1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved.
4 * Copyright 2008 Sascha Hauer, kernel@pengutronix.de
5 */
6
7#include <linux/delay.h>
8#include <linux/slab.h>
9#include <linux/init.h>
10#include <linux/module.h>
11#include <linux/mtd/mtd.h>
12#include <linux/mtd/rawnand.h>
13#include <linux/mtd/partitions.h>
14#include <linux/interrupt.h>
15#include <linux/device.h>
16#include <linux/platform_device.h>
17#include <linux/clk.h>
18#include <linux/err.h>
19#include <linux/io.h>
20#include <linux/irq.h>
21#include <linux/completion.h>
22#include <linux/of.h>
23
24#define DRIVER_NAME "mxc_nand"
25
26/* Addresses for NFC registers */
27#define NFC_V1_V2_BUF_SIZE		(host->regs + 0x00)
28#define NFC_V1_V2_BUF_ADDR		(host->regs + 0x04)
29#define NFC_V1_V2_FLASH_ADDR		(host->regs + 0x06)
30#define NFC_V1_V2_FLASH_CMD		(host->regs + 0x08)
31#define NFC_V1_V2_CONFIG		(host->regs + 0x0a)
32#define NFC_V1_V2_ECC_STATUS_RESULT	(host->regs + 0x0c)
33#define NFC_V1_V2_RSLTMAIN_AREA		(host->regs + 0x0e)
34#define NFC_V21_RSLTSPARE_AREA		(host->regs + 0x10)
35#define NFC_V1_V2_WRPROT		(host->regs + 0x12)
36#define NFC_V1_UNLOCKSTART_BLKADDR	(host->regs + 0x14)
37#define NFC_V1_UNLOCKEND_BLKADDR	(host->regs + 0x16)
38#define NFC_V21_UNLOCKSTART_BLKADDR0	(host->regs + 0x20)
39#define NFC_V21_UNLOCKSTART_BLKADDR1	(host->regs + 0x24)
40#define NFC_V21_UNLOCKSTART_BLKADDR2	(host->regs + 0x28)
41#define NFC_V21_UNLOCKSTART_BLKADDR3	(host->regs + 0x2c)
42#define NFC_V21_UNLOCKEND_BLKADDR0	(host->regs + 0x22)
43#define NFC_V21_UNLOCKEND_BLKADDR1	(host->regs + 0x26)
44#define NFC_V21_UNLOCKEND_BLKADDR2	(host->regs + 0x2a)
45#define NFC_V21_UNLOCKEND_BLKADDR3	(host->regs + 0x2e)
46#define NFC_V1_V2_NF_WRPRST		(host->regs + 0x18)
47#define NFC_V1_V2_CONFIG1		(host->regs + 0x1a)
48#define NFC_V1_V2_CONFIG2		(host->regs + 0x1c)
49
50#define NFC_V2_CONFIG1_ECC_MODE_4	(1 << 0)
51#define NFC_V1_V2_CONFIG1_SP_EN		(1 << 2)
52#define NFC_V1_V2_CONFIG1_ECC_EN	(1 << 3)
53#define NFC_V1_V2_CONFIG1_INT_MSK	(1 << 4)
54#define NFC_V1_V2_CONFIG1_BIG		(1 << 5)
55#define NFC_V1_V2_CONFIG1_RST		(1 << 6)
56#define NFC_V1_V2_CONFIG1_CE		(1 << 7)
57#define NFC_V2_CONFIG1_ONE_CYCLE	(1 << 8)
58#define NFC_V2_CONFIG1_PPB(x)		(((x) & 0x3) << 9)
59#define NFC_V2_CONFIG1_FP_INT		(1 << 11)
60
61#define NFC_V1_V2_CONFIG2_INT		(1 << 15)
62
63/*
64 * Operation modes for the NFC. Valid for v1, v2 and v3
65 * type controllers.
66 */
67#define NFC_CMD				(1 << 0)
68#define NFC_ADDR			(1 << 1)
69#define NFC_INPUT			(1 << 2)
70#define NFC_OUTPUT			(1 << 3)
71#define NFC_ID				(1 << 4)
72#define NFC_STATUS			(1 << 5)
73
74#define NFC_V3_FLASH_CMD		(host->regs_axi + 0x00)
75#define NFC_V3_FLASH_ADDR0		(host->regs_axi + 0x04)
76
77#define NFC_V3_CONFIG1			(host->regs_axi + 0x34)
78#define NFC_V3_CONFIG1_SP_EN		(1 << 0)
79#define NFC_V3_CONFIG1_RBA(x)		(((x) & 0x7 ) << 4)
80
81#define NFC_V3_ECC_STATUS_RESULT	(host->regs_axi + 0x38)
82
83#define NFC_V3_LAUNCH			(host->regs_axi + 0x40)
84
85#define NFC_V3_WRPROT			(host->regs_ip + 0x0)
86#define NFC_V3_WRPROT_LOCK_TIGHT	(1 << 0)
87#define NFC_V3_WRPROT_LOCK		(1 << 1)
88#define NFC_V3_WRPROT_UNLOCK		(1 << 2)
89#define NFC_V3_WRPROT_BLS_UNLOCK	(2 << 6)
90
91#define NFC_V3_WRPROT_UNLOCK_BLK_ADD0   (host->regs_ip + 0x04)
92
93#define NFC_V3_CONFIG2			(host->regs_ip + 0x24)
94#define NFC_V3_CONFIG2_PS_512			(0 << 0)
95#define NFC_V3_CONFIG2_PS_2048			(1 << 0)
96#define NFC_V3_CONFIG2_PS_4096			(2 << 0)
97#define NFC_V3_CONFIG2_ONE_CYCLE		(1 << 2)
98#define NFC_V3_CONFIG2_ECC_EN			(1 << 3)
99#define NFC_V3_CONFIG2_2CMD_PHASES		(1 << 4)
100#define NFC_V3_CONFIG2_NUM_ADDR_PHASE0		(1 << 5)
101#define NFC_V3_CONFIG2_ECC_MODE_8		(1 << 6)
102#define NFC_V3_CONFIG2_PPB(x, shift)		(((x) & 0x3) << shift)
103#define NFC_V3_CONFIG2_NUM_ADDR_PHASE1(x)	(((x) & 0x3) << 12)
104#define NFC_V3_CONFIG2_INT_MSK			(1 << 15)
105#define NFC_V3_CONFIG2_ST_CMD(x)		(((x) & 0xff) << 24)
106#define NFC_V3_CONFIG2_SPAS(x)			(((x) & 0xff) << 16)
107
108#define NFC_V3_CONFIG3				(host->regs_ip + 0x28)
109#define NFC_V3_CONFIG3_ADD_OP(x)		(((x) & 0x3) << 0)
110#define NFC_V3_CONFIG3_FW8			(1 << 3)
111#define NFC_V3_CONFIG3_SBB(x)			(((x) & 0x7) << 8)
112#define NFC_V3_CONFIG3_NUM_OF_DEVICES(x)	(((x) & 0x7) << 12)
113#define NFC_V3_CONFIG3_RBB_MODE			(1 << 15)
114#define NFC_V3_CONFIG3_NO_SDMA			(1 << 20)
115
116#define NFC_V3_IPC			(host->regs_ip + 0x2C)
117#define NFC_V3_IPC_CREQ			(1 << 0)
118#define NFC_V3_IPC_INT			(1 << 31)
119
120#define NFC_V3_DELAY_LINE		(host->regs_ip + 0x34)
121
122struct mxc_nand_host;
123
124struct mxc_nand_devtype_data {
125	void (*preset)(struct mtd_info *);
126	int (*read_page)(struct nand_chip *chip, void *buf, void *oob, bool ecc,
127			 int page);
128	void (*send_cmd)(struct mxc_nand_host *, uint16_t, int);
129	void (*send_addr)(struct mxc_nand_host *, uint16_t, int);
130	void (*send_page)(struct mtd_info *, unsigned int);
131	void (*send_read_id)(struct mxc_nand_host *);
132	uint16_t (*get_dev_status)(struct mxc_nand_host *);
133	int (*check_int)(struct mxc_nand_host *);
134	void (*irq_control)(struct mxc_nand_host *, int);
135	u32 (*get_ecc_status)(struct mxc_nand_host *);
136	const struct mtd_ooblayout_ops *ooblayout;
137	void (*select_chip)(struct nand_chip *chip, int cs);
138	int (*setup_interface)(struct nand_chip *chip, int csline,
139			       const struct nand_interface_config *conf);
140	void (*enable_hwecc)(struct nand_chip *chip, bool enable);
141
142	/*
143	 * On i.MX21 the CONFIG2:INT bit cannot be read if interrupts are masked
144	 * (CONFIG1:INT_MSK is set). To handle this the driver uses
145	 * enable_irq/disable_irq_nosync instead of CONFIG1:INT_MSK
146	 */
147	int irqpending_quirk;
148	int needs_ip;
149
150	size_t regs_offset;
151	size_t spare0_offset;
152	size_t axi_offset;
153
154	int spare_len;
155	int eccbytes;
156	int eccsize;
157	int ppb_shift;
158};
159
160struct mxc_nand_host {
161	struct nand_chip	nand;
162	struct device		*dev;
163
164	void __iomem		*spare0;
165	void __iomem		*main_area0;
166
167	void __iomem		*base;
168	void __iomem		*regs;
169	void __iomem		*regs_axi;
170	void __iomem		*regs_ip;
171	int			status_request;
172	struct clk		*clk;
173	int			clk_act;
174	int			irq;
175	int			eccsize;
176	int			used_oobsize;
177	int			active_cs;
178
179	struct completion	op_completion;
180
181	uint8_t			*data_buf;
182	unsigned int		buf_start;
183
184	const struct mxc_nand_devtype_data *devtype_data;
185};
186
187static const char * const part_probes[] = {
188	"cmdlinepart", "RedBoot", "ofpart", NULL };
189
190static void memcpy32_fromio(void *trg, const void __iomem  *src, size_t size)
191{
192	int i;
193	u32 *t = trg;
194	const __iomem u32 *s = src;
195
196	for (i = 0; i < (size >> 2); i++)
197		*t++ = __raw_readl(s++);
198}
199
