1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Driver for One Laptop Per Child ‘CAFÉ’ controller, aka Marvell 88ALP01
4 *
5 * The data sheet for this device can be found at:
6 *    http://wiki.laptop.org/go/Datasheets
7 *
8 * Copyright © 2006 Red Hat, Inc.
9 * Copyright © 2006 David Woodhouse <dwmw2@infradead.org>
10 */
11
12#define DEBUG
13
14#include <linux/device.h>
15#undef DEBUG
16#include <linux/mtd/mtd.h>
17#include <linux/mtd/rawnand.h>
18#include <linux/mtd/partitions.h>
19#include <linux/rslib.h>
20#include <linux/pci.h>
21#include <linux/delay.h>
22#include <linux/interrupt.h>
23#include <linux/dma-mapping.h>
24#include <linux/slab.h>
25#include <linux/module.h>
26#include <asm/io.h>
27
28#define CAFE_NAND_CTRL1		0x00
29#define CAFE_NAND_CTRL2		0x04
30#define CAFE_NAND_CTRL3		0x08
31#define CAFE_NAND_STATUS	0x0c
32#define CAFE_NAND_IRQ		0x10
33#define CAFE_NAND_IRQ_MASK	0x14
34#define CAFE_NAND_DATA_LEN	0x18
35#define CAFE_NAND_ADDR1		0x1c
36#define CAFE_NAND_ADDR2		0x20
37#define CAFE_NAND_TIMING1	0x24
38#define CAFE_NAND_TIMING2	0x28
39#define CAFE_NAND_TIMING3	0x2c
40#define CAFE_NAND_NONMEM	0x30
41#define CAFE_NAND_ECC_RESULT	0x3C
42#define CAFE_NAND_DMA_CTRL	0x40
43#define CAFE_NAND_DMA_ADDR0	0x44
44#define CAFE_NAND_DMA_ADDR1	0x48
45#define CAFE_NAND_ECC_SYN01	0x50
46#define CAFE_NAND_ECC_SYN23	0x54
47#define CAFE_NAND_ECC_SYN45	0x58
48#define CAFE_NAND_ECC_SYN67	0x5c
49#define CAFE_NAND_READ_DATA	0x1000
50#define CAFE_NAND_WRITE_DATA	0x2000
51
52#define CAFE_GLOBAL_CTRL	0x3004
53#define CAFE_GLOBAL_IRQ		0x3008
54#define CAFE_GLOBAL_IRQ_MASK	0x300c
55#define CAFE_NAND_RESET		0x3034
56
57/* Missing from the datasheet: bit 19 of CTRL1 sets CE0 vs. CE1 */
58#define CTRL1_CHIPSELECT	(1<<19)
59
60struct cafe_priv {
61	struct nand_chip nand;
62	struct pci_dev *pdev;
63	void __iomem *mmio;
64	struct rs_control *rs;
65	uint32_t ctl1;
66	uint32_t ctl2;
67	int datalen;
68	int nr_data;
69	int data_pos;
70	int page_addr;
71	bool usedma;
72	dma_addr_t dmaaddr;
73	unsigned char *dmabuf;
74};
75
76static int usedma = 1;
77module_param(usedma, int, 0644);
78
79static int skipbbt = 0;
80module_param(skipbbt, int, 0644);
81
82static int debug = 0;
83module_param(debug, int, 0644);
84
85static int regdebug = 0;
86module_param(regdebug, int, 0644);
87
88static int checkecc = 1;
89module_param(checkecc, int, 0644);
90
91static unsigned int numtimings;
92static int timing[3];
93module_param_array(timing, int, &numtimings, 0644);
94
95static const char *part_probes[] = { "cmdlinepart", "RedBoot", NULL };
96
97/* Hrm. Why isn't this already conditional on something in the struct device? */
98#define cafe_dev_dbg(dev, args...) do { if (debug) dev_dbg(dev, ##args); } while(0)
99
100/* Make it easier to switch to PIO if we need to */
101#define cafe_readl(cafe, addr)			readl((cafe)->mmio + CAFE_##addr)
102#define cafe_writel(cafe, datum, addr)		writel(datum, (cafe)->mmio + CAFE_##addr)
103
104static int cafe_device_ready(struct nand_chip *chip)
105{
106	struct cafe_priv *cafe = nand_get_controller_data(chip);
107	int result = !!(cafe_readl(cafe, NAND_STATUS) & 0x40000000);
108	uint32_t irqs = cafe_readl(cafe, NAND_IRQ);
109
110	cafe_writel(cafe, irqs, NAND_IRQ);
111
112	cafe_dev_dbg(&cafe->pdev->dev, "NAND device is%s ready, IRQ %x (%x) (%x,%x)\n",
113		result?"":" not", irqs, cafe_readl(cafe, NAND_IRQ),
114		cafe_readl(cafe, GLOBAL_IRQ), cafe_readl(cafe, GLOBAL_IRQ_MASK));
115
