xref: /kernel/linux/linux-6.6/drivers/most/core.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * core.c - Implementation of core module of MOST Linux driver stack
4 *
5 * Copyright (C) 2013-2020 Microchip Technology Germany II GmbH & Co. KG
6 */
7
8#include <linux/module.h>
9#include <linux/fs.h>
10#include <linux/slab.h>
11#include <linux/init.h>
12#include <linux/device.h>
13#include <linux/list.h>
14#include <linux/poll.h>
15#include <linux/wait.h>
16#include <linux/kobject.h>
17#include <linux/mutex.h>
18#include <linux/completion.h>
19#include <linux/sysfs.h>
20#include <linux/kthread.h>
21#include <linux/dma-mapping.h>
22#include <linux/idr.h>
23#include <linux/most.h>
24
25#define MAX_CHANNELS	64
26#define STRING_SIZE	80
27
28static struct ida mdev_id;
29static int dummy_num_buffers;
30static struct list_head comp_list;
31
32struct pipe {
33	struct most_component *comp;
34	int refs;
35	int num_buffers;
36};
37
38struct most_channel {
39	struct device dev;
40	struct completion cleanup;
41	atomic_t mbo_ref;
42	atomic_t mbo_nq_level;
43	u16 channel_id;
44	char name[STRING_SIZE];
45	bool is_poisoned;
46	struct mutex start_mutex; /* channel activation synchronization */
47	struct mutex nq_mutex; /* nq thread synchronization */
48	int is_starving;
49	struct most_interface *iface;
50	struct most_channel_config cfg;
51	bool keep_mbo;
52	bool enqueue_halt;
53	struct list_head fifo;
54	spinlock_t fifo_lock; /* fifo access synchronization */
55	struct list_head halt_fifo;
56	struct list_head list;
57	struct pipe pipe0;
58	struct pipe pipe1;
59	struct list_head trash_fifo;
60	struct task_struct *hdm_enqueue_task;
61	wait_queue_head_t hdm_fifo_wq;
62
63};
64
65#define to_channel(d) container_of(d, struct most_channel, dev)
66
67struct interface_private {
68	int dev_id;
69	char name[STRING_SIZE];
70	struct most_channel *channel[MAX_CHANNELS];
71	struct list_head channel_list;
72};
73
74static const struct {
75	int most_ch_data_type;
76	const char *name;
77} ch_data_type[] = {
78	{ MOST_CH_CONTROL, "control" },
79	{ MOST_CH_ASYNC, "async" },
80	{ MOST_CH_SYNC, "sync" },
81	{ MOST_CH_ISOC, "isoc"},
82	{ MOST_CH_ISOC, "isoc_avp"},
83};
84
85/**
86 * list_pop_mbo - retrieves the first MBO of the list and removes it
87 * @ptr: the list head to grab the MBO from.
88 */
89#define list_pop_mbo(ptr)						\
90({									\
91	struct mbo *_mbo = list_first_entry(ptr, struct mbo, list);	\
92	list_del(&_mbo->list);						\
93	_mbo;								\
94})
95
96/**
97 * most_free_mbo_coherent - free an MBO and its coherent buffer
98 * @mbo: most buffer
99 */
100static void most_free_mbo_coherent(struct mbo *mbo)
101{
102	struct most_channel *c = mbo->context;
103	u16 const coherent_buf_size = c->cfg.buffer_size + c->cfg.extra_len;
104
105	if (c->iface->dma_free)
106		c->iface->dma_free(mbo, coherent_buf_size);
107	else
108		kfree(mbo->virt_address);
109	kfree(mbo);
110	if (atomic_sub_and_test(1, &c->mbo_ref))
111		complete(&c->cleanup);
112}
113
114/**
115 * flush_channel_fifos - clear the channel fifos
116 * @c: pointer to channel object
117 */
118static void flush_channel_fifos(struct most_channel *c)
119{
120	unsigned long flags, hf_flags;
121	struct mbo *mbo, *tmp;
122
123	if (list_empty(&c->fifo) && list_empty(&c->halt_fifo))
124		return;
125
126	spin_lock_irqsave(&c->fifo_lock, flags);
127	list_for_each_entry_safe(mbo, tmp, &c->fifo, list) {
128		list_del(&mbo->list);
129		spin_unlock_irqrestore(&c->fifo_lock, flags);
130		most_free_mbo_coherent(mbo);
131		spin_lock_irqsave(&c->fifo_lock, flags);
132	}
133	spin_unlock_irqrestore(&c->fifo_lock, flags);
134
135	spin_lock_irqsave(&c->fifo_lock, hf_flags);
136	list_for_each_entry_safe(mbo, tmp, &c->halt_fifo, list) {
137		list_del(&mbo->list);
138		spin_unlock_irqrestore(&c->fifo_lock, hf_flags);
139		most_free_mbo_coherent(mbo);
140		spin_lock_irqsave(&c->fifo_lock, hf_flags);
141	}
142	spin_unlock_irqrestore(&c->fifo_lock, hf_flags);
143
144	if (unlikely((!list_empty(&c->fifo) || !list_empty(&c->halt_fifo))))
145		dev_warn(&c->dev, "Channel or trash fifo not empty\n");
146}
147
148/**
149 * flush_trash_fifo - clear the trash fifo
150 * @c: pointer to channel object
151 */
152static int flush_trash_fifo(struct most_channel *c)
153{
154	struct mbo *mbo, *tmp;
155	unsigned long flags;
156
157	spin_lock_irqsave(&c->fifo_lock, flags);
158	list_for_each_entry_safe(mbo, tmp, &c->trash_fifo, list) {
159		list_del(&mbo->list);
160		spin_unlock_irqrestore(&c->fifo_lock, flags);
161		most_free_mbo_coherent(mbo);
162		spin_lock_irqsave(&c->fifo_lock, flags);
163	}
164	spin_unlock_irqrestore(&c->fifo_lock, flags);
165	return 0;
166}
167
168static ssize_t available_directions_show(struct device *dev,
169					 struct device_attribute *attr,
170					 char *buf)
171{
172	struct most_channel *c = to_channel(dev);
173	unsigned int i = c->channel_id;
174
175	strcpy(buf, "");
176	if (c->iface->channel_vector[i].direction & MOST_CH_RX)
177		strcat(buf, "rx ");
178	if (c->iface->channel_vector[i].direction & MOST_CH_TX)
179		strcat(buf, "tx ");
180	strcat(buf, "\n");
181	return strlen(buf);
