1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Driver for NAND MLC Controller in LPC32xx
4 *
5 * Author: Roland Stigge <stigge@antcom.de>
6 *
7 * Copyright © 2011 WORK Microwave GmbH
8 * Copyright © 2011, 2012 Roland Stigge
9 *
10 * NAND Flash Controller Operation:
11 * - Read: Auto Decode
12 * - Write: Auto Encode
13 * - Tested Page Sizes: 2048, 4096
14 */
15
16#include <linux/slab.h>
17#include <linux/module.h>
18#include <linux/platform_device.h>
19#include <linux/mtd/mtd.h>
20#include <linux/mtd/rawnand.h>
21#include <linux/mtd/partitions.h>
22#include <linux/clk.h>
23#include <linux/err.h>
24#include <linux/delay.h>
25#include <linux/completion.h>
26#include <linux/interrupt.h>
27#include <linux/of.h>
28#include <linux/gpio/consumer.h>
29#include <linux/mtd/lpc32xx_mlc.h>
30#include <linux/io.h>
31#include <linux/mm.h>
32#include <linux/dma-mapping.h>
33#include <linux/dmaengine.h>
34
35#define DRV_NAME "lpc32xx_mlc"
36
37/**********************************************************************
38* MLC NAND controller register offsets
39**********************************************************************/
40
41#define MLC_BUFF(x)			(x + 0x00000)
42#define MLC_DATA(x)			(x + 0x08000)
43#define MLC_CMD(x)			(x + 0x10000)
44#define MLC_ADDR(x)			(x + 0x10004)
45#define MLC_ECC_ENC_REG(x)		(x + 0x10008)
46#define MLC_ECC_DEC_REG(x)		(x + 0x1000C)
47#define MLC_ECC_AUTO_ENC_REG(x)		(x + 0x10010)
48#define MLC_ECC_AUTO_DEC_REG(x)		(x + 0x10014)
49#define MLC_RPR(x)			(x + 0x10018)
50#define MLC_WPR(x)			(x + 0x1001C)
51#define MLC_RUBP(x)			(x + 0x10020)
52#define MLC_ROBP(x)			(x + 0x10024)
53#define MLC_SW_WP_ADD_LOW(x)		(x + 0x10028)
54#define MLC_SW_WP_ADD_HIG(x)		(x + 0x1002C)
55#define MLC_ICR(x)			(x + 0x10030)
56#define MLC_TIME_REG(x)			(x + 0x10034)
57#define MLC_IRQ_MR(x)			(x + 0x10038)
58#define MLC_IRQ_SR(x)			(x + 0x1003C)
59#define MLC_LOCK_PR(x)			(x + 0x10044)
60#define MLC_ISR(x)			(x + 0x10048)
61#define MLC_CEH(x)			(x + 0x1004C)
62
63/**********************************************************************
64* MLC_CMD bit definitions
65**********************************************************************/
66#define MLCCMD_RESET			0xFF
67
68/**********************************************************************
69* MLC_ICR bit definitions
70**********************************************************************/
71#define MLCICR_WPROT			(1 << 3)
72#define MLCICR_LARGEBLOCK		(1 << 2)
73#define MLCICR_LONGADDR			(1 << 1)
74#define MLCICR_16BIT			(1 << 0)  /* unsupported by LPC32x0! */
75
76/**********************************************************************
77* MLC_TIME_REG bit definitions
78**********************************************************************/
79#define MLCTIMEREG_TCEA_DELAY(n)	(((n) & 0x03) << 24)
80#define MLCTIMEREG_BUSY_DELAY(n)	(((n) & 0x1F) << 19)
81#define MLCTIMEREG_NAND_TA(n)		(((n) & 0x07) << 16)
82#define MLCTIMEREG_RD_HIGH(n)		(((n) & 0x0F) << 12)
83#define MLCTIMEREG_RD_LOW(n)		(((n) & 0x0F) << 8)
84#define MLCTIMEREG_WR_HIGH(n)		(((n) & 0x0F) << 4)
85#define MLCTIMEREG_WR_LOW(n)		(((n) & 0x0F) << 0)
86
87/**********************************************************************
88* MLC_IRQ_MR and MLC_IRQ_SR bit definitions
89**********************************************************************/
90#define MLCIRQ_NAND_READY		(1 << 5)
91#define MLCIRQ_CONTROLLER_READY		(1 << 4)
92#define MLCIRQ_DECODE_FAILURE		(1 << 3)
93#define MLCIRQ_DECODE_ERROR		(1 << 2)
94#define MLCIRQ_ECC_READY		(1 << 1)
95#define MLCIRQ_WRPROT_FAULT		(1 << 0)
96
