1// SPDX-License-Identifier: GPL-2.0
2/*
3 * MMCIF eMMC driver.
4 *
5 * Copyright (C) 2010 Renesas Solutions Corp.
6 * Yusuke Goda <yusuke.goda.sx@renesas.com>
7 */
8
9/*
10 * The MMCIF driver is now processing MMC requests asynchronously, according
11 * to the Linux MMC API requirement.
12 *
13 * The MMCIF driver processes MMC requests in up to 3 stages: command, optional
14 * data, and optional stop. To achieve asynchronous processing each of these
15 * stages is split into two halves: a top and a bottom half. The top half
16 * initialises the hardware, installs a timeout handler to handle completion
17 * timeouts, and returns. In case of the command stage this immediately returns
18 * control to the caller, leaving all further processing to run asynchronously.
19 * All further request processing is performed by the bottom halves.
20 *
21 * The bottom half further consists of a "hard" IRQ handler, an IRQ handler
22 * thread, a DMA completion callback, if DMA is used, a timeout work, and
23 * request- and stage-specific handler methods.
24 *
25 * Each bottom half run begins with either a hardware interrupt, a DMA callback
26 * invocation, or a timeout work run. In case of an error or a successful
27 * processing completion, the MMC core is informed and the request processing is
28 * finished. In case processing has to continue, i.e., if data has to be read
29 * from or written to the card, or if a stop command has to be sent, the next
30 * top half is called, which performs the necessary hardware handling and
31 * reschedules the timeout work. This returns the driver state machine into the
32 * bottom half waiting state.
33 */
34
35#include <linux/bitops.h>
36#include <linux/clk.h>
37#include <linux/completion.h>
38#include <linux/delay.h>
39#include <linux/dma-mapping.h>
40#include <linux/dmaengine.h>
41#include <linux/mmc/card.h>
42#include <linux/mmc/core.h>
43#include <linux/mmc/host.h>
44#include <linux/mmc/mmc.h>
45#include <linux/mmc/sdio.h>
46#include <linux/mmc/slot-gpio.h>
47#include <linux/mod_devicetable.h>
48#include <linux/mutex.h>
49#include <linux/pagemap.h>
50#include <linux/platform_data/sh_mmcif.h>
51#include <linux/platform_device.h>
52#include <linux/pm_qos.h>
53#include <linux/pm_runtime.h>
54#include <linux/sh_dma.h>
55#include <linux/spinlock.h>
56#include <linux/module.h>
57
58#define DRIVER_NAME	"sh_mmcif"
59
60/* CE_CMD_SET */
61#define CMD_MASK		0x3f000000
62#define CMD_SET_RTYP_NO		((0 << 23) | (0 << 22))
63#define CMD_SET_RTYP_6B		((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */
64#define CMD_SET_RTYP_17B	((1 << 23) | (0 << 22)) /* R2 */
65#define CMD_SET_RBSY		(1 << 21) /* R1b */
66#define CMD_SET_CCSEN		(1 << 20)
67#define CMD_SET_WDAT		(1 << 19) /* 1: on data, 0: no data */
68#define CMD_SET_DWEN		(1 << 18) /* 1: write, 0: read */
69#define CMD_SET_CMLTE		(1 << 17) /* 1: multi block trans, 0: single */
70#define CMD_SET_CMD12EN		(1 << 16) /* 1: CMD12 auto issue */
71#define CMD_SET_RIDXC_INDEX	((0 << 15) | (0 << 14)) /* index check */
72#define CMD_SET_RIDXC_BITS	((0 << 15) | (1 << 14)) /* check bits check */
73#define CMD_SET_RIDXC_NO	((1 << 15) | (0 << 14)) /* no check */
74#define CMD_SET_CRC7C		((0 << 13) | (0 << 12)) /* CRC7 check*/
75#define CMD_SET_CRC7C_BITS	((0 << 13) | (1 << 12)) /* check bits check*/
76#define CMD_SET_CRC7C_INTERNAL	((1 << 13) | (0 << 12)) /* internal CRC7 check*/
77#define CMD_SET_CRC16C		(1 << 10) /* 0: CRC16 check*/
78#define CMD_SET_CRCSTE		(1 << 8) /* 1: not receive CRC status */
79#define CMD_SET_TBIT		(1 << 7) /* 1: tran mission bit "Low" */
80#define CMD_SET_OPDM		(1 << 6) /* 1: open/drain */
81#define CMD_SET_CCSH		(1 << 5)
82#define CMD_SET_DARS		(1 << 2) /* Dual Data Rate */
83#define CMD_SET_DATW_1		((0 << 1) | (0 << 0)) /* 1bit */
84#define CMD_SET_DATW_4		((0 << 1) | (1 << 0)) /* 4bit */
85#define CMD_SET_DATW_8		((1 << 1) | (0 << 0)) /* 8bit */
86
87/* CE_CMD_CTRL */
88#define CMD_CTRL_BREAK		(1 << 0)
89
90/* CE_BLOCK_SET */
91#define BLOCK_SIZE_MASK		0x0000ffff
92
93/* CE_INT */
94#define INT_CCSDE		(1 << 29)
95#define INT_CMD12DRE		(1 << 26)
96#define INT_CMD12RBE		(1 << 25)
97#define INT_CMD12CRE		(1 << 24)
98#define INT_DTRANE		(1 << 23)
99#define INT_BUFRE		(1 << 22)
100#define INT_BUFWEN		(1 << 21)
101#define INT_BUFREN		(1 << 20)
102#define INT_CCSRCV		(1 << 19)
103#define INT_RBSYE		(1 << 17)
104#define INT_CRSPE		(1 << 16)
105#define INT_CMDVIO		(1 << 15)
106#define INT_BUFVIO		(1 << 14)
107#define INT_WDATERR		(1 << 11)
108#define INT_RDATERR		(1 << 10)
109#define INT_RIDXERR		(1 << 9)
110#define INT_RSPERR		(1 << 8)
111#define INT_CCSTO		(1 << 5)
112#define INT_CRCSTO		(1 << 4)
113#define INT_WDATTO		(1 << 3)
114#define INT_RDATTO		(1 << 2)
115#define INT_RBSYTO		(1 << 1)
116#define INT_RSPTO		(1 << 0)
117#define INT_ERR_STS		(INT_CMDVIO | INT_BUFVIO | INT_WDATERR |  \
118				 INT_RDATERR | INT_RIDXERR | INT_RSPERR | \
119				 INT_CCSTO | INT_CRCSTO | INT_WDATTO |	  \
120				 INT_RDATTO | INT_RBSYTO | INT_RSPTO)
121
122#define INT_ALL			(INT_RBSYE | INT_CRSPE | INT_BUFREN |	 \
123				 INT_BUFWEN | INT_CMD12DRE | INT_BUFRE | \
124				 INT_DTRANE | INT_CMD12RBE | INT_CMD12CRE)
125
126#define INT_CCS			(INT_CCSTO | INT_CCSRCV | INT_CCSDE)
127
128/* CE_INT_MASK */
129#define MASK_ALL		0x00000000
130#define MASK_MCCSDE		(1 << 29)
131#define MASK_MCMD12DRE		(1 << 26)
132#define MASK_MCMD12RBE		(1 << 25)
133#define MASK_MCMD12CRE		(1 << 24)
134#define MASK_MDTRANE		(1 << 23)
135#define MASK_MBUFRE		(1 << 22)
136#define MASK_MBUFWEN		(1 << 21)
137#define MASK_MBUFREN		(1 << 20)
138#define MASK_MCCSRCV		(1 << 19)
139#define MASK_MRBSYE		(1 << 17)
140#define MASK_MCRSPE		(1 << 16)
141#define MASK_MCMDVIO		(1 << 15)
142#define MASK_MBUFVIO		(1 << 14)
143#define MASK_MWDATERR		(1 << 11)
144#define MASK_MRDATERR		(1 << 10)
145#define MASK_MRIDXERR		(1 << 9)
146#define MASK_MRSPERR		(1 << 8)
147#define MASK_MCCSTO		(1 << 5)