182}
183
184static ssize_t available_datatypes_show(struct device *dev,
185					struct device_attribute *attr,
186					char *buf)
187{
188	struct most_channel *c = to_channel(dev);
189	unsigned int i = c->channel_id;
190
191	strcpy(buf, "");
192	if (c->iface->channel_vector[i].data_type & MOST_CH_CONTROL)
193		strcat(buf, "control ");
194	if (c->iface->channel_vector[i].data_type & MOST_CH_ASYNC)
195		strcat(buf, "async ");
196	if (c->iface->channel_vector[i].data_type & MOST_CH_SYNC)
197		strcat(buf, "sync ");
198	if (c->iface->channel_vector[i].data_type & MOST_CH_ISOC)
199		strcat(buf, "isoc ");
200	strcat(buf, "\n");
201	return strlen(buf);
202}
203
204static ssize_t number_of_packet_buffers_show(struct device *dev,
205					     struct device_attribute *attr,
206					     char *buf)
207{
208	struct most_channel *c = to_channel(dev);
209	unsigned int i = c->channel_id;
210
211	return snprintf(buf, PAGE_SIZE, "%d\n",
212			c->iface->channel_vector[i].num_buffers_packet);
213}
214
215static ssize_t number_of_stream_buffers_show(struct device *dev,
216					     struct device_attribute *attr,
217					     char *buf)
218{
219	struct most_channel *c = to_channel(dev);
220	unsigned int i = c->channel_id;
221
222	return snprintf(buf, PAGE_SIZE, "%d\n",
223			c->iface->channel_vector[i].num_buffers_streaming);
224}
225
226static ssize_t size_of_packet_buffer_show(struct device *dev,
227					  struct device_attribute *attr,
228					  char *buf)
229{
230	struct most_channel *c = to_channel(dev);
231	unsigned int i = c->channel_id;
232
233	return snprintf(buf, PAGE_SIZE, "%d\n",
234			c->iface->channel_vector[i].buffer_size_packet);
235}
236
237static ssize_t size_of_stream_buffer_show(struct device *dev,
238					  struct device_attribute *attr,
239					  char *buf)
240{
241	struct most_channel *c = to_channel(dev);
242	unsigned int i = c->channel_id;
243
244	return snprintf(buf, PAGE_SIZE, "%d\n",
245			c->iface->channel_vector[i].buffer_size_streaming);
246}
247
248static ssize_t channel_starving_show(struct device *dev,
249				     struct device_attribute *attr,
250				     char *buf)
251{
252	struct most_channel *c = to_channel(dev);
253
254	return snprintf(buf, PAGE_SIZE, "%d\n", c->is_starving);
255}
256
257static ssize_t set_number_of_buffers_show(struct device *dev,
258					  struct device_attribute *attr,
259					  char *buf)
260{
261	struct most_channel *c = to_channel(dev);
262
263	return snprintf(buf, PAGE_SIZE, "%d\n", c->cfg.num_buffers);
264}
265
266static ssize_t set_buffer_size_show(struct device *dev,
267				    struct device_attribute *attr,
268				    char *buf)
269{
270	struct most_channel *c = to_channel(dev);
271
272	return snprintf(buf, PAGE_SIZE, "%d\n", c->cfg.buffer_size);
273}
274
275static ssize_t set_direction_show(struct device *dev,
276				  struct device_attribute *attr,
277				  char *buf)
278{
279	struct most_channel *c = to_channel(dev);
280
281	if (c->cfg.direction & MOST_CH_TX)
282		return snprintf(buf, PAGE_SIZE, "tx\n");
283	else if (c->cfg.direction & MOST_CH_RX)
284		return snprintf(buf, PAGE_SIZE, "rx\n");
285	return snprintf(buf, PAGE_SIZE, "unconfigured\n");
286}
287
288static ssize_t set_datatype_show(struct device *dev,
289				 struct device_attribute *attr,
290				 char *buf)
291{
292	int i;
293	struct most_channel *c = to_channel(dev);
294
295	for (i = 0; i < ARRAY_SIZE(ch_data_type); i++) {
296		if (c->cfg.data_type & ch_data_type[i].most_ch_data_type)
297			return snprintf(buf, PAGE_SIZE, "%s",
298					ch_data_type[i].name);
299	}
300	return snprintf(buf, PAGE_SIZE, "unconfigured\n");
301}
302
303static ssize_t set_subbuffer_size_show(struct device *dev,
304				       struct device_attribute *attr,
305				       char *buf)
306{
307	struct most_channel *c = to_channel(dev);
308
309	return snprintf(buf, PAGE_SIZE, "%d\n", c->cfg.subbuffer_size);
310}
311
312static ssize_t set_packets_per_xact_show(struct device *dev,
313					 struct device_attribute *attr,
314					 char *buf)
315{
316	struct most_channel *c = to_channel(dev);
317
318	return snprintf(buf, PAGE_SIZE, "%d\n", c->cfg.packets_per_xact);
319}
320
321static ssize_t set_dbr_size_show(struct device *dev,
322				 struct device_attribute *attr, char *buf)
323{
324	struct most_channel *c = to_channel(dev);
325
326	return snprintf(buf, PAGE_SIZE, "%d\n", c->cfg.dbr_size);
327}
328
329#define to_dev_attr(a) container_of(a, struct device_attribute, attr)
330static umode_t channel_attr_is_visible(struct kobject *kobj,
331				       struct attribute *attr, int index)
332{
333	struct device_attribute *dev_attr = to_dev_attr(attr);
334	struct device *dev = kobj_to_dev(kobj);
335	struct most_channel *c = to_channel(dev);
336
337	if (!strcmp(dev_attr->attr.name, "set_dbr_size") &&
338	    (c->iface->interface != ITYPE_MEDIALB_DIM2))
339		return 0;
340	if (!strcmp(dev_attr->attr.name, "set_packets_per_xact") &&
341	    (c->iface->interface != ITYPE_USB))
342		return 0;
343
344	return attr->mode;
345}
346
347#define DEV_ATTR(_name)  (&dev_attr_##_name.attr)
348
349static DEVICE_ATTR_RO(available_directions);
