1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Cadence NAND flash controller driver
4 *
5 * Copyright (C) 2019 Cadence
6 *
7 * Author: Piotr Sroka <piotrs@cadence.com>
8 */
9
10#include <linux/bitfield.h>
11#include <linux/clk.h>
12#include <linux/dma-mapping.h>
13#include <linux/dmaengine.h>
14#include <linux/interrupt.h>
15#include <linux/module.h>
16#include <linux/mtd/mtd.h>
17#include <linux/mtd/rawnand.h>
18#include <linux/of_device.h>
19#include <linux/iopoll.h>
20#include <linux/slab.h>
21
22/*
23 * HPNFC can work in 3 modes:
24 * -  PIO - can work in master or slave DMA
25 * -  CDMA - needs Master DMA for accessing command descriptors.
26 * -  Generic mode - can use only slave DMA.
27 * CDMA and PIO modes can be used to execute only base commands.
28 * Generic mode can be used to execute any command
29 * on NAND flash memory. Driver uses CDMA mode for
30 * block erasing, page reading, page programing.
31 * Generic mode is used for executing rest of commands.
32 */
33
34#define MAX_ADDRESS_CYC		6
35#define MAX_ERASE_ADDRESS_CYC	3
36#define MAX_DATA_SIZE		0xFFFC
37#define DMA_DATA_SIZE_ALIGN	8
38
39/* Register definition. */
40/*
41 * Command register 0.
42 * Writing data to this register will initiate a new transaction
43 * of the NF controller.
44 */
45#define CMD_REG0			0x0000
46/* Command type field mask. */
47#define		CMD_REG0_CT		GENMASK(31, 30)
48/* Command type CDMA. */
49#define		CMD_REG0_CT_CDMA	0uL
50/* Command type generic. */
51#define		CMD_REG0_CT_GEN		3uL
52/* Command thread number field mask. */
53#define		CMD_REG0_TN		GENMASK(27, 24)
54
55/* Command register 2. */
56#define CMD_REG2			0x0008
57/* Command register 3. */
58#define CMD_REG3			0x000C
59/* Pointer register to select which thread status will be selected. */
60#define CMD_STATUS_PTR			0x0010
61/* Command status register for selected thread. */
62#define CMD_STATUS			0x0014
63
64/* Interrupt status register. */
65#define INTR_STATUS			0x0110
66#define		INTR_STATUS_SDMA_ERR	BIT(22)
67#define		INTR_STATUS_SDMA_TRIGG	BIT(21)
68#define		INTR_STATUS_UNSUPP_CMD	BIT(19)
69#define		INTR_STATUS_DDMA_TERR	BIT(18)
70#define		INTR_STATUS_CDMA_TERR	BIT(17)
71#define		INTR_STATUS_CDMA_IDL	BIT(16)
72
73/* Interrupt enable register. */
74#define INTR_ENABLE				0x0114
75#define		INTR_ENABLE_INTR_EN		BIT(31)
76#define		INTR_ENABLE_SDMA_ERR_EN		BIT(22)
77#define		INTR_ENABLE_SDMA_TRIGG_EN	BIT(21)
78#define		INTR_ENABLE_UNSUPP_CMD_EN	BIT(19)
79#define		INTR_ENABLE_DDMA_TERR_EN	BIT(18)
80#define		INTR_ENABLE_CDMA_TERR_EN	BIT(17)
81#define		INTR_ENABLE_CDMA_IDLE_EN	BIT(16)
82
83/* Controller internal state. */
84#define CTRL_STATUS				0x0118
85#define		CTRL_STATUS_INIT_COMP		BIT(9)
86#define		CTRL_STATUS_CTRL_BUSY		BIT(8)
87
88/* Command Engine threads state. */
89#define TRD_STATUS				0x0120
90
91/* Command Engine interrupt thread error status. */
92#define TRD_ERR_INT_STATUS			0x0128
93/* Command Engine interrupt thread error enable. */
94#define TRD_ERR_INT_STATUS_EN			0x0130
95/* Command Engine interrupt thread complete status. */
96#define TRD_COMP_INT_STATUS			0x0138
97
98/*
99 * Transfer config 0 register.
100 * Configures data transfer parameters.
101 */
102#define TRAN_CFG_0				0x0400
103/* Offset value from the beginning of the page. */
104#define		TRAN_CFG_0_OFFSET		GENMASK(31, 16)
105/* Numbers of sectors to transfer within singlNF device's page. */
106#define		TRAN_CFG_0_SEC_CNT		GENMASK(7, 0)
107
108/*
109 * Transfer config 1 register.
110 * Configures data transfer parameters.
111 */
112#define TRAN_CFG_1				0x0404
113/* Size of last data sector. */
114#define		TRAN_CFG_1_LAST_SEC_SIZE	GENMASK(31, 16)
115/* Size of not-last data sector. */
116#define		TRAN_CFG_1_SECTOR_SIZE		GENMASK(15, 0)
117
118/* ECC engine configuration register 0. */
119#define ECC_CONFIG_0				0x0428
120/* Correction strength. */
121#define		ECC_CONFIG_0_CORR_STR		GENMASK(10, 8)
122/* Enable erased pages detection mechanism. */
123#define		ECC_CONFIG_0_ERASE_DET_EN	BIT(1)
124/* Enable controller ECC check bits generation and correction. */
125#define		ECC_CONFIG_0_ECC_EN		BIT(0)
126
127/* ECC engine configuration register 1. */
128#define ECC_CONFIG_1				0x042C
129
130/* Multiplane settings register. */
131#define MULTIPLANE_CFG				0x0434
132/* Cache operation settings. */
133#define CACHE_CFG				0x0438
134
135/* DMA settings register. */
136#define DMA_SETINGS				0x043C
137/* Enable SDMA error report on access unprepared slave DMA interface. */
138#define		DMA_SETINGS_SDMA_ERR_RSP	BIT(17)
139
140/* Transferred data block size for the slave DMA module. */
141#define SDMA_SIZE				0x0440
142
143/* Thread number associated with transferred data block
144 * for the slave DMA module.
145 */
146#define SDMA_TRD_NUM				0x0444
147/* Thread number mask. */
148#define		SDMA_TRD_NUM_SDMA_TRD		GENMASK(2, 0)
149
150#define CONTROL_DATA_CTRL			0x0494
151/* Thread number mask. */
152#define		CONTROL_DATA_CTRL_SIZE		GENMASK(15, 0)
153
154#define CTRL_VERSION				0x800
155#define		CTRL_VERSION_REV		GENMASK(7, 0)
156
157/* Available hardware features of the controller. */
158#define CTRL_FEATURES				0x804
159/* Support for NV-DDR2/3 work mode. */
160#define		CTRL_FEATURES_NVDDR_2_3		BIT(28)
161/* Support for NV-DDR work mode. */
162#define		CTRL_FEATURES_NVDDR		BIT(27)
163/* Support for asynchronous work mode. */
164#define		CTRL_FEATURES_ASYNC		BIT(26)
165/* Support for asynchronous work mode. */
166#define		CTRL_FEATURES_N_BANKS		GENMASK(25, 24)
167/* Slave and Master DMA data width. */
168#define		CTRL_FEATURES_DMA_DWITH64	BIT(21)
169/* Availability of Control Data feature.*/
170#define		CTRL_FEATURES_CONTROL_DATA	BIT(10)
171
172/* BCH Engine identification register 0 - correction strengths. */
173#define BCH_CFG_0				0x838
174#define		BCH_CFG_0_CORR_CAP_0		GENMASK(7, 0)
175#define		BCH_CFG_0_CORR_CAP_1		GENMASK(15, 8)
176#define		BCH_CFG_0_CORR_CAP_2		GENMASK(23, 16)
177#define		BCH_CFG_0_CORR_CAP_3		GENMASK(31, 24)
178
179/* BCH Engine identification register 1 - correction strengths. */
180#define BCH_CFG_1				0x83C
181#define		BCH_CFG_1_CORR_CAP_4		GENMASK(7, 0)
182#define		BCH_CFG_1_CORR_CAP_5		GENMASK(15, 8)
183#define		BCH_CFG_1_CORR_CAP_6		GENMASK(23, 16)
184#define		BCH_CFG_1_CORR_CAP_7		GENMASK(31, 24)
185
186/* BCH Engine identification register 2 - sector sizes. */
187#define BCH_CFG_2				0x840
188#define		BCH_CFG_2_SECT_0		GENMASK(15, 0)
189#define		BCH_CFG_2_SECT_1		GENMASK(31, 16)
190
191/* BCH Engine identification register 3. */
192#define BCH_CFG_3				0x844
193#define		BCH_CFG_3_METADATA_SIZE		GENMASK(23, 16)
194
195/* Ready/Busy# line status. */
196#define RBN_SETINGS				0x1004
197
198/* Common settings. */
199#define COMMON_SET				0x1008
200/* 16 bit device connected to the NAND Flash interface. */
201#define		COMMON_SET_DEVICE_16BIT		BIT(8)
202
203/* Skip_bytes registers. */
204#define SKIP_BYTES_CONF				0x100C
205#define		SKIP_BYTES_MARKER_VALUE		GENMASK(31, 16)
206#define		SKIP_BYTES_NUM_OF_BYTES		GENMASK(7, 0)
207
208#define SKIP_BYTES_OFFSET			0x1010
209#define		 SKIP_BYTES_OFFSET_VALUE	GENMASK(23, 0)
210
211/* Timings configuration. */
212#define ASYNC_TOGGLE_TIMINGS			0x101c
213#define		ASYNC_TOGGLE_TIMINGS_TRH	GENMASK(28, 24)
214#define		ASYNC_TOGGLE_TIMINGS_TRP	GENMASK(20, 16)
215#define		ASYNC_TOGGLE_TIMINGS_TWH	GENMASK(12, 8)
216#define		ASYNC_TOGGLE_TIMINGS_TWP	GENMASK(4, 0)
217
218#define	TIMINGS0				0x1024
219#define		TIMINGS0_TADL			GENMASK(31, 24)
220#define		TIMINGS0_TCCS			GENMASK(23, 16)
221#define		TIMINGS0_TWHR			GENMASK(15, 8)
222#define		TIMINGS0_TRHW			GENMASK(7, 0)
223
224#define	TIMINGS1				0x1028
225#define		TIMINGS1_TRHZ			GENMASK(31, 24)
226#define		TIMINGS1_TWB			GENMASK(23, 16)
227#define		TIMINGS1_TVDLY			GENMASK(7, 0)
228
229#define	TIMINGS2				0x102c
230#define		TIMINGS2_TFEAT			GENMASK(25, 16)
231#define		TIMINGS2_CS_HOLD_TIME		GENMASK(13, 8)
232#define		TIMINGS2_CS_SETUP_TIME		GENMASK(5, 0)
233
234/* Configuration of the resynchronization of slave DLL of PHY. */
235#define DLL_PHY_CTRL				0x1034
236#define		DLL_PHY_CTRL_DLL_RST_N		BIT(24)
237#define		DLL_PHY_CTRL_EXTENDED_WR_MODE	BIT(17)
238#define		DLL_PHY_CTRL_EXTENDED_RD_MODE	BIT(16)
239#define		DLL_PHY_CTRL_RS_HIGH_WAIT_CNT	GENMASK(11, 8)
240#define		DLL_PHY_CTRL_RS_IDLE_CNT	GENMASK(7, 0)
241
242/* Register controlling DQ related timing. */
243#define PHY_DQ_TIMING				0x2000
244/* Register controlling DSQ related timing.  */
245#define PHY_DQS_TIMING				0x2004
246#define		PHY_DQS_TIMING_DQS_SEL_OE_END	GENMASK(3, 0)
247#define		PHY_DQS_TIMING_PHONY_DQS_SEL	BIT(16)
248#define		PHY_DQS_TIMING_USE_PHONY_DQS	BIT(20)
249
250/* Register controlling the gate and loopback control related timing. */
251#define PHY_GATE_LPBK_CTRL			0x2008
252#define		PHY_GATE_LPBK_CTRL_RDS		GENMASK(24, 19)
253
254/* Register holds the control for the master DLL logic. */
255#define PHY_DLL_MASTER_CTRL			0x200C
256#define		PHY_DLL_MASTER_CTRL_BYPASS_MODE	BIT(23)
257
258/* Register holds the control for the slave DLL logic. */
259#define PHY_DLL_SLAVE_CTRL			0x2010
260
261/* This register handles the global control settings for the PHY. */
262#define PHY_CTRL				0x2080
263#define		PHY_CTRL_SDR_DQS		BIT(14)
264#define		PHY_CTRL_PHONY_DQS		GENMASK(9, 4)
265
266/*
267 * This register handles the global control settings
268 * for the termination selects for reads.
269 */
270#define PHY_TSEL				0x2084
271
272/* Generic command layout. */
273#define GCMD_LAY_CS			GENMASK_ULL(11, 8)
274/*
275 * This bit informs the minicotroller if it has to wait for tWB
276 * after sending the last CMD/ADDR/DATA in the sequence.
277 */
278#define GCMD_LAY_TWB			BIT_ULL(6)
279/* Type of generic instruction. */
280#define GCMD_LAY_INSTR			GENMASK_ULL(5, 0)
281
282/* Generic CMD sequence type. */
283#define		GCMD_LAY_INSTR_CMD	0
284/* Generic ADDR sequence type. */
285#define		GCMD_LAY_INSTR_ADDR	1
286/* Generic data transfer sequence type. */
287#define		GCMD_LAY_INSTR_DATA	2
288
289/* Input part of generic command type of input is command. */
290#define GCMD_LAY_INPUT_CMD		GENMASK_ULL(23, 16)
291
292/* Generic command address sequence - address fields. */
293#define GCMD_LAY_INPUT_ADDR		GENMASK_ULL(63, 16)
294/* Generic command address sequence - address size. */
295#define GCMD_LAY_INPUT_ADDR_SIZE	GENMASK_ULL(13, 11)
296
297/* Transfer direction field of generic command data sequence. */
298#define GCMD_DIR			BIT_ULL(11)
299/* Read transfer direction of generic command data sequence. */
300#define		GCMD_DIR_READ		0
301/* Write transfer direction of generic command data sequence. */
302#define		GCMD_DIR_WRITE		1
303
304/* ECC enabled flag of generic command data sequence - ECC enabled. */
305#define GCMD_ECC_EN			BIT_ULL(12)
306/* Generic command data sequence - sector size. */
307#define GCMD_SECT_SIZE			GENMASK_ULL(31, 16)
308/* Generic command data sequence - sector count. */
309#define GCMD_SECT_CNT			GENMASK_ULL(39, 32)
310/* Generic command data sequence - last sector size. */
311#define GCMD_LAST_SIZE			GENMASK_ULL(55, 40)
312
313/* CDMA descriptor fields. */
314/* Erase command type of CDMA descriptor. */
315#define CDMA_CT_ERASE		0x1000
316/* Program page command type of CDMA descriptor. */
317#define CDMA_CT_WR		0x2100
318/* Read page command type of CDMA descriptor. */
319#define CDMA_CT_RD		0x2200
320
321/* Flash pointer memory shift. */
322#define CDMA_CFPTR_MEM_SHIFT	24
323/* Flash pointer memory mask. */
324#define CDMA_CFPTR_MEM		GENMASK(26, 24)
325
326/*
327 * Command DMA descriptor flags. If set causes issue interrupt after
328 * the completion of descriptor processing.
329 */
330#define CDMA_CF_INT		BIT(8)
331/*
332 * Command DMA descriptor flags - the next descriptor
333 * address field is valid and descriptor processing should continue.
