1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright © 2010-2015 Broadcom Corporation
4 */
5
6#include <linux/clk.h>
7#include <linux/module.h>
8#include <linux/init.h>
9#include <linux/delay.h>
10#include <linux/device.h>
11#include <linux/platform_device.h>
12#include <linux/platform_data/brcmnand.h>
13#include <linux/err.h>
14#include <linux/completion.h>
15#include <linux/interrupt.h>
16#include <linux/spinlock.h>
17#include <linux/dma-mapping.h>
18#include <linux/ioport.h>
19#include <linux/bug.h>
20#include <linux/kernel.h>
21#include <linux/bitops.h>
22#include <linux/mm.h>
23#include <linux/mtd/mtd.h>
24#include <linux/mtd/rawnand.h>
25#include <linux/mtd/partitions.h>
26#include <linux/of.h>
27#include <linux/of_platform.h>
28#include <linux/slab.h>
29#include <linux/static_key.h>
30#include <linux/list.h>
31#include <linux/log2.h>
32
33#include "brcmnand.h"
34
35/*
36 * This flag controls if WP stays on between erase/write commands to mitigate
37 * flash corruption due to power glitches. Values:
38 * 0: NAND_WP is not used or not available
39 * 1: NAND_WP is set by default, cleared for erase/write operations
40 * 2: NAND_WP is always cleared
41 */
42static int wp_on = 1;
43module_param(wp_on, int, 0444);
44
45/***********************************************************************
46 * Definitions
47 ***********************************************************************/
48
49#define DRV_NAME			"brcmnand"
50
51#define CMD_NULL			0x00
52#define CMD_PAGE_READ			0x01
53#define CMD_SPARE_AREA_READ		0x02
54#define CMD_STATUS_READ			0x03
55#define CMD_PROGRAM_PAGE		0x04
56#define CMD_PROGRAM_SPARE_AREA		0x05
57#define CMD_COPY_BACK			0x06
58#define CMD_DEVICE_ID_READ		0x07
59#define CMD_BLOCK_ERASE			0x08
60#define CMD_FLASH_RESET			0x09
61#define CMD_BLOCKS_LOCK			0x0a
62#define CMD_BLOCKS_LOCK_DOWN		0x0b
63#define CMD_BLOCKS_UNLOCK		0x0c
64#define CMD_READ_BLOCKS_LOCK_STATUS	0x0d
65#define CMD_PARAMETER_READ		0x0e
66#define CMD_PARAMETER_CHANGE_COL	0x0f
67#define CMD_LOW_LEVEL_OP		0x10
68
69struct brcm_nand_dma_desc {
70	u32 next_desc;
71	u32 next_desc_ext;
72	u32 cmd_irq;
73	u32 dram_addr;
74	u32 dram_addr_ext;
75	u32 tfr_len;
76	u32 total_len;
77	u32 flash_addr;
78	u32 flash_addr_ext;
79	u32 cs;
80	u32 pad2[5];
81	u32 status_valid;
82} __packed;
83
84/* Bitfields for brcm_nand_dma_desc::status_valid */
85#define FLASH_DMA_ECC_ERROR	(1 << 8)
86#define FLASH_DMA_CORR_ERROR	(1 << 9)
87
88/* Bitfields for DMA_MODE */
89#define FLASH_DMA_MODE_STOP_ON_ERROR	BIT(1) /* stop in Uncorr ECC error */
90#define FLASH_DMA_MODE_MODE		BIT(0) /* link list */
91#define FLASH_DMA_MODE_MASK		(FLASH_DMA_MODE_STOP_ON_ERROR |	\
92						FLASH_DMA_MODE_MODE)
93
94/* 512B flash cache in the NAND controller HW */
95#define FC_SHIFT		9U
96#define FC_BYTES		512U
97#define FC_WORDS		(FC_BYTES >> 2)
98
99#define BRCMNAND_MIN_PAGESIZE	512
100#define BRCMNAND_MIN_BLOCKSIZE	(8 * 1024)
101#define BRCMNAND_MIN_DEVSIZE	(4ULL * 1024 * 1024)
102
103#define NAND_CTRL_RDY			(INTFC_CTLR_READY | INTFC_FLASH_READY)
104#define NAND_POLL_STATUS_TIMEOUT_MS	100
105
106#define EDU_CMD_WRITE          0x00
107#define EDU_CMD_READ           0x01
108#define EDU_STATUS_ACTIVE      BIT(0)
109#define EDU_ERR_STATUS_ERRACK  BIT(0)
110#define EDU_DONE_MASK		GENMASK(1, 0)
111
112#define EDU_CONFIG_MODE_NAND   BIT(0)
113#define EDU_CONFIG_SWAP_BYTE   BIT(1)
114#ifdef CONFIG_CPU_BIG_ENDIAN
115#define EDU_CONFIG_SWAP_CFG     EDU_CONFIG_SWAP_BYTE
116#else
117#define EDU_CONFIG_SWAP_CFG     0
118#endif
119
120/* edu registers */
121enum edu_reg {
122	EDU_CONFIG = 0,
123	EDU_DRAM_ADDR,
124	EDU_EXT_ADDR,
125	EDU_LENGTH,
126	EDU_CMD,
127	EDU_STOP,
128	EDU_STATUS,
129	EDU_DONE,
130	EDU_ERR_STATUS,
131};
132
133static const u16  edu_regs[] = {
134	[EDU_CONFIG] = 0x00,
135	[EDU_DRAM_ADDR] = 0x04,
136	[EDU_EXT_ADDR] = 0x08,
137	[EDU_LENGTH] = 0x0c,
138	[EDU_CMD] = 0x10,
139	[EDU_STOP] = 0x14,
140	[EDU_STATUS] = 0x18,
141	[EDU_DONE] = 0x1c,
142	[EDU_ERR_STATUS] = 0x20,
143};
144
145/* flash_dma registers */
146enum flash_dma_reg {
147	FLASH_DMA_REVISION = 0,
148	FLASH_DMA_FIRST_DESC,
149	FLASH_DMA_FIRST_DESC_EXT,
150	FLASH_DMA_CTRL,
151	FLASH_DMA_MODE,
152	FLASH_DMA_STATUS,
153	FLASH_DMA_INTERRUPT_DESC,
154	FLASH_DMA_INTERRUPT_DESC_EXT,
155	FLASH_DMA_ERROR_STATUS,
156	FLASH_DMA_CURRENT_DESC,
157	FLASH_DMA_CURRENT_DESC_EXT,
158};
159
160/* flash_dma registers v0*/
161static const u16 flash_dma_regs_v0[] = {
162	[FLASH_DMA_REVISION]		= 0x00,
163	[FLASH_DMA_FIRST_DESC]		= 0x04,
164	[FLASH_DMA_CTRL]		= 0x08,
165	[FLASH_DMA_MODE]		= 0x0c,
166	[FLASH_DMA_STATUS]		= 0x10,
167	[FLASH_DMA_INTERRUPT_DESC]	= 0x14,
168	[FLASH_DMA_ERROR_STATUS]	= 0x18,
169	[FLASH_DMA_CURRENT_DESC]	= 0x1c,
170};
171
172/* flash_dma registers v1*/
173static const u16 flash_dma_regs_v1[] = {
174	[FLASH_DMA_REVISION]		= 0x00,
175	[FLASH_DMA_FIRST_DESC]		= 0x04,
176	[FLASH_DMA_FIRST_DESC_EXT]	= 0x08,
177	[FLASH_DMA_CTRL]		= 0x0c,
178	[FLASH_DMA_MODE]		= 0x10,
179	[FLASH_DMA_STATUS]		= 0x14,
180	[FLASH_DMA_INTERRUPT_DESC]	= 0x18,
181	[FLASH_DMA_INTERRUPT_DESC_EXT]	= 0x1c,
182	[FLASH_DMA_ERROR_STATUS]	= 0x20,
183	[FLASH_DMA_CURRENT_DESC]	= 0x24,
184	[FLASH_DMA_CURRENT_DESC_EXT]	= 0x28,
185};
186
187/* flash_dma registers v4 */
188static const u16 flash_dma_regs_v4[] = {
189	[FLASH_DMA_REVISION]		= 0x00,
190	[FLASH_DMA_FIRST_DESC]		= 0x08,
191	[FLASH_DMA_FIRST_DESC_EXT]	= 0x0c,
192	[FLASH_DMA_CTRL]		= 0x10,
193	[FLASH_DMA_MODE]		= 0x14,
194	[FLASH_DMA_STATUS]		= 0x18,
195	[FLASH_DMA_INTERRUPT_DESC]	= 0x20,
196	[FLASH_DMA_INTERRUPT_DESC_EXT]	= 0x24,
197	[FLASH_DMA_ERROR_STATUS]	= 0x28,
198	[FLASH_DMA_CURRENT_DESC]	= 0x30,
199	[FLASH_DMA_CURRENT_DESC_EXT]	= 0x34,
200};
201
202/* Controller feature flags */
203enum {
204	BRCMNAND_HAS_1K_SECTORS			= BIT(0),
205	BRCMNAND_HAS_PREFETCH			= BIT(1),
206	BRCMNAND_HAS_CACHE_MODE			= BIT(2),
207	BRCMNAND_HAS_WP				= BIT(3),
208};
209
210struct brcmnand_host;
211
212static DEFINE_STATIC_KEY_FALSE(brcmnand_soc_has_ops_key);
213
214struct brcmnand_controller {
215	struct device		*dev;
216	struct nand_controller	controller;
217	void __iomem		*nand_base;
218	void __iomem		*nand_fc; /* flash cache */
219	void __iomem		*flash_dma_base;
220	int			irq;
221	unsigned int		dma_irq;
222	int			nand_version;
223
224	/* Some SoCs provide custom interrupt status register(s) */
225	struct brcmnand_soc	*soc;
226
227	/* Some SoCs have a gateable clock for the controller */
228	struct clk		*clk;
229
230	int			cmd_pending;
231	bool			dma_pending;
232	bool                    edu_pending;
233	struct completion	done;
234	struct completion	dma_done;
235	struct completion       edu_done;
236
237	/* List of NAND hosts (one for each chip-select) */
238	struct list_head host_list;
239
240	/* EDU info, per-transaction */
241	const u16               *edu_offsets;
242	void __iomem            *edu_base;
243	int			edu_irq;
244	int                     edu_count;
245	u64                     edu_dram_addr;
246	u32                     edu_ext_addr;
247	u32                     edu_cmd;
248	u32                     edu_config;
249	int			sas; /* spare area size, per flash cache */
250	int			sector_size_1k;
251	u8			*oob;
252
253	/* flash_dma reg */
254	const u16		*flash_dma_offsets;
255	struct brcm_nand_dma_desc *dma_desc;
256	dma_addr_t		dma_pa;
257
258	int (*dma_trans)(struct brcmnand_host *host, u64 addr, u32 *buf,
259			 u8 *oob, u32 len, u8 dma_cmd);
260
261	/* in-memory cache of the FLASH_CACHE, used only for some commands */
262	u8			flash_cache[FC_BYTES];
263
264	/* Controller revision details */
265	const u16		*reg_offsets;
266	unsigned int		reg_spacing; /* between CS1, CS2, ... regs */
267	const u8		*cs_offsets; /* within each chip-select */
268	const u8		*cs0_offsets; /* within CS0, if different */
269	unsigned int		max_block_size;
270	const unsigned int	*block_sizes;
271	unsigned int		max_page_size;
272	const unsigned int	*page_sizes;
273	unsigned int		page_size_shift;
274	unsigned int		max_oob;
275	u32			ecc_level_shift;
276	u32			features;
277
278	/* for low-power standby/resume only */
279	u32			nand_cs_nand_select;
280	u32			nand_cs_nand_xor;
281	u32			corr_stat_threshold;
282	u32			flash_dma_mode;
283	u32                     flash_edu_mode;
284	bool			pio_poll_mode;
285};
286
287struct brcmnand_cfg {
288	u64			device_size;
289	unsigned int		block_size;
290	unsigned int		page_size;
291	unsigned int		spare_area_size;
292	unsigned int		device_width;
293	unsigned int		col_adr_bytes;
294	unsigned int		blk_adr_bytes;
295	unsigned int		ful_adr_bytes;
296	unsigned int		sector_size_1k;
297	unsigned int		ecc_level;
298	/* use for low-power standby/resume only */
299	u32			acc_control;
300	u32			config;
301	u32			config_ext;
302	u32			timing_1;
303	u32			timing_2;
304};
305
306struct brcmnand_host {
307	struct list_head	node;
308
309	struct nand_chip	chip;
310	struct platform_device	*pdev;
311	int			cs;
312
313	unsigned int		last_cmd;
314	unsigned int		last_byte;
315	u64			last_addr;
316	struct brcmnand_cfg	hwcfg;
317	struct brcmnand_controller *ctrl;
318};
319
320enum brcmnand_reg {
321	BRCMNAND_CMD_START = 0,
322	BRCMNAND_CMD_EXT_ADDRESS,
323	BRCMNAND_CMD_ADDRESS,
324	BRCMNAND_INTFC_STATUS,
325	BRCMNAND_CS_SELECT,
326	BRCMNAND_CS_XOR,
327	BRCMNAND_LL_OP,
328	BRCMNAND_CS0_BASE,
329	BRCMNAND_CS1_BASE,		/* CS1 regs, if non-contiguous */
330	BRCMNAND_CORR_THRESHOLD,
331	BRCMNAND_CORR_THRESHOLD_EXT,
332	BRCMNAND_UNCORR_COUNT,
333	BRCMNAND_CORR_COUNT,
334	BRCMNAND_CORR_EXT_ADDR,
335	BRCMNAND_CORR_ADDR,
336	BRCMNAND_UNCORR_EXT_ADDR,
337	BRCMNAND_UNCORR_ADDR,
338	BRCMNAND_SEMAPHORE,
339	BRCMNAND_ID,
340	BRCMNAND_ID_EXT,
341	BRCMNAND_LL_RDATA,
342	BRCMNAND_OOB_READ_BASE,
343	BRCMNAND_OOB_READ_10_BASE,	/* offset 0x10, if non-contiguous */
344	BRCMNAND_OOB_WRITE_BASE,
345	BRCMNAND_OOB_WRITE_10_BASE,	/* offset 0x10, if non-contiguous */
346	BRCMNAND_FC_BASE,
347};
348
349/* BRCMNAND v2.1-v2.2 */
350static const u16 brcmnand_regs_v21[] = {
351	[BRCMNAND_CMD_START]		=  0x04,
352	[BRCMNAND_CMD_EXT_ADDRESS]	=  0x08,
353	[BRCMNAND_CMD_ADDRESS]		=  0x0c,
354	[BRCMNAND_INTFC_STATUS]		=  0x5c,
355	[BRCMNAND_CS_SELECT]		=  0x14,
356	[BRCMNAND_CS_XOR]		=  0x18,
357	[BRCMNAND_LL_OP]		=     0,
358	[BRCMNAND_CS0_BASE]		=  0x40,
359	[BRCMNAND_CS1_BASE]		=     0,
360	[BRCMNAND_CORR_THRESHOLD]	=     0,
361	[BRCMNAND_CORR_THRESHOLD_EXT]	=     0,
362	[BRCMNAND_UNCORR_COUNT]		=     0,
363	[BRCMNAND_CORR_COUNT]		=     0,
364	[BRCMNAND_CORR_EXT_ADDR]	=  0x60,
365	[BRCMNAND_CORR_ADDR]		=  0x64,
366	[BRCMNAND_UNCORR_EXT_ADDR]	=  0x68,
367	[BRCMNAND_UNCORR_ADDR]		=  0x6c,
368	[BRCMNAND_SEMAPHORE]		=  0x50,
369	[BRCMNAND_ID]			=  0x54,
370	[BRCMNAND_ID_EXT]		=     0,
371	[BRCMNAND_LL_RDATA]		=     0,
372	[BRCMNAND_OOB_READ_BASE]	=  0x20,
373	[BRCMNAND_OOB_READ_10_BASE]	=     0,
374	[BRCMNAND_OOB_WRITE_BASE]	=  0x30,
375	[BRCMNAND_OOB_WRITE_10_BASE]	=     0,
376	[BRCMNAND_FC_BASE]		= 0x200,
377};
378
379/* BRCMNAND v3.3-v4.0 */
380static const u16 brcmnand_regs_v33[] = {
381	[BRCMNAND_CMD_START]		=  0x04,
382	[BRCMNAND_CMD_EXT_ADDRESS]	=  0x08,
383	[BRCMNAND_CMD_ADDRESS]		=  0x0c,
384	[BRCMNAND_INTFC_STATUS]		=  0x6c,
385	[BRCMNAND_CS_SELECT]		=  0x14,
386	[BRCMNAND_CS_XOR]		=  0x18,
387	[BRCMNAND_LL_OP]		= 0x178,
388	[BRCMNAND_CS0_BASE]		=  0x40,
389	[BRCMNAND_CS1_BASE]		=  0xd0,
390	[BRCMNAND_CORR_THRESHOLD]	=  0x84,
391	[BRCMNAND_CORR_THRESHOLD_EXT]	=     0,
392	[BRCMNAND_UNCORR_COUNT]		=     0,
393	[BRCMNAND_CORR_COUNT]		=     0,
394	[BRCMNAND_CORR_EXT_ADDR]	=  0x70,
395	[BRCMNAND_CORR_ADDR]		=  0x74,
396	[BRCMNAND_UNCORR_EXT_ADDR]	=  0x78,
397	[BRCMNAND_UNCORR_ADDR]		=  0x7c,
398	[BRCMNAND_SEMAPHORE]		=  0x58,
399	[BRCMNAND_ID]			=  0x60,
400	[BRCMNAND_ID_EXT]		=  0x64,