97/**********************************************************************
98* MLC_LOCK_PR bit definitions
99**********************************************************************/
100#define MLCLOCKPR_MAGIC			0xA25E
101
102/**********************************************************************
103* MLC_ISR bit definitions
104**********************************************************************/
105#define MLCISR_DECODER_FAILURE		(1 << 6)
106#define MLCISR_ERRORS			((1 << 4) | (1 << 5))
107#define MLCISR_ERRORS_DETECTED		(1 << 3)
108#define MLCISR_ECC_READY		(1 << 2)
109#define MLCISR_CONTROLLER_READY		(1 << 1)
110#define MLCISR_NAND_READY		(1 << 0)
111
112/**********************************************************************
113* MLC_CEH bit definitions
114**********************************************************************/
115#define MLCCEH_NORMAL			(1 << 0)
116
117struct lpc32xx_nand_cfg_mlc {
118	uint32_t tcea_delay;
119	uint32_t busy_delay;
120	uint32_t nand_ta;
121	uint32_t rd_high;
122	uint32_t rd_low;
123	uint32_t wr_high;
124	uint32_t wr_low;
125	struct mtd_partition *parts;
126	unsigned num_parts;
127};
128
129static int lpc32xx_ooblayout_ecc(struct mtd_info *mtd, int section,
130				 struct mtd_oob_region *oobregion)
131{
132	struct nand_chip *nand_chip = mtd_to_nand(mtd);
133
134	if (section >= nand_chip->ecc.steps)
135		return -ERANGE;
136
137	oobregion->offset = ((section + 1) * 16) - nand_chip->ecc.bytes;
138	oobregion->length = nand_chip->ecc.bytes;
139
140	return 0;
141}
142
143static int lpc32xx_ooblayout_free(struct mtd_info *mtd, int section,
144				  struct mtd_oob_region *oobregion)
145{
146	struct nand_chip *nand_chip = mtd_to_nand(mtd);
147
148	if (section >= nand_chip->ecc.steps)
149		return -ERANGE;
150
151	oobregion->offset = 16 * section;
152	oobregion->length = 16 - nand_chip->ecc.bytes;
153
154	return 0;
155}
156
157static const struct mtd_ooblayout_ops lpc32xx_ooblayout_ops = {
158	.ecc = lpc32xx_ooblayout_ecc,
159	.free = lpc32xx_ooblayout_free,
160};
161
162static struct nand_bbt_descr lpc32xx_nand_bbt = {
163	.options = NAND_BBT_ABSPAGE | NAND_BBT_2BIT | NAND_BBT_NO_OOB |
164		   NAND_BBT_WRITE,
165	.pages = { 524224, 0, 0, 0, 0, 0, 0, 0 },
166};
167
168static struct nand_bbt_descr lpc32xx_nand_bbt_mirror = {
169	.options = NAND_BBT_ABSPAGE | NAND_BBT_2BIT | NAND_BBT_NO_OOB |
170		   NAND_BBT_WRITE,
171	.pages = { 524160, 0, 0, 0, 0, 0, 0, 0 },
172};
173
174struct lpc32xx_nand_host {
175	struct platform_device	*pdev;
176	struct nand_chip	nand_chip;
177	struct lpc32xx_mlc_platform_data *pdata;
178	struct clk		*clk;
179	struct gpio_desc	*wp_gpio;
180	void __iomem		*io_base;
181	int			irq;
182	struct lpc32xx_nand_cfg_mlc	*ncfg;
183	struct completion       comp_nand;
184	struct completion       comp_controller;
185	uint32_t llptr;
186	/*
187	 * Physical addresses of ECC buffer, DMA data buffers, OOB data buffer
188	 */
189	dma_addr_t		oob_buf_phy;
190	/*
191	 * Virtual addresses of ECC buffer, DMA data buffers, OOB data buffer
192	 */
193	uint8_t			*oob_buf;
194	/* Physical address of DMA base address */
195	dma_addr_t		io_base_phy;
196
197	struct completion	comp_dma;
198	struct dma_chan		*dma_chan;
199	struct dma_slave_config	dma_slave_config;
200	struct scatterlist	sgl;
201	uint8_t			*dma_buf;
202	uint8_t			*dummy_buf;
203	int			mlcsubpages; /* number of 512bytes-subpages */
204};
205
206/*
207 * Activate/Deactivate DMA Operation:
208 *
209 * Using the PL080 DMA Controller for transferring the 512 byte subpages
210 * instead of doing readl() / writel() in a loop slows it down significantly.
