0];
5237	dev_id = id_data[1];
5238
5239	/*
5240	 * Try again to make sure, as some systems the bus-hold or other
5241	 * interface concerns can cause random data which looks like a
5242	 * possibly credible NAND flash to appear. If the two results do
5243	 * not match, ignore the device completely.
5244	 */
5245
5246	/* Read entire ID string */
5247	ret = nand_readid_op(chip, 0, id_data, sizeof(chip->id.data));
5248	if (ret)
5249		return ret;
5250
5251	if (id_data[0] != maf_id || id_data[1] != dev_id) {
5252		pr_info("second ID read did not match %02x,%02x against %02x,%02x\n",
5253			maf_id, dev_id, id_data[0], id_data[1]);
5254		return -ENODEV;
5255	}
5256
5257	chip->id.len = nand_id_len(id_data, ARRAY_SIZE(chip->id.data));
5258
5259	/* Try to identify manufacturer */
5260	manufacturer_desc = nand_get_manufacturer_desc(maf_id);
5261	chip->manufacturer.desc = manufacturer_desc;
5262
5263	if (!type)
5264		type = nand_flash_ids;
5265
5266	/*
5267	 * Save the NAND_BUSWIDTH_16 flag before letting auto-detection logic
5268	 * override it.
5269	 * This is required to make sure initial NAND bus width set by the
5270	 * NAND controller driver is coherent with the real NAND bus width
5271	 * (extracted by auto-detection code).
5272	 */
5273	busw = chip->options & NAND_BUSWIDTH_16;
5274
5275	/*
5276	 * The flag is only set (never cleared), reset it to its default value
5277	 * before starting auto-detection.
5278	 */
5279	chip->options &= ~NAND_BUSWIDTH_16;
5280
5281	for (; type->name != NULL; type++) {
5282		if (is_full_id_nand(type)) {
5283			if (find_full_id_nand(chip, type))
5284				goto ident_done;
5285		} else if (dev_id == type->dev_id) {
5286			break;
5287		}
5288	}
5289
5290	if (!type->name || !type->pagesize) {
5291		/* Check if the chip is ONFI compliant */
5292		ret = nand_onfi_detect(chip);
5293		if (ret < 0)
5294			return ret;
5295		else if (ret)
5296			goto ident_done;
5297
5298		/* Check if the chip is JEDEC compliant */
5299		ret = nand_jedec_detect(chip);
5300		if (ret < 0)
5301			return ret;
5302		else if (ret)
5303			goto ident_done;
5304	}
5305
5306	if (!type->name)
5307		return -ENODEV;
5308
5309	chip->parameters.model = kstrdup(type->name, GFP_KERNEL);
5310	if (!chip->parameters.model)
5311		return -ENOMEM;
5312
5313	if (!type->pagesize)
5314		nand_manufacturer_detect(chip);
5315	else
5316		nand_decode_id(chip, type);
5317
5318	/* Get chip options */
5319	chip->options |= type->options;
5320
5321	memorg->eraseblocks_per_lun =
5322			DIV_ROUND_DOWN_ULL((u64)type->chipsize << 20,
5323					   memorg->pagesize *
5324					   memorg->pages_per_eraseblock);
5325
5326ident_done:
5327	if (!mtd->name)
5328		mtd->name = chip->parameters.model;
5329
5330	if (chip->options & NAND_BUSWIDTH_AUTO) {
5331		WARN_ON(busw & NAND_BUSWIDTH_16);
5332		nand_set_defaults(chip);
5333	} else if (busw != (chip->options & NAND_BUSWIDTH_16)) {
5334		/*
5335		 * Check, if buswidth is correct. Hardware drivers should set
5336		 * chip correct!
5337		 */
5338		pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
5339			maf_id, dev_id);
5340		pr_info("%s %s\n", nand_manufacturer_name(manufacturer_desc),
5341			mtd->name);
5342		pr_warn("bus width %d instead of %d bits\n", busw ? 16 : 8,
5343			(chip->options & NAND_BUSWIDTH_16) ? 16 : 8);
5344		ret = -EINVAL;
5345
5346		goto free_detect_allocation;
5347	}
5348
5349	nand_decode_bbm_options(chip);
5350
5351	/* Calculate the address shift from the page size */
5352	chip->page_shift = ffs(mtd->writesize) - 1;
5353	/* Convert chipsize to number of pages per chip -1 */
5354	targetsize = nanddev_target_size(&chip->base);
5355	chip->pagemask = (targetsize >> chip->page_shift) - 1;
5356
5357	chip->bbt_erase_shift = chip->phys_erase_shift =
5358		ffs(mtd->erasesize) - 1;
5359	if (targetsize & 0xffffffff)
5360		chip->chip_shift = ffs((unsigned)targetsize) - 1;
5361	else {
5362		chip->chip_shift = ffs((unsigned)(targetsize >> 32));
5363		chip->chip_shift += 32 - 1;
5364	}
5365
5366	if (chip->chip_shift - chip->page_shift > 16)
5367		chip->options |= NAND_ROW_ADDR_3;
5368
5369	chip->badblockbits = 8;
5370
5371	nand_legacy_adjust_cmdfunc(chip);
5372
5373	pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
5374		maf_id, dev_id);
5375	pr_info("%s %s\n", nand_manufacturer_name(manufacturer_desc),
5376		chip->parameters.model);
5377	pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n",
5378		(int)(targetsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC",
5379		mtd->erasesize >> 10, mtd->writesize, mtd->oobsize);
5380	return 0;
5381
5382free_detect_allocation:
5383	kfree(chip->parameters.model);
5384
5385	return ret;
5386}
5387
5388static enum nand_ecc_engine_type
5389of_get_rawnand_ecc_engine_type_legacy(struct device_node *np)
5390{
5391	enum nand_ecc_legacy_mode {
5392		NAND_ECC_INVALID,
5393		NAND_ECC_NONE,
5394		NAND_ECC_SOFT,
5395		NAND_ECC_SOFT_BCH,
5396		NAND_ECC_HW,
5397		NAND_ECC_HW_SYNDROME,
5398		NAND_ECC_ON_DIE,
5399	};
5400	const char * const nand_ecc_legacy_modes[] = {
5401		[NAND_ECC_NONE]		= "none",
5402		[NAND_ECC_SOFT]		= "soft",
5403		[NAND_ECC_SOFT_BCH]	= "soft_bch",
5404		[NAND_ECC_HW]		= "hw",
5405		[NAND_ECC_HW_SYNDROME]	= "hw_syndrome",
5406		[NAND_ECC_ON_DIE]	= "on-die",
5407	};
5408	enum nand_ecc_legacy_mode eng_type;
5409	const char *pm;
5410	int err;
5411
5412	err = of_property_read_string(np, "nand-ecc-mode", &pm);
5413	if (err)
5414		return NAND_ECC_ENGINE_TYPE_INVALID;
5415
5416	for (eng_type = NAND_ECC_NONE;
