1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Access SD/MMC cards through SPI master controllers
4 *
5 * (C) Copyright 2005, Intec Automation,
6 *		Mike Lavender (mike@steroidmicros)
7 * (C) Copyright 2006-2007, David Brownell
8 * (C) Copyright 2007, Axis Communications,
9 *		Hans-Peter Nilsson (hp@axis.com)
10 * (C) Copyright 2007, ATRON electronic GmbH,
11 *		Jan Nikitenko <jan.nikitenko@gmail.com>
12 */
13#include <linux/sched.h>
14#include <linux/delay.h>
15#include <linux/slab.h>
16#include <linux/module.h>
17#include <linux/bio.h>
18#include <linux/dma-direction.h>
19#include <linux/crc7.h>
20#include <linux/crc-itu-t.h>
21#include <linux/scatterlist.h>
22
23#include <linux/mmc/host.h>
24#include <linux/mmc/mmc.h>		/* for R1_SPI_* bit values */
25#include <linux/mmc/slot-gpio.h>
26
27#include <linux/spi/spi.h>
28#include <linux/spi/mmc_spi.h>
29
30#include <asm/unaligned.h>
31
32
33/* NOTES:
34 *
35 * - For now, we won't try to interoperate with a real mmc/sd/sdio
36 *   controller, although some of them do have hardware support for
37 *   SPI protocol.  The main reason for such configs would be mmc-ish
38 *   cards like DataFlash, which don't support that "native" protocol.
39 *
40 *   We don't have a "DataFlash/MMC/SD/SDIO card slot" abstraction to
41 *   switch between driver stacks, and in any case if "native" mode
42 *   is available, it will be faster and hence preferable.
43 *
44 * - MMC depends on a different chipselect management policy than the
45 *   SPI interface currently supports for shared bus segments:  it needs
46 *   to issue multiple spi_message requests with the chipselect active,
47 *   using the results of one message to decide the next one to issue.
48 *
49 *   Pending updates to the programming interface, this driver expects
50 *   that it not share the bus with other drivers (precluding conflicts).
51 *
52 * - We tell the controller to keep the chipselect active from the
53 *   beginning of an mmc_host_ops.request until the end.  So beware
54 *   of SPI controller drivers that mis-handle the cs_change flag!
55 *
56 *   However, many cards seem OK with chipselect flapping up/down
57 *   during that time ... at least on unshared bus segments.
58 */
59
60
61/*
62 * Local protocol constants, internal to data block protocols.
63 */
64
65/* Response tokens used to ack each block written: */
66#define SPI_MMC_RESPONSE_CODE(x)	((x) & 0x1f)
67#define SPI_RESPONSE_ACCEPTED		((2 << 1)|1)
68#define SPI_RESPONSE_CRC_ERR		((5 << 1)|1)
69#define SPI_RESPONSE_WRITE_ERR		((6 << 1)|1)
70
71/* Read and write blocks start with these tokens and end with crc;
72 * on error, read tokens act like a subset of R2_SPI_* values.
73 */
74#define SPI_TOKEN_SINGLE	0xfe	/* single block r/w, multiblock read */
75#define SPI_TOKEN_MULTI_WRITE	0xfc	/* multiblock write */
76#define SPI_TOKEN_STOP_TRAN	0xfd	/* terminate multiblock write */
77
78#define MMC_SPI_BLOCKSIZE	512
79
80#define MMC_SPI_R1B_TIMEOUT_MS	3000
81#define MMC_SPI_INIT_TIMEOUT_MS	3000
82
83/* One of the critical speed parameters is the amount of data which may
84 * be transferred in one command. If this value is too low, the SD card
85 * controller has to do multiple partial block writes (argggh!). With
86 * today (2008) SD cards there is little speed gain if we transfer more
87 * than 64 KBytes at a time. So use this value until there is any indication
88 * that we should do more here.
89 */
90#define MMC_SPI_BLOCKSATONCE	128
91
92/****************************************************************************/
93
94/*
95 * Local Data Structures
96 */
97
98/* "scratch" is per-{command,block} data exchanged with the card */
99struct scratch {
100	u8			status[29];
101	u8			data_token;
102	__be16			crc_val;
103};
104
105struct mmc_spi_host {
106	struct mmc_host		*mmc;
107	struct spi_device	*spi;
108
109	unsigned char		power_mode;
110	u16			powerup_msecs;
111
112	struct mmc_spi_platform_data	*pdata;
113
114	/* for bulk data transfers */
115	struct spi_transfer	token, t, crc, early_status;
116	struct spi_message	m;
117
118	/* for status readback */
119	struct spi_transfer	status;
120	struct spi_message	readback;
121
122	/* buffer used for commands and for message "overhead" */
123	struct scratch		*data;
124
125	/* Specs say to write ones most of the time, even when the card
126	 * has no need to read its input data; and many cards won't care.
127	 * This is our source of those ones.
128	 */
129	void			*ones;
130};
131
132
133/****************************************************************************/
134
135/*
136 * MMC-over-SPI protocol glue, used by the MMC stack interface
137 */
138
139static inline int mmc_cs_off(struct mmc_spi_host *host)
140{
141	/* chipselect will always be inactive after setup() */
142	return spi_setup(host->spi);
143}
144
145static int mmc_spi_readbytes(struct mmc_spi_host *host, unsigned int len)
146{
147	if (len > sizeof(*host->data)) {
148		WARN_ON(1);
149		return -EIO;
150	}
151
152	host->status.len = len;
153
154	return spi_sync_locked(host->spi, &host->readback);
155}
156
157static int mmc_spi_skip(struct mmc_spi_host *host, unsigned long timeout,
158			unsigned n, u8 byte)
159{
160	u8 *cp = host->data->status;
161	unsigned long start = jiffies;
162
163	do {
164		int		status;
165		unsigned	i;
166
167		status = mmc_spi_readbytes(host, n);
168		if (status < 0)
169			return status;
170
171		for (i = 0; i < n; i++) {
172			if (cp[i] != byte)
173				return cp[i];
174		}
175
176		/* If we need long timeouts, we may release the CPU */
177		cond_resched();
178	} while (time_is_after_jiffies(start + timeout));
179	return -ETIMEDOUT;
180}
181
182static inline int
183mmc_spi_wait_unbusy(struct mmc_spi_host *host, unsigned long timeout)
184{
185	return mmc_spi_skip(host, timeout, sizeof(host->data->status), 0);
186}
187
188static int mmc_spi_readtoken(struct mmc_spi_host *host, unsigned long timeout)
189{
190	return mmc_spi_skip(host, timeout, 1, 0xff);
191}
192
193
194/*
195 * Note that for SPI, cmd->resp[0] is not the same data as "native" protocol
196 * hosts return!  The low byte holds R1_SPI bits.  The next byte may hold
197 * R2_SPI bits ... for SEND_STATUS, or after data read errors.