116	return result;
117}
118
119
120static void cafe_write_buf(struct nand_chip *chip, const uint8_t *buf, int len)
121{
122	struct cafe_priv *cafe = nand_get_controller_data(chip);
123
124	if (cafe->usedma)
125		memcpy(cafe->dmabuf + cafe->datalen, buf, len);
126	else
127		memcpy_toio(cafe->mmio + CAFE_NAND_WRITE_DATA + cafe->datalen, buf, len);
128
129	cafe->datalen += len;
130
131	cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes to write buffer. datalen 0x%x\n",
132		len, cafe->datalen);
133}
134
135static void cafe_read_buf(struct nand_chip *chip, uint8_t *buf, int len)
136{
137	struct cafe_priv *cafe = nand_get_controller_data(chip);
138
139	if (cafe->usedma)
140		memcpy(buf, cafe->dmabuf + cafe->datalen, len);
141	else
142		memcpy_fromio(buf, cafe->mmio + CAFE_NAND_READ_DATA + cafe->datalen, len);
143
144	cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes from position 0x%x in read buffer.\n",
145		  len, cafe->datalen);
146	cafe->datalen += len;
147}
148
149static uint8_t cafe_read_byte(struct nand_chip *chip)
150{
151	struct cafe_priv *cafe = nand_get_controller_data(chip);
152	uint8_t d;
153
154	cafe_read_buf(chip, &d, 1);
155	cafe_dev_dbg(&cafe->pdev->dev, "Read %02x\n", d);
156
157	return d;
158}
159
160static void cafe_nand_cmdfunc(struct nand_chip *chip, unsigned command,
161			      int column, int page_addr)
162{
163	struct mtd_info *mtd = nand_to_mtd(chip);
164	struct cafe_priv *cafe = nand_get_controller_data(chip);
165	int adrbytes = 0;
166	uint32_t ctl1;
167	uint32_t doneint = 0x80000000;
168
169	cafe_dev_dbg(&cafe->pdev->dev, "cmdfunc %02x, 0x%x, 0x%x\n",
170		command, column, page_addr);
171
172	if (command == NAND_CMD_ERASE2 || command == NAND_CMD_PAGEPROG) {
173		/* Second half of a command we already calculated */
174		cafe_writel(cafe, cafe->ctl2 | 0x100 | command, NAND_CTRL2);
175		ctl1 = cafe->ctl1;
176		cafe->ctl2 &= ~(1<<30);
177		cafe_dev_dbg(&cafe->pdev->dev, "Continue command, ctl1 %08x, #data %d\n",
178			  cafe->ctl1, cafe->nr_data);
179		goto do_command;
180	}
181	/* Reset ECC engine */
182	cafe_writel(cafe, 0, NAND_CTRL2);
183
184	/* Emulate NAND_CMD_READOOB on large-page chips */
185	if (mtd->writesize > 512 &&
186	    command == NAND_CMD_READOOB) {
187		column += mtd->writesize;
188		command = NAND_CMD_READ0;
189	}
190
191	/* FIXME: Do we need to send read command before sending data
192	   for small-page chips, to position the buffer correctly? */
193
194	if (column != -1) {
195		cafe_writel(cafe, column, NAND_ADDR1);
196		adrbytes = 2;
197		if (page_addr != -1)
198			goto write_adr2;
199	} else if (page_addr != -1) {
200		cafe_writel(cafe, page_addr & 0xffff, NAND_ADDR1);
201		page_addr >>= 16;
202	write_adr2:
203		cafe_writel(cafe, page_addr, NAND_ADDR2);
204		adrbytes += 2;
205		if (mtd->size > mtd->writesize << 16)
206			adrbytes++;
207	}
208
209	cafe->data_pos = cafe->datalen = 0;
210
211	/* Set command valid bit, mask in the chip select bit  */
212	ctl1 = 0x80000000 | command | (cafe->ctl1 & CTRL1_CHIPSELECT);
213
214	/* Set RD or WR bits as appropriate */
215	if (command == NAND_CMD_READID || command == NAND_CMD_STATUS) {
216		ctl1 |= (1<<26); /* rd */
217		/* Always 5 bytes, for now */
218		cafe->datalen = 4;
219		/* And one address cycle -- even for STATUS, since the controller doesn't work without */
220		adrbytes = 1;
221	} else if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 ||
222		   command == NAND_CMD_READOOB || command == NAND_CMD_RNDOUT) {
