xref: /kernel/linux/linux-6.6/drivers/mmc/host/dw_mmc.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Synopsys DesignWare Multimedia Card Interface driver
4 *  (Based on NXP driver for lpc 31xx)
5 *
6 * Copyright (C) 2009 NXP Semiconductors
7 * Copyright (C) 2009, 2010 Imagination Technologies Ltd.
8 */
9
10#include <linux/blkdev.h>
11#include <linux/clk.h>
12#include <linux/debugfs.h>
13#include <linux/device.h>
14#include <linux/dma-mapping.h>
15#include <linux/err.h>
16#include <linux/init.h>
17#include <linux/interrupt.h>
18#include <linux/iopoll.h>
19#include <linux/ioport.h>
20#include <linux/ktime.h>
21#include <linux/module.h>
22#include <linux/platform_device.h>
23#include <linux/pm_runtime.h>
24#include <linux/prandom.h>
25#include <linux/seq_file.h>
26#include <linux/slab.h>
27#include <linux/stat.h>
28#include <linux/delay.h>
29#include <linux/irq.h>
30#include <linux/mmc/card.h>
31#include <linux/mmc/host.h>
32#include <linux/mmc/mmc.h>
33#include <linux/mmc/sd.h>
34#include <linux/mmc/sdio.h>
35#include <linux/bitops.h>
36#include <linux/regulator/consumer.h>
37#include <linux/of.h>
38#include <linux/of_gpio.h>
39#include <linux/mmc/slot-gpio.h>
40
41#include "dw_mmc.h"
42
43/* Common flag combinations */
44#define DW_MCI_DATA_ERROR_FLAGS	(SDMMC_INT_DRTO | SDMMC_INT_DCRC | \
45				 SDMMC_INT_HTO | SDMMC_INT_SBE  | \
46				 SDMMC_INT_EBE | SDMMC_INT_HLE)
47#define DW_MCI_CMD_ERROR_FLAGS	(SDMMC_INT_RTO | SDMMC_INT_RCRC | \
48				 SDMMC_INT_RESP_ERR | SDMMC_INT_HLE)
49#define DW_MCI_ERROR_FLAGS	(DW_MCI_DATA_ERROR_FLAGS | \
50				 DW_MCI_CMD_ERROR_FLAGS)
51#define DW_MCI_SEND_STATUS	1
52#define DW_MCI_RECV_STATUS	2
53#define DW_MCI_DMA_THRESHOLD	16
54
55#define DW_MCI_FREQ_MAX	200000000	/* unit: HZ */
56#define DW_MCI_FREQ_MIN	100000		/* unit: HZ */
57
58#define IDMAC_INT_CLR		(SDMMC_IDMAC_INT_AI | SDMMC_IDMAC_INT_NI | \
59				 SDMMC_IDMAC_INT_CES | SDMMC_IDMAC_INT_DU | \
60				 SDMMC_IDMAC_INT_FBE | SDMMC_IDMAC_INT_RI | \
61				 SDMMC_IDMAC_INT_TI)
62
63#define DESC_RING_BUF_SZ	PAGE_SIZE
64
65struct idmac_desc_64addr {
66	u32		des0;	/* Control Descriptor */
67#define IDMAC_OWN_CLR64(x) \
68	!((x) & cpu_to_le32(IDMAC_DES0_OWN))
69
70	u32		des1;	/* Reserved */
71
72	u32		des2;	/*Buffer sizes */
73#define IDMAC_64ADDR_SET_BUFFER1_SIZE(d, s) \
74	((d)->des2 = ((d)->des2 & cpu_to_le32(0x03ffe000)) | \
75	 ((cpu_to_le32(s)) & cpu_to_le32(0x1fff)))
76
77	u32		des3;	/* Reserved */
78
79	u32		des4;	/* Lower 32-bits of Buffer Address Pointer 1*/
80	u32		des5;	/* Upper 32-bits of Buffer Address Pointer 1*/
81
82	u32		des6;	/* Lower 32-bits of Next Descriptor Address */
83	u32		des7;	/* Upper 32-bits of Next Descriptor Address */
84};
85
86struct idmac_desc {
87	__le32		des0;	/* Control Descriptor */
88#define IDMAC_DES0_DIC	BIT(1)
89#define IDMAC_DES0_LD	BIT(2)
90#define IDMAC_DES0_FD	BIT(3)
91#define IDMAC_DES0_CH	BIT(4)
92#define IDMAC_DES0_ER	BIT(5)
93#define IDMAC_DES0_CES	BIT(30)
94#define IDMAC_DES0_OWN	BIT(31)
95
96	__le32		des1;	/* Buffer sizes */