5417	     eng_type < ARRAY_SIZE(nand_ecc_legacy_modes); eng_type++) {
5418		if (!strcasecmp(pm, nand_ecc_legacy_modes[eng_type])) {
5419			switch (eng_type) {
5420			case NAND_ECC_NONE:
5421				return NAND_ECC_ENGINE_TYPE_NONE;
5422			case NAND_ECC_SOFT:
5423			case NAND_ECC_SOFT_BCH:
5424				return NAND_ECC_ENGINE_TYPE_SOFT;
5425			case NAND_ECC_HW:
5426			case NAND_ECC_HW_SYNDROME:
5427				return NAND_ECC_ENGINE_TYPE_ON_HOST;
5428			case NAND_ECC_ON_DIE:
5429				return NAND_ECC_ENGINE_TYPE_ON_DIE;
5430			default:
5431				break;
5432			}
5433		}
5434	}
5435
5436	return NAND_ECC_ENGINE_TYPE_INVALID;
5437}
5438
5439static enum nand_ecc_placement
5440of_get_rawnand_ecc_placement_legacy(struct device_node *np)
5441{
5442	const char *pm;
5443	int err;
5444
5445	err = of_property_read_string(np, "nand-ecc-mode", &pm);
5446	if (!err) {
5447		if (!strcasecmp(pm, "hw_syndrome"))
5448			return NAND_ECC_PLACEMENT_INTERLEAVED;
5449	}
5450
5451	return NAND_ECC_PLACEMENT_UNKNOWN;
5452}
5453
5454static enum nand_ecc_algo of_get_rawnand_ecc_algo_legacy(struct device_node *np)
5455{
5456	const char *pm;
5457	int err;
5458
5459	err = of_property_read_string(np, "nand-ecc-mode", &pm);
5460	if (!err) {
5461		if (!strcasecmp(pm, "soft"))
5462			return NAND_ECC_ALGO_HAMMING;
5463		else if (!strcasecmp(pm, "soft_bch"))
5464			return NAND_ECC_ALGO_BCH;
5465	}
5466
5467	return NAND_ECC_ALGO_UNKNOWN;
5468}
5469
5470static void of_get_nand_ecc_legacy_user_config(struct nand_chip *chip)
5471{
5472	struct device_node *dn = nand_get_flash_node(chip);
5473	struct nand_ecc_props *user_conf = &chip->base.ecc.user_conf;
5474
5475	if (user_conf->engine_type == NAND_ECC_ENGINE_TYPE_INVALID)
5476		user_conf->engine_type = of_get_rawnand_ecc_engine_type_legacy(dn);
5477
5478	if (user_conf->algo == NAND_ECC_ALGO_UNKNOWN)
5479		user_conf->algo = of_get_rawnand_ecc_algo_legacy(dn);
5480
5481	if (user_conf->placement == NAND_ECC_PLACEMENT_UNKNOWN)
5482		user_conf->placement = of_get_rawnand_ecc_placement_legacy(dn);
5483}
5484
5485static int of_get_nand_bus_width(struct nand_chip *chip)
5486{
5487	struct device_node *dn = nand_get_flash_node(chip);
5488	u32 val;
5489	int ret;
5490
5491	ret = of_property_read_u32(dn, "nand-bus-width", &val);
5492	if (ret == -EINVAL)
5493		/* Buswidth defaults to 8 if the property does not exist .*/
5494		return 0;
5495	else if (ret)
5496		return ret;
5497
5498	if (val == 16)
5499		chip->options |= NAND_BUSWIDTH_16;
5500	else if (val != 8)
5501		return -EINVAL;
5502	return 0;
5503}
5504
5505static int of_get_nand_secure_regions(struct nand_chip *chip)
5506{
5507	struct device_node *dn = nand_get_flash_node(chip);
5508	struct property *prop;
5509	int nr_elem, i, j;
5510
5511	/* Only proceed if the "secure-regions" property is present in DT */
5512	prop = of_find_property(dn, "secure-regions", NULL);
5513	if (!prop)
5514		return 0;
5515
5516	nr_elem = of_property_count_elems_of_size(dn, "secure-regions", sizeof(u64));
5517	if (nr_elem <= 0)
5518		return nr_elem;
5519
5520	chip->nr_secure_regions = nr_elem / 2;
5521	chip->secure_regions = kcalloc(chip->nr_secure_regions, sizeof(*chip->secure_regions),
5522				       GFP_KERNEL);
5523	if (!chip->secure_regions)
5524		return -ENOMEM;
5525
5526	for (i = 0, j = 0; i < chip->nr_secure_regions; i++, j += 2) {
5527		of_property_read_u64_index(dn, "secure-regions", j,
5528					   &chip->secure_regions[i].offset);
5529		of_property_read_u64_index(dn, "secure-regions", j + 1,
5530					   &chip->secure_regions[i].size);
5531	}
5532
5533	return 0;
5534}
5535
5536/**
5537 * rawnand_dt_parse_gpio_cs - Parse the gpio-cs property of a controller
5538 * @dev: Device that will be parsed. Also used for managed allocations.
5539 * @cs_array: Array of GPIO desc pointers allocated on success
5540 * @ncs_array: Number of entries in @cs_array updated on success.
5541 * @return 0 on success, an error otherwise.
5542 */
5543int rawnand_dt_parse_gpio_cs(struct device *dev, struct gpio_desc ***cs_array,
5544			     unsigned int *ncs_array)
5545{
5546	struct gpio_desc **descs;
5547	int ndescs, i;
5548
5549	ndescs = gpiod_count(dev, "cs");
5550	if (ndescs < 0) {
5551		dev_dbg(dev, "No valid cs-gpios property\n");
5552		return 0;
5553	}
5554
5555	descs = devm_kcalloc(dev, ndescs, sizeof(*descs), GFP_KERNEL);
5556	if (!descs)
5557		return -ENOMEM;
5558
5559	for (i = 0; i < ndescs; i++) {
5560		descs[i] = gpiod_get_index_optional(dev, "cs", i,
5561						    GPIOD_OUT_HIGH);
5562		if (IS_ERR(descs[i]))
5563			return PTR_ERR(descs[i]);
5564	}
5565
5566	*ncs_array = ndescs;
5567	*cs_array = descs;
5568
5569	return 0;
5570}
5571EXPORT_SYMBOL(rawnand_dt_parse_gpio_cs);
5572
5573static int rawnand_dt_init(struct nand_chip *chip)
5574{
5575	struct nand_device *nand = mtd_to_nanddev(nand_to_mtd(chip));
5576	struct device_node *dn = nand_get_flash_node(chip);
5577	int ret;
5578
5579	if (!dn)
5580		return 0;
5581
5582	ret = of_get_nand_bus_width(chip);
5583	if (ret)
5584		return ret;
5585
5586	if (of_property_read_bool(dn, "nand-is-boot-medium"))
5587		chip->options |= NAND_IS_BOOT_MEDIUM;
5588
5589	if (of_property_read_bool(dn, "nand-on-flash-bbt"))
5590		chip->bbt_options |= NAND_BBT_USE_FLASH;
5591
5592	of_get_nand_ecc_user_config(nand);
5593	of_get_nand_ecc_legacy_user_config(chip);
5594
5595	/*
5596	 * If neither the user nor the NAND controller have requested a specific
5597	 * ECC engine type, we will default to NAND_ECC_ENGINE_TYPE_ON_HOST.