401	[BRCMNAND_LL_RDATA]		= 0x17c,
402	[BRCMNAND_OOB_READ_BASE]	=  0x20,
403	[BRCMNAND_OOB_READ_10_BASE]	= 0x130,
404	[BRCMNAND_OOB_WRITE_BASE]	=  0x30,
405	[BRCMNAND_OOB_WRITE_10_BASE]	=     0,
406	[BRCMNAND_FC_BASE]		= 0x200,
407};
408
409/* BRCMNAND v5.0 */
410static const u16 brcmnand_regs_v50[] = {
411	[BRCMNAND_CMD_START]		=  0x04,
412	[BRCMNAND_CMD_EXT_ADDRESS]	=  0x08,
413	[BRCMNAND_CMD_ADDRESS]		=  0x0c,
414	[BRCMNAND_INTFC_STATUS]		=  0x6c,
415	[BRCMNAND_CS_SELECT]		=  0x14,
416	[BRCMNAND_CS_XOR]		=  0x18,
417	[BRCMNAND_LL_OP]		= 0x178,
418	[BRCMNAND_CS0_BASE]		=  0x40,
419	[BRCMNAND_CS1_BASE]		=  0xd0,
420	[BRCMNAND_CORR_THRESHOLD]	=  0x84,
421	[BRCMNAND_CORR_THRESHOLD_EXT]	=     0,
422	[BRCMNAND_UNCORR_COUNT]		=     0,
423	[BRCMNAND_CORR_COUNT]		=     0,
424	[BRCMNAND_CORR_EXT_ADDR]	=  0x70,
425	[BRCMNAND_CORR_ADDR]		=  0x74,
426	[BRCMNAND_UNCORR_EXT_ADDR]	=  0x78,
427	[BRCMNAND_UNCORR_ADDR]		=  0x7c,
428	[BRCMNAND_SEMAPHORE]		=  0x58,
429	[BRCMNAND_ID]			=  0x60,
430	[BRCMNAND_ID_EXT]		=  0x64,
431	[BRCMNAND_LL_RDATA]		= 0x17c,
432	[BRCMNAND_OOB_READ_BASE]	=  0x20,
433	[BRCMNAND_OOB_READ_10_BASE]	= 0x130,
434	[BRCMNAND_OOB_WRITE_BASE]	=  0x30,
435	[BRCMNAND_OOB_WRITE_10_BASE]	= 0x140,
436	[BRCMNAND_FC_BASE]		= 0x200,
437};
438
439/* BRCMNAND v6.0 - v7.1 */
440static const u16 brcmnand_regs_v60[] = {
441	[BRCMNAND_CMD_START]		=  0x04,
442	[BRCMNAND_CMD_EXT_ADDRESS]	=  0x08,
443	[BRCMNAND_CMD_ADDRESS]		=  0x0c,
444	[BRCMNAND_INTFC_STATUS]		=  0x14,
445	[BRCMNAND_CS_SELECT]		=  0x18,
446	[BRCMNAND_CS_XOR]		=  0x1c,
447	[BRCMNAND_LL_OP]		=  0x20,
448	[BRCMNAND_CS0_BASE]		=  0x50,
449	[BRCMNAND_CS1_BASE]		=     0,
450	[BRCMNAND_CORR_THRESHOLD]	=  0xc0,
451	[BRCMNAND_CORR_THRESHOLD_EXT]	=  0xc4,
452	[BRCMNAND_UNCORR_COUNT]		=  0xfc,
453	[BRCMNAND_CORR_COUNT]		= 0x100,
454	[BRCMNAND_CORR_EXT_ADDR]	= 0x10c,
455	[BRCMNAND_CORR_ADDR]		= 0x110,
456	[BRCMNAND_UNCORR_EXT_ADDR]	= 0x114,
457	[BRCMNAND_UNCORR_ADDR]		= 0x118,
458	[BRCMNAND_SEMAPHORE]		= 0x150,
459	[BRCMNAND_ID]			= 0x194,
460	[BRCMNAND_ID_EXT]		= 0x198,
461	[BRCMNAND_LL_RDATA]		= 0x19c,
462	[BRCMNAND_OOB_READ_BASE]	= 0x200,
463	[BRCMNAND_OOB_READ_10_BASE]	=     0,
464	[BRCMNAND_OOB_WRITE_BASE]	= 0x280,
465	[BRCMNAND_OOB_WRITE_10_BASE]	=     0,
466	[BRCMNAND_FC_BASE]		= 0x400,
467};
468
469/* BRCMNAND v7.1 */
470static const u16 brcmnand_regs_v71[] = {
471	[BRCMNAND_CMD_START]		=  0x04,
472	[BRCMNAND_CMD_EXT_ADDRESS]	=  0x08,
473	[BRCMNAND_CMD_ADDRESS]		=  0x0c,
474	[BRCMNAND_INTFC_STATUS]		=  0x14,
475	[BRCMNAND_CS_SELECT]		=  0x18,
476	[BRCMNAND_CS_XOR]		=  0x1c,
477	[BRCMNAND_LL_OP]		=  0x20,
478	[BRCMNAND_CS0_BASE]		=  0x50,
479	[BRCMNAND_CS1_BASE]		=     0,
480	[BRCMNAND_CORR_THRESHOLD]	=  0xdc,
481	[BRCMNAND_CORR_THRESHOLD_EXT]	=  0xe0,
482	[BRCMNAND_UNCORR_COUNT]		=  0xfc,
483	[BRCMNAND_CORR_COUNT]		= 0x100,
484	[BRCMNAND_CORR_EXT_ADDR]	= 0x10c,
485	[BRCMNAND_CORR_ADDR]		= 0x110,
486	[BRCMNAND_UNCORR_EXT_ADDR]	= 0x114,
487	[BRCMNAND_UNCORR_ADDR]		= 0x118,
488	[BRCMNAND_SEMAPHORE]		= 0x150,
489	[BRCMNAND_ID]			= 0x194,
490	[BRCMNAND_ID_EXT]		= 0x198,
491	[BRCMNAND_LL_RDATA]		= 0x19c,
492	[BRCMNAND_OOB_READ_BASE]	= 0x200,
493	[BRCMNAND_OOB_READ_10_BASE]	=     0,
494	[BRCMNAND_OOB_WRITE_BASE]	= 0x280,
495	[BRCMNAND_OOB_WRITE_10_BASE]	=     0,
496	[BRCMNAND_FC_BASE]		= 0x400,
497};
498
499/* BRCMNAND v7.2 */
500static const u16 brcmnand_regs_v72[] = {
501	[BRCMNAND_CMD_START]		=  0x04,
502	[BRCMNAND_CMD_EXT_ADDRESS]	=  0x08,
503	[BRCMNAND_CMD_ADDRESS]		=  0x0c,
504	[BRCMNAND_INTFC_STATUS]		=  0x14,
505	[BRCMNAND_CS_SELECT]		=  0x18,
506	[BRCMNAND_CS_XOR]		=  0x1c,
507	[BRCMNAND_LL_OP]		=  0x20,
508	[BRCMNAND_CS0_BASE]		=  0x50,
509	[BRCMNAND_CS1_BASE]		=     0,
510	[BRCMNAND_CORR_THRESHOLD]	=  0xdc,
511	[BRCMNAND_CORR_THRESHOLD_EXT]	=  0xe0,
512	[BRCMNAND_UNCORR_COUNT]		=  0xfc,
513	[BRCMNAND_CORR_COUNT]		= 0x100,
514	[BRCMNAND_CORR_EXT_ADDR]	= 0x10c,
515	[BRCMNAND_CORR_ADDR]		= 0x110,
516	[BRCMNAND_UNCORR_EXT_ADDR]	= 0x114,
517	[BRCMNAND_UNCORR_ADDR]		= 0x118,
518	[BRCMNAND_SEMAPHORE]		= 0x150,
519	[BRCMNAND_ID]			= 0x194,
520	[BRCMNAND_ID_EXT]		= 0x198,
521	[BRCMNAND_LL_RDATA]		= 0x19c,
522	[BRCMNAND_OOB_READ_BASE]	= 0x200,
523	[BRCMNAND_OOB_READ_10_BASE]	=     0,
524	[BRCMNAND_OOB_WRITE_BASE]	= 0x400,
525	[BRCMNAND_OOB_WRITE_10_BASE]	=     0,
526	[BRCMNAND_FC_BASE]		= 0x600,
527};
528
529enum brcmnand_cs_reg {
530	BRCMNAND_CS_CFG_EXT = 0,
531	BRCMNAND_CS_CFG,
532	BRCMNAND_CS_ACC_CONTROL,
533	BRCMNAND_CS_TIMING1,
534	BRCMNAND_CS_TIMING2,
535};
536
537/* Per chip-select offsets for v7.1 */
538static const u8 brcmnand_cs_offsets_v71[] = {
539	[BRCMNAND_CS_ACC_CONTROL]	= 0x00,
540	[BRCMNAND_CS_CFG_EXT]		= 0x04,
541	[BRCMNAND_CS_CFG]		= 0x08,
542	[BRCMNAND_CS_TIMING1]		= 0x0c,
543	[BRCMNAND_CS_TIMING2]		= 0x10,
544};
545
546/* Per chip-select offsets for pre v7.1, except CS0 on <= v5.0 */
547static const u8 brcmnand_cs_offsets[] = {
548	[BRCMNAND_CS_ACC_CONTROL]	= 0x00,
549	[BRCMNAND_CS_CFG_EXT]		= 0x04,
550	[BRCMNAND_CS_CFG]		= 0x04,
551	[BRCMNAND_CS_TIMING1]		= 0x08,
552	[BRCMNAND_CS_TIMING2]		= 0x0c,
553};
554
555/* Per chip-select offset for <= v5.0 on CS0 only */
556static const u8 brcmnand_cs_offsets_cs0[] = {
557	[BRCMNAND_CS_ACC_CONTROL]	= 0x00,
558	[BRCMNAND_CS_CFG_EXT]		= 0x08,
559	[BRCMNAND_CS_CFG]		= 0x08,
560	[BRCMNAND_CS_TIMING1]		= 0x10,
561	[BRCMNAND_CS_TIMING2]		= 0x14,
562};
563
564/*
565 * Bitfields for the CFG and CFG_EXT registers. Pre-v7.1 controllers only had
566 * one config register, but once the bitfields overflowed, newer controllers
567 * (v7.1 and newer) added a CFG_EXT register and shuffled a few fields around.
568 */
569enum {
570	CFG_BLK_ADR_BYTES_SHIFT		= 8,
571	CFG_COL_ADR_BYTES_SHIFT		= 12,
572	CFG_FUL_ADR_BYTES_SHIFT		= 16,
573	CFG_BUS_WIDTH_SHIFT		= 23,
574	CFG_BUS_WIDTH			= BIT(CFG_BUS_WIDTH_SHIFT),
575	CFG_DEVICE_SIZE_SHIFT		= 24,
576
577	/* Only for v2.1 */
578	CFG_PAGE_SIZE_SHIFT_v2_1	= 30,
579
580	/* Only for pre-v7.1 (with no CFG_EXT register) */
581	CFG_PAGE_SIZE_SHIFT		= 20,
582	CFG_BLK_SIZE_SHIFT		= 28,
583
584	/* Only for v7.1+ (with CFG_EXT register) */
585	CFG_EXT_PAGE_SIZE_SHIFT		= 0,
586	CFG_EXT_BLK_SIZE_SHIFT		= 4,
587};
588
589/* BRCMNAND_INTFC_STATUS */
590enum {
591	INTFC_FLASH_STATUS		= GENMASK(7, 0),
592
593	INTFC_ERASED			= BIT(27),
594	INTFC_OOB_VALID			= BIT(28),
595	INTFC_CACHE_VALID		= BIT(29),
596	INTFC_FLASH_READY		= BIT(30),
597	INTFC_CTLR_READY		= BIT(31),
598};
599
600/***********************************************************************
601 * NAND ACC CONTROL bitfield
602 *
603 * Some bits have remained constant throughout hardware revision, while
604 * others have shifted around.
605 ***********************************************************************/
606
607/* Constant for all versions (where supported) */
608enum {
609	/* See BRCMNAND_HAS_CACHE_MODE */
610	ACC_CONTROL_CACHE_MODE				= BIT(22),
611
612	/* See BRCMNAND_HAS_PREFETCH */
613	ACC_CONTROL_PREFETCH				= BIT(23),
614
615	ACC_CONTROL_PAGE_HIT				= BIT(24),
616	ACC_CONTROL_WR_PREEMPT				= BIT(25),
617	ACC_CONTROL_PARTIAL_PAGE			= BIT(26),
618	ACC_CONTROL_RD_ERASED				= BIT(27),
619	ACC_CONTROL_FAST_PGM_RDIN			= BIT(28),
620	ACC_CONTROL_WR_ECC				= BIT(30),
621	ACC_CONTROL_RD_ECC				= BIT(31),
622};
623
624#define	ACC_CONTROL_ECC_SHIFT			16
625/* Only for v7.2 */
626#define	ACC_CONTROL_ECC_EXT_SHIFT		13
627
628static inline bool brcmnand_non_mmio_ops(struct brcmnand_controller *ctrl)
629{
630#if IS_ENABLED(CONFIG_MTD_NAND_BRCMNAND_BCMA)
631	return static_branch_unlikely(&brcmnand_soc_has_ops_key);
632#else
633	return false;
634#endif
635}
636
637static inline u32 nand_readreg(struct brcmnand_controller *ctrl, u32 offs)
638{
639	if (brcmnand_non_mmio_ops(ctrl))
640		return brcmnand_soc_read(ctrl->soc, offs);
641	return brcmnand_readl(ctrl->nand_base + offs);
642}
643
644static inline void nand_writereg(struct brcmnand_controller *ctrl, u32 offs,
645				 u32 val)
646{
647	if (brcmnand_non_mmio_ops(ctrl))
648		brcmnand_soc_write(ctrl->soc, val, offs);
649	else
650		brcmnand_writel(val, ctrl->nand_base + offs);
651}
652
653static int brcmnand_revision_init(struct brcmnand_controller *ctrl)
654{
655	static const unsigned int block_sizes_v6[] = { 8, 16, 128, 256, 512, 1024, 2048, 0 };
656	static const unsigned int block_sizes_v4[] = { 16, 128, 8, 512, 256, 1024, 2048, 0 };
657	static const unsigned int block_sizes_v2_2[] = { 16, 128, 8, 512, 256, 0 };
658	static const unsigned int block_sizes_v2_1[] = { 16, 128, 8, 512, 0 };
659	static const unsigned int page_sizes_v3_4[] = { 512, 2048, 4096, 8192, 0 };
660	static const unsigned int page_sizes_v2_2[] = { 512, 2048, 4096, 0 };
661	static const unsigned int page_sizes_v2_1[] = { 512, 2048, 0 };
662
663	ctrl->nand_version = nand_readreg(ctrl, 0) & 0xffff;
664
665	/* Only support v2.1+ */
666	if (ctrl->nand_version < 0x0201) {
667		dev_err(ctrl->dev, "version %#x not supported\n",
668			ctrl->nand_version);
669		return -ENODEV;
670	}
671
672	/* Register offsets */
673	if (ctrl->nand_version >= 0x0702)
674		ctrl->reg_offsets = brcmnand_regs_v72;
675	else if (ctrl->nand_version == 0x0701)
676		ctrl->reg_offsets = brcmnand_regs_v71;
677	else if (ctrl->nand_version >= 0x0600)
678		ctrl->reg_offsets = brcmnand_regs_v60;
679	else if (ctrl->nand_version >= 0x0500)
680		ctrl->reg_offsets = brcmnand_regs_v50;
681	else if (ctrl->nand_version >= 0x0303)
682		ctrl->reg_offsets = brcmnand_regs_v33;
683	else if (ctrl->nand_version >= 0x0201)
684		ctrl->reg_offsets = brcmnand_regs_v21;
685
686	/* Chip-select stride */
687	if (ctrl->nand_version >= 0x0701)
688		ctrl->reg_spacing = 0x14;
689	else
690		ctrl->reg_spacing = 0x10;
691
692	/* Per chip-select registers */
693	if (ctrl->nand_version >= 0x0701) {
694		ctrl->cs_offsets = brcmnand_cs_offsets_v71;
695	} else {
696		ctrl->cs_offsets = brcmnand_cs_offsets;
697
698		/* v3.3-5.0 have a different CS0 offset layout */
699		if (ctrl->nand_version >= 0x0303 &&
700		    ctrl->nand_version <= 0x0500)
701			ctrl->cs0_offsets = brcmnand_cs_offsets_cs0;
702	}
703
704	/* Page / block sizes */
705	if (ctrl->nand_version >= 0x0701) {
706		/* >= v7.1 use nice power-of-2 values! */
707		ctrl->max_page_size = 16 * 1024;
708		ctrl->max_block_size = 2 * 1024 * 1024;
709	} else {
710		if (ctrl->nand_version >= 0x0304)
711			ctrl->page_sizes = page_sizes_v3_4;
712		else if (ctrl->nand_version >= 0x0202)
713			ctrl->page_sizes = page_sizes_v2_2;
714		else
715			ctrl->page_sizes = page_sizes_v2_1;
716
717		if (ctrl->nand_version >= 0x0202)
718			ctrl->page_size_shift = CFG_PAGE_SIZE_SHIFT;
719		else
720			ctrl->page_size_shift = CFG_PAGE_SIZE_SHIFT_v2_1;
721
722		if (ctrl->nand_version >= 0x0600)
723			ctrl->block_sizes = block_sizes_v6;
724		else if (ctrl->nand_version >= 0x0400)
725			ctrl->block_sizes = block_sizes_v4;
726		else if (ctrl->nand_version >= 0x0202)
727			ctrl->block_sizes = block_sizes_v2_2;
728		else
729			ctrl->block_sizes = block_sizes_v2_1;
730
731		if (ctrl->nand_version < 0x0400) {
732			if (ctrl->nand_version < 0x0202)
733				ctrl->max_page_size = 2048;
734			else
735				ctrl->max_page_size = 4096;
736			ctrl->max_block_size = 512 * 1024;
737		}
738	}
739
740	/* Maximum spare area sector size (per 512B) */
741	if (ctrl->nand_version == 0x0702)
742		ctrl->max_oob = 128;
743	else if (ctrl->nand_version >= 0x0600)
744		ctrl->max_oob = 64;
745	else if (ctrl->nand_version >= 0x0500)
746		ctrl->max_oob = 32;
747	else
748		ctrl->max_oob = 16;
749
750	/* v6.0 and newer (except v6.1) have prefetch support */
751	if (ctrl->nand_version >= 0x0600 && ctrl->nand_version != 0x0601)
752		ctrl->features |= BRCMNAND_HAS_PREFETCH;
753
754	/*
755	 * v6.x has cache mode, but it's implemented differently. Ignore it for
756	 * now.