334 */
335#define CDMA_CF_CONT		BIT(9)
336/* DMA master flag of command DMA descriptor. */
337#define CDMA_CF_DMA_MASTER	BIT(10)
338
339/* Operation complete status of command descriptor. */
340#define CDMA_CS_COMP		BIT(15)
341/* Operation complete status of command descriptor. */
342/* Command descriptor status - operation fail. */
343#define CDMA_CS_FAIL		BIT(14)
344/* Command descriptor status - page erased. */
345#define CDMA_CS_ERP		BIT(11)
346/* Command descriptor status - timeout occurred. */
347#define CDMA_CS_TOUT		BIT(10)
348/*
349 * Maximum amount of correction applied to one ECC sector.
350 * It is part of command descriptor status.
351 */
352#define CDMA_CS_MAXERR		GENMASK(9, 2)
353/* Command descriptor status - uncorrectable ECC error. */
354#define CDMA_CS_UNCE		BIT(1)
355/* Command descriptor status - descriptor error. */
356#define CDMA_CS_ERR		BIT(0)
357
358/* Status of operation - OK. */
359#define STAT_OK			0
360/* Status of operation - FAIL. */
361#define STAT_FAIL		2
362/* Status of operation - uncorrectable ECC error. */
363#define STAT_ECC_UNCORR		3
364/* Status of operation - page erased. */
365#define STAT_ERASED		5
366/* Status of operation - correctable ECC error. */
367#define STAT_ECC_CORR		6
368/* Status of operation - unsuspected state. */
369#define STAT_UNKNOWN		7
370/* Status of operation - operation is not completed yet. */
371#define STAT_BUSY		0xFF
372
373#define BCH_MAX_NUM_CORR_CAPS		8
374#define BCH_MAX_NUM_SECTOR_SIZES	2
375
376struct cadence_nand_timings {
377	u32 async_toggle_timings;
378	u32 timings0;
379	u32 timings1;
380	u32 timings2;
381	u32 dll_phy_ctrl;
382	u32 phy_ctrl;
383	u32 phy_dqs_timing;
384	u32 phy_gate_lpbk_ctrl;
385};
386
387/* Command DMA descriptor. */
388struct cadence_nand_cdma_desc {
389	/* Next descriptor address. */
390	u64 next_pointer;
391
392	/* Flash address is a 32-bit address comprising of BANK and ROW ADDR. */
393	u32 flash_pointer;
394	/*field appears in HPNFC version 13*/
395	u16 bank;
396	u16 rsvd0;
397
398	/* Operation the controller needs to perform. */
399	u16 command_type;
400	u16 rsvd1;
401	/* Flags for operation of this command. */
402	u16 command_flags;
403	u16 rsvd2;
404
405	/* System/host memory address required for data DMA commands. */
406	u64 memory_pointer;
407
408	/* Status of operation. */
409	u32 status;
410	u32 rsvd3;
411
412	/* Address pointer to sync buffer location. */
413	u64 sync_flag_pointer;
414
415	/* Controls the buffer sync mechanism. */
416	u32 sync_arguments;
417	u32 rsvd4;
418
419	/* Control data pointer. */
420	u64 ctrl_data_ptr;
421};
422
423/* Interrupt status. */
424struct cadence_nand_irq_status {
425	/* Thread operation complete status. */
426	u32 trd_status;
427	/* Thread operation error. */
428	u32 trd_error;
429	/* Controller status. */
430	u32 status;
431};
432
433/* Cadence NAND flash controller capabilities get from driver data. */
434struct cadence_nand_dt_devdata {
435	/* Skew value of the output signals of the NAND Flash interface. */
436	u32 if_skew;
437	/* It informs if slave DMA interface is connected to DMA engine. */
438	unsigned int has_dma:1;
439};
440
441/* Cadence NAND flash controller capabilities read from registers. */
442struct cdns_nand_caps {
443	/* Maximum number of banks supported by hardware. */
444	u8 max_banks;
445	/* Slave and Master DMA data width in bytes (4 or 8). */
446	u8 data_dma_width;
447	/* Control Data feature supported. */
448	bool data_control_supp;
449	/* Is PHY type DLL. */
450	bool is_phy_type_dll;
451};
452
453struct cdns_nand_ctrl {
454	struct device *dev;
455	struct nand_controller controller;
456	struct cadence_nand_cdma_desc *cdma_desc;
457	/* IP capability. */
458	const struct cadence_nand_dt_devdata *caps1;
459	struct cdns_nand_caps caps2;
460	u8 ctrl_rev;
461	dma_addr_t dma_cdma_desc;
462	u8 *buf;
463	u32 buf_size;
464	u8 curr_corr_str_idx;
465
466	/* Register interface. */
467	void __iomem *reg;
468
469	struct {
470		void __iomem *virt;
471		dma_addr_t dma;
472	} io;
473
474	int irq;
475	/* Interrupts that have happened. */
476	struct cadence_nand_irq_status irq_status;
477	/* Interrupts we are waiting for. */
478	struct cadence_nand_irq_status irq_mask;
479	struct completion complete;
480	/* Protect irq_mask and irq_status. */
481	spinlock_t irq_lock;
482
483	int ecc_strengths[BCH_MAX_NUM_CORR_CAPS];
484	struct nand_ecc_step_info ecc_stepinfos[BCH_MAX_NUM_SECTOR_SIZES];
485	struct nand_ecc_caps ecc_caps;
486
487	int curr_trans_type;
488
489	struct dma_chan *dmac;
490
491	u32 nf_clk_rate;
492	/*
493	 * Estimated Board delay. The value includes the total
494	 * round trip delay for the signals and is used for deciding on values
495	 * associated with data read capture.
496	 */
497	u32 board_delay;
498
499	struct nand_chip *selected_chip;
500
501	unsigned long assigned_cs;
502	struct list_head chips;
503	u8 bch_metadata_size;
504};
505
506struct cdns_nand_chip {
507	struct cadence_nand_timings timings;
508	struct nand_chip chip;
509	u8 nsels;
510	struct list_head node;
511
512	/*
513	 * part of oob area of NAND flash memory page.
514	 * This part is available for user to read or write.
515	 */
516	u32 avail_oob_size;
517
518	/* Sector size. There are few sectors per mtd->writesize */
519	u32 sector_size;
520	u32 sector_count;
521
522	/* Offset of BBM. */
523	u8 bbm_offs;
524	/* Number of bytes reserved for BBM. */
525	u8 bbm_len;
526	/* ECC strength index. */
527	u8 corr_str_idx;
528
529	u8 cs[];
530};
531
532struct ecc_info {
533	int (*calc_ecc_bytes)(int step_size, int strength);
534	int max_step_size;
535};
536
537static inline struct
538cdns_nand_chip *to_cdns_nand_chip(struct nand_chip *chip)
539{
540	return container_of(chip, struct cdns_nand_chip, chip);
541}
542
543static inline struct
544cdns_nand_ctrl *to_cdns_nand_ctrl(struct nand_controller *controller)
545{
546	return container_of(controller, struct cdns_nand_ctrl, controller);
547}
548
549static bool
550cadence_nand_dma_buf_ok(struct cdns_nand_ctrl *cdns_ctrl, const void *buf,
551			u32 buf_len)
552{
553	u8 data_dma_width = cdns_ctrl->caps2.data_dma_width;
554
555	return buf && virt_addr_valid(buf) &&
556		likely(IS_ALIGNED((uintptr_t)buf, data_dma_width)) &&
557		likely(IS_ALIGNED(buf_len, DMA_DATA_SIZE_ALIGN));
558}
559
560static int cadence_nand_wait_for_value(struct cdns_nand_ctrl *cdns_ctrl,
561				       u32 reg_offset, u32 timeout_us,
562				       u32 mask, bool is_clear)
563{
564	u32 val;
565	int ret;
566
567	ret = readl_relaxed_poll_timeout(cdns_ctrl->reg + reg_offset,
568					 val, !(val & mask) == is_clear,
569					 10, timeout_us);
570
571	if (ret < 0) {
572		dev_err(cdns_ctrl->dev,
573			"Timeout while waiting for reg %x with mask %x is clear %d\n",
574			reg_offset, mask, is_clear);
575	}
576
577	return ret;
578}
579
580static int cadence_nand_set_ecc_enable(struct cdns_nand_ctrl *cdns_ctrl,
581				       bool enable)
582{
583	u32 reg;
584
585	if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
586					1000000,
587					CTRL_STATUS_CTRL_BUSY, true))
588		return -ETIMEDOUT;
589
590	reg = readl_relaxed(cdns_ctrl->reg + ECC_CONFIG_0);
591
592	if (enable)
593		reg |= ECC_CONFIG_0_ECC_EN;
594	else
595		reg &= ~ECC_CONFIG_0_ECC_EN;
596
597	writel_relaxed(reg, cdns_ctrl->reg + ECC_CONFIG_0);
598
599	return 0;
600}
601
602static void cadence_nand_set_ecc_strength(struct cdns_nand_ctrl *cdns_ctrl,
603					  u8 corr_str_idx)
604{
605	u32 reg;
606
607	if (cdns_ctrl->curr_corr_str_idx == corr_str_idx)
608		return;
609
610	reg = readl_relaxed(cdns_ctrl->reg + ECC_CONFIG_0);
611	reg &= ~ECC_CONFIG_0_CORR_STR;
612	reg |= FIELD_PREP(ECC_CONFIG_0_CORR_STR, corr_str_idx);
613	writel_relaxed(reg, cdns_ctrl->reg + ECC_CONFIG_0);
614
615	cdns_ctrl->curr_corr_str_idx = corr_str_idx;
616}
617
618static int cadence_nand_get_ecc_strength_idx(struct cdns_nand_ctrl *cdns_ctrl,
619					     u8 strength)
620{
621	int i, corr_str_idx = -1;
622
623	for (i = 0; i < BCH_MAX_NUM_CORR_CAPS; i++) {
624		if (cdns_ctrl->ecc_strengths[i] == strength) {
625			corr_str_idx = i;
626			break;
627		}
628	}
629
630	return corr_str_idx;
631}
632
633static int cadence_nand_set_skip_marker_val(struct cdns_nand_ctrl *cdns_ctrl,
634					    u16 marker_value)
635{
636	u32 reg;
637
638	if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
639					1000000,
640					CTRL_STATUS_CTRL_BUSY, true))
641		return -ETIMEDOUT;
642
643	reg = readl_relaxed(cdns_ctrl->reg + SKIP_BYTES_CONF);
644	reg &= ~SKIP_BYTES_MARKER_VALUE;
645	reg |= FIELD_PREP(SKIP_BYTES_MARKER_VALUE,
646			  marker_value);
647
648	writel_relaxed(reg, cdns_ctrl->reg + SKIP_BYTES_CONF);
649
650	return 0;
651}
652
653static int cadence_nand_set_skip_bytes_conf(struct cdns_nand_ctrl *cdns_ctrl,
654					    u8 num_of_bytes,
655					    u32 offset_value,
656					    int enable)
657{
658	u32 reg, skip_bytes_offset;
659
660	if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
661					1000000,
662					CTRL_STATUS_CTRL_BUSY, true))
663		return -ETIMEDOUT;
664
665	if (!enable) {
666		num_of_bytes = 0;
667		offset_value = 0;
668	}
669
670	reg = readl_relaxed(cdns_ctrl->reg + SKIP_BYTES_CONF);
671	reg &= ~SKIP_BYTES_NUM_OF_BYTES;
672	reg |= FIELD_PREP(SKIP_BYTES_NUM_OF_BYTES,
673			  num_of_bytes);
674	skip_bytes_offset = FIELD_PREP(SKIP_BYTES_OFFSET_VALUE,
675				       offset_value);
676
677	writel_relaxed(reg, cdns_ctrl->reg + SKIP_BYTES_CONF);
678	writel_relaxed(skip_bytes_offset, cdns_ctrl->reg + SKIP_BYTES_OFFSET);
679
680	return 0;
681}
682
683/* Functions enables/disables hardware detection of erased data */
684static void cadence_nand_set_erase_detection(struct cdns_nand_ctrl *cdns_ctrl,
685					     bool enable,
686					     u8 bitflips_threshold)
687{
688	u32 reg;
689
690	reg = readl_relaxed(cdns_ctrl->reg + ECC_CONFIG_0);
691
692	if (enable)
693		reg |= ECC_CONFIG_0_ERASE_DET_EN;
694	else
695		reg &= ~ECC_CONFIG_0_ERASE_DET_EN;
696
697	writel_relaxed(reg, cdns_ctrl->reg + ECC_CONFIG_0);
698	writel_relaxed(bitflips_threshold, cdns_ctrl->reg + ECC_CONFIG_1);
699}
700
701static int cadence_nand_set_access_width16(struct cdns_nand_ctrl *cdns_ctrl,
702					   bool bit_bus16)
703{
704	u32 reg;
705
706	if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
707					1000000,
708					CTRL_STATUS_CTRL_BUSY, true))
709		return -ETIMEDOUT;
710
711	reg = readl_relaxed(cdns_ctrl->reg + COMMON_SET);
712
713	if (!bit_bus16)
714		reg &= ~COMMON_SET_DEVICE_16BIT;
715	else
716		reg |= COMMON_SET_DEVICE_16BIT;
717	writel_relaxed(reg, cdns_ctrl->reg + COMMON_SET);
718
719	return 0;
720}
721
722static void
723cadence_nand_clear_interrupt(struct cdns_nand_ctrl *cdns_ctrl,
724			     struct cadence_nand_irq_status *irq_status)
725{
726	writel_relaxed(irq_status->status, cdns_ctrl->reg + INTR_STATUS);
727	writel_relaxed(irq_status->trd_status,
728		       cdns_ctrl->reg + TRD_COMP_INT_STATUS);
729	writel_relaxed(irq_status->trd_error,
730		       cdns_ctrl->reg + TRD_ERR_INT_STATUS);
731}
732
733static void
734cadence_nand_read_int_status(struct cdns_nand_ctrl *cdns_ctrl,
735			     struct cadence_nand_irq_status *irq_status)
736{
737	irq_status->status = readl_relaxed(cdns_ctrl->reg + INTR_STATUS);
738	irq_status->trd_status = readl_relaxed(cdns_ctrl->reg
739					       + TRD_COMP_INT_STATUS);
740	irq_status->trd_error = readl_relaxed(cdns_ctrl->reg
741					      + TRD_ERR_INT_STATUS);
742}
743
744static u32 irq_detected(struct cdns_nand_ctrl *cdns_ctrl,
745			struct cadence_nand_irq_status *irq_status)
746{
747	cadence_nand_read_int_status(cdns_ctrl, irq_status);
748
749	return irq_status->status || irq_status->trd_status ||
750		irq_status->trd_error;
751}
752
753static void cadence_nand_reset_irq(struct cdns_nand_ctrl *cdns_ctrl)
754{
755	unsigned long flags;
756
757	spin_lock_irqsave(&cdns_ctrl->irq_lock, flags);
758	memset(&cdns_ctrl->irq_status, 0, sizeof(cdns_ctrl->irq_status));
759	memset(&cdns_ctrl->irq_mask, 0, sizeof(cdns_ctrl->irq_mask));
760	spin_unlock_irqrestore(&cdns_ctrl->irq_lock, flags);
761}
762
763/*
764 * This is the interrupt service routine. It handles all interrupts
765 * sent to this device.