350static DEVICE_ATTR_RO(available_datatypes);
351static DEVICE_ATTR_RO(number_of_packet_buffers);
352static DEVICE_ATTR_RO(number_of_stream_buffers);
353static DEVICE_ATTR_RO(size_of_stream_buffer);
354static DEVICE_ATTR_RO(size_of_packet_buffer);
355static DEVICE_ATTR_RO(channel_starving);
356static DEVICE_ATTR_RO(set_buffer_size);
357static DEVICE_ATTR_RO(set_number_of_buffers);
358static DEVICE_ATTR_RO(set_direction);
359static DEVICE_ATTR_RO(set_datatype);
360static DEVICE_ATTR_RO(set_subbuffer_size);
361static DEVICE_ATTR_RO(set_packets_per_xact);
362static DEVICE_ATTR_RO(set_dbr_size);
363
364static struct attribute *channel_attrs[] = {
365	DEV_ATTR(available_directions),
366	DEV_ATTR(available_datatypes),
367	DEV_ATTR(number_of_packet_buffers),
368	DEV_ATTR(number_of_stream_buffers),
369	DEV_ATTR(size_of_stream_buffer),
370	DEV_ATTR(size_of_packet_buffer),
371	DEV_ATTR(channel_starving),
372	DEV_ATTR(set_buffer_size),
373	DEV_ATTR(set_number_of_buffers),
374	DEV_ATTR(set_direction),
375	DEV_ATTR(set_datatype),
376	DEV_ATTR(set_subbuffer_size),
377	DEV_ATTR(set_packets_per_xact),
378	DEV_ATTR(set_dbr_size),
379	NULL,
380};
381
382static const struct attribute_group channel_attr_group = {
383	.attrs = channel_attrs,
384	.is_visible = channel_attr_is_visible,
385};
386
387static const struct attribute_group *channel_attr_groups[] = {
388	&channel_attr_group,
389	NULL,
390};
391
392static ssize_t description_show(struct device *dev,
393				struct device_attribute *attr,
394				char *buf)
395{
396	struct most_interface *iface = dev_get_drvdata(dev);
397
398	return snprintf(buf, PAGE_SIZE, "%s\n", iface->description);
399}
400
401static ssize_t interface_show(struct device *dev,
402			      struct device_attribute *attr,
403			      char *buf)
404{
405	struct most_interface *iface = dev_get_drvdata(dev);
406
407	switch (iface->interface) {
408	case ITYPE_LOOPBACK:
409		return snprintf(buf, PAGE_SIZE, "loopback\n");
410	case ITYPE_I2C:
411		return snprintf(buf, PAGE_SIZE, "i2c\n");
412	case ITYPE_I2S:
413		return snprintf(buf, PAGE_SIZE, "i2s\n");
414	case ITYPE_TSI:
415		return snprintf(buf, PAGE_SIZE, "tsi\n");
416	case ITYPE_HBI:
417		return snprintf(buf, PAGE_SIZE, "hbi\n");
418	case ITYPE_MEDIALB_DIM:
419		return snprintf(buf, PAGE_SIZE, "mlb_dim\n");
420	case ITYPE_MEDIALB_DIM2:
421		return snprintf(buf, PAGE_SIZE, "mlb_dim2\n");
422	case ITYPE_USB:
423		return snprintf(buf, PAGE_SIZE, "usb\n");
424	case ITYPE_PCIE:
425		return snprintf(buf, PAGE_SIZE, "pcie\n");
426	}
427	return snprintf(buf, PAGE_SIZE, "unknown\n");
428}
429
430static DEVICE_ATTR_RO(description);
431static DEVICE_ATTR_RO(interface);
432
433static struct attribute *interface_attrs[] = {
434	DEV_ATTR(description),
435	DEV_ATTR(interface),
436	NULL,
437};
438
439static const struct attribute_group interface_attr_group = {
440	.attrs = interface_attrs,
441};
442
443static const struct attribute_group *interface_attr_groups[] = {
444	&interface_attr_group,
445	NULL,
446};
447
448static struct most_component *match_component(char *name)
449{
450	struct most_component *comp;
451
452	list_for_each_entry(comp, &comp_list, list) {
453		if (!strcmp(comp->name, name))
454			return comp;
455	}
456	return NULL;
457}
458
459struct show_links_data {
460	int offs;
461	char *buf;
462};
463
464static int print_links(struct device *dev, void *data)
465{
466	struct show_links_data *d = data;
467	int offs = d->offs;
468	char *buf = d->buf;
469	struct most_channel *c;
470	struct most_interface *iface = dev_get_drvdata(dev);
471
472	list_for_each_entry(c, &iface->p->channel_list, list) {
473		if (c->pipe0.comp) {
474			offs += scnprintf(buf + offs,
475					 PAGE_SIZE - offs,
476					 "%s:%s:%s\n",
477					 c->pipe0.comp->name,
478					 dev_name(iface->dev),
479					 dev_name(&c->dev));
480		}
481		if (c->pipe1.comp) {
482			offs += scnprintf(buf + offs,
483					 PAGE_SIZE - offs,
484					 "%s:%s:%s\n",
485					 c->pipe1.comp->name,
486					 dev_name(iface->dev),
487					 dev_name(&c->dev));
488		}
489	}
490	d->offs = offs;
491	return 0;
492}
493
494static int most_match(struct device *dev, struct device_driver *drv)
495{
496	if (!strcmp(dev_name(dev), "most"))
497		return 0;
498	else
499		return 1;
500}
501
502static struct bus_type mostbus = {
503	.name = "most",
504	.match = most_match,
505};
506
507static ssize_t links_show(struct device_driver *drv, char *buf)
508{
509	struct show_links_data d = { .buf = buf };
510
511	bus_for_each_dev(&mostbus, NULL, &d, print_links);
512	return d.offs;
513}
514
515static ssize_t components_show(struct device_driver *drv, char *buf)
516{
517	struct most_component *comp;
518	int offs = 0;
519
520	list_for_each_entry(comp, &comp_list, list) {
521		offs += scnprintf(buf + offs, PAGE_SIZE - offs, "%s\n",
522				 comp->name);
523	}
524	return offs;
525}
526
527/**
528 * get_channel - get pointer to channel
529 * @mdev: name of the device interface
530 * @mdev_ch: name of channel
531 */
532static struct most_channel *get_channel(char *mdev, char *mdev_ch)
533{
534	struct device *dev = NULL;