757	 */
758	if (ctrl->nand_version >= 0x0700)
759		ctrl->features |= BRCMNAND_HAS_CACHE_MODE;
760
761	if (ctrl->nand_version >= 0x0500)
762		ctrl->features |= BRCMNAND_HAS_1K_SECTORS;
763
764	if (ctrl->nand_version >= 0x0700)
765		ctrl->features |= BRCMNAND_HAS_WP;
766	else if (of_property_read_bool(ctrl->dev->of_node, "brcm,nand-has-wp"))
767		ctrl->features |= BRCMNAND_HAS_WP;
768
769	/* v7.2 has different ecc level shift in the acc register */
770	if (ctrl->nand_version == 0x0702)
771		ctrl->ecc_level_shift = ACC_CONTROL_ECC_EXT_SHIFT;
772	else
773		ctrl->ecc_level_shift = ACC_CONTROL_ECC_SHIFT;
774
775	return 0;
776}
777
778static void brcmnand_flash_dma_revision_init(struct brcmnand_controller *ctrl)
779{
780	/* flash_dma register offsets */
781	if (ctrl->nand_version >= 0x0703)
782		ctrl->flash_dma_offsets = flash_dma_regs_v4;
783	else if (ctrl->nand_version == 0x0602)
784		ctrl->flash_dma_offsets = flash_dma_regs_v0;
785	else
786		ctrl->flash_dma_offsets = flash_dma_regs_v1;
787}
788
789static inline u32 brcmnand_read_reg(struct brcmnand_controller *ctrl,
790		enum brcmnand_reg reg)
791{
792	u16 offs = ctrl->reg_offsets[reg];
793
794	if (offs)
795		return nand_readreg(ctrl, offs);
796	else
797		return 0;
798}
799
800static inline void brcmnand_write_reg(struct brcmnand_controller *ctrl,
801				      enum brcmnand_reg reg, u32 val)
802{
803	u16 offs = ctrl->reg_offsets[reg];
804
805	if (offs)
806		nand_writereg(ctrl, offs, val);
807}
808
809static inline void brcmnand_rmw_reg(struct brcmnand_controller *ctrl,
810				    enum brcmnand_reg reg, u32 mask, unsigned
811				    int shift, u32 val)
812{
813	u32 tmp = brcmnand_read_reg(ctrl, reg);
814
815	tmp &= ~mask;
816	tmp |= val << shift;
817	brcmnand_write_reg(ctrl, reg, tmp);
818}
819
820static inline u32 brcmnand_read_fc(struct brcmnand_controller *ctrl, int word)
821{
822	if (brcmnand_non_mmio_ops(ctrl))
823		return brcmnand_soc_read(ctrl->soc, BRCMNAND_NON_MMIO_FC_ADDR);
824	return __raw_readl(ctrl->nand_fc + word * 4);
825}
826
827static inline void brcmnand_write_fc(struct brcmnand_controller *ctrl,
828				     int word, u32 val)
829{
830	if (brcmnand_non_mmio_ops(ctrl))
831		brcmnand_soc_write(ctrl->soc, val, BRCMNAND_NON_MMIO_FC_ADDR);
832	else
833		__raw_writel(val, ctrl->nand_fc + word * 4);
834}
835
836static inline void edu_writel(struct brcmnand_controller *ctrl,
837			      enum edu_reg reg, u32 val)
838{
839	u16 offs = ctrl->edu_offsets[reg];
840
841	brcmnand_writel(val, ctrl->edu_base + offs);
842}
843
844static inline u32 edu_readl(struct brcmnand_controller *ctrl,
845			    enum edu_reg reg)
846{
847	u16 offs = ctrl->edu_offsets[reg];
848
849	return brcmnand_readl(ctrl->edu_base + offs);
850}
851
852static void brcmnand_clear_ecc_addr(struct brcmnand_controller *ctrl)
853{
854
855	/* Clear error addresses */
856	brcmnand_write_reg(ctrl, BRCMNAND_UNCORR_ADDR, 0);
857	brcmnand_write_reg(ctrl, BRCMNAND_CORR_ADDR, 0);
858	brcmnand_write_reg(ctrl, BRCMNAND_UNCORR_EXT_ADDR, 0);
859	brcmnand_write_reg(ctrl, BRCMNAND_CORR_EXT_ADDR, 0);
860}
861
862static u64 brcmnand_get_uncorrecc_addr(struct brcmnand_controller *ctrl)
863{
864	u64 err_addr;
865
866	err_addr = brcmnand_read_reg(ctrl, BRCMNAND_UNCORR_ADDR);
867	err_addr |= ((u64)(brcmnand_read_reg(ctrl,
868					     BRCMNAND_UNCORR_EXT_ADDR)
869					     & 0xffff) << 32);
870
871	return err_addr;
872}
873
874static u64 brcmnand_get_correcc_addr(struct brcmnand_controller *ctrl)
875{
876	u64 err_addr;
877
878	err_addr = brcmnand_read_reg(ctrl, BRCMNAND_CORR_ADDR);
879	err_addr |= ((u64)(brcmnand_read_reg(ctrl,
880					     BRCMNAND_CORR_EXT_ADDR)
881					     & 0xffff) << 32);
882
883	return err_addr;
884}
885
886static void brcmnand_set_cmd_addr(struct mtd_info *mtd, u64 addr)
887{
888	struct nand_chip *chip =  mtd_to_nand(mtd);
889	struct brcmnand_host *host = nand_get_controller_data(chip);
890	struct brcmnand_controller *ctrl = host->ctrl;
891
892	brcmnand_write_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS,
893			   (host->cs << 16) | ((addr >> 32) & 0xffff));
894	(void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS);
895	brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS,
896			   lower_32_bits(addr));
897	(void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
898}
899
900static inline u16 brcmnand_cs_offset(struct brcmnand_controller *ctrl, int cs,
901				     enum brcmnand_cs_reg reg)
902{
903	u16 offs_cs0 = ctrl->reg_offsets[BRCMNAND_CS0_BASE];
904	u16 offs_cs1 = ctrl->reg_offsets[BRCMNAND_CS1_BASE];
905	u8 cs_offs;
906
907	if (cs == 0 && ctrl->cs0_offsets)
908		cs_offs = ctrl->cs0_offsets[reg];
909	else
910		cs_offs = ctrl->cs_offsets[reg];
911
912	if (cs && offs_cs1)
913		return offs_cs1 + (cs - 1) * ctrl->reg_spacing + cs_offs;
914
915	return offs_cs0 + cs * ctrl->reg_spacing + cs_offs;
916}
917
918static inline u32 brcmnand_count_corrected(struct brcmnand_controller *ctrl)
919{
920	if (ctrl->nand_version < 0x0600)
921		return 1;
922	return brcmnand_read_reg(ctrl, BRCMNAND_CORR_COUNT);
923}
924
925static void brcmnand_wr_corr_thresh(struct brcmnand_host *host, u8 val)
926{
927	struct brcmnand_controller *ctrl = host->ctrl;
928	unsigned int shift = 0, bits;
929	enum brcmnand_reg reg = BRCMNAND_CORR_THRESHOLD;
930	int cs = host->cs;
931
932	if (!ctrl->reg_offsets[reg])
933		return;
934
935	if (ctrl->nand_version == 0x0702)
936		bits = 7;
937	else if (ctrl->nand_version >= 0x0600)
938		bits = 6;
939	else if (ctrl->nand_version >= 0x0500)
940		bits = 5;
941	else
942		bits = 4;
943
944	if (ctrl->nand_version >= 0x0702) {
945		if (cs >= 4)
946			reg = BRCMNAND_CORR_THRESHOLD_EXT;
947		shift = (cs % 4) * bits;
948	} else if (ctrl->nand_version >= 0x0600) {
949		if (cs >= 5)
950			reg = BRCMNAND_CORR_THRESHOLD_EXT;
951		shift = (cs % 5) * bits;
952	}
953	brcmnand_rmw_reg(ctrl, reg, (bits - 1) << shift, shift, val);
954}
955
956static inline int brcmnand_cmd_shift(struct brcmnand_controller *ctrl)
957{
958	/* Kludge for the BCMA-based NAND controller which does not actually
959	 * shift the command
960	 */
961	if (ctrl->nand_version == 0x0304 && brcmnand_non_mmio_ops(ctrl))
962		return 0;
963
964	if (ctrl->nand_version < 0x0602)
965		return 24;
966	return 0;
967}
968
969static inline u32 brcmnand_spare_area_mask(struct brcmnand_controller *ctrl)
970{
971	if (ctrl->nand_version == 0x0702)
972		return GENMASK(7, 0);
973	else if (ctrl->nand_version >= 0x0600)
974		return GENMASK(6, 0);
975	else if (ctrl->nand_version >= 0x0303)
976		return GENMASK(5, 0);
977	else
978		return GENMASK(4, 0);
979}
980
981static inline u32 brcmnand_ecc_level_mask(struct brcmnand_controller *ctrl)
982{
983	u32 mask = (ctrl->nand_version >= 0x0600) ? 0x1f : 0x0f;
984
985	mask <<= ACC_CONTROL_ECC_SHIFT;
986
987	/* v7.2 includes additional ECC levels */
988	if (ctrl->nand_version == 0x0702)
989		mask |= 0x7 << ACC_CONTROL_ECC_EXT_SHIFT;
990
991	return mask;
992}
993
994static void brcmnand_set_ecc_enabled(struct brcmnand_host *host, int en)
995{
996	struct brcmnand_controller *ctrl = host->ctrl;
997	u16 offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_ACC_CONTROL);
998	u32 acc_control = nand_readreg(ctrl, offs);
999	u32 ecc_flags = ACC_CONTROL_WR_ECC | ACC_CONTROL_RD_ECC;
1000
1001	if (en) {
1002		acc_control |= ecc_flags; /* enable RD/WR ECC */
1003		acc_control &= ~brcmnand_ecc_level_mask(ctrl);
1004		acc_control |= host->hwcfg.ecc_level << ctrl->ecc_level_shift;
1005	} else {
1006		acc_control &= ~ecc_flags; /* disable RD/WR ECC */
1007		acc_control &= ~brcmnand_ecc_level_mask(ctrl);
1008	}
1009
1010	nand_writereg(ctrl, offs, acc_control);
1011}
1012
1013static inline int brcmnand_sector_1k_shift(struct brcmnand_controller *ctrl)
1014{
1015	if (ctrl->nand_version >= 0x0702)
1016		return 9;
1017	else if (ctrl->nand_version >= 0x0600)
1018		return 7;
1019	else if (ctrl->nand_version >= 0x0500)
1020		return 6;
1021	else
1022		return -1;
1023}
1024
1025static int brcmnand_get_sector_size_1k(struct brcmnand_host *host)
1026{
1027	struct brcmnand_controller *ctrl = host->ctrl;
1028	int shift = brcmnand_sector_1k_shift(ctrl);
1029	u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
1030						  BRCMNAND_CS_ACC_CONTROL);
1031
1032	if (shift < 0)
1033		return 0;
1034
1035	return (nand_readreg(ctrl, acc_control_offs) >> shift) & 0x1;
1036}
1037
1038static void brcmnand_set_sector_size_1k(struct brcmnand_host *host, int val)
1039{
1040	struct brcmnand_controller *ctrl = host->ctrl;
1041	int shift = brcmnand_sector_1k_shift(ctrl);
1042	u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
1043						  BRCMNAND_CS_ACC_CONTROL);
1044	u32 tmp;
1045
1046	if (shift < 0)
1047		return;
1048
1049	tmp = nand_readreg(ctrl, acc_control_offs);
1050	tmp &= ~(1 << shift);
1051	tmp |= (!!val) << shift;
1052	nand_writereg(ctrl, acc_control_offs, tmp);
1053}
1054
1055/***********************************************************************
1056 * CS_NAND_SELECT
1057 ***********************************************************************/
1058
1059enum {
1060	CS_SELECT_NAND_WP			= BIT(29),
1061	CS_SELECT_AUTO_DEVICE_ID_CFG		= BIT(30),
1062};
1063
1064static int bcmnand_ctrl_poll_status(struct brcmnand_controller *ctrl,
1065				    u32 mask, u32 expected_val,
1066				    unsigned long timeout_ms)
1067{
1068	unsigned long limit;
1069	u32 val;
1070
1071	if (!timeout_ms)
1072		timeout_ms = NAND_POLL_STATUS_TIMEOUT_MS;
1073
1074	limit = jiffies + msecs_to_jiffies(timeout_ms);
1075	do {
1076		val = brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS);
1077		if ((val & mask) == expected_val)
1078			return 0;
1079
1080		cpu_relax();
1081	} while (time_after(limit, jiffies));
1082
1083	/*
1084	 * do a final check after time out in case the CPU was busy and the driver
1085	 * did not get enough time to perform the polling to avoid false alarms
1086	 */
1087	val = brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS);
1088	if ((val & mask) == expected_val)
1089		return 0;
1090
1091	dev_warn(ctrl->dev, "timeout on status poll (expected %x got %x)\n",
1092		 expected_val, val & mask);
1093
1094	return -ETIMEDOUT;
1095}
1096
1097static inline void brcmnand_set_wp(struct brcmnand_controller *ctrl, bool en)
1098{
1099	u32 val = en ? CS_SELECT_NAND_WP : 0;
1100
1101	brcmnand_rmw_reg(ctrl, BRCMNAND_CS_SELECT, CS_SELECT_NAND_WP, 0, val);
1102}
1103
1104/***********************************************************************
1105 * Flash DMA
1106 ***********************************************************************/
1107
1108static inline bool has_flash_dma(struct brcmnand_controller *ctrl)
1109{
1110	return ctrl->flash_dma_base;
1111}
1112
1113static inline bool has_edu(struct brcmnand_controller *ctrl)
1114{
1115	return ctrl->edu_base;
1116}
1117
1118static inline bool use_dma(struct brcmnand_controller *ctrl)
1119{
1120	return has_flash_dma(ctrl) || has_edu(ctrl);
1121}
1122
1123static inline void disable_ctrl_irqs(struct brcmnand_controller *ctrl)
1124{
1125	if (ctrl->pio_poll_mode)
1126		return;
1127
1128	if (has_flash_dma(ctrl)) {
1129		ctrl->flash_dma_base = NULL;
1130		disable_irq(ctrl->dma_irq);
1131	}
1132
1133	disable_irq(ctrl->irq);
1134	ctrl->pio_poll_mode = true;
1135}
1136
1137static inline bool flash_dma_buf_ok(const void *buf)
1138{
1139	return buf && !is_vmalloc_addr(buf) &&
1140		likely(IS_ALIGNED((uintptr_t)buf, 4));
1141}
1142
1143static inline void flash_dma_writel(struct brcmnand_controller *ctrl,
1144				    enum flash_dma_reg dma_reg, u32 val)
1145{
1146	u16 offs = ctrl->flash_dma_offsets[dma_reg];
1147
1148	brcmnand_writel(val, ctrl->flash_dma_base + offs);
1149}
1150
1151static inline u32 flash_dma_readl(struct brcmnand_controller *ctrl,
1152				  enum flash_dma_reg dma_reg)
1153{
1154	u16 offs = ctrl->flash_dma_offsets[dma_reg];
1155
1156	return brcmnand_readl(ctrl->flash_dma_base + offs);
1157}
1158
1159/* Low-level operation types: command, address, write, or read */
1160enum brcmnand_llop_type {
1161	LL_OP_CMD,
1162	LL_OP_ADDR,
1163	LL_OP_WR,
1164	LL_OP_RD,
1165};
1166
1167/***********************************************************************
1168 * Internal support functions
1169 ***********************************************************************/
1170
1171static inline bool is_hamming_ecc(struct brcmnand_controller *ctrl,
1172				  struct brcmnand_cfg *cfg)
1173{
1174	if (ctrl->nand_version <= 0x0701)
1175		return cfg->sector_size_1k == 0 && cfg->spare_area_size == 16 &&
1176			cfg->ecc_level == 15;
1177	else
1178		return cfg->sector_size_1k == 0 && ((cfg->spare_area_size == 16 &&
1179			cfg->ecc_level == 15) ||
1180			(cfg->spare_area_size == 28 && cfg->ecc_level == 16));
1181}
1182
1183/*
1184 * Set mtd->ooblayout to the appropriate mtd_ooblayout_ops given
1185 * the layout/configuration.
1186 * Returns -ERRCODE on failure.