766 */
767static irqreturn_t cadence_nand_isr(int irq, void *dev_id)
768{
769	struct cdns_nand_ctrl *cdns_ctrl = dev_id;
770	struct cadence_nand_irq_status irq_status;
771	irqreturn_t result = IRQ_NONE;
772
773	spin_lock(&cdns_ctrl->irq_lock);
774
775	if (irq_detected(cdns_ctrl, &irq_status)) {
776		/* Handle interrupt. */
777		/* First acknowledge it. */
778		cadence_nand_clear_interrupt(cdns_ctrl, &irq_status);
779		/* Status in the device context for someone to read. */
780		cdns_ctrl->irq_status.status |= irq_status.status;
781		cdns_ctrl->irq_status.trd_status |= irq_status.trd_status;
782		cdns_ctrl->irq_status.trd_error |= irq_status.trd_error;
783		/* Notify anyone who cares that it happened. */
784		complete(&cdns_ctrl->complete);
785		/* Tell the OS that we've handled this. */
786		result = IRQ_HANDLED;
787	}
788	spin_unlock(&cdns_ctrl->irq_lock);
789
790	return result;
791}
792
793static void cadence_nand_set_irq_mask(struct cdns_nand_ctrl *cdns_ctrl,
794				      struct cadence_nand_irq_status *irq_mask)
795{
796	writel_relaxed(INTR_ENABLE_INTR_EN | irq_mask->status,
797		       cdns_ctrl->reg + INTR_ENABLE);
798
799	writel_relaxed(irq_mask->trd_error,
800		       cdns_ctrl->reg + TRD_ERR_INT_STATUS_EN);
801}
802
803static void
804cadence_nand_wait_for_irq(struct cdns_nand_ctrl *cdns_ctrl,
805			  struct cadence_nand_irq_status *irq_mask,
806			  struct cadence_nand_irq_status *irq_status)
807{
808	unsigned long timeout = msecs_to_jiffies(10000);
809	unsigned long time_left;
810
811	time_left = wait_for_completion_timeout(&cdns_ctrl->complete,
812						timeout);
813
814	*irq_status = cdns_ctrl->irq_status;
815	if (time_left == 0) {
816		/* Timeout error. */
817		dev_err(cdns_ctrl->dev, "timeout occurred:\n");
818		dev_err(cdns_ctrl->dev, "\tstatus = 0x%x, mask = 0x%x\n",
819			irq_status->status, irq_mask->status);
820		dev_err(cdns_ctrl->dev,
821			"\ttrd_status = 0x%x, trd_status mask = 0x%x\n",
822			irq_status->trd_status, irq_mask->trd_status);
823		dev_err(cdns_ctrl->dev,
824			"\t trd_error = 0x%x, trd_error mask = 0x%x\n",
825			irq_status->trd_error, irq_mask->trd_error);
826	}
827}
828
829/* Execute generic command on NAND controller. */
830static int cadence_nand_generic_cmd_send(struct cdns_nand_ctrl *cdns_ctrl,
831					 u8 chip_nr,
832					 u64 mini_ctrl_cmd)
833{
834	u32 mini_ctrl_cmd_l, mini_ctrl_cmd_h, reg;
835
836	mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_CS, chip_nr);
837	mini_ctrl_cmd_l = mini_ctrl_cmd & 0xFFFFFFFF;
838	mini_ctrl_cmd_h = mini_ctrl_cmd >> 32;
839
840	if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
841					1000000,
842					CTRL_STATUS_CTRL_BUSY, true))
843		return -ETIMEDOUT;
844
845	cadence_nand_reset_irq(cdns_ctrl);
846
847	writel_relaxed(mini_ctrl_cmd_l, cdns_ctrl->reg + CMD_REG2);
848	writel_relaxed(mini_ctrl_cmd_h, cdns_ctrl->reg + CMD_REG3);
849
850	/* Select generic command. */
851	reg = FIELD_PREP(CMD_REG0_CT, CMD_REG0_CT_GEN);
852	/* Thread number. */
853	reg |= FIELD_PREP(CMD_REG0_TN, 0);
854
855	/* Issue command. */
856	writel_relaxed(reg, cdns_ctrl->reg + CMD_REG0);
857
858	return 0;
859}
860
861/* Wait for data on slave DMA interface. */
862static int cadence_nand_wait_on_sdma(struct cdns_nand_ctrl *cdns_ctrl,
863				     u8 *out_sdma_trd,
864				     u32 *out_sdma_size)
865{
866	struct cadence_nand_irq_status irq_mask, irq_status;
867
868	irq_mask.trd_status = 0;
869	irq_mask.trd_error = 0;
870	irq_mask.status = INTR_STATUS_SDMA_TRIGG
871		| INTR_STATUS_SDMA_ERR
872		| INTR_STATUS_UNSUPP_CMD;
873
874	cadence_nand_set_irq_mask(cdns_ctrl, &irq_mask);
875	cadence_nand_wait_for_irq(cdns_ctrl, &irq_mask, &irq_status);
876	if (irq_status.status == 0) {
877		dev_err(cdns_ctrl->dev, "Timeout while waiting for SDMA\n");
878		return -ETIMEDOUT;
879	}
880
881	if (irq_status.status & INTR_STATUS_SDMA_TRIGG) {
882		*out_sdma_size = readl_relaxed(cdns_ctrl->reg + SDMA_SIZE);
883		*out_sdma_trd  = readl_relaxed(cdns_ctrl->reg + SDMA_TRD_NUM);
884		*out_sdma_trd =
885			FIELD_GET(SDMA_TRD_NUM_SDMA_TRD, *out_sdma_trd);
886	} else {
887		dev_err(cdns_ctrl->dev, "SDMA error - irq_status %x\n",
888			irq_status.status);
889		return -EIO;
890	}
891
892	return 0;
893}
894
895static void cadence_nand_get_caps(struct cdns_nand_ctrl *cdns_ctrl)
896{
897	u32  reg;
898
899	reg = readl_relaxed(cdns_ctrl->reg + CTRL_FEATURES);
900
901	cdns_ctrl->caps2.max_banks = 1 << FIELD_GET(CTRL_FEATURES_N_BANKS, reg);
902
903	if (FIELD_GET(CTRL_FEATURES_DMA_DWITH64, reg))
904		cdns_ctrl->caps2.data_dma_width = 8;
905	else
906		cdns_ctrl->caps2.data_dma_width = 4;
907
908	if (reg & CTRL_FEATURES_CONTROL_DATA)
909		cdns_ctrl->caps2.data_control_supp = true;
910
911	if (reg & (CTRL_FEATURES_NVDDR_2_3
912		   | CTRL_FEATURES_NVDDR))
913		cdns_ctrl->caps2.is_phy_type_dll = true;
914}
915
916/* Prepare CDMA descriptor. */
917static void
918cadence_nand_cdma_desc_prepare(struct cdns_nand_ctrl *cdns_ctrl,
919			       char nf_mem, u32 flash_ptr, dma_addr_t mem_ptr,
920				   dma_addr_t ctrl_data_ptr, u16 ctype)
921{
922	struct cadence_nand_cdma_desc *cdma_desc = cdns_ctrl->cdma_desc;
923
924	memset(cdma_desc, 0, sizeof(struct cadence_nand_cdma_desc));
925
926	/* Set fields for one descriptor. */
927	cdma_desc->flash_pointer = flash_ptr;
928	if (cdns_ctrl->ctrl_rev >= 13)
929		cdma_desc->bank = nf_mem;
930	else
931		cdma_desc->flash_pointer |= (nf_mem << CDMA_CFPTR_MEM_SHIFT);
932
933	cdma_desc->command_flags |= CDMA_CF_DMA_MASTER;
934	cdma_desc->command_flags  |= CDMA_CF_INT;
935
936	cdma_desc->memory_pointer = mem_ptr;
937	cdma_desc->status = 0;
938	cdma_desc->sync_flag_pointer = 0;
939	cdma_desc->sync_arguments = 0;
940
941	cdma_desc->command_type = ctype;
942	cdma_desc->ctrl_data_ptr = ctrl_data_ptr;
943}
944
945static u8 cadence_nand_check_desc_error(struct cdns_nand_ctrl *cdns_ctrl,
946					u32 desc_status)
947{
948	if (desc_status & CDMA_CS_ERP)
949		return STAT_ERASED;
950
951	if (desc_status & CDMA_CS_UNCE)
952		return STAT_ECC_UNCORR;
953
954	if (desc_status & CDMA_CS_ERR) {
955		dev_err(cdns_ctrl->dev, ":CDMA desc error flag detected.\n");
956		return STAT_FAIL;
957	}
958
959	if (FIELD_GET(CDMA_CS_MAXERR, desc_status))
960		return STAT_ECC_CORR;
961
962	return STAT_FAIL;
963}
964
965static int cadence_nand_cdma_finish(struct cdns_nand_ctrl *cdns_ctrl)
966{
967	struct cadence_nand_cdma_desc *desc_ptr = cdns_ctrl->cdma_desc;
968	u8 status = STAT_BUSY;
969
970	if (desc_ptr->status & CDMA_CS_FAIL) {
971		status = cadence_nand_check_desc_error(cdns_ctrl,
972						       desc_ptr->status);
973		dev_err(cdns_ctrl->dev, ":CDMA error %x\n", desc_ptr->status);
974	} else if (desc_ptr->status & CDMA_CS_COMP) {
975		/* Descriptor finished with no errors. */
976		if (desc_ptr->command_flags & CDMA_CF_CONT) {
977			dev_info(cdns_ctrl->dev, "DMA unsupported flag is set");
978			status = STAT_UNKNOWN;
979		} else {
980			/* Last descriptor.  */
981			status = STAT_OK;
982		}
983	}
984
985	return status;
986}
987
988static int cadence_nand_cdma_send(struct cdns_nand_ctrl *cdns_ctrl,
989				  u8 thread)
990{
991	u32 reg;
992	int status;
993
994	/* Wait for thread ready. */
995	status = cadence_nand_wait_for_value(cdns_ctrl, TRD_STATUS,
996					     1000000,
997					     BIT(thread), true);
998	if (status)
999		return status;
1000
1001	cadence_nand_reset_irq(cdns_ctrl);
1002	reinit_completion(&cdns_ctrl->complete);
1003
1004	writel_relaxed((u32)cdns_ctrl->dma_cdma_desc,
1005		       cdns_ctrl->reg + CMD_REG2);
1006	writel_relaxed(0, cdns_ctrl->reg + CMD_REG3);
1007
1008	/* Select CDMA mode. */
1009	reg = FIELD_PREP(CMD_REG0_CT, CMD_REG0_CT_CDMA);
1010	/* Thread number. */
1011	reg |= FIELD_PREP(CMD_REG0_TN, thread);
1012	/* Issue command. */
1013	writel_relaxed(reg, cdns_ctrl->reg + CMD_REG0);
1014
1015	return 0;
1016}
1017
1018/* Send SDMA command and wait for finish. */
1019static u32
1020cadence_nand_cdma_send_and_wait(struct cdns_nand_ctrl *cdns_ctrl,
1021				u8 thread)
1022{
1023	struct cadence_nand_irq_status irq_mask, irq_status = {0};
1024	int status;
1025
1026	irq_mask.trd_status = BIT(thread);
1027	irq_mask.trd_error = BIT(thread);
1028	irq_mask.status = INTR_STATUS_CDMA_TERR;
1029
1030	cadence_nand_set_irq_mask(cdns_ctrl, &irq_mask);
1031
1032	status = cadence_nand_cdma_send(cdns_ctrl, thread);
1033	if (status)
1034		return status;
1035
1036	cadence_nand_wait_for_irq(cdns_ctrl, &irq_mask, &irq_status);
1037
1038	if (irq_status.status == 0 && irq_status.trd_status == 0 &&
1039	    irq_status.trd_error == 0) {
1040		dev_err(cdns_ctrl->dev, "CDMA command timeout\n");
1041		return -ETIMEDOUT;
1042	}
1043	if (irq_status.status & irq_mask.status) {
1044		dev_err(cdns_ctrl->dev, "CDMA command failed\n");
1045		return -EIO;
1046	}
1047
1048	return 0;
1049}
1050
1051/*
1052 * ECC size depends on configured ECC strength and on maximum supported
1053 * ECC step size.
1054 */
1055static int cadence_nand_calc_ecc_bytes(int max_step_size, int strength)
1056{
1057	int nbytes = DIV_ROUND_UP(fls(8 * max_step_size) * strength, 8);
1058
1059	return ALIGN(nbytes, 2);
1060}
1061
1062#define CADENCE_NAND_CALC_ECC_BYTES(max_step_size) \
1063	static int \
1064	cadence_nand_calc_ecc_bytes_##max_step_size(int step_size, \
1065						    int strength)\
1066	{\
1067		return cadence_nand_calc_ecc_bytes(max_step_size, strength);\
1068	}
1069
1070CADENCE_NAND_CALC_ECC_BYTES(256)
1071CADENCE_NAND_CALC_ECC_BYTES(512)
1072CADENCE_NAND_CALC_ECC_BYTES(1024)
1073CADENCE_NAND_CALC_ECC_BYTES(2048)
1074CADENCE_NAND_CALC_ECC_BYTES(4096)
1075
1076/* Function reads BCH capabilities. */
1077static int cadence_nand_read_bch_caps(struct cdns_nand_ctrl *cdns_ctrl)
1078{
1079	struct nand_ecc_caps *ecc_caps = &cdns_ctrl->ecc_caps;
1080	int max_step_size = 0, nstrengths, i;
1081	u32 reg;
1082
1083	reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_3);
1084	cdns_ctrl->bch_metadata_size = FIELD_GET(BCH_CFG_3_METADATA_SIZE, reg);
1085	if (cdns_ctrl->bch_metadata_size < 4) {
1086		dev_err(cdns_ctrl->dev,
1087			"Driver needs at least 4 bytes of BCH meta data\n");
1088		return -EIO;
1089	}
1090
1091	reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_0);
1092	cdns_ctrl->ecc_strengths[0] = FIELD_GET(BCH_CFG_0_CORR_CAP_0, reg);
1093	cdns_ctrl->ecc_strengths[1] = FIELD_GET(BCH_CFG_0_CORR_CAP_1, reg);
1094	cdns_ctrl->ecc_strengths[2] = FIELD_GET(BCH_CFG_0_CORR_CAP_2, reg);
1095	cdns_ctrl->ecc_strengths[3] = FIELD_GET(BCH_CFG_0_CORR_CAP_3, reg);
1096
1097	reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_1);
1098	cdns_ctrl->ecc_strengths[4] = FIELD_GET(BCH_CFG_1_CORR_CAP_4, reg);
1099	cdns_ctrl->ecc_strengths[5] = FIELD_GET(BCH_CFG_1_CORR_CAP_5, reg);
1100	cdns_ctrl->ecc_strengths[6] = FIELD_GET(BCH_CFG_1_CORR_CAP_6, reg);
1101	cdns_ctrl->ecc_strengths[7] = FIELD_GET(BCH_CFG_1_CORR_CAP_7, reg);
1102
1103	reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_2);
1104	cdns_ctrl->ecc_stepinfos[0].stepsize =
1105		FIELD_GET(BCH_CFG_2_SECT_0, reg);
1106
1107	cdns_ctrl->ecc_stepinfos[1].stepsize =
1108		FIELD_GET(BCH_CFG_2_SECT_1, reg);
1109
1110	nstrengths = 0;
1111	for (i = 0; i < BCH_MAX_NUM_CORR_CAPS; i++) {
1112		if (cdns_ctrl->ecc_strengths[i] != 0)
1113			nstrengths++;
1114	}
1115
1116	ecc_caps->nstepinfos = 0;
1117	for (i = 0; i < BCH_MAX_NUM_SECTOR_SIZES; i++) {
1118		/* ECC strengths are common for all step infos. */
1119		cdns_ctrl->ecc_stepinfos[i].nstrengths = nstrengths;
1120		cdns_ctrl->ecc_stepinfos[i].strengths =
1121			cdns_ctrl->ecc_strengths;
1122
1123		if (cdns_ctrl->ecc_stepinfos[i].stepsize != 0)
1124			ecc_caps->nstepinfos++;
1125
1126		if (cdns_ctrl->ecc_stepinfos[i].stepsize > max_step_size)
1127			max_step_size = cdns_ctrl->ecc_stepinfos[i].stepsize;
1128	}
1129	ecc_caps->stepinfos = &cdns_ctrl->ecc_stepinfos[0];
1130
1131	switch (max_step_size) {
1132	case 256:
1133		ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_256;
1134		break;
1135	case 512:
1136		ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_512;
1137		break;
1138	case 1024:
1139		ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_1024;
1140		break;
1141	case 2048:
1142		ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_2048;
1143		break;
1144	case 4096:
1145		ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_4096;
1146		break;
1147	default:
1148		dev_err(cdns_ctrl->dev,
1149			"Unsupported sector size(ecc step size) %d\n",
1150			max_step_size);
1151		return -EIO;
1152	}
1153
1154	return 0;
1155}
1156
1157/* Hardware initialization. */
1158static int cadence_nand_hw_init(struct cdns_nand_ctrl *cdns_ctrl)
1159{
1160	int status;
1161	u32 reg;
1162
1163	status = cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
1164					     1000000,
1165					     CTRL_STATUS_INIT_COMP, false);
1166	if (status)
1167		return status;
1168
1169	reg = readl_relaxed(cdns_ctrl->reg + CTRL_VERSION);
1170	cdns_ctrl->ctrl_rev = FIELD_GET(CTRL_VERSION_REV, reg);
1171
1172	dev_info(cdns_ctrl->dev,
1173		 "%s: cadence nand controller version reg %x\n",
1174		 __func__, reg);
1175
1176	/* Disable cache and multiplane. */
1177	writel_relaxed(0, cdns_ctrl->reg + MULTIPLANE_CFG);
1178	writel_relaxed(0, cdns_ctrl->reg + CACHE_CFG);
1179
1180	/* Clear all interrupts. */
1181	writel_relaxed(0xFFFFFFFF, cdns_ctrl->reg + INTR_STATUS);
1182
1183	cadence_nand_get_caps(cdns_ctrl);
1184	if (cadence_nand_read_bch_caps(cdns_ctrl))
1185		return -EIO;
1186
1187#ifndef CONFIG_64BIT
1188	if (cdns_ctrl->caps2.data_dma_width == 8) {
1189		dev_err(cdns_ctrl->dev,
1190			"cannot access 64-bit dma on !64-bit architectures");
1191		return -EIO;
1192	}
1193#endif
1194
1195	/*
1196	 * Set IO width access to 8.