200static void memcpy16_fromio(void *trg, const void __iomem  *src, size_t size)
201{
202	int i;
203	u16 *t = trg;
204	const __iomem u16 *s = src;
205
206	/* We assume that src (IO) is always 32bit aligned */
207	if (PTR_ALIGN(trg, 4) == trg && IS_ALIGNED(size, 4)) {
208		memcpy32_fromio(trg, src, size);
209		return;
210	}
211
212	for (i = 0; i < (size >> 1); i++)
213		*t++ = __raw_readw(s++);
214}
215
216static inline void memcpy32_toio(void __iomem *trg, const void *src, int size)
217{
218	/* __iowrite32_copy use 32bit size values so divide by 4 */
219	__iowrite32_copy(trg, src, size / 4);
220}
221
222static void memcpy16_toio(void __iomem *trg, const void *src, int size)
223{
224	int i;
225	__iomem u16 *t = trg;
226	const u16 *s = src;
227
228	/* We assume that trg (IO) is always 32bit aligned */
229	if (PTR_ALIGN(src, 4) == src && IS_ALIGNED(size, 4)) {
230		memcpy32_toio(trg, src, size);
231		return;
232	}
233
234	for (i = 0; i < (size >> 1); i++)
235		__raw_writew(*s++, t++);
236}
237
238/*
239 * The controller splits a page into data chunks of 512 bytes + partial oob.
240 * There are writesize / 512 such chunks, the size of the partial oob parts is
241 * oobsize / #chunks rounded down to a multiple of 2. The last oob chunk then
242 * contains additionally the byte lost by rounding (if any).
243 * This function handles the needed shuffling between host->data_buf (which
244 * holds a page in natural order, i.e. writesize bytes data + oobsize bytes
245 * spare) and the NFC buffer.
246 */
247static void copy_spare(struct mtd_info *mtd, bool bfrom, void *buf)
248{
249	struct nand_chip *this = mtd_to_nand(mtd);
250	struct mxc_nand_host *host = nand_get_controller_data(this);
251	u16 i, oob_chunk_size;
252	u16 num_chunks = mtd->writesize / 512;
253
254	u8 *d = buf;
255	u8 __iomem *s = host->spare0;
256	u16 sparebuf_size = host->devtype_data->spare_len;
257
258	/* size of oob chunk for all but possibly the last one */
259	oob_chunk_size = (host->used_oobsize / num_chunks) & ~1;
260
261	if (bfrom) {
262		for (i = 0; i < num_chunks - 1; i++)
263			memcpy16_fromio(d + i * oob_chunk_size,
264					s + i * sparebuf_size,
265					oob_chunk_size);
266
267		/* the last chunk */
268		memcpy16_fromio(d + i * oob_chunk_size,
269				s + i * sparebuf_size,
270				host->used_oobsize - i * oob_chunk_size);
271	} else {
272		for (i = 0; i < num_chunks - 1; i++)
273			memcpy16_toio(&s[i * sparebuf_size],
274				      &d[i * oob_chunk_size],
275				      oob_chunk_size);
276
277		/* the last chunk */
278		memcpy16_toio(&s[i * sparebuf_size],
279			      &d[i * oob_chunk_size],
280			      host->used_oobsize - i * oob_chunk_size);
281	}
282}
283
284/*
285 * MXC NANDFC can only perform full page+spare or spare-only read/write.  When
286 * the upper layers perform a read/write buf operation, the saved column address
287 * is used to index into the full page. So usually this function is called with
288 * column == 0 (unless no column cycle is needed indicated by column == -1)
289 */
290static void mxc_do_addr_cycle(struct mtd_info *mtd, int column, int page_addr)
291{
292	struct nand_chip *nand_chip = mtd_to_nand(mtd);
293	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
294
295	/* Write out column address, if necessary */
296	if (column != -1) {
297		host->devtype_data->send_addr(host, column & 0xff,
298					      page_addr == -1);
299		if (mtd->writesize > 512)
300			/* another col addr cycle for 2k page */
301			host->devtype_data->send_addr(host,
302						      (column >> 8) & 0xff,
303						      false);
304	}
305
306	/* Write out page address, if necessary */
307	if (page_addr != -1) {
308		/* paddr_0 - p_addr_7 */
309		host->devtype_data->send_addr(host, (page_addr & 0xff), false);
310
311		if (mtd->writesize > 512) {
312			if (mtd->size >= 0x10000000) {
313				/* paddr_8 - paddr_15 */
314				host->devtype_data->send_addr(host,
315						(page_addr >> 8) & 0xff,
316						false);
317				host->devtype_data->send_addr(host,
318						(page_addr >> 16) & 0xff,
319						true);
320			} else
321				/* paddr_8 - paddr_15 */
322				host->devtype_data->send_addr(host,
323						(page_addr >> 8) & 0xff, true);
324		} else {
325			if (nand_chip->options & NAND_ROW_ADDR_3) {
326				/* paddr_8 - paddr_15 */
327				host->devtype_data->send_addr(host,
328						(page_addr >> 8) & 0xff,
329						false);
330				host->devtype_data->send_addr(host,
331						(page_addr >> 16) & 0xff,
332						true);
333			} else
334				/* paddr_8 - paddr_15 */
335				host->devtype_data->send_addr(host,
336						(page_addr >> 8) & 0xff, true);
337		}
338	}
339}
340
341static int check_int_v3(struct mxc_nand_host *host)
342{
343	uint32_t tmp;
344
345	tmp = readl(NFC_V3_IPC);
346	if (!(tmp & NFC_V3_IPC_INT))
347		return 0;
348
349	tmp &= ~NFC_V3_IPC_INT;
350	writel(tmp, NFC_V3_IPC);
351
352	return 1;
353}
354
355static int check_int_v1_v2(struct mxc_nand_host *host)
356{
357	uint32_t tmp;
358
359	tmp = readw(NFC_V1_V2_CONFIG2);
360	if (!(tmp & NFC_V1_V2_CONFIG2_INT))
361		return 0;
362
363	if (!host->devtype_data->irqpending_quirk)
364		writew(tmp & ~NFC_V1_V2_CONFIG2_INT, NFC_V1_V2_CONFIG2);
365
366	return 1;
367}
368
369static void irq_control_v1_v2(struct mxc_nand_host *host, int activate)
370{
371	uint16_t tmp;
372
373	tmp = readw(NFC_V1_V2_CONFIG1);
374
375	if (activate)
376		tmp &= ~NFC_V1_V2_CONFIG1_INT_MSK;
377	else
378		tmp |= NFC_V1_V2_CONFIG1_INT_MSK;
379
380	writew(tmp, NFC_V1_V2_CONFIG1);
381}
382
383static void irq_control_v3(struct mxc_nand_host *host, int activate)
384{
385	uint32_t tmp;
386
387	tmp = readl(NFC_V3_CONFIG2);
388
389	if (activate)
390		tmp &= ~NFC_V3_CONFIG2_INT_MSK;
391	else
392		tmp |= NFC_V3_CONFIG2_INT_MSK;
393
394	writel(tmp, NFC_V3_CONFIG2);
395}
396
397static void irq_control(struct mxc_nand_host *host, int activate)
398{
399	if (host->devtype_data->irqpending_quirk) {
400		if (activate)
401			enable_irq(host->irq);
402		else
403			disable_irq_nosync(host->irq);
404	} else {
405		host->devtype_data->irq_control(host, activate);
406	}
407}
408
409static u32 get_ecc_status_v1(struct mxc_nand_host *host)
410{
411	return readw(NFC_V1_V2_ECC_STATUS_RESULT);
412}
413
414static u32 get_ecc_status_v2(struct mxc_nand_host *host)
415{
416	return readl(NFC_V1_V2_ECC_STATUS_RESULT);
417}
418
419static u32 get_ecc_status_v3(struct mxc_nand_host *host)
420{
421	return readl(NFC_V3_ECC_STATUS_RESULT);
422}
423
424static irqreturn_t mxc_nfc_irq(int irq, void *dev_id)
425{
426	struct mxc_nand_host *host = dev_id;
427
428	if (!host->devtype_data->check_int(host))
429		return IRQ_NONE;
430
431	irq_control(host, 0);
432
433	complete(&host->op_completion);
434
435	return IRQ_HANDLED;
436}
437
438/* This function polls the NANDFC to wait for the basic operation to
439 * complete by checking the INT bit of config2 register.