1187 */
1188static int brcmnand_hamming_ooblayout_ecc(struct mtd_info *mtd, int section,
1189					  struct mtd_oob_region *oobregion)
1190{
1191	struct nand_chip *chip = mtd_to_nand(mtd);
1192	struct brcmnand_host *host = nand_get_controller_data(chip);
1193	struct brcmnand_cfg *cfg = &host->hwcfg;
1194	int sas = cfg->spare_area_size << cfg->sector_size_1k;
1195	int sectors = cfg->page_size / (512 << cfg->sector_size_1k);
1196
1197	if (section >= sectors)
1198		return -ERANGE;
1199
1200	oobregion->offset = (section * sas) + 6;
1201	oobregion->length = 3;
1202
1203	return 0;
1204}
1205
1206static int brcmnand_hamming_ooblayout_free(struct mtd_info *mtd, int section,
1207					   struct mtd_oob_region *oobregion)
1208{
1209	struct nand_chip *chip = mtd_to_nand(mtd);
1210	struct brcmnand_host *host = nand_get_controller_data(chip);
1211	struct brcmnand_cfg *cfg = &host->hwcfg;
1212	int sas = cfg->spare_area_size << cfg->sector_size_1k;
1213	int sectors = cfg->page_size / (512 << cfg->sector_size_1k);
1214	u32 next;
1215
1216	if (section > sectors)
1217		return -ERANGE;
1218
1219	next = (section * sas);
1220	if (section < sectors)
1221		next += 6;
1222
1223	if (section) {
1224		oobregion->offset = ((section - 1) * sas) + 9;
1225	} else {
1226		if (cfg->page_size > 512) {
1227			/* Large page NAND uses first 2 bytes for BBI */
1228			oobregion->offset = 2;
1229		} else {
1230			/* Small page NAND uses last byte before ECC for BBI */
1231			oobregion->offset = 0;
1232			next--;
1233		}
1234	}
1235
1236	oobregion->length = next - oobregion->offset;
1237
1238	return 0;
1239}
1240
1241static const struct mtd_ooblayout_ops brcmnand_hamming_ooblayout_ops = {
1242	.ecc = brcmnand_hamming_ooblayout_ecc,
1243	.free = brcmnand_hamming_ooblayout_free,
1244};
1245
1246static int brcmnand_bch_ooblayout_ecc(struct mtd_info *mtd, int section,
1247				      struct mtd_oob_region *oobregion)
1248{
1249	struct nand_chip *chip = mtd_to_nand(mtd);
1250	struct brcmnand_host *host = nand_get_controller_data(chip);
1251	struct brcmnand_cfg *cfg = &host->hwcfg;
1252	int sas = cfg->spare_area_size << cfg->sector_size_1k;
1253	int sectors = cfg->page_size / (512 << cfg->sector_size_1k);
1254
1255	if (section >= sectors)
1256		return -ERANGE;
1257
1258	oobregion->offset = ((section + 1) * sas) - chip->ecc.bytes;
1259	oobregion->length = chip->ecc.bytes;
1260
1261	return 0;
1262}
1263
1264static int brcmnand_bch_ooblayout_free_lp(struct mtd_info *mtd, int section,
1265					  struct mtd_oob_region *oobregion)
1266{
1267	struct nand_chip *chip = mtd_to_nand(mtd);
1268	struct brcmnand_host *host = nand_get_controller_data(chip);
1269	struct brcmnand_cfg *cfg = &host->hwcfg;
1270	int sas = cfg->spare_area_size << cfg->sector_size_1k;
1271	int sectors = cfg->page_size / (512 << cfg->sector_size_1k);
1272
1273	if (section >= sectors)
1274		return -ERANGE;
1275
1276	if (sas <= chip->ecc.bytes)
1277		return 0;
1278
1279	oobregion->offset = section * sas;
1280	oobregion->length = sas - chip->ecc.bytes;
1281
1282	if (!section) {
1283		oobregion->offset++;
1284		oobregion->length--;
1285	}
1286
1287	return 0;
1288}
1289
1290static int brcmnand_bch_ooblayout_free_sp(struct mtd_info *mtd, int section,
1291					  struct mtd_oob_region *oobregion)
1292{
1293	struct nand_chip *chip = mtd_to_nand(mtd);
1294	struct brcmnand_host *host = nand_get_controller_data(chip);
1295	struct brcmnand_cfg *cfg = &host->hwcfg;
1296	int sas = cfg->spare_area_size << cfg->sector_size_1k;
1297
1298	if (section > 1 || sas - chip->ecc.bytes < 6 ||
1299	    (section && sas - chip->ecc.bytes == 6))
1300		return -ERANGE;
1301
1302	if (!section) {
1303		oobregion->offset = 0;
1304		oobregion->length = 5;
1305	} else {
1306		oobregion->offset = 6;
1307		oobregion->length = sas - chip->ecc.bytes - 6;
1308	}
1309
1310	return 0;
1311}
1312
1313static const struct mtd_ooblayout_ops brcmnand_bch_lp_ooblayout_ops = {
1314	.ecc = brcmnand_bch_ooblayout_ecc,
1315	.free = brcmnand_bch_ooblayout_free_lp,
1316};
1317
1318static const struct mtd_ooblayout_ops brcmnand_bch_sp_ooblayout_ops = {
1319	.ecc = brcmnand_bch_ooblayout_ecc,
1320	.free = brcmnand_bch_ooblayout_free_sp,
1321};
1322
1323static int brcmstb_choose_ecc_layout(struct brcmnand_host *host)
1324{
1325	struct brcmnand_cfg *p = &host->hwcfg;
1326	struct mtd_info *mtd = nand_to_mtd(&host->chip);
1327	struct nand_ecc_ctrl *ecc = &host->chip.ecc;
1328	unsigned int ecc_level = p->ecc_level;
1329	int sas = p->spare_area_size << p->sector_size_1k;
1330	int sectors = p->page_size / (512 << p->sector_size_1k);
1331
1332	if (p->sector_size_1k)
1333		ecc_level <<= 1;
1334
1335	if (is_hamming_ecc(host->ctrl, p)) {
1336		ecc->bytes = 3 * sectors;
1337		mtd_set_ooblayout(mtd, &brcmnand_hamming_ooblayout_ops);
1338		return 0;
1339	}
1340
1341	/*
1342	 * CONTROLLER_VERSION:
1343	 *   < v5.0: ECC_REQ = ceil(BCH_T * 13/8)
1344	 *  >= v5.0: ECC_REQ = ceil(BCH_T * 14/8)
1345	 * But we will just be conservative.
1346	 */
1347	ecc->bytes = DIV_ROUND_UP(ecc_level * 14, 8);
1348	if (p->page_size == 512)
1349		mtd_set_ooblayout(mtd, &brcmnand_bch_sp_ooblayout_ops);
1350	else
1351		mtd_set_ooblayout(mtd, &brcmnand_bch_lp_ooblayout_ops);
1352
1353	if (ecc->bytes >= sas) {
1354		dev_err(&host->pdev->dev,
1355			"error: ECC too large for OOB (ECC bytes %d, spare sector %d)\n",
1356			ecc->bytes, sas);
1357		return -EINVAL;
1358	}
1359
1360	return 0;
1361}
1362
1363static void brcmnand_wp(struct mtd_info *mtd, int wp)
1364{
1365	struct nand_chip *chip = mtd_to_nand(mtd);
1366	struct brcmnand_host *host = nand_get_controller_data(chip);
1367	struct brcmnand_controller *ctrl = host->ctrl;
1368
1369	if ((ctrl->features & BRCMNAND_HAS_WP) && wp_on == 1) {
1370		static int old_wp = -1;
1371		int ret;
1372
1373		if (old_wp != wp) {
1374			dev_dbg(ctrl->dev, "WP %s\n", wp ? "on" : "off");
1375			old_wp = wp;
1376		}
1377
1378		/*
1379		 * make sure ctrl/flash ready before and after
1380		 * changing state of #WP pin
1381		 */
1382		ret = bcmnand_ctrl_poll_status(ctrl, NAND_CTRL_RDY |
1383					       NAND_STATUS_READY,
1384					       NAND_CTRL_RDY |
1385					       NAND_STATUS_READY, 0);
1386		if (ret)
1387			return;
1388
1389		brcmnand_set_wp(ctrl, wp);
1390		nand_status_op(chip, NULL);
1391		/* NAND_STATUS_WP 0x00 = protected, 0x80 = not protected */
1392		ret = bcmnand_ctrl_poll_status(ctrl,
1393					       NAND_CTRL_RDY |
1394					       NAND_STATUS_READY |
1395					       NAND_STATUS_WP,
1396					       NAND_CTRL_RDY |
1397					       NAND_STATUS_READY |
1398					       (wp ? 0 : NAND_STATUS_WP), 0);
1399
1400		if (ret)
1401			dev_err_ratelimited(&host->pdev->dev,
1402					    "nand #WP expected %s\n",
1403					    wp ? "on" : "off");
1404	}
1405}
1406
1407/* Helper functions for reading and writing OOB registers */
1408static inline u8 oob_reg_read(struct brcmnand_controller *ctrl, u32 offs)
1409{
1410	u16 offset0, offset10, reg_offs;
1411
1412	offset0 = ctrl->reg_offsets[BRCMNAND_OOB_READ_BASE];
1413	offset10 = ctrl->reg_offsets[BRCMNAND_OOB_READ_10_BASE];
1414
1415	if (offs >= ctrl->max_oob)
1416		return 0x77;
1417
1418	if (offs >= 16 && offset10)
1419		reg_offs = offset10 + ((offs - 0x10) & ~0x03);
1420	else
1421		reg_offs = offset0 + (offs & ~0x03);
1422
1423	return nand_readreg(ctrl, reg_offs) >> (24 - ((offs & 0x03) << 3));
1424}
1425
1426static inline void oob_reg_write(struct brcmnand_controller *ctrl, u32 offs,
1427				 u32 data)
1428{
1429	u16 offset0, offset10, reg_offs;
1430
1431	offset0 = ctrl->reg_offsets[BRCMNAND_OOB_WRITE_BASE];
1432	offset10 = ctrl->reg_offsets[BRCMNAND_OOB_WRITE_10_BASE];
1433
1434	if (offs >= ctrl->max_oob)
1435		return;
1436
1437	if (offs >= 16 && offset10)
1438		reg_offs = offset10 + ((offs - 0x10) & ~0x03);
1439	else
1440		reg_offs = offset0 + (offs & ~0x03);
1441
1442	nand_writereg(ctrl, reg_offs, data);
1443}
1444
1445/*
1446 * read_oob_from_regs - read data from OOB registers
1447 * @ctrl: NAND controller
1448 * @i: sub-page sector index
1449 * @oob: buffer to read to
1450 * @sas: spare area sector size (i.e., OOB size per FLASH_CACHE)
1451 * @sector_1k: 1 for 1KiB sectors, 0 for 512B, other values are illegal
1452 */
1453static int read_oob_from_regs(struct brcmnand_controller *ctrl, int i, u8 *oob,
1454			      int sas, int sector_1k)
1455{
1456	int tbytes = sas << sector_1k;
1457	int j;
1458
1459	/* Adjust OOB values for 1K sector size */
1460	if (sector_1k && (i & 0x01))
1461		tbytes = max(0, tbytes - (int)ctrl->max_oob);
1462	tbytes = min_t(int, tbytes, ctrl->max_oob);
1463
1464	for (j = 0; j < tbytes; j++)
1465		oob[j] = oob_reg_read(ctrl, j);
1466	return tbytes;
1467}
1468
1469/*
1470 * write_oob_to_regs - write data to OOB registers
1471 * @i: sub-page sector index
1472 * @oob: buffer to write from
1473 * @sas: spare area sector size (i.e., OOB size per FLASH_CACHE)
1474 * @sector_1k: 1 for 1KiB sectors, 0 for 512B, other values are illegal
1475 */
1476static int write_oob_to_regs(struct brcmnand_controller *ctrl, int i,
1477			     const u8 *oob, int sas, int sector_1k)
1478{
1479	int tbytes = sas << sector_1k;
1480	int j, k = 0;
1481	u32 last = 0xffffffff;
1482	u8 *plast = (u8 *)&last;
1483
1484	/* Adjust OOB values for 1K sector size */
1485	if (sector_1k && (i & 0x01))
1486		tbytes = max(0, tbytes - (int)ctrl->max_oob);
1487	tbytes = min_t(int, tbytes, ctrl->max_oob);
1488
1489	/*
1490	 * tbytes may not be multiple of words. Make sure we don't read out of
1491	 * the boundary and stop at last word.
1492	 */
1493	for (j = 0; (j + 3) < tbytes; j += 4)
1494		oob_reg_write(ctrl, j,
1495				(oob[j + 0] << 24) |
1496				(oob[j + 1] << 16) |
1497				(oob[j + 2] <<  8) |
1498				(oob[j + 3] <<  0));
1499
1500	/* handle the remaing bytes */
1501	while (j < tbytes)
1502		plast[k++] = oob[j++];
1503
1504	if (tbytes & 0x3)
1505		oob_reg_write(ctrl, (tbytes & ~0x3), (__force u32)cpu_to_be32(last));
1506
1507	return tbytes;
1508}
1509
1510static void brcmnand_edu_init(struct brcmnand_controller *ctrl)
1511{
1512	/* initialize edu */
1513	edu_writel(ctrl, EDU_ERR_STATUS, 0);
1514	edu_readl(ctrl, EDU_ERR_STATUS);
1515	edu_writel(ctrl, EDU_DONE, 0);
1516	edu_writel(ctrl, EDU_DONE, 0);
1517	edu_writel(ctrl, EDU_DONE, 0);
1518	edu_writel(ctrl, EDU_DONE, 0);
1519	edu_readl(ctrl, EDU_DONE);
1520}
1521
1522/* edu irq */
1523static irqreturn_t brcmnand_edu_irq(int irq, void *data)
1524{
1525	struct brcmnand_controller *ctrl = data;
1526
1527	if (ctrl->edu_count) {
1528		ctrl->edu_count--;
1529		while (!(edu_readl(ctrl, EDU_DONE) & EDU_DONE_MASK))
1530			udelay(1);
1531		edu_writel(ctrl, EDU_DONE, 0);
1532		edu_readl(ctrl, EDU_DONE);
1533	}
1534
1535	if (ctrl->edu_count) {
1536		ctrl->edu_dram_addr += FC_BYTES;
1537		ctrl->edu_ext_addr += FC_BYTES;
1538
1539		edu_writel(ctrl, EDU_DRAM_ADDR, (u32)ctrl->edu_dram_addr);
1540		edu_readl(ctrl, EDU_DRAM_ADDR);
1541		edu_writel(ctrl, EDU_EXT_ADDR, ctrl->edu_ext_addr);
1542		edu_readl(ctrl, EDU_EXT_ADDR);
1543
1544		if (ctrl->oob) {
1545			if (ctrl->edu_cmd == EDU_CMD_READ) {
1546				ctrl->oob += read_oob_from_regs(ctrl,
1547							ctrl->edu_count + 1,
1548							ctrl->oob, ctrl->sas,
1549							ctrl->sector_size_1k);
1550			} else {
1551				brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS,
1552						   ctrl->edu_ext_addr);
1553				brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
1554				ctrl->oob += write_oob_to_regs(ctrl,
1555							       ctrl->edu_count,
1556							       ctrl->oob, ctrl->sas,
1557							       ctrl->sector_size_1k);
1558			}
1559		}
1560
1561		mb(); /* flush previous writes */
1562		edu_writel(ctrl, EDU_CMD, ctrl->edu_cmd);
1563		edu_readl(ctrl, EDU_CMD);
1564
1565		return IRQ_HANDLED;
1566	}
1567
1568	complete(&ctrl->edu_done);
1569
1570	return IRQ_HANDLED;
1571}
1572
1573static irqreturn_t brcmnand_ctlrdy_irq(int irq, void *data)
1574{
1575	struct brcmnand_controller *ctrl = data;
1576
1577	/* Discard all NAND_CTLRDY interrupts during DMA */
1578	if (ctrl->dma_pending)
1579		return IRQ_HANDLED;
1580
1581	/* check if you need to piggy back on the ctrlrdy irq */
1582	if (ctrl->edu_pending) {
1583		if (irq == ctrl->irq && ((int)ctrl->edu_irq >= 0))
1584	/* Discard interrupts while using dedicated edu irq */
1585			return IRQ_HANDLED;
1586
1587	/* no registered edu irq, call handler */
1588		return brcmnand_edu_irq(irq, data);
1589	}
1590
1591	complete(&ctrl->done);
1592	return IRQ_HANDLED;
1593}
1594
1595/* Handle SoC-specific interrupt hardware */
1596static irqreturn_t brcmnand_irq(int irq, void *data)
1597{
1598	struct brcmnand_controller *ctrl = data;
1599
1600	if (ctrl->soc->ctlrdy_ack(ctrl->soc))
1601		return brcmnand_ctlrdy_irq(irq, data);
1602
1603	return IRQ_NONE;
1604}
1605
1606static irqreturn_t brcmnand_dma_irq(int irq, void *data)
1607{
1608	struct brcmnand_controller *ctrl = data;
1609
1610	complete(&ctrl->dma_done);
1611
1612	return IRQ_HANDLED;
1613}
1614
1615static void brcmnand_send_cmd(struct brcmnand_host *host, int cmd)
1616{
1617	struct brcmnand_controller *ctrl = host->ctrl;
1618	int ret;
1619	u64 cmd_addr;
1620
1621	cmd_addr = brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
1622
1623	dev_dbg(ctrl->dev, "send native cmd %d addr 0x%llx\n", cmd, cmd_addr);
1624
1625	/*
1626	 * If we came here through _panic_write and there is a pending
1627	 * command, try to wait for it. If it times out, rather than
1628	 * hitting BUG_ON, just return so we don't crash while crashing.