5598	 */
5599	nand->ecc.defaults.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
5600
5601	/*
5602	 * Use the user requested engine type, unless there is none, in this
5603	 * case default to the NAND controller choice, otherwise fallback to
5604	 * the raw NAND default one.
5605	 */
5606	if (nand->ecc.user_conf.engine_type != NAND_ECC_ENGINE_TYPE_INVALID)
5607		chip->ecc.engine_type = nand->ecc.user_conf.engine_type;
5608	if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_INVALID)
5609		chip->ecc.engine_type = nand->ecc.defaults.engine_type;
5610
5611	chip->ecc.placement = nand->ecc.user_conf.placement;
5612	chip->ecc.algo = nand->ecc.user_conf.algo;
5613	chip->ecc.strength = nand->ecc.user_conf.strength;
5614	chip->ecc.size = nand->ecc.user_conf.step_size;
5615
5616	return 0;
5617}
5618
5619/**
5620 * nand_scan_ident - Scan for the NAND device
5621 * @chip: NAND chip object
5622 * @maxchips: number of chips to scan for
5623 * @table: alternative NAND ID table
5624 *
5625 * This is the first phase of the normal nand_scan() function. It reads the
5626 * flash ID and sets up MTD fields accordingly.
5627 *
5628 * This helper used to be called directly from controller drivers that needed
5629 * to tweak some ECC-related parameters before nand_scan_tail(). This separation
5630 * prevented dynamic allocations during this phase which was unconvenient and
5631 * as been banned for the benefit of the ->init_ecc()/cleanup_ecc() hooks.
5632 */
5633static int nand_scan_ident(struct nand_chip *chip, unsigned int maxchips,
5634			   struct nand_flash_dev *table)
5635{
5636	struct mtd_info *mtd = nand_to_mtd(chip);
5637	struct nand_memory_organization *memorg;
5638	int nand_maf_id, nand_dev_id;
5639	unsigned int i;
5640	int ret;
5641
5642	memorg = nanddev_get_memorg(&chip->base);
5643
5644	/* Assume all dies are deselected when we enter nand_scan_ident(). */
5645	chip->cur_cs = -1;
5646
5647	mutex_init(&chip->lock);
5648	init_waitqueue_head(&chip->resume_wq);
5649
5650	/* Enforce the right timings for reset/detection */
5651	chip->current_interface_config = nand_get_reset_interface_config();
5652
5653	ret = rawnand_dt_init(chip);
5654	if (ret)
5655		return ret;
5656
5657	if (!mtd->name && mtd->dev.parent)
5658		mtd->name = dev_name(mtd->dev.parent);
5659
5660	/* Set the default functions */
5661	nand_set_defaults(chip);
5662
5663	ret = nand_legacy_check_hooks(chip);
5664	if (ret)
5665		return ret;
5666
5667	memorg->ntargets = maxchips;
5668
5669	/* Read the flash type */
5670	ret = nand_detect(chip, table);
5671	if (ret) {
5672		if (!(chip->options & NAND_SCAN_SILENT_NODEV))
5673			pr_warn("No NAND device found\n");
5674		nand_deselect_target(chip);
5675		return ret;
5676	}
5677
5678	nand_maf_id = chip->id.data[0];
5679	nand_dev_id = chip->id.data[1];
5680
5681	nand_deselect_target(chip);
5682
5683	/* Check for a chip array */
5684	for (i = 1; i < maxchips; i++) {
5685		u8 id[2];
5686
5687		/* See comment in nand_get_flash_type for reset */
5688		ret = nand_reset(chip, i);
5689		if (ret)
5690			break;
5691
5692		nand_select_target(chip, i);
5693		/* Send the command for reading device ID */
5694		ret = nand_readid_op(chip, 0, id, sizeof(id));
5695		if (ret)
5696			break;
5697		/* Read manufacturer and device IDs */
5698		if (nand_maf_id != id[0] || nand_dev_id != id[1]) {
5699			nand_deselect_target(chip);
5700			break;
5701		}
5702		nand_deselect_target(chip);
5703	}
5704	if (i > 1)
5705		pr_info("%d chips detected\n", i);
5706
5707	/* Store the number of chips and calc total size for mtd */
5708	memorg->ntargets = i;
5709	mtd->size = i * nanddev_target_size(&chip->base);
5710
5711	return 0;
5712}
5713
5714static void nand_scan_ident_cleanup(struct nand_chip *chip)
5715{
5716	kfree(chip->parameters.model);
5717	kfree(chip->parameters.onfi);
5718}
5719
5720int rawnand_sw_hamming_init(struct nand_chip *chip)
5721{
5722	struct nand_ecc_sw_hamming_conf *engine_conf;
5723	struct nand_device *base = &chip->base;
5724	int ret;
5725
5726	base->ecc.user_conf.engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
5727	base->ecc.user_conf.algo = NAND_ECC_ALGO_HAMMING;
5728	base->ecc.user_conf.strength = chip->ecc.strength;
5729	base->ecc.user_conf.step_size = chip->ecc.size;
5730
5731	ret = nand_ecc_sw_hamming_init_ctx(base);
5732	if (ret)
5733		return ret;
5734
5735	engine_conf = base->ecc.ctx.priv;
5736
5737	if (chip->ecc.options & NAND_ECC_SOFT_HAMMING_SM_ORDER)
5738		engine_conf->sm_order = true;
5739
5740	chip->ecc.size = base->ecc.ctx.conf.step_size;
5741	chip->ecc.strength = base->ecc.ctx.conf.strength;
5742	chip->ecc.total = base->ecc.ctx.total;
5743	chip->ecc.steps = nanddev_get_ecc_nsteps(base);
5744	chip->ecc.bytes = base->ecc.ctx.total / nanddev_get_ecc_nsteps(base);
5745
5746	return 0;
5747}
5748EXPORT_SYMBOL(rawnand_sw_hamming_init);
5749
5750int rawnand_sw_hamming_calculate(struct nand_chip *chip,
5751				 const unsigned char *buf,
5752				 unsigned char *code)
5753{
5754	struct nand_device *base = &chip->base;
5755
5756	return nand_ecc_sw_hamming_calculate(base, buf, code);
5757}
5758EXPORT_SYMBOL(rawnand_sw_hamming_calculate);
5759
5760int rawnand_sw_hamming_correct(struct nand_chip *chip,
5761			       unsigned char *buf,
5762			       unsigned char *read_ecc,
5763			       unsigned char *calc_ecc)
5764{
5765	struct nand_device *base = &chip->base;
5766
5767	return nand_ecc_sw_hamming_correct(base, buf, read_ecc, calc_ecc);
5768}
5769EXPORT_SYMBOL(rawnand_sw_hamming_correct);
5770
5771void rawnand_sw_hamming_cleanup(struct nand_chip *chip)
5772{
5773	struct nand_device *base = &chip->base;
5774
5775	nand_ecc_sw_hamming_cleanup_ctx(base);
5776}
5777EXPORT_SYMBOL(rawnand_sw_hamming_cleanup);
5778
5779int rawnand_sw_bch_init(struct nand_chip *chip)