223		ctl1 |= 1<<26; /* rd */
224		/* For now, assume just read to end of page */
225		cafe->datalen = mtd->writesize + mtd->oobsize - column;
226	} else if (command == NAND_CMD_SEQIN)
227		ctl1 |= 1<<25; /* wr */
228
229	/* Set number of address bytes */
230	if (adrbytes)
231		ctl1 |= ((adrbytes-1)|8) << 27;
232
233	if (command == NAND_CMD_SEQIN || command == NAND_CMD_ERASE1) {
234		/* Ignore the first command of a pair; the hardware
235		   deals with them both at once, later */
236		cafe->ctl1 = ctl1;
237		cafe_dev_dbg(&cafe->pdev->dev, "Setup for delayed command, ctl1 %08x, dlen %x\n",
238			  cafe->ctl1, cafe->datalen);
239		return;
240	}
241	/* RNDOUT and READ0 commands need a following byte */
242	if (command == NAND_CMD_RNDOUT)
243		cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_RNDOUTSTART, NAND_CTRL2);
244	else if (command == NAND_CMD_READ0 && mtd->writesize > 512)
245		cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_READSTART, NAND_CTRL2);
246
247 do_command:
248	cafe_dev_dbg(&cafe->pdev->dev, "dlen %x, ctl1 %x, ctl2 %x\n",
249		cafe->datalen, ctl1, cafe_readl(cafe, NAND_CTRL2));
250
251	/* NB: The datasheet lies -- we really should be subtracting 1 here */
252	cafe_writel(cafe, cafe->datalen, NAND_DATA_LEN);
253	cafe_writel(cafe, 0x90000000, NAND_IRQ);
254	if (cafe->usedma && (ctl1 & (3<<25))) {
255		uint32_t dmactl = 0xc0000000 + cafe->datalen;
256		/* If WR or RD bits set, set up DMA */
257		if (ctl1 & (1<<26)) {
258			/* It's a read */
259			dmactl |= (1<<29);
260			/* ... so it's done when the DMA is done, not just
261			   the command. */
262			doneint = 0x10000000;
263		}
264		cafe_writel(cafe, dmactl, NAND_DMA_CTRL);
265	}
266	cafe->datalen = 0;
267
268	if (unlikely(regdebug)) {
269		int i;
270		printk("About to write command %08x to register 0\n", ctl1);
271		for (i=4; i< 0x5c; i+=4)
272			printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
273	}
274
275	cafe_writel(cafe, ctl1, NAND_CTRL1);
276	/* Apply this short delay always to ensure that we do wait tWB in
277	 * any case on any machine. */
278	ndelay(100);
279
280	if (1) {
281		int c;
282		uint32_t irqs;
283
284		for (c = 500000; c != 0; c--) {
285			irqs = cafe_readl(cafe, NAND_IRQ);
286			if (irqs & doneint)
287				break;
288			udelay(1);
289			if (!(c % 100000))
290				cafe_dev_dbg(&cafe->pdev->dev, "Wait for ready, IRQ %x\n", irqs);
291			cpu_relax();
292		}
293		cafe_writel(cafe, doneint, NAND_IRQ);
294		cafe_dev_dbg(&cafe->pdev->dev, "Command %x completed after %d usec, irqs %x (%x)\n",
295			     command, 500000-c, irqs, cafe_readl(cafe, NAND_IRQ));
296	}
297
298	WARN_ON(cafe->ctl2 & (1<<30));
299
300	switch (command) {
301
302	case NAND_CMD_CACHEDPROG:
303	case NAND_CMD_PAGEPROG:
304	case NAND_CMD_ERASE1:
305	case NAND_CMD_ERASE2:
306	case NAND_CMD_SEQIN:
307	case NAND_CMD_RNDIN:
308	case NAND_CMD_STATUS:
309	case NAND_CMD_RNDOUT:
310		cafe_writel(cafe, cafe->ctl2, NAND_CTRL2);
311		return;
312	}
313	nand_wait_ready(chip);
314	cafe_writel(cafe, cafe->ctl2, NAND_CTRL2);
315}
316
317static void cafe_select_chip(struct nand_chip *chip, int chipnr)
318{
319	struct cafe_priv *cafe = nand_get_controller_data(chip);
320
321	cafe_dev_dbg(&cafe->pdev->dev, "select_chip %d\n", chipnr);
322
323	/* Mask the appropriate bit into the stored value of ctl1
324	   which will be used by cafe_nand_cmdfunc() */
325	if (chipnr)
326		cafe->ctl1 |= CTRL1_CHIPSELECT;