148#define MASK_MCRCSTO		(1 << 4)
149#define MASK_MWDATTO		(1 << 3)
150#define MASK_MRDATTO		(1 << 2)
151#define MASK_MRBSYTO		(1 << 1)
152#define MASK_MRSPTO		(1 << 0)
153
154#define MASK_START_CMD		(MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR | \
155				 MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR | \
156				 MASK_MCRCSTO | MASK_MWDATTO | \
157				 MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO)
158
159#define MASK_CLEAN		(INT_ERR_STS | MASK_MRBSYE | MASK_MCRSPE |	\
160				 MASK_MBUFREN | MASK_MBUFWEN |			\
161				 MASK_MCMD12DRE | MASK_MBUFRE | MASK_MDTRANE |	\
162				 MASK_MCMD12RBE | MASK_MCMD12CRE)
163
164/* CE_HOST_STS1 */
165#define STS1_CMDSEQ		(1 << 31)
166
167/* CE_HOST_STS2 */
168#define STS2_CRCSTE		(1 << 31)
169#define STS2_CRC16E		(1 << 30)
170#define STS2_AC12CRCE		(1 << 29)
171#define STS2_RSPCRC7E		(1 << 28)
172#define STS2_CRCSTEBE		(1 << 27)
173#define STS2_RDATEBE		(1 << 26)
174#define STS2_AC12REBE		(1 << 25)
175#define STS2_RSPEBE		(1 << 24)
176#define STS2_AC12IDXE		(1 << 23)
177#define STS2_RSPIDXE		(1 << 22)
178#define STS2_CCSTO		(1 << 15)
179#define STS2_RDATTO		(1 << 14)
180#define STS2_DATBSYTO		(1 << 13)
181#define STS2_CRCSTTO		(1 << 12)
182#define STS2_AC12BSYTO		(1 << 11)
183#define STS2_RSPBSYTO		(1 << 10)
184#define STS2_AC12RSPTO		(1 << 9)
185#define STS2_RSPTO		(1 << 8)
186#define STS2_CRC_ERR		(STS2_CRCSTE | STS2_CRC16E |		\
187				 STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE)
188#define STS2_TIMEOUT_ERR	(STS2_CCSTO | STS2_RDATTO |		\
189				 STS2_DATBSYTO | STS2_CRCSTTO |		\
190				 STS2_AC12BSYTO | STS2_RSPBSYTO |	\
191				 STS2_AC12RSPTO | STS2_RSPTO)
192
193#define CLKDEV_EMMC_DATA	52000000 /* 52 MHz */
194#define CLKDEV_MMC_DATA		20000000 /* 20 MHz */
195#define CLKDEV_INIT		400000   /* 400 kHz */
196
197enum sh_mmcif_state {
198	STATE_IDLE,
199	STATE_REQUEST,
200	STATE_IOS,
201	STATE_TIMEOUT,
202};
203
204enum sh_mmcif_wait_for {
205	MMCIF_WAIT_FOR_REQUEST,
206	MMCIF_WAIT_FOR_CMD,
207	MMCIF_WAIT_FOR_MREAD,
208	MMCIF_WAIT_FOR_MWRITE,
209	MMCIF_WAIT_FOR_READ,
210	MMCIF_WAIT_FOR_WRITE,
211	MMCIF_WAIT_FOR_READ_END,
212	MMCIF_WAIT_FOR_WRITE_END,
213	MMCIF_WAIT_FOR_STOP,
214};
215
216/*
217 * difference for each SoC
218 */
219struct sh_mmcif_host {
220	struct mmc_host *mmc;
221	struct mmc_request *mrq;
222	struct platform_device *pd;
223	struct clk *clk;
224	int bus_width;
225	unsigned char timing;
226	bool sd_error;
227	bool dying;
228	long timeout;
229	void __iomem *addr;
230	u32 *pio_ptr;
231	spinlock_t lock;		/* protect sh_mmcif_host::state */
232	enum sh_mmcif_state state;
233	enum sh_mmcif_wait_for wait_for;
234	struct delayed_work timeout_work;
235	size_t blocksize;
236	int sg_idx;
237	int sg_blkidx;
238	bool power;
239	bool ccs_enable;		/* Command Completion Signal support */
240	bool clk_ctrl2_enable;
241	struct mutex thread_lock;
242	u32 clkdiv_map;         /* see CE_CLK_CTRL::CLKDIV */
243
244	/* DMA support */
245	struct dma_chan		*chan_rx;
246	struct dma_chan		*chan_tx;
247	struct completion	dma_complete;
248	bool			dma_active;
249};
250
251static const struct of_device_id sh_mmcif_of_match[] = {
252	{ .compatible = "renesas,sh-mmcif" },
253	{ }
254};
255MODULE_DEVICE_TABLE(of, sh_mmcif_of_match);
256
257#define sh_mmcif_host_to_dev(host) (&host->pd->dev)
258
259static inline void sh_mmcif_bitset(struct sh_mmcif_host *host,
260					unsigned int reg, u32 val)
261{
262	writel(val | readl(host->addr + reg), host->addr + reg);
263}
264
265static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host,
266					unsigned int reg, u32 val)
267{
268	writel(~val & readl(host->addr + reg), host->addr + reg);
269}
270
271static void sh_mmcif_dma_complete(void *arg)
272{
273	struct sh_mmcif_host *host = arg;
274	struct mmc_request *mrq = host->mrq;
275	struct device *dev = sh_mmcif_host_to_dev(host);
276
277	dev_dbg(dev, "Command completed\n");
278
279	if (WARN(!mrq || !mrq->data, "%s: NULL data in DMA completion!\n",
280		 dev_name(dev)))
281		return;
282
283	complete(&host->dma_complete);
284}
285
286static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host)
287{
288	struct mmc_data *data = host->mrq->data;
289	struct scatterlist *sg = data->sg;
290	struct dma_async_tx_descriptor *desc = NULL;
291	struct dma_chan *chan = host->chan_rx;
292	struct device *dev = sh_mmcif_host_to_dev(host);
293	dma_cookie_t cookie = -EINVAL;
294	int ret;
295
296	ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
297			 DMA_FROM_DEVICE);
298	if (ret > 0) {
299		host->dma_active = true;
300		desc = dmaengine_prep_slave_sg(chan, sg, ret,
301			DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
302	}
303
304	if (desc) {
305		desc->callback = sh_mmcif_dma_complete;
306		desc->callback_param = host;
307		cookie = dmaengine_submit(desc);
308		sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN);
309		dma_async_issue_pending(chan);
310	}
311	dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n",
312		__func__, data->sg_len, ret, cookie);
313
314	if (!desc) {
315		/* DMA failed, fall back to PIO */
316		if (ret >= 0)
317			ret = -EIO;
318		host->chan_rx = NULL;
319		host->dma_active = false;
320		dma_release_channel(chan);
321		/* Free the Tx channel too */
322		chan = host->chan_tx;
323		if (chan) {
324			host->chan_tx = NULL;
325			dma_release_channel(chan);
326		}
327		dev_warn(dev,
328			 "DMA failed: %d, falling back to PIO\n", ret);
329		sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
330	}
331
332	dev_dbg(dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__,
333		desc, cookie, data->sg_len);
334}
335
336static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host)
337{
338	struct mmc_data *data = host->mrq->data;
339	struct scatterlist *sg = data->sg;
340	struct dma_async_tx_descriptor *desc = NULL;
341	struct dma_chan *chan = host->chan_tx;
342	struct device *dev = sh_mmcif_host_to_dev(host);