198 *
199 * cmd->resp[1] holds any four-byte response, for R3 (READ_OCR) and on
200 * newer cards R7 (IF_COND).
201 */
202
203static char *maptype(struct mmc_command *cmd)
204{
205	switch (mmc_spi_resp_type(cmd)) {
206	case MMC_RSP_SPI_R1:	return "R1";
207	case MMC_RSP_SPI_R1B:	return "R1B";
208	case MMC_RSP_SPI_R2:	return "R2/R5";
209	case MMC_RSP_SPI_R3:	return "R3/R4/R7";
210	default:		return "?";
211	}
212}
213
214/* return zero, else negative errno after setting cmd->error */
215static int mmc_spi_response_get(struct mmc_spi_host *host,
216		struct mmc_command *cmd, int cs_on)
217{
218	unsigned long timeout_ms;
219	u8	*cp = host->data->status;
220	u8	*end = cp + host->t.len;
221	int	value = 0;
222	int	bitshift;
223	u8 	leftover = 0;
224	unsigned short rotator;
225	int 	i;
226	char	tag[32];
227
228	snprintf(tag, sizeof(tag), "  ... CMD%d response SPI_%s",
229		cmd->opcode, maptype(cmd));
230
231	/* Except for data block reads, the whole response will already
232	 * be stored in the scratch buffer.  It's somewhere after the
233	 * command and the first byte we read after it.  We ignore that
234	 * first byte.  After STOP_TRANSMISSION command it may include
235	 * two data bits, but otherwise it's all ones.
236	 */
237	cp += 8;
238	while (cp < end && *cp == 0xff)
239		cp++;
240
241	/* Data block reads (R1 response types) may need more data... */
242	if (cp == end) {
243		cp = host->data->status;
244		end = cp+1;
245
246		/* Card sends N(CR) (== 1..8) bytes of all-ones then one
247		 * status byte ... and we already scanned 2 bytes.
248		 *
249		 * REVISIT block read paths use nasty byte-at-a-time I/O
250		 * so it can always DMA directly into the target buffer.
251		 * It'd probably be better to memcpy() the first chunk and
252		 * avoid extra i/o calls...
253		 *
254		 * Note we check for more than 8 bytes, because in practice,
255		 * some SD cards are slow...
256		 */
257		for (i = 2; i < 16; i++) {
258			value = mmc_spi_readbytes(host, 1);
259			if (value < 0)
260				goto done;
261			if (*cp != 0xff)
262				goto checkstatus;
263		}
264		value = -ETIMEDOUT;
265		goto done;
266	}
267
268checkstatus:
269	bitshift = 0;
270	if (*cp & 0x80)	{
271		/* Houston, we have an ugly card with a bit-shifted response */
272		rotator = *cp++ << 8;
273		/* read the next byte */
274		if (cp == end) {
275			value = mmc_spi_readbytes(host, 1);
276			if (value < 0)
277				goto done;
278			cp = host->data->status;
279			end = cp+1;
280		}
281		rotator |= *cp++;
282		while (rotator & 0x8000) {
283			bitshift++;
284			rotator <<= 1;
285		}
286		cmd->resp[0] = rotator >> 8;
287		leftover = rotator;
288	} else {
289		cmd->resp[0] = *cp++;
290	}
291	cmd->error = 0;
292
293	/* Status byte: the entire seven-bit R1 response.  */
294	if (cmd->resp[0] != 0) {
295		if ((R1_SPI_PARAMETER | R1_SPI_ADDRESS)
296				& cmd->resp[0])
297			value = -EFAULT; /* Bad address */
298		else if (R1_SPI_ILLEGAL_COMMAND & cmd->resp[0])
299			value = -ENOSYS; /* Function not implemented */
300		else if (R1_SPI_COM_CRC & cmd->resp[0])
301			value = -EILSEQ; /* Illegal byte sequence */
302		else if ((R1_SPI_ERASE_SEQ | R1_SPI_ERASE_RESET)
303				& cmd->resp[0])
304			value = -EIO;    /* I/O error */
305		/* else R1_SPI_IDLE, "it's resetting" */
306	}
307
308	switch (mmc_spi_resp_type(cmd)) {
309
310	/* SPI R1B == R1 + busy; STOP_TRANSMISSION (for multiblock reads)
311	 * and less-common stuff like various erase operations.
312	 */
313	case MMC_RSP_SPI_R1B:
314		/* maybe we read all the busy tokens already */
315		while (cp < end && *cp == 0)
316			cp++;
317		if (cp == end) {
318			timeout_ms = cmd->busy_timeout ? cmd->busy_timeout :
319				MMC_SPI_R1B_TIMEOUT_MS;
320			mmc_spi_wait_unbusy(host, msecs_to_jiffies(timeout_ms));
321		}
322		break;
323
324	/* SPI R2 == R1 + second status byte; SEND_STATUS
325	 * SPI R5 == R1 + data byte; IO_RW_DIRECT
326	 */
327	case MMC_RSP_SPI_R2:
328		/* read the next byte */
329		if (cp == end) {
330			value = mmc_spi_readbytes(host, 1);
331			if (value < 0)
332				goto done;
333			cp = host->data->status;
334			end = cp+1;
335		}
336		if (bitshift) {
337			rotator = leftover << 8;
338			rotator |= *cp << bitshift;
339			cmd->resp[0] |= (rotator & 0xFF00);
340		} else {
341			cmd->resp[0] |= *cp << 8;
342		}
343		break;
344
345	/* SPI R3, R4, or R7 == R1 + 4 bytes */
346	case MMC_RSP_SPI_R3:
347		rotator = leftover << 8;
348		cmd->resp[1] = 0;
349		for (i = 0; i < 4; i++) {
350			cmd->resp[1] <<= 8;
351			/* read the next byte */
352			if (cp == end) {
353				value = mmc_spi_readbytes(host, 1);
354				if (value < 0)
355					goto done;
356				cp = host->data->status;
357				end = cp+1;
358			}
359			if (bitshift) {
360				rotator |= *cp++ << bitshift;
361				cmd->resp[1] |= (rotator >> 8);
362				rotator <<= 8;
363			} else {
364				cmd->resp[1] |= *cp++;
365			}
366		}
367		break;
368
369	/* SPI R1 == just one status byte */
370	case MMC_RSP_SPI_R1:
371		break;
372
373	default:
374		dev_dbg(&host->spi->dev, "bad response type %04x\n",
375			mmc_spi_resp_type(cmd));
376		if (value >= 0)
377			value = -EINVAL;
378		goto done;
379	}
380
381	if (value < 0)
382		dev_dbg(&host->spi->dev, "%s: resp %04x %08x\n",
383			tag, cmd->resp[0], cmd->resp[1]);
384
385	/* disable chipselect on errors and some success cases */
386	if (value >= 0 && cs_on)
387		return value;
388done:
389	if (value < 0)
390		cmd->error = value;
391	mmc_cs_off(host);
392	return value;
393}
394
395/* Issue command and read its response.