211 * Measurements via getnstimeofday() upon 512 byte subpage reads reveal:
212 *
213 * - readl() of 128 x 32 bits in a loop: ~20us
214 * - DMA read of 512 bytes (32 bit, 4...128 words bursts): ~60us
215 * - DMA read of 512 bytes (32 bit, no bursts): ~100us
216 *
217 * This applies to the transfer itself. In the DMA case: only the
218 * wait_for_completion() (DMA setup _not_ included).
219 *
220 * Note that the 512 bytes subpage transfer is done directly from/to a
221 * FIFO/buffer inside the NAND controller. Most of the time (~400-800us for a
222 * 2048 bytes page) is spent waiting for the NAND IRQ, anyway. (The NAND
223 * controller transferring data between its internal buffer to/from the NAND
224 * chip.)
225 *
226 * Therefore, using the PL080 DMA is disabled by default, for now.
227 *
228 */
229static int use_dma;
230
231static void lpc32xx_nand_setup(struct lpc32xx_nand_host *host)
232{
233	uint32_t clkrate, tmp;
234
235	/* Reset MLC controller */
236	writel(MLCCMD_RESET, MLC_CMD(host->io_base));
237	udelay(1000);
238
239	/* Get base clock for MLC block */
240	clkrate = clk_get_rate(host->clk);
241	if (clkrate == 0)
242		clkrate = 104000000;
243
244	/* Unlock MLC_ICR
245	 * (among others, will be locked again automatically) */
246	writew(MLCLOCKPR_MAGIC, MLC_LOCK_PR(host->io_base));
247
248	/* Configure MLC Controller: Large Block, 5 Byte Address */
249	tmp = MLCICR_LARGEBLOCK | MLCICR_LONGADDR;
250	writel(tmp, MLC_ICR(host->io_base));
251
252	/* Unlock MLC_TIME_REG
253	 * (among others, will be locked again automatically) */
254	writew(MLCLOCKPR_MAGIC, MLC_LOCK_PR(host->io_base));
255
256	/* Compute clock setup values, see LPC and NAND manual */
257	tmp = 0;
258	tmp |= MLCTIMEREG_TCEA_DELAY(clkrate / host->ncfg->tcea_delay + 1);
259	tmp |= MLCTIMEREG_BUSY_DELAY(clkrate / host->ncfg->busy_delay + 1);
260	tmp |= MLCTIMEREG_NAND_TA(clkrate / host->ncfg->nand_ta + 1);
261	tmp |= MLCTIMEREG_RD_HIGH(clkrate / host->ncfg->rd_high + 1);
262	tmp |= MLCTIMEREG_RD_LOW(clkrate / host->ncfg->rd_low);
263	tmp |= MLCTIMEREG_WR_HIGH(clkrate / host->ncfg->wr_high + 1);
264	tmp |= MLCTIMEREG_WR_LOW(clkrate / host->ncfg->wr_low);
265	writel(tmp, MLC_TIME_REG(host->io_base));
266
267	/* Enable IRQ for CONTROLLER_READY and NAND_READY */
268	writeb(MLCIRQ_CONTROLLER_READY | MLCIRQ_NAND_READY,
269			MLC_IRQ_MR(host->io_base));
270
271	/* Normal nCE operation: nCE controlled by controller */
272	writel(MLCCEH_NORMAL, MLC_CEH(host->io_base));
273}
274
275/*
276 * Hardware specific access to control lines
277 */
278static void lpc32xx_nand_cmd_ctrl(struct nand_chip *nand_chip, int cmd,
279				  unsigned int ctrl)
280{
281	struct lpc32xx_nand_host *host = nand_get_controller_data(nand_chip);
282
283	if (cmd != NAND_CMD_NONE) {
284		if (ctrl & NAND_CLE)
285			writel(cmd, MLC_CMD(host->io_base));
286		else
287			writel(cmd, MLC_ADDR(host->io_base));
288	}
289}
290
291/*
292 * Read Device Ready (NAND device _and_ controller ready)
293 */
294static int lpc32xx_nand_device_ready(struct nand_chip *nand_chip)
295{
296	struct lpc32xx_nand_host *host = nand_get_controller_data(nand_chip);
297
298	if ((readb(MLC_ISR(host->io_base)) &
299	     (MLCISR_CONTROLLER_READY | MLCISR_NAND_READY)) ==
300	    (MLCISR_CONTROLLER_READY | MLCISR_NAND_READY))
301		return  1;
302
303	return 0;
304}
305
306static irqreturn_t lpc3xxx_nand_irq(int irq, void *data)
307{
308	struct lpc32xx_nand_host *host = data;
309	uint8_t sr;
310
311	/* Clear interrupt flag by reading status */
312	sr = readb(MLC_IRQ_SR(host->io_base));