343	dma_cookie_t cookie = -EINVAL;
344	int ret;
345
346	ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
347			 DMA_TO_DEVICE);
348	if (ret > 0) {
349		host->dma_active = true;
350		desc = dmaengine_prep_slave_sg(chan, sg, ret,
351			DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
352	}
353
354	if (desc) {
355		desc->callback = sh_mmcif_dma_complete;
356		desc->callback_param = host;
357		cookie = dmaengine_submit(desc);
358		sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN);
359		dma_async_issue_pending(chan);
360	}
361	dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n",
362		__func__, data->sg_len, ret, cookie);
363
364	if (!desc) {
365		/* DMA failed, fall back to PIO */
366		if (ret >= 0)
367			ret = -EIO;
368		host->chan_tx = NULL;
369		host->dma_active = false;
370		dma_release_channel(chan);
371		/* Free the Rx channel too */
372		chan = host->chan_rx;
373		if (chan) {
374			host->chan_rx = NULL;
375			dma_release_channel(chan);
376		}
377		dev_warn(dev,
378			 "DMA failed: %d, falling back to PIO\n", ret);
379		sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
380	}
381
382	dev_dbg(dev, "%s(): desc %p, cookie %d\n", __func__,
383		desc, cookie);
384}
385
386static struct dma_chan *
387sh_mmcif_request_dma_pdata(struct sh_mmcif_host *host, uintptr_t slave_id)
388{
389	dma_cap_mask_t mask;
390
391	dma_cap_zero(mask);
392	dma_cap_set(DMA_SLAVE, mask);
393	if (slave_id <= 0)
394		return NULL;
395
396	return dma_request_channel(mask, shdma_chan_filter, (void *)slave_id);
397}
398
399static int sh_mmcif_dma_slave_config(struct sh_mmcif_host *host,
400				     struct dma_chan *chan,
401				     enum dma_transfer_direction direction)
402{
403	struct resource *res;
404	struct dma_slave_config cfg = { 0, };
405
406	res = platform_get_resource(host->pd, IORESOURCE_MEM, 0);
407	if (!res)
408		return -EINVAL;
409
410	cfg.direction = direction;
411
412	if (direction == DMA_DEV_TO_MEM) {
413		cfg.src_addr = res->start + MMCIF_CE_DATA;
414		cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
415	} else {
416		cfg.dst_addr = res->start + MMCIF_CE_DATA;
417		cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
418	}
419
420	return dmaengine_slave_config(chan, &cfg);
421}
422
423static void sh_mmcif_request_dma(struct sh_mmcif_host *host)
424{
425	struct device *dev = sh_mmcif_host_to_dev(host);
426	host->dma_active = false;
427
428	/* We can only either use DMA for both Tx and Rx or not use it at all */
429	if (IS_ENABLED(CONFIG_SUPERH) && dev->platform_data) {
430		struct sh_mmcif_plat_data *pdata = dev->platform_data;
431
432		host->chan_tx = sh_mmcif_request_dma_pdata(host,
433							pdata->slave_id_tx);
434		host->chan_rx = sh_mmcif_request_dma_pdata(host,
435							pdata->slave_id_rx);
436	} else {
437		host->chan_tx = dma_request_chan(dev, "tx");
438		if (IS_ERR(host->chan_tx))
439			host->chan_tx = NULL;
440		host->chan_rx = dma_request_chan(dev, "rx");
441		if (IS_ERR(host->chan_rx))
442			host->chan_rx = NULL;
443	}
444	dev_dbg(dev, "%s: got channel TX %p RX %p\n", __func__, host->chan_tx,
445		host->chan_rx);
446
447	if (!host->chan_tx || !host->chan_rx ||
448	    sh_mmcif_dma_slave_config(host, host->chan_tx, DMA_MEM_TO_DEV) ||
449	    sh_mmcif_dma_slave_config(host, host->chan_rx, DMA_DEV_TO_MEM))
450		goto error;
451
452	return;
453
454error:
455	if (host->chan_tx)
456		dma_release_channel(host->chan_tx);
457	if (host->chan_rx)
458		dma_release_channel(host->chan_rx);
459	host->chan_tx = host->chan_rx = NULL;
460}
461
462static void sh_mmcif_release_dma(struct sh_mmcif_host *host)
463{
464	sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
465	/* Descriptors are freed automatically */
466	if (host->chan_tx) {
467		struct dma_chan *chan = host->chan_tx;
468		host->chan_tx = NULL;
469		dma_release_channel(chan);
470	}
471	if (host->chan_rx) {
472		struct dma_chan *chan = host->chan_rx;
473		host->chan_rx = NULL;
474		dma_release_channel(chan);
475	}
476
477	host->dma_active = false;
478}
479
480static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk)
481{
482	struct device *dev = sh_mmcif_host_to_dev(host);
483	struct sh_mmcif_plat_data *p = dev->platform_data;
484	bool sup_pclk = p ? p->sup_pclk : false;
485	unsigned int current_clk = clk_get_rate(host->clk);
486	unsigned int clkdiv;
487
488	sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
489	sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR);
490
491	if (!clk)
492		return;
493
494	if (host->clkdiv_map) {
495		unsigned int freq, best_freq, myclk, div, diff_min, diff;
496		int i;
497
498		clkdiv = 0;
499		diff_min = ~0;
500		best_freq = 0;
501		for (i = 31; i >= 0; i--) {
502			if (!((1 << i) & host->clkdiv_map))
503				continue;
504
505			/*
506			 * clk = parent_freq / div
507			 * -> parent_freq = clk x div
508			 */
509
510			div = 1 << (i + 1);
511			freq = clk_round_rate(host->clk, clk * div);
512			myclk = freq / div;
513			diff = (myclk > clk) ? myclk - clk : clk - myclk;
514
515			if (diff <= diff_min) {
516				best_freq = freq;
517				clkdiv = i;
518				diff_min = diff;
519			}
520		}
521
522		dev_dbg(dev, "clk %u/%u (%u, 0x%x)\n",
523			(best_freq >> (clkdiv + 1)), clk, best_freq, clkdiv);
524
525		clk_set_rate(host->clk, best_freq);
526		clkdiv = clkdiv << 16;
527	} else if (sup_pclk && clk == current_clk) {
528		clkdiv = CLK_SUP_PCLK;
529	} else {
530		clkdiv = (fls(DIV_ROUND_UP(current_clk, clk) - 1) - 1) << 16;
531	}
532
533	sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR & clkdiv);
534	sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
535}
536
537static void sh_mmcif_sync_reset(struct sh_mmcif_host *host)
538{
539	u32 tmp;
540
541	tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL);
542
543	sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON);
544	sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF);
545	if (host->ccs_enable)