440 */
441static int wait_op_done(struct mxc_nand_host *host, int useirq)
442{
443	int ret = 0;
444
445	/*
446	 * If operation is already complete, don't bother to setup an irq or a
447	 * loop.
448	 */
449	if (host->devtype_data->check_int(host))
450		return 0;
451
452	if (useirq) {
453		unsigned long timeout;
454
455		reinit_completion(&host->op_completion);
456
457		irq_control(host, 1);
458
459		timeout = wait_for_completion_timeout(&host->op_completion, HZ);
460		if (!timeout && !host->devtype_data->check_int(host)) {
461			dev_dbg(host->dev, "timeout waiting for irq\n");
462			ret = -ETIMEDOUT;
463		}
464	} else {
465		int max_retries = 8000;
466		int done;
467
468		do {
469			udelay(1);
470
471			done = host->devtype_data->check_int(host);
472			if (done)
473				break;
474
475		} while (--max_retries);
476
477		if (!done) {
478			dev_dbg(host->dev, "timeout polling for completion\n");
479			ret = -ETIMEDOUT;
480		}
481	}
482
483	WARN_ONCE(ret < 0, "timeout! useirq=%d\n", useirq);
484
485	return ret;
486}
487
488static void send_cmd_v3(struct mxc_nand_host *host, uint16_t cmd, int useirq)
489{
490	/* fill command */
491	writel(cmd, NFC_V3_FLASH_CMD);
492
493	/* send out command */
494	writel(NFC_CMD, NFC_V3_LAUNCH);
495
496	/* Wait for operation to complete */
497	wait_op_done(host, useirq);
498}
499
500/* This function issues the specified command to the NAND device and
501 * waits for completion. */
502static void send_cmd_v1_v2(struct mxc_nand_host *host, uint16_t cmd, int useirq)
503{
504	dev_dbg(host->dev, "send_cmd(host, 0x%x, %d)\n", cmd, useirq);
505
506	writew(cmd, NFC_V1_V2_FLASH_CMD);
507	writew(NFC_CMD, NFC_V1_V2_CONFIG2);
508
509	if (host->devtype_data->irqpending_quirk && (cmd == NAND_CMD_RESET)) {
510		int max_retries = 100;
511		/* Reset completion is indicated by NFC_CONFIG2 */
512		/* being set to 0 */
513		while (max_retries-- > 0) {
514			if (readw(NFC_V1_V2_CONFIG2) == 0) {
515				break;
516			}
517			udelay(1);
518		}
519		if (max_retries < 0)
520			dev_dbg(host->dev, "%s: RESET failed\n", __func__);
521	} else {
522		/* Wait for operation to complete */
523		wait_op_done(host, useirq);
524	}
525}
526
527static void send_addr_v3(struct mxc_nand_host *host, uint16_t addr, int islast)
528{
529	/* fill address */
530	writel(addr, NFC_V3_FLASH_ADDR0);
531
532	/* send out address */
533	writel(NFC_ADDR, NFC_V3_LAUNCH);
534
535	wait_op_done(host, 0);
536}
537
538/* This function sends an address (or partial address) to the
539 * NAND device. The address is used to select the source/destination for
540 * a NAND command. */
541static void send_addr_v1_v2(struct mxc_nand_host *host, uint16_t addr, int islast)
542{
543	dev_dbg(host->dev, "send_addr(host, 0x%x %d)\n", addr, islast);
544
545	writew(addr, NFC_V1_V2_FLASH_ADDR);
546	writew(NFC_ADDR, NFC_V1_V2_CONFIG2);
547
548	/* Wait for operation to complete */
549	wait_op_done(host, islast);
550}
551
552static void send_page_v3(struct mtd_info *mtd, unsigned int ops)
553{
554	struct nand_chip *nand_chip = mtd_to_nand(mtd);
555	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
556	uint32_t tmp;
557
558	tmp = readl(NFC_V3_CONFIG1);
559	tmp &= ~(7 << 4);
560	writel(tmp, NFC_V3_CONFIG1);
561
562	/* transfer data from NFC ram to nand */
563	writel(ops, NFC_V3_LAUNCH);
564
565	wait_op_done(host, false);
566}
567
568static void send_page_v2(struct mtd_info *mtd, unsigned int ops)
569{
570	struct nand_chip *nand_chip = mtd_to_nand(mtd);
571	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
572
573	/* NANDFC buffer 0 is used for page read/write */
574	writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
575
576	writew(ops, NFC_V1_V2_CONFIG2);
577
578	/* Wait for operation to complete */
579	wait_op_done(host, true);
580}
581
582static void send_page_v1(struct mtd_info *mtd, unsigned int ops)
583{
584	struct nand_chip *nand_chip = mtd_to_nand(mtd);
585	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
586	int bufs, i;
587
588	if (mtd->writesize > 512)
589		bufs = 4;
590	else
591		bufs = 1;
592
593	for (i = 0; i < bufs; i++) {
594
595		/* NANDFC buffer 0 is used for page read/write */
596		writew((host->active_cs << 4) | i, NFC_V1_V2_BUF_ADDR);
597
598		writew(ops, NFC_V1_V2_CONFIG2);
599
600		/* Wait for operation to complete */
601		wait_op_done(host, true);
602	}
603}
604
605static void send_read_id_v3(struct mxc_nand_host *host)
606{
607	/* Read ID into main buffer */
608	writel(NFC_ID, NFC_V3_LAUNCH);
609
610	wait_op_done(host, true);
611
612	memcpy32_fromio(host->data_buf, host->main_area0, 16);
613}
614
615/* Request the NANDFC to perform a read of the NAND device ID. */
616static void send_read_id_v1_v2(struct mxc_nand_host *host)
617{
618	/* NANDFC buffer 0 is used for device ID output */
619	writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
620
621	writew(NFC_ID, NFC_V1_V2_CONFIG2);
622
623	/* Wait for operation to complete */
624	wait_op_done(host, true);
625
626	memcpy32_fromio(host->data_buf, host->main_area0, 16);
627}
628
629static uint16_t get_dev_status_v3(struct mxc_nand_host *host)
630{
631	writew(NFC_STATUS, NFC_V3_LAUNCH);
632	wait_op_done(host, true);
633
634	return readl(NFC_V3_CONFIG1) >> 16;
635}
636
637/* This function requests the NANDFC to perform a read of the
638 * NAND device status and returns the current status. */
639static uint16_t get_dev_status_v1_v2(struct mxc_nand_host *host)
640{
641	void __iomem *main_buf = host->main_area0;
642	uint32_t store;
643	uint16_t ret;
644
645	writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
646
647	/*
648	 * The device status is stored in main_area0. To
649	 * prevent corruption of the buffer save the value
650	 * and restore it afterwards.
651	 */
652	store = readl(main_buf);
653
654	writew(NFC_STATUS, NFC_V1_V2_CONFIG2);
655	wait_op_done(host, true);
656
657	ret = readw(main_buf);
658
659	writel(store, main_buf);
660
661	return ret;
662}
663
664static void mxc_nand_enable_hwecc_v1_v2(struct nand_chip *chip, bool enable)
665{
666	struct mxc_nand_host *host = nand_get_controller_data(chip);
667	uint16_t config1;
668
669	if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST)
670		return;
671
672	config1 = readw(NFC_V1_V2_CONFIG1);
673
674	if (enable)
675		config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
676	else
677		config1 &= ~NFC_V1_V2_CONFIG1_ECC_EN;
678
679	writew(config1, NFC_V1_V2_CONFIG1);
680}
681
682static void mxc_nand_enable_hwecc_v3(struct nand_chip *chip, bool enable)
683{
684	struct mxc_nand_host *host = nand_get_controller_data(chip);
685	uint32_t config2;
686
687	if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST)
688		return;
689
690	config2 = readl(NFC_V3_CONFIG2);
691
692	if (enable)
693		config2 |= NFC_V3_CONFIG2_ECC_EN;
694	else
695		config2 &= ~NFC_V3_CONFIG2_ECC_EN;
696
697	writel(config2, NFC_V3_CONFIG2);
698}
699
700/* This functions is used by upper layer to checks if device is ready */
701static int mxc_nand_dev_ready(struct nand_chip *chip)
702{
703	/*
704	 * NFC handles R/B internally. Therefore, this function
705	 * always returns status as ready.