327	else
328		cafe->ctl1 &= ~CTRL1_CHIPSELECT;
329}
330
331static irqreturn_t cafe_nand_interrupt(int irq, void *id)
332{
333	struct mtd_info *mtd = id;
334	struct nand_chip *chip = mtd_to_nand(mtd);
335	struct cafe_priv *cafe = nand_get_controller_data(chip);
336	uint32_t irqs = cafe_readl(cafe, NAND_IRQ);
337	cafe_writel(cafe, irqs & ~0x90000000, NAND_IRQ);
338	if (!irqs)
339		return IRQ_NONE;
340
341	cafe_dev_dbg(&cafe->pdev->dev, "irq, bits %x (%x)\n", irqs, cafe_readl(cafe, NAND_IRQ));
342	return IRQ_HANDLED;
343}
344
345static int cafe_nand_write_oob(struct nand_chip *chip, int page)
346{
347	struct mtd_info *mtd = nand_to_mtd(chip);
348
349	return nand_prog_page_op(chip, page, mtd->writesize, chip->oob_poi,
350				 mtd->oobsize);
351}
352
353/* Don't use -- use nand_read_oob_std for now */
354static int cafe_nand_read_oob(struct nand_chip *chip, int page)
355{
356	struct mtd_info *mtd = nand_to_mtd(chip);
357
358	return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
359}
360/**
361 * cafe_nand_read_page - [REPLACEABLE] hardware ecc syndrome based page read
362 * @chip:	nand chip info structure
363 * @buf:	buffer to store read data
364 * @oob_required:	caller expects OOB data read to chip->oob_poi
365 * @page:	page number to read
366 *
367 * The hw generator calculates the error syndrome automatically. Therefore
368 * we need a special oob layout and handling.
369 */
370static int cafe_nand_read_page(struct nand_chip *chip, uint8_t *buf,
371			       int oob_required, int page)
372{
373	struct mtd_info *mtd = nand_to_mtd(chip);
374	struct cafe_priv *cafe = nand_get_controller_data(chip);
375	unsigned int max_bitflips = 0;
376
377	cafe_dev_dbg(&cafe->pdev->dev, "ECC result %08x SYN1,2 %08x\n",
378		     cafe_readl(cafe, NAND_ECC_RESULT),
379		     cafe_readl(cafe, NAND_ECC_SYN01));
380
381	nand_read_page_op(chip, page, 0, buf, mtd->writesize);
382	chip->legacy.read_buf(chip, chip->oob_poi, mtd->oobsize);
383
384	if (checkecc && cafe_readl(cafe, NAND_ECC_RESULT) & (1<<18)) {
385		unsigned short syn[8], pat[4];
386		int pos[4];
387		u8 *oob = chip->oob_poi;
388		int i, n;
389
390		for (i=0; i<8; i+=2) {
391			uint32_t tmp = cafe_readl(cafe, NAND_ECC_SYN01 + (i*2));
392
393			syn[i] = cafe->rs->codec->index_of[tmp & 0xfff];
394			syn[i+1] = cafe->rs->codec->index_of[(tmp >> 16) & 0xfff];
395		}
396
397		n = decode_rs16(cafe->rs, NULL, NULL, 1367, syn, 0, pos, 0,
398				pat);
399
400		for (i = 0; i < n; i++) {
401			int p = pos[i];
402
403			/* The 12-bit symbols are mapped to bytes here */
404
405			if (p > 1374) {
406				/* out of range */
407				n = -1374;
408			} else if (p == 0) {
409				/* high four bits do not correspond to data */
410				if (pat[i] > 0xff)
411					n = -2048;
412				else
413					buf[0] ^= pat[i];
414			} else if (p == 1365) {
415				buf[2047] ^= pat[i] >> 4;
416				oob[0] ^= pat[i] << 4;
417			} else if (p > 1365) {
418				if ((p & 1) == 1) {
419					oob[3*p/2 - 2048] ^= pat[i] >> 4;
420					oob[3*p/2 - 2047] ^= pat[i] << 4;
421				} else {
422					oob[3*p/2 - 2049] ^= pat[i] >> 8;
423					oob[3*p/2 - 2048] ^= pat[i];
424				}
425			} else if ((p & 1) == 1) {
426				buf[3*p/2] ^= pat[i] >> 4;
427				buf[3*p/2 + 1] ^= pat[i] << 4;
428			} else {
429				buf[3*p/2 - 1] ^= pat[i] >> 8;
430				buf[3*p/2] ^= pat[i];
431			}
432		}
433
434		if (n < 0) {
435			dev_dbg(&cafe->pdev->dev, "Failed to correct ECC at %08x\n",
436				cafe_readl(cafe, NAND_ADDR2) * 2048);