535	struct most_interface *iface;
536	struct most_channel *c, *tmp;
537
538	dev = bus_find_device_by_name(&mostbus, NULL, mdev);
539	if (!dev)
540		return NULL;
541	put_device(dev);
542	iface = dev_get_drvdata(dev);
543	list_for_each_entry_safe(c, tmp, &iface->p->channel_list, list) {
544		if (!strcmp(dev_name(&c->dev), mdev_ch))
545			return c;
546	}
547	return NULL;
548}
549
550static
551inline int link_channel_to_component(struct most_channel *c,
552				     struct most_component *comp,
553				     char *name,
554				     char *comp_param)
555{
556	int ret;
557	struct most_component **comp_ptr;
558
559	if (!c->pipe0.comp)
560		comp_ptr = &c->pipe0.comp;
561	else if (!c->pipe1.comp)
562		comp_ptr = &c->pipe1.comp;
563	else
564		return -ENOSPC;
565
566	*comp_ptr = comp;
567	ret = comp->probe_channel(c->iface, c->channel_id, &c->cfg, name,
568				  comp_param);
569	if (ret) {
570		*comp_ptr = NULL;
571		return ret;
572	}
573	return 0;
574}
575
576int most_set_cfg_buffer_size(char *mdev, char *mdev_ch, u16 val)
577{
578	struct most_channel *c = get_channel(mdev, mdev_ch);
579
580	if (!c)
581		return -ENODEV;
582	c->cfg.buffer_size = val;
583	return 0;
584}
585
586int most_set_cfg_subbuffer_size(char *mdev, char *mdev_ch, u16 val)
587{
588	struct most_channel *c = get_channel(mdev, mdev_ch);
589
590	if (!c)
591		return -ENODEV;
592	c->cfg.subbuffer_size = val;
593	return 0;
594}
595
596int most_set_cfg_dbr_size(char *mdev, char *mdev_ch, u16 val)
597{
598	struct most_channel *c = get_channel(mdev, mdev_ch);
599
600	if (!c)
601		return -ENODEV;
602	c->cfg.dbr_size = val;
603	return 0;
604}
605
606int most_set_cfg_num_buffers(char *mdev, char *mdev_ch, u16 val)
607{
608	struct most_channel *c = get_channel(mdev, mdev_ch);
609
610	if (!c)
611		return -ENODEV;
612	c->cfg.num_buffers = val;
613	return 0;
614}
615
616int most_set_cfg_datatype(char *mdev, char *mdev_ch, char *buf)
617{
618	int i;
619	struct most_channel *c = get_channel(mdev, mdev_ch);
620
621	if (!c)
622		return -ENODEV;
623	for (i = 0; i < ARRAY_SIZE(ch_data_type); i++) {
624		if (!strcmp(buf, ch_data_type[i].name)) {
625			c->cfg.data_type = ch_data_type[i].most_ch_data_type;
626			break;
627		}
628	}
629
630	if (i == ARRAY_SIZE(ch_data_type))
631		dev_warn(&c->dev, "Invalid attribute settings\n");
632	return 0;
633}
634
635int most_set_cfg_direction(char *mdev, char *mdev_ch, char *buf)
636{
637	struct most_channel *c = get_channel(mdev, mdev_ch);
638
639	if (!c)
640		return -ENODEV;
641	if (!strcmp(buf, "dir_rx")) {
642		c->cfg.direction = MOST_CH_RX;
643	} else if (!strcmp(buf, "rx")) {
644		c->cfg.direction = MOST_CH_RX;
645	} else if (!strcmp(buf, "dir_tx")) {
646		c->cfg.direction = MOST_CH_TX;
647	} else if (!strcmp(buf, "tx")) {
648		c->cfg.direction = MOST_CH_TX;
649	} else {
650		dev_err(&c->dev, "Invalid direction\n");
651		return -ENODATA;
652	}
653	return 0;
654}
655
656int most_set_cfg_packets_xact(char *mdev, char *mdev_ch, u16 val)
657{
658	struct most_channel *c = get_channel(mdev, mdev_ch);
659
660	if (!c)
661		return -ENODEV;
662	c->cfg.packets_per_xact = val;
663	return 0;
664}
665
666int most_cfg_complete(char *comp_name)
667{
668	struct most_component *comp;
669
670	comp = match_component(comp_name);
671	if (!comp)
672		return -ENODEV;
673
674	return comp->cfg_complete();
675}
676
677int most_add_link(char *mdev, char *mdev_ch, char *comp_name, char *link_name,
678		  char *comp_param)
679{
680	struct most_channel *c = get_channel(mdev, mdev_ch);
681	struct most_component *comp = match_component(comp_name);
682
683	if (!c || !comp)
684		return -ENODEV;
685
686	return link_channel_to_component(c, comp, link_name, comp_param);
687}
688
689int most_remove_link(char *mdev, char *mdev_ch, char *comp_name)
690{
691	struct most_channel *c;
692	struct most_component *comp;
693
694	comp = match_component(comp_name);
695	if (!comp)
696		return -ENODEV;
697	c = get_channel(mdev, mdev_ch);
698	if (!c)
699		return -ENODEV;
700
701	if (comp->disconnect_channel(c->iface, c->channel_id))
702		return -EIO;
703	if (c->pipe0.comp == comp)
704		c->pipe0.comp = NULL;
705	if (c->pipe1.comp == comp)
706		c->pipe1.comp = NULL;
707	return 0;
708}
709
710#define DRV_ATTR(_name)  (&driver_attr_##_name.attr)
711
712static DRIVER_ATTR_RO(links);
713static DRIVER_ATTR_RO(components);
714
715static struct attribute *mc_attrs[] = {
716	DRV_ATTR(links),
717	DRV_ATTR(components),
718	NULL,
719};
720
721static const struct attribute_group mc_attr_group = {
722	.attrs = mc_attrs,
723};
724
725static const struct attribute_group *mc_attr_groups[] = {
726	&mc_attr_group,
727	NULL,
728};
729
730static struct device_driver mostbus_driver = {
731	.name = "most_core",
732	.bus = &mostbus,
733	.groups = mc_attr_groups,
734};
735
736static inline void trash_mbo(struct mbo *mbo)
737{
738	unsigned long flags;
739	struct most_channel *c = mbo->context;
740
741	spin_lock_irqsave(&c->fifo_lock, flags);
742	list_add(&mbo->list, &c->trash_fifo);
743	spin_unlock_irqrestore(&c->fifo_lock, flags);
744}
745
746static bool hdm_mbo_ready(struct most_channel *c)
747{
748	bool empty;