706	 */
707	return 1;
708}
709
710static int mxc_nand_read_page_v1(struct nand_chip *chip, void *buf, void *oob,
711				 bool ecc, int page)
712{
713	struct mtd_info *mtd = nand_to_mtd(chip);
714	struct mxc_nand_host *host = nand_get_controller_data(chip);
715	unsigned int bitflips_corrected = 0;
716	int no_subpages;
717	int i;
718
719	host->devtype_data->enable_hwecc(chip, ecc);
720
721	host->devtype_data->send_cmd(host, NAND_CMD_READ0, false);
722	mxc_do_addr_cycle(mtd, 0, page);
723
724	if (mtd->writesize > 512)
725		host->devtype_data->send_cmd(host, NAND_CMD_READSTART, true);
726
727	no_subpages = mtd->writesize >> 9;
728
729	for (i = 0; i < no_subpages; i++) {
730		uint16_t ecc_stats;
731
732		/* NANDFC buffer 0 is used for page read/write */
733		writew((host->active_cs << 4) | i, NFC_V1_V2_BUF_ADDR);
734
735		writew(NFC_OUTPUT, NFC_V1_V2_CONFIG2);
736
737		/* Wait for operation to complete */
738		wait_op_done(host, true);
739
740		ecc_stats = get_ecc_status_v1(host);
741
742		ecc_stats >>= 2;
743
744		if (buf && ecc) {
745			switch (ecc_stats & 0x3) {
746			case 0:
747			default:
748				break;
749			case 1:
750				mtd->ecc_stats.corrected++;
751				bitflips_corrected = 1;
752				break;
753			case 2:
754				mtd->ecc_stats.failed++;
755				break;
756			}
757		}
758	}
759
760	if (buf)
761		memcpy32_fromio(buf, host->main_area0, mtd->writesize);
762	if (oob)
763		copy_spare(mtd, true, oob);
764
765	return bitflips_corrected;
766}
767
768static int mxc_nand_read_page_v2_v3(struct nand_chip *chip, void *buf,
769				    void *oob, bool ecc, int page)
770{
771	struct mtd_info *mtd = nand_to_mtd(chip);
772	struct mxc_nand_host *host = nand_get_controller_data(chip);
773	unsigned int max_bitflips = 0;
774	u32 ecc_stat, err;
775	int no_subpages;
776	u8 ecc_bit_mask, err_limit;
777
778	host->devtype_data->enable_hwecc(chip, ecc);
779
780	host->devtype_data->send_cmd(host, NAND_CMD_READ0, false);
781	mxc_do_addr_cycle(mtd, 0, page);
782
783	if (mtd->writesize > 512)
784		host->devtype_data->send_cmd(host,
785				NAND_CMD_READSTART, true);
786
787	host->devtype_data->send_page(mtd, NFC_OUTPUT);
788
789	if (buf)
790		memcpy32_fromio(buf, host->main_area0, mtd->writesize);
791	if (oob)
792		copy_spare(mtd, true, oob);
793
794	ecc_bit_mask = (host->eccsize == 4) ? 0x7 : 0xf;
795	err_limit = (host->eccsize == 4) ? 0x4 : 0x8;
796
797	no_subpages = mtd->writesize >> 9;
798
799	ecc_stat = host->devtype_data->get_ecc_status(host);
800
801	do {
802		err = ecc_stat & ecc_bit_mask;
803		if (err > err_limit) {
804			mtd->ecc_stats.failed++;
805		} else {
806			mtd->ecc_stats.corrected += err;
807			max_bitflips = max_t(unsigned int, max_bitflips, err);
808		}
809
810		ecc_stat >>= 4;
811	} while (--no_subpages);
812
813	return max_bitflips;
814}
815
816static int mxc_nand_read_page(struct nand_chip *chip, uint8_t *buf,
817			      int oob_required, int page)
818{
819	struct mxc_nand_host *host = nand_get_controller_data(chip);
820	void *oob_buf;
821
822	if (oob_required)
823		oob_buf = chip->oob_poi;
824	else
825		oob_buf = NULL;
826
827	return host->devtype_data->read_page(chip, buf, oob_buf, 1, page);
828}
829
830static int mxc_nand_read_page_raw(struct nand_chip *chip, uint8_t *buf,
831				  int oob_required, int page)
832{
833	struct mxc_nand_host *host = nand_get_controller_data(chip);
834	void *oob_buf;
835
836	if (oob_required)
837		oob_buf = chip->oob_poi;
838	else
839		oob_buf = NULL;
840
841	return host->devtype_data->read_page(chip, buf, oob_buf, 0, page);
842}
843
844static int mxc_nand_read_oob(struct nand_chip *chip, int page)
845{
846	struct mxc_nand_host *host = nand_get_controller_data(chip);
847
848	return host->devtype_data->read_page(chip, NULL, chip->oob_poi, 0,
849					     page);
850}
851
852static int mxc_nand_write_page(struct nand_chip *chip, const uint8_t *buf,
853			       bool ecc, int page)
854{
855	struct mtd_info *mtd = nand_to_mtd(chip);
856	struct mxc_nand_host *host = nand_get_controller_data(chip);
857
858	host->devtype_data->enable_hwecc(chip, ecc);
859
860	host->devtype_data->send_cmd(host, NAND_CMD_SEQIN, false);
861	mxc_do_addr_cycle(mtd, 0, page);
862
863	memcpy32_toio(host->main_area0, buf, mtd->writesize);
864	copy_spare(mtd, false, chip->oob_poi);
865
866	host->devtype_data->send_page(mtd, NFC_INPUT);
867	host->devtype_data->send_cmd(host, NAND_CMD_PAGEPROG, true);
868	mxc_do_addr_cycle(mtd, 0, page);
869
870	return 0;
871}
872
873static int mxc_nand_write_page_ecc(struct nand_chip *chip, const uint8_t *buf,
874				   int oob_required, int page)
875{
876	return mxc_nand_write_page(chip, buf, true, page);
877}
878
879static int mxc_nand_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
880				   int oob_required, int page)
881{
882	return mxc_nand_write_page(chip, buf, false, page);
883}
884
885static int mxc_nand_write_oob(struct nand_chip *chip, int page)
886{
887	struct mtd_info *mtd = nand_to_mtd(chip);
888	struct mxc_nand_host *host = nand_get_controller_data(chip);
889
890	memset(host->data_buf, 0xff, mtd->writesize);
891
892	return mxc_nand_write_page(chip, host->data_buf, false, page);
893}
894
895static u_char mxc_nand_read_byte(struct nand_chip *nand_chip)
896{
897	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
898	uint8_t ret;
899
900	/* Check for status request */
901	if (host->status_request)
902		return host->devtype_data->get_dev_status(host) & 0xFF;
903
904	if (nand_chip->options & NAND_BUSWIDTH_16) {
905		/* only take the lower byte of each word */
906		ret = *(uint16_t *)(host->data_buf + host->buf_start);
907
908		host->buf_start += 2;
909	} else {
910		ret = *(uint8_t *)(host->data_buf + host->buf_start);
911		host->buf_start++;
912	}
913
914	dev_dbg(host->dev, "%s: ret=0x%hhx (start=%u)\n", __func__, ret, host->buf_start);
915	return ret;
916}
917
918/* Write data of length len to buffer buf. The data to be
919 * written on NAND Flash is first copied to RAMbuffer. After the Data Input
920 * Operation by the NFC, the data is written to NAND Flash */
921static void mxc_nand_write_buf(struct nand_chip *nand_chip, const u_char *buf,
922			       int len)
923{
924	struct mtd_info *mtd = nand_to_mtd(nand_chip);
925	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
926	u16 col = host->buf_start;
927	int n = mtd->oobsize + mtd->writesize - col;
928
929	n = min(n, len);
930
931	memcpy(host->data_buf + col, buf, n);
932
933	host->buf_start += n;
934}
935
936/* Read the data buffer from the NAND Flash. To read the data from NAND
937 * Flash first the data output cycle is initiated by the NFC, which copies
938 * the data to RAMbuffer. This data of length len is then copied to buffer buf.