396 * Returns zero on success, negative for error.
397 *
398 * On error, caller must cope with mmc core retry mechanism.  That
399 * means immediate low-level resubmit, which affects the bus lock...
400 */
401static int
402mmc_spi_command_send(struct mmc_spi_host *host,
403		struct mmc_request *mrq,
404		struct mmc_command *cmd, int cs_on)
405{
406	struct scratch		*data = host->data;
407	u8			*cp = data->status;
408	int			status;
409	struct spi_transfer	*t;
410
411	/* We can handle most commands (except block reads) in one full
412	 * duplex I/O operation before either starting the next transfer
413	 * (data block or command) or else deselecting the card.
414	 *
415	 * First, write 7 bytes:
416	 *  - an all-ones byte to ensure the card is ready
417	 *  - opcode byte (plus start and transmission bits)
418	 *  - four bytes of big-endian argument
419	 *  - crc7 (plus end bit) ... always computed, it's cheap
420	 *
421	 * We init the whole buffer to all-ones, which is what we need
422	 * to write while we're reading (later) response data.
423	 */
424	memset(cp, 0xff, sizeof(data->status));
425
426	cp[1] = 0x40 | cmd->opcode;
427	put_unaligned_be32(cmd->arg, cp + 2);
428	cp[6] = crc7_be(0, cp + 1, 5) | 0x01;
429	cp += 7;
430
431	/* Then, read up to 13 bytes (while writing all-ones):
432	 *  - N(CR) (== 1..8) bytes of all-ones
433	 *  - status byte (for all response types)
434	 *  - the rest of the response, either:
435	 *      + nothing, for R1 or R1B responses
436	 *	+ second status byte, for R2 responses
437	 *	+ four data bytes, for R3 and R7 responses
438	 *
439	 * Finally, read some more bytes ... in the nice cases we know in
440	 * advance how many, and reading 1 more is always OK:
441	 *  - N(EC) (== 0..N) bytes of all-ones, before deselect/finish
442	 *  - N(RC) (== 1..N) bytes of all-ones, before next command
443	 *  - N(WR) (== 1..N) bytes of all-ones, before data write
444	 *
445	 * So in those cases one full duplex I/O of at most 21 bytes will
446	 * handle the whole command, leaving the card ready to receive a
447	 * data block or new command.  We do that whenever we can, shaving
448	 * CPU and IRQ costs (especially when using DMA or FIFOs).
449	 *
450	 * There are two other cases, where it's not generally practical
451	 * to rely on a single I/O:
452	 *
453	 *  - R1B responses need at least N(EC) bytes of all-zeroes.
454	 *
455	 *    In this case we can *try* to fit it into one I/O, then
456	 *    maybe read more data later.
457	 *
458	 *  - Data block reads are more troublesome, since a variable
459	 *    number of padding bytes precede the token and data.
460	 *      + N(CX) (== 0..8) bytes of all-ones, before CSD or CID
461	 *      + N(AC) (== 1..many) bytes of all-ones
462	 *
463	 *    In this case we currently only have minimal speedups here:
464	 *    when N(CR) == 1 we can avoid I/O in response_get().
465	 */
466	if (cs_on && (mrq->data->flags & MMC_DATA_READ)) {
467		cp += 2;	/* min(N(CR)) + status */
468		/* R1 */
469	} else {
470		cp += 10;	/* max(N(CR)) + status + min(N(RC),N(WR)) */
471		if (cmd->flags & MMC_RSP_SPI_S2)	/* R2/R5 */
472			cp++;
473		else if (cmd->flags & MMC_RSP_SPI_B4)	/* R3/R4/R7 */
474			cp += 4;
475		else if (cmd->flags & MMC_RSP_BUSY)	/* R1B */
476			cp = data->status + sizeof(data->status);
477		/* else:  R1 (most commands) */
478	}
479
480	dev_dbg(&host->spi->dev, "  CMD%d, resp %s\n",
481		cmd->opcode, maptype(cmd));
482
483	/* send command, leaving chipselect active */
484	spi_message_init(&host->m);
485
486	t = &host->t;
487	memset(t, 0, sizeof(*t));
488	t->tx_buf = t->rx_buf = data->status;
489	t->len = cp - data->status;
490	t->cs_change = 1;
491	spi_message_add_tail(t, &host->m);
492
493	status = spi_sync_locked(host->spi, &host->m);
494	if (status < 0) {
495		dev_dbg(&host->spi->dev, "  ... write returned %d\n", status);
496		cmd->error = status;
497		return status;
498	}
499
500	/* after no-data commands and STOP_TRANSMISSION, chipselect off */
501	return mmc_spi_response_get(host, cmd, cs_on);
502}
503
504/* Build data message with up to four separate transfers.  For TX, we
505 * start by writing the data token.  And in most cases, we finish with
506 * a status transfer.
507 *
508 * We always provide TX data for data and CRC.  The MMC/SD protocol
509 * requires us to write ones; but Linux defaults to writing zeroes;
510 * so we explicitly initialize it to all ones on RX paths.
511 */
512static void
513mmc_spi_setup_data_message(
514	struct mmc_spi_host	*host,
515	bool			multiple,
516	enum dma_data_direction	direction)
517{
518	struct spi_transfer	*t;
519	struct scratch		*scratch = host->data;
520
521	spi_message_init(&host->m);
522
523	/* for reads, readblock() skips 0xff bytes before finding
524	 * the token; for writes, this transfer issues that token.