437			for (i = 0; i < 0x5c; i += 4)
438				printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
439			mtd->ecc_stats.failed++;
440		} else {
441			dev_dbg(&cafe->pdev->dev, "Corrected %d symbol errors\n", n);
442			mtd->ecc_stats.corrected += n;
443			max_bitflips = max_t(unsigned int, max_bitflips, n);
444		}
445	}
446
447	return max_bitflips;
448}
449
450static int cafe_ooblayout_ecc(struct mtd_info *mtd, int section,
451			      struct mtd_oob_region *oobregion)
452{
453	struct nand_chip *chip = mtd_to_nand(mtd);
454
455	if (section)
456		return -ERANGE;
457
458	oobregion->offset = 0;
459	oobregion->length = chip->ecc.total;
460
461	return 0;
462}
463
464static int cafe_ooblayout_free(struct mtd_info *mtd, int section,
465			       struct mtd_oob_region *oobregion)
466{
467	struct nand_chip *chip = mtd_to_nand(mtd);
468
469	if (section)
470		return -ERANGE;
471
472	oobregion->offset = chip->ecc.total;
473	oobregion->length = mtd->oobsize - chip->ecc.total;
474
475	return 0;
476}
477
478static const struct mtd_ooblayout_ops cafe_ooblayout_ops = {
479	.ecc = cafe_ooblayout_ecc,
480	.free = cafe_ooblayout_free,
481};
482
483/* Ick. The BBT code really ought to be able to work this bit out
484   for itself from the above, at least for the 2KiB case */
485static uint8_t cafe_bbt_pattern_2048[] = { 'B', 'b', 't', '0' };
486static uint8_t cafe_mirror_pattern_2048[] = { '1', 't', 'b', 'B' };
487
488static uint8_t cafe_bbt_pattern_512[] = { 0xBB };
489static uint8_t cafe_mirror_pattern_512[] = { 0xBC };
490
491
492static struct nand_bbt_descr cafe_bbt_main_descr_2048 = {
493	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
494		| NAND_BBT_2BIT | NAND_BBT_VERSION,
495	.offs =	14,
496	.len = 4,
497	.veroffs = 18,
498	.maxblocks = 4,
499	.pattern = cafe_bbt_pattern_2048
500};
501
502static struct nand_bbt_descr cafe_bbt_mirror_descr_2048 = {
503	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
504		| NAND_BBT_2BIT | NAND_BBT_VERSION,
505	.offs =	14,
506	.len = 4,
507	.veroffs = 18,
508	.maxblocks = 4,
509	.pattern = cafe_mirror_pattern_2048
510};
511
512static struct nand_bbt_descr cafe_bbt_main_descr_512 = {
513	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
514		| NAND_BBT_2BIT | NAND_BBT_VERSION,
515	.offs =	14,
516	.len = 1,
517	.veroffs = 15,
518	.maxblocks = 4,
519	.pattern = cafe_bbt_pattern_512
520};
521
522static struct nand_bbt_descr cafe_bbt_mirror_descr_512 = {
523	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
524		| NAND_BBT_2BIT | NAND_BBT_VERSION,
525	.offs =	14,
526	.len = 1,
527	.veroffs = 15,
528	.maxblocks = 4,
529	.pattern = cafe_mirror_pattern_512
530};
531
532
533static int cafe_nand_write_page_lowlevel(struct nand_chip *chip,
534					 const uint8_t *buf, int oob_required,
535					 int page)
536{
537	struct mtd_info *mtd = nand_to_mtd(chip);
538	struct cafe_priv *cafe = nand_get_controller_data(chip);
539
540	nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
541	chip->legacy.write_buf(chip, chip->oob_poi, mtd->oobsize);
542
543	/* Set up ECC autogeneration */
544	cafe->ctl2 |= (1<<30);
545
546	return nand_prog_page_end_op(chip);
547}
548
549/* F_2[X]/(X**6+X+1)  */
550static unsigned short gf64_mul(u8 a, u8 b)
551{
552	u8 c;
553	unsigned int i;
554
555	c = 0;
556	for (i = 0; i < 6; i++) {
557		if (a & 1)
558			c ^= b;
559		a >>= 1;
560		b <<= 1;
561		if ((b & 0x40) != 0)
562			b ^= 0x43;
563	}
564
565	return c;
566}
567