546		tmp |= SCCSTO_29;
547	if (host->clk_ctrl2_enable)
548		sh_mmcif_writel(host->addr, MMCIF_CE_CLK_CTRL2, 0x0F0F0000);
549	sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp |
550		SRSPTO_256 | SRBSYTO_29 | SRWDTO_29);
551	/* byte swap on */
552	sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP);
553}
554
555static int sh_mmcif_error_manage(struct sh_mmcif_host *host)
556{
557	struct device *dev = sh_mmcif_host_to_dev(host);
558	u32 state1, state2;
559	int ret, timeout;
560
561	host->sd_error = false;
562
563	state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1);
564	state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2);
565	dev_dbg(dev, "ERR HOST_STS1 = %08x\n", state1);
566	dev_dbg(dev, "ERR HOST_STS2 = %08x\n", state2);
567
568	if (state1 & STS1_CMDSEQ) {
569		sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK);
570		sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK);
571		for (timeout = 10000; timeout; timeout--) {
572			if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1)
573			      & STS1_CMDSEQ))
574				break;
575			mdelay(1);
576		}
577		if (!timeout) {
578			dev_err(dev,
579				"Forced end of command sequence timeout err\n");
580			return -EIO;
581		}
582		sh_mmcif_sync_reset(host);
583		dev_dbg(dev, "Forced end of command sequence\n");
584		return -EIO;
585	}
586
587	if (state2 & STS2_CRC_ERR) {
588		dev_err(dev, " CRC error: state %u, wait %u\n",
589			host->state, host->wait_for);
590		ret = -EIO;
591	} else if (state2 & STS2_TIMEOUT_ERR) {
592		dev_err(dev, " Timeout: state %u, wait %u\n",
593			host->state, host->wait_for);
594		ret = -ETIMEDOUT;
595	} else {
596		dev_dbg(dev, " End/Index error: state %u, wait %u\n",
597			host->state, host->wait_for);
598		ret = -EIO;
599	}
600	return ret;
601}
602
603static bool sh_mmcif_next_block(struct sh_mmcif_host *host, u32 *p)
604{
605	struct mmc_data *data = host->mrq->data;
606
607	host->sg_blkidx += host->blocksize;
608
609	/* data->sg->length must be a multiple of host->blocksize? */
610	BUG_ON(host->sg_blkidx > data->sg->length);
611
612	if (host->sg_blkidx == data->sg->length) {
613		host->sg_blkidx = 0;
614		if (++host->sg_idx < data->sg_len)
615			host->pio_ptr = sg_virt(++data->sg);
616	} else {
617		host->pio_ptr = p;
618	}
619
620	return host->sg_idx != data->sg_len;
621}
622
623static void sh_mmcif_single_read(struct sh_mmcif_host *host,
624				 struct mmc_request *mrq)
625{
626	host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
627			   BLOCK_SIZE_MASK) + 3;
628
629	host->wait_for = MMCIF_WAIT_FOR_READ;
630
631	/* buf read enable */
632	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
633}
634
635static bool sh_mmcif_read_block(struct sh_mmcif_host *host)
636{
637	struct device *dev = sh_mmcif_host_to_dev(host);
638	struct mmc_data *data = host->mrq->data;
639	u32 *p = sg_virt(data->sg);
640	int i;
641
642	if (host->sd_error) {
643		data->error = sh_mmcif_error_manage(host);
644		dev_dbg(dev, "%s(): %d\n", __func__, data->error);
645		return false;
646	}
647
648	for (i = 0; i < host->blocksize / 4; i++)
649		*p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
650
651	/* buffer read end */
652	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
653	host->wait_for = MMCIF_WAIT_FOR_READ_END;
654
655	return true;
656}
657
658static void sh_mmcif_multi_read(struct sh_mmcif_host *host,
659				struct mmc_request *mrq)
660{
661	struct mmc_data *data = mrq->data;
662
663	if (!data->sg_len || !data->sg->length)
664		return;
665
666	host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
667		BLOCK_SIZE_MASK;
668
669	host->wait_for = MMCIF_WAIT_FOR_MREAD;
670	host->sg_idx = 0;
671	host->sg_blkidx = 0;
672	host->pio_ptr = sg_virt(data->sg);
673
674	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
675}
676
677static bool sh_mmcif_mread_block(struct sh_mmcif_host *host)
678{
679	struct device *dev = sh_mmcif_host_to_dev(host);
680	struct mmc_data *data = host->mrq->data;
681	u32 *p = host->pio_ptr;
682	int i;
683
684	if (host->sd_error) {
685		data->error = sh_mmcif_error_manage(host);
686		dev_dbg(dev, "%s(): %d\n", __func__, data->error);
687		return false;
688	}
689
690	BUG_ON(!data->sg->length);
691
692	for (i = 0; i < host->blocksize / 4; i++)
693		*p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
694
695	if (!sh_mmcif_next_block(host, p))
696		return false;
697
698	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
699
700	return true;
701}
702
703static void sh_mmcif_single_write(struct sh_mmcif_host *host,
704					struct mmc_request *mrq)
705{
706	host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
707			   BLOCK_SIZE_MASK) + 3;
708
709	host->wait_for = MMCIF_WAIT_FOR_WRITE;
710
711	/* buf write enable */
712	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
713}
714
715static bool sh_mmcif_write_block(struct sh_mmcif_host *host)
716{
717	struct device *dev = sh_mmcif_host_to_dev(host);
718	struct mmc_data *data = host->mrq->data;
719	u32 *p = sg_virt(data->sg);
720	int i;
721
722	if (host->sd_error) {
723		data->error = sh_mmcif_error_manage(host);
724		dev_dbg(dev, "%s(): %d\n", __func__, data->error);
725		return false;
726	}
727
728	for (i = 0; i < host->blocksize / 4; i++)
729		sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
730
731	/* buffer write end */
732	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
733	host->wait_for = MMCIF_WAIT_FOR_WRITE_END;
734
735	return true;
736}
737
738static void sh_mmcif_multi_write(struct sh_mmcif_host *host,
739				struct mmc_request *mrq)
740{
741	struct mmc_data *data = mrq->data;
742
743	if (!data->sg_len || !data->sg->length)
744		return;
745
746	host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
747		BLOCK_SIZE_MASK;
748
749	host->wait_for = MMCIF_WAIT_FOR_MWRITE;
750	host->sg_idx = 0;
751	host->sg_blkidx = 0;
752	host->pio_ptr = sg_virt(data->sg);
753