313	if (sr & MLCIRQ_NAND_READY)
314		complete(&host->comp_nand);
315	if (sr & MLCIRQ_CONTROLLER_READY)
316		complete(&host->comp_controller);
317
318	return IRQ_HANDLED;
319}
320
321static int lpc32xx_waitfunc_nand(struct nand_chip *chip)
322{
323	struct mtd_info *mtd = nand_to_mtd(chip);
324	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
325
326	if (readb(MLC_ISR(host->io_base)) & MLCISR_NAND_READY)
327		goto exit;
328
329	wait_for_completion(&host->comp_nand);
330
331	while (!(readb(MLC_ISR(host->io_base)) & MLCISR_NAND_READY)) {
332		/* Seems to be delayed sometimes by controller */
333		dev_dbg(&mtd->dev, "Warning: NAND not ready.\n");
334		cpu_relax();
335	}
336
337exit:
338	return NAND_STATUS_READY;
339}
340
341static int lpc32xx_waitfunc_controller(struct nand_chip *chip)
342{
343	struct mtd_info *mtd = nand_to_mtd(chip);
344	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
345
346	if (readb(MLC_ISR(host->io_base)) & MLCISR_CONTROLLER_READY)
347		goto exit;
348
349	wait_for_completion(&host->comp_controller);
350
351	while (!(readb(MLC_ISR(host->io_base)) &
352		 MLCISR_CONTROLLER_READY)) {
353		dev_dbg(&mtd->dev, "Warning: Controller not ready.\n");
354		cpu_relax();
355	}
356
357exit:
358	return NAND_STATUS_READY;
359}
360
361static int lpc32xx_waitfunc(struct nand_chip *chip)
362{
363	lpc32xx_waitfunc_nand(chip);
364	lpc32xx_waitfunc_controller(chip);
365
366	return NAND_STATUS_READY;
367}
368
369/*
370 * Enable NAND write protect
371 */
372static void lpc32xx_wp_enable(struct lpc32xx_nand_host *host)
373{
374	if (host->wp_gpio)
375		gpiod_set_value_cansleep(host->wp_gpio, 1);
376}
377
378/*
379 * Disable NAND write protect
380 */
381static void lpc32xx_wp_disable(struct lpc32xx_nand_host *host)
382{
383	if (host->wp_gpio)
384		gpiod_set_value_cansleep(host->wp_gpio, 0);
385}
386
387static void lpc32xx_dma_complete_func(void *completion)
388{
389	complete(completion);
390}
391
392static int lpc32xx_xmit_dma(struct mtd_info *mtd, void *mem, int len,
393			    enum dma_transfer_direction dir)
394{
395	struct nand_chip *chip = mtd_to_nand(mtd);
396	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
397	struct dma_async_tx_descriptor *desc;
398	int flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
399	int res;
400
401	sg_init_one(&host->sgl, mem, len);
402
403	res = dma_map_sg(host->dma_chan->device->dev, &host->sgl, 1,
404			 DMA_BIDIRECTIONAL);
405	if (res != 1) {
406		dev_err(mtd->dev.parent, "Failed to map sg list\n");
407		return -ENXIO;
408	}
409	desc = dmaengine_prep_slave_sg(host->dma_chan, &host->sgl, 1, dir,
410				       flags);
411	if (!desc) {
412		dev_err(mtd->dev.parent, "Failed to prepare slave sg\n");
413		goto out1;
414	}
415
416	init_completion(&host->comp_dma);
417	desc->callback = lpc32xx_dma_complete_func;
418	desc->callback_param = &host->comp_dma;
419
420	dmaengine_submit(desc);
421	dma_async_issue_pending(host->dma_chan);
422
423	wait_for_completion_timeout(&host->comp_dma, msecs_to_jiffies(1000));
424
425	dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1,
426		     DMA_BIDIRECTIONAL);
427	return 0;
428out1:
429	dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1,
430		     DMA_BIDIRECTIONAL);
431	return -ENXIO;
432}
433
434static int lpc32xx_read_page(struct nand_chip *chip, uint8_t *buf,
435			     int oob_required, int page)
436{
437	struct mtd_info *mtd = nand_to_mtd(chip);
438	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
439	int i, j;
440	uint8_t *oobbuf = chip->oob_poi;
441	uint32_t mlc_isr;