1197	 * It is because during SW device discovering width access
1198	 * is expected to be 8.
1199	 */
1200	status = cadence_nand_set_access_width16(cdns_ctrl, false);
1201
1202	return status;
1203}
1204
1205#define TT_MAIN_OOB_AREAS	2
1206#define TT_RAW_PAGE		3
1207#define TT_BBM			4
1208#define TT_MAIN_OOB_AREA_EXT	5
1209
1210/* Prepare size of data to transfer. */
1211static void
1212cadence_nand_prepare_data_size(struct nand_chip *chip,
1213			       int transfer_type)
1214{
1215	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1216	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1217	struct mtd_info *mtd = nand_to_mtd(chip);
1218	u32 sec_size = 0, offset = 0, sec_cnt = 1;
1219	u32 last_sec_size = cdns_chip->sector_size;
1220	u32 data_ctrl_size = 0;
1221	u32 reg = 0;
1222
1223	if (cdns_ctrl->curr_trans_type == transfer_type)
1224		return;
1225
1226	switch (transfer_type) {
1227	case TT_MAIN_OOB_AREA_EXT:
1228		sec_cnt = cdns_chip->sector_count;
1229		sec_size = cdns_chip->sector_size;
1230		data_ctrl_size = cdns_chip->avail_oob_size;
1231		break;
1232	case TT_MAIN_OOB_AREAS:
1233		sec_cnt = cdns_chip->sector_count;
1234		last_sec_size = cdns_chip->sector_size
1235			+ cdns_chip->avail_oob_size;
1236		sec_size = cdns_chip->sector_size;
1237		break;
1238	case TT_RAW_PAGE:
1239		last_sec_size = mtd->writesize + mtd->oobsize;
1240		break;
1241	case TT_BBM:
1242		offset = mtd->writesize + cdns_chip->bbm_offs;
1243		last_sec_size = 8;
1244		break;
1245	}
1246
1247	reg = 0;
1248	reg |= FIELD_PREP(TRAN_CFG_0_OFFSET, offset);
1249	reg |= FIELD_PREP(TRAN_CFG_0_SEC_CNT, sec_cnt);
1250	writel_relaxed(reg, cdns_ctrl->reg + TRAN_CFG_0);
1251
1252	reg = 0;
1253	reg |= FIELD_PREP(TRAN_CFG_1_LAST_SEC_SIZE, last_sec_size);
1254	reg |= FIELD_PREP(TRAN_CFG_1_SECTOR_SIZE, sec_size);
1255	writel_relaxed(reg, cdns_ctrl->reg + TRAN_CFG_1);
1256
1257	if (cdns_ctrl->caps2.data_control_supp) {
1258		reg = readl_relaxed(cdns_ctrl->reg + CONTROL_DATA_CTRL);
1259		reg &= ~CONTROL_DATA_CTRL_SIZE;
1260		reg |= FIELD_PREP(CONTROL_DATA_CTRL_SIZE, data_ctrl_size);
1261		writel_relaxed(reg, cdns_ctrl->reg + CONTROL_DATA_CTRL);
1262	}
1263
1264	cdns_ctrl->curr_trans_type = transfer_type;
1265}
1266
1267static int
1268cadence_nand_cdma_transfer(struct cdns_nand_ctrl *cdns_ctrl, u8 chip_nr,
1269			   int page, void *buf, void *ctrl_dat, u32 buf_size,
1270			   u32 ctrl_dat_size, enum dma_data_direction dir,
1271			   bool with_ecc)
1272{
1273	dma_addr_t dma_buf, dma_ctrl_dat = 0;
1274	u8 thread_nr = chip_nr;
1275	int status;
1276	u16 ctype;
1277
1278	if (dir == DMA_FROM_DEVICE)
1279		ctype = CDMA_CT_RD;
1280	else
1281		ctype = CDMA_CT_WR;
1282
1283	cadence_nand_set_ecc_enable(cdns_ctrl, with_ecc);
1284
1285	dma_buf = dma_map_single(cdns_ctrl->dev, buf, buf_size, dir);
1286	if (dma_mapping_error(cdns_ctrl->dev, dma_buf)) {
1287		dev_err(cdns_ctrl->dev, "Failed to map DMA buffer\n");
1288		return -EIO;
1289	}
1290
1291	if (ctrl_dat && ctrl_dat_size) {
1292		dma_ctrl_dat = dma_map_single(cdns_ctrl->dev, ctrl_dat,
1293					      ctrl_dat_size, dir);
1294		if (dma_mapping_error(cdns_ctrl->dev, dma_ctrl_dat)) {
1295			dma_unmap_single(cdns_ctrl->dev, dma_buf,
1296					 buf_size, dir);
1297			dev_err(cdns_ctrl->dev, "Failed to map DMA buffer\n");
1298			return -EIO;
1299		}
1300	}
1301
1302	cadence_nand_cdma_desc_prepare(cdns_ctrl, chip_nr, page,
1303				       dma_buf, dma_ctrl_dat, ctype);
1304
1305	status = cadence_nand_cdma_send_and_wait(cdns_ctrl, thread_nr);
1306
1307	dma_unmap_single(cdns_ctrl->dev, dma_buf,
1308			 buf_size, dir);
1309
1310	if (ctrl_dat && ctrl_dat_size)
1311		dma_unmap_single(cdns_ctrl->dev, dma_ctrl_dat,
1312				 ctrl_dat_size, dir);
1313	if (status)
1314		return status;
1315
1316	return cadence_nand_cdma_finish(cdns_ctrl);
1317}
1318
1319static void cadence_nand_set_timings(struct cdns_nand_ctrl *cdns_ctrl,
1320				     struct cadence_nand_timings *t)
1321{
1322	writel_relaxed(t->async_toggle_timings,
1323		       cdns_ctrl->reg + ASYNC_TOGGLE_TIMINGS);
1324	writel_relaxed(t->timings0, cdns_ctrl->reg + TIMINGS0);
1325	writel_relaxed(t->timings1, cdns_ctrl->reg + TIMINGS1);
1326	writel_relaxed(t->timings2, cdns_ctrl->reg + TIMINGS2);
1327
1328	if (cdns_ctrl->caps2.is_phy_type_dll)
1329		writel_relaxed(t->dll_phy_ctrl, cdns_ctrl->reg + DLL_PHY_CTRL);
1330
1331	writel_relaxed(t->phy_ctrl, cdns_ctrl->reg + PHY_CTRL);
1332
1333	if (cdns_ctrl->caps2.is_phy_type_dll) {
1334		writel_relaxed(0, cdns_ctrl->reg + PHY_TSEL);
1335		writel_relaxed(2, cdns_ctrl->reg + PHY_DQ_TIMING);
1336		writel_relaxed(t->phy_dqs_timing,
1337			       cdns_ctrl->reg + PHY_DQS_TIMING);
1338		writel_relaxed(t->phy_gate_lpbk_ctrl,
1339			       cdns_ctrl->reg + PHY_GATE_LPBK_CTRL);
1340		writel_relaxed(PHY_DLL_MASTER_CTRL_BYPASS_MODE,
1341			       cdns_ctrl->reg + PHY_DLL_MASTER_CTRL);
1342		writel_relaxed(0, cdns_ctrl->reg + PHY_DLL_SLAVE_CTRL);
1343	}
1344}
1345
1346static int cadence_nand_select_target(struct nand_chip *chip)
1347{
1348	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1349	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1350
1351	if (chip == cdns_ctrl->selected_chip)
1352		return 0;
1353
1354	if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
1355					1000000,
1356					CTRL_STATUS_CTRL_BUSY, true))
1357		return -ETIMEDOUT;
1358
1359	cadence_nand_set_timings(cdns_ctrl, &cdns_chip->timings);
1360
1361	cadence_nand_set_ecc_strength(cdns_ctrl,
1362				      cdns_chip->corr_str_idx);
1363
1364	cadence_nand_set_erase_detection(cdns_ctrl, true,
1365					 chip->ecc.strength);
1366
1367	cdns_ctrl->curr_trans_type = -1;
1368	cdns_ctrl->selected_chip = chip;
1369
1370	return 0;
1371}
1372
1373static int cadence_nand_erase(struct nand_chip *chip, u32 page)
1374{
1375	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1376	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1377	int status;
1378	u8 thread_nr = cdns_chip->cs[chip->cur_cs];
1379
1380	cadence_nand_cdma_desc_prepare(cdns_ctrl,
1381				       cdns_chip->cs[chip->cur_cs],
1382				       page, 0, 0,
1383				       CDMA_CT_ERASE);
1384	status = cadence_nand_cdma_send_and_wait(cdns_ctrl, thread_nr);
1385	if (status) {
1386		dev_err(cdns_ctrl->dev, "erase operation failed\n");
1387		return -EIO;
1388	}
1389
1390	status = cadence_nand_cdma_finish(cdns_ctrl);
1391	if (status)
1392		return status;
1393
1394	return 0;
1395}
1396
1397static int cadence_nand_read_bbm(struct nand_chip *chip, int page, u8 *buf)
1398{
1399	int status;
1400	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1401	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1402	struct mtd_info *mtd = nand_to_mtd(chip);
1403
1404	cadence_nand_prepare_data_size(chip, TT_BBM);
1405
1406	cadence_nand_set_skip_bytes_conf(cdns_ctrl, 0, 0, 0);
1407
1408	/*
1409	 * Read only bad block marker from offset
1410	 * defined by a memory manufacturer.
1411	 */
1412	status = cadence_nand_cdma_transfer(cdns_ctrl,
1413					    cdns_chip->cs[chip->cur_cs],
1414					    page, cdns_ctrl->buf, NULL,
1415					    mtd->oobsize,
1416					    0, DMA_FROM_DEVICE, false);
1417	if (status) {
1418		dev_err(cdns_ctrl->dev, "read BBM failed\n");
1419		return -EIO;
1420	}
1421
1422	memcpy(buf + cdns_chip->bbm_offs, cdns_ctrl->buf, cdns_chip->bbm_len);
1423
1424	return 0;
1425}
1426
1427static int cadence_nand_write_page(struct nand_chip *chip,
1428				   const u8 *buf, int oob_required,
1429				   int page)
1430{
1431	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1432	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1433	struct mtd_info *mtd = nand_to_mtd(chip);
1434	int status;
1435	u16 marker_val = 0xFFFF;
1436
1437	status = cadence_nand_select_target(chip);
1438	if (status)
1439		return status;
1440
1441	cadence_nand_set_skip_bytes_conf(cdns_ctrl, cdns_chip->bbm_len,
1442					 mtd->writesize
1443					 + cdns_chip->bbm_offs,
1444					 1);
1445
1446	if (oob_required) {
1447		marker_val = *(u16 *)(chip->oob_poi
1448				      + cdns_chip->bbm_offs);
1449	} else {
1450		/* Set oob data to 0xFF. */
1451		memset(cdns_ctrl->buf + mtd->writesize, 0xFF,
1452		       cdns_chip->avail_oob_size);
1453	}
1454
1455	cadence_nand_set_skip_marker_val(cdns_ctrl, marker_val);
1456
1457	cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREA_EXT);
1458
1459	if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, mtd->writesize) &&
1460	    cdns_ctrl->caps2.data_control_supp) {
1461		u8 *oob;
1462
1463		if (oob_required)
1464			oob = chip->oob_poi;
1465		else
1466			oob = cdns_ctrl->buf + mtd->writesize;
1467
1468		status = cadence_nand_cdma_transfer(cdns_ctrl,
1469						    cdns_chip->cs[chip->cur_cs],
1470						    page, (void *)buf, oob,
1471						    mtd->writesize,
1472						    cdns_chip->avail_oob_size,
1473						    DMA_TO_DEVICE, true);
1474		if (status) {
1475			dev_err(cdns_ctrl->dev, "write page failed\n");
1476			return -EIO;
1477		}
1478
1479		return 0;
1480	}
1481
1482	if (oob_required) {
1483		/* Transfer the data to the oob area. */
1484		memcpy(cdns_ctrl->buf + mtd->writesize, chip->oob_poi,
1485		       cdns_chip->avail_oob_size);
1486	}
1487
1488	memcpy(cdns_ctrl->buf, buf, mtd->writesize);
1489
1490	cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREAS);
1491
1492	return cadence_nand_cdma_transfer(cdns_ctrl,
1493					  cdns_chip->cs[chip->cur_cs],
1494					  page, cdns_ctrl->buf, NULL,
1495					  mtd->writesize
1496					  + cdns_chip->avail_oob_size,
1497					  0, DMA_TO_DEVICE, true);
1498}
1499
1500static int cadence_nand_write_oob(struct nand_chip *chip, int page)
1501{
1502	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1503	struct mtd_info *mtd = nand_to_mtd(chip);
1504
1505	memset(cdns_ctrl->buf, 0xFF, mtd->writesize);
1506
1507	return cadence_nand_write_page(chip, cdns_ctrl->buf, 1, page);
1508}
1509
1510static int cadence_nand_write_page_raw(struct nand_chip *chip,
1511				       const u8 *buf, int oob_required,
1512				       int page)
1513{
1514	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1515	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1516	struct mtd_info *mtd = nand_to_mtd(chip);
1517	int writesize = mtd->writesize;
1518	int oobsize = mtd->oobsize;
1519	int ecc_steps = chip->ecc.steps;
1520	int ecc_size = chip->ecc.size;
1521	int ecc_bytes = chip->ecc.bytes;
1522	void *tmp_buf = cdns_ctrl->buf;
1523	int oob_skip = cdns_chip->bbm_len;
1524	size_t size = writesize + oobsize;
1525	int i, pos, len;
1526	int status = 0;
1527
1528	status = cadence_nand_select_target(chip);
1529	if (status)
1530		return status;
1531
1532	/*
1533	 * Fill the buffer with 0xff first except the full page transfer.