1629	 */
1630	if (oops_in_progress) {
1631		if (ctrl->cmd_pending &&
1632			bcmnand_ctrl_poll_status(ctrl, NAND_CTRL_RDY, NAND_CTRL_RDY, 0))
1633			return;
1634	} else
1635		BUG_ON(ctrl->cmd_pending != 0);
1636	ctrl->cmd_pending = cmd;
1637
1638	ret = bcmnand_ctrl_poll_status(ctrl, NAND_CTRL_RDY, NAND_CTRL_RDY, 0);
1639	WARN_ON(ret);
1640
1641	mb(); /* flush previous writes */
1642	brcmnand_write_reg(ctrl, BRCMNAND_CMD_START,
1643			   cmd << brcmnand_cmd_shift(ctrl));
1644}
1645
1646/***********************************************************************
1647 * NAND MTD API: read/program/erase
1648 ***********************************************************************/
1649
1650static void brcmnand_cmd_ctrl(struct nand_chip *chip, int dat,
1651			      unsigned int ctrl)
1652{
1653	/* intentionally left blank */
1654}
1655
1656static bool brcmstb_nand_wait_for_completion(struct nand_chip *chip)
1657{
1658	struct brcmnand_host *host = nand_get_controller_data(chip);
1659	struct brcmnand_controller *ctrl = host->ctrl;
1660	struct mtd_info *mtd = nand_to_mtd(chip);
1661	bool err = false;
1662	int sts;
1663
1664	if (mtd->oops_panic_write || ctrl->irq < 0) {
1665		/* switch to interrupt polling and PIO mode */
1666		disable_ctrl_irqs(ctrl);
1667		sts = bcmnand_ctrl_poll_status(ctrl, NAND_CTRL_RDY,
1668					       NAND_CTRL_RDY, 0);
1669		err = sts < 0;
1670	} else {
1671		unsigned long timeo = msecs_to_jiffies(
1672						NAND_POLL_STATUS_TIMEOUT_MS);
1673		/* wait for completion interrupt */
1674		sts = wait_for_completion_timeout(&ctrl->done, timeo);
1675		err = !sts;
1676	}
1677
1678	return err;
1679}
1680
1681static int brcmnand_waitfunc(struct nand_chip *chip)
1682{
1683	struct brcmnand_host *host = nand_get_controller_data(chip);
1684	struct brcmnand_controller *ctrl = host->ctrl;
1685	bool err = false;
1686
1687	dev_dbg(ctrl->dev, "wait on native cmd %d\n", ctrl->cmd_pending);
1688	if (ctrl->cmd_pending)
1689		err = brcmstb_nand_wait_for_completion(chip);
1690
1691	ctrl->cmd_pending = 0;
1692	if (err) {
1693		u32 cmd = brcmnand_read_reg(ctrl, BRCMNAND_CMD_START)
1694					>> brcmnand_cmd_shift(ctrl);
1695
1696		dev_err_ratelimited(ctrl->dev,
1697			"timeout waiting for command %#02x\n", cmd);
1698		dev_err_ratelimited(ctrl->dev, "intfc status %08x\n",
1699			brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS));
1700		return -ETIMEDOUT;
1701	}
1702	return brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS) &
1703				 INTFC_FLASH_STATUS;
1704}
1705
1706enum {
1707	LLOP_RE				= BIT(16),
1708	LLOP_WE				= BIT(17),
1709	LLOP_ALE			= BIT(18),
1710	LLOP_CLE			= BIT(19),
1711	LLOP_RETURN_IDLE		= BIT(31),
1712
1713	LLOP_DATA_MASK			= GENMASK(15, 0),
1714};
1715
1716static int brcmnand_low_level_op(struct brcmnand_host *host,
1717				 enum brcmnand_llop_type type, u32 data,
1718				 bool last_op)
1719{
1720	struct nand_chip *chip = &host->chip;
1721	struct brcmnand_controller *ctrl = host->ctrl;
1722	u32 tmp;
1723
1724	tmp = data & LLOP_DATA_MASK;
1725	switch (type) {
1726	case LL_OP_CMD:
1727		tmp |= LLOP_WE | LLOP_CLE;
1728		break;
1729	case LL_OP_ADDR:
1730		/* WE | ALE */
1731		tmp |= LLOP_WE | LLOP_ALE;
1732		break;
1733	case LL_OP_WR:
1734		/* WE */
1735		tmp |= LLOP_WE;
1736		break;
1737	case LL_OP_RD:
1738		/* RE */
1739		tmp |= LLOP_RE;
1740		break;
1741	}
1742	if (last_op)
1743		/* RETURN_IDLE */
1744		tmp |= LLOP_RETURN_IDLE;
1745
1746	dev_dbg(ctrl->dev, "ll_op cmd %#x\n", tmp);
1747
1748	brcmnand_write_reg(ctrl, BRCMNAND_LL_OP, tmp);
1749	(void)brcmnand_read_reg(ctrl, BRCMNAND_LL_OP);
1750
1751	brcmnand_send_cmd(host, CMD_LOW_LEVEL_OP);
1752	return brcmnand_waitfunc(chip);
1753}
1754
1755static void brcmnand_cmdfunc(struct nand_chip *chip, unsigned command,
1756			     int column, int page_addr)
1757{
1758	struct mtd_info *mtd = nand_to_mtd(chip);
1759	struct brcmnand_host *host = nand_get_controller_data(chip);
1760	struct brcmnand_controller *ctrl = host->ctrl;
1761	u64 addr = (u64)page_addr << chip->page_shift;
1762	int native_cmd = 0;
1763
1764	if (command == NAND_CMD_READID || command == NAND_CMD_PARAM ||
1765			command == NAND_CMD_RNDOUT)
1766		addr = (u64)column;
1767	/* Avoid propagating a negative, don't-care address */
1768	else if (page_addr < 0)
1769		addr = 0;
1770
1771	dev_dbg(ctrl->dev, "cmd 0x%x addr 0x%llx\n", command,
1772		(unsigned long long)addr);
1773
1774	host->last_cmd = command;
1775	host->last_byte = 0;
1776	host->last_addr = addr;
1777
1778	switch (command) {
1779	case NAND_CMD_RESET:
1780		native_cmd = CMD_FLASH_RESET;
1781		break;
1782	case NAND_CMD_STATUS:
1783		native_cmd = CMD_STATUS_READ;
1784		break;
1785	case NAND_CMD_READID:
1786		native_cmd = CMD_DEVICE_ID_READ;
1787		break;
1788	case NAND_CMD_READOOB:
1789		native_cmd = CMD_SPARE_AREA_READ;
1790		break;
1791	case NAND_CMD_ERASE1:
1792		native_cmd = CMD_BLOCK_ERASE;
1793		brcmnand_wp(mtd, 0);
1794		break;
1795	case NAND_CMD_PARAM:
1796		native_cmd = CMD_PARAMETER_READ;
1797		break;
1798	case NAND_CMD_SET_FEATURES:
1799	case NAND_CMD_GET_FEATURES:
1800		brcmnand_low_level_op(host, LL_OP_CMD, command, false);
1801		brcmnand_low_level_op(host, LL_OP_ADDR, column, false);
1802		break;
1803	case NAND_CMD_RNDOUT:
1804		native_cmd = CMD_PARAMETER_CHANGE_COL;
1805		addr &= ~((u64)(FC_BYTES - 1));
1806		/*
1807		 * HW quirk: PARAMETER_CHANGE_COL requires SECTOR_SIZE_1K=0
1808		 * NB: hwcfg.sector_size_1k may not be initialized yet
1809		 */
1810		if (brcmnand_get_sector_size_1k(host)) {
1811			host->hwcfg.sector_size_1k =
1812				brcmnand_get_sector_size_1k(host);
1813			brcmnand_set_sector_size_1k(host, 0);
1814		}
1815		break;
1816	}
1817
1818	if (!native_cmd)
1819		return;
1820
1821	brcmnand_set_cmd_addr(mtd, addr);
1822	brcmnand_send_cmd(host, native_cmd);
1823	brcmnand_waitfunc(chip);
1824
1825	if (native_cmd == CMD_PARAMETER_READ ||
1826			native_cmd == CMD_PARAMETER_CHANGE_COL) {
1827		/* Copy flash cache word-wise */
1828		u32 *flash_cache = (u32 *)ctrl->flash_cache;
1829		int i;
1830
1831		brcmnand_soc_data_bus_prepare(ctrl->soc, true);
1832
1833		/*
1834		 * Must cache the FLASH_CACHE now, since changes in
1835		 * SECTOR_SIZE_1K may invalidate it
1836		 */
1837		for (i = 0; i < FC_WORDS; i++)
1838			/*
1839			 * Flash cache is big endian for parameter pages, at
1840			 * least on STB SoCs
1841			 */
1842			flash_cache[i] = be32_to_cpu(brcmnand_read_fc(ctrl, i));
1843
1844		brcmnand_soc_data_bus_unprepare(ctrl->soc, true);
1845
1846		/* Cleanup from HW quirk: restore SECTOR_SIZE_1K */
1847		if (host->hwcfg.sector_size_1k)
1848			brcmnand_set_sector_size_1k(host,
1849						    host->hwcfg.sector_size_1k);
1850	}
1851
1852	/* Re-enable protection is necessary only after erase */
1853	if (command == NAND_CMD_ERASE1)
1854		brcmnand_wp(mtd, 1);
1855}
1856
1857static uint8_t brcmnand_read_byte(struct nand_chip *chip)
1858{
1859	struct brcmnand_host *host = nand_get_controller_data(chip);
1860	struct brcmnand_controller *ctrl = host->ctrl;
1861	uint8_t ret = 0;
1862	int addr, offs;
1863
1864	switch (host->last_cmd) {
1865	case NAND_CMD_READID:
1866		if (host->last_byte < 4)
1867			ret = brcmnand_read_reg(ctrl, BRCMNAND_ID) >>
1868				(24 - (host->last_byte << 3));
1869		else if (host->last_byte < 8)
1870			ret = brcmnand_read_reg(ctrl, BRCMNAND_ID_EXT) >>
1871				(56 - (host->last_byte << 3));
1872		break;
1873
1874	case NAND_CMD_READOOB:
1875		ret = oob_reg_read(ctrl, host->last_byte);
1876		break;
1877
1878	case NAND_CMD_STATUS:
1879		ret = brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS) &
1880					INTFC_FLASH_STATUS;
1881		if (wp_on) /* hide WP status */
1882			ret |= NAND_STATUS_WP;
1883		break;
1884
1885	case NAND_CMD_PARAM:
1886	case NAND_CMD_RNDOUT:
1887		addr = host->last_addr + host->last_byte;
1888		offs = addr & (FC_BYTES - 1);
1889
1890		/* At FC_BYTES boundary, switch to next column */
1891		if (host->last_byte > 0 && offs == 0)
1892			nand_change_read_column_op(chip, addr, NULL, 0, false);
1893
1894		ret = ctrl->flash_cache[offs];
1895		break;
1896	case NAND_CMD_GET_FEATURES:
1897		if (host->last_byte >= ONFI_SUBFEATURE_PARAM_LEN) {
1898			ret = 0;
1899		} else {
1900			bool last = host->last_byte ==
1901				ONFI_SUBFEATURE_PARAM_LEN - 1;
1902			brcmnand_low_level_op(host, LL_OP_RD, 0, last);
1903			ret = brcmnand_read_reg(ctrl, BRCMNAND_LL_RDATA) & 0xff;
1904		}
1905	}
1906
1907	dev_dbg(ctrl->dev, "read byte = 0x%02x\n", ret);
1908	host->last_byte++;
1909
1910	return ret;
1911}
1912
1913static void brcmnand_read_buf(struct nand_chip *chip, uint8_t *buf, int len)
1914{
1915	int i;
1916
1917	for (i = 0; i < len; i++, buf++)
1918		*buf = brcmnand_read_byte(chip);
1919}
1920
1921static void brcmnand_write_buf(struct nand_chip *chip, const uint8_t *buf,
1922			       int len)
1923{
1924	int i;
1925	struct brcmnand_host *host = nand_get_controller_data(chip);
1926
1927	switch (host->last_cmd) {
1928	case NAND_CMD_SET_FEATURES:
1929		for (i = 0; i < len; i++)
1930			brcmnand_low_level_op(host, LL_OP_WR, buf[i],
1931						  (i + 1) == len);
1932		break;
1933	default:
1934		BUG();
1935		break;
1936	}
1937}
1938
1939/*
1940 *  Kick EDU engine
1941 */
1942static int brcmnand_edu_trans(struct brcmnand_host *host, u64 addr, u32 *buf,
1943			      u8 *oob, u32 len, u8 cmd)
1944{
1945	struct brcmnand_controller *ctrl = host->ctrl;
1946	struct brcmnand_cfg *cfg = &host->hwcfg;
1947	unsigned long timeo = msecs_to_jiffies(200);
1948	int ret = 0;
1949	int dir = (cmd == CMD_PAGE_READ ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
1950	u8 edu_cmd = (cmd == CMD_PAGE_READ ? EDU_CMD_READ : EDU_CMD_WRITE);
1951	unsigned int trans = len >> FC_SHIFT;
1952	dma_addr_t pa;
1953
1954	dev_dbg(ctrl->dev, "EDU %s %p:%p\n", ((edu_cmd == EDU_CMD_READ) ?
1955					      "read" : "write"), buf, oob);
1956
1957	pa = dma_map_single(ctrl->dev, buf, len, dir);
1958	if (dma_mapping_error(ctrl->dev, pa)) {
1959		dev_err(ctrl->dev, "unable to map buffer for EDU DMA\n");
1960		return -ENOMEM;
1961	}
1962
1963	ctrl->edu_pending = true;
1964	ctrl->edu_dram_addr = pa;
1965	ctrl->edu_ext_addr = addr;
1966	ctrl->edu_cmd = edu_cmd;
1967	ctrl->edu_count = trans;
1968	ctrl->sas = cfg->spare_area_size;
1969	ctrl->oob = oob;
1970
1971	edu_writel(ctrl, EDU_DRAM_ADDR, (u32)ctrl->edu_dram_addr);
1972	edu_readl(ctrl,  EDU_DRAM_ADDR);
1973	edu_writel(ctrl, EDU_EXT_ADDR, ctrl->edu_ext_addr);
1974	edu_readl(ctrl, EDU_EXT_ADDR);
1975	edu_writel(ctrl, EDU_LENGTH, FC_BYTES);
1976	edu_readl(ctrl, EDU_LENGTH);
1977
1978	if (ctrl->oob && (ctrl->edu_cmd == EDU_CMD_WRITE)) {
1979		brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS,
1980				   ctrl->edu_ext_addr);
1981		brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
1982		ctrl->oob += write_oob_to_regs(ctrl,
1983					       1,
1984					       ctrl->oob, ctrl->sas,
1985					       ctrl->sector_size_1k);
1986	}
1987
1988	/* Start edu engine */
1989	mb(); /* flush previous writes */
1990	edu_writel(ctrl, EDU_CMD, ctrl->edu_cmd);
1991	edu_readl(ctrl, EDU_CMD);
1992
1993	if (wait_for_completion_timeout(&ctrl->edu_done, timeo) <= 0) {
1994		dev_err(ctrl->dev,
1995			"timeout waiting for EDU; status %#x, error status %#x\n",
1996			edu_readl(ctrl, EDU_STATUS),
1997			edu_readl(ctrl, EDU_ERR_STATUS));
1998	}
1999
2000	dma_unmap_single(ctrl->dev, pa, len, dir);
2001
2002	/* read last subpage oob */
2003	if (ctrl->oob && (ctrl->edu_cmd == EDU_CMD_READ)) {
2004		ctrl->oob += read_oob_from_regs(ctrl,
2005						1,
2006						ctrl->oob, ctrl->sas,
2007						ctrl->sector_size_1k);
2008	}
2009
2010	/* for program page check NAND status */
2011	if (((brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS) &
2012	      INTFC_FLASH_STATUS) & NAND_STATUS_FAIL) &&
2013	    edu_cmd == EDU_CMD_WRITE) {
2014		dev_info(ctrl->dev, "program failed at %llx\n",
2015			 (unsigned long long)addr);
2016		ret = -EIO;
2017	}
2018
2019	/* Make sure the EDU status is clean */
2020	if (edu_readl(ctrl, EDU_STATUS) & EDU_STATUS_ACTIVE)
2021		dev_warn(ctrl->dev, "EDU still active: %#x\n",
2022			 edu_readl(ctrl, EDU_STATUS));
2023
2024	if (unlikely(edu_readl(ctrl, EDU_ERR_STATUS) & EDU_ERR_STATUS_ERRACK)) {
2025		dev_warn(ctrl->dev, "EDU RBUS error at addr %llx\n",
2026			 (unsigned long long)addr);
2027		ret = -EIO;
2028	}
2029
2030	ctrl->edu_pending = false;
2031	brcmnand_edu_init(ctrl);
2032	edu_writel(ctrl, EDU_STOP, 0); /* force stop */
2033	edu_readl(ctrl, EDU_STOP);
2034
2035	if (!ret && edu_cmd == EDU_CMD_READ) {
2036		u64 err_addr = 0;
2037
2038		/*
2039		 * check for ECC errors here, subpage ECC errors are
2040		 * retained in ECC error address register
2041		 */
2042		err_addr = brcmnand_get_uncorrecc_addr(ctrl);
2043		if (!err_addr) {
2044			err_addr = brcmnand_get_correcc_addr(ctrl);
2045			if (err_addr)
2046				ret = -EUCLEAN;
2047		} else
2048			ret = -EBADMSG;
2049	}
2050
2051	return ret;
2052}
2053
2054/*
2055 * Construct a FLASH_DMA descriptor as part of a linked list. You must know the
2056 * following ahead of time:
2057 *  - Is this descriptor the beginning or end of a linked list?
2058 *  - What is the (DMA) address of the next descriptor in the linked list?