754	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
755}
756
757static bool sh_mmcif_mwrite_block(struct sh_mmcif_host *host)
758{
759	struct device *dev = sh_mmcif_host_to_dev(host);
760	struct mmc_data *data = host->mrq->data;
761	u32 *p = host->pio_ptr;
762	int i;
763
764	if (host->sd_error) {
765		data->error = sh_mmcif_error_manage(host);
766		dev_dbg(dev, "%s(): %d\n", __func__, data->error);
767		return false;
768	}
769
770	BUG_ON(!data->sg->length);
771
772	for (i = 0; i < host->blocksize / 4; i++)
773		sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
774
775	if (!sh_mmcif_next_block(host, p))
776		return false;
777
778	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
779
780	return true;
781}
782
783static void sh_mmcif_get_response(struct sh_mmcif_host *host,
784						struct mmc_command *cmd)
785{
786	if (cmd->flags & MMC_RSP_136) {
787		cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3);
788		cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2);
789		cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1);
790		cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
791	} else
792		cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
793}
794
795static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host,
796						struct mmc_command *cmd)
797{
798	cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12);
799}
800
801static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host,
802			    struct mmc_request *mrq)
803{
804	struct device *dev = sh_mmcif_host_to_dev(host);
805	struct mmc_data *data = mrq->data;
806	struct mmc_command *cmd = mrq->cmd;
807	u32 opc = cmd->opcode;
808	u32 tmp = 0;
809
810	/* Response Type check */
811	switch (mmc_resp_type(cmd)) {
812	case MMC_RSP_NONE:
813		tmp |= CMD_SET_RTYP_NO;
814		break;
815	case MMC_RSP_R1:
816	case MMC_RSP_R3:
817		tmp |= CMD_SET_RTYP_6B;
818		break;
819	case MMC_RSP_R1B:
820		tmp |= CMD_SET_RBSY | CMD_SET_RTYP_6B;
821		break;
822	case MMC_RSP_R2:
823		tmp |= CMD_SET_RTYP_17B;
824		break;
825	default:
826		dev_err(dev, "Unsupported response type.\n");
827		break;
828	}
829
830	/* WDAT / DATW */
831	if (data) {
832		tmp |= CMD_SET_WDAT;
833		switch (host->bus_width) {
834		case MMC_BUS_WIDTH_1:
835			tmp |= CMD_SET_DATW_1;
836			break;
837		case MMC_BUS_WIDTH_4:
838			tmp |= CMD_SET_DATW_4;
839			break;
840		case MMC_BUS_WIDTH_8:
841			tmp |= CMD_SET_DATW_8;
842			break;
843		default:
844			dev_err(dev, "Unsupported bus width.\n");
845			break;
846		}
847		switch (host->timing) {
848		case MMC_TIMING_MMC_DDR52:
849			/*
850			 * MMC core will only set this timing, if the host
851			 * advertises the MMC_CAP_1_8V_DDR/MMC_CAP_1_2V_DDR
852			 * capability. MMCIF implementations with this
853			 * capability, e.g. sh73a0, will have to set it
854			 * in their platform data.
855			 */
856			tmp |= CMD_SET_DARS;
857			break;
858		}
859	}
860	/* DWEN */
861	if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK)
862		tmp |= CMD_SET_DWEN;
863	/* CMLTE/CMD12EN */
864	if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) {
865		tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN;
866		sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET,
867				data->blocks << 16);
868	}
869	/* RIDXC[1:0] check bits */
870	if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID ||
871	    opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
872		tmp |= CMD_SET_RIDXC_BITS;
873	/* RCRC7C[1:0] check bits */
874	if (opc == MMC_SEND_OP_COND)
875		tmp |= CMD_SET_CRC7C_BITS;
876	/* RCRC7C[1:0] internal CRC7 */
877	if (opc == MMC_ALL_SEND_CID ||
878		opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
879		tmp |= CMD_SET_CRC7C_INTERNAL;
880
881	return (opc << 24) | tmp;
882}
883
884static int sh_mmcif_data_trans(struct sh_mmcif_host *host,
885			       struct mmc_request *mrq, u32 opc)
886{
887	struct device *dev = sh_mmcif_host_to_dev(host);
888
889	switch (opc) {
890	case MMC_READ_MULTIPLE_BLOCK:
891		sh_mmcif_multi_read(host, mrq);
892		return 0;
893	case MMC_WRITE_MULTIPLE_BLOCK:
894		sh_mmcif_multi_write(host, mrq);
895		return 0;
896	case MMC_WRITE_BLOCK:
897		sh_mmcif_single_write(host, mrq);
898		return 0;
899	case MMC_READ_SINGLE_BLOCK:
900	case MMC_SEND_EXT_CSD:
901		sh_mmcif_single_read(host, mrq);
902		return 0;
903	default:
904		dev_err(dev, "Unsupported CMD%d\n", opc);
905		return -EINVAL;
906	}
907}
908
909static void sh_mmcif_start_cmd(struct sh_mmcif_host *host,
910			       struct mmc_request *mrq)
911{
912	struct mmc_command *cmd = mrq->cmd;
913	u32 opc;
914	u32 mask = 0;
915	unsigned long flags;
916
917	if (cmd->flags & MMC_RSP_BUSY)
918		mask = MASK_START_CMD | MASK_MRBSYE;
919	else
920		mask = MASK_START_CMD | MASK_MCRSPE;
921
922	if (host->ccs_enable)
923		mask |= MASK_MCCSTO;
924
925	if (mrq->data) {
926		sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0);
927		sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET,
928				mrq->data->blksz);
929	}
930	opc = sh_mmcif_set_cmd(host, mrq);
931
932	if (host->ccs_enable)
933		sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0);
934	else
935		sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0 | INT_CCS);
936	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask);
937	/* set arg */
938	sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg);
939	/* set cmd */
940	spin_lock_irqsave(&host->lock, flags);
941	sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc);
942
943	host->wait_for = MMCIF_WAIT_FOR_CMD;
944	schedule_delayed_work(&host->timeout_work, host->timeout);
945	spin_unlock_irqrestore(&host->lock, flags);
946}
947
948static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host,
949			      struct mmc_request *mrq)
950{
951	struct device *dev = sh_mmcif_host_to_dev(host);
952
953	switch (mrq->cmd->opcode) {
954	case MMC_READ_MULTIPLE_BLOCK:
955		sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
956		break;
957	case MMC_WRITE_MULTIPLE_BLOCK:
958		sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
959		break;
960	default:
961		dev_err(dev, "unsupported stop cmd\n");
962		mrq->stop->error = sh_mmcif_error_manage(host);
963		return;
964	}
965
966	host->wait_for = MMCIF_WAIT_FOR_STOP;
967}
968
969static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq)
970{
971	struct sh_mmcif_host *host = mmc_priv(mmc);
972	struct device *dev = sh_mmcif_host_to_dev(host);
973	unsigned long flags;
974
975	spin_lock_irqsave(&host->lock, flags);
976	if (host->state != STATE_IDLE) {
977		dev_dbg(dev, "%s() rejected, state %u\n",
978			__func__, host->state);
979		spin_unlock_irqrestore(&host->lock, flags);
980		mrq->cmd->error = -EAGAIN;
981		mmc_request_done(mmc, mrq);
982		return;
983	}
984
985	host->state = STATE_REQUEST;
986	spin_unlock_irqrestore(&host->lock, flags);
987
988	host->mrq = mrq;
989
990	sh_mmcif_start_cmd(host, mrq);
991}
992
993static void sh_mmcif_clk_setup(struct sh_mmcif_host *host)
994{
995	struct device *dev = sh_mmcif_host_to_dev(host);
996
997	if (host->mmc->f_max) {
998		unsigned int f_max, f_min = 0, f_min_old;
999
1000		f_max = host->mmc->f_max;
1001		for (f_min_old = f_max; f_min_old > 2;) {
1002			f_min = clk_round_rate(host->clk, f_min_old / 2);
1003			if (f_min == f_min_old)
1004				break;
1005			f_min_old = f_min;
1006		}
1007
1008		/*
1009		 * This driver assumes this SoC is R-Car Gen2 or later
1010		 */
1011		host->clkdiv_map = 0x3ff;
1012
1013		host->mmc->f_max = f_max >> ffs(host->clkdiv_map);
1014		host->mmc->f_min = f_min >> fls(host->clkdiv_map);
1015	} else {
1016		unsigned int clk = clk_get_rate(host->clk);
1017
1018		host->mmc->f_max = clk / 2;
1019		host->mmc->f_min = clk / 512;
1020	}
1021
1022	dev_dbg(dev, "clk max/min = %d/%d\n",
1023		host->mmc->f_max, host->mmc->f_min);
1024}
1025
1026static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1027{
1028	struct sh_mmcif_host *host = mmc_priv(mmc);
1029	struct device *dev = sh_mmcif_host_to_dev(host);
1030	unsigned long flags;
1031
1032	spin_lock_irqsave(&host->lock, flags);
1033	if (host->state != STATE_IDLE) {
1034		dev_dbg(dev, "%s() rejected, state %u\n",
1035			__func__, host->state);
1036		spin_unlock_irqrestore(&host->lock, flags);
1037		return;
1038	}
1039
1040	host->state = STATE_IOS;
1041	spin_unlock_irqrestore(&host->lock, flags);
1042
1043	switch (ios->power_mode) {
1044	case MMC_POWER_UP:
1045		if (!IS_ERR(mmc->supply.vmmc))
1046			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1047		if (!host->power) {
1048			clk_prepare_enable(host->clk);
1049			pm_runtime_get_sync(dev);
1050			sh_mmcif_sync_reset(host);
1051			sh_mmcif_request_dma(host);
1052			host->power = true;
1053		}
1054		break;
1055	case MMC_POWER_OFF:
1056		if (!IS_ERR(mmc->supply.vmmc))
1057			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1058		if (host->power) {
1059			sh_mmcif_clock_control(host, 0);
1060			sh_mmcif_release_dma(host);
1061			pm_runtime_put(dev);
1062			clk_disable_unprepare(host->clk);
1063			host->power = false;
1064		}
1065		break;
1066	case MMC_POWER_ON:
1067		sh_mmcif_clock_control(host, ios->clock);
1068		break;
1069	}
1070
1071	host->timing = ios->timing;
1072	host->bus_width = ios->bus_width;
1073	host->state = STATE_IDLE;
1074}
1075
1076static const struct mmc_host_ops sh_mmcif_ops = {
1077	.request	= sh_mmcif_request,
1078	.set_ios	= sh_mmcif_set_ios,
1079	.get_cd		= mmc_gpio_get_cd,
1080};
1081
1082static bool sh_mmcif_end_cmd(struct sh_mmcif_host *host)
1083{
1084	struct mmc_command *cmd = host->mrq->cmd;
1085	struct mmc_data *data = host->mrq->data;
1086	struct device *dev = sh_mmcif_host_to_dev(host);
1087	long time;
1088
1089	if (host->sd_error) {
1090		switch (cmd->opcode) {
1091		case MMC_ALL_SEND_CID:
1092		case MMC_SELECT_CARD:
1093		case MMC_APP_CMD:
1094			cmd->error = -ETIMEDOUT;
1095			break;
1096		default:
1097			cmd->error = sh_mmcif_error_manage(host);
1098			break;
1099		}
1100		dev_dbg(dev, "CMD%d error %d\n",
1101			cmd->opcode, cmd->error);
1102		host->sd_error = false;
1103		return false;
1104	}
1105	if (!(cmd->flags & MMC_RSP_PRESENT)) {
1106		cmd->error = 0;
1107		return false;
1108	}
1109
1110	sh_mmcif_get_response(host, cmd);
1111
1112	if (!data)
1113		return false;
1114
1115	/*
1116	 * Completion can be signalled from DMA callback and error, so, have to
1117	 * reset here, before setting .dma_active
1118	 */
1119	init_completion(&host->dma_complete);
1120
1121	if (data->flags & MMC_DATA_READ) {
1122		if (host->chan_rx)
1123			sh_mmcif_start_dma_rx(host);
1124	} else {
1125		if (host->chan_tx)
1126			sh_mmcif_start_dma_tx(host);
1127	}
1128
1129	if (!host->dma_active) {
1130		data->error = sh_mmcif_data_trans(host, host->mrq, cmd->opcode);
1131		return !data->error;
1132	}
1133
1134	/* Running in the IRQ thread, can sleep */
1135	time = wait_for_completion_interruptible_timeout(&host->dma_complete,
1136							 host->timeout);
1137
1138	if (data->flags & MMC_DATA_READ)
1139		dma_unmap_sg(host->chan_rx->device->dev,
1140			     data->sg, data->sg_len,
1141			     DMA_FROM_DEVICE);
1142	else
1143		dma_unmap_sg(host->chan_tx->device->dev,
1144			     data->sg, data->sg_len,
1145			     DMA_TO_DEVICE);
1146
1147	if (host->sd_error) {
1148		dev_err(host->mmc->parent,
1149			"Error IRQ while waiting for DMA completion!\n");
1150		/* Woken up by an error IRQ: abort DMA */
1151		data->error = sh_mmcif_error_manage(host);
1152	} else if (!time) {
1153		dev_err(host->mmc->parent, "DMA timeout!\n");
1154		data->error = -ETIMEDOUT;
1155	} else if (time < 0) {
1156		dev_err(host->mmc->parent,
1157			"wait_for_completion_...() error %ld!\n", time);
1158		data->error = time;
1159	}
1160	sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC,
1161			BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
1162	host->dma_active = false;
1163
1164	if (data->error) {
1165		data->bytes_xfered = 0;
1166		/* Abort DMA */