442	int res;
443	uint8_t *dma_buf;
444	bool dma_mapped;
445
446	if ((void *)buf <= high_memory) {
447		dma_buf = buf;
448		dma_mapped = true;
449	} else {
450		dma_buf = host->dma_buf;
451		dma_mapped = false;
452	}
453
454	/* Writing Command and Address */
455	nand_read_page_op(chip, page, 0, NULL, 0);
456
457	/* For all sub-pages */
458	for (i = 0; i < host->mlcsubpages; i++) {
459		/* Start Auto Decode Command */
460		writeb(0x00, MLC_ECC_AUTO_DEC_REG(host->io_base));
461
462		/* Wait for Controller Ready */
463		lpc32xx_waitfunc_controller(chip);
464
465		/* Check ECC Error status */
466		mlc_isr = readl(MLC_ISR(host->io_base));
467		if (mlc_isr & MLCISR_DECODER_FAILURE) {
468			mtd->ecc_stats.failed++;
469			dev_warn(&mtd->dev, "%s: DECODER_FAILURE\n", __func__);
470		} else if (mlc_isr & MLCISR_ERRORS_DETECTED) {
471			mtd->ecc_stats.corrected += ((mlc_isr >> 4) & 0x3) + 1;
472		}
473
474		/* Read 512 + 16 Bytes */
475		if (use_dma) {
476			res = lpc32xx_xmit_dma(mtd, dma_buf + i * 512, 512,
477					       DMA_DEV_TO_MEM);
478			if (res)
479				return res;
480		} else {
481			for (j = 0; j < (512 >> 2); j++) {
482				*((uint32_t *)(buf)) =
483					readl(MLC_BUFF(host->io_base));
484				buf += 4;
485			}
486		}
487		for (j = 0; j < (16 >> 2); j++) {
488			*((uint32_t *)(oobbuf)) =
489				readl(MLC_BUFF(host->io_base));
490			oobbuf += 4;
491		}
492	}
493
494	if (use_dma && !dma_mapped)
495		memcpy(buf, dma_buf, mtd->writesize);
496
497	return 0;
498}
499
500static int lpc32xx_write_page_lowlevel(struct nand_chip *chip,
501				       const uint8_t *buf, int oob_required,
502				       int page)
503{
504	struct mtd_info *mtd = nand_to_mtd(chip);
505	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
506	const uint8_t *oobbuf = chip->oob_poi;
507	uint8_t *dma_buf = (uint8_t *)buf;
508	int res;
509	int i, j;
510
511	if (use_dma && (void *)buf >= high_memory) {
512		dma_buf = host->dma_buf;
513		memcpy(dma_buf, buf, mtd->writesize);
514	}
515
516	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
517
518	for (i = 0; i < host->mlcsubpages; i++) {
519		/* Start Encode */
520		writeb(0x00, MLC_ECC_ENC_REG(host->io_base));
521
522		/* Write 512 + 6 Bytes to Buffer */
523		if (use_dma) {
524			res = lpc32xx_xmit_dma(mtd, dma_buf + i * 512, 512,
525					       DMA_MEM_TO_DEV);
526			if (res)
527				return res;
528		} else {
529			for (j = 0; j < (512 >> 2); j++) {
530				writel(*((uint32_t *)(buf)),
531				       MLC_BUFF(host->io_base));
532				buf += 4;
533			}
534		}
535		writel(*((uint32_t *)(oobbuf)), MLC_BUFF(host->io_base));
536		oobbuf += 4;
537		writew(*((uint16_t *)(oobbuf)), MLC_BUFF(host->io_base));
538		oobbuf += 12;
539
540		/* Auto Encode w/ Bit 8 = 0 (see LPC MLC Controller manual) */
541		writeb(0x00, MLC_ECC_AUTO_ENC_REG(host->io_base));
542
543		/* Wait for Controller Ready */
544		lpc32xx_waitfunc_controller(chip);
545	}
546
547	return nand_prog_page_end_op(chip);
548}
549
550static int lpc32xx_read_oob(struct nand_chip *chip, int page)
551{
552	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
553
554	/* Read whole page - necessary with MLC controller! */
555	lpc32xx_read_page(chip, host->dummy_buf, 1, page);
556
557	return 0;
558}
559
560static int lpc32xx_write_oob(struct nand_chip *chip, int page)
561{
562	/* None, write_oob conflicts with the automatic LPC MLC ECC decoder! */
563	return 0;
564}
565
566/* Prepares MLC for transfers with H/W ECC enabled: always enabled anyway */
567static void lpc32xx_ecc_enable(struct nand_chip *chip, int mode)