749
750	if (c->enqueue_halt)
751		return false;
752
753	spin_lock_irq(&c->fifo_lock);
754	empty = list_empty(&c->halt_fifo);
755	spin_unlock_irq(&c->fifo_lock);
756
757	return !empty;
758}
759
760static void nq_hdm_mbo(struct mbo *mbo)
761{
762	unsigned long flags;
763	struct most_channel *c = mbo->context;
764
765	spin_lock_irqsave(&c->fifo_lock, flags);
766	list_add_tail(&mbo->list, &c->halt_fifo);
767	spin_unlock_irqrestore(&c->fifo_lock, flags);
768	wake_up_interruptible(&c->hdm_fifo_wq);
769}
770
771static int hdm_enqueue_thread(void *data)
772{
773	struct most_channel *c = data;
774	struct mbo *mbo;
775	int ret;
776	typeof(c->iface->enqueue) enqueue = c->iface->enqueue;
777
778	while (likely(!kthread_should_stop())) {
779		wait_event_interruptible(c->hdm_fifo_wq,
780					 hdm_mbo_ready(c) ||
781					 kthread_should_stop());
782
783		mutex_lock(&c->nq_mutex);
784		spin_lock_irq(&c->fifo_lock);
785		if (unlikely(c->enqueue_halt || list_empty(&c->halt_fifo))) {
786			spin_unlock_irq(&c->fifo_lock);
787			mutex_unlock(&c->nq_mutex);
788			continue;
789		}
790
791		mbo = list_pop_mbo(&c->halt_fifo);
792		spin_unlock_irq(&c->fifo_lock);
793
794		if (c->cfg.direction == MOST_CH_RX)
795			mbo->buffer_length = c->cfg.buffer_size;
796
797		ret = enqueue(mbo->ifp, mbo->hdm_channel_id, mbo);
798		mutex_unlock(&c->nq_mutex);
799
800		if (unlikely(ret)) {
801			dev_err(&c->dev, "Buffer enqueue failed\n");
802			nq_hdm_mbo(mbo);
803			c->hdm_enqueue_task = NULL;
804			return 0;
805		}
806	}
807
808	return 0;
809}
810
811static int run_enqueue_thread(struct most_channel *c, int channel_id)
812{
813	struct task_struct *task =
814		kthread_run(hdm_enqueue_thread, c, "hdm_fifo_%d",
815			    channel_id);
816
817	if (IS_ERR(task))
818		return PTR_ERR(task);
819
820	c->hdm_enqueue_task = task;
821	return 0;
822}
823
824/**
825 * arm_mbo - recycle MBO for further usage
826 * @mbo: most buffer
827 *
828 * This puts an MBO back to the list to have it ready for up coming
829 * tx transactions.
830 *
831 * In case the MBO belongs to a channel that recently has been
832 * poisoned, the MBO is scheduled to be trashed.
833 * Calls the completion handler of an attached component.
834 */
835static void arm_mbo(struct mbo *mbo)
836{
837	unsigned long flags;
838	struct most_channel *c;
839
840	c = mbo->context;
841
842	if (c->is_poisoned) {
843		trash_mbo(mbo);
844		return;
845	}
846
847	spin_lock_irqsave(&c->fifo_lock, flags);
848	++*mbo->num_buffers_ptr;
849	list_add_tail(&mbo->list, &c->fifo);
850	spin_unlock_irqrestore(&c->fifo_lock, flags);
851
852	if (c->pipe0.refs && c->pipe0.comp->tx_completion)
853		c->pipe0.comp->tx_completion(c->iface, c->channel_id);
854
855	if (c->pipe1.refs && c->pipe1.comp->tx_completion)
856		c->pipe1.comp->tx_completion(c->iface, c->channel_id);
857}
858
859/**
860 * arm_mbo_chain - helper function that arms an MBO chain for the HDM
861 * @c: pointer to interface channel
862 * @dir: direction of the channel
863 * @compl: pointer to completion function
864 *
865 * This allocates buffer objects including the containing DMA coherent
866 * buffer and puts them in the fifo.
867 * Buffers of Rx channels are put in the kthread fifo, hence immediately
868 * submitted to the HDM.
869 *
870 * Returns the number of allocated and enqueued MBOs.
871 */
872static int arm_mbo_chain(struct most_channel *c, int dir,
873			 void (*compl)(struct mbo *))
874{
875	unsigned int i;
876	struct mbo *mbo;
877	unsigned long flags;
878	u32 coherent_buf_size = c->cfg.buffer_size + c->cfg.extra_len;
879
880	atomic_set(&c->mbo_nq_level, 0);
881
882	for (i = 0; i < c->cfg.num_buffers; i++) {
883		mbo = kzalloc(sizeof(*mbo), GFP_KERNEL);
884		if (!mbo)
885			goto flush_fifos;
886
887		mbo->context = c;
888		mbo->ifp = c->iface;
889		mbo->hdm_channel_id = c->channel_id;
890		if (c->iface->dma_alloc) {
891			mbo->virt_address =
892				c->iface->dma_alloc(mbo, coherent_buf_size);
893		} else {
894			mbo->virt_address =
895				kzalloc(coherent_buf_size, GFP_KERNEL);
896		}
897		if (!mbo->virt_address)
898			goto release_mbo;
899
900		mbo->complete = compl;
901		mbo->num_buffers_ptr = &dummy_num_buffers;
902		if (dir == MOST_CH_RX) {
903			nq_hdm_mbo(mbo);
904			atomic_inc(&c->mbo_nq_level);
905		} else {
906			spin_lock_irqsave(&c->fifo_lock, flags);
907			list_add_tail(&mbo->list, &c->fifo);
908			spin_unlock_irqrestore(&c->fifo_lock, flags);
909		}
910	}
911	return c->cfg.num_buffers;
912
913release_mbo:
914	kfree(mbo);
915
916flush_fifos:
917	flush_channel_fifos(c);
918	return 0;
919}
920
921/**
922 * most_submit_mbo - submits an MBO to fifo
923 * @mbo: most buffer
924 */
925void most_submit_mbo(struct mbo *mbo)
926{
927	if (WARN_ONCE(!mbo || !mbo->context,
928		      "Bad buffer or missing channel reference\n"))
929		return;
930
931	nq_hdm_mbo(mbo);
932}
933EXPORT_SYMBOL_GPL(most_submit_mbo);
934
935/**
936 * most_write_completion - write completion handler
937 * @mbo: most buffer
938 *
939 * This recycles the MBO for further usage. In case the channel has been
940 * poisoned, the MBO is scheduled to be trashed.