525	 */
526	if (direction == DMA_TO_DEVICE) {
527		t = &host->token;
528		memset(t, 0, sizeof(*t));
529		t->len = 1;
530		if (multiple)
531			scratch->data_token = SPI_TOKEN_MULTI_WRITE;
532		else
533			scratch->data_token = SPI_TOKEN_SINGLE;
534		t->tx_buf = &scratch->data_token;
535		spi_message_add_tail(t, &host->m);
536	}
537
538	/* Body of transfer is buffer, then CRC ...
539	 * either TX-only, or RX with TX-ones.
540	 */
541	t = &host->t;
542	memset(t, 0, sizeof(*t));
543	t->tx_buf = host->ones;
544	/* length and actual buffer info are written later */
545	spi_message_add_tail(t, &host->m);
546
547	t = &host->crc;
548	memset(t, 0, sizeof(*t));
549	t->len = 2;
550	if (direction == DMA_TO_DEVICE) {
551		/* the actual CRC may get written later */
552		t->tx_buf = &scratch->crc_val;
553	} else {
554		t->tx_buf = host->ones;
555		t->rx_buf = &scratch->crc_val;
556	}
557	spi_message_add_tail(t, &host->m);
558
559	/*
560	 * A single block read is followed by N(EC) [0+] all-ones bytes
561	 * before deselect ... don't bother.
562	 *
563	 * Multiblock reads are followed by N(AC) [1+] all-ones bytes before
564	 * the next block is read, or a STOP_TRANSMISSION is issued.  We'll
565	 * collect that single byte, so readblock() doesn't need to.
566	 *
567	 * For a write, the one-byte data response follows immediately, then
568	 * come zero or more busy bytes, then N(WR) [1+] all-ones bytes.
569	 * Then single block reads may deselect, and multiblock ones issue
570	 * the next token (next data block, or STOP_TRAN).  We can try to
571	 * minimize I/O ops by using a single read to collect end-of-busy.
572	 */
573	if (multiple || direction == DMA_TO_DEVICE) {
574		t = &host->early_status;
575		memset(t, 0, sizeof(*t));
576		t->len = (direction == DMA_TO_DEVICE) ? sizeof(scratch->status) : 1;
577		t->tx_buf = host->ones;
578		t->rx_buf = scratch->status;
579		t->cs_change = 1;
580		spi_message_add_tail(t, &host->m);
581	}
582}
583
584/*
585 * Write one block:
586 *  - caller handled preceding N(WR) [1+] all-ones bytes
587 *  - data block
588 *	+ token
589 *	+ data bytes
590 *	+ crc16
591 *  - an all-ones byte ... card writes a data-response byte
592 *  - followed by N(EC) [0+] all-ones bytes, card writes zero/'busy'
593 *
594 * Return negative errno, else success.
595 */
596static int
597mmc_spi_writeblock(struct mmc_spi_host *host, struct spi_transfer *t,
598	unsigned long timeout)
599{
600	struct spi_device	*spi = host->spi;
601	int			status, i;
602	struct scratch		*scratch = host->data;
603	u32			pattern;
604
605	if (host->mmc->use_spi_crc)
606		scratch->crc_val = cpu_to_be16(crc_itu_t(0, t->tx_buf, t->len));
607
608	status = spi_sync_locked(spi, &host->m);
609	if (status != 0) {
610		dev_dbg(&spi->dev, "write error (%d)\n", status);
611		return status;
612	}
613
614	/*
615	 * Get the transmission data-response reply.  It must follow
616	 * immediately after the data block we transferred.  This reply
617	 * doesn't necessarily tell whether the write operation succeeded;
618	 * it just says if the transmission was ok and whether *earlier*
619	 * writes succeeded; see the standard.
620	 *
621	 * In practice, there are (even modern SDHC-)cards which are late
622	 * in sending the response, and miss the time frame by a few bits,
623	 * so we have to cope with this situation and check the response
624	 * bit-by-bit. Arggh!!!
625	 */
626	pattern = get_unaligned_be32(scratch->status);
627
628	/* First 3 bit of pattern are undefined */
629	pattern |= 0xE0000000;
630
631	/* left-adjust to leading 0 bit */
632	while (pattern & 0x80000000)
633		pattern <<= 1;
634	/* right-adjust for pattern matching. Code is in bit 4..0 now. */
635	pattern >>= 27;
636
637	switch (pattern) {
638	case SPI_RESPONSE_ACCEPTED:
639		status = 0;
640		break;
641	case SPI_RESPONSE_CRC_ERR:
642		/* host shall then issue MMC_STOP_TRANSMISSION */
643		status = -EILSEQ;
644		break;
645	case SPI_RESPONSE_WRITE_ERR:
646		/* host shall then issue MMC_STOP_TRANSMISSION,
647		 * and should MMC_SEND_STATUS to sort it out
648		 */
649		status = -EIO;
650		break;
651	default:
652		status = -EPROTO;
653		break;
654	}
655	if (status != 0) {
656		dev_dbg(&spi->dev, "write error %02x (%d)\n",
657			scratch->status[0], status);
658		return status;
659	}
660
661	t->tx_buf += t->len;
662
663	/* Return when not busy.  If we didn't collect that status yet,
664	 * we'll need some more I/O.
665	 */
666	for (i = 4; i < sizeof(scratch->status); i++) {
667		/* card is non-busy if the most recent bit is 1 */
668		if (scratch->status[i] & 0x01)
669			return 0;
670	}
671	return mmc_spi_wait_unbusy(host, timeout);
672}
673
674/*
675 * Read one block:
676 *  - skip leading all-ones bytes ... either
677 *      + N(AC) [1..f(clock,CSD)] usually, else
678 *      + N(CX) [0..8] when reading CSD or CID
679 *  - data block
680 *	+ token ... if error token, no data or crc
681 *	+ data bytes
682 *	+ crc16
683 *
684 * After single block reads, we're done; N(EC) [0+] all-ones bytes follow
685 * before dropping chipselect.
686 *
687 * For multiblock reads, caller either reads the next block or issues a
688 * STOP_TRANSMISSION command.