568/* F_64[X]/(X**2+X+A**-1) with A the generator of F_64[X]  */
569static u16 gf4096_mul(u16 a, u16 b)
570{
571	u8 ah, al, bh, bl, ch, cl;
572
573	ah = a >> 6;
574	al = a & 0x3f;
575	bh = b >> 6;
576	bl = b & 0x3f;
577
578	ch = gf64_mul(ah ^ al, bh ^ bl) ^ gf64_mul(al, bl);
579	cl = gf64_mul(gf64_mul(ah, bh), 0x21) ^ gf64_mul(al, bl);
580
581	return (ch << 6) ^ cl;
582}
583
584static int cafe_mul(int x)
585{
586	if (x == 0)
587		return 1;
588	return gf4096_mul(x, 0xe01);
589}
590
591static int cafe_nand_attach_chip(struct nand_chip *chip)
592{
593	struct mtd_info *mtd = nand_to_mtd(chip);
594	struct cafe_priv *cafe = nand_get_controller_data(chip);
595	int err = 0;
596
597	cafe->dmabuf = dma_alloc_coherent(&cafe->pdev->dev, 2112,
598					  &cafe->dmaaddr, GFP_KERNEL);
599	if (!cafe->dmabuf)
600		return -ENOMEM;
601
602	/* Set up DMA address */
603	cafe_writel(cafe, lower_32_bits(cafe->dmaaddr), NAND_DMA_ADDR0);
604	cafe_writel(cafe, upper_32_bits(cafe->dmaaddr), NAND_DMA_ADDR1);
605
606	cafe_dev_dbg(&cafe->pdev->dev, "Set DMA address to %x (virt %p)\n",
607		     cafe_readl(cafe, NAND_DMA_ADDR0), cafe->dmabuf);
608
609	/* Restore the DMA flag */
610	cafe->usedma = usedma;
611
612	cafe->ctl2 = BIT(27); /* Reed-Solomon ECC */
613	if (mtd->writesize == 2048)
614		cafe->ctl2 |= BIT(29); /* 2KiB page size */
615
616	/* Set up ECC according to the type of chip we found */
617	mtd_set_ooblayout(mtd, &cafe_ooblayout_ops);
618	if (mtd->writesize == 2048) {
619		cafe->nand.bbt_td = &cafe_bbt_main_descr_2048;
620		cafe->nand.bbt_md = &cafe_bbt_mirror_descr_2048;
621	} else if (mtd->writesize == 512) {
622		cafe->nand.bbt_td = &cafe_bbt_main_descr_512;
623		cafe->nand.bbt_md = &cafe_bbt_mirror_descr_512;
624	} else {
625		dev_warn(&cafe->pdev->dev,
626			 "Unexpected NAND flash writesize %d. Aborting\n",
627			 mtd->writesize);
628		err = -ENOTSUPP;
629		goto out_free_dma;
630	}
631
632	cafe->nand.ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
633	cafe->nand.ecc.placement = NAND_ECC_PLACEMENT_INTERLEAVED;
634	cafe->nand.ecc.size = mtd->writesize;
635	cafe->nand.ecc.bytes = 14;
636	cafe->nand.ecc.strength = 4;
637	cafe->nand.ecc.write_page = cafe_nand_write_page_lowlevel;
638	cafe->nand.ecc.write_oob = cafe_nand_write_oob;
639	cafe->nand.ecc.read_page = cafe_nand_read_page;
640	cafe->nand.ecc.read_oob = cafe_nand_read_oob;
641
642	return 0;
643
644 out_free_dma:
645	dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
646
647	return err;
648}
649
650static void cafe_nand_detach_chip(struct nand_chip *chip)
651{
652	struct cafe_priv *cafe = nand_get_controller_data(chip);
653
654	dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
655}
656
657static const struct nand_controller_ops cafe_nand_controller_ops = {
658	.attach_chip = cafe_nand_attach_chip,
659	.detach_chip = cafe_nand_detach_chip,
660};
661
662static int cafe_nand_probe(struct pci_dev *pdev,
663				     const struct pci_device_id *ent)
664{
665	struct mtd_info *mtd;
666	struct cafe_priv *cafe;
667	uint32_t ctrl;
668	int err = 0;
669
670	/* Very old versions shared the same PCI ident for all three
671	   functions on the chip. Verify the class too... */
672	if ((pdev->class >> 8) != PCI_CLASS_MEMORY_FLASH)
673		return -ENODEV;
674
675	err = pci_enable_device(pdev);
676	if (err)
677		return err;
678
679	pci_set_master(pdev);
680
681	cafe = kzalloc(sizeof(*cafe), GFP_KERNEL);
682	if (!cafe) {
683		err = -ENOMEM;
684		goto out_disable_device;