1534	 * This simplifies the logic.
1535	 */
1536	if (!buf || !oob_required)
1537		memset(tmp_buf, 0xff, size);
1538
1539	cadence_nand_set_skip_bytes_conf(cdns_ctrl, 0, 0, 0);
1540
1541	/* Arrange the buffer for syndrome payload/ecc layout. */
1542	if (buf) {
1543		for (i = 0; i < ecc_steps; i++) {
1544			pos = i * (ecc_size + ecc_bytes);
1545			len = ecc_size;
1546
1547			if (pos >= writesize)
1548				pos += oob_skip;
1549			else if (pos + len > writesize)
1550				len = writesize - pos;
1551
1552			memcpy(tmp_buf + pos, buf, len);
1553			buf += len;
1554			if (len < ecc_size) {
1555				len = ecc_size - len;
1556				memcpy(tmp_buf + writesize + oob_skip, buf,
1557				       len);
1558				buf += len;
1559			}
1560		}
1561	}
1562
1563	if (oob_required) {
1564		const u8 *oob = chip->oob_poi;
1565		u32 oob_data_offset = (cdns_chip->sector_count - 1) *
1566			(cdns_chip->sector_size + chip->ecc.bytes)
1567			+ cdns_chip->sector_size + oob_skip;
1568
1569		/* BBM at the beginning of the OOB area. */
1570		memcpy(tmp_buf + writesize, oob, oob_skip);
1571
1572		/* OOB free. */
1573		memcpy(tmp_buf + oob_data_offset, oob,
1574		       cdns_chip->avail_oob_size);
1575		oob += cdns_chip->avail_oob_size;
1576
1577		/* OOB ECC. */
1578		for (i = 0; i < ecc_steps; i++) {
1579			pos = ecc_size + i * (ecc_size + ecc_bytes);
1580			if (i == (ecc_steps - 1))
1581				pos += cdns_chip->avail_oob_size;
1582
1583			len = ecc_bytes;
1584
1585			if (pos >= writesize)
1586				pos += oob_skip;
1587			else if (pos + len > writesize)
1588				len = writesize - pos;
1589
1590			memcpy(tmp_buf + pos, oob, len);
1591			oob += len;
1592			if (len < ecc_bytes) {
1593				len = ecc_bytes - len;
1594				memcpy(tmp_buf + writesize + oob_skip, oob,
1595				       len);
1596				oob += len;
1597			}
1598		}
1599	}
1600
1601	cadence_nand_prepare_data_size(chip, TT_RAW_PAGE);
1602
1603	return cadence_nand_cdma_transfer(cdns_ctrl,
1604					  cdns_chip->cs[chip->cur_cs],
1605					  page, cdns_ctrl->buf, NULL,
1606					  mtd->writesize +
1607					  mtd->oobsize,
1608					  0, DMA_TO_DEVICE, false);
1609}
1610
1611static int cadence_nand_write_oob_raw(struct nand_chip *chip,
1612				      int page)
1613{
1614	return cadence_nand_write_page_raw(chip, NULL, true, page);
1615}
1616
1617static int cadence_nand_read_page(struct nand_chip *chip,
1618				  u8 *buf, int oob_required, int page)
1619{
1620	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1621	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1622	struct mtd_info *mtd = nand_to_mtd(chip);
1623	int status = 0;
1624	int ecc_err_count = 0;
1625
1626	status = cadence_nand_select_target(chip);
1627	if (status)
1628		return status;
1629
1630	cadence_nand_set_skip_bytes_conf(cdns_ctrl, cdns_chip->bbm_len,
1631					 mtd->writesize
1632					 + cdns_chip->bbm_offs, 1);
1633
1634	/*
1635	 * If data buffer can be accessed by DMA and data_control feature
1636	 * is supported then transfer data and oob directly.
1637	 */
1638	if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, mtd->writesize) &&
1639	    cdns_ctrl->caps2.data_control_supp) {
1640		u8 *oob;
1641
1642		if (oob_required)
1643			oob = chip->oob_poi;
1644		else
1645			oob = cdns_ctrl->buf + mtd->writesize;
1646
1647		cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREA_EXT);
1648		status = cadence_nand_cdma_transfer(cdns_ctrl,
1649						    cdns_chip->cs[chip->cur_cs],
1650						    page, buf, oob,
1651						    mtd->writesize,
1652						    cdns_chip->avail_oob_size,
1653						    DMA_FROM_DEVICE, true);
1654	/* Otherwise use bounce buffer. */
1655	} else {
1656		cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREAS);
1657		status = cadence_nand_cdma_transfer(cdns_ctrl,
1658						    cdns_chip->cs[chip->cur_cs],
1659						    page, cdns_ctrl->buf,
1660						    NULL, mtd->writesize
1661						    + cdns_chip->avail_oob_size,
1662						    0, DMA_FROM_DEVICE, true);
1663
1664		memcpy(buf, cdns_ctrl->buf, mtd->writesize);
1665		if (oob_required)
1666			memcpy(chip->oob_poi,
1667			       cdns_ctrl->buf + mtd->writesize,
1668			       mtd->oobsize);
1669	}
1670
1671	switch (status) {
1672	case STAT_ECC_UNCORR:
1673		mtd->ecc_stats.failed++;
1674		ecc_err_count++;
1675		break;
1676	case STAT_ECC_CORR:
1677		ecc_err_count = FIELD_GET(CDMA_CS_MAXERR,
1678					  cdns_ctrl->cdma_desc->status);
1679		mtd->ecc_stats.corrected += ecc_err_count;
1680		break;
1681	case STAT_ERASED:
1682	case STAT_OK:
1683		break;
1684	default:
1685		dev_err(cdns_ctrl->dev, "read page failed\n");
1686		return -EIO;
1687	}
1688
1689	if (oob_required)
1690		if (cadence_nand_read_bbm(chip, page, chip->oob_poi))
1691			return -EIO;
1692
1693	return ecc_err_count;
1694}
1695
1696/* Reads OOB data from the device. */
1697static int cadence_nand_read_oob(struct nand_chip *chip, int page)
1698{
1699	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1700
1701	return cadence_nand_read_page(chip, cdns_ctrl->buf, 1, page);
1702}
1703
1704static int cadence_nand_read_page_raw(struct nand_chip *chip,
1705				      u8 *buf, int oob_required, int page)
1706{
1707	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1708	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1709	struct mtd_info *mtd = nand_to_mtd(chip);
1710	int oob_skip = cdns_chip->bbm_len;
1711	int writesize = mtd->writesize;
1712	int ecc_steps = chip->ecc.steps;
1713	int ecc_size = chip->ecc.size;
1714	int ecc_bytes = chip->ecc.bytes;
1715	void *tmp_buf = cdns_ctrl->buf;
1716	int i, pos, len;
1717	int status = 0;
1718
1719	status = cadence_nand_select_target(chip);
1720	if (status)
1721		return status;
1722
1723	cadence_nand_set_skip_bytes_conf(cdns_ctrl, 0, 0, 0);
1724
1725	cadence_nand_prepare_data_size(chip, TT_RAW_PAGE);
1726	status = cadence_nand_cdma_transfer(cdns_ctrl,
1727					    cdns_chip->cs[chip->cur_cs],
1728					    page, cdns_ctrl->buf, NULL,
1729					    mtd->writesize
1730					    + mtd->oobsize,
1731					    0, DMA_FROM_DEVICE, false);
1732
1733	switch (status) {
1734	case STAT_ERASED:
1735	case STAT_OK:
1736		break;
1737	default:
1738		dev_err(cdns_ctrl->dev, "read raw page failed\n");
1739		return -EIO;
1740	}
1741
1742	/* Arrange the buffer for syndrome payload/ecc layout. */
1743	if (buf) {
1744		for (i = 0; i < ecc_steps; i++) {
1745			pos = i * (ecc_size + ecc_bytes);
1746			len = ecc_size;
1747
1748			if (pos >= writesize)
1749				pos += oob_skip;
1750			else if (pos + len > writesize)
1751				len = writesize - pos;
1752
1753			memcpy(buf, tmp_buf + pos, len);
1754			buf += len;
1755			if (len < ecc_size) {
1756				len = ecc_size - len;
1757				memcpy(buf, tmp_buf + writesize + oob_skip,
1758				       len);
1759				buf += len;
1760			}
1761		}
1762	}
1763
1764	if (oob_required) {
1765		u8 *oob = chip->oob_poi;
1766		u32 oob_data_offset = (cdns_chip->sector_count - 1) *
1767			(cdns_chip->sector_size + chip->ecc.bytes)
1768			+ cdns_chip->sector_size + oob_skip;
1769
1770		/* OOB free. */
1771		memcpy(oob, tmp_buf + oob_data_offset,
1772		       cdns_chip->avail_oob_size);
1773
1774		/* BBM at the beginning of the OOB area. */
1775		memcpy(oob, tmp_buf + writesize, oob_skip);
1776
1777		oob += cdns_chip->avail_oob_size;
1778
1779		/* OOB ECC */
1780		for (i = 0; i < ecc_steps; i++) {
1781			pos = ecc_size + i * (ecc_size + ecc_bytes);
1782			len = ecc_bytes;
1783
1784			if (i == (ecc_steps - 1))
1785				pos += cdns_chip->avail_oob_size;
1786
1787			if (pos >= writesize)
1788				pos += oob_skip;
1789			else if (pos + len > writesize)
1790				len = writesize - pos;
1791
1792			memcpy(oob, tmp_buf + pos, len);
1793			oob += len;
1794			if (len < ecc_bytes) {
1795				len = ecc_bytes - len;
1796				memcpy(oob, tmp_buf + writesize + oob_skip,
1797				       len);
1798				oob += len;
1799			}
1800		}
1801	}
1802
1803	return 0;
1804}
1805
1806static int cadence_nand_read_oob_raw(struct nand_chip *chip,
1807				     int page)
1808{
1809	return cadence_nand_read_page_raw(chip, NULL, true, page);
1810}
1811
1812static void cadence_nand_slave_dma_transfer_finished(void *data)
1813{
1814	struct completion *finished = data;
1815
1816	complete(finished);
1817}
1818
1819static int cadence_nand_slave_dma_transfer(struct cdns_nand_ctrl *cdns_ctrl,
1820					   void *buf,
1821					   dma_addr_t dev_dma, size_t len,
1822					   enum dma_data_direction dir)
1823{
1824	DECLARE_COMPLETION_ONSTACK(finished);
1825	struct dma_chan *chan;
1826	struct dma_device *dma_dev;
1827	dma_addr_t src_dma, dst_dma, buf_dma;
1828	struct dma_async_tx_descriptor *tx;
1829	dma_cookie_t cookie;
1830
1831	chan = cdns_ctrl->dmac;
1832	dma_dev = chan->device;
1833
1834	buf_dma = dma_map_single(dma_dev->dev, buf, len, dir);
1835	if (dma_mapping_error(dma_dev->dev, buf_dma)) {
1836		dev_err(cdns_ctrl->dev, "Failed to map DMA buffer\n");
1837		goto err;
1838	}
1839
1840	if (dir == DMA_FROM_DEVICE) {
1841		src_dma = cdns_ctrl->io.dma;
1842		dst_dma = buf_dma;
1843	} else {
1844		src_dma = buf_dma;
1845		dst_dma = cdns_ctrl->io.dma;
1846	}
1847
1848	tx = dmaengine_prep_dma_memcpy(cdns_ctrl->dmac, dst_dma, src_dma, len,
1849				       DMA_CTRL_ACK | DMA_PREP_INTERRUPT);
1850	if (!tx) {
1851		dev_err(cdns_ctrl->dev, "Failed to prepare DMA memcpy\n");
1852		goto err_unmap;
1853	}
1854
1855	tx->callback = cadence_nand_slave_dma_transfer_finished;
1856	tx->callback_param = &finished;
1857
1858	cookie = dmaengine_submit(tx);
1859	if (dma_submit_error(cookie)) {
1860		dev_err(cdns_ctrl->dev, "Failed to do DMA tx_submit\n");
1861		goto err_unmap;
1862	}
1863
1864	dma_async_issue_pending(cdns_ctrl->dmac);
1865	wait_for_completion(&finished);
1866
1867	dma_unmap_single(cdns_ctrl->dev, buf_dma, len, dir);
1868
1869	return 0;
1870
1871err_unmap:
1872	dma_unmap_single(cdns_ctrl->dev, buf_dma, len, dir);
1873
1874err:
1875	dev_dbg(cdns_ctrl->dev, "Fall back to CPU I/O\n");
1876
1877	return -EIO;
1878}
1879
1880static int cadence_nand_read_buf(struct cdns_nand_ctrl *cdns_ctrl,
1881				 u8 *buf, int len)
1882{
1883	u8 thread_nr = 0;
1884	u32 sdma_size;
1885	int status;
1886
1887	/* Wait until slave DMA interface is ready to data transfer. */
1888	status = cadence_nand_wait_on_sdma(cdns_ctrl, &thread_nr, &sdma_size);
1889	if (status)
1890		return status;
1891
1892	if (!cdns_ctrl->caps1->has_dma) {
1893		u8 data_dma_width = cdns_ctrl->caps2.data_dma_width;
1894
1895		int len_in_words = (data_dma_width == 4) ? len >> 2 : len >> 3;
1896
1897		/* read alingment data */
1898		if (data_dma_width == 4)
1899			ioread32_rep(cdns_ctrl->io.virt, buf, len_in_words);
1900#ifdef CONFIG_64BIT
1901		else
1902			readsq(cdns_ctrl->io.virt, buf, len_in_words);
1903#endif
1904
1905		if (sdma_size > len) {
1906			int read_bytes = (data_dma_width == 4) ?
1907				len_in_words << 2 : len_in_words << 3;
1908
1909			/* read rest data from slave DMA interface if any */
1910			if (data_dma_width == 4)
1911				ioread32_rep(cdns_ctrl->io.virt,
1912					     cdns_ctrl->buf,
1913					     sdma_size / 4 - len_in_words);
1914#ifdef CONFIG_64BIT
1915			else
1916				readsq(cdns_ctrl->io.virt, cdns_ctrl->buf,
1917				       sdma_size / 8 - len_in_words);
1918#endif
1919
1920			/* copy rest of data */
1921			memcpy(buf + read_bytes, cdns_ctrl->buf,
1922			       len - read_bytes);
1923		}
1924		return 0;
1925	}
1926
1927	if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, len)) {
1928		status = cadence_nand_slave_dma_transfer(cdns_ctrl, buf,
1929							 cdns_ctrl->io.dma,
1930							 len, DMA_FROM_DEVICE);
1931		if (status == 0)
1932			return 0;
1933
1934		dev_warn(cdns_ctrl->dev,
1935			 "Slave DMA transfer failed. Try again using bounce buffer.");
1936	}
1937
1938	/* If DMA transfer is not possible or failed then use bounce buffer. */
1939	status = cadence_nand_slave_dma_transfer(cdns_ctrl, cdns_ctrl->buf,
1940						 cdns_ctrl->io.dma,
1941						 sdma_size, DMA_FROM_DEVICE);
1942
1943	if (status) {
1944		dev_err(cdns_ctrl->dev, "Slave DMA transfer failed");
1945		return status;
1946	}
1947
1948	memcpy(buf, cdns_ctrl->buf, len);
1949
1950	return 0;
1951}
1952
1953static int cadence_nand_write_buf(struct cdns_nand_ctrl *cdns_ctrl,
1954				  const u8 *buf, int len)
1955{
1956	u8 thread_nr = 0;
1957	u32 sdma_size;
1958	int status;
1959
1960	/* Wait until slave DMA interface is ready to data transfer. */
1961	status = cadence_nand_wait_on_sdma(cdns_ctrl, &thread_nr, &sdma_size);
1962	if (status)
1963		return status;
1964
1965	if (!cdns_ctrl->caps1->has_dma) {
1966		u8 data_dma_width = cdns_ctrl->caps2.data_dma_width;
1967
1968		int len_in_words = (data_dma_width == 4) ? len >> 2 : len >> 3;
1969
1970		if (data_dma_width == 4)
1971			iowrite32_rep(cdns_ctrl->io.virt, buf, len_in_words);
1972#ifdef CONFIG_64BIT
1973		else
1974			writesq(cdns_ctrl->io.virt, buf, len_in_words);
1975#endif
1976
1977		if (sdma_size > len) {
1978			int written_bytes = (data_dma_width == 4) ?