2059 */
2060static int brcmnand_fill_dma_desc(struct brcmnand_host *host,
2061				  struct brcm_nand_dma_desc *desc, u64 addr,
2062				  dma_addr_t buf, u32 len, u8 dma_cmd,
2063				  bool begin, bool end,
2064				  dma_addr_t next_desc)
2065{
2066	memset(desc, 0, sizeof(*desc));
2067	/* Descriptors are written in native byte order (wordwise) */
2068	desc->next_desc = lower_32_bits(next_desc);
2069	desc->next_desc_ext = upper_32_bits(next_desc);
2070	desc->cmd_irq = (dma_cmd << 24) |
2071		(end ? (0x03 << 8) : 0) | /* IRQ | STOP */
2072		(!!begin) | ((!!end) << 1); /* head, tail */
2073#ifdef CONFIG_CPU_BIG_ENDIAN
2074	desc->cmd_irq |= 0x01 << 12;
2075#endif
2076	desc->dram_addr = lower_32_bits(buf);
2077	desc->dram_addr_ext = upper_32_bits(buf);
2078	desc->tfr_len = len;
2079	desc->total_len = len;
2080	desc->flash_addr = lower_32_bits(addr);
2081	desc->flash_addr_ext = upper_32_bits(addr);
2082	desc->cs = host->cs;
2083	desc->status_valid = 0x01;
2084	return 0;
2085}
2086
2087/*
2088 * Kick the FLASH_DMA engine, with a given DMA descriptor
2089 */
2090static void brcmnand_dma_run(struct brcmnand_host *host, dma_addr_t desc)
2091{
2092	struct brcmnand_controller *ctrl = host->ctrl;
2093	unsigned long timeo = msecs_to_jiffies(100);
2094
2095	flash_dma_writel(ctrl, FLASH_DMA_FIRST_DESC, lower_32_bits(desc));
2096	(void)flash_dma_readl(ctrl, FLASH_DMA_FIRST_DESC);
2097	if (ctrl->nand_version > 0x0602) {
2098		flash_dma_writel(ctrl, FLASH_DMA_FIRST_DESC_EXT,
2099				 upper_32_bits(desc));
2100		(void)flash_dma_readl(ctrl, FLASH_DMA_FIRST_DESC_EXT);
2101	}
2102
2103	/* Start FLASH_DMA engine */
2104	ctrl->dma_pending = true;
2105	mb(); /* flush previous writes */
2106	flash_dma_writel(ctrl, FLASH_DMA_CTRL, 0x03); /* wake | run */
2107
2108	if (wait_for_completion_timeout(&ctrl->dma_done, timeo) <= 0) {
2109		dev_err(ctrl->dev,
2110				"timeout waiting for DMA; status %#x, error status %#x\n",
2111				flash_dma_readl(ctrl, FLASH_DMA_STATUS),
2112				flash_dma_readl(ctrl, FLASH_DMA_ERROR_STATUS));
2113	}
2114	ctrl->dma_pending = false;
2115	flash_dma_writel(ctrl, FLASH_DMA_CTRL, 0); /* force stop */
2116}
2117
2118static int brcmnand_dma_trans(struct brcmnand_host *host, u64 addr, u32 *buf,
2119			      u8 *oob, u32 len, u8 dma_cmd)
2120{
2121	struct brcmnand_controller *ctrl = host->ctrl;
2122	dma_addr_t buf_pa;
2123	int dir = dma_cmd == CMD_PAGE_READ ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
2124
2125	buf_pa = dma_map_single(ctrl->dev, buf, len, dir);
2126	if (dma_mapping_error(ctrl->dev, buf_pa)) {
2127		dev_err(ctrl->dev, "unable to map buffer for DMA\n");
2128		return -ENOMEM;
2129	}
2130
2131	brcmnand_fill_dma_desc(host, ctrl->dma_desc, addr, buf_pa, len,
2132				   dma_cmd, true, true, 0);
2133
2134	brcmnand_dma_run(host, ctrl->dma_pa);
2135
2136	dma_unmap_single(ctrl->dev, buf_pa, len, dir);
2137
2138	if (ctrl->dma_desc->status_valid & FLASH_DMA_ECC_ERROR)
2139		return -EBADMSG;
2140	else if (ctrl->dma_desc->status_valid & FLASH_DMA_CORR_ERROR)
2141		return -EUCLEAN;
2142
2143	return 0;
2144}
2145
2146/*
2147 * Assumes proper CS is already set
2148 */
2149static int brcmnand_read_by_pio(struct mtd_info *mtd, struct nand_chip *chip,
2150				u64 addr, unsigned int trans, u32 *buf,
2151				u8 *oob, u64 *err_addr)
2152{
2153	struct brcmnand_host *host = nand_get_controller_data(chip);
2154	struct brcmnand_controller *ctrl = host->ctrl;
2155	int i, j, ret = 0;
2156
2157	brcmnand_clear_ecc_addr(ctrl);
2158
2159	for (i = 0; i < trans; i++, addr += FC_BYTES) {
2160		brcmnand_set_cmd_addr(mtd, addr);
2161		/* SPARE_AREA_READ does not use ECC, so just use PAGE_READ */
2162		brcmnand_send_cmd(host, CMD_PAGE_READ);
2163		brcmnand_waitfunc(chip);
2164
2165		if (likely(buf)) {
2166			brcmnand_soc_data_bus_prepare(ctrl->soc, false);
2167
2168			for (j = 0; j < FC_WORDS; j++, buf++)
2169				*buf = brcmnand_read_fc(ctrl, j);
2170
2171			brcmnand_soc_data_bus_unprepare(ctrl->soc, false);
2172		}
2173
2174		if (oob)
2175			oob += read_oob_from_regs(ctrl, i, oob,
2176					mtd->oobsize / trans,
2177					host->hwcfg.sector_size_1k);
2178
2179		if (ret != -EBADMSG) {
2180			*err_addr = brcmnand_get_uncorrecc_addr(ctrl);
2181
2182			if (*err_addr)
2183				ret = -EBADMSG;
2184		}
2185
2186		if (!ret) {
2187			*err_addr = brcmnand_get_correcc_addr(ctrl);
2188
2189			if (*err_addr)
2190				ret = -EUCLEAN;
2191		}
2192	}
2193
2194	return ret;
2195}
2196
2197/*
2198 * Check a page to see if it is erased (w/ bitflips) after an uncorrectable ECC
2199 * error
2200 *
2201 * Because the HW ECC signals an ECC error if an erase paged has even a single
2202 * bitflip, we must check each ECC error to see if it is actually an erased
2203 * page with bitflips, not a truly corrupted page.
2204 *
2205 * On a real error, return a negative error code (-EBADMSG for ECC error), and
2206 * buf will contain raw data.
2207 * Otherwise, buf gets filled with 0xffs and return the maximum number of
2208 * bitflips-per-ECC-sector to the caller.
2209 *
2210 */
2211static int brcmstb_nand_verify_erased_page(struct mtd_info *mtd,
2212		  struct nand_chip *chip, void *buf, u64 addr)
2213{
2214	struct mtd_oob_region ecc;
2215	int i;
2216	int bitflips = 0;
2217	int page = addr >> chip->page_shift;
2218	int ret;
2219	void *ecc_bytes;
2220	void *ecc_chunk;
2221
2222	if (!buf)
2223		buf = nand_get_data_buf(chip);
2224
2225	/* read without ecc for verification */
2226	ret = chip->ecc.read_page_raw(chip, buf, true, page);
2227	if (ret)
2228		return ret;
2229
2230	for (i = 0; i < chip->ecc.steps; i++) {
2231		ecc_chunk = buf + chip->ecc.size * i;
2232
2233		mtd_ooblayout_ecc(mtd, i, &ecc);
2234		ecc_bytes = chip->oob_poi + ecc.offset;
2235
2236		ret = nand_check_erased_ecc_chunk(ecc_chunk, chip->ecc.size,
2237						  ecc_bytes, ecc.length,
2238						  NULL, 0,
2239						  chip->ecc.strength);
2240		if (ret < 0)
2241			return ret;
2242
2243		bitflips = max(bitflips, ret);
2244	}
2245
2246	return bitflips;
2247}
2248
2249static int brcmnand_read(struct mtd_info *mtd, struct nand_chip *chip,
2250			 u64 addr, unsigned int trans, u32 *buf, u8 *oob)
2251{
2252	struct brcmnand_host *host = nand_get_controller_data(chip);
2253	struct brcmnand_controller *ctrl = host->ctrl;
2254	u64 err_addr = 0;
2255	int err;
2256	bool retry = true;
2257	bool edu_err = false;
2258
2259	dev_dbg(ctrl->dev, "read %llx -> %p\n", (unsigned long long)addr, buf);
2260
2261try_dmaread:
2262	brcmnand_clear_ecc_addr(ctrl);
2263
2264	if (ctrl->dma_trans && (has_edu(ctrl) || !oob) &&
2265	    flash_dma_buf_ok(buf)) {
2266		err = ctrl->dma_trans(host, addr, buf, oob,
2267				      trans * FC_BYTES,
2268				      CMD_PAGE_READ);
2269
2270		if (err) {
2271			if (mtd_is_bitflip_or_eccerr(err))
2272				err_addr = addr;
2273			else
2274				return -EIO;
2275		}
2276
2277		if (has_edu(ctrl) && err_addr)
2278			edu_err = true;
2279
2280	} else {
2281		if (oob)
2282			memset(oob, 0x99, mtd->oobsize);
2283
2284		err = brcmnand_read_by_pio(mtd, chip, addr, trans, buf,
2285					       oob, &err_addr);
2286	}
2287
2288	if (mtd_is_eccerr(err)) {
2289		/*
2290		 * On controller version and 7.0, 7.1 , DMA read after a
2291		 * prior PIO read that reported uncorrectable error,
2292		 * the DMA engine captures this error following DMA read
2293		 * cleared only on subsequent DMA read, so just retry once
2294		 * to clear a possible false error reported for current DMA
2295		 * read
2296		 */
2297		if ((ctrl->nand_version == 0x0700) ||
2298		    (ctrl->nand_version == 0x0701)) {
2299			if (retry) {
2300				retry = false;
2301				goto try_dmaread;
2302			}
2303		}
2304
2305		/*
2306		 * Controller version 7.2 has hw encoder to detect erased page
2307		 * bitflips, apply sw verification for older controllers only
2308		 */
2309		if (ctrl->nand_version < 0x0702) {
2310			err = brcmstb_nand_verify_erased_page(mtd, chip, buf,
2311							      addr);
2312			/* erased page bitflips corrected */
2313			if (err >= 0)
2314				return err;
2315		}
2316
2317		dev_dbg(ctrl->dev, "uncorrectable error at 0x%llx\n",
2318			(unsigned long long)err_addr);
2319		mtd->ecc_stats.failed++;
2320		/* NAND layer expects zero on ECC errors */
2321		return 0;
2322	}
2323
2324	if (mtd_is_bitflip(err)) {
2325		unsigned int corrected = brcmnand_count_corrected(ctrl);
2326
2327		/* in case of EDU correctable error we read again using PIO */
2328		if (edu_err)
2329			err = brcmnand_read_by_pio(mtd, chip, addr, trans, buf,
2330						   oob, &err_addr);
2331
2332		dev_dbg(ctrl->dev, "corrected error at 0x%llx\n",
2333			(unsigned long long)err_addr);
2334		mtd->ecc_stats.corrected += corrected;
2335		/* Always exceed the software-imposed threshold */
2336		return max(mtd->bitflip_threshold, corrected);
2337	}
2338
2339	return 0;
2340}
2341
2342static int brcmnand_read_page(struct nand_chip *chip, uint8_t *buf,
2343			      int oob_required, int page)
2344{
2345	struct mtd_info *mtd = nand_to_mtd(chip);
2346	struct brcmnand_host *host = nand_get_controller_data(chip);
2347	u8 *oob = oob_required ? (u8 *)chip->oob_poi : NULL;
2348
2349	nand_read_page_op(chip, page, 0, NULL, 0);
2350
2351	return brcmnand_read(mtd, chip, host->last_addr,
2352			mtd->writesize >> FC_SHIFT, (u32 *)buf, oob);
2353}
2354
2355static int brcmnand_read_page_raw(struct nand_chip *chip, uint8_t *buf,
2356				  int oob_required, int page)
2357{
2358	struct brcmnand_host *host = nand_get_controller_data(chip);
2359	struct mtd_info *mtd = nand_to_mtd(chip);
2360	u8 *oob = oob_required ? (u8 *)chip->oob_poi : NULL;
2361	int ret;
2362
2363	nand_read_page_op(chip, page, 0, NULL, 0);
2364
2365	brcmnand_set_ecc_enabled(host, 0);
2366	ret = brcmnand_read(mtd, chip, host->last_addr,
2367			mtd->writesize >> FC_SHIFT, (u32 *)buf, oob);
2368	brcmnand_set_ecc_enabled(host, 1);
2369	return ret;
2370}
2371
2372static int brcmnand_read_oob(struct nand_chip *chip, int page)
2373{
2374	struct mtd_info *mtd = nand_to_mtd(chip);
2375
2376	return brcmnand_read(mtd, chip, (u64)page << chip->page_shift,
2377			mtd->writesize >> FC_SHIFT,
2378			NULL, (u8 *)chip->oob_poi);
2379}
2380
2381static int brcmnand_read_oob_raw(struct nand_chip *chip, int page)
2382{
2383	struct mtd_info *mtd = nand_to_mtd(chip);
2384	struct brcmnand_host *host = nand_get_controller_data(chip);
2385
2386	brcmnand_set_ecc_enabled(host, 0);
2387	brcmnand_read(mtd, chip, (u64)page << chip->page_shift,
2388		mtd->writesize >> FC_SHIFT,
2389		NULL, (u8 *)chip->oob_poi);
2390	brcmnand_set_ecc_enabled(host, 1);
2391	return 0;
2392}
2393
2394static int brcmnand_write(struct mtd_info *mtd, struct nand_chip *chip,
2395			  u64 addr, const u32 *buf, u8 *oob)
2396{
2397	struct brcmnand_host *host = nand_get_controller_data(chip);
2398	struct brcmnand_controller *ctrl = host->ctrl;
2399	unsigned int i, j, trans = mtd->writesize >> FC_SHIFT;
2400	int status, ret = 0;
2401
2402	dev_dbg(ctrl->dev, "write %llx <- %p\n", (unsigned long long)addr, buf);
2403
2404	if (unlikely((unsigned long)buf & 0x03)) {
2405		dev_warn(ctrl->dev, "unaligned buffer: %p\n", buf);
2406		buf = (u32 *)((unsigned long)buf & ~0x03);
2407	}
2408
2409	brcmnand_wp(mtd, 0);
2410
2411	for (i = 0; i < ctrl->max_oob; i += 4)
2412		oob_reg_write(ctrl, i, 0xffffffff);
2413
2414	if (mtd->oops_panic_write)
2415		/* switch to interrupt polling and PIO mode */
2416		disable_ctrl_irqs(ctrl);
2417
2418	if (use_dma(ctrl) && (has_edu(ctrl) || !oob) && flash_dma_buf_ok(buf)) {
2419		if (ctrl->dma_trans(host, addr, (u32 *)buf, oob, mtd->writesize,
2420				    CMD_PROGRAM_PAGE))
2421
2422			ret = -EIO;
2423
2424		goto out;
2425	}
2426
2427	for (i = 0; i < trans; i++, addr += FC_BYTES) {
2428		/* full address MUST be set before populating FC */
2429		brcmnand_set_cmd_addr(mtd, addr);
2430
2431		if (buf) {
2432			brcmnand_soc_data_bus_prepare(ctrl->soc, false);
2433
2434			for (j = 0; j < FC_WORDS; j++, buf++)
2435				brcmnand_write_fc(ctrl, j, *buf);
2436
2437			brcmnand_soc_data_bus_unprepare(ctrl->soc, false);
2438		} else if (oob) {
2439			for (j = 0; j < FC_WORDS; j++)
2440				brcmnand_write_fc(ctrl, j, 0xffffffff);
2441		}
2442
2443		if (oob) {
2444			oob += write_oob_to_regs(ctrl, i, oob,
2445					mtd->oobsize / trans,
2446					host->hwcfg.sector_size_1k);
2447		}
2448
2449		/* we cannot use SPARE_AREA_PROGRAM when PARTIAL_PAGE_EN=0 */
2450		brcmnand_send_cmd(host, CMD_PROGRAM_PAGE);
2451		status = brcmnand_waitfunc(chip);
2452
2453		if (status & NAND_STATUS_FAIL) {
2454			dev_info(ctrl->dev, "program failed at %llx\n",
2455				(unsigned long long)addr);
2456			ret = -EIO;
2457			goto out;
2458		}
2459	}
2460out:
2461	brcmnand_wp(mtd, 1);
2462	return ret;
2463}
2464
2465static int brcmnand_write_page(struct nand_chip *chip, const uint8_t *buf,
2466			       int oob_required, int page)
2467{
2468	struct mtd_info *mtd = nand_to_mtd(chip);
2469	struct brcmnand_host *host = nand_get_controller_data(chip);
2470	void *oob = oob_required ? chip->oob_poi : NULL;
2471
2472	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
2473	brcmnand_write(mtd, chip, host->last_addr, (const u32 *)buf, oob);
2474
2475	return nand_prog_page_end_op(chip);
2476}
2477
2478static int brcmnand_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