941 */
942static void most_write_completion(struct mbo *mbo)
943{
944	struct most_channel *c;
945
946	c = mbo->context;
947	if (unlikely(c->is_poisoned || (mbo->status == MBO_E_CLOSE)))
948		trash_mbo(mbo);
949	else
950		arm_mbo(mbo);
951}
952
953int channel_has_mbo(struct most_interface *iface, int id,
954		    struct most_component *comp)
955{
956	struct most_channel *c = iface->p->channel[id];
957	unsigned long flags;
958	int empty;
959
960	if (unlikely(!c))
961		return -EINVAL;
962
963	if (c->pipe0.refs && c->pipe1.refs &&
964	    ((comp == c->pipe0.comp && c->pipe0.num_buffers <= 0) ||
965	     (comp == c->pipe1.comp && c->pipe1.num_buffers <= 0)))
966		return 0;
967
968	spin_lock_irqsave(&c->fifo_lock, flags);
969	empty = list_empty(&c->fifo);
970	spin_unlock_irqrestore(&c->fifo_lock, flags);
971	return !empty;
972}
973EXPORT_SYMBOL_GPL(channel_has_mbo);
974
975/**
976 * most_get_mbo - get pointer to an MBO of pool
977 * @iface: pointer to interface instance
978 * @id: channel ID
979 * @comp: driver component
980 *
981 * This attempts to get a free buffer out of the channel fifo.
982 * Returns a pointer to MBO on success or NULL otherwise.
983 */
984struct mbo *most_get_mbo(struct most_interface *iface, int id,
985			 struct most_component *comp)
986{
987	struct mbo *mbo;
988	struct most_channel *c;
989	unsigned long flags;
990	int *num_buffers_ptr;
991
992	c = iface->p->channel[id];
993	if (unlikely(!c))
994		return NULL;
995
996	if (c->pipe0.refs && c->pipe1.refs &&
997	    ((comp == c->pipe0.comp && c->pipe0.num_buffers <= 0) ||
998	     (comp == c->pipe1.comp && c->pipe1.num_buffers <= 0)))
999		return NULL;
1000
1001	if (comp == c->pipe0.comp)
1002		num_buffers_ptr = &c->pipe0.num_buffers;
1003	else if (comp == c->pipe1.comp)
1004		num_buffers_ptr = &c->pipe1.num_buffers;
1005	else
1006		num_buffers_ptr = &dummy_num_buffers;
1007
1008	spin_lock_irqsave(&c->fifo_lock, flags);
1009	if (list_empty(&c->fifo)) {
1010		spin_unlock_irqrestore(&c->fifo_lock, flags);
1011		return NULL;
1012	}
1013	mbo = list_pop_mbo(&c->fifo);
1014	--*num_buffers_ptr;
1015	spin_unlock_irqrestore(&c->fifo_lock, flags);
1016
1017	mbo->num_buffers_ptr = num_buffers_ptr;
1018	mbo->buffer_length = c->cfg.buffer_size;
1019	return mbo;
1020}
1021EXPORT_SYMBOL_GPL(most_get_mbo);
1022
1023/**
1024 * most_put_mbo - return buffer to pool
1025 * @mbo: most buffer
1026 */
1027void most_put_mbo(struct mbo *mbo)
1028{
1029	struct most_channel *c = mbo->context;
1030
1031	if (c->cfg.direction == MOST_CH_TX) {
1032		arm_mbo(mbo);
1033		return;
1034	}
1035	nq_hdm_mbo(mbo);
1036	atomic_inc(&c->mbo_nq_level);
1037}
1038EXPORT_SYMBOL_GPL(most_put_mbo);
1039
1040/**
1041 * most_read_completion - read completion handler
1042 * @mbo: most buffer
1043 *
1044 * This function is called by the HDM when data has been received from the
1045 * hardware and copied to the buffer of the MBO.
1046 *
1047 * In case the channel has been poisoned it puts the buffer in the trash queue.
1048 * Otherwise, it passes the buffer to an component for further processing.
1049 */
1050static void most_read_completion(struct mbo *mbo)
1051{
1052	struct most_channel *c = mbo->context;
1053
1054	if (unlikely(c->is_poisoned || (mbo->status == MBO_E_CLOSE))) {
1055		trash_mbo(mbo);
1056		return;
1057	}
1058
1059	if (mbo->status == MBO_E_INVAL) {
1060		nq_hdm_mbo(mbo);
1061		atomic_inc(&c->mbo_nq_level);
1062		return;
1063	}
1064
1065	if (atomic_sub_and_test(1, &c->mbo_nq_level))
1066		c->is_starving = 1;
1067
1068	if (c->pipe0.refs && c->pipe0.comp->rx_completion &&
1069	    c->pipe0.comp->rx_completion(mbo) == 0)
1070		return;
1071
1072	if (c->pipe1.refs && c->pipe1.comp->rx_completion &&
1073	    c->pipe1.comp->rx_completion(mbo) == 0)
1074		return;
1075
1076	most_put_mbo(mbo);
1077}
1078
1079/**
1080 * most_start_channel - prepares a channel for communication
1081 * @iface: pointer to interface instance
1082 * @id: channel ID
1083 * @comp: driver component
1084 *
1085 * This prepares the channel for usage. Cross-checks whether the
1086 * channel's been properly configured.
1087 *
1088 * Returns 0 on success or error code otherwise.