568{
569	/* Always enabled! */
570}
571
572static int lpc32xx_dma_setup(struct lpc32xx_nand_host *host)
573{
574	struct mtd_info *mtd = nand_to_mtd(&host->nand_chip);
575	dma_cap_mask_t mask;
576
577	if (!host->pdata || !host->pdata->dma_filter) {
578		dev_err(mtd->dev.parent, "no DMA platform data\n");
579		return -ENOENT;
580	}
581
582	dma_cap_zero(mask);
583	dma_cap_set(DMA_SLAVE, mask);
584	host->dma_chan = dma_request_channel(mask, host->pdata->dma_filter,
585					     "nand-mlc");
586	if (!host->dma_chan) {
587		dev_err(mtd->dev.parent, "Failed to request DMA channel\n");
588		return -EBUSY;
589	}
590
591	/*
592	 * Set direction to a sensible value even if the dmaengine driver
593	 * should ignore it. With the default (DMA_MEM_TO_MEM), the amba-pl08x
594	 * driver criticizes it as "alien transfer direction".
595	 */
596	host->dma_slave_config.direction = DMA_DEV_TO_MEM;
597	host->dma_slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
598	host->dma_slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
599	host->dma_slave_config.src_maxburst = 128;
600	host->dma_slave_config.dst_maxburst = 128;
601	/* DMA controller does flow control: */
602	host->dma_slave_config.device_fc = false;
603	host->dma_slave_config.src_addr = MLC_BUFF(host->io_base_phy);
604	host->dma_slave_config.dst_addr = MLC_BUFF(host->io_base_phy);
605	if (dmaengine_slave_config(host->dma_chan, &host->dma_slave_config)) {
606		dev_err(mtd->dev.parent, "Failed to setup DMA slave\n");
607		goto out1;
608	}
609
610	return 0;
611out1:
612	dma_release_channel(host->dma_chan);
613	return -ENXIO;
614}
615
616static struct lpc32xx_nand_cfg_mlc *lpc32xx_parse_dt(struct device *dev)
617{
618	struct lpc32xx_nand_cfg_mlc *ncfg;
619	struct device_node *np = dev->of_node;
620
621	ncfg = devm_kzalloc(dev, sizeof(*ncfg), GFP_KERNEL);
622	if (!ncfg)
623		return NULL;
624
625	of_property_read_u32(np, "nxp,tcea-delay", &ncfg->tcea_delay);
626	of_property_read_u32(np, "nxp,busy-delay", &ncfg->busy_delay);
627	of_property_read_u32(np, "nxp,nand-ta", &ncfg->nand_ta);
628	of_property_read_u32(np, "nxp,rd-high", &ncfg->rd_high);
629	of_property_read_u32(np, "nxp,rd-low", &ncfg->rd_low);
630	of_property_read_u32(np, "nxp,wr-high", &ncfg->wr_high);
631	of_property_read_u32(np, "nxp,wr-low", &ncfg->wr_low);
632
633	if (!ncfg->tcea_delay || !ncfg->busy_delay || !ncfg->nand_ta ||
634	    !ncfg->rd_high || !ncfg->rd_low || !ncfg->wr_high ||
635	    !ncfg->wr_low) {
636		dev_err(dev, "chip parameters not specified correctly\n");
637		return NULL;
638	}
639
640	return ncfg;
641}
642
643static int lpc32xx_nand_attach_chip(struct nand_chip *chip)
644{
645	struct mtd_info *mtd = nand_to_mtd(chip);
646	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
647	struct device *dev = &host->pdev->dev;
648
649	if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST)
650		return 0;
651
652	host->dma_buf = devm_kzalloc(dev, mtd->writesize, GFP_KERNEL);
653	if (!host->dma_buf)
654		return -ENOMEM;
655
656	host->dummy_buf = devm_kzalloc(dev, mtd->writesize, GFP_KERNEL);
657	if (!host->dummy_buf)
658		return -ENOMEM;
659
660	chip->ecc.size = 512;
661	chip->ecc.hwctl = lpc32xx_ecc_enable;
662	chip->ecc.read_page_raw = lpc32xx_read_page;
663	chip->ecc.read_page = lpc32xx_read_page;
664	chip->ecc.write_page_raw = lpc32xx_write_page_lowlevel;
665	chip->ecc.write_page = lpc32xx_write_page_lowlevel;
666	chip->ecc.write_oob = lpc32xx_write_oob;
667	chip->ecc.read_oob = lpc32xx_read_oob;
668	chip->ecc.strength = 4;
669	chip->ecc.bytes = 10;