689 */
690static int
691mmc_spi_readblock(struct mmc_spi_host *host, struct spi_transfer *t,
692	unsigned long timeout)
693{
694	struct spi_device	*spi = host->spi;
695	int			status;
696	struct scratch		*scratch = host->data;
697	unsigned int 		bitshift;
698	u8			leftover;
699
700	/* At least one SD card sends an all-zeroes byte when N(CX)
701	 * applies, before the all-ones bytes ... just cope with that.
702	 */
703	status = mmc_spi_readbytes(host, 1);
704	if (status < 0)
705		return status;
706	status = scratch->status[0];
707	if (status == 0xff || status == 0)
708		status = mmc_spi_readtoken(host, timeout);
709
710	if (status < 0) {
711		dev_dbg(&spi->dev, "read error %02x (%d)\n", status, status);
712		return status;
713	}
714
715	/* The token may be bit-shifted...
716	 * the first 0-bit precedes the data stream.
717	 */
718	bitshift = 7;
719	while (status & 0x80) {
720		status <<= 1;
721		bitshift--;
722	}
723	leftover = status << 1;
724
725	status = spi_sync_locked(spi, &host->m);
726	if (status < 0) {
727		dev_dbg(&spi->dev, "read error %d\n", status);
728		return status;
729	}
730
731	if (bitshift) {
732		/* Walk through the data and the crc and do
733		 * all the magic to get byte-aligned data.
734		 */
735		u8 *cp = t->rx_buf;
736		unsigned int len;
737		unsigned int bitright = 8 - bitshift;
738		u8 temp;
739		for (len = t->len; len; len--) {
740			temp = *cp;
741			*cp++ = leftover | (temp >> bitshift);
742			leftover = temp << bitright;
743		}
744		cp = (u8 *) &scratch->crc_val;
745		temp = *cp;
746		*cp++ = leftover | (temp >> bitshift);
747		leftover = temp << bitright;
748		temp = *cp;
749		*cp = leftover | (temp >> bitshift);
750	}
751
752	if (host->mmc->use_spi_crc) {
753		u16 crc = crc_itu_t(0, t->rx_buf, t->len);
754
755		be16_to_cpus(&scratch->crc_val);
756		if (scratch->crc_val != crc) {
757			dev_dbg(&spi->dev,
758				"read - crc error: crc_val=0x%04x, computed=0x%04x len=%d\n",
759				scratch->crc_val, crc, t->len);
760			return -EILSEQ;
761		}
762	}
763
764	t->rx_buf += t->len;
765
766	return 0;
767}
768
769/*
770 * An MMC/SD data stage includes one or more blocks, optional CRCs,
771 * and inline handshaking.  That handhaking makes it unlike most
772 * other SPI protocol stacks.
773 */
774static void
775mmc_spi_data_do(struct mmc_spi_host *host, struct mmc_command *cmd,
776		struct mmc_data *data, u32 blk_size)
777{
778	struct spi_device	*spi = host->spi;
779	struct spi_transfer	*t;
780	enum dma_data_direction	direction = mmc_get_dma_dir(data);
781	struct scatterlist	*sg;
782	unsigned		n_sg;
783	bool			multiple = (data->blocks > 1);
784	const char		*write_or_read = (direction == DMA_TO_DEVICE) ? "write" : "read";
785	u32			clock_rate;
786	unsigned long		timeout;
787
788	mmc_spi_setup_data_message(host, multiple, direction);
789	t = &host->t;
790
791	if (t->speed_hz)
792		clock_rate = t->speed_hz;
793	else
794		clock_rate = spi->max_speed_hz;
795
796	timeout = data->timeout_ns / 1000 +
797		  data->timeout_clks * 1000000 / clock_rate;
798	timeout = usecs_to_jiffies((unsigned int)timeout) + 1;
799
800	/* Handle scatterlist segments one at a time, with synch for
801	 * each 512-byte block
802	 */
803	for_each_sg(data->sg, sg, data->sg_len, n_sg) {
804		int			status = 0;
805		void			*kmap_addr;
806		unsigned		length = sg->length;
807
808		/* allow pio too; we don't allow highmem */
809		kmap_addr = kmap(sg_page(sg));
810		if (direction == DMA_TO_DEVICE)
811			t->tx_buf = kmap_addr + sg->offset;
812		else
813			t->rx_buf = kmap_addr + sg->offset;
814
815		/* transfer each block, and update request status */
816		while (length) {
817			t->len = min(length, blk_size);
818
819			dev_dbg(&spi->dev, "    %s block, %d bytes\n", write_or_read, t->len);
820
821			if (direction == DMA_TO_DEVICE)
822				status = mmc_spi_writeblock(host, t, timeout);
823			else
824				status = mmc_spi_readblock(host, t, timeout);
825			if (status < 0)
826				break;
827
828			data->bytes_xfered += t->len;
829			length -= t->len;
830
831			if (!multiple)
832				break;
833		}
834
835		/* discard mappings */
836		if (direction == DMA_FROM_DEVICE)
837			flush_dcache_page(sg_page(sg));
838		kunmap(sg_page(sg));
839
840		if (status < 0) {
841			data->error = status;
842			dev_dbg(&spi->dev, "%s status %d\n", write_or_read, status);
843			break;
844		}
845	}
846
847	/* NOTE some docs describe an MMC-only SET_BLOCK_COUNT (CMD23) that
848	 * can be issued before multiblock writes.  Unlike its more widely
849	 * documented analogue for SD cards (SET_WR_BLK_ERASE_COUNT, ACMD23),
850	 * that can affect the STOP_TRAN logic.   Complete (and current)
851	 * MMC specs should sort that out before Linux starts using CMD23.
852	 */
853	if (direction == DMA_TO_DEVICE && multiple) {
854		struct scratch	*scratch = host->data;
855		int		tmp;
856		const unsigned	statlen = sizeof(scratch->status);
857
858		dev_dbg(&spi->dev, "    STOP_TRAN\n");
859
860		/* Tweak the per-block message we set up earlier by morphing
861		 * it to hold single buffer with the token followed by some
862		 * all-ones bytes ... skip N(BR) (0..1), scan the rest for
863		 * "not busy any longer" status, and leave chip selected.