1979				len_in_words << 2 : len_in_words << 3;
1980
1981			/* copy rest of data */
1982			memcpy(cdns_ctrl->buf, buf + written_bytes,
1983			       len - written_bytes);
1984
1985			/* write all expected by nand controller data */
1986			if (data_dma_width == 4)
1987				iowrite32_rep(cdns_ctrl->io.virt,
1988					      cdns_ctrl->buf,
1989					      sdma_size / 4 - len_in_words);
1990#ifdef CONFIG_64BIT
1991			else
1992				writesq(cdns_ctrl->io.virt, cdns_ctrl->buf,
1993					sdma_size / 8 - len_in_words);
1994#endif
1995		}
1996
1997		return 0;
1998	}
1999
2000	if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, len)) {
2001		status = cadence_nand_slave_dma_transfer(cdns_ctrl, (void *)buf,
2002							 cdns_ctrl->io.dma,
2003							 len, DMA_TO_DEVICE);
2004		if (status == 0)
2005			return 0;
2006
2007		dev_warn(cdns_ctrl->dev,
2008			 "Slave DMA transfer failed. Try again using bounce buffer.");
2009	}
2010
2011	/* If DMA transfer is not possible or failed then use bounce buffer. */
2012	memcpy(cdns_ctrl->buf, buf, len);
2013
2014	status = cadence_nand_slave_dma_transfer(cdns_ctrl, cdns_ctrl->buf,
2015						 cdns_ctrl->io.dma,
2016						 sdma_size, DMA_TO_DEVICE);
2017
2018	if (status)
2019		dev_err(cdns_ctrl->dev, "Slave DMA transfer failed");
2020
2021	return status;
2022}
2023
2024static int cadence_nand_force_byte_access(struct nand_chip *chip,
2025					  bool force_8bit)
2026{
2027	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
2028
2029	/*
2030	 * Callers of this function do not verify if the NAND is using a 16-bit
2031	 * an 8-bit bus for normal operations, so we need to take care of that
2032	 * here by leaving the configuration unchanged if the NAND does not have
2033	 * the NAND_BUSWIDTH_16 flag set.
2034	 */
2035	if (!(chip->options & NAND_BUSWIDTH_16))
2036		return 0;
2037
2038	return cadence_nand_set_access_width16(cdns_ctrl, !force_8bit);
2039}
2040
2041static int cadence_nand_cmd_opcode(struct nand_chip *chip,
2042				   const struct nand_subop *subop)
2043{
2044	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
2045	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
2046	const struct nand_op_instr *instr;
2047	unsigned int op_id = 0;
2048	u64 mini_ctrl_cmd = 0;
2049	int ret;
2050
2051	instr = &subop->instrs[op_id];
2052
2053	if (instr->delay_ns > 0)
2054		mini_ctrl_cmd |= GCMD_LAY_TWB;
2055
2056	mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR,
2057				    GCMD_LAY_INSTR_CMD);
2058	mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_CMD,
2059				    instr->ctx.cmd.opcode);
2060
2061	ret = cadence_nand_generic_cmd_send(cdns_ctrl,
2062					    cdns_chip->cs[chip->cur_cs],
2063					    mini_ctrl_cmd);
2064	if (ret)
2065		dev_err(cdns_ctrl->dev, "send cmd %x failed\n",
2066			instr->ctx.cmd.opcode);
2067
2068	return ret;
2069}
2070
2071static int cadence_nand_cmd_address(struct nand_chip *chip,
2072				    const struct nand_subop *subop)
2073{
2074	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
2075	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
2076	const struct nand_op_instr *instr;
2077	unsigned int op_id = 0;
2078	u64 mini_ctrl_cmd = 0;
2079	unsigned int offset, naddrs;
2080	u64 address = 0;
2081	const u8 *addrs;
2082	int ret;
2083	int i;
2084
2085	instr = &subop->instrs[op_id];
2086
2087	if (instr->delay_ns > 0)
2088		mini_ctrl_cmd |= GCMD_LAY_TWB;
2089
2090	mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR,
2091				    GCMD_LAY_INSTR_ADDR);
2092
2093	offset = nand_subop_get_addr_start_off(subop, op_id);
2094	naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
2095	addrs = &instr->ctx.addr.addrs[offset];
2096
2097	for (i = 0; i < naddrs; i++)
2098		address |= (u64)addrs[i] << (8 * i);
2099
2100	mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_ADDR,
2101				    address);
2102	mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_ADDR_SIZE,
2103				    naddrs - 1);
2104
2105	ret = cadence_nand_generic_cmd_send(cdns_ctrl,
2106					    cdns_chip->cs[chip->cur_cs],
2107					    mini_ctrl_cmd);
2108	if (ret)
2109		dev_err(cdns_ctrl->dev, "send address %llx failed\n", address);
2110
2111	return ret;
2112}
2113
2114static int cadence_nand_cmd_erase(struct nand_chip *chip,
2115				  const struct nand_subop *subop)
2116{
2117	unsigned int op_id;
2118
2119	if (subop->instrs[0].ctx.cmd.opcode == NAND_CMD_ERASE1) {
2120		int i;
2121		const struct nand_op_instr *instr = NULL;
2122		unsigned int offset, naddrs;
2123		const u8 *addrs;
2124		u32 page = 0;
2125
2126		instr = &subop->instrs[1];
2127		offset = nand_subop_get_addr_start_off(subop, 1);
2128		naddrs = nand_subop_get_num_addr_cyc(subop, 1);
2129		addrs = &instr->ctx.addr.addrs[offset];
2130
2131		for (i = 0; i < naddrs; i++)
2132			page |= (u32)addrs[i] << (8 * i);
2133
2134		return cadence_nand_erase(chip, page);
2135	}
2136
2137	/*
2138	 * If it is not an erase operation then handle operation
2139	 * by calling exec_op function.
2140	 */
2141	for (op_id = 0; op_id < subop->ninstrs; op_id++) {
2142		int ret;
2143		const struct nand_operation nand_op = {
2144			.cs = chip->cur_cs,
2145			.instrs =  &subop->instrs[op_id],
2146			.ninstrs = 1};
2147		ret = chip->controller->ops->exec_op(chip, &nand_op, false);
2148		if (ret)
2149			return ret;
2150	}
2151
2152	return 0;
2153}
2154
2155static int cadence_nand_cmd_data(struct nand_chip *chip,
2156				 const struct nand_subop *subop)
2157{
2158	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
2159	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
2160	const struct nand_op_instr *instr;
2161	unsigned int offset, op_id = 0;
2162	u64 mini_ctrl_cmd = 0;
2163	int len = 0;
2164	int ret;
2165
2166	instr = &subop->instrs[op_id];
2167
2168	if (instr->delay_ns > 0)
2169		mini_ctrl_cmd |= GCMD_LAY_TWB;
2170
2171	mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR,
2172				    GCMD_LAY_INSTR_DATA);
2173
2174	if (instr->type == NAND_OP_DATA_OUT_INSTR)
2175		mini_ctrl_cmd |= FIELD_PREP(GCMD_DIR,
2176					    GCMD_DIR_WRITE);
2177
2178	len = nand_subop_get_data_len(subop, op_id);
2179	offset = nand_subop_get_data_start_off(subop, op_id);
2180	mini_ctrl_cmd |= FIELD_PREP(GCMD_SECT_CNT, 1);
2181	mini_ctrl_cmd |= FIELD_PREP(GCMD_LAST_SIZE, len);
2182	if (instr->ctx.data.force_8bit) {
2183		ret = cadence_nand_force_byte_access(chip, true);
2184		if (ret) {
2185			dev_err(cdns_ctrl->dev,
2186				"cannot change byte access generic data cmd failed\n");
2187			return ret;
2188		}
2189	}
2190
2191	ret = cadence_nand_generic_cmd_send(cdns_ctrl,
2192					    cdns_chip->cs[chip->cur_cs],
2193					    mini_ctrl_cmd);
2194	if (ret) {
2195		dev_err(cdns_ctrl->dev, "send generic data cmd failed\n");
2196		return ret;
2197	}
2198
2199	if (instr->type == NAND_OP_DATA_IN_INSTR) {
2200		void *buf = instr->ctx.data.buf.in + offset;
2201
2202		ret = cadence_nand_read_buf(cdns_ctrl, buf, len);
2203	} else {
2204		const void *buf = instr->ctx.data.buf.out + offset;
2205
2206		ret = cadence_nand_write_buf(cdns_ctrl, buf, len);
2207	}
2208
2209	if (ret) {
2210		dev_err(cdns_ctrl->dev, "data transfer failed for generic command\n");
2211		return ret;
2212	}
2213
2214	if (instr->ctx.data.force_8bit) {
2215		ret = cadence_nand_force_byte_access(chip, false);
2216		if (ret) {
2217			dev_err(cdns_ctrl->dev,
2218				"cannot change byte access generic data cmd failed\n");
2219		}
2220	}
2221
2222	return ret;
2223}
2224
2225static int cadence_nand_cmd_waitrdy(struct nand_chip *chip,
2226				    const struct nand_subop *subop)
2227{
2228	int status;
2229	unsigned int op_id = 0;
2230	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
2231	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
2232	const struct nand_op_instr *instr = &subop->instrs[op_id];
2233	u32 timeout_us = instr->ctx.waitrdy.timeout_ms * 1000;
2234
2235	status = cadence_nand_wait_for_value(cdns_ctrl, RBN_SETINGS,
2236					     timeout_us,
2237					     BIT(cdns_chip->cs[chip->cur_cs]),
2238					     false);
2239	return status;
2240}
2241
2242static const struct nand_op_parser cadence_nand_op_parser = NAND_OP_PARSER(
2243	NAND_OP_PARSER_PATTERN(
2244		cadence_nand_cmd_erase,
2245		NAND_OP_PARSER_PAT_CMD_ELEM(false),
2246		NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ERASE_ADDRESS_CYC),
2247		NAND_OP_PARSER_PAT_CMD_ELEM(false),
2248		NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
2249	NAND_OP_PARSER_PATTERN(
2250		cadence_nand_cmd_opcode,
2251		NAND_OP_PARSER_PAT_CMD_ELEM(false)),
2252	NAND_OP_PARSER_PATTERN(
2253		cadence_nand_cmd_address,
2254		NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC)),
2255	NAND_OP_PARSER_PATTERN(
2256		cadence_nand_cmd_data,
2257		NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_DATA_SIZE)),
2258	NAND_OP_PARSER_PATTERN(
2259		cadence_nand_cmd_data,
2260		NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_DATA_SIZE)),
2261	NAND_OP_PARSER_PATTERN(
2262		cadence_nand_cmd_waitrdy,
2263		NAND_OP_PARSER_PAT_WAITRDY_ELEM(false))
2264	);
2265
2266static int cadence_nand_exec_op(struct nand_chip *chip,
2267				const struct nand_operation *op,
2268				bool check_only)
2269{
2270	if (!check_only) {
2271		int status = cadence_nand_select_target(chip);
2272
2273		if (status)
2274			return status;
2275	}
2276
2277	return nand_op_parser_exec_op(chip, &cadence_nand_op_parser, op,
2278				      check_only);
2279}
2280
2281static int cadence_nand_ooblayout_free(struct mtd_info *mtd, int section,
2282				       struct mtd_oob_region *oobregion)
2283{
2284	struct nand_chip *chip = mtd_to_nand(mtd);
2285	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
2286
2287	if (section)
2288		return -ERANGE;
2289
2290	oobregion->offset = cdns_chip->bbm_len;
2291	oobregion->length = cdns_chip->avail_oob_size
2292		- cdns_chip->bbm_len;
2293
2294	return 0;
2295}
2296
2297static int cadence_nand_ooblayout_ecc(struct mtd_info *mtd, int section,
2298				      struct mtd_oob_region *oobregion)
2299{
2300	struct nand_chip *chip = mtd_to_nand(mtd);
2301	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
2302
2303	if (section)
2304		return -ERANGE;
2305
2306	oobregion->offset = cdns_chip->avail_oob_size;
2307	oobregion->length = chip->ecc.total;
2308
2309	return 0;
2310}
2311
2312static const struct mtd_ooblayout_ops cadence_nand_ooblayout_ops = {
2313	.free = cadence_nand_ooblayout_free,
2314	.ecc = cadence_nand_ooblayout_ecc,
2315};
2316
2317static int calc_cycl(u32 timing, u32 clock)
2318{
2319	if (timing == 0 || clock == 0)
2320		return 0;
2321
2322	if ((timing % clock) > 0)
2323		return timing / clock;
2324	else
2325		return timing / clock - 1;
2326}
2327
2328/* Calculate max data valid window. */
2329static inline u32 calc_tdvw_max(u32 trp_cnt, u32 clk_period, u32 trhoh_min,
2330				u32 board_delay_skew_min, u32 ext_mode)
2331{
2332	if (ext_mode == 0)
2333		clk_period /= 2;
2334
2335	return (trp_cnt + 1) * clk_period + trhoh_min +
2336		board_delay_skew_min;
2337}
2338
2339/* Calculate data valid window. */
2340static inline u32 calc_tdvw(u32 trp_cnt, u32 clk_period, u32 trhoh_min,
2341			    u32 trea_max, u32 ext_mode)
2342{
2343	if (ext_mode == 0)
2344		clk_period /= 2;
2345
2346	return (trp_cnt + 1) * clk_period + trhoh_min - trea_max;
2347}
2348
2349static int
2350cadence_nand_setup_interface(struct nand_chip *chip, int chipnr,
2351			     const struct nand_interface_config *conf)
2352{
2353	const struct nand_sdr_timings *sdr;
2354	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
2355	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
2356	struct cadence_nand_timings *t = &cdns_chip->timings;
2357	u32 reg;
2358	u32 board_delay = cdns_ctrl->board_delay;
2359	u32 clk_period = DIV_ROUND_DOWN_ULL(1000000000000ULL,
2360					    cdns_ctrl->nf_clk_rate);
2361	u32 tceh_cnt, tcs_cnt, tadl_cnt, tccs_cnt;
2362	u32 tfeat_cnt, trhz_cnt, tvdly_cnt;
2363	u32 trhw_cnt, twb_cnt, twh_cnt = 0, twhr_cnt;
2364	u32 twp_cnt = 0, trp_cnt = 0, trh_cnt = 0;
2365	u32 if_skew = cdns_ctrl->caps1->if_skew;
2366	u32 board_delay_skew_min = board_delay - if_skew;
2367	u32 board_delay_skew_max = board_delay + if_skew;
2368	u32 dqs_sampl_res, phony_dqs_mod;
2369	u32 tdvw, tdvw_min, tdvw_max;
2370	u32 ext_rd_mode, ext_wr_mode;
2371	u32 dll_phy_dqs_timing = 0, phony_dqs_timing = 0, rd_del_sel = 0;
2372	u32 sampling_point;
2373
2374	sdr = nand_get_sdr_timings(conf);
2375	if (IS_ERR(sdr))
2376		return PTR_ERR(sdr);
2377
2378	memset(t, 0, sizeof(*t));
2379	/* Sampling point calculation. */
2380
2381	if (cdns_ctrl->caps2.is_phy_type_dll)
2382		phony_dqs_mod = 2;
2383	else
2384		phony_dqs_mod = 1;
2385
2386	dqs_sampl_res = clk_period / phony_dqs_mod;
2387
2388	tdvw_min = sdr->tREA_max + board_delay_skew_max;
2389	/*
2390	 * The idea of those calculation is to get the optimum value
2391	 * for tRP and tRH timings. If it is NOT possible to sample data
2392	 * with optimal tRP/tRH settings, the parameters will be extended.