5780{
5781	struct nand_device *base = &chip->base;
5782	const struct nand_ecc_props *ecc_conf = nanddev_get_ecc_conf(base);
5783	int ret;
5784
5785	base->ecc.user_conf.engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
5786	base->ecc.user_conf.algo = NAND_ECC_ALGO_BCH;
5787	base->ecc.user_conf.step_size = chip->ecc.size;
5788	base->ecc.user_conf.strength = chip->ecc.strength;
5789
5790	ret = nand_ecc_sw_bch_init_ctx(base);
5791	if (ret)
5792		return ret;
5793
5794	chip->ecc.size = ecc_conf->step_size;
5795	chip->ecc.strength = ecc_conf->strength;
5796	chip->ecc.total = base->ecc.ctx.total;
5797	chip->ecc.steps = nanddev_get_ecc_nsteps(base);
5798	chip->ecc.bytes = base->ecc.ctx.total / nanddev_get_ecc_nsteps(base);
5799
5800	return 0;
5801}
5802EXPORT_SYMBOL(rawnand_sw_bch_init);
5803
5804static int rawnand_sw_bch_calculate(struct nand_chip *chip,
5805				    const unsigned char *buf,
5806				    unsigned char *code)
5807{
5808	struct nand_device *base = &chip->base;
5809
5810	return nand_ecc_sw_bch_calculate(base, buf, code);
5811}
5812
5813int rawnand_sw_bch_correct(struct nand_chip *chip, unsigned char *buf,
5814			   unsigned char *read_ecc, unsigned char *calc_ecc)
5815{
5816	struct nand_device *base = &chip->base;
5817
5818	return nand_ecc_sw_bch_correct(base, buf, read_ecc, calc_ecc);
5819}
5820EXPORT_SYMBOL(rawnand_sw_bch_correct);
5821
5822void rawnand_sw_bch_cleanup(struct nand_chip *chip)
5823{
5824	struct nand_device *base = &chip->base;
5825
5826	nand_ecc_sw_bch_cleanup_ctx(base);
5827}
5828EXPORT_SYMBOL(rawnand_sw_bch_cleanup);
5829
5830static int nand_set_ecc_on_host_ops(struct nand_chip *chip)
5831{
5832	struct nand_ecc_ctrl *ecc = &chip->ecc;
5833
5834	switch (ecc->placement) {
5835	case NAND_ECC_PLACEMENT_UNKNOWN:
5836	case NAND_ECC_PLACEMENT_OOB:
5837		/* Use standard hwecc read page function? */
5838		if (!ecc->read_page)
5839			ecc->read_page = nand_read_page_hwecc;
5840		if (!ecc->write_page)
5841			ecc->write_page = nand_write_page_hwecc;
5842		if (!ecc->read_page_raw)
5843			ecc->read_page_raw = nand_read_page_raw;
5844		if (!ecc->write_page_raw)
5845			ecc->write_page_raw = nand_write_page_raw;
5846		if (!ecc->read_oob)
5847			ecc->read_oob = nand_read_oob_std;
5848		if (!ecc->write_oob)
5849			ecc->write_oob = nand_write_oob_std;
5850		if (!ecc->read_subpage)
5851			ecc->read_subpage = nand_read_subpage;
5852		if (!ecc->write_subpage && ecc->hwctl && ecc->calculate)
5853			ecc->write_subpage = nand_write_subpage_hwecc;
5854		fallthrough;
5855
5856	case NAND_ECC_PLACEMENT_INTERLEAVED:
5857		if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) &&
5858		    (!ecc->read_page ||
5859		     ecc->read_page == nand_read_page_hwecc ||
5860		     !ecc->write_page ||
5861		     ecc->write_page == nand_write_page_hwecc)) {
5862			WARN(1, "No ECC functions supplied; hardware ECC not possible\n");
5863			return -EINVAL;
5864		}
5865		/* Use standard syndrome read/write page function? */
5866		if (!ecc->read_page)
5867			ecc->read_page = nand_read_page_syndrome;
5868		if (!ecc->write_page)
5869			ecc->write_page = nand_write_page_syndrome;
5870		if (!ecc->read_page_raw)
5871			ecc->read_page_raw = nand_read_page_raw_syndrome;
5872		if (!ecc->write_page_raw)
5873			ecc->write_page_raw = nand_write_page_raw_syndrome;
5874		if (!ecc->read_oob)
5875			ecc->read_oob = nand_read_oob_syndrome;
5876		if (!ecc->write_oob)
5877			ecc->write_oob = nand_write_oob_syndrome;
5878		break;
5879
5880	default:
5881		pr_warn("Invalid NAND_ECC_PLACEMENT %d\n",
5882			ecc->placement);
5883		return -EINVAL;
5884	}
5885
5886	return 0;
5887}
5888
5889static int nand_set_ecc_soft_ops(struct nand_chip *chip)
5890{
5891	struct mtd_info *mtd = nand_to_mtd(chip);
5892	struct nand_device *nanddev = mtd_to_nanddev(mtd);
5893	struct nand_ecc_ctrl *ecc = &chip->ecc;
5894	int ret;
5895
5896	if (WARN_ON(ecc->engine_type != NAND_ECC_ENGINE_TYPE_SOFT))
5897		return -EINVAL;
5898
5899	switch (ecc->algo) {
5900	case NAND_ECC_ALGO_HAMMING:
5901		ecc->calculate = rawnand_sw_hamming_calculate;
5902		ecc->correct = rawnand_sw_hamming_correct;
5903		ecc->read_page = nand_read_page_swecc;
5904		ecc->read_subpage = nand_read_subpage;
5905		ecc->write_page = nand_write_page_swecc;
5906		if (!ecc->read_page_raw)
5907			ecc->read_page_raw = nand_read_page_raw;
5908		if (!ecc->write_page_raw)
5909			ecc->write_page_raw = nand_write_page_raw;
5910		ecc->read_oob = nand_read_oob_std;
5911		ecc->write_oob = nand_write_oob_std;
5912		if (!ecc->size)
5913			ecc->size = 256;
5914		ecc->bytes = 3;
5915		ecc->strength = 1;
5916
5917		if (IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_HAMMING_SMC))
5918			ecc->options |= NAND_ECC_SOFT_HAMMING_SM_ORDER;
5919
5920		ret = rawnand_sw_hamming_init(chip);
5921		if (ret) {
5922			WARN(1, "Hamming ECC initialization failed!\n");
5923			return ret;
5924		}
5925
5926		return 0;
5927	case NAND_ECC_ALGO_BCH:
5928		if (!IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_BCH)) {
5929			WARN(1, "CONFIG_MTD_NAND_ECC_SW_BCH not enabled\n");
5930			return -EINVAL;
5931		}
5932		ecc->calculate = rawnand_sw_bch_calculate;
5933		ecc->correct = rawnand_sw_bch_correct;
5934		ecc->read_page = nand_read_page_swecc;
5935		ecc->read_subpage = nand_read_subpage;
5936		ecc->write_page = nand_write_page_swecc;
5937		if (!ecc->read_page_raw)
5938			ecc->read_page_raw = nand_read_page_raw;
5939		if (!ecc->write_page_raw)
5940			ecc->write_page_raw = nand_write_page_raw;
5941		ecc->read_oob = nand_read_oob_std;
5942		ecc->write_oob = nand_write_oob_std;
5943
5944		/*
5945		 * We can only maximize ECC config when the default layout is
5946		 * used, otherwise we don't know how many bytes can really be
5947		 * used.