1167		if (data->flags & MMC_DATA_READ)
1168			dmaengine_terminate_sync(host->chan_rx);
1169		else
1170			dmaengine_terminate_sync(host->chan_tx);
1171	}
1172
1173	return false;
1174}
1175
1176static irqreturn_t sh_mmcif_irqt(int irq, void *dev_id)
1177{
1178	struct sh_mmcif_host *host = dev_id;
1179	struct mmc_request *mrq;
1180	struct device *dev = sh_mmcif_host_to_dev(host);
1181	bool wait = false;
1182	unsigned long flags;
1183	int wait_work;
1184
1185	spin_lock_irqsave(&host->lock, flags);
1186	wait_work = host->wait_for;
1187	spin_unlock_irqrestore(&host->lock, flags);
1188
1189	cancel_delayed_work_sync(&host->timeout_work);
1190
1191	mutex_lock(&host->thread_lock);
1192
1193	mrq = host->mrq;
1194	if (!mrq) {
1195		dev_dbg(dev, "IRQ thread state %u, wait %u: NULL mrq!\n",
1196			host->state, host->wait_for);
1197		mutex_unlock(&host->thread_lock);
1198		return IRQ_HANDLED;
1199	}
1200
1201	/*
1202	 * All handlers return true, if processing continues, and false, if the
1203	 * request has to be completed - successfully or not
1204	 */
1205	switch (wait_work) {
1206	case MMCIF_WAIT_FOR_REQUEST:
1207		/* We're too late, the timeout has already kicked in */
1208		mutex_unlock(&host->thread_lock);
1209		return IRQ_HANDLED;
1210	case MMCIF_WAIT_FOR_CMD:
1211		/* Wait for data? */
1212		wait = sh_mmcif_end_cmd(host);
1213		break;
1214	case MMCIF_WAIT_FOR_MREAD:
1215		/* Wait for more data? */
1216		wait = sh_mmcif_mread_block(host);
1217		break;
1218	case MMCIF_WAIT_FOR_READ:
1219		/* Wait for data end? */
1220		wait = sh_mmcif_read_block(host);
1221		break;
1222	case MMCIF_WAIT_FOR_MWRITE:
1223		/* Wait data to write? */
1224		wait = sh_mmcif_mwrite_block(host);
1225		break;
1226	case MMCIF_WAIT_FOR_WRITE:
1227		/* Wait for data end? */
1228		wait = sh_mmcif_write_block(host);
1229		break;
1230	case MMCIF_WAIT_FOR_STOP:
1231		if (host->sd_error) {
1232			mrq->stop->error = sh_mmcif_error_manage(host);
1233			dev_dbg(dev, "%s(): %d\n", __func__, mrq->stop->error);
1234			break;
1235		}
1236		sh_mmcif_get_cmd12response(host, mrq->stop);
1237		mrq->stop->error = 0;
1238		break;
1239	case MMCIF_WAIT_FOR_READ_END:
1240	case MMCIF_WAIT_FOR_WRITE_END:
1241		if (host->sd_error) {
1242			mrq->data->error = sh_mmcif_error_manage(host);
1243			dev_dbg(dev, "%s(): %d\n", __func__, mrq->data->error);
1244		}
1245		break;
1246	default:
1247		BUG();
1248	}
1249
1250	if (wait) {
1251		schedule_delayed_work(&host->timeout_work, host->timeout);
1252		/* Wait for more data */
1253		mutex_unlock(&host->thread_lock);
1254		return IRQ_HANDLED;
1255	}
1256
1257	if (host->wait_for != MMCIF_WAIT_FOR_STOP) {
1258		struct mmc_data *data = mrq->data;
1259		if (!mrq->cmd->error && data && !data->error)
1260			data->bytes_xfered =
1261				data->blocks * data->blksz;
1262
1263		if (mrq->stop && !mrq->cmd->error && (!data || !data->error)) {
1264			sh_mmcif_stop_cmd(host, mrq);
1265			if (!mrq->stop->error) {
1266				schedule_delayed_work(&host->timeout_work, host->timeout);
1267				mutex_unlock(&host->thread_lock);
1268				return IRQ_HANDLED;
1269			}
1270		}
1271	}
1272
1273	host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1274	host->state = STATE_IDLE;
1275	host->mrq = NULL;
1276	mmc_request_done(host->mmc, mrq);
1277
1278	mutex_unlock(&host->thread_lock);
1279
1280	return IRQ_HANDLED;
1281}
1282
1283static irqreturn_t sh_mmcif_intr(int irq, void *dev_id)
1284{
1285	struct sh_mmcif_host *host = dev_id;
1286	struct device *dev = sh_mmcif_host_to_dev(host);
1287	u32 state, mask;
1288
1289	state = sh_mmcif_readl(host->addr, MMCIF_CE_INT);
1290	mask = sh_mmcif_readl(host->addr, MMCIF_CE_INT_MASK);
1291	if (host->ccs_enable)
1292		sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~(state & mask));
1293	else
1294		sh_mmcif_writel(host->addr, MMCIF_CE_INT, INT_CCS | ~(state & mask));
1295	sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state & MASK_CLEAN);
1296
1297	if (state & ~MASK_CLEAN)
1298		dev_dbg(dev, "IRQ state = 0x%08x incompletely cleared\n",
1299			state);
1300
1301	if (state & INT_ERR_STS || state & ~INT_ALL) {
1302		host->sd_error = true;
1303		dev_dbg(dev, "int err state = 0x%08x\n", state);
1304	}
1305	if (state & ~(INT_CMD12RBE | INT_CMD12CRE)) {
1306		if (!host->mrq)
1307			dev_dbg(dev, "NULL IRQ state = 0x%08x\n", state);
1308		if (!host->dma_active)
1309			return IRQ_WAKE_THREAD;
1310		else if (host->sd_error)
1311			sh_mmcif_dma_complete(host);
1312	} else {
1313		dev_dbg(dev, "Unexpected IRQ 0x%x\n", state);
1314	}
1315
1316	return IRQ_HANDLED;
1317}
1318
1319static void sh_mmcif_timeout_work(struct work_struct *work)
1320{
1321	struct delayed_work *d = to_delayed_work(work);
1322	struct sh_mmcif_host *host = container_of(d, struct sh_mmcif_host, timeout_work);
1323	struct mmc_request *mrq = host->mrq;
1324	struct device *dev = sh_mmcif_host_to_dev(host);
1325	unsigned long flags;
1326
1327	if (host->dying)
1328		/* Don't run after mmc_remove_host() */
1329		return;
1330
1331	spin_lock_irqsave(&host->lock, flags);
1332	if (host->state == STATE_IDLE) {
1333		spin_unlock_irqrestore(&host->lock, flags);
1334		return;
1335	}
1336
1337	dev_err(dev, "Timeout waiting for %u on CMD%u\n",
1338		host->wait_for, mrq->cmd->opcode);
1339
1340	host->state = STATE_TIMEOUT;
1341	spin_unlock_irqrestore(&host->lock, flags);
1342
1343	/*
1344	 * Handle races with cancel_delayed_work(), unless
1345	 * cancel_delayed_work_sync() is used
1346	 */
1347	switch (host->wait_for) {
1348	case MMCIF_WAIT_FOR_CMD:
1349		mrq->cmd->error = sh_mmcif_error_manage(host);
1350		break;
1351	case MMCIF_WAIT_FOR_STOP:
1352		mrq->stop->error = sh_mmcif_error_manage(host);
1353		break;
1354	case MMCIF_WAIT_FOR_MREAD:
1355	case MMCIF_WAIT_FOR_MWRITE:
1356	case MMCIF_WAIT_FOR_READ:
1357	case MMCIF_WAIT_FOR_WRITE:
1358	case MMCIF_WAIT_FOR_READ_END:
1359	case MMCIF_WAIT_FOR_WRITE_END:
1360		mrq->data->error = sh_mmcif_error_manage(host);