2479				   int oob_required, int page)
2480{
2481	struct mtd_info *mtd = nand_to_mtd(chip);
2482	struct brcmnand_host *host = nand_get_controller_data(chip);
2483	void *oob = oob_required ? chip->oob_poi : NULL;
2484
2485	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
2486	brcmnand_set_ecc_enabled(host, 0);
2487	brcmnand_write(mtd, chip, host->last_addr, (const u32 *)buf, oob);
2488	brcmnand_set_ecc_enabled(host, 1);
2489
2490	return nand_prog_page_end_op(chip);
2491}
2492
2493static int brcmnand_write_oob(struct nand_chip *chip, int page)
2494{
2495	return brcmnand_write(nand_to_mtd(chip), chip,
2496			      (u64)page << chip->page_shift, NULL,
2497			      chip->oob_poi);
2498}
2499
2500static int brcmnand_write_oob_raw(struct nand_chip *chip, int page)
2501{
2502	struct mtd_info *mtd = nand_to_mtd(chip);
2503	struct brcmnand_host *host = nand_get_controller_data(chip);
2504	int ret;
2505
2506	brcmnand_set_ecc_enabled(host, 0);
2507	ret = brcmnand_write(mtd, chip, (u64)page << chip->page_shift, NULL,
2508				 (u8 *)chip->oob_poi);
2509	brcmnand_set_ecc_enabled(host, 1);
2510
2511	return ret;
2512}
2513
2514/***********************************************************************
2515 * Per-CS setup (1 NAND device)
2516 ***********************************************************************/
2517
2518static int brcmnand_set_cfg(struct brcmnand_host *host,
2519			    struct brcmnand_cfg *cfg)
2520{
2521	struct brcmnand_controller *ctrl = host->ctrl;
2522	struct nand_chip *chip = &host->chip;
2523	u16 cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG);
2524	u16 cfg_ext_offs = brcmnand_cs_offset(ctrl, host->cs,
2525			BRCMNAND_CS_CFG_EXT);
2526	u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
2527			BRCMNAND_CS_ACC_CONTROL);
2528	u8 block_size = 0, page_size = 0, device_size = 0;
2529	u32 tmp;
2530
2531	if (ctrl->block_sizes) {
2532		int i, found;
2533
2534		for (i = 0, found = 0; ctrl->block_sizes[i]; i++)
2535			if (ctrl->block_sizes[i] * 1024 == cfg->block_size) {
2536				block_size = i;
2537				found = 1;
2538			}
2539		if (!found) {
2540			dev_warn(ctrl->dev, "invalid block size %u\n",
2541					cfg->block_size);
2542			return -EINVAL;
2543		}
2544	} else {
2545		block_size = ffs(cfg->block_size) - ffs(BRCMNAND_MIN_BLOCKSIZE);
2546	}
2547
2548	if (cfg->block_size < BRCMNAND_MIN_BLOCKSIZE || (ctrl->max_block_size &&
2549				cfg->block_size > ctrl->max_block_size)) {
2550		dev_warn(ctrl->dev, "invalid block size %u\n",
2551				cfg->block_size);
2552		block_size = 0;
2553	}
2554
2555	if (ctrl->page_sizes) {
2556		int i, found;
2557
2558		for (i = 0, found = 0; ctrl->page_sizes[i]; i++)
2559			if (ctrl->page_sizes[i] == cfg->page_size) {
2560				page_size = i;
2561				found = 1;
2562			}
2563		if (!found) {
2564			dev_warn(ctrl->dev, "invalid page size %u\n",
2565					cfg->page_size);
2566			return -EINVAL;
2567		}
2568	} else {
2569		page_size = ffs(cfg->page_size) - ffs(BRCMNAND_MIN_PAGESIZE);
2570	}
2571
2572	if (cfg->page_size < BRCMNAND_MIN_PAGESIZE || (ctrl->max_page_size &&
2573				cfg->page_size > ctrl->max_page_size)) {
2574		dev_warn(ctrl->dev, "invalid page size %u\n", cfg->page_size);
2575		return -EINVAL;
2576	}
2577
2578	if (fls64(cfg->device_size) < fls64(BRCMNAND_MIN_DEVSIZE)) {
2579		dev_warn(ctrl->dev, "invalid device size 0x%llx\n",
2580			(unsigned long long)cfg->device_size);
2581		return -EINVAL;
2582	}
2583	device_size = fls64(cfg->device_size) - fls64(BRCMNAND_MIN_DEVSIZE);
2584
2585	tmp = (cfg->blk_adr_bytes << CFG_BLK_ADR_BYTES_SHIFT) |
2586		(cfg->col_adr_bytes << CFG_COL_ADR_BYTES_SHIFT) |
2587		(cfg->ful_adr_bytes << CFG_FUL_ADR_BYTES_SHIFT) |
2588		(!!(cfg->device_width == 16) << CFG_BUS_WIDTH_SHIFT) |
2589		(device_size << CFG_DEVICE_SIZE_SHIFT);
2590	if (cfg_offs == cfg_ext_offs) {
2591		tmp |= (page_size << ctrl->page_size_shift) |
2592		       (block_size << CFG_BLK_SIZE_SHIFT);
2593		nand_writereg(ctrl, cfg_offs, tmp);
2594	} else {
2595		nand_writereg(ctrl, cfg_offs, tmp);
2596		tmp = (page_size << CFG_EXT_PAGE_SIZE_SHIFT) |
2597		      (block_size << CFG_EXT_BLK_SIZE_SHIFT);
2598		nand_writereg(ctrl, cfg_ext_offs, tmp);
2599	}
2600
2601	tmp = nand_readreg(ctrl, acc_control_offs);
2602	tmp &= ~brcmnand_ecc_level_mask(ctrl);
2603	tmp &= ~brcmnand_spare_area_mask(ctrl);
2604	if (ctrl->nand_version >= 0x0302) {
2605		tmp |= cfg->ecc_level << ctrl->ecc_level_shift;
2606		tmp |= cfg->spare_area_size;
2607	}
2608	nand_writereg(ctrl, acc_control_offs, tmp);
2609
2610	brcmnand_set_sector_size_1k(host, cfg->sector_size_1k);
2611
2612	/* threshold = ceil(BCH-level * 0.75) */
2613	brcmnand_wr_corr_thresh(host, DIV_ROUND_UP(chip->ecc.strength * 3, 4));
2614
2615	return 0;
2616}
2617
2618static void brcmnand_print_cfg(struct brcmnand_host *host,
2619			       char *buf, struct brcmnand_cfg *cfg)
2620{
2621	buf += sprintf(buf,
2622		"%lluMiB total, %uKiB blocks, %u%s pages, %uB OOB, %u-bit",
2623		(unsigned long long)cfg->device_size >> 20,
2624		cfg->block_size >> 10,
2625		cfg->page_size >= 1024 ? cfg->page_size >> 10 : cfg->page_size,
2626		cfg->page_size >= 1024 ? "KiB" : "B",
2627		cfg->spare_area_size, cfg->device_width);
2628
2629	/* Account for Hamming ECC and for BCH 512B vs 1KiB sectors */
2630	if (is_hamming_ecc(host->ctrl, cfg))
2631		sprintf(buf, ", Hamming ECC");
2632	else if (cfg->sector_size_1k)
2633		sprintf(buf, ", BCH-%u (1KiB sector)", cfg->ecc_level << 1);
2634	else
2635		sprintf(buf, ", BCH-%u", cfg->ecc_level);
2636}
2637
2638/*
2639 * Minimum number of bytes to address a page. Calculated as:
2640 *     roundup(log2(size / page-size) / 8)
2641 *
2642 * NB: the following does not "round up" for non-power-of-2 'size'; but this is
2643 *     OK because many other things will break if 'size' is irregular...
2644 */
2645static inline int get_blk_adr_bytes(u64 size, u32 writesize)
2646{
2647	return ALIGN(ilog2(size) - ilog2(writesize), 8) >> 3;
2648}
2649
2650static int brcmnand_setup_dev(struct brcmnand_host *host)
2651{
2652	struct mtd_info *mtd = nand_to_mtd(&host->chip);
2653	struct nand_chip *chip = &host->chip;
2654	const struct nand_ecc_props *requirements =
2655		nanddev_get_ecc_requirements(&chip->base);
2656	struct nand_memory_organization *memorg =
2657		nanddev_get_memorg(&chip->base);
2658	struct brcmnand_controller *ctrl = host->ctrl;
2659	struct brcmnand_cfg *cfg = &host->hwcfg;
2660	char msg[128];
2661	u32 offs, tmp, oob_sector;
2662	int ret;
2663
2664	memset(cfg, 0, sizeof(*cfg));
2665
2666	ret = of_property_read_u32(nand_get_flash_node(chip),
2667				   "brcm,nand-oob-sector-size",
2668				   &oob_sector);
2669	if (ret) {
2670		/* Use detected size */
2671		cfg->spare_area_size = mtd->oobsize /
2672					(mtd->writesize >> FC_SHIFT);
2673	} else {
2674		cfg->spare_area_size = oob_sector;
2675	}
2676	if (cfg->spare_area_size > ctrl->max_oob)
2677		cfg->spare_area_size = ctrl->max_oob;
2678	/*
2679	 * Set mtd and memorg oobsize to be consistent with controller's
2680	 * spare_area_size, as the rest is inaccessible.
2681	 */
2682	mtd->oobsize = cfg->spare_area_size * (mtd->writesize >> FC_SHIFT);
2683	memorg->oobsize = mtd->oobsize;
2684
2685	cfg->device_size = mtd->size;
2686	cfg->block_size = mtd->erasesize;
2687	cfg->page_size = mtd->writesize;
2688	cfg->device_width = (chip->options & NAND_BUSWIDTH_16) ? 16 : 8;
2689	cfg->col_adr_bytes = 2;
2690	cfg->blk_adr_bytes = get_blk_adr_bytes(mtd->size, mtd->writesize);
2691
2692	if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST) {
2693		dev_err(ctrl->dev, "only HW ECC supported; selected: %d\n",
2694			chip->ecc.engine_type);
2695		return -EINVAL;
2696	}
2697
2698	if (chip->ecc.algo == NAND_ECC_ALGO_UNKNOWN) {
2699		if (chip->ecc.strength == 1 && chip->ecc.size == 512)
2700			/* Default to Hamming for 1-bit ECC, if unspecified */
2701			chip->ecc.algo = NAND_ECC_ALGO_HAMMING;
2702		else
2703			/* Otherwise, BCH */
2704			chip->ecc.algo = NAND_ECC_ALGO_BCH;
2705	}
2706
2707	if (chip->ecc.algo == NAND_ECC_ALGO_HAMMING &&
2708	    (chip->ecc.strength != 1 || chip->ecc.size != 512)) {
2709		dev_err(ctrl->dev, "invalid Hamming params: %d bits per %d bytes\n",
2710			chip->ecc.strength, chip->ecc.size);
2711		return -EINVAL;
2712	}
2713
2714	if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_NONE &&
2715	    (!chip->ecc.size || !chip->ecc.strength)) {
2716		if (requirements->step_size && requirements->strength) {
2717			/* use detected ECC parameters */
2718			chip->ecc.size = requirements->step_size;
2719			chip->ecc.strength = requirements->strength;
2720			dev_info(ctrl->dev, "Using ECC step-size %d, strength %d\n",
2721				chip->ecc.size, chip->ecc.strength);
2722		}
2723	}
2724
2725	switch (chip->ecc.size) {
2726	case 512:
2727		if (chip->ecc.algo == NAND_ECC_ALGO_HAMMING)
2728			cfg->ecc_level = 15;
2729		else
2730			cfg->ecc_level = chip->ecc.strength;
2731		cfg->sector_size_1k = 0;
2732		break;
2733	case 1024:
2734		if (!(ctrl->features & BRCMNAND_HAS_1K_SECTORS)) {
2735			dev_err(ctrl->dev, "1KB sectors not supported\n");
2736			return -EINVAL;
2737		}
2738		if (chip->ecc.strength & 0x1) {
2739			dev_err(ctrl->dev,
2740				"odd ECC not supported with 1KB sectors\n");
2741			return -EINVAL;
2742		}
2743
2744		cfg->ecc_level = chip->ecc.strength >> 1;
2745		cfg->sector_size_1k = 1;
2746		break;
2747	default:
2748		dev_err(ctrl->dev, "unsupported ECC size: %d\n",
2749			chip->ecc.size);
2750		return -EINVAL;
2751	}
2752
2753	cfg->ful_adr_bytes = cfg->blk_adr_bytes;
2754	if (mtd->writesize > 512)
2755		cfg->ful_adr_bytes += cfg->col_adr_bytes;
2756	else
2757		cfg->ful_adr_bytes += 1;
2758
2759	ret = brcmnand_set_cfg(host, cfg);
2760	if (ret)
2761		return ret;
2762
2763	brcmnand_set_ecc_enabled(host, 1);
2764
2765	brcmnand_print_cfg(host, msg, cfg);
2766	dev_info(ctrl->dev, "detected %s\n", msg);
2767
2768	/* Configure ACC_CONTROL */
2769	offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_ACC_CONTROL);
2770	tmp = nand_readreg(ctrl, offs);
2771	tmp &= ~ACC_CONTROL_PARTIAL_PAGE;
2772	tmp &= ~ACC_CONTROL_RD_ERASED;
2773
2774	/* We need to turn on Read from erased paged protected by ECC */
2775	if (ctrl->nand_version >= 0x0702)
2776		tmp |= ACC_CONTROL_RD_ERASED;
2777	tmp &= ~ACC_CONTROL_FAST_PGM_RDIN;
2778	if (ctrl->features & BRCMNAND_HAS_PREFETCH)
2779		tmp &= ~ACC_CONTROL_PREFETCH;
2780
2781	nand_writereg(ctrl, offs, tmp);
2782
2783	return 0;
2784}
2785
2786static int brcmnand_attach_chip(struct nand_chip *chip)
2787{
2788	struct mtd_info *mtd = nand_to_mtd(chip);
2789	struct brcmnand_host *host = nand_get_controller_data(chip);
2790	int ret;
2791
2792	chip->options |= NAND_NO_SUBPAGE_WRITE;
2793	/*
2794	 * Avoid (for instance) kmap()'d buffers from JFFS2, which we can't DMA
2795	 * to/from, and have nand_base pass us a bounce buffer instead, as
2796	 * needed.
2797	 */
2798	chip->options |= NAND_USES_DMA;
2799
2800	if (chip->bbt_options & NAND_BBT_USE_FLASH)
2801		chip->bbt_options |= NAND_BBT_NO_OOB;
2802
2803	if (brcmnand_setup_dev(host))
2804		return -ENXIO;
2805
2806	chip->ecc.size = host->hwcfg.sector_size_1k ? 1024 : 512;
2807
2808	/* only use our internal HW threshold */
2809	mtd->bitflip_threshold = 1;
2810
2811	ret = brcmstb_choose_ecc_layout(host);
2812
2813	/* If OOB is written with ECC enabled it will cause ECC errors */
2814	if (is_hamming_ecc(host->ctrl, &host->hwcfg)) {
2815		chip->ecc.write_oob = brcmnand_write_oob_raw;
2816		chip->ecc.read_oob = brcmnand_read_oob_raw;
2817	}
2818
2819	return ret;
2820}
2821
2822static const struct nand_controller_ops brcmnand_controller_ops = {
2823	.attach_chip = brcmnand_attach_chip,
2824};
2825
2826static int brcmnand_init_cs(struct brcmnand_host *host,
2827			    const char * const *part_probe_types)
2828{
2829	struct brcmnand_controller *ctrl = host->ctrl;
2830	struct device *dev = ctrl->dev;
2831	struct mtd_info *mtd;
2832	struct nand_chip *chip;
2833	int ret;
2834	u16 cfg_offs;
2835
2836	mtd = nand_to_mtd(&host->chip);
2837	chip = &host->chip;
2838
2839	nand_set_controller_data(chip, host);
2840	mtd->name = devm_kasprintf(dev, GFP_KERNEL, "brcmnand.%d",
2841				   host->cs);
2842	if (!mtd->name)
2843		return -ENOMEM;
2844
2845	mtd->owner = THIS_MODULE;
2846	mtd->dev.parent = dev;
2847
2848	chip->legacy.cmd_ctrl = brcmnand_cmd_ctrl;
2849	chip->legacy.cmdfunc = brcmnand_cmdfunc;
2850	chip->legacy.waitfunc = brcmnand_waitfunc;
2851	chip->legacy.read_byte = brcmnand_read_byte;
2852	chip->legacy.read_buf = brcmnand_read_buf;
2853	chip->legacy.write_buf = brcmnand_write_buf;
2854
2855	chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
2856	chip->ecc.read_page = brcmnand_read_page;
2857	chip->ecc.write_page = brcmnand_write_page;
2858	chip->ecc.read_page_raw = brcmnand_read_page_raw;
2859	chip->ecc.write_page_raw = brcmnand_write_page_raw;
2860	chip->ecc.write_oob_raw = brcmnand_write_oob_raw;
2861	chip->ecc.read_oob_raw = brcmnand_read_oob_raw;
2862	chip->ecc.read_oob = brcmnand_read_oob;
2863	chip->ecc.write_oob = brcmnand_write_oob;
2864
2865	chip->controller = &ctrl->controller;
2866
2867	/*
2868	 * The bootloader might have configured 16bit mode but
2869	 * NAND READID command only works in 8bit mode. We force
2870	 * 8bit mode here to ensure that NAND READID commands works.