2393	 * If clk_period is 50ns (the lowest value) this condition is met
2394	 * for SDR timing modes 1, 2, 3, 4 and 5.
2395	 * If clk_period is 20ns the condition is met only for SDR timing
2396	 * mode 5.
2397	 */
2398	if (sdr->tRC_min <= clk_period &&
2399	    sdr->tRP_min <= (clk_period / 2) &&
2400	    sdr->tREH_min <= (clk_period / 2)) {
2401		/* Performance mode. */
2402		ext_rd_mode = 0;
2403		tdvw = calc_tdvw(trp_cnt, clk_period, sdr->tRHOH_min,
2404				 sdr->tREA_max, ext_rd_mode);
2405		tdvw_max = calc_tdvw_max(trp_cnt, clk_period, sdr->tRHOH_min,
2406					 board_delay_skew_min,
2407					 ext_rd_mode);
2408		/*
2409		 * Check if data valid window and sampling point can be found
2410		 * and is not on the edge (ie. we have hold margin).
2411		 * If not extend the tRP timings.
2412		 */
2413		if (tdvw > 0) {
2414			if (tdvw_max <= tdvw_min ||
2415			    (tdvw_max % dqs_sampl_res) == 0) {
2416				/*
2417				 * No valid sampling point so the RE pulse need
2418				 * to be widen widening by half clock cycle.
2419				 */
2420				ext_rd_mode = 1;
2421			}
2422		} else {
2423			/*
2424			 * There is no valid window
2425			 * to be able to sample data the tRP need to be widen.
2426			 * Very safe calculations are performed here.
2427			 */
2428			trp_cnt = (sdr->tREA_max + board_delay_skew_max
2429				   + dqs_sampl_res) / clk_period;
2430			ext_rd_mode = 1;
2431		}
2432
2433	} else {
2434		/* Extended read mode. */
2435		u32 trh;
2436
2437		ext_rd_mode = 1;
2438		trp_cnt = calc_cycl(sdr->tRP_min, clk_period);
2439		trh = sdr->tRC_min - ((trp_cnt + 1) * clk_period);
2440		if (sdr->tREH_min >= trh)
2441			trh_cnt = calc_cycl(sdr->tREH_min, clk_period);
2442		else
2443			trh_cnt = calc_cycl(trh, clk_period);
2444
2445		tdvw = calc_tdvw(trp_cnt, clk_period, sdr->tRHOH_min,
2446				 sdr->tREA_max, ext_rd_mode);
2447		/*
2448		 * Check if data valid window and sampling point can be found
2449		 * or if it is at the edge check if previous is valid
2450		 * - if not extend the tRP timings.
2451		 */
2452		if (tdvw > 0) {
2453			tdvw_max = calc_tdvw_max(trp_cnt, clk_period,
2454						 sdr->tRHOH_min,
2455						 board_delay_skew_min,
2456						 ext_rd_mode);
2457
2458			if ((((tdvw_max / dqs_sampl_res)
2459			      * dqs_sampl_res) <= tdvw_min) ||
2460			    (((tdvw_max % dqs_sampl_res) == 0) &&
2461			     (((tdvw_max / dqs_sampl_res - 1)
2462			       * dqs_sampl_res) <= tdvw_min))) {
2463				/*
2464				 * Data valid window width is lower than
2465				 * sampling resolution and do not hit any
2466				 * sampling point to be sure the sampling point
2467				 * will be found the RE low pulse width will be
2468				 *  extended by one clock cycle.
2469				 */
2470				trp_cnt = trp_cnt + 1;
2471			}
2472		} else {
2473			/*
2474			 * There is no valid window to be able to sample data.
2475			 * The tRP need to be widen.
2476			 * Very safe calculations are performed here.
2477			 */
2478			trp_cnt = (sdr->tREA_max + board_delay_skew_max
2479				   + dqs_sampl_res) / clk_period;
2480		}
2481	}
2482
2483	tdvw_max = calc_tdvw_max(trp_cnt, clk_period,
2484				 sdr->tRHOH_min,
2485				 board_delay_skew_min, ext_rd_mode);
2486
2487	if (sdr->tWC_min <= clk_period &&
2488	    (sdr->tWP_min + if_skew) <= (clk_period / 2) &&
2489	    (sdr->tWH_min + if_skew) <= (clk_period / 2)) {
2490		ext_wr_mode = 0;
2491	} else {
2492		u32 twh;
2493
2494		ext_wr_mode = 1;
2495		twp_cnt = calc_cycl(sdr->tWP_min + if_skew, clk_period);
2496		if ((twp_cnt + 1) * clk_period < (sdr->tALS_min + if_skew))
2497			twp_cnt = calc_cycl(sdr->tALS_min + if_skew,
2498					    clk_period);
2499
2500		twh = (sdr->tWC_min - (twp_cnt + 1) * clk_period);
2501		if (sdr->tWH_min >= twh)
2502			twh = sdr->tWH_min;
2503
2504		twh_cnt = calc_cycl(twh + if_skew, clk_period);
2505	}
2506
2507	reg = FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TRH, trh_cnt);
2508	reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TRP, trp_cnt);
2509	reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TWH, twh_cnt);
2510	reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TWP, twp_cnt);
2511	t->async_toggle_timings = reg;
2512	dev_dbg(cdns_ctrl->dev, "ASYNC_TOGGLE_TIMINGS_SDR\t%x\n", reg);
2513
2514	tadl_cnt = calc_cycl((sdr->tADL_min + if_skew), clk_period);
2515	tccs_cnt = calc_cycl((sdr->tCCS_min + if_skew), clk_period);
2516	twhr_cnt = calc_cycl((sdr->tWHR_min + if_skew), clk_period);
2517	trhw_cnt = calc_cycl((sdr->tRHW_min + if_skew), clk_period);
2518	reg = FIELD_PREP(TIMINGS0_TADL, tadl_cnt);
2519
2520	/*
2521	 * If timing exceeds delay field in timing register
2522	 * then use maximum value.
2523	 */
2524	if (FIELD_FIT(TIMINGS0_TCCS, tccs_cnt))
2525		reg |= FIELD_PREP(TIMINGS0_TCCS, tccs_cnt);
2526	else
2527		reg |= TIMINGS0_TCCS;
2528
2529	reg |= FIELD_PREP(TIMINGS0_TWHR, twhr_cnt);
2530	reg |= FIELD_PREP(TIMINGS0_TRHW, trhw_cnt);
2531	t->timings0 = reg;
2532	dev_dbg(cdns_ctrl->dev, "TIMINGS0_SDR\t%x\n", reg);
2533
2534	/* The following is related to single signal so skew is not needed. */
2535	trhz_cnt = calc_cycl(sdr->tRHZ_max, clk_period);
2536	trhz_cnt = trhz_cnt + 1;
2537	twb_cnt = calc_cycl((sdr->tWB_max + board_delay), clk_period);
2538	/*
2539	 * Because of the two stage syncflop the value must be increased by 3
2540	 * first value is related with sync, second value is related
2541	 * with output if delay.
2542	 */
2543	twb_cnt = twb_cnt + 3 + 5;
2544	/*
2545	 * The following is related to the we edge of the random data input
2546	 * sequence so skew is not needed.
2547	 */
2548	tvdly_cnt = calc_cycl(500000 + if_skew, clk_period);
2549	reg = FIELD_PREP(TIMINGS1_TRHZ, trhz_cnt);
2550	reg |= FIELD_PREP(TIMINGS1_TWB, twb_cnt);
2551	reg |= FIELD_PREP(TIMINGS1_TVDLY, tvdly_cnt);
2552	t->timings1 = reg;
2553	dev_dbg(cdns_ctrl->dev, "TIMINGS1_SDR\t%x\n", reg);
2554
2555	tfeat_cnt = calc_cycl(sdr->tFEAT_max, clk_period);
2556	if (tfeat_cnt < twb_cnt)
2557		tfeat_cnt = twb_cnt;
2558
2559	tceh_cnt = calc_cycl(sdr->tCEH_min, clk_period);
2560	tcs_cnt = calc_cycl((sdr->tCS_min + if_skew), clk_period);
2561
2562	reg = FIELD_PREP(TIMINGS2_TFEAT, tfeat_cnt);
2563	reg |= FIELD_PREP(TIMINGS2_CS_HOLD_TIME, tceh_cnt);
2564	reg |= FIELD_PREP(TIMINGS2_CS_SETUP_TIME, tcs_cnt);
2565	t->timings2 = reg;
2566	dev_dbg(cdns_ctrl->dev, "TIMINGS2_SDR\t%x\n", reg);
2567
2568	if (cdns_ctrl->caps2.is_phy_type_dll) {
2569		reg = DLL_PHY_CTRL_DLL_RST_N;
2570		if (ext_wr_mode)
2571			reg |= DLL_PHY_CTRL_EXTENDED_WR_MODE;
2572		if (ext_rd_mode)
2573			reg |= DLL_PHY_CTRL_EXTENDED_RD_MODE;
2574
2575		reg |= FIELD_PREP(DLL_PHY_CTRL_RS_HIGH_WAIT_CNT, 7);
2576		reg |= FIELD_PREP(DLL_PHY_CTRL_RS_IDLE_CNT, 7);
2577		t->dll_phy_ctrl = reg;
2578		dev_dbg(cdns_ctrl->dev, "DLL_PHY_CTRL_SDR\t%x\n", reg);
2579	}
2580
2581	/* Sampling point calculation. */
2582	if ((tdvw_max % dqs_sampl_res) > 0)
2583		sampling_point = tdvw_max / dqs_sampl_res;
2584	else
2585		sampling_point = (tdvw_max / dqs_sampl_res - 1);
2586
2587	if (sampling_point * dqs_sampl_res > tdvw_min) {
2588		dll_phy_dqs_timing =
2589			FIELD_PREP(PHY_DQS_TIMING_DQS_SEL_OE_END, 4);
2590		dll_phy_dqs_timing |= PHY_DQS_TIMING_USE_PHONY_DQS;
2591		phony_dqs_timing = sampling_point / phony_dqs_mod;
2592
2593		if ((sampling_point % 2) > 0) {
2594			dll_phy_dqs_timing |= PHY_DQS_TIMING_PHONY_DQS_SEL;
2595			if ((tdvw_max % dqs_sampl_res) == 0)
2596				/*
2597				 * Calculation for sampling point at the edge
2598				 * of data and being odd number.