1361		break;
1362	default:
1363		BUG();
1364	}
1365
1366	host->state = STATE_IDLE;
1367	host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1368	host->mrq = NULL;
1369	mmc_request_done(host->mmc, mrq);
1370}
1371
1372static void sh_mmcif_init_ocr(struct sh_mmcif_host *host)
1373{
1374	struct device *dev = sh_mmcif_host_to_dev(host);
1375	struct sh_mmcif_plat_data *pd = dev->platform_data;
1376	struct mmc_host *mmc = host->mmc;
1377
1378	mmc_regulator_get_supply(mmc);
1379
1380	if (!pd)
1381		return;
1382
1383	if (!mmc->ocr_avail)
1384		mmc->ocr_avail = pd->ocr;
1385	else if (pd->ocr)
1386		dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1387}
1388
1389static int sh_mmcif_probe(struct platform_device *pdev)
1390{
1391	int ret = 0, irq[2];
1392	struct mmc_host *mmc;
1393	struct sh_mmcif_host *host;
1394	struct device *dev = &pdev->dev;
1395	struct sh_mmcif_plat_data *pd = dev->platform_data;
1396	void __iomem *reg;
1397	const char *name;
1398
1399	irq[0] = platform_get_irq(pdev, 0);
1400	irq[1] = platform_get_irq_optional(pdev, 1);
1401	if (irq[0] < 0)
1402		return irq[0];
1403
1404	reg = devm_platform_ioremap_resource(pdev, 0);
1405	if (IS_ERR(reg))
1406		return PTR_ERR(reg);
1407
1408	mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), dev);
1409	if (!mmc)
1410		return -ENOMEM;
1411
1412	ret = mmc_of_parse(mmc);
1413	if (ret < 0)
1414		goto err_host;
1415
1416	host		= mmc_priv(mmc);
1417	host->mmc	= mmc;
1418	host->addr	= reg;
1419	host->timeout	= msecs_to_jiffies(10000);
1420	host->ccs_enable = true;
1421	host->clk_ctrl2_enable = false;
1422
1423	host->pd = pdev;
1424
1425	spin_lock_init(&host->lock);
1426
1427	mmc->ops = &sh_mmcif_ops;
1428	sh_mmcif_init_ocr(host);
1429
1430	mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_WAIT_WHILE_BUSY;
1431	mmc->caps2 |= MMC_CAP2_NO_SD | MMC_CAP2_NO_SDIO;
1432	mmc->max_busy_timeout = 10000;
1433
1434	if (pd && pd->caps)
1435		mmc->caps |= pd->caps;
1436	mmc->max_segs = 32;
1437	mmc->max_blk_size = 512;
1438	mmc->max_req_size = PAGE_SIZE * mmc->max_segs;
1439	mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size;
1440	mmc->max_seg_size = mmc->max_req_size;
1441
1442	platform_set_drvdata(pdev, host);
1443
1444	host->clk = devm_clk_get(dev, NULL);
1445	if (IS_ERR(host->clk)) {
1446		ret = PTR_ERR(host->clk);
1447		dev_err(dev, "cannot get clock: %d\n", ret);
1448		goto err_host;
1449	}
1450
1451	ret = clk_prepare_enable(host->clk);
1452	if (ret < 0)
1453		goto err_host;
1454
1455	sh_mmcif_clk_setup(host);
1456
1457	pm_runtime_enable(dev);
1458	host->power = false;
1459
1460	ret = pm_runtime_get_sync(dev);
1461	if (ret < 0)
1462		goto err_clk;
1463
1464	INIT_DELAYED_WORK(&host->timeout_work, sh_mmcif_timeout_work);
1465
1466	sh_mmcif_sync_reset(host);
1467	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1468
1469	name = irq[1] < 0 ? dev_name(dev) : "sh_mmc:error";
1470	ret = devm_request_threaded_irq(dev, irq[0], sh_mmcif_intr,
1471					sh_mmcif_irqt, 0, name, host);
1472	if (ret) {
1473		dev_err(dev, "request_irq error (%s)\n", name);
1474		goto err_clk;
1475	}
1476	if (irq[1] >= 0) {
1477		ret = devm_request_threaded_irq(dev, irq[1],
1478						sh_mmcif_intr, sh_mmcif_irqt,
1479						0, "sh_mmc:int", host);
1480		if (ret) {
1481			dev_err(dev, "request_irq error (sh_mmc:int)\n");
1482			goto err_clk;
1483		}
1484	}
1485
1486	mutex_init(&host->thread_lock);
1487
1488	ret = mmc_add_host(mmc);
1489	if (ret < 0)
1490		goto err_clk;
1491
1492	dev_pm_qos_expose_latency_limit(dev, 100);
1493
1494	dev_info(dev, "Chip version 0x%04x, clock rate %luMHz\n",
1495		 sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0xffff,
1496		 clk_get_rate(host->clk) / 1000000UL);
1497
1498	pm_runtime_put(dev);
1499	clk_disable_unprepare(host->clk);
1500	return ret;
1501
1502err_clk:
1503	clk_disable_unprepare(host->clk);
1504	pm_runtime_put_sync(dev);
1505	pm_runtime_disable(dev);
1506err_host:
1507	mmc_free_host(mmc);
1508	return ret;
1509}
1510
1511static void sh_mmcif_remove(struct platform_device *pdev)
1512{
1513	struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1514
1515	host->dying = true;
1516	clk_prepare_enable(host->clk);
1517	pm_runtime_get_sync(&pdev->dev);
1518
1519	dev_pm_qos_hide_latency_limit(&pdev->dev);
1520
1521	mmc_remove_host(host->mmc);
1522	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1523
1524	/*
1525	 * FIXME: cancel_delayed_work(_sync)() and free_irq() race with the
1526	 * mmc_remove_host() call above. But swapping order doesn't help either
1527	 * (a query on the linux-mmc mailing list didn't bring any replies).
1528	 */
1529	cancel_delayed_work_sync(&host->timeout_work);
1530
1531	clk_disable_unprepare(host->clk);
1532	mmc_free_host(host->mmc);
1533	pm_runtime_put_sync(&pdev->dev);
1534	pm_runtime_disable(&pdev->dev);
1535}
1536
1537#ifdef CONFIG_PM_SLEEP
1538static int sh_mmcif_suspend(struct device *dev)
1539{
1540	struct sh_mmcif_host *host = dev_get_drvdata(dev);
1541
1542	pm_runtime_get_sync(dev);
1543	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1544	pm_runtime_put(dev);
1545
1546	return 0;
1547}
1548
1549static int sh_mmcif_resume(struct device *dev)
1550{
1551	return 0;
1552}
1553#endif
1554
1555static const struct dev_pm_ops sh_mmcif_dev_pm_ops = {
1556	SET_SYSTEM_SLEEP_PM_OPS(sh_mmcif_suspend, sh_mmcif_resume)
1557};
1558
1559static struct platform_driver sh_mmcif_driver = {
1560	.probe		= sh_mmcif_probe,
1561	.remove_new	= sh_mmcif_remove,
1562	.driver		= {
1563		.name	= DRIVER_NAME,
1564		.probe_type = PROBE_PREFER_ASYNCHRONOUS,
1565		.pm	= &sh_mmcif_dev_pm_ops,
1566		.of_match_table = sh_mmcif_of_match,
1567	},
1568};
1569
1570module_platform_driver(sh_mmcif_driver);
1571
1572MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver");
1573MODULE_LICENSE("GPL v2");
1574MODULE_ALIAS("platform:" DRIVER_NAME);
1575MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>");
1576