939 */
940static void mxc_nand_read_buf(struct nand_chip *nand_chip, u_char *buf,
941			      int len)
942{
943	struct mtd_info *mtd = nand_to_mtd(nand_chip);
944	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
945	u16 col = host->buf_start;
946	int n = mtd->oobsize + mtd->writesize - col;
947
948	n = min(n, len);
949
950	memcpy(buf, host->data_buf + col, n);
951
952	host->buf_start += n;
953}
954
955/* This function is used by upper layer for select and
956 * deselect of the NAND chip */
957static void mxc_nand_select_chip_v1_v3(struct nand_chip *nand_chip, int chip)
958{
959	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
960
961	if (chip == -1) {
962		/* Disable the NFC clock */
963		if (host->clk_act) {
964			clk_disable_unprepare(host->clk);
965			host->clk_act = 0;
966		}
967		return;
968	}
969
970	if (!host->clk_act) {
971		/* Enable the NFC clock */
972		clk_prepare_enable(host->clk);
973		host->clk_act = 1;
974	}
975}
976
977static void mxc_nand_select_chip_v2(struct nand_chip *nand_chip, int chip)
978{
979	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
980
981	if (chip == -1) {
982		/* Disable the NFC clock */
983		if (host->clk_act) {
984			clk_disable_unprepare(host->clk);
985			host->clk_act = 0;
986		}
987		return;
988	}
989
990	if (!host->clk_act) {
991		/* Enable the NFC clock */
992		clk_prepare_enable(host->clk);
993		host->clk_act = 1;
994	}
995
996	host->active_cs = chip;
997	writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
998}
999
1000#define MXC_V1_ECCBYTES		5
1001
1002static int mxc_v1_ooblayout_ecc(struct mtd_info *mtd, int section,
1003				struct mtd_oob_region *oobregion)
1004{
1005	struct nand_chip *nand_chip = mtd_to_nand(mtd);
1006
1007	if (section >= nand_chip->ecc.steps)
1008		return -ERANGE;
1009
1010	oobregion->offset = (section * 16) + 6;
1011	oobregion->length = MXC_V1_ECCBYTES;
1012
1013	return 0;
1014}
1015
1016static int mxc_v1_ooblayout_free(struct mtd_info *mtd, int section,
1017				 struct mtd_oob_region *oobregion)
1018{
1019	struct nand_chip *nand_chip = mtd_to_nand(mtd);
1020
1021	if (section > nand_chip->ecc.steps)
1022		return -ERANGE;
1023
1024	if (!section) {
1025		if (mtd->writesize <= 512) {
1026			oobregion->offset = 0;
1027			oobregion->length = 5;
1028		} else {
1029			oobregion->offset = 2;
1030			oobregion->length = 4;
1031		}
1032	} else {
1033		oobregion->offset = ((section - 1) * 16) + MXC_V1_ECCBYTES + 6;
1034		if (section < nand_chip->ecc.steps)
1035			oobregion->length = (section * 16) + 6 -
1036					    oobregion->offset;
1037		else
1038			oobregion->length = mtd->oobsize - oobregion->offset;
1039	}
1040
1041	return 0;
1042}
1043
1044static const struct mtd_ooblayout_ops mxc_v1_ooblayout_ops = {
1045	.ecc = mxc_v1_ooblayout_ecc,
1046	.free = mxc_v1_ooblayout_free,
1047};
1048
1049static int mxc_v2_ooblayout_ecc(struct mtd_info *mtd, int section,
1050				struct mtd_oob_region *oobregion)
1051{
1052	struct nand_chip *nand_chip = mtd_to_nand(mtd);
1053	int stepsize = nand_chip->ecc.bytes == 9 ? 16 : 26;
1054
1055	if (section >= nand_chip->ecc.steps)
1056		return -ERANGE;
1057
1058	oobregion->offset = (section * stepsize) + 7;
1059	oobregion->length = nand_chip->ecc.bytes;
1060
1061	return 0;
1062}
1063
1064static int mxc_v2_ooblayout_free(struct mtd_info *mtd, int section,
1065				 struct mtd_oob_region *oobregion)
1066{
1067	struct nand_chip *nand_chip = mtd_to_nand(mtd);
1068	int stepsize = nand_chip->ecc.bytes == 9 ? 16 : 26;
1069
1070	if (section >= nand_chip->ecc.steps)
1071		return -ERANGE;
1072
1073	if (!section) {
1074		if (mtd->writesize <= 512) {
1075			oobregion->offset = 0;
1076			oobregion->length = 5;
1077		} else {
1078			oobregion->offset = 2;
1079			oobregion->length = 4;
1080		}
1081	} else {
1082		oobregion->offset = section * stepsize;
1083		oobregion->length = 7;
1084	}
1085
1086	return 0;
1087}
1088
1089static const struct mtd_ooblayout_ops mxc_v2_ooblayout_ops = {
1090	.ecc = mxc_v2_ooblayout_ecc,
1091	.free = mxc_v2_ooblayout_free,
1092};
1093
1094/*
1095 * v2 and v3 type controllers can do 4bit or 8bit ecc depending
1096 * on how much oob the nand chip has. For 8bit ecc we need at least
1097 * 26 bytes of oob data per 512 byte block.
1098 */
1099static int get_eccsize(struct mtd_info *mtd)
1100{
1101	int oobbytes_per_512 = 0;
1102
1103	oobbytes_per_512 = mtd->oobsize * 512 / mtd->writesize;
1104
1105	if (oobbytes_per_512 < 26)
1106		return 4;
1107	else
1108		return 8;
1109}
1110
1111static void preset_v1(struct mtd_info *mtd)
1112{
1113	struct nand_chip *nand_chip = mtd_to_nand(mtd);
1114	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
1115	uint16_t config1 = 0;
1116
1117	if (nand_chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST &&
1118	    mtd->writesize)
1119		config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
1120
1121	if (!host->devtype_data->irqpending_quirk)
1122		config1 |= NFC_V1_V2_CONFIG1_INT_MSK;
1123
1124	host->eccsize = 1;
1125
1126	writew(config1, NFC_V1_V2_CONFIG1);
1127	/* preset operation */
1128
1129	/* Unlock the internal RAM Buffer */
1130	writew(0x2, NFC_V1_V2_CONFIG);
1131
1132	/* Blocks to be unlocked */
1133	writew(0x0, NFC_V1_UNLOCKSTART_BLKADDR);
1134	writew(0xffff, NFC_V1_UNLOCKEND_BLKADDR);
1135
1136	/* Unlock Block Command for given address range */
1137	writew(0x4, NFC_V1_V2_WRPROT);
1138}
1139
1140static int mxc_nand_v2_setup_interface(struct nand_chip *chip, int csline,
1141				       const struct nand_interface_config *conf)
1142{
1143	struct mxc_nand_host *host = nand_get_controller_data(chip);
1144	int tRC_min_ns, tRC_ps, ret;
1145	unsigned long rate, rate_round;
1146	const struct nand_sdr_timings *timings;
1147	u16 config1;
1148
1149	timings = nand_get_sdr_timings(conf);
1150	if (IS_ERR(timings))
1151		return -ENOTSUPP;
1152
1153	config1 = readw(NFC_V1_V2_CONFIG1);
1154
1155	tRC_min_ns = timings->tRC_min / 1000;
1156	rate = 1000000000 / tRC_min_ns;
1157
1158	/*
1159	 * For tRC < 30ns we have to use EDO mode. In this case the controller
1160	 * does one access per clock cycle. Otherwise the controller does one
1161	 * access in two clock cycles, thus we have to double the rate to the
1162	 * controller.