670
671	mtd_set_ooblayout(mtd, &lpc32xx_ooblayout_ops);
672	host->mlcsubpages = mtd->writesize / 512;
673
674	return 0;
675}
676
677static const struct nand_controller_ops lpc32xx_nand_controller_ops = {
678	.attach_chip = lpc32xx_nand_attach_chip,
679};
680
681/*
682 * Probe for NAND controller
683 */
684static int lpc32xx_nand_probe(struct platform_device *pdev)
685{
686	struct lpc32xx_nand_host *host;
687	struct mtd_info *mtd;
688	struct nand_chip *nand_chip;
689	struct resource *rc;
690	int res;
691
692	/* Allocate memory for the device structure (and zero it) */
693	host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
694	if (!host)
695		return -ENOMEM;
696
697	host->pdev = pdev;
698
699	host->io_base = devm_platform_get_and_ioremap_resource(pdev, 0, &rc);
700	if (IS_ERR(host->io_base))
701		return PTR_ERR(host->io_base);
702
703	host->io_base_phy = rc->start;
704
705	nand_chip = &host->nand_chip;
706	mtd = nand_to_mtd(nand_chip);
707	if (pdev->dev.of_node)
708		host->ncfg = lpc32xx_parse_dt(&pdev->dev);
709	if (!host->ncfg) {
710		dev_err(&pdev->dev,
711			"Missing or bad NAND config from device tree\n");
712		return -ENOENT;
713	}
714
715	/* Start with WP disabled, if available */
716	host->wp_gpio = gpiod_get_optional(&pdev->dev, NULL, GPIOD_OUT_LOW);
717	res = PTR_ERR_OR_ZERO(host->wp_gpio);
718	if (res) {
719		if (res != -EPROBE_DEFER)
720			dev_err(&pdev->dev, "WP GPIO is not available: %d\n",
721				res);
722		return res;
723	}
724
725	gpiod_set_consumer_name(host->wp_gpio, "NAND WP");
726
727	host->pdata = dev_get_platdata(&pdev->dev);
728
729	/* link the private data structures */
730	nand_set_controller_data(nand_chip, host);
731	nand_set_flash_node(nand_chip, pdev->dev.of_node);
732	mtd->dev.parent = &pdev->dev;
733
734	/* Get NAND clock */
735	host->clk = clk_get(&pdev->dev, NULL);
736	if (IS_ERR(host->clk)) {
737		dev_err(&pdev->dev, "Clock initialization failure\n");
738		res = -ENOENT;
739		goto free_gpio;
740	}
741	res = clk_prepare_enable(host->clk);
742	if (res)
743		goto put_clk;
744
745	nand_chip->legacy.cmd_ctrl = lpc32xx_nand_cmd_ctrl;
746	nand_chip->legacy.dev_ready = lpc32xx_nand_device_ready;
747	nand_chip->legacy.chip_delay = 25; /* us */
748	nand_chip->legacy.IO_ADDR_R = MLC_DATA(host->io_base);
749	nand_chip->legacy.IO_ADDR_W = MLC_DATA(host->io_base);
750
751	/* Init NAND controller */
752	lpc32xx_nand_setup(host);
753
754	platform_set_drvdata(pdev, host);
755
756	/* Initialize function pointers */
757	nand_chip->legacy.waitfunc = lpc32xx_waitfunc;
758
759	nand_chip->options = NAND_NO_SUBPAGE_WRITE;
760	nand_chip->bbt_options = NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB;
761	nand_chip->bbt_td = &lpc32xx_nand_bbt;
762	nand_chip->bbt_md = &lpc32xx_nand_bbt_mirror;
763
764	if (use_dma) {
765		res = lpc32xx_dma_setup(host);
766		if (res) {
767			res = -EIO;
768			goto unprepare_clk;
769		}
770	}
771
772	/* initially clear interrupt status */
773	readb(MLC_IRQ_SR(host->io_base));
774
775	init_completion(&host->comp_nand);
776	init_completion(&host->comp_controller);
777
778	host->irq = platform_get_irq(pdev, 0);
779	if (host->irq < 0) {
780		res = -EINVAL;
781		goto release_dma_chan;
782	}
783
784	if (request_irq(host->irq, &lpc3xxx_nand_irq,
785			IRQF_TRIGGER_HIGH, DRV_NAME, host)) {
786		dev_err(&pdev->dev, "Error requesting NAND IRQ\n");
787		res = -ENXIO;
788		goto release_dma_chan;
789	}
790
791	/*
792	 * Scan to find existence of the device and get the type of NAND device:
793	 * SMALL block or LARGE block.