2599				 */
2600				phony_dqs_timing = (tdvw_max / dqs_sampl_res)
2601					/ phony_dqs_mod - 1;
2602
2603			if (!cdns_ctrl->caps2.is_phy_type_dll)
2604				phony_dqs_timing--;
2605
2606		} else {
2607			phony_dqs_timing--;
2608		}
2609		rd_del_sel = phony_dqs_timing + 3;
2610	} else {
2611		dev_warn(cdns_ctrl->dev,
2612			 "ERROR : cannot find valid sampling point\n");
2613	}
2614
2615	reg = FIELD_PREP(PHY_CTRL_PHONY_DQS, phony_dqs_timing);
2616	if (cdns_ctrl->caps2.is_phy_type_dll)
2617		reg  |= PHY_CTRL_SDR_DQS;
2618	t->phy_ctrl = reg;
2619	dev_dbg(cdns_ctrl->dev, "PHY_CTRL_REG_SDR\t%x\n", reg);
2620
2621	if (cdns_ctrl->caps2.is_phy_type_dll) {
2622		dev_dbg(cdns_ctrl->dev, "PHY_TSEL_REG_SDR\t%x\n", 0);
2623		dev_dbg(cdns_ctrl->dev, "PHY_DQ_TIMING_REG_SDR\t%x\n", 2);
2624		dev_dbg(cdns_ctrl->dev, "PHY_DQS_TIMING_REG_SDR\t%x\n",
2625			dll_phy_dqs_timing);
2626		t->phy_dqs_timing = dll_phy_dqs_timing;
2627
2628		reg = FIELD_PREP(PHY_GATE_LPBK_CTRL_RDS, rd_del_sel);
2629		dev_dbg(cdns_ctrl->dev, "PHY_GATE_LPBK_CTRL_REG_SDR\t%x\n",
2630			reg);
2631		t->phy_gate_lpbk_ctrl = reg;
2632
2633		dev_dbg(cdns_ctrl->dev, "PHY_DLL_MASTER_CTRL_REG_SDR\t%lx\n",
2634			PHY_DLL_MASTER_CTRL_BYPASS_MODE);
2635		dev_dbg(cdns_ctrl->dev, "PHY_DLL_SLAVE_CTRL_REG_SDR\t%x\n", 0);
2636	}
2637
2638	return 0;
2639}
2640
2641static int cadence_nand_attach_chip(struct nand_chip *chip)
2642{
2643	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
2644	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
2645	u32 ecc_size;
2646	struct mtd_info *mtd = nand_to_mtd(chip);
2647	int ret;
2648
2649	if (chip->options & NAND_BUSWIDTH_16) {
2650		ret = cadence_nand_set_access_width16(cdns_ctrl, true);
2651		if (ret)
2652			return ret;
2653	}
2654
2655	chip->bbt_options |= NAND_BBT_USE_FLASH;
2656	chip->bbt_options |= NAND_BBT_NO_OOB;
2657	chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
2658
2659	chip->options |= NAND_NO_SUBPAGE_WRITE;
2660
2661	cdns_chip->bbm_offs = chip->badblockpos;
2662	cdns_chip->bbm_offs &= ~0x01;
2663	/* this value should be even number */
2664	cdns_chip->bbm_len = 2;
2665
2666	ret = nand_ecc_choose_conf(chip,
2667				   &cdns_ctrl->ecc_caps,
2668				   mtd->oobsize - cdns_chip->bbm_len);
2669	if (ret) {
2670		dev_err(cdns_ctrl->dev, "ECC configuration failed\n");
2671		return ret;
2672	}
2673
2674	dev_dbg(cdns_ctrl->dev,
2675		"chosen ECC settings: step=%d, strength=%d, bytes=%d\n",
2676		chip->ecc.size, chip->ecc.strength, chip->ecc.bytes);
2677
2678	/* Error correction configuration. */
2679	cdns_chip->sector_size = chip->ecc.size;
2680	cdns_chip->sector_count = mtd->writesize / cdns_chip->sector_size;
2681	ecc_size = cdns_chip->sector_count * chip->ecc.bytes;
2682
2683	cdns_chip->avail_oob_size = mtd->oobsize - ecc_size;
2684
2685	if (cdns_chip->avail_oob_size > cdns_ctrl->bch_metadata_size)
2686		cdns_chip->avail_oob_size = cdns_ctrl->bch_metadata_size;
2687
2688	if ((cdns_chip->avail_oob_size + cdns_chip->bbm_len + ecc_size)
2689	    > mtd->oobsize)
2690		cdns_chip->avail_oob_size -= 4;
2691
2692	ret = cadence_nand_get_ecc_strength_idx(cdns_ctrl, chip->ecc.strength);
2693	if (ret < 0)
2694		return -EINVAL;
2695
2696	cdns_chip->corr_str_idx = (u8)ret;
2697
2698	if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
2699					1000000,
2700					CTRL_STATUS_CTRL_BUSY, true))
2701		return -ETIMEDOUT;
2702
2703	cadence_nand_set_ecc_strength(cdns_ctrl,
2704				      cdns_chip->corr_str_idx);
2705
2706	cadence_nand_set_erase_detection(cdns_ctrl, true,
2707					 chip->ecc.strength);
2708
2709	/* Override the default read operations. */
2710	chip->ecc.read_page = cadence_nand_read_page;
2711	chip->ecc.read_page_raw = cadence_nand_read_page_raw;
2712	chip->ecc.write_page = cadence_nand_write_page;
2713	chip->ecc.write_page_raw = cadence_nand_write_page_raw;
2714	chip->ecc.read_oob = cadence_nand_read_oob;
2715	chip->ecc.write_oob = cadence_nand_write_oob;
2716	chip->ecc.read_oob_raw = cadence_nand_read_oob_raw;
2717	chip->ecc.write_oob_raw = cadence_nand_write_oob_raw;
2718
2719	if ((mtd->writesize + mtd->oobsize) > cdns_ctrl->buf_size)
2720		cdns_ctrl->buf_size = mtd->writesize + mtd->oobsize;
2721
2722	/* Is 32-bit DMA supported? */
2723	ret = dma_set_mask(cdns_ctrl->dev, DMA_BIT_MASK(32));
2724	if (ret) {
2725		dev_err(cdns_ctrl->dev, "no usable DMA configuration\n");
2726		return ret;
2727	}
2728
2729	mtd_set_ooblayout(mtd, &cadence_nand_ooblayout_ops);
2730
2731	return 0;
2732}
2733
2734static const struct nand_controller_ops cadence_nand_controller_ops = {
2735	.attach_chip = cadence_nand_attach_chip,
2736	.exec_op = cadence_nand_exec_op,
2737	.setup_interface = cadence_nand_setup_interface,
2738};
2739
2740static int cadence_nand_chip_init(struct cdns_nand_ctrl *cdns_ctrl,
2741				  struct device_node *np)
2742{
2743	struct cdns_nand_chip *cdns_chip;
2744	struct mtd_info *mtd;
2745	struct nand_chip *chip;
2746	int nsels, ret, i;
2747	u32 cs;
2748
2749	nsels = of_property_count_elems_of_size(np, "reg", sizeof(u32));
2750	if (nsels <= 0) {
2751		dev_err(cdns_ctrl->dev, "missing/invalid reg property\n");
2752		return -EINVAL;
2753	}
2754
2755	/* Allocate the nand chip structure. */
2756	cdns_chip = devm_kzalloc(cdns_ctrl->dev, sizeof(*cdns_chip) +
2757				 (nsels * sizeof(u8)),
2758				 GFP_KERNEL);
2759	if (!cdns_chip) {
2760		dev_err(cdns_ctrl->dev, "could not allocate chip structure\n");
2761		return -ENOMEM;
2762	}
2763
2764	cdns_chip->nsels = nsels;
2765
2766	for (i = 0; i < nsels; i++) {
2767		/* Retrieve CS id. */
2768		ret = of_property_read_u32_index(np, "reg", i, &cs);
2769		if (ret) {
2770			dev_err(cdns_ctrl->dev,
2771				"could not retrieve reg property: %d\n",
2772				ret);
2773			return ret;
2774		}
2775
2776		if (cs >= cdns_ctrl->caps2.max_banks) {
2777			dev_err(cdns_ctrl->dev,
2778				"invalid reg value: %u (max CS = %d)\n",
2779				cs, cdns_ctrl->caps2.max_banks);
2780			return -EINVAL;
2781		}
2782
2783		if (test_and_set_bit(cs, &cdns_ctrl->assigned_cs)) {
2784			dev_err(cdns_ctrl->dev,
2785				"CS %d already assigned\n", cs);
2786			return -EINVAL;
2787		}
2788
2789		cdns_chip->cs[i] = cs;
2790	}
2791
2792	chip = &cdns_chip->chip;
2793	chip->controller = &cdns_ctrl->controller;
2794	nand_set_flash_node(chip, np);
2795
2796	mtd = nand_to_mtd(chip);
2797	mtd->dev.parent = cdns_ctrl->dev;
2798
2799	/*
2800	 * Default to HW ECC engine mode. If the nand-ecc-mode property is given
2801	 * in the DT node, this entry will be overwritten in nand_scan_ident().
2802	 */
2803	chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
2804
2805	ret = nand_scan(chip, cdns_chip->nsels);
2806	if (ret) {
2807		dev_err(cdns_ctrl->dev, "could not scan the nand chip\n");
2808		return ret;
2809	}
2810
2811	ret = mtd_device_register(mtd, NULL, 0);
2812	if (ret) {
2813		dev_err(cdns_ctrl->dev,
2814			"failed to register mtd device: %d\n", ret);
2815		nand_cleanup(chip);
2816		return ret;
2817	}
2818
2819	list_add_tail(&cdns_chip->node, &cdns_ctrl->chips);
2820
2821	return 0;
2822}
2823
2824static void cadence_nand_chips_cleanup(struct cdns_nand_ctrl *cdns_ctrl)
2825{
2826	struct cdns_nand_chip *entry, *temp;
2827	struct nand_chip *chip;
2828	int ret;
2829
2830	list_for_each_entry_safe(entry, temp, &cdns_ctrl->chips, node) {
2831		chip = &entry->chip;
2832		ret = mtd_device_unregister(nand_to_mtd(chip));
2833		WARN_ON(ret);
2834		nand_cleanup(chip);
2835		list_del(&entry->node);
2836	}
2837}
2838
2839static int cadence_nand_chips_init(struct cdns_nand_ctrl *cdns_ctrl)
2840{
2841	struct device_node *np = cdns_ctrl->dev->of_node;
2842	struct device_node *nand_np;
2843	int max_cs = cdns_ctrl->caps2.max_banks;
2844	int nchips, ret;
2845
2846	nchips = of_get_child_count(np);
2847
2848	if (nchips > max_cs) {
2849		dev_err(cdns_ctrl->dev,
2850			"too many NAND chips: %d (max = %d CS)\n",
2851			nchips, max_cs);
2852		return -EINVAL;
2853	}
2854
2855	for_each_child_of_node(np, nand_np) {
2856		ret = cadence_nand_chip_init(cdns_ctrl, nand_np);
2857		if (ret) {
2858			of_node_put(nand_np);
2859			cadence_nand_chips_cleanup(cdns_ctrl);
2860			return ret;
2861		}
2862	}
2863
2864	return 0;
2865}
2866
2867static void
2868cadence_nand_irq_cleanup(int irqnum, struct cdns_nand_ctrl *cdns_ctrl)
2869{
2870	/* Disable interrupts. */
2871	writel_relaxed(INTR_ENABLE_INTR_EN, cdns_ctrl->reg + INTR_ENABLE);
2872}
2873
2874static int cadence_nand_init(struct cdns_nand_ctrl *cdns_ctrl)
2875{
2876	dma_cap_mask_t mask;
2877	int ret;
2878
2879	cdns_ctrl->cdma_desc = dma_alloc_coherent(cdns_ctrl->dev,
2880						  sizeof(*cdns_ctrl->cdma_desc),
2881						  &cdns_ctrl->dma_cdma_desc,
2882						  GFP_KERNEL);
2883	if (!cdns_ctrl->dma_cdma_desc)
2884		return -ENOMEM;
2885
2886	cdns_ctrl->buf_size = SZ_16K;
2887	cdns_ctrl->buf = kmalloc(cdns_ctrl->buf_size, GFP_KERNEL);
2888	if (!cdns_ctrl->buf) {
2889		ret = -ENOMEM;
2890		goto free_buf_desc;
2891	}
2892
2893	if (devm_request_irq(cdns_ctrl->dev, cdns_ctrl->irq, cadence_nand_isr,
2894			     IRQF_SHARED, "cadence-nand-controller",
2895			     cdns_ctrl)) {
2896		dev_err(cdns_ctrl->dev, "Unable to allocate IRQ\n");
2897		ret = -ENODEV;
2898		goto free_buf;
2899	}
2900
2901	spin_lock_init(&cdns_ctrl->irq_lock);
2902	init_completion(&cdns_ctrl->complete);
2903
2904	ret = cadence_nand_hw_init(cdns_ctrl);
2905	if (ret)
2906		goto disable_irq;
2907
2908	dma_cap_zero(mask);
2909	dma_cap_set(DMA_MEMCPY, mask);
2910
2911	if (cdns_ctrl->caps1->has_dma) {
2912		cdns_ctrl->dmac = dma_request_channel(mask, NULL, NULL);
2913		if (!cdns_ctrl->dmac) {
2914			dev_err(cdns_ctrl->dev,
2915				"Unable to get a DMA channel\n");
2916			ret = -EBUSY;
2917			goto disable_irq;
2918		}
2919	}
2920
2921	nand_controller_init(&cdns_ctrl->controller);
2922	INIT_LIST_HEAD(&cdns_ctrl->chips);
2923
2924	cdns_ctrl->controller.ops = &cadence_nand_controller_ops;
2925	cdns_ctrl->curr_corr_str_idx = 0xFF;
2926
2927	ret = cadence_nand_chips_init(cdns_ctrl);
2928	if (ret) {
2929		dev_err(cdns_ctrl->dev, "Failed to register MTD: %d\n",
2930			ret);
2931		goto dma_release_chnl;
2932	}
2933
2934	kfree(cdns_ctrl->buf);
2935	cdns_ctrl->buf = kzalloc(cdns_ctrl->buf_size, GFP_KERNEL);
2936	if (!cdns_ctrl->buf) {
2937		ret = -ENOMEM;
2938		goto dma_release_chnl;
2939	}
2940
2941	return 0;
2942
2943dma_release_chnl:
2944	if (cdns_ctrl->dmac)
2945		dma_release_channel(cdns_ctrl->dmac);
2946
2947disable_irq:
2948	cadence_nand_irq_cleanup(cdns_ctrl->irq, cdns_ctrl);
2949
2950free_buf:
2951	kfree(cdns_ctrl->buf);
2952
2953free_buf_desc:
2954	dma_free_coherent(cdns_ctrl->dev, sizeof(struct cadence_nand_cdma_desc),
2955			  cdns_ctrl->cdma_desc, cdns_ctrl->dma_cdma_desc);
2956
2957	return ret;
2958}
2959
2960/* Driver exit point. */
2961static void cadence_nand_remove(struct cdns_nand_ctrl *cdns_ctrl)
2962{
2963	cadence_nand_chips_cleanup(cdns_ctrl);
2964	cadence_nand_irq_cleanup(cdns_ctrl->irq, cdns_ctrl);
2965	kfree(cdns_ctrl->buf);
2966	dma_free_coherent(cdns_ctrl->dev, sizeof(struct cadence_nand_cdma_desc),
2967			  cdns_ctrl->cdma_desc, cdns_ctrl->dma_cdma_desc);
2968
2969	if (cdns_ctrl->dmac)
2970		dma_release_channel(cdns_ctrl->dmac);
2971}
2972
2973struct cadence_nand_dt {
2974	struct cdns_nand_ctrl cdns_ctrl;
2975	struct clk *clk;
2976};
2977
2978static const struct cadence_nand_dt_devdata cadence_nand_default = {
2979	.if_skew = 0,
2980	.has_dma = 1,
2981};
2982
2983static const struct of_device_id cadence_nand_dt_ids[] = {
2984	{
2985		.compatible = "cdns,hp-nfc",
2986		.data = &cadence_nand_default
2987	}, {}
2988};
2989
2990MODULE_DEVICE_TABLE(of, cadence_nand_dt_ids);
2991
2992static int cadence_nand_dt_probe(struct platform_device *ofdev)
2993{
2994	struct resource *res;
2995	struct cadence_nand_dt *dt;
2996	struct cdns_nand_ctrl *cdns_ctrl;
2997	int ret;
2998	const struct of_device_id *of_id;
2999	const struct cadence_nand_dt_devdata *devdata;
3000	u32 val;
3001
3002	of_id = of_match_device(cadence_nand_dt_ids, &ofdev->dev);
3003	if (of_id) {
3004		ofdev->id_entry = of_id->data;
3005		devdata = of_id->data;
3006	} else {
3007		pr_err("Failed to find the right device id.\n");
3008		return -ENOMEM;
3009	}
3010
3011	dt = devm_kzalloc(&ofdev->dev, sizeof(*dt), GFP_KERNEL);
3012	if (!dt)
3013		return -ENOMEM;
3014
3015	cdns_ctrl = &dt->cdns_ctrl;
3016	cdns_ctrl->caps1 = devdata;
3017
3018	cdns_ctrl->dev = &ofdev->dev;
3019	cdns_ctrl->irq = platform_get_irq(ofdev, 0);
3020	if (cdns_ctrl->irq < 0)
3021		return cdns_ctrl->irq;
3022
3023	dev_info(cdns_ctrl->dev, "IRQ: nr %d\n", cdns_ctrl->irq);
3024
3025	cdns_ctrl->reg = devm_platform_ioremap_resource(ofdev, 0);
3026	if (IS_ERR(cdns_ctrl->reg))
3027		return PTR_ERR(cdns_ctrl->reg);
3028
3029	cdns_ctrl->io.virt = devm_platform_get_and_ioremap_resource(ofdev, 1, &res);
3030	if (IS_ERR(cdns_ctrl->io.virt))
3031		return PTR_ERR(cdns_ctrl->io.virt);
3032	cdns_ctrl->io.dma = res->start;
3033
3034	dt->clk = devm_clk_get(cdns_ctrl->dev, "nf_clk");
3035	if (IS_ERR(dt->clk))
3036		return PTR_ERR(dt->clk);
3037
3038	cdns_ctrl->nf_clk_rate = clk_get_rate(dt->clk);
3039
3040	ret = of_property_read_u32(ofdev->dev.of_node,
3041				   "cdns,board-delay-ps", &val);
3042	if (ret) {
3043		val = 4830;
3044		dev_info(cdns_ctrl->dev,
3045			 "missing cdns,board-delay-ps property, %d was set\n",
3046			 val);
3047	}
3048	cdns_ctrl->board_delay = val;
3049
3050	ret = cadence_nand_init(cdns_ctrl);
3051	if (ret)
3052		return ret;
3053
3054	platform_set_drvdata(ofdev, dt);
3055	return 0;
3056}
3057
3058static void cadence_nand_dt_remove(struct platform_device *ofdev)
3059{
3060	struct cadence_nand_dt *dt = platform_get_drvdata(ofdev);
3061
3062	cadence_nand_remove(&dt->cdns_ctrl);
3063}
3064
3065static struct platform_driver cadence_nand_dt_driver = {
3066	.probe		= cadence_nand_dt_probe,
3067	.remove_new	= cadence_nand_dt_remove,
3068	.driver		= {
3069		.name	= "cadence-nand-controller",
3070		.of_match_table = cadence_nand_dt_ids,
3071	},
3072};
3073
3074module_platform_driver(cadence_nand_dt_driver);
3075
3076MODULE_AUTHOR("Piotr Sroka <piotrs@cadence.com>");
3077MODULE_LICENSE("GPL v2");
3078MODULE_DESCRIPTION("Driver for Cadence NAND flash controller");
3079
3080