864		 */
865		INIT_LIST_HEAD(&host->m.transfers);
866		list_add(&host->early_status.transfer_list,
867				&host->m.transfers);
868
869		memset(scratch->status, 0xff, statlen);
870		scratch->status[0] = SPI_TOKEN_STOP_TRAN;
871
872		host->early_status.tx_buf = host->early_status.rx_buf;
873		host->early_status.len = statlen;
874
875		tmp = spi_sync_locked(spi, &host->m);
876		if (tmp < 0) {
877			if (!data->error)
878				data->error = tmp;
879			return;
880		}
881
882		/* Ideally we collected "not busy" status with one I/O,
883		 * avoiding wasteful byte-at-a-time scanning... but more
884		 * I/O is often needed.
885		 */
886		for (tmp = 2; tmp < statlen; tmp++) {
887			if (scratch->status[tmp] != 0)
888				return;
889		}
890		tmp = mmc_spi_wait_unbusy(host, timeout);
891		if (tmp < 0 && !data->error)
892			data->error = tmp;
893	}
894}
895
896/****************************************************************************/
897
898/*
899 * MMC driver implementation -- the interface to the MMC stack
900 */
901
902static void mmc_spi_request(struct mmc_host *mmc, struct mmc_request *mrq)
903{
904	struct mmc_spi_host	*host = mmc_priv(mmc);
905	int			status = -EINVAL;
906	int			crc_retry = 5;
907	struct mmc_command	stop;
908
909#ifdef DEBUG
910	/* MMC core and layered drivers *MUST* issue SPI-aware commands */
911	{
912		struct mmc_command	*cmd;
913		int			invalid = 0;
914
915		cmd = mrq->cmd;
916		if (!mmc_spi_resp_type(cmd)) {
917			dev_dbg(&host->spi->dev, "bogus command\n");
918			cmd->error = -EINVAL;
919			invalid = 1;
920		}
921
922		cmd = mrq->stop;
923		if (cmd && !mmc_spi_resp_type(cmd)) {
924			dev_dbg(&host->spi->dev, "bogus STOP command\n");
925			cmd->error = -EINVAL;
926			invalid = 1;
927		}
928
929		if (invalid) {
930			dump_stack();
931			mmc_request_done(host->mmc, mrq);
932			return;
933		}
934	}
935#endif
936
937	/* request exclusive bus access */
938	spi_bus_lock(host->spi->master);
939
940crc_recover:
941	/* issue command; then optionally data and stop */
942	status = mmc_spi_command_send(host, mrq, mrq->cmd, mrq->data != NULL);
943	if (status == 0 && mrq->data) {
944		mmc_spi_data_do(host, mrq->cmd, mrq->data, mrq->data->blksz);
945
946		/*
947		 * The SPI bus is not always reliable for large data transfers.
948		 * If an occasional crc error is reported by the SD device with
949		 * data read/write over SPI, it may be recovered by repeating
950		 * the last SD command again. The retry count is set to 5 to
951		 * ensure the driver passes stress tests.
952		 */
953		if (mrq->data->error == -EILSEQ && crc_retry) {
954			stop.opcode = MMC_STOP_TRANSMISSION;
955			stop.arg = 0;
956			stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
957			status = mmc_spi_command_send(host, mrq, &stop, 0);
958			crc_retry--;
959			mrq->data->error = 0;
960			goto crc_recover;
961		}
962
963		if (mrq->stop)
964			status = mmc_spi_command_send(host, mrq, mrq->stop, 0);
965		else
966			mmc_cs_off(host);
967	}
968
969	/* release the bus */
970	spi_bus_unlock(host->spi->master);
971
972	mmc_request_done(host->mmc, mrq);
973}
974
975/* See Section 6.4.1, in SD "Simplified Physical Layer Specification 2.0"
976 *
977 * NOTE that here we can't know that the card has just been powered up;
978 * not all MMC/SD sockets support power switching.
979 *
980 * FIXME when the card is still in SPI mode, e.g. from a previous kernel,
981 * this doesn't seem to do the right thing at all...
982 */
983static void mmc_spi_initsequence(struct mmc_spi_host *host)
984{
985	/* Try to be very sure any previous command has completed;
986	 * wait till not-busy, skip debris from any old commands.
987	 */
988	mmc_spi_wait_unbusy(host, msecs_to_jiffies(MMC_SPI_INIT_TIMEOUT_MS));
989	mmc_spi_readbytes(host, 10);
990
991	/*
992	 * Do a burst with chipselect active-high.  We need to do this to
993	 * meet the requirement of 74 clock cycles with both chipselect
994	 * and CMD (MOSI) high before CMD0 ... after the card has been
995	 * powered up to Vdd(min), and so is ready to take commands.
996	 *
997	 * Some cards are particularly needy of this (e.g. Viking "SD256")
998	 * while most others don't seem to care.
999	 *
1000	 * Note that this is one of the places MMC/SD plays games with the
1001	 * SPI protocol.  Another is that when chipselect is released while
1002	 * the card returns BUSY status, the clock must issue several cycles
1003	 * with chipselect high before the card will stop driving its output.
1004	 *
1005	 * SPI_CS_HIGH means "asserted" here. In some cases like when using
1006	 * GPIOs for chip select, SPI_CS_HIGH is set but this will be logically
1007	 * inverted by gpiolib, so if we want to ascertain to drive it high
1008	 * we should toggle the default with an XOR as we do here.
1009	 */
1010	host->spi->mode ^= SPI_CS_HIGH;
1011	if (spi_setup(host->spi) != 0) {
1012		/* Just warn; most cards work without it. */
1013		dev_warn(&host->spi->dev,
1014				"can't change chip-select polarity\n");
1015		host->spi->mode ^= SPI_CS_HIGH;
1016	} else {
1017		mmc_spi_readbytes(host, 18);
1018
1019		host->spi->mode ^= SPI_CS_HIGH;
1020		if (spi_setup(host->spi) != 0) {
1021			/* Wot, we can't get the same setup we had before? */
1022			dev_err(&host->spi->dev,
1023					"can't restore chip-select polarity\n");
1024		}
1025	}
1026}
1027
1028static char *mmc_powerstring(u8 power_mode)
1029{
1030	switch (power_mode) {
1031	case MMC_POWER_OFF: return "off";
1032	case MMC_POWER_UP:  return "up";
1033	case MMC_POWER_ON:  return "on";
1034	}
1035	return "?";
1036}
1037
1038static void mmc_spi_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1039{
1040	struct mmc_spi_host *host = mmc_priv(mmc);
1041
1042	if (host->power_mode != ios->power_mode) {
1043		int		canpower;
1044
1045		canpower = host->pdata && host->pdata->setpower;
1046
1047		dev_dbg(&host->spi->dev, "power %s (%d)%s\n",
1048				mmc_powerstring(ios->power_mode),
1049				ios->vdd,
1050				canpower ? ", can switch" : "");
1051
1052		/* switch power on/off if possible, accounting for
1053		 * max 250msec powerup time if needed.