794	 */
795	nand_chip->legacy.dummy_controller.ops = &lpc32xx_nand_controller_ops;
796	res = nand_scan(nand_chip, 1);
797	if (res)
798		goto free_irq;
799
800	mtd->name = DRV_NAME;
801
802	res = mtd_device_register(mtd, host->ncfg->parts,
803				  host->ncfg->num_parts);
804	if (res)
805		goto cleanup_nand;
806
807	return 0;
808
809cleanup_nand:
810	nand_cleanup(nand_chip);
811free_irq:
812	free_irq(host->irq, host);
813release_dma_chan:
814	if (use_dma)
815		dma_release_channel(host->dma_chan);
816unprepare_clk:
817	clk_disable_unprepare(host->clk);
818put_clk:
819	clk_put(host->clk);
820free_gpio:
821	lpc32xx_wp_enable(host);
822	gpiod_put(host->wp_gpio);
823
824	return res;
825}
826
827/*
828 * Remove NAND device
829 */
830static void lpc32xx_nand_remove(struct platform_device *pdev)
831{
832	struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
833	struct nand_chip *chip = &host->nand_chip;
834	int ret;
835
836	ret = mtd_device_unregister(nand_to_mtd(chip));
837	WARN_ON(ret);
838	nand_cleanup(chip);
839
840	free_irq(host->irq, host);
841	if (use_dma)
842		dma_release_channel(host->dma_chan);
843
844	clk_disable_unprepare(host->clk);
845	clk_put(host->clk);
846
847	lpc32xx_wp_enable(host);
848	gpiod_put(host->wp_gpio);
849}
850
851static int lpc32xx_nand_resume(struct platform_device *pdev)
852{
853	struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
854	int ret;
855
856	/* Re-enable NAND clock */
857	ret = clk_prepare_enable(host->clk);
858	if (ret)
859		return ret;
860
861	/* Fresh init of NAND controller */
862	lpc32xx_nand_setup(host);
863
864	/* Disable write protect */
865	lpc32xx_wp_disable(host);
866
867	return 0;
868}
869
870static int lpc32xx_nand_suspend(struct platform_device *pdev, pm_message_t pm)
871{
872	struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
873
874	/* Enable write protect for safety */
875	lpc32xx_wp_enable(host);
876
877	/* Disable clock */
878	clk_disable_unprepare(host->clk);
879	return 0;
880}
881
882static const struct of_device_id lpc32xx_nand_match[] = {
883	{ .compatible = "nxp,lpc3220-mlc" },
884	{ /* sentinel */ },
885};
886MODULE_DEVICE_TABLE(of, lpc32xx_nand_match);
887
888static struct platform_driver lpc32xx_nand_driver = {
889	.probe		= lpc32xx_nand_probe,
890	.remove_new	= lpc32xx_nand_remove,
891	.resume		= pm_ptr(lpc32xx_nand_resume),
892	.suspend	= pm_ptr(lpc32xx_nand_suspend),
893	.driver		= {
894		.name	= DRV_NAME,
895		.of_match_table = lpc32xx_nand_match,
896	},
897};
898
899module_platform_driver(lpc32xx_nand_driver);
900
901MODULE_LICENSE("GPL");
902MODULE_AUTHOR("Roland Stigge <stigge@antcom.de>");
903MODULE_DESCRIPTION("NAND driver for the NXP LPC32XX MLC controller");
904