2871	 */
2872	cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG);
2873	nand_writereg(ctrl, cfg_offs,
2874		      nand_readreg(ctrl, cfg_offs) & ~CFG_BUS_WIDTH);
2875
2876	ret = nand_scan(chip, 1);
2877	if (ret)
2878		return ret;
2879
2880	ret = mtd_device_parse_register(mtd, part_probe_types, NULL, NULL, 0);
2881	if (ret)
2882		nand_cleanup(chip);
2883
2884	return ret;
2885}
2886
2887static void brcmnand_save_restore_cs_config(struct brcmnand_host *host,
2888					    int restore)
2889{
2890	struct brcmnand_controller *ctrl = host->ctrl;
2891	u16 cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG);
2892	u16 cfg_ext_offs = brcmnand_cs_offset(ctrl, host->cs,
2893			BRCMNAND_CS_CFG_EXT);
2894	u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
2895			BRCMNAND_CS_ACC_CONTROL);
2896	u16 t1_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_TIMING1);
2897	u16 t2_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_TIMING2);
2898
2899	if (restore) {
2900		nand_writereg(ctrl, cfg_offs, host->hwcfg.config);
2901		if (cfg_offs != cfg_ext_offs)
2902			nand_writereg(ctrl, cfg_ext_offs,
2903				      host->hwcfg.config_ext);
2904		nand_writereg(ctrl, acc_control_offs, host->hwcfg.acc_control);
2905		nand_writereg(ctrl, t1_offs, host->hwcfg.timing_1);
2906		nand_writereg(ctrl, t2_offs, host->hwcfg.timing_2);
2907	} else {
2908		host->hwcfg.config = nand_readreg(ctrl, cfg_offs);
2909		if (cfg_offs != cfg_ext_offs)
2910			host->hwcfg.config_ext =
2911				nand_readreg(ctrl, cfg_ext_offs);
2912		host->hwcfg.acc_control = nand_readreg(ctrl, acc_control_offs);
2913		host->hwcfg.timing_1 = nand_readreg(ctrl, t1_offs);
2914		host->hwcfg.timing_2 = nand_readreg(ctrl, t2_offs);
2915	}
2916}
2917
2918static int brcmnand_suspend(struct device *dev)
2919{
2920	struct brcmnand_controller *ctrl = dev_get_drvdata(dev);
2921	struct brcmnand_host *host;
2922
2923	list_for_each_entry(host, &ctrl->host_list, node)
2924		brcmnand_save_restore_cs_config(host, 0);
2925
2926	ctrl->nand_cs_nand_select = brcmnand_read_reg(ctrl, BRCMNAND_CS_SELECT);
2927	ctrl->nand_cs_nand_xor = brcmnand_read_reg(ctrl, BRCMNAND_CS_XOR);
2928	ctrl->corr_stat_threshold =
2929		brcmnand_read_reg(ctrl, BRCMNAND_CORR_THRESHOLD);
2930
2931	if (has_flash_dma(ctrl))
2932		ctrl->flash_dma_mode = flash_dma_readl(ctrl, FLASH_DMA_MODE);
2933	else if (has_edu(ctrl))
2934		ctrl->edu_config = edu_readl(ctrl, EDU_CONFIG);
2935
2936	return 0;
2937}
2938
2939static int brcmnand_resume(struct device *dev)
2940{
2941	struct brcmnand_controller *ctrl = dev_get_drvdata(dev);
2942	struct brcmnand_host *host;
2943
2944	if (has_flash_dma(ctrl)) {
2945		flash_dma_writel(ctrl, FLASH_DMA_MODE, ctrl->flash_dma_mode);
2946		flash_dma_writel(ctrl, FLASH_DMA_ERROR_STATUS, 0);
2947	}
2948
2949	if (has_edu(ctrl)) {
2950		ctrl->edu_config = edu_readl(ctrl, EDU_CONFIG);
2951		edu_writel(ctrl, EDU_CONFIG, ctrl->edu_config);
2952		edu_readl(ctrl, EDU_CONFIG);
2953		brcmnand_edu_init(ctrl);
2954	}
2955
2956	brcmnand_write_reg(ctrl, BRCMNAND_CS_SELECT, ctrl->nand_cs_nand_select);
2957	brcmnand_write_reg(ctrl, BRCMNAND_CS_XOR, ctrl->nand_cs_nand_xor);
2958	brcmnand_write_reg(ctrl, BRCMNAND_CORR_THRESHOLD,
2959			ctrl->corr_stat_threshold);
2960	if (ctrl->soc) {
2961		/* Clear/re-enable interrupt */
2962		ctrl->soc->ctlrdy_ack(ctrl->soc);
2963		ctrl->soc->ctlrdy_set_enabled(ctrl->soc, true);
2964	}
2965
2966	list_for_each_entry(host, &ctrl->host_list, node) {
2967		struct nand_chip *chip = &host->chip;
2968
2969		brcmnand_save_restore_cs_config(host, 1);
2970
2971		/* Reset the chip, required by some chips after power-up */
2972		nand_reset_op(chip);
2973	}
2974
2975	return 0;
2976}
2977
2978const struct dev_pm_ops brcmnand_pm_ops = {
2979	.suspend		= brcmnand_suspend,
2980	.resume			= brcmnand_resume,
2981};
2982EXPORT_SYMBOL_GPL(brcmnand_pm_ops);
2983
2984static const struct of_device_id __maybe_unused brcmnand_of_match[] = {
2985	{ .compatible = "brcm,brcmnand-v2.1" },
2986	{ .compatible = "brcm,brcmnand-v2.2" },
2987	{ .compatible = "brcm,brcmnand-v4.0" },
2988	{ .compatible = "brcm,brcmnand-v5.0" },
2989	{ .compatible = "brcm,brcmnand-v6.0" },
2990	{ .compatible = "brcm,brcmnand-v6.1" },
2991	{ .compatible = "brcm,brcmnand-v6.2" },
2992	{ .compatible = "brcm,brcmnand-v7.0" },
2993	{ .compatible = "brcm,brcmnand-v7.1" },
2994	{ .compatible = "brcm,brcmnand-v7.2" },
2995	{ .compatible = "brcm,brcmnand-v7.3" },
2996	{},
2997};
2998MODULE_DEVICE_TABLE(of, brcmnand_of_match);
2999
3000/***********************************************************************
3001 * Platform driver setup (per controller)
3002 ***********************************************************************/
3003static int brcmnand_edu_setup(struct platform_device *pdev)
3004{
3005	struct device *dev = &pdev->dev;
3006	struct brcmnand_controller *ctrl = dev_get_drvdata(&pdev->dev);
3007	struct resource *res;
3008	int ret;
3009
3010	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "flash-edu");
3011	if (res) {
3012		ctrl->edu_base = devm_ioremap_resource(dev, res);
3013		if (IS_ERR(ctrl->edu_base))
3014			return PTR_ERR(ctrl->edu_base);
3015
3016		ctrl->edu_offsets = edu_regs;
3017
3018		edu_writel(ctrl, EDU_CONFIG, EDU_CONFIG_MODE_NAND |
3019			   EDU_CONFIG_SWAP_CFG);
3020		edu_readl(ctrl, EDU_CONFIG);
3021
3022		/* initialize edu */
3023		brcmnand_edu_init(ctrl);
3024
3025		ctrl->edu_irq = platform_get_irq_optional(pdev, 1);
3026		if (ctrl->edu_irq < 0) {
3027			dev_warn(dev,
3028				 "FLASH EDU enabled, using ctlrdy irq\n");
3029		} else {
3030			ret = devm_request_irq(dev, ctrl->edu_irq,
3031					       brcmnand_edu_irq, 0,
3032					       "brcmnand-edu", ctrl);
3033			if (ret < 0) {
3034				dev_err(ctrl->dev, "can't allocate IRQ %d: error %d\n",
3035					ctrl->edu_irq, ret);
3036				return ret;
3037			}
3038
3039			dev_info(dev, "FLASH EDU enabled using irq %u\n",
3040				 ctrl->edu_irq);
3041		}
3042	}
3043
3044	return 0;
3045}
3046
3047int brcmnand_probe(struct platform_device *pdev, struct brcmnand_soc *soc)
3048{
3049	struct brcmnand_platform_data *pd = dev_get_platdata(&pdev->dev);
3050	struct device *dev = &pdev->dev;
3051	struct device_node *dn = dev->of_node, *child;
3052	struct brcmnand_controller *ctrl;
3053	struct brcmnand_host *host;
3054	struct resource *res;
3055	int ret;
3056
3057	if (dn && !of_match_node(brcmnand_of_match, dn))
3058		return -ENODEV;
3059
3060	ctrl = devm_kzalloc(dev, sizeof(*ctrl), GFP_KERNEL);
3061	if (!ctrl)
3062		return -ENOMEM;
3063
3064	dev_set_drvdata(dev, ctrl);
3065	ctrl->dev = dev;
3066	ctrl->soc = soc;
3067
3068	/* Enable the static key if the soc provides I/O operations indicating
3069	 * that a non-memory mapped IO access path must be used
3070	 */
3071	if (brcmnand_soc_has_ops(ctrl->soc))
3072		static_branch_enable(&brcmnand_soc_has_ops_key);
3073
3074	init_completion(&ctrl->done);
3075	init_completion(&ctrl->dma_done);
3076	init_completion(&ctrl->edu_done);
3077	nand_controller_init(&ctrl->controller);
3078	ctrl->controller.ops = &brcmnand_controller_ops;
3079	INIT_LIST_HEAD(&ctrl->host_list);
3080
3081	/* NAND register range */
3082	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3083	ctrl->nand_base = devm_ioremap_resource(dev, res);
3084	if (IS_ERR(ctrl->nand_base) && !brcmnand_soc_has_ops(soc))
3085		return PTR_ERR(ctrl->nand_base);
3086
3087	/* Enable clock before using NAND registers */
3088	ctrl->clk = devm_clk_get(dev, "nand");
3089	if (!IS_ERR(ctrl->clk)) {
3090		ret = clk_prepare_enable(ctrl->clk);
3091		if (ret)
3092			return ret;
3093	} else {
3094		ret = PTR_ERR(ctrl->clk);
3095		if (ret == -EPROBE_DEFER)
3096			return ret;
3097
3098		ctrl->clk = NULL;
3099	}
3100
3101	/* Initialize NAND revision */
3102	ret = brcmnand_revision_init(ctrl);
3103	if (ret)
3104		goto err;
3105
3106	/*
3107	 * Most chips have this cache at a fixed offset within 'nand' block.
3108	 * Some must specify this region separately.
3109	 */
3110	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand-cache");
3111	if (res) {
3112		ctrl->nand_fc = devm_ioremap_resource(dev, res);
3113		if (IS_ERR(ctrl->nand_fc)) {
3114			ret = PTR_ERR(ctrl->nand_fc);
3115			goto err;
3116		}
3117	} else {
3118		ctrl->nand_fc = ctrl->nand_base +
3119				ctrl->reg_offsets[BRCMNAND_FC_BASE];
3120	}
3121
3122	/* FLASH_DMA */
3123	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "flash-dma");
3124	if (res) {
3125		ctrl->flash_dma_base = devm_ioremap_resource(dev, res);
3126		if (IS_ERR(ctrl->flash_dma_base)) {
3127			ret = PTR_ERR(ctrl->flash_dma_base);
3128			goto err;
3129		}
3130
3131		/* initialize the dma version */
3132		brcmnand_flash_dma_revision_init(ctrl);
3133
3134		ret = -EIO;
3135		if (ctrl->nand_version >= 0x0700)
3136			ret = dma_set_mask_and_coherent(&pdev->dev,
3137							DMA_BIT_MASK(40));
3138		if (ret)
3139			ret = dma_set_mask_and_coherent(&pdev->dev,
3140							DMA_BIT_MASK(32));
3141		if (ret)
3142			goto err;
3143
3144		/* linked-list and stop on error */
3145		flash_dma_writel(ctrl, FLASH_DMA_MODE, FLASH_DMA_MODE_MASK);
3146		flash_dma_writel(ctrl, FLASH_DMA_ERROR_STATUS, 0);
3147
3148		/* Allocate descriptor(s) */
3149		ctrl->dma_desc = dmam_alloc_coherent(dev,
3150						     sizeof(*ctrl->dma_desc),
3151						     &ctrl->dma_pa, GFP_KERNEL);
3152		if (!ctrl->dma_desc) {
3153			ret = -ENOMEM;
3154			goto err;
3155		}
3156
3157		ctrl->dma_irq = platform_get_irq(pdev, 1);
3158		if ((int)ctrl->dma_irq < 0) {
3159			dev_err(dev, "missing FLASH_DMA IRQ\n");
3160			ret = -ENODEV;
3161			goto err;
3162		}
3163
3164		ret = devm_request_irq(dev, ctrl->dma_irq,
3165				brcmnand_dma_irq, 0, DRV_NAME,
3166				ctrl);
3167		if (ret < 0) {
3168			dev_err(dev, "can't allocate IRQ %d: error %d\n",
3169					ctrl->dma_irq, ret);
3170			goto err;
3171		}
3172
3173		dev_info(dev, "enabling FLASH_DMA\n");
3174		/* set flash dma transfer function to call */
3175		ctrl->dma_trans = brcmnand_dma_trans;
3176	} else	{
3177		ret = brcmnand_edu_setup(pdev);
3178		if (ret < 0)
3179			goto err;
3180
3181		if (has_edu(ctrl))
3182			/* set edu transfer function to call */
3183			ctrl->dma_trans = brcmnand_edu_trans;
3184	}
3185
3186	/* Disable automatic device ID config, direct addressing */
3187	brcmnand_rmw_reg(ctrl, BRCMNAND_CS_SELECT,
3188			 CS_SELECT_AUTO_DEVICE_ID_CFG | 0xff, 0, 0);
3189	/* Disable XOR addressing */
3190	brcmnand_rmw_reg(ctrl, BRCMNAND_CS_XOR, 0xff, 0, 0);
3191
3192	if (ctrl->features & BRCMNAND_HAS_WP) {
3193		/* Permanently disable write protection */
3194		if (wp_on == 2)
3195			brcmnand_set_wp(ctrl, false);
3196	} else {
3197		wp_on = 0;
3198	}
3199
3200	/* IRQ */
3201	ctrl->irq = platform_get_irq_optional(pdev, 0);
3202	if (ctrl->irq > 0) {
3203		/*
3204		 * Some SoCs integrate this controller (e.g., its interrupt bits) in
3205		 * interesting ways
3206		 */
3207		if (soc) {
3208			ret = devm_request_irq(dev, ctrl->irq, brcmnand_irq, 0,
3209					       DRV_NAME, ctrl);
3210
3211			/* Enable interrupt */
3212			ctrl->soc->ctlrdy_ack(ctrl->soc);
3213			ctrl->soc->ctlrdy_set_enabled(ctrl->soc, true);
3214		} else {
3215			/* Use standard interrupt infrastructure */
3216			ret = devm_request_irq(dev, ctrl->irq, brcmnand_ctlrdy_irq, 0,
3217					       DRV_NAME, ctrl);
3218		}
3219		if (ret < 0) {
3220			dev_err(dev, "can't allocate IRQ %d: error %d\n",
3221				ctrl->irq, ret);
3222			goto err;
3223		}
3224	}
3225
3226	for_each_available_child_of_node(dn, child) {
3227		if (of_device_is_compatible(child, "brcm,nandcs")) {
3228
3229			host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL);
3230			if (!host) {
3231				of_node_put(child);
3232				ret = -ENOMEM;
3233				goto err;
3234			}
3235			host->pdev = pdev;
3236			host->ctrl = ctrl;
3237
3238			ret = of_property_read_u32(child, "reg", &host->cs);
3239			if (ret) {
3240				dev_err(dev, "can't get chip-select\n");
3241				devm_kfree(dev, host);
3242				continue;
3243			}
3244
3245			nand_set_flash_node(&host->chip, child);
3246
3247			ret = brcmnand_init_cs(host, NULL);
3248			if (ret) {
3249				if (ret == -EPROBE_DEFER) {
3250					of_node_put(child);
3251					goto err;
3252				}
3253				devm_kfree(dev, host);
3254				continue; /* Try all chip-selects */
3255			}
3256
3257			list_add_tail(&host->node, &ctrl->host_list);
3258		}
3259	}
3260
3261	if (!list_empty(&ctrl->host_list))
3262		return 0;
3263
3264	if (!pd) {
3265		ret = -ENODEV;
3266		goto err;
3267	}
3268
3269	/* If we got there we must have been probing via platform data */
3270	host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL);
3271	if (!host) {
3272		ret = -ENOMEM;
3273		goto err;
3274	}
3275	host->pdev = pdev;
3276	host->ctrl = ctrl;
3277	host->cs = pd->chip_select;
3278	host->chip.ecc.size = pd->ecc_stepsize;
3279	host->chip.ecc.strength = pd->ecc_strength;
3280
3281	ret = brcmnand_init_cs(host, pd->part_probe_types);
3282	if (ret)
3283		goto err;
3284
3285	list_add_tail(&host->node, &ctrl->host_list);
3286
3287	/* No chip-selects could initialize properly */
3288	if (list_empty(&ctrl->host_list)) {
3289		ret = -ENODEV;
3290		goto err;
3291	}
3292
3293	return 0;
3294
3295err:
3296	clk_disable_unprepare(ctrl->clk);
3297	return ret;
3298
3299}
3300EXPORT_SYMBOL_GPL(brcmnand_probe);
3301
3302int brcmnand_remove(struct platform_device *pdev)
3303{
3304	struct brcmnand_controller *ctrl = dev_get_drvdata(&pdev->dev);
3305	struct brcmnand_host *host;
3306	struct nand_chip *chip;
3307	int ret;
3308
3309	list_for_each_entry(host, &ctrl->host_list, node) {
3310		chip = &host->chip;
3311		ret = mtd_device_unregister(nand_to_mtd(chip));
3312		WARN_ON(ret);
3313		nand_cleanup(chip);
3314	}
3315
3316	clk_disable_unprepare(ctrl->clk);
3317
3318	dev_set_drvdata(&pdev->dev, NULL);
3319
3320	return 0;
3321}
3322EXPORT_SYMBOL_GPL(brcmnand_remove);
3323
3324MODULE_LICENSE("GPL v2");
3325MODULE_AUTHOR("Kevin Cernekee");
3326MODULE_AUTHOR("Brian Norris");
3327MODULE_DESCRIPTION("NAND driver for Broadcom chips");
3328MODULE_ALIAS("platform:brcmnand");
3329