1054		 */
1055		if (canpower) {
1056			switch (ios->power_mode) {
1057			case MMC_POWER_OFF:
1058			case MMC_POWER_UP:
1059				host->pdata->setpower(&host->spi->dev,
1060						ios->vdd);
1061				if (ios->power_mode == MMC_POWER_UP)
1062					msleep(host->powerup_msecs);
1063			}
1064		}
1065
1066		/* See 6.4.1 in the simplified SD card physical spec 2.0 */
1067		if (ios->power_mode == MMC_POWER_ON)
1068			mmc_spi_initsequence(host);
1069
1070		/* If powering down, ground all card inputs to avoid power
1071		 * delivery from data lines!  On a shared SPI bus, this
1072		 * will probably be temporary; 6.4.2 of the simplified SD
1073		 * spec says this must last at least 1msec.
1074		 *
1075		 *   - Clock low means CPOL 0, e.g. mode 0
1076		 *   - MOSI low comes from writing zero
1077		 *   - Chipselect is usually active low...
1078		 */
1079		if (canpower && ios->power_mode == MMC_POWER_OFF) {
1080			int mres;
1081			u8 nullbyte = 0;
1082
1083			host->spi->mode &= ~(SPI_CPOL|SPI_CPHA);
1084			mres = spi_setup(host->spi);
1085			if (mres < 0)
1086				dev_dbg(&host->spi->dev,
1087					"switch to SPI mode 0 failed\n");
1088
1089			if (spi_write(host->spi, &nullbyte, 1) < 0)
1090				dev_dbg(&host->spi->dev,
1091					"put spi signals to low failed\n");
1092
1093			/*
1094			 * Now clock should be low due to spi mode 0;
1095			 * MOSI should be low because of written 0x00;
1096			 * chipselect should be low (it is active low)
1097			 * power supply is off, so now MMC is off too!
1098			 *
1099			 * FIXME no, chipselect can be high since the
1100			 * device is inactive and SPI_CS_HIGH is clear...
1101			 */
1102			msleep(10);
1103			if (mres == 0) {
1104				host->spi->mode |= (SPI_CPOL|SPI_CPHA);
1105				mres = spi_setup(host->spi);
1106				if (mres < 0)
1107					dev_dbg(&host->spi->dev,
1108						"switch back to SPI mode 3 failed\n");
1109			}
1110		}
1111
1112		host->power_mode = ios->power_mode;
1113	}
1114
1115	if (host->spi->max_speed_hz != ios->clock && ios->clock != 0) {
1116		int		status;
1117
1118		host->spi->max_speed_hz = ios->clock;
1119		status = spi_setup(host->spi);
1120		dev_dbg(&host->spi->dev, "  clock to %d Hz, %d\n",
1121			host->spi->max_speed_hz, status);
1122	}
1123}
1124
1125static const struct mmc_host_ops mmc_spi_ops = {
1126	.request	= mmc_spi_request,
1127	.set_ios	= mmc_spi_set_ios,
1128	.get_ro		= mmc_gpio_get_ro,
1129	.get_cd		= mmc_gpio_get_cd,
1130};
1131
1132
1133/****************************************************************************/
1134
1135/*
1136 * SPI driver implementation
1137 */
1138
1139static irqreturn_t
1140mmc_spi_detect_irq(int irq, void *mmc)
1141{
1142	struct mmc_spi_host *host = mmc_priv(mmc);
1143	u16 delay_msec = max(host->pdata->detect_delay, (u16)100);
1144
1145	mmc_detect_change(mmc, msecs_to_jiffies(delay_msec));
1146	return IRQ_HANDLED;
1147}
1148
1149static int mmc_spi_probe(struct spi_device *spi)
1150{
1151	void			*ones;
1152	struct mmc_host		*mmc;
1153	struct mmc_spi_host	*host;
1154	int			status;
1155	bool			has_ro = false;
1156
1157	/* We rely on full duplex transfers, mostly to reduce
1158	 * per-transfer overheads (by making fewer transfers).
1159	 */
1160	if (spi->master->flags & SPI_MASTER_HALF_DUPLEX)
1161		return -EINVAL;
1162
1163	/* MMC and SD specs only seem to care that sampling is on the
1164	 * rising edge ... meaning SPI modes 0 or 3.  So either SPI mode
1165	 * should be legit.  We'll use mode 0 since the steady state is 0,
1166	 * which is appropriate for hotplugging, unless the platform data
1167	 * specify mode 3 (if hardware is not compatible to mode 0).
1168	 */
1169	if (spi->mode != SPI_MODE_3)
1170		spi->mode = SPI_MODE_0;
1171	spi->bits_per_word = 8;
1172
1173	status = spi_setup(spi);
1174	if (status < 0) {
1175		dev_dbg(&spi->dev, "needs SPI mode %02x, %d KHz; %d\n",
1176				spi->mode, spi->max_speed_hz / 1000,
1177				status);
1178		return status;
1179	}
1180
1181	/* We need a supply of ones to transmit.  This is the only time
1182	 * the CPU touches these, so cache coherency isn't a concern.
1183	 *
1184	 * NOTE if many systems use more than one MMC-over-SPI connector
1185	 * it'd save some memory to share this.  That's evidently rare.
1186	 */
1187	status = -ENOMEM;
1188	ones = kmalloc(MMC_SPI_BLOCKSIZE, GFP_KERNEL);
1189	if (!ones)
1190		goto nomem;
1191	memset(ones, 0xff, MMC_SPI_BLOCKSIZE);
1192
1193	mmc = mmc_alloc_host(sizeof(*host), &spi->dev);
1194	if (!mmc)
1195		goto nomem;
1196
1197	mmc->ops = &mmc_spi_ops;
1198	mmc->max_blk_size = MMC_SPI_BLOCKSIZE;
1199	mmc->max_segs = MMC_SPI_BLOCKSATONCE;
1200	mmc->max_req_size = MMC_SPI_BLOCKSATONCE * MMC_SPI_BLOCKSIZE;
1201	mmc->max_blk_count = MMC_SPI_BLOCKSATONCE;
1202
1203	mmc->caps = MMC_CAP_SPI;
1204
1205	/* SPI doesn't need the lowspeed device identification thing for
1206	 * MMC or SD cards, since it never comes up in open drain mode.