5948		 */
5949		if (nanddev->ecc.user_conf.flags & NAND_ECC_MAXIMIZE_STRENGTH &&
5950		    mtd->ooblayout != nand_get_large_page_ooblayout())
5951			nanddev->ecc.user_conf.flags &= ~NAND_ECC_MAXIMIZE_STRENGTH;
5952
5953		ret = rawnand_sw_bch_init(chip);
5954		if (ret) {
5955			WARN(1, "BCH ECC initialization failed!\n");
5956			return ret;
5957		}
5958
5959		return 0;
5960	default:
5961		WARN(1, "Unsupported ECC algorithm!\n");
5962		return -EINVAL;
5963	}
5964}
5965
5966/**
5967 * nand_check_ecc_caps - check the sanity of preset ECC settings
5968 * @chip: nand chip info structure
5969 * @caps: ECC caps info structure
5970 * @oobavail: OOB size that the ECC engine can use
5971 *
5972 * When ECC step size and strength are already set, check if they are supported
5973 * by the controller and the calculated ECC bytes fit within the chip's OOB.
5974 * On success, the calculated ECC bytes is set.
5975 */
5976static int
5977nand_check_ecc_caps(struct nand_chip *chip,
5978		    const struct nand_ecc_caps *caps, int oobavail)
5979{
5980	struct mtd_info *mtd = nand_to_mtd(chip);
5981	const struct nand_ecc_step_info *stepinfo;
5982	int preset_step = chip->ecc.size;
5983	int preset_strength = chip->ecc.strength;
5984	int ecc_bytes, nsteps = mtd->writesize / preset_step;
5985	int i, j;
5986
5987	for (i = 0; i < caps->nstepinfos; i++) {
5988		stepinfo = &caps->stepinfos[i];
5989
5990		if (stepinfo->stepsize != preset_step)
5991			continue;
5992
5993		for (j = 0; j < stepinfo->nstrengths; j++) {
5994			if (stepinfo->strengths[j] != preset_strength)
5995				continue;
5996
5997			ecc_bytes = caps->calc_ecc_bytes(preset_step,
5998							 preset_strength);
5999			if (WARN_ON_ONCE(ecc_bytes < 0))
6000				return ecc_bytes;
6001
6002			if (ecc_bytes * nsteps > oobavail) {
6003				pr_err("ECC (step, strength) = (%d, %d) does not fit in OOB",
6004				       preset_step, preset_strength);
6005				return -ENOSPC;
6006			}
6007
6008			chip->ecc.bytes = ecc_bytes;
6009
6010			return 0;
6011		}
6012	}
6013
6014	pr_err("ECC (step, strength) = (%d, %d) not supported on this controller",
6015	       preset_step, preset_strength);
6016
6017	return -ENOTSUPP;
6018}
6019
6020/**
6021 * nand_match_ecc_req - meet the chip's requirement with least ECC bytes
6022 * @chip: nand chip info structure
6023 * @caps: ECC engine caps info structure
6024 * @oobavail: OOB size that the ECC engine can use
6025 *
6026 * If a chip's ECC requirement is provided, try to meet it with the least
6027 * number of ECC bytes (i.e. with the largest number of OOB-free bytes).
6028 * On success, the chosen ECC settings are set.
6029 */
6030static int
6031nand_match_ecc_req(struct nand_chip *chip,
6032		   const struct nand_ecc_caps *caps, int oobavail)
6033{
6034	const struct nand_ecc_props *requirements =
6035		nanddev_get_ecc_requirements(&chip->base);
6036	struct mtd_info *mtd = nand_to_mtd(chip);
6037	const struct nand_ecc_step_info *stepinfo;
6038	int req_step = requirements->step_size;
6039	int req_strength = requirements->strength;
6040	int req_corr, step_size, strength, nsteps, ecc_bytes, ecc_bytes_total;
6041	int best_step = 0, best_strength = 0, best_ecc_bytes = 0;
6042	int best_ecc_bytes_total = INT_MAX;
6043	int i, j;
6044
6045	/* No information provided by the NAND chip */
6046	if (!req_step || !req_strength)
6047		return -ENOTSUPP;
6048
6049	/* number of correctable bits the chip requires in a page */
6050	req_corr = mtd->writesize / req_step * req_strength;
6051
6052	for (i = 0; i < caps->nstepinfos; i++) {
6053		stepinfo = &caps->stepinfos[i];
6054		step_size = stepinfo->stepsize;
6055
6056		for (j = 0; j < stepinfo->nstrengths; j++) {
6057			strength = stepinfo->strengths[j];
6058
6059			/*
6060			 * If both step size and strength are smaller than the
6061			 * chip's requirement, it is not easy to compare the
6062			 * resulted reliability.
6063			 */
6064			if (step_size < req_step && strength < req_strength)
6065				continue;
6066
6067			if (mtd->writesize % step_size)
6068				continue;
6069
6070			nsteps = mtd->writesize / step_size;
6071
6072			ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
6073			if (WARN_ON_ONCE(ecc_bytes < 0))
6074				continue;
6075			ecc_bytes_total = ecc_bytes * nsteps;
6076
6077			if (ecc_bytes_total > oobavail ||
6078			    strength * nsteps < req_corr)
6079				continue;
6080
6081			/*
6082			 * We assume the best is to meet the chip's requrement
6083			 * with the least number of ECC bytes.
6084			 */
6085			if (ecc_bytes_total < best_ecc_bytes_total) {
6086				best_ecc_bytes_total = ecc_bytes_total;
6087				best_step = step_size;
6088				best_strength = strength;
6089				best_ecc_bytes = ecc_bytes;
6090			}
6091		}
6092	}
6093
6094	if (best_ecc_bytes_total == INT_MAX)
6095		return -ENOTSUPP;
6096
6097	chip->ecc.size = best_step;
6098	chip->ecc.strength = best_strength;
6099	chip->ecc.bytes = best_ecc_bytes;
6100
6101	return 0;
6102}
6103
6104/**
6105 * nand_maximize_ecc - choose the max ECC strength available
6106 * @chip: nand chip info structure
6107 * @caps: ECC engine caps info structure
6108 * @oobavail: OOB size that the ECC engine can use
6109 *
6110 * Choose the max ECC strength that is supported on the controller, and can fit
6111 * within the chip's OOB.  On success, the chosen ECC settings are set.