97#define IDMAC_SET_BUFFER1_SIZE(d, s) \
98	((d)->des1 = ((d)->des1 & cpu_to_le32(0x03ffe000)) | (cpu_to_le32((s) & 0x1fff)))
99
100	__le32		des2;	/* buffer 1 physical address */
101
102	__le32		des3;	/* buffer 2 physical address */
103};
104
105/* Each descriptor can transfer up to 4KB of data in chained mode */
106#define DW_MCI_DESC_DATA_LENGTH	0x1000
107
108#if defined(CONFIG_DEBUG_FS)
109static int dw_mci_req_show(struct seq_file *s, void *v)
110{
111	struct dw_mci_slot *slot = s->private;
112	struct mmc_request *mrq;
113	struct mmc_command *cmd;
114	struct mmc_command *stop;
115	struct mmc_data	*data;
116
117	/* Make sure we get a consistent snapshot */
118	spin_lock_bh(&slot->host->lock);
119	mrq = slot->mrq;
120
121	if (mrq) {
122		cmd = mrq->cmd;
123		data = mrq->data;
124		stop = mrq->stop;
125
126		if (cmd)
127			seq_printf(s,
128				   "CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n",
129				   cmd->opcode, cmd->arg, cmd->flags,
130				   cmd->resp[0], cmd->resp[1], cmd->resp[2],
131				   cmd->resp[2], cmd->error);
132		if (data)
133			seq_printf(s, "DATA %u / %u * %u flg %x err %d\n",
134				   data->bytes_xfered, data->blocks,
135				   data->blksz, data->flags, data->error);
136		if (stop)
137			seq_printf(s,
138				   "CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n",
139				   stop->opcode, stop->arg, stop->flags,
140				   stop->resp[0], stop->resp[1], stop->resp[2],
141				   stop->resp[2], stop->error);
142	}
143
144	spin_unlock_bh(&slot->host->lock);
145
146	return 0;
147}
148DEFINE_SHOW_ATTRIBUTE(dw_mci_req);
149
150static int dw_mci_regs_show(struct seq_file *s, void *v)
151{
152	struct dw_mci *host = s->private;
153
154	pm_runtime_get_sync(host->dev);
155
156	seq_printf(s, "STATUS:\t0x%08x\n", mci_readl(host, STATUS));
157	seq_printf(s, "RINTSTS:\t0x%08x\n", mci_readl(host, RINTSTS));
158	seq_printf(s, "CMD:\t0x%08x\n", mci_readl(host, CMD));
159	seq_printf(s, "CTRL:\t0x%08x\n", mci_readl(host, CTRL));
160	seq_printf(s, "INTMASK:\t0x%08x\n", mci_readl(host, INTMASK));
161	seq_printf(s, "CLKENA:\t0x%08x\n", mci_readl(host, CLKENA));
162
163	pm_runtime_put_autosuspend(host->dev);
164
165	return 0;
166}
167DEFINE_SHOW_ATTRIBUTE(dw_mci_regs);
168
169static void dw_mci_init_debugfs(struct dw_mci_slot *slot)
170{
171	struct mmc_host	*mmc = slot->mmc;
172	struct dw_mci *host = slot->host;
173	struct dentry *root;
174
175	root = mmc->debugfs_root;
176	if (!root)
177		return;
178
179	debugfs_create_file("regs", S_IRUSR, root, host, &dw_mci_regs_fops);
180	debugfs_create_file("req", S_IRUSR, root, slot, &dw_mci_req_fops);
181	debugfs_create_u32("state", S_IRUSR, root, &host->state);
182	debugfs_create_xul("pending_events", S_IRUSR, root,
183			   &host->pending_events);
184	debugfs_create_xul("completed_events", S_IRUSR, root,
185			   &host->completed_events);
186#ifdef CONFIG_FAULT_INJECTION
187	fault_create_debugfs_attr("fail_data_crc", root, &host->fail_data_crc);
188#endif
189}
190#endif /* defined(CONFIG_DEBUG_FS) */
191