1207	 * That's good; some SPI masters can't handle very low speeds!
1208	 *
1209	 * However, low speed SDIO cards need not handle over 400 KHz;
1210	 * that's the only reason not to use a few MHz for f_min (until
1211	 * the upper layer reads the target frequency from the CSD).
1212	 */
1213	mmc->f_min = 400000;
1214	mmc->f_max = spi->max_speed_hz;
1215
1216	host = mmc_priv(mmc);
1217	host->mmc = mmc;
1218	host->spi = spi;
1219
1220	host->ones = ones;
1221
1222	dev_set_drvdata(&spi->dev, mmc);
1223
1224	/* Platform data is used to hook up things like card sensing
1225	 * and power switching gpios.
1226	 */
1227	host->pdata = mmc_spi_get_pdata(spi);
1228	if (host->pdata)
1229		mmc->ocr_avail = host->pdata->ocr_mask;
1230	if (!mmc->ocr_avail) {
1231		dev_warn(&spi->dev, "ASSUMING 3.2-3.4 V slot power\n");
1232		mmc->ocr_avail = MMC_VDD_32_33|MMC_VDD_33_34;
1233	}
1234	if (host->pdata && host->pdata->setpower) {
1235		host->powerup_msecs = host->pdata->powerup_msecs;
1236		if (!host->powerup_msecs || host->powerup_msecs > 250)
1237			host->powerup_msecs = 250;
1238	}
1239
1240	/* Preallocate buffers */
1241	host->data = kmalloc(sizeof(*host->data), GFP_KERNEL);
1242	if (!host->data)
1243		goto fail_nobuf1;
1244
1245	/* setup message for status/busy readback */
1246	spi_message_init(&host->readback);
1247
1248	spi_message_add_tail(&host->status, &host->readback);
1249	host->status.tx_buf = host->ones;
1250	host->status.rx_buf = &host->data->status;
1251	host->status.cs_change = 1;
1252
1253	/* register card detect irq */
1254	if (host->pdata && host->pdata->init) {
1255		status = host->pdata->init(&spi->dev, mmc_spi_detect_irq, mmc);
1256		if (status != 0)
1257			goto fail_glue_init;
1258	}
1259
1260	/* pass platform capabilities, if any */
1261	if (host->pdata) {
1262		mmc->caps |= host->pdata->caps;
1263		mmc->caps2 |= host->pdata->caps2;
1264	}
1265
1266	status = mmc_add_host(mmc);
1267	if (status != 0)
1268		goto fail_glue_init;
1269
1270	/*
1271	 * Index 0 is card detect
1272	 * Old boardfiles were specifying 1 ms as debounce
1273	 */
1274	status = mmc_gpiod_request_cd(mmc, NULL, 0, false, 1000);
1275	if (status == -EPROBE_DEFER)
1276		goto fail_gpiod_request;
1277	if (!status) {
1278		/*
1279		 * The platform has a CD GPIO signal that may support
1280		 * interrupts, so let mmc_gpiod_request_cd_irq() decide
1281		 * if polling is needed or not.
1282		 */
1283		mmc->caps &= ~MMC_CAP_NEEDS_POLL;
1284		mmc_gpiod_request_cd_irq(mmc);
1285	}
1286	mmc_detect_change(mmc, 0);
1287
1288	/* Index 1 is write protect/read only */
1289	status = mmc_gpiod_request_ro(mmc, NULL, 1, 0);
1290	if (status == -EPROBE_DEFER)
1291		goto fail_gpiod_request;
1292	if (!status)
1293		has_ro = true;
1294
1295	dev_info(&spi->dev, "SD/MMC host %s%s%s%s\n",
1296			dev_name(&mmc->class_dev),
1297			has_ro ? "" : ", no WP",
1298			(host->pdata && host->pdata->setpower)
1299				? "" : ", no poweroff",
1300			(mmc->caps & MMC_CAP_NEEDS_POLL)
1301				? ", cd polling" : "");
1302	return 0;
1303
1304fail_gpiod_request:
1305	mmc_remove_host(mmc);
1306fail_glue_init:
1307	kfree(host->data);
1308fail_nobuf1:
1309	mmc_spi_put_pdata(spi);
1310	mmc_free_host(mmc);
1311nomem:
1312	kfree(ones);
1313	return status;
1314}
1315
1316
1317static void mmc_spi_remove(struct spi_device *spi)
1318{
1319	struct mmc_host		*mmc = dev_get_drvdata(&spi->dev);
1320	struct mmc_spi_host	*host = mmc_priv(mmc);
1321
1322	/* prevent new mmc_detect_change() calls */
1323	if (host->pdata && host->pdata->exit)
1324		host->pdata->exit(&spi->dev, mmc);
1325
1326	mmc_remove_host(mmc);
1327
1328	kfree(host->data);
1329	kfree(host->ones);
1330
1331	spi->max_speed_hz = mmc->f_max;
1332	mmc_spi_put_pdata(spi);
1333	mmc_free_host(mmc);
1334}
1335
1336static const struct spi_device_id mmc_spi_dev_ids[] = {
1337	{ "mmc-spi-slot"},
1338	{ },
1339};
1340MODULE_DEVICE_TABLE(spi, mmc_spi_dev_ids);
1341
1342static const struct of_device_id mmc_spi_of_match_table[] = {
1343	{ .compatible = "mmc-spi-slot", },
1344	{},
1345};
1346MODULE_DEVICE_TABLE(of, mmc_spi_of_match_table);
1347
1348static struct spi_driver mmc_spi_driver = {
1349	.driver = {
1350		.name =		"mmc_spi",
1351		.of_match_table = mmc_spi_of_match_table,
1352	},
1353	.id_table =	mmc_spi_dev_ids,
1354	.probe =	mmc_spi_probe,
1355	.remove =	mmc_spi_remove,
1356};
1357
1358module_spi_driver(mmc_spi_driver);
1359
1360MODULE_AUTHOR("Mike Lavender, David Brownell, Hans-Peter Nilsson, Jan Nikitenko");
1361MODULE_DESCRIPTION("SPI SD/MMC host driver");
1362MODULE_LICENSE("GPL");
1363MODULE_ALIAS("spi:mmc_spi");
1364