1089 */
1090int most_start_channel(struct most_interface *iface, int id,
1091		       struct most_component *comp)
1092{
1093	int num_buffer;
1094	int ret;
1095	struct most_channel *c = iface->p->channel[id];
1096
1097	if (unlikely(!c))
1098		return -EINVAL;
1099
1100	mutex_lock(&c->start_mutex);
1101	if (c->pipe0.refs + c->pipe1.refs > 0)
1102		goto out; /* already started by another component */
1103
1104	if (!try_module_get(iface->mod)) {
1105		dev_err(&c->dev, "Failed to acquire HDM lock\n");
1106		mutex_unlock(&c->start_mutex);
1107		return -ENOLCK;
1108	}
1109
1110	c->cfg.extra_len = 0;
1111	if (c->iface->configure(c->iface, c->channel_id, &c->cfg)) {
1112		dev_err(&c->dev, "Channel configuration failed. Go check settings...\n");
1113		ret = -EINVAL;
1114		goto err_put_module;
1115	}
1116
1117	init_waitqueue_head(&c->hdm_fifo_wq);
1118
1119	if (c->cfg.direction == MOST_CH_RX)
1120		num_buffer = arm_mbo_chain(c, c->cfg.direction,
1121					   most_read_completion);
1122	else
1123		num_buffer = arm_mbo_chain(c, c->cfg.direction,
1124					   most_write_completion);
1125	if (unlikely(!num_buffer)) {
1126		ret = -ENOMEM;
1127		goto err_put_module;
1128	}
1129
1130	ret = run_enqueue_thread(c, id);
1131	if (ret)
1132		goto err_put_module;
1133
1134	c->is_starving = 0;
1135	c->pipe0.num_buffers = c->cfg.num_buffers / 2;
1136	c->pipe1.num_buffers = c->cfg.num_buffers - c->pipe0.num_buffers;
1137	atomic_set(&c->mbo_ref, num_buffer);
1138
1139out:
1140	if (comp == c->pipe0.comp)
1141		c->pipe0.refs++;
1142	if (comp == c->pipe1.comp)
1143		c->pipe1.refs++;
1144	mutex_unlock(&c->start_mutex);
1145	return 0;
1146
1147err_put_module:
1148	module_put(iface->mod);
1149	mutex_unlock(&c->start_mutex);
1150	return ret;
1151}
1152EXPORT_SYMBOL_GPL(most_start_channel);
1153
1154/**
1155 * most_stop_channel - stops a running channel
1156 * @iface: pointer to interface instance
1157 * @id: channel ID
1158 * @comp: driver component
1159 */
1160int most_stop_channel(struct most_interface *iface, int id,
1161		      struct most_component *comp)
1162{
1163	struct most_channel *c;
1164
1165	if (unlikely((!iface) || (id >= iface->num_channels) || (id < 0))) {
1166		pr_err("Bad interface or index out of range\n");
1167		return -EINVAL;
1168	}
1169	c = iface->p->channel[id];
1170	if (unlikely(!c))
1171		return -EINVAL;
1172
1173	mutex_lock(&c->start_mutex);
1174	if (c->pipe0.refs + c->pipe1.refs >= 2)
1175		goto out;
1176
1177	if (c->hdm_enqueue_task)
1178		kthread_stop(c->hdm_enqueue_task);
1179	c->hdm_enqueue_task = NULL;
1180
1181	if (iface->mod)
1182		module_put(iface->mod);
1183
1184	c->is_poisoned = true;
1185	if (c->iface->poison_channel(c->iface, c->channel_id)) {
1186		dev_err(&c->dev, "Failed to stop channel %d of interface %s\n", c->channel_id,
1187			c->iface->description);
1188		mutex_unlock(&c->start_mutex);
1189		return -EAGAIN;
1190	}
1191	flush_trash_fifo(c);
1192	flush_channel_fifos(c);
1193
1194#ifdef CMPL_INTERRUPTIBLE
1195	if (wait_for_completion_interruptible(&c->cleanup)) {
1196		dev_err(&c->dev, "Interrupted while cleaning up channel %d\n", c->channel_id);
1197		mutex_unlock(&c->start_mutex);
1198		return -EINTR;
1199	}
1200#else
1201	wait_for_completion(&c->cleanup);
1202#endif
1203	c->is_poisoned = false;
1204
1205out:
1206	if (comp == c->pipe0.comp)
1207		c->pipe0.refs--;
1208	if (comp == c->pipe1.comp)
1209		c->pipe1.refs--;
1210	mutex_unlock(&c->start_mutex);
1211	return 0;
1212}
1213EXPORT_SYMBOL_GPL(most_stop_channel);
1214
1215/**
1216 * most_register_component - registers a driver component with the core
1217 * @comp: driver component
1218 */
1219int most_register_component(struct most_component *comp)
1220{
1221	if (!comp) {
1222		pr_err("Bad component\n");
1223		return -EINVAL;
1224	}
1225	list_add_tail(&comp->list, &comp_list);
1226	return 0;
1227}
1228EXPORT_SYMBOL_GPL(most_register_component);
1229
1230static int disconnect_channels(struct device *dev, void *data)
1231{
1232	struct most_interface *iface;
1233	struct most_channel *c, *tmp;
1234	struct most_component *comp = data;
1235
1236	iface = dev_get_drvdata(dev);
1237	list_for_each_entry_safe(c, tmp, &iface->p->channel_list, list) {
1238		if (c->pipe0.comp == comp || c->pipe1.comp == comp)
1239			comp->disconnect_channel(c->iface, c->channel_id);
1240		if (c->pipe0.comp == comp)
1241			c->pipe0.comp = NULL;
1242		if (c->pipe1.comp == comp)
1243			c->pipe1.comp = NULL;
1244	}
1245	return 0;
1246}
1247
1248/**
1249 * most_deregister_component - deregisters a driver component with the core
1250 * @comp: driver component
1251 */
1252int most_deregister_component(struct most_component *comp)
1253{
1254	if (!comp) {
1255		pr_err("Bad component\n");
1256		return -EINVAL;
1257	}
1258
1259	bus_for_each_dev(&mostbus, NULL, comp, disconnect_channels);
1260	list_del(&comp->list);
1261	return 0;
1262}
1263EXPORT_SYMBOL_GPL(most_deregister_component);
1264
1265static void release_channel(struct device *dev)
1266{
1267	struct most_channel *c = to_channel(dev);
1268
1269	kfree(c);
1270}
1271
1272/**
1273 * most_register_interface - registers an interface with core
1274 * @iface: device interface
1275 *
1276 * Allocates and initializes a new interface instance and all of its channels.
1277 * Returns a pointer to kobject or an error pointer.