685	}
686
687	mtd = nand_to_mtd(&cafe->nand);
688	mtd->dev.parent = &pdev->dev;
689	nand_set_controller_data(&cafe->nand, cafe);
690
691	cafe->pdev = pdev;
692	cafe->mmio = pci_iomap(pdev, 0, 0);
693	if (!cafe->mmio) {
694		dev_warn(&pdev->dev, "failed to iomap\n");
695		err = -ENOMEM;
696		goto out_free_mtd;
697	}
698
699	cafe->rs = init_rs_non_canonical(12, &cafe_mul, 0, 1, 8);
700	if (!cafe->rs) {
701		err = -ENOMEM;
702		goto out_ior;
703	}
704
705	cafe->nand.legacy.cmdfunc = cafe_nand_cmdfunc;
706	cafe->nand.legacy.dev_ready = cafe_device_ready;
707	cafe->nand.legacy.read_byte = cafe_read_byte;
708	cafe->nand.legacy.read_buf = cafe_read_buf;
709	cafe->nand.legacy.write_buf = cafe_write_buf;
710	cafe->nand.legacy.select_chip = cafe_select_chip;
711	cafe->nand.legacy.set_features = nand_get_set_features_notsupp;
712	cafe->nand.legacy.get_features = nand_get_set_features_notsupp;
713
714	cafe->nand.legacy.chip_delay = 0;
715
716	/* Enable the following for a flash based bad block table */
717	cafe->nand.bbt_options = NAND_BBT_USE_FLASH;
718
719	if (skipbbt)
720		cafe->nand.options |= NAND_SKIP_BBTSCAN | NAND_NO_BBM_QUIRK;
721
722	if (numtimings && numtimings != 3) {
723		dev_warn(&cafe->pdev->dev, "%d timing register values ignored; precisely three are required\n", numtimings);
724	}
725
726	if (numtimings == 3) {
727		cafe_dev_dbg(&cafe->pdev->dev, "Using provided timings (%08x %08x %08x)\n",
728			     timing[0], timing[1], timing[2]);
729	} else {
730		timing[0] = cafe_readl(cafe, NAND_TIMING1);
731		timing[1] = cafe_readl(cafe, NAND_TIMING2);
732		timing[2] = cafe_readl(cafe, NAND_TIMING3);
733
734		if (timing[0] | timing[1] | timing[2]) {
735			cafe_dev_dbg(&cafe->pdev->dev, "Timing registers already set (%08x %08x %08x)\n",
736				     timing[0], timing[1], timing[2]);
737		} else {
738			dev_warn(&cafe->pdev->dev, "Timing registers unset; using most conservative defaults\n");
739			timing[0] = timing[1] = timing[2] = 0xffffffff;
740		}
741	}
742
743	/* Start off by resetting the NAND controller completely */
744	cafe_writel(cafe, 1, NAND_RESET);
745	cafe_writel(cafe, 0, NAND_RESET);
746
747	cafe_writel(cafe, timing[0], NAND_TIMING1);
748	cafe_writel(cafe, timing[1], NAND_TIMING2);
749	cafe_writel(cafe, timing[2], NAND_TIMING3);
750
751	cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK);
752	err = request_irq(pdev->irq, &cafe_nand_interrupt, IRQF_SHARED,
753			  "CAFE NAND", mtd);
754	if (err) {
755		dev_warn(&pdev->dev, "Could not register IRQ %d\n", pdev->irq);
756		goto out_free_rs;
757	}
758
759	/* Disable master reset, enable NAND clock */
760	ctrl = cafe_readl(cafe, GLOBAL_CTRL);
761	ctrl &= 0xffffeff0;
762	ctrl |= 0x00007000;
763	cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL);
764	cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL);
765	cafe_writel(cafe, 0, NAND_DMA_CTRL);
766
767	cafe_writel(cafe, 0x7006, GLOBAL_CTRL);
768	cafe_writel(cafe, 0x700a, GLOBAL_CTRL);
769
770	/* Enable NAND IRQ in global IRQ mask register */
771	cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK);
772	cafe_dev_dbg(&cafe->pdev->dev, "Control %x, IRQ mask %x\n",
773		cafe_readl(cafe, GLOBAL_CTRL),
774		cafe_readl(cafe, GLOBAL_IRQ_MASK));
775
776	/* Do not use the DMA during the NAND identification */
777	cafe->usedma = 0;
778
779	/* Scan to find existence of the device */
780	cafe->nand.legacy.dummy_controller.ops = &cafe_nand_controller_ops;