192static bool dw_mci_ctrl_reset(struct dw_mci *host, u32 reset)
193{
194	u32 ctrl;
195
196	ctrl = mci_readl(host, CTRL);
197	ctrl |= reset;
198	mci_writel(host, CTRL, ctrl);
199
200	/* wait till resets clear */
201	if (readl_poll_timeout_atomic(host->regs + SDMMC_CTRL, ctrl,
202				      !(ctrl & reset),
203				      1, 500 * USEC_PER_MSEC)) {
204		dev_err(host->dev,
205			"Timeout resetting block (ctrl reset %#x)\n",
206			ctrl & reset);
207		return false;
208	}
209
210	return true;
211}
212
213static void dw_mci_wait_while_busy(struct dw_mci *host, u32 cmd_flags)
214{
215	u32 status;
216
217	/*
218	 * Databook says that before issuing a new data transfer command
219	 * we need to check to see if the card is busy.  Data transfer commands
220	 * all have SDMMC_CMD_PRV_DAT_WAIT set, so we'll key off that.
221	 *
222	 * ...also allow sending for SDMMC_CMD_VOLT_SWITCH where busy is
223	 * expected.
224	 */
225	if ((cmd_flags & SDMMC_CMD_PRV_DAT_WAIT) &&
226	    !(cmd_flags & SDMMC_CMD_VOLT_SWITCH)) {
227		if (readl_poll_timeout_atomic(host->regs + SDMMC_STATUS,
228					      status,
229					      !(status & SDMMC_STATUS_BUSY),
230					      10, 500 * USEC_PER_MSEC))
231			dev_err(host->dev, "Busy; trying anyway\n");
232	}
233}
234
235static void mci_send_cmd(struct dw_mci_slot *slot, u32 cmd, u32 arg)
236{
237	struct dw_mci *host = slot->host;
238	unsigned int cmd_status = 0;
239
240	mci_writel(host, CMDARG, arg);
241	wmb(); /* drain writebuffer */
242	dw_mci_wait_while_busy(host, cmd);
243	mci_writel(host, CMD, SDMMC_CMD_START | cmd);
244
245	if (readl_poll_timeout_atomic(host->regs + SDMMC_CMD, cmd_status,
246				      !(cmd_status & SDMMC_CMD_START),
247				      1, 500 * USEC_PER_MSEC))
248		dev_err(&slot->mmc->class_dev,
249			"Timeout sending command (cmd %#x arg %#x status %#x)\n",
250			cmd, arg, cmd_status);
251}
252
253static u32 dw_mci_prepare_command(struct mmc_host *mmc, struct mmc_command *cmd)
254{
255	struct dw_mci_slot *slot = mmc_priv(mmc);
256	struct dw_mci *host = slot->host;
257	u32 cmdr;
258
259	cmd->error = -EINPROGRESS;
260	cmdr = cmd->opcode;
261
262	if (cmd->opcode == MMC_STOP_TRANSMISSION ||
263	    cmd->opcode == MMC_GO_IDLE_STATE ||
264	    cmd->opcode == MMC_GO_INACTIVE_STATE ||
265	    (cmd->opcode == SD_IO_RW_DIRECT &&
266	     ((cmd->arg >> 9) & 0x1FFFF) == SDIO_CCCR_ABORT))
267		cmdr |= SDMMC_CMD_STOP;
268	else if (cmd->opcode != MMC_SEND_STATUS && cmd->data)
269		cmdr |= SDMMC_CMD_PRV_DAT_WAIT;
270
271	if (cmd->opcode == SD_SWITCH_VOLTAGE) {
272		u32 clk_en_a;
273
274		/* Special bit makes CMD11 not die */
275		cmdr |= SDMMC_CMD_VOLT_SWITCH;
276
277		/* Change state to continue to handle CMD11 weirdness */
278		WARN_ON(slot->host->state != STATE_SENDING_CMD);
279		slot->host->state = STATE_SENDING_CMD11;
280
281		/*
282		 * We need to disable low power mode (automatic clock stop)
283		 * while doing voltage switch so we don't confuse the card,
284		 * since stopping the clock is a specific part of the UHS
285		 * voltage change dance.