1278 */
1279int most_register_interface(struct most_interface *iface)
1280{
1281	unsigned int i;
1282	int id;
1283	struct most_channel *c;
1284
1285	if (!iface || !iface->enqueue || !iface->configure ||
1286	    !iface->poison_channel || (iface->num_channels > MAX_CHANNELS))
1287		return -EINVAL;
1288
1289	id = ida_simple_get(&mdev_id, 0, 0, GFP_KERNEL);
1290	if (id < 0) {
1291		dev_err(iface->dev, "Failed to allocate device ID\n");
1292		return id;
1293	}
1294
1295	iface->p = kzalloc(sizeof(*iface->p), GFP_KERNEL);
1296	if (!iface->p) {
1297		ida_simple_remove(&mdev_id, id);
1298		return -ENOMEM;
1299	}
1300
1301	INIT_LIST_HEAD(&iface->p->channel_list);
1302	iface->p->dev_id = id;
1303	strscpy(iface->p->name, iface->description, sizeof(iface->p->name));
1304	iface->dev->bus = &mostbus;
1305	iface->dev->groups = interface_attr_groups;
1306	dev_set_drvdata(iface->dev, iface);
1307	if (device_register(iface->dev)) {
1308		dev_err(iface->dev, "Failed to register interface device\n");
1309		kfree(iface->p);
1310		put_device(iface->dev);
1311		ida_simple_remove(&mdev_id, id);
1312		return -ENOMEM;
1313	}
1314
1315	for (i = 0; i < iface->num_channels; i++) {
1316		const char *name_suffix = iface->channel_vector[i].name_suffix;
1317
1318		c = kzalloc(sizeof(*c), GFP_KERNEL);
1319		if (!c)
1320			goto err_free_resources;
1321		if (!name_suffix)
1322			snprintf(c->name, STRING_SIZE, "ch%d", i);
1323		else
1324			snprintf(c->name, STRING_SIZE, "%s", name_suffix);
1325		c->dev.init_name = c->name;
1326		c->dev.parent = iface->dev;
1327		c->dev.groups = channel_attr_groups;
1328		c->dev.release = release_channel;
1329		iface->p->channel[i] = c;
1330		c->is_starving = 0;
1331		c->iface = iface;
1332		c->channel_id = i;
1333		c->keep_mbo = false;
1334		c->enqueue_halt = false;
1335		c->is_poisoned = false;
1336		c->cfg.direction = 0;
1337		c->cfg.data_type = 0;
1338		c->cfg.num_buffers = 0;
1339		c->cfg.buffer_size = 0;
1340		c->cfg.subbuffer_size = 0;
1341		c->cfg.packets_per_xact = 0;
1342		spin_lock_init(&c->fifo_lock);
1343		INIT_LIST_HEAD(&c->fifo);
1344		INIT_LIST_HEAD(&c->trash_fifo);
1345		INIT_LIST_HEAD(&c->halt_fifo);
1346		init_completion(&c->cleanup);
1347		atomic_set(&c->mbo_ref, 0);
1348		mutex_init(&c->start_mutex);
1349		mutex_init(&c->nq_mutex);
1350		list_add_tail(&c->list, &iface->p->channel_list);
1351		if (device_register(&c->dev)) {
1352			dev_err(&c->dev, "Failed to register channel device\n");
1353			goto err_free_most_channel;
1354		}
1355	}
1356	most_interface_register_notify(iface->description);
1357	return 0;
1358
1359err_free_most_channel:
1360	put_device(&c->dev);
1361
1362err_free_resources:
1363	while (i > 0) {
1364		c = iface->p->channel[--i];
1365		device_unregister(&c->dev);
1366	}
1367	kfree(iface->p);
1368	device_unregister(iface->dev);
1369	ida_simple_remove(&mdev_id, id);
1370	return -ENOMEM;
1371}
1372EXPORT_SYMBOL_GPL(most_register_interface);
1373
1374/**
1375 * most_deregister_interface - deregisters an interface with core
1376 * @iface: device interface
1377 *
1378 * Before removing an interface instance from the list, all running
1379 * channels are stopped and poisoned.
1380 */
1381void most_deregister_interface(struct most_interface *iface)
1382{
1383	int i;
1384	struct most_channel *c;
1385
1386	for (i = 0; i < iface->num_channels; i++) {
1387		c = iface->p->channel[i];
1388		if (c->pipe0.comp)
1389			c->pipe0.comp->disconnect_channel(c->iface,
1390							c->channel_id);
1391		if (c->pipe1.comp)
1392			c->pipe1.comp->disconnect_channel(c->iface,
1393							c->channel_id);
1394		c->pipe0.comp = NULL;
1395		c->pipe1.comp = NULL;
1396		list_del(&c->list);
1397		device_unregister(&c->dev);
1398	}
1399
1400	ida_simple_remove(&mdev_id, iface->p->dev_id);
1401	kfree(iface->p);
1402	device_unregister(iface->dev);
1403}
1404EXPORT_SYMBOL_GPL(most_deregister_interface);
1405
1406/**
1407 * most_stop_enqueue - prevents core from enqueueing MBOs
1408 * @iface: pointer to interface
1409 * @id: channel id
1410 *
1411 * This is called by an HDM that _cannot_ attend to its duties and
1412 * is imminent to get run over by the core. The core is not going to
1413 * enqueue any further packets unless the flagging HDM calls
1414 * most_resume enqueue().
1415 */
1416void most_stop_enqueue(struct most_interface *iface, int id)
1417{
1418	struct most_channel *c = iface->p->channel[id];
1419
1420	if (!c)
1421		return;
1422
1423	mutex_lock(&c->nq_mutex);
1424	c->enqueue_halt = true;
1425	mutex_unlock(&c->nq_mutex);
1426}
1427EXPORT_SYMBOL_GPL(most_stop_enqueue);
1428
1429/**
1430 * most_resume_enqueue - allow core to enqueue MBOs again
1431 * @iface: pointer to interface
1432 * @id: channel id
1433 *
1434 * This clears the enqueue halt flag and enqueues all MBOs currently
1435 * sitting in the wait fifo.
1436 */
1437void most_resume_enqueue(struct most_interface *iface, int id)
1438{
1439	struct most_channel *c = iface->p->channel[id];
1440
1441	if (!c)
1442		return;
1443
1444	mutex_lock(&c->nq_mutex);
1445	c->enqueue_halt = false;
1446	mutex_unlock(&c->nq_mutex);
1447
1448	wake_up_interruptible(&c->hdm_fifo_wq);
1449}
1450EXPORT_SYMBOL_GPL(most_resume_enqueue);
1451
1452static int __init most_init(void)
1453{
1454	int err;
1455
1456	INIT_LIST_HEAD(&comp_list);
1457	ida_init(&mdev_id);
1458
1459	err = bus_register(&mostbus);
1460	if (err) {
1461		pr_err("Failed to register most bus\n");
1462		return err;
1463	}
1464	err = driver_register(&mostbus_driver);
1465	if (err) {
1466		pr_err("Failed to register core driver\n");
1467		goto err_unregister_bus;
1468	}
1469	configfs_init();
1470	return 0;
1471
1472err_unregister_bus:
1473	bus_unregister(&mostbus);
1474	return err;
1475}
1476
1477static void __exit most_exit(void)
1478{
1479	driver_unregister(&mostbus_driver);
1480	bus_unregister(&mostbus);
1481	ida_destroy(&mdev_id);
1482}
1483
1484subsys_initcall(most_init);
1485module_exit(most_exit);
1486MODULE_LICENSE("GPL");
1487MODULE_AUTHOR("Christian Gromm <christian.gromm@microchip.com>");
1488MODULE_DESCRIPTION("Core module of stacked MOST Linux driver");
1489