1163	 */
1164	if (tRC_min_ns < 30) {
1165		rate_round = clk_round_rate(host->clk, rate);
1166		config1 |= NFC_V2_CONFIG1_ONE_CYCLE;
1167		tRC_ps = 1000000000 / (rate_round / 1000);
1168	} else {
1169		rate *= 2;
1170		rate_round = clk_round_rate(host->clk, rate);
1171		config1 &= ~NFC_V2_CONFIG1_ONE_CYCLE;
1172		tRC_ps = 1000000000 / (rate_round / 1000 / 2);
1173	}
1174
1175	/*
1176	 * The timing values compared against are from the i.MX25 Automotive
1177	 * datasheet, Table 50. NFC Timing Parameters
1178	 */
1179	if (timings->tCLS_min > tRC_ps - 1000 ||
1180	    timings->tCLH_min > tRC_ps - 2000 ||
1181	    timings->tCS_min > tRC_ps - 1000 ||
1182	    timings->tCH_min > tRC_ps - 2000 ||
1183	    timings->tWP_min > tRC_ps - 1500 ||
1184	    timings->tALS_min > tRC_ps ||
1185	    timings->tALH_min > tRC_ps - 3000 ||
1186	    timings->tDS_min > tRC_ps ||
1187	    timings->tDH_min > tRC_ps - 5000 ||
1188	    timings->tWC_min > 2 * tRC_ps ||
1189	    timings->tWH_min > tRC_ps - 2500 ||
1190	    timings->tRR_min > 6 * tRC_ps ||
1191	    timings->tRP_min > 3 * tRC_ps / 2 ||
1192	    timings->tRC_min > 2 * tRC_ps ||
1193	    timings->tREH_min > (tRC_ps / 2) - 2500) {
1194		dev_dbg(host->dev, "Timing out of bounds\n");
1195		return -EINVAL;
1196	}
1197
1198	if (csline == NAND_DATA_IFACE_CHECK_ONLY)
1199		return 0;
1200
1201	ret = clk_set_rate(host->clk, rate);
1202	if (ret)
1203		return ret;
1204
1205	writew(config1, NFC_V1_V2_CONFIG1);
1206
1207	dev_dbg(host->dev, "Setting rate to %ldHz, %s mode\n", rate_round,
1208		config1 & NFC_V2_CONFIG1_ONE_CYCLE ? "One cycle (EDO)" :
1209		"normal");
1210
1211	return 0;
1212}
1213
1214static void preset_v2(struct mtd_info *mtd)
1215{
1216	struct nand_chip *nand_chip = mtd_to_nand(mtd);
1217	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
1218	uint16_t config1 = 0;
1219
1220	config1 |= NFC_V2_CONFIG1_FP_INT;
1221
1222	if (!host->devtype_data->irqpending_quirk)
1223		config1 |= NFC_V1_V2_CONFIG1_INT_MSK;
1224
1225	if (mtd->writesize) {
1226		uint16_t pages_per_block = mtd->erasesize / mtd->writesize;
1227
1228		if (nand_chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST)
1229			config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
1230
1231		host->eccsize = get_eccsize(mtd);
1232		if (host->eccsize == 4)
1233			config1 |= NFC_V2_CONFIG1_ECC_MODE_4;
1234
1235		config1 |= NFC_V2_CONFIG1_PPB(ffs(pages_per_block) - 6);
1236	} else {
1237		host->eccsize = 1;
1238	}
1239
1240	writew(config1, NFC_V1_V2_CONFIG1);
1241	/* preset operation */
1242
1243	/* spare area size in 16-bit half-words */
1244	writew(mtd->oobsize / 2, NFC_V21_RSLTSPARE_AREA);
1245
1246	/* Unlock the internal RAM Buffer */
1247	writew(0x2, NFC_V1_V2_CONFIG);
1248
1249	/* Blocks to be unlocked */
1250	writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR0);
1251	writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR1);
1252	writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR2);
1253	writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR3);
1254	writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR0);
1255	writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR1);
1256	writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR2);
1257	writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR3);
1258
1259	/* Unlock Block Command for given address range */
1260	writew(0x4, NFC_V1_V2_WRPROT);
1261}
1262
1263static void preset_v3(struct mtd_info *mtd)
1264{
1265	struct nand_chip *chip = mtd_to_nand(mtd);
1266	struct mxc_nand_host *host = nand_get_controller_data(chip);
1267	uint32_t config2, config3;
1268	int i, addr_phases;
1269
1270	writel(NFC_V3_CONFIG1_RBA(0), NFC_V3_CONFIG1);
1271	writel(NFC_V3_IPC_CREQ, NFC_V3_IPC);
1272
1273	/* Unlock the internal RAM Buffer */
1274	writel(NFC_V3_WRPROT_BLS_UNLOCK | NFC_V3_WRPROT_UNLOCK,
1275			NFC_V3_WRPROT);
1276
1277	/* Blocks to be unlocked */
1278	for (i = 0; i < NAND_MAX_CHIPS; i++)
1279		writel(0xffff << 16, NFC_V3_WRPROT_UNLOCK_BLK_ADD0 + (i << 2));
1280
1281	writel(0, NFC_V3_IPC);
1282
1283	config2 = NFC_V3_CONFIG2_ONE_CYCLE |
1284		NFC_V3_CONFIG2_2CMD_PHASES |
1285		NFC_V3_CONFIG2_SPAS(mtd->oobsize >> 1) |
1286		NFC_V3_CONFIG2_ST_CMD(0x70) |
1287		NFC_V3_CONFIG2_INT_MSK |
1288		NFC_V3_CONFIG2_NUM_ADDR_PHASE0;
1289
1290	addr_phases = fls(chip->pagemask) >> 3;
1291
1292	if (mtd->writesize == 2048) {
1293		config2 |= NFC_V3_CONFIG2_PS_2048;
1294		config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
1295	} else if (mtd->writesize == 4096) {
1296		config2 |= NFC_V3_CONFIG2_PS_4096;
1297		config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
1298	} else {
1299		config2 |= NFC_V3_CONFIG2_PS_512;
1300		config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases - 1);
1301	}
1302
1303	if (mtd->writesize) {
1304		if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST)
1305			config2 |= NFC_V3_CONFIG2_ECC_EN;
1306
1307		config2 |= NFC_V3_CONFIG2_PPB(
1308				ffs(mtd->erasesize / mtd->writesize) - 6,
1309				host->devtype_data->ppb_shift);
1310		host->eccsize = get_eccsize(mtd);
1311		if (host->eccsize == 8)
1312			config2 |= NFC_V3_CONFIG2_ECC_MODE_8;
1313	}
1314
1315	writel(config2, NFC_V3_CONFIG2);
1316
1317	config3 = NFC_V3_CONFIG3_NUM_OF_DEVICES(0) |
1318			NFC_V3_CONFIG3_NO_SDMA |
1319			NFC_V3_CONFIG3_RBB_MODE |
1320			NFC_V3_CONFIG3_SBB(6) | /* Reset default */
1321			NFC_V3_CONFIG3_ADD_OP(0);
1322
1323	if (!(chip->options & NAND_BUSWIDTH_16))
1324		config3 |= NFC_V3_CONFIG3_FW8;
1325
1326	writel(config3, NFC_V3_CONFIG3);
1327
1328	writel(0, NFC_V3_DELAY_LINE);
1329}
1330
1331/* Used by the upper layer to write command to NAND Flash for
1332 * different operations to be carried out on NAND Flash */
1333static void mxc_nand_command(struct nand_chip *nand_chip, unsigned command,
1334			     int column, int page_addr)
1335{
1336	struct mtd_info *mtd = nand_to_mtd(nand_chip);
1337	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
1338
1339	dev_dbg(host->dev, "mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n",
1340	      command, column, page_addr);
1341
1342	/* Reset command state information */
1343	host->status_request = false;
1344
1345	/* Command pre-processing step */
1346	switch (command) {
1347	case NAND_CMD_RESET:
1348		host->devtype_data->preset(mtd);
1349		host->devtype_data->send_cmd(host, command, false);
1350		break;
1351
1352	case NAND_CMD_STATUS:
1353		host->buf_start = 0;
1354		host->status_request = true;
1355
1356		host->devtype_data->send_cmd(host, command, true);
1357		WARN_ONCE(column != -1 || page_addr != -1,
1358			  "Unexpected column/row value (cmd=%u, col=%d, row=%d)\n",
1359			  command, column, page_addr);
1360		mxc_do_addr_cycle(mtd, column, page_addr);
1361		break;
1362
1363	case NAND_CMD_READID:
1364		host->devtype_data->send_cmd(host, command, true);
1365		mxc_do_addr_cycle(mtd, column, page_addr);
1366		host->devtype_data->send_read_id(host);
1367		host->buf_start = 0;
1368		break;
1369
1370	case NAND_CMD_ERASE1:
1371	case NAND_CMD_ERASE2:
1372		host->devtype_data->send_cmd(host, command, false);
1373		WARN_ONCE(column != -1,
1374			  "Unexpected column value (cmd=%u, col=%d)\n",
1375			  command, column);
1376		mxc_do_addr_cycle(mtd, column, page_addr);
1377
1378		break;
1379	case NAND_CMD_PARAM:
1380		host->devtype_data->send_cmd(host, command, false);
1381		mxc_do_addr_cycle(mtd, column, page_addr);
1382		host->devtype_data->send_page(mtd, NFC_OUTPUT);
1383		memcpy32_fromio(host->data_buf, host->main_area0, 512);
1384		host->buf_start = 0;
1385		break;
1386	default:
1387		WARN_ONCE(1, "Unimplemented command (cmd=%u)\n",
1388			  command);
1389		break;
1390	}
1391}
1392
1393static int mxc_nand_set_features(struct nand_chip *chip, int addr,
1394				 u8 *subfeature_param)
1395{
1396	struct mtd_info *mtd = nand_to_mtd(chip);
1397	struct mxc_nand_host *host = nand_get_controller_data(chip);
1398	int i;
1399
1400	host->buf_start = 0;
1401
1402	for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
1403		chip->legacy.write_byte(chip, subfeature_param[i]);
1404
1405	memcpy32_toio(host->main_area0, host->data_buf, mtd->writesize);
1406	host->devtype_data->send_cmd(host, NAND_CMD_SET_FEATURES, false);
1407	mxc_do_addr_cycle(mtd, addr, -1);
1408	host->devtype_data->send_page(mtd, NFC_INPUT);
1409
1410	return 0;
1411}
1412
1413static int mxc_nand_get_features(struct nand_chip *chip, int addr,
1414				 u8 *subfeature_param)
1415{
1416	struct mtd_info *mtd = nand_to_mtd(chip);
1417	struct mxc_nand_host *host = nand_get_controller_data(chip);
1418	int i;
1419
1420	host->devtype_data->send_cmd(host, NAND_CMD_GET_FEATURES, false);
1421	mxc_do_addr_cycle(mtd, addr, -1);
1422	host->devtype_data->send_page(mtd, NFC_OUTPUT);
1423	memcpy32_fromio(host->data_buf, host->main_area0, 512);
1424	host->buf_start = 0;
1425
1426	for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
1427		*subfeature_param++ = chip->legacy.read_byte(chip);
1428
1429	return 0;
1430}
1431
1432/*
1433 * The generic flash bbt descriptors overlap with our ecc
1434 * hardware, so define some i.MX specific ones.