286		 *
287		 * Note that low power mode (SDMMC_CLKEN_LOW_PWR) will be
288		 * unconditionally turned back on in dw_mci_setup_bus() if it's
289		 * ever called with a non-zero clock.  That shouldn't happen
290		 * until the voltage change is all done.
291		 */
292		clk_en_a = mci_readl(host, CLKENA);
293		clk_en_a &= ~(SDMMC_CLKEN_LOW_PWR << slot->id);
294		mci_writel(host, CLKENA, clk_en_a);
295		mci_send_cmd(slot, SDMMC_CMD_UPD_CLK |
296			     SDMMC_CMD_PRV_DAT_WAIT, 0);
297	}
298
299	if (cmd->flags & MMC_RSP_PRESENT) {
300		/* We expect a response, so set this bit */
301		cmdr |= SDMMC_CMD_RESP_EXP;
302		if (cmd->flags & MMC_RSP_136)
303			cmdr |= SDMMC_CMD_RESP_LONG;
304	}
305
306	if (cmd->flags & MMC_RSP_CRC)
307		cmdr |= SDMMC_CMD_RESP_CRC;
308
309	if (cmd->data) {
310		cmdr |= SDMMC_CMD_DAT_EXP;
311		if (cmd->data->flags & MMC_DATA_WRITE)
312			cmdr |= SDMMC_CMD_DAT_WR;
313	}
314
315	if (!test_bit(DW_MMC_CARD_NO_USE_HOLD, &slot->flags))
316		cmdr |= SDMMC_CMD_USE_HOLD_REG;
317
318	return cmdr;
319}
320
321static u32 dw_mci_prep_stop_abort(struct dw_mci *host, struct mmc_command *cmd)
322{
323	struct mmc_command *stop;
324	u32 cmdr;
325
326	if (!cmd->data)
327		return 0;
328
329	stop = &host->stop_abort;
330	cmdr = cmd->opcode;
331	memset(stop, 0, sizeof(struct mmc_command));
332
333	if (cmdr == MMC_READ_SINGLE_BLOCK ||
334	    cmdr == MMC_READ_MULTIPLE_BLOCK ||
335	    cmdr == MMC_WRITE_BLOCK ||
336	    cmdr == MMC_WRITE_MULTIPLE_BLOCK ||
337	    mmc_op_tuning(cmdr) ||
338	    cmdr == MMC_GEN_CMD) {
339		stop->opcode = MMC_STOP_TRANSMISSION;
340		stop->arg = 0;
341		stop->flags = MMC_RSP_R1B | MMC_CMD_AC;
342	} else if (cmdr == SD_IO_RW_EXTENDED) {
343		stop->opcode = SD_IO_RW_DIRECT;
344		stop->arg |= (1 << 31) | (0 << 28) | (SDIO_CCCR_ABORT << 9) |
345			     ((cmd->arg >> 28) & 0x7);
346		stop->flags = MMC_RSP_SPI_R5 | MMC_RSP_R5 | MMC_CMD_AC;
347	} else {
348		return 0;
349	}
350
351	cmdr = stop->opcode | SDMMC_CMD_STOP |
352		SDMMC_CMD_RESP_CRC | SDMMC_CMD_RESP_EXP;
353
354	if (!test_bit(DW_MMC_CARD_NO_USE_HOLD, &host->slot->flags))
355		cmdr |= SDMMC_CMD_USE_HOLD_REG;
356
357	return cmdr;
358}
359
360static inline void dw_mci_set_cto(struct dw_mci *host)
361{
362	unsigned int cto_clks;
363	unsigned int cto_div;
364	unsigned int cto_ms;
365	unsigned long irqflags;
366
367	cto_clks = mci_readl(host, TMOUT) & 0xff;
368	cto_div = (mci_readl(host, CLKDIV) & 0xff) * 2;
369	if (cto_div == 0)
370		cto_div = 1;
371
372	cto_ms = DIV_ROUND_UP_ULL((u64)MSEC_PER_SEC * cto_clks * cto_div,
373				  host->bus_hz);
374
375	/* add a bit spare time */
376	cto_ms += 10;
377
378	/*
379	 * The durations we're working with are fairly short so we have to be
380	 * extra careful about synchronization here.  Specifically in hardware a
381	 * command timeout is _at most_ 5.1 ms, so that means we expect an
382	 * interrupt (either command done or timeout) to come rather quickly
383	 * after the mci_writel.  ...but just in case we have a long interrupt
384	 * latency let's add a bit of paranoia.