6112 */
6113static int
6114nand_maximize_ecc(struct nand_chip *chip,
6115		  const struct nand_ecc_caps *caps, int oobavail)
6116{
6117	struct mtd_info *mtd = nand_to_mtd(chip);
6118	const struct nand_ecc_step_info *stepinfo;
6119	int step_size, strength, nsteps, ecc_bytes, corr;
6120	int best_corr = 0;
6121	int best_step = 0;
6122	int best_strength = 0, best_ecc_bytes = 0;
6123	int i, j;
6124
6125	for (i = 0; i < caps->nstepinfos; i++) {
6126		stepinfo = &caps->stepinfos[i];
6127		step_size = stepinfo->stepsize;
6128
6129		/* If chip->ecc.size is already set, respect it */
6130		if (chip->ecc.size && step_size != chip->ecc.size)
6131			continue;
6132
6133		for (j = 0; j < stepinfo->nstrengths; j++) {
6134			strength = stepinfo->strengths[j];
6135
6136			if (mtd->writesize % step_size)
6137				continue;
6138
6139			nsteps = mtd->writesize / step_size;
6140
6141			ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
6142			if (WARN_ON_ONCE(ecc_bytes < 0))
6143				continue;
6144
6145			if (ecc_bytes * nsteps > oobavail)
6146				continue;
6147
6148			corr = strength * nsteps;
6149
6150			/*
6151			 * If the number of correctable bits is the same,
6152			 * bigger step_size has more reliability.
6153			 */
6154			if (corr > best_corr ||
6155			    (corr == best_corr && step_size > best_step)) {
6156				best_corr = corr;
6157				best_step = step_size;
6158				best_strength = strength;
6159				best_ecc_bytes = ecc_bytes;
6160			}
6161		}
6162	}
6163
6164	if (!best_corr)
6165		return -ENOTSUPP;
6166
6167	chip->ecc.size = best_step;
6168	chip->ecc.strength = best_strength;
6169	chip->ecc.bytes = best_ecc_bytes;
6170
6171	return 0;
6172}
6173
6174/**
6175 * nand_ecc_choose_conf - Set the ECC strength and ECC step size
6176 * @chip: nand chip info structure
6177 * @caps: ECC engine caps info structure
6178 * @oobavail: OOB size that the ECC engine can use
6179 *
6180 * Choose the ECC configuration according to following logic.
6181 *
6182 * 1. If both ECC step size and ECC strength are already set (usually by DT)
6183 *    then check if it is supported by this controller.
6184 * 2. If the user provided the nand-ecc-maximize property, then select maximum
6185 *    ECC strength.
6186 * 3. Otherwise, try to match the ECC step size and ECC strength closest
6187 *    to the chip's requirement. If available OOB size can't fit the chip
6188 *    requirement then fallback to the maximum ECC step size and ECC strength.
6189 *
6190 * On success, the chosen ECC settings are set.
6191 */
6192int nand_ecc_choose_conf(struct nand_chip *chip,
6193			 const struct nand_ecc_caps *caps, int oobavail)
6194{
6195	struct mtd_info *mtd = nand_to_mtd(chip);
6196	struct nand_device *nanddev = mtd_to_nanddev(mtd);
6197
6198	if (WARN_ON(oobavail < 0 || oobavail > mtd->oobsize))
6199		return -EINVAL;
6200
6201	if (chip->ecc.size && chip->ecc.strength)
6202		return nand_check_ecc_caps(chip, caps, oobavail);
6203
6204	if (nanddev->ecc.user_conf.flags & NAND_ECC_MAXIMIZE_STRENGTH)
6205		return nand_maximize_ecc(chip, caps, oobavail);
6206
6207	if (!nand_match_ecc_req(chip, caps, oobavail))
6208		return 0;
6209
6210	return nand_maximize_ecc(chip, caps, oobavail);
6211}
6212EXPORT_SYMBOL_GPL(nand_ecc_choose_conf);
6213
6214static int rawnand_erase(struct nand_device *nand, const struct nand_pos *pos)
6215{
6216	struct nand_chip *chip = container_of(nand, struct nand_chip,
6217					      base);
6218	unsigned int eb = nanddev_pos_to_row(nand, pos);
6219	int ret;
6220
6221	eb >>= nand->rowconv.eraseblock_addr_shift;
6222
6223	nand_select_target(chip, pos->target);
6224	ret = nand_erase_op(chip, eb);
6225	nand_deselect_target(chip);
6226
6227	return ret;
6228}
6229
6230static int rawnand_markbad(struct nand_device *nand,
6231			   const struct nand_pos *pos)
6232{
6233	struct nand_chip *chip = container_of(nand, struct nand_chip,
6234					      base);
6235
6236	return nand_markbad_bbm(chip, nanddev_pos_to_offs(nand, pos));
6237}
6238
6239static bool rawnand_isbad(struct nand_device *nand, const struct nand_pos *pos)
6240{
6241	struct nand_chip *chip = container_of(nand, struct nand_chip,
6242					      base);
6243	int ret;
6244
6245	nand_select_target(chip, pos->target);
6246	ret = nand_isbad_bbm(chip, nanddev_pos_to_offs(nand, pos));
6247	nand_deselect_target(chip);
6248
6249	return ret;
6250}
6251
6252static const struct nand_ops rawnand_ops = {
6253	.erase = rawnand_erase,
6254	.markbad = rawnand_markbad,
6255	.isbad = rawnand_isbad,
6256};
6257
6258/**
6259 * nand_scan_tail - Scan for the NAND device
6260 * @chip: NAND chip object
6261 *
6262 * This is the second phase of the normal nand_scan() function. It fills out
6263 * all the uninitialized function pointers with the defaults and scans for a
6264 * bad block table if appropriate.
6265 */
6266static int nand_scan_tail(struct nand_chip *chip)
6267{
6268	struct mtd_info *mtd = nand_to_mtd(chip);
6269	struct nand_ecc_ctrl *ecc = &chip->ecc;
6270	int ret, i;
6271
6272	/* New bad blocks should be marked in OOB, flash-based BBT, or both */
6273	if (WARN_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
6274		   !(chip->bbt_options & NAND_BBT_USE_FLASH))) {
6275		return -EINVAL;
6276	}
6277
6278	chip->data_buf = kmalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL);
6279	if (!chip->data_buf)
6280		return -ENOMEM;
6281
6282	/*
6283	 * FIXME: some NAND manufacturer drivers expect the first die to be
6284	 * selected when manufacturer->init() is called. They should be fixed
6285	 * to explictly select the relevant die when interacting with the NAND
6286	 * chip.
6287	 */
6288	nand_select_target(chip, 0);
6289	ret = nand_manufacturer_init(chip);
6290	nand_deselect_target(chip);
6291	if (ret)
6292		goto err_free_buf;
6293
6294	/* Set the internal oob buffer location, just after the page data */
6295	chip->oob_poi = chip->data_buf + mtd->writesize;
6296
6297	/*
6298	 * If no default placement scheme is given, select an appropriate one.