1435 */
1436static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' };
1437static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' };
1438
1439static struct nand_bbt_descr bbt_main_descr = {
1440	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1441	    | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1442	.offs = 0,
1443	.len = 4,
1444	.veroffs = 4,
1445	.maxblocks = 4,
1446	.pattern = bbt_pattern,
1447};
1448
1449static struct nand_bbt_descr bbt_mirror_descr = {
1450	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1451	    | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1452	.offs = 0,
1453	.len = 4,
1454	.veroffs = 4,
1455	.maxblocks = 4,
1456	.pattern = mirror_pattern,
1457};
1458
1459/* v1 + irqpending_quirk: i.MX21 */
1460static const struct mxc_nand_devtype_data imx21_nand_devtype_data = {
1461	.preset = preset_v1,
1462	.read_page = mxc_nand_read_page_v1,
1463	.send_cmd = send_cmd_v1_v2,
1464	.send_addr = send_addr_v1_v2,
1465	.send_page = send_page_v1,
1466	.send_read_id = send_read_id_v1_v2,
1467	.get_dev_status = get_dev_status_v1_v2,
1468	.check_int = check_int_v1_v2,
1469	.irq_control = irq_control_v1_v2,
1470	.get_ecc_status = get_ecc_status_v1,
1471	.ooblayout = &mxc_v1_ooblayout_ops,
1472	.select_chip = mxc_nand_select_chip_v1_v3,
1473	.enable_hwecc = mxc_nand_enable_hwecc_v1_v2,
1474	.irqpending_quirk = 1,
1475	.needs_ip = 0,
1476	.regs_offset = 0xe00,
1477	.spare0_offset = 0x800,
1478	.spare_len = 16,
1479	.eccbytes = 3,
1480	.eccsize = 1,
1481};
1482
1483/* v1 + !irqpending_quirk: i.MX27, i.MX31 */
1484static const struct mxc_nand_devtype_data imx27_nand_devtype_data = {
1485	.preset = preset_v1,
1486	.read_page = mxc_nand_read_page_v1,
1487	.send_cmd = send_cmd_v1_v2,
1488	.send_addr = send_addr_v1_v2,
1489	.send_page = send_page_v1,
1490	.send_read_id = send_read_id_v1_v2,
1491	.get_dev_status = get_dev_status_v1_v2,
1492	.check_int = check_int_v1_v2,
1493	.irq_control = irq_control_v1_v2,
1494	.get_ecc_status = get_ecc_status_v1,
1495	.ooblayout = &mxc_v1_ooblayout_ops,
1496	.select_chip = mxc_nand_select_chip_v1_v3,
1497	.enable_hwecc = mxc_nand_enable_hwecc_v1_v2,
1498	.irqpending_quirk = 0,
1499	.needs_ip = 0,
1500	.regs_offset = 0xe00,
1501	.spare0_offset = 0x800,
1502	.axi_offset = 0,
1503	.spare_len = 16,
1504	.eccbytes = 3,
1505	.eccsize = 1,
1506};
1507
1508/* v21: i.MX25, i.MX35 */
1509static const struct mxc_nand_devtype_data imx25_nand_devtype_data = {
1510	.preset = preset_v2,
1511	.read_page = mxc_nand_read_page_v2_v3,
1512	.send_cmd = send_cmd_v1_v2,
1513	.send_addr = send_addr_v1_v2,
1514	.send_page = send_page_v2,
1515	.send_read_id = send_read_id_v1_v2,
1516	.get_dev_status = get_dev_status_v1_v2,
1517	.check_int = check_int_v1_v2,
1518	.irq_control = irq_control_v1_v2,
1519	.get_ecc_status = get_ecc_status_v2,
1520	.ooblayout = &mxc_v2_ooblayout_ops,
1521	.select_chip = mxc_nand_select_chip_v2,
1522	.setup_interface = mxc_nand_v2_setup_interface,
1523	.enable_hwecc = mxc_nand_enable_hwecc_v1_v2,
1524	.irqpending_quirk = 0,
1525	.needs_ip = 0,
1526	.regs_offset = 0x1e00,
1527	.spare0_offset = 0x1000,
1528	.axi_offset = 0,
1529	.spare_len = 64,
1530	.eccbytes = 9,
1531	.eccsize = 0,
1532};
1533
1534/* v3.2a: i.MX51 */
1535static const struct mxc_nand_devtype_data imx51_nand_devtype_data = {
1536	.preset = preset_v3,
1537	.read_page = mxc_nand_read_page_v2_v3,
1538	.send_cmd = send_cmd_v3,
1539	.send_addr = send_addr_v3,
1540	.send_page = send_page_v3,
1541	.send_read_id = send_read_id_v3,
1542	.get_dev_status = get_dev_status_v3,
1543	.check_int = check_int_v3,
1544	.irq_control = irq_control_v3,
1545	.get_ecc_status = get_ecc_status_v3,
1546	.ooblayout = &mxc_v2_ooblayout_ops,
1547	.select_chip = mxc_nand_select_chip_v1_v3,
1548	.enable_hwecc = mxc_nand_enable_hwecc_v3,
1549	.irqpending_quirk = 0,
1550	.needs_ip = 1,
1551	.regs_offset = 0,
1552	.spare0_offset = 0x1000,
1553	.axi_offset = 0x1e00,
1554	.spare_len = 64,
1555	.eccbytes = 0,
1556	.eccsize = 0,
1557	.ppb_shift = 7,
1558};
1559
1560/* v3.2b: i.MX53 */
1561static const struct mxc_nand_devtype_data imx53_nand_devtype_data = {
1562	.preset = preset_v3,
1563	.read_page = mxc_nand_read_page_v2_v3,
1564	.send_cmd = send_cmd_v3,
1565	.send_addr = send_addr_v3,
1566	.send_page = send_page_v3,
1567	.send_read_id = send_read_id_v3,
1568	.get_dev_status = get_dev_status_v3,
1569	.check_int = check_int_v3,
1570	.irq_control = irq_control_v3,
1571	.get_ecc_status = get_ecc_status_v3,
1572	.ooblayout = &mxc_v2_ooblayout_ops,
1573	.select_chip = mxc_nand_select_chip_v1_v3,
1574	.enable_hwecc = mxc_nand_enable_hwecc_v3,
1575	.irqpending_quirk = 0,
1576	.needs_ip = 1,
1577	.regs_offset = 0,
1578	.spare0_offset = 0x1000,
1579	.axi_offset = 0x1e00,
1580	.spare_len = 64,
1581	.eccbytes = 0,
1582	.eccsize = 0,
1583	.ppb_shift = 8,
1584};
1585
1586static inline int is_imx21_nfc(struct mxc_nand_host *host)
1587{
1588	return host->devtype_data == &imx21_nand_devtype_data;
1589}
1590
1591static inline int is_imx27_nfc(struct mxc_nand_host *host)
1592{
1593	return host->devtype_data == &imx27_nand_devtype_data;
1594}
1595
1596static inline int is_imx25_nfc(struct mxc_nand_host *host)
1597{
1598	return host->devtype_data == &imx25_nand_devtype_data;
1599}
1600
1601static const struct of_device_id mxcnd_dt_ids[] = {
1602	{ .compatible = "fsl,imx21-nand", .data = &imx21_nand_devtype_data, },
1603	{ .compatible = "fsl,imx27-nand", .data = &imx27_nand_devtype_data, },
1604	{ .compatible = "fsl,imx25-nand", .data = &imx25_nand_devtype_data, },
1605	{ .compatible = "fsl,imx51-nand", .data = &imx51_nand_devtype_data, },
1606	{ .compatible = "fsl,imx53-nand", .data = &imx53_nand_devtype_data, },
1607	{ /* sentinel */ }
1608};
1609MODULE_DEVICE_TABLE(of, mxcnd_dt_ids);
1610
1611static int mxcnd_attach_chip(struct nand_chip *chip)
1612{
1613	struct mtd_info *mtd = nand_to_mtd(chip);
1614	struct mxc_nand_host *host = nand_get_controller_data(chip);
1615	struct device *dev = mtd->dev.parent;
1616
1617	chip->ecc.bytes = host->devtype_data->eccbytes;
1618	host->eccsize = host->devtype_data->eccsize;
1619	chip->ecc.size = 512;
1620	mtd_set_ooblayout(mtd, host->devtype_data->ooblayout);
1621
1622	switch (chip->ecc.engine_type) {
1623	case NAND_ECC_ENGINE_TYPE_ON_HOST:
1624		chip->ecc.read_page = mxc_nand_read_page;
1625		chip->ecc.read_page_raw = mxc_nand_read_page_raw;
1626		chip->ecc.read_oob = mxc_nand_read_oob;
1627		chip->ecc.write_page = mxc_nand_write_page_ecc;
1628		chip->ecc.write_page_raw = mxc_nand_write_page_raw;
1629		chip->ecc.write_oob = mxc_nand_write_oob;
1630		break;
1631
1632	case NAND_ECC_ENGINE_TYPE_SOFT:
1633		break;
1634
1635	default:
1636		return -EINVAL;
1637	}
1638
1639	if (chip->bbt_options & NAND_BBT_USE_FLASH) {
1640		chip->bbt_td = &bbt_main_descr;
1641		chip->bbt_md = &bbt_mirror_descr;
1642	}
1643
1644	/* Allocate the right size buffer now */
1645	devm_kfree(dev, (void *)host->data_buf);
1646	host->data_buf = devm_kzalloc(dev, mtd->writesize + mtd->oobsize,
1647				      GFP_KERNEL);
1648	if (!host->data_buf)
1649		return -ENOMEM;
1650
1651	/* Call preset again, with correct writesize chip time */
1652	host->devtype_data->preset(mtd);
1653
1654	if (!chip->ecc.bytes) {
1655		if (host->eccsize == 8)
1656			chip->ecc.bytes = 18;
1657		else if (host->eccsize == 4)
1658			chip->ecc.bytes = 9;
1659	}
1660
1661	/*
1662	 * Experimentation shows that i.MX NFC can only handle up to 218 oob
1663	 * bytes. Limit used_oobsize to 218 so as to not confuse copy_spare()
1664	 * into copying invalid data to/from the spare IO buffer, as this
1665	 * might cause ECC data corruption when doing sub-page write to a
1666	 * partially written page.