781	err = nand_scan(&cafe->nand, 2);
782	if (err)
783		goto out_irq;
784
785	pci_set_drvdata(pdev, mtd);
786
787	mtd->name = "cafe_nand";
788	err = mtd_device_parse_register(mtd, part_probes, NULL, NULL, 0);
789	if (err)
790		goto out_cleanup_nand;
791
792	goto out;
793
794 out_cleanup_nand:
795	nand_cleanup(&cafe->nand);
796 out_irq:
797	/* Disable NAND IRQ in global IRQ mask register */
798	cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK);
799	free_irq(pdev->irq, mtd);
800 out_free_rs:
801	free_rs(cafe->rs);
802 out_ior:
803	pci_iounmap(pdev, cafe->mmio);
804 out_free_mtd:
805	kfree(cafe);
806 out_disable_device:
807	pci_disable_device(pdev);
808 out:
809	return err;
810}
811
812static void cafe_nand_remove(struct pci_dev *pdev)
813{
814	struct mtd_info *mtd = pci_get_drvdata(pdev);
815	struct nand_chip *chip = mtd_to_nand(mtd);
816	struct cafe_priv *cafe = nand_get_controller_data(chip);
817	int ret;
818
819	/* Disable NAND IRQ in global IRQ mask register */
820	cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK);
821	free_irq(pdev->irq, mtd);
822	ret = mtd_device_unregister(mtd);
823	WARN_ON(ret);
824	nand_cleanup(chip);
825	free_rs(cafe->rs);
826	pci_iounmap(pdev, cafe->mmio);
827	dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
828	kfree(cafe);
829	pci_disable_device(pdev);
830}
831
832static const struct pci_device_id cafe_nand_tbl[] = {
833	{ PCI_VENDOR_ID_MARVELL, PCI_DEVICE_ID_MARVELL_88ALP01_NAND,
834	  PCI_ANY_ID, PCI_ANY_ID },
835	{ }
836};
837
838MODULE_DEVICE_TABLE(pci, cafe_nand_tbl);
839
840static int cafe_nand_resume(struct pci_dev *pdev)
841{
842	uint32_t ctrl;
843	struct mtd_info *mtd = pci_get_drvdata(pdev);
844	struct nand_chip *chip = mtd_to_nand(mtd);
845	struct cafe_priv *cafe = nand_get_controller_data(chip);
846
847       /* Start off by resetting the NAND controller completely */
848	cafe_writel(cafe, 1, NAND_RESET);
849	cafe_writel(cafe, 0, NAND_RESET);
850	cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK);
851
852	/* Restore timing configuration */
853	cafe_writel(cafe, timing[0], NAND_TIMING1);
854	cafe_writel(cafe, timing[1], NAND_TIMING2);
855	cafe_writel(cafe, timing[2], NAND_TIMING3);
856
857        /* Disable master reset, enable NAND clock */
858	ctrl = cafe_readl(cafe, GLOBAL_CTRL);
859	ctrl &= 0xffffeff0;
860	ctrl |= 0x00007000;
861	cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL);
862	cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL);
863	cafe_writel(cafe, 0, NAND_DMA_CTRL);
864	cafe_writel(cafe, 0x7006, GLOBAL_CTRL);
865	cafe_writel(cafe, 0x700a, GLOBAL_CTRL);
866
867	/* Set up DMA address */
868	cafe_writel(cafe, cafe->dmaaddr & 0xffffffff, NAND_DMA_ADDR0);
869	if (sizeof(cafe->dmaaddr) > 4)
870	/* Shift in two parts to shut the compiler up */
871		cafe_writel(cafe, (cafe->dmaaddr >> 16) >> 16, NAND_DMA_ADDR1);
872	else
873		cafe_writel(cafe, 0, NAND_DMA_ADDR1);
874
875	/* Enable NAND IRQ in global IRQ mask register */
876	cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK);
877	return 0;
878}
879
880static struct pci_driver cafe_nand_pci_driver = {
881	.name = "CAFÉ NAND",
882	.id_table = cafe_nand_tbl,
883	.probe = cafe_nand_probe,
884	.remove = cafe_nand_remove,
885	.resume = cafe_nand_resume,
886};
887
888module_pci_driver(cafe_nand_pci_driver);
889
890MODULE_LICENSE("GPL");
891MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
892MODULE_DESCRIPTION("NAND flash driver for OLPC CAFÉ chip");
893