6299	 */
6300	if (!mtd->ooblayout &&
6301	    !(ecc->engine_type == NAND_ECC_ENGINE_TYPE_SOFT &&
6302	      ecc->algo == NAND_ECC_ALGO_BCH) &&
6303	    !(ecc->engine_type == NAND_ECC_ENGINE_TYPE_SOFT &&
6304	      ecc->algo == NAND_ECC_ALGO_HAMMING)) {
6305		switch (mtd->oobsize) {
6306		case 8:
6307		case 16:
6308			mtd_set_ooblayout(mtd, nand_get_small_page_ooblayout());
6309			break;
6310		case 64:
6311		case 128:
6312			mtd_set_ooblayout(mtd,
6313					  nand_get_large_page_hamming_ooblayout());
6314			break;
6315		default:
6316			/*
6317			 * Expose the whole OOB area to users if ECC_NONE
6318			 * is passed. We could do that for all kind of
6319			 * ->oobsize, but we must keep the old large/small
6320			 * page with ECC layout when ->oobsize <= 128 for
6321			 * compatibility reasons.
6322			 */
6323			if (ecc->engine_type == NAND_ECC_ENGINE_TYPE_NONE) {
6324				mtd_set_ooblayout(mtd,
6325						  nand_get_large_page_ooblayout());
6326				break;
6327			}
6328
6329			WARN(1, "No oob scheme defined for oobsize %d\n",
6330				mtd->oobsize);
6331			ret = -EINVAL;
6332			goto err_nand_manuf_cleanup;
6333		}
6334	}
6335
6336	/*
6337	 * Check ECC mode, default to software if 3byte/512byte hardware ECC is
6338	 * selected and we have 256 byte pagesize fallback to software ECC
6339	 */
6340
6341	switch (ecc->engine_type) {
6342	case NAND_ECC_ENGINE_TYPE_ON_HOST:
6343		ret = nand_set_ecc_on_host_ops(chip);
6344		if (ret)
6345			goto err_nand_manuf_cleanup;
6346
6347		if (mtd->writesize >= ecc->size) {
6348			if (!ecc->strength) {
6349				WARN(1, "Driver must set ecc.strength when using hardware ECC\n");
6350				ret = -EINVAL;
6351				goto err_nand_manuf_cleanup;
6352			}
6353			break;
6354		}
6355		pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
6356			ecc->size, mtd->writesize);
6357		ecc->engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
6358		ecc->algo = NAND_ECC_ALGO_HAMMING;
6359		fallthrough;
6360
6361	case NAND_ECC_ENGINE_TYPE_SOFT:
6362		ret = nand_set_ecc_soft_ops(chip);
6363		if (ret)
6364			goto err_nand_manuf_cleanup;
6365		break;
6366
6367	case NAND_ECC_ENGINE_TYPE_ON_DIE:
6368		if (!ecc->read_page || !ecc->write_page) {
6369			WARN(1, "No ECC functions supplied; on-die ECC not possible\n");
6370			ret = -EINVAL;
6371			goto err_nand_manuf_cleanup;
6372		}
6373		if (!ecc->read_oob)
6374			ecc->read_oob = nand_read_oob_std;
6375		if (!ecc->write_oob)
6376			ecc->write_oob = nand_write_oob_std;
6377		break;
6378
6379	case NAND_ECC_ENGINE_TYPE_NONE:
6380		pr_warn("NAND_ECC_ENGINE_TYPE_NONE selected by board driver. This is not recommended!\n");
6381		ecc->read_page = nand_read_page_raw;
6382		ecc->write_page = nand_write_page_raw;
6383		ecc->read_oob = nand_read_oob_std;
6384		ecc->read_page_raw = nand_read_page_raw;
6385		ecc->write_page_raw = nand_write_page_raw;
6386		ecc->write_oob = nand_write_oob_std;
6387		ecc->size = mtd->writesize;
6388		ecc->bytes = 0;
6389		ecc->strength = 0;
6390		break;
6391
6392	default:
6393		WARN(1, "Invalid NAND_ECC_MODE %d\n", ecc->engine_type);
6394		ret = -EINVAL;
6395		goto err_nand_manuf_cleanup;
6396	}
6397
6398	if (ecc->correct || ecc->calculate) {
6399		ecc->calc_buf = kmalloc(mtd->oobsize, GFP_KERNEL);
6400		ecc->code_buf = kmalloc(mtd->oobsize, GFP_KERNEL);
6401		if (!ecc->calc_buf || !ecc->code_buf) {
6402			ret = -ENOMEM;
6403			goto err_nand_manuf_cleanup;
6404		}
6405	}
6406
6407	/* For many systems, the standard OOB write also works for raw */
6408	if (!ecc->read_oob_raw)
6409		ecc->read_oob_raw = ecc->read_oob;
6410	if (!ecc->write_oob_raw)
6411		ecc->write_oob_raw = ecc->write_oob;
6412
6413	/* propagate ecc info to mtd_info */
6414	mtd->ecc_strength = ecc->strength;
6415	mtd->ecc_step_size = ecc->size;
6416
6417	/*
6418	 * Set the number of read / write steps for one page depending on ECC
6419	 * mode.
6420	 */
6421	if (!ecc->steps)
6422		ecc->steps = mtd->writesize / ecc->size;
6423	if (ecc->steps * ecc->size != mtd->writesize) {
6424		WARN(1, "Invalid ECC parameters\n");
6425		ret = -EINVAL;
6426		goto err_nand_manuf_cleanup;
6427	}
6428
6429	if (!ecc->total) {
6430		ecc->total = ecc->steps * ecc->bytes;
6431		chip->base.ecc.ctx.total = ecc->total;
6432	}
6433
6434	if (ecc->total > mtd->oobsize) {
6435		WARN(1, "Total number of ECC bytes exceeded oobsize\n");
6436		ret = -EINVAL;
6437		goto err_nand_manuf_cleanup;
6438	}
6439
6440	/*
6441	 * The number of bytes available for a client to place data into
6442	 * the out of band area.