1667	 */
1668	host->used_oobsize = min(mtd->oobsize, 218U);
1669
1670	if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST) {
1671		if (is_imx21_nfc(host) || is_imx27_nfc(host))
1672			chip->ecc.strength = 1;
1673		else
1674			chip->ecc.strength = (host->eccsize == 4) ? 4 : 8;
1675	}
1676
1677	return 0;
1678}
1679
1680static int mxcnd_setup_interface(struct nand_chip *chip, int chipnr,
1681				 const struct nand_interface_config *conf)
1682{
1683	struct mxc_nand_host *host = nand_get_controller_data(chip);
1684
1685	return host->devtype_data->setup_interface(chip, chipnr, conf);
1686}
1687
1688static const struct nand_controller_ops mxcnd_controller_ops = {
1689	.attach_chip = mxcnd_attach_chip,
1690	.setup_interface = mxcnd_setup_interface,
1691};
1692
1693static int mxcnd_probe(struct platform_device *pdev)
1694{
1695	struct nand_chip *this;
1696	struct mtd_info *mtd;
1697	struct mxc_nand_host *host;
1698	int err = 0;
1699
1700	/* Allocate memory for MTD device structure and private data */
1701	host = devm_kzalloc(&pdev->dev, sizeof(struct mxc_nand_host),
1702			GFP_KERNEL);
1703	if (!host)
1704		return -ENOMEM;
1705
1706	/* allocate a temporary buffer for the nand_scan_ident() */
1707	host->data_buf = devm_kzalloc(&pdev->dev, PAGE_SIZE, GFP_KERNEL);
1708	if (!host->data_buf)
1709		return -ENOMEM;
1710
1711	host->dev = &pdev->dev;
1712	/* structures must be linked */
1713	this = &host->nand;
1714	mtd = nand_to_mtd(this);
1715	mtd->dev.parent = &pdev->dev;
1716	mtd->name = DRIVER_NAME;
1717
1718	/* 50 us command delay time */
1719	this->legacy.chip_delay = 5;
1720
1721	nand_set_controller_data(this, host);
1722	nand_set_flash_node(this, pdev->dev.of_node);
1723	this->legacy.dev_ready = mxc_nand_dev_ready;
1724	this->legacy.cmdfunc = mxc_nand_command;
1725	this->legacy.read_byte = mxc_nand_read_byte;
1726	this->legacy.write_buf = mxc_nand_write_buf;
1727	this->legacy.read_buf = mxc_nand_read_buf;
1728	this->legacy.set_features = mxc_nand_set_features;
1729	this->legacy.get_features = mxc_nand_get_features;
1730
1731	host->clk = devm_clk_get(&pdev->dev, NULL);
1732	if (IS_ERR(host->clk))
1733		return PTR_ERR(host->clk);
1734
1735	host->devtype_data = device_get_match_data(&pdev->dev);
1736
1737	if (!host->devtype_data->setup_interface)
1738		this->options |= NAND_KEEP_TIMINGS;
1739
1740	if (host->devtype_data->needs_ip) {
1741		host->regs_ip = devm_platform_ioremap_resource(pdev, 0);
1742		if (IS_ERR(host->regs_ip))
1743			return PTR_ERR(host->regs_ip);
1744
1745		host->base = devm_platform_ioremap_resource(pdev, 1);
1746	} else {
1747		host->base = devm_platform_ioremap_resource(pdev, 0);
1748	}
1749
1750	if (IS_ERR(host->base))
1751		return PTR_ERR(host->base);
1752
1753	host->main_area0 = host->base;
1754
1755	if (host->devtype_data->regs_offset)
1756		host->regs = host->base + host->devtype_data->regs_offset;
1757	host->spare0 = host->base + host->devtype_data->spare0_offset;
1758	if (host->devtype_data->axi_offset)
1759		host->regs_axi = host->base + host->devtype_data->axi_offset;
1760
1761	this->legacy.select_chip = host->devtype_data->select_chip;
1762
1763	init_completion(&host->op_completion);
1764
1765	host->irq = platform_get_irq(pdev, 0);
1766	if (host->irq < 0)
1767		return host->irq;
1768
1769	/*
1770	 * Use host->devtype_data->irq_control() here instead of irq_control()
1771	 * because we must not disable_irq_nosync without having requested the
1772	 * irq.
1773	 */
1774	host->devtype_data->irq_control(host, 0);
1775
1776	err = devm_request_irq(&pdev->dev, host->irq, mxc_nfc_irq,
1777			0, DRIVER_NAME, host);
1778	if (err)
1779		return err;
1780
1781	err = clk_prepare_enable(host->clk);
1782	if (err)
1783		return err;
1784	host->clk_act = 1;
1785
1786	/*
1787	 * Now that we "own" the interrupt make sure the interrupt mask bit is
1788	 * cleared on i.MX21. Otherwise we can't read the interrupt status bit
1789	 * on this machine.
1790	 */
1791	if (host->devtype_data->irqpending_quirk) {
1792		disable_irq_nosync(host->irq);
1793		host->devtype_data->irq_control(host, 1);
1794	}
1795
1796	/* Scan the NAND device */
1797	this->legacy.dummy_controller.ops = &mxcnd_controller_ops;
1798	err = nand_scan(this, is_imx25_nfc(host) ? 4 : 1);
1799	if (err)
1800		goto escan;
1801
1802	/* Register the partitions */
1803	err = mtd_device_parse_register(mtd, part_probes, NULL, NULL, 0);
1804	if (err)
1805		goto cleanup_nand;
1806
1807	platform_set_drvdata(pdev, host);
1808
1809	return 0;
1810
1811cleanup_nand:
1812	nand_cleanup(this);
1813escan:
1814	if (host->clk_act)
1815		clk_disable_unprepare(host->clk);
1816
1817	return err;
1818}
1819
1820static void mxcnd_remove(struct platform_device *pdev)
1821{
1822	struct mxc_nand_host *host = platform_get_drvdata(pdev);
1823	struct nand_chip *chip = &host->nand;
1824	int ret;
1825
1826	ret = mtd_device_unregister(nand_to_mtd(chip));
1827	WARN_ON(ret);
1828	nand_cleanup(chip);
1829	if (host->clk_act)
1830		clk_disable_unprepare(host->clk);
1831}
1832
1833static struct platform_driver mxcnd_driver = {
1834	.driver = {
1835		   .name = DRIVER_NAME,
1836		   .of_match_table = mxcnd_dt_ids,
1837	},
1838	.probe = mxcnd_probe,
1839	.remove_new = mxcnd_remove,
1840};
1841module_platform_driver(mxcnd_driver);
1842
1843MODULE_AUTHOR("Freescale Semiconductor, Inc.");
1844MODULE_DESCRIPTION("MXC NAND MTD driver");
1845MODULE_LICENSE("GPL");
1846