6443	 */
6444	ret = mtd_ooblayout_count_freebytes(mtd);
6445	if (ret < 0)
6446		ret = 0;
6447
6448	mtd->oobavail = ret;
6449
6450	/* ECC sanity check: warn if it's too weak */
6451	if (!nand_ecc_is_strong_enough(&chip->base))
6452		pr_warn("WARNING: %s: the ECC used on your system (%db/%dB) is too weak compared to the one required by the NAND chip (%db/%dB)\n",
6453			mtd->name, chip->ecc.strength, chip->ecc.size,
6454			nanddev_get_ecc_requirements(&chip->base)->strength,
6455			nanddev_get_ecc_requirements(&chip->base)->step_size);
6456
6457	/* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
6458	if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) {
6459		switch (ecc->steps) {
6460		case 2:
6461			mtd->subpage_sft = 1;
6462			break;
6463		case 4:
6464		case 8:
6465		case 16:
6466			mtd->subpage_sft = 2;
6467			break;
6468		}
6469	}
6470	chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
6471
6472	/* Invalidate the pagebuffer reference */
6473	chip->pagecache.page = -1;
6474
6475	/* Large page NAND with SOFT_ECC should support subpage reads */
6476	switch (ecc->engine_type) {
6477	case NAND_ECC_ENGINE_TYPE_SOFT:
6478		if (chip->page_shift > 9)
6479			chip->options |= NAND_SUBPAGE_READ;
6480		break;
6481
6482	default:
6483		break;
6484	}
6485
6486	ret = nanddev_init(&chip->base, &rawnand_ops, mtd->owner);
6487	if (ret)
6488		goto err_nand_manuf_cleanup;
6489
6490	/* Adjust the MTD_CAP_ flags when NAND_ROM is set. */
6491	if (chip->options & NAND_ROM)
6492		mtd->flags = MTD_CAP_ROM;
6493
6494	/* Fill in remaining MTD driver data */
6495	mtd->_erase = nand_erase;
6496	mtd->_point = NULL;
6497	mtd->_unpoint = NULL;
6498	mtd->_panic_write = panic_nand_write;
6499	mtd->_read_oob = nand_read_oob;
6500	mtd->_write_oob = nand_write_oob;
6501	mtd->_sync = nand_sync;
6502	mtd->_lock = nand_lock;
6503	mtd->_unlock = nand_unlock;
6504	mtd->_suspend = nand_suspend;
6505	mtd->_resume = nand_resume;
6506	mtd->_reboot = nand_shutdown;
6507	mtd->_block_isreserved = nand_block_isreserved;
6508	mtd->_block_isbad = nand_block_isbad;
6509	mtd->_block_markbad = nand_block_markbad;
6510	mtd->_max_bad_blocks = nanddev_mtd_max_bad_blocks;
6511
6512	/*
6513	 * Initialize bitflip_threshold to its default prior scan_bbt() call.
6514	 * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
6515	 * properly set.
6516	 */
6517	if (!mtd->bitflip_threshold)
6518		mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4);
6519
6520	/* Find the fastest data interface for this chip */
6521	ret = nand_choose_interface_config(chip);
6522	if (ret)
6523		goto err_nanddev_cleanup;
6524
6525	/* Enter fastest possible mode on all dies. */
6526	for (i = 0; i < nanddev_ntargets(&chip->base); i++) {
6527		ret = nand_setup_interface(chip, i);
6528		if (ret)
6529			goto err_free_interface_config;
6530	}
6531
6532	rawnand_late_check_supported_ops(chip);
6533
6534	/*
6535	 * Look for secure regions in the NAND chip. These regions are supposed
6536	 * to be protected by a secure element like Trustzone. So the read/write
6537	 * accesses to these regions will be blocked in the runtime by this
6538	 * driver.
6539	 */
6540	ret = of_get_nand_secure_regions(chip);
6541	if (ret)
6542		goto err_free_interface_config;
6543
6544	/* Check, if we should skip the bad block table scan */
6545	if (chip->options & NAND_SKIP_BBTSCAN)
6546		return 0;
6547
6548	/* Build bad block table */
6549	ret = nand_create_bbt(chip);
6550	if (ret)
6551		goto err_free_secure_regions;
6552
6553	return 0;
6554
6555err_free_secure_regions:
6556	kfree(chip->secure_regions);
6557
6558err_free_interface_config:
6559	kfree(chip->best_interface_config);
6560
6561err_nanddev_cleanup:
6562	nanddev_cleanup(&chip->base);
6563
6564err_nand_manuf_cleanup:
6565	nand_manufacturer_cleanup(chip);
6566
6567err_free_buf:
6568	kfree(chip->data_buf);
6569	kfree(ecc->code_buf);
6570	kfree(ecc->calc_buf);
6571
6572	return ret;
6573}
6574
6575static int nand_attach(struct nand_chip *chip)
6576{
6577	if (chip->controller->ops && chip->controller->ops->attach_chip)
6578		return chip->controller->ops->attach_chip(chip);
6579
6580	return 0;
6581}
6582
6583static void nand_detach(struct nand_chip *chip)
6584{
6585	if (chip->controller->ops && chip->controller->ops->detach_chip)
6586		chip->controller->ops->detach_chip(chip);
6587}
6588
6589/**
6590 * nand_scan_with_ids - [NAND Interface] Scan for the NAND device
6591 * @chip: NAND chip object
6592 * @maxchips: number of chips to scan for.
6593 * @ids: optional flash IDs table
6594 *
6595 * This fills out all the uninitialized function pointers with the defaults.
6596 * The flash ID is read and the mtd/chip structures are filled with the
6597 * appropriate values.
6598 */
6599int nand_scan_with_ids(struct nand_chip *chip, unsigned int maxchips,
6600		       struct nand_flash_dev *ids)
6601{
6602	int ret;
6603
6604	if (!maxchips)
6605		return -EINVAL;
6606
6607	ret = nand_scan_ident(chip, maxchips, ids);
6608	if (ret)
6609		return ret;
6610
6611	ret = nand_attach(chip);
6612	if (ret)
6613		goto cleanup_ident;
6614
6615	ret = nand_scan_tail(chip);
6616	if (ret)
6617		goto detach_chip;
6618
6619	return 0;
6620
6621detach_chip:
6622	nand_detach(chip);
6623cleanup_ident:
6624	nand_scan_ident_cleanup(chip);
6625
6626	return ret;
6627}
6628EXPORT_SYMBOL(nand_scan_with_ids);
6629
6630/**
6631 * nand_cleanup - [NAND Interface] Free resources held by the NAND device
6632 * @chip: NAND chip object
6633 */
6634void nand_cleanup(struct nand_chip *chip)
6635{
6636	if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_SOFT) {
6637		if (chip->ecc.algo == NAND_ECC_ALGO_HAMMING)
6638			rawnand_sw_hamming_cleanup(chip);
6639		else if (chip->ecc.algo == NAND_ECC_ALGO_BCH)
6640			rawnand_sw_bch_cleanup(chip);
6641	}
6642
6643	nanddev_cleanup(&chip->base);
6644
6645	/* Free secure regions data */
6646	kfree(chip->secure_regions);
6647
6648	/* Free bad block table memory */
6649	kfree(chip->bbt);
6650	kfree(chip->data_buf);
6651	kfree(chip->ecc.code_buf);
6652	kfree(chip->ecc.calc_buf);
6653
6654	/* Free bad block descriptor memory */
6655	if (chip->badblock_pattern && chip->badblock_pattern->options
6656			& NAND_BBT_DYNAMICSTRUCT)
6657		kfree(chip->badblock_pattern);
6658
6659	/* Free the data interface */
6660	kfree(chip->best_interface_config);
6661
6662	/* Free manufacturer priv data. */
6663	nand_manufacturer_cleanup(chip);
6664
6665	/* Free controller specific allocations after chip identification */
6666	nand_detach(chip);
6667
6668	/* Free identification phase allocations */
6669	nand_scan_ident_cleanup(chip);
6670}
6671
6672EXPORT_SYMBOL_GPL(nand_cleanup);
6673
6674MODULE_LICENSE("GPL");
6675MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
6676MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
6677MODULE_DESCRIPTION("Generic NAND flash driver code");
6678