385	 *
386	 * In general we'll assume that at least an interrupt will be asserted
387	 * in hardware by the time the cto_timer runs.  ...and if it hasn't
388	 * been asserted in hardware by that time then we'll assume it'll never
389	 * come.
390	 */
391	spin_lock_irqsave(&host->irq_lock, irqflags);
392	if (!test_bit(EVENT_CMD_COMPLETE, &host->pending_events))
393		mod_timer(&host->cto_timer,
394			jiffies + msecs_to_jiffies(cto_ms) + 1);
395	spin_unlock_irqrestore(&host->irq_lock, irqflags);
396}
397
398static void dw_mci_start_command(struct dw_mci *host,
399				 struct mmc_command *cmd, u32 cmd_flags)
400{
401	host->cmd = cmd;
402	dev_vdbg(host->dev,
403		 "start command: ARGR=0x%08x CMDR=0x%08x\n",
404		 cmd->arg, cmd_flags);
405
406	mci_writel(host, CMDARG, cmd->arg);
407	wmb(); /* drain writebuffer */
408	dw_mci_wait_while_busy(host, cmd_flags);
409
410	mci_writel(host, CMD, cmd_flags | SDMMC_CMD_START);
411
412	/* response expected command only */
413	if (cmd_flags & SDMMC_CMD_RESP_EXP)
414		dw_mci_set_cto(host);
415}
416
417static inline void send_stop_abort(struct dw_mci *host, struct mmc_data *data)
418{
419	struct mmc_command *stop = &host->stop_abort;
420
421	dw_mci_start_command(host, stop, host->stop_cmdr);
422}
423
424/* DMA interface functions */
425static void dw_mci_stop_dma(struct dw_mci *host)
426{
427	if (host->using_dma) {
428		host->dma_ops->stop(host);
429		host->dma_ops->cleanup(host);
430	}
431
432	/* Data transfer was stopped by the interrupt handler */
433	set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
434}
435
436static void dw_mci_dma_cleanup(struct dw_mci *host)
437{
438	struct mmc_data *data = host->data;
439
440	if (data && data->host_cookie == COOKIE_MAPPED) {
441		dma_unmap_sg(host->dev,
442			     data->sg,
443			     data->sg_len,
444			     mmc_get_dma_dir(data));
445		data->host_cookie = COOKIE_UNMAPPED;
446	}
447}
448
449static void dw_mci_idmac_reset(struct dw_mci *host)
450{
451	u32 bmod = mci_readl(host, BMOD);
452	/* Software reset of DMA */
453	bmod |= SDMMC_IDMAC_SWRESET;
454	mci_writel(host, BMOD, bmod);
455}
456
457static void dw_mci_idmac_stop_dma(struct dw_mci *host)
458{
459	u32 temp;
460
461	/* Disable and reset the IDMAC interface */
462	temp = mci_readl(host, CTRL);
463	temp &= ~SDMMC_CTRL_USE_IDMAC;
464	temp |= SDMMC_CTRL_DMA_RESET;
465	mci_writel(host, CTRL, temp);
466
467	/* Stop the IDMAC running */
468	temp = mci_readl(host, BMOD);
469	temp &= ~(SDMMC_IDMAC_ENABLE | SDMMC_IDMAC_FB);
470	temp |= SDMMC_IDMAC_SWRESET;
471	mci_writel(host, BMOD, temp);
472}
473
474static void dw_mci_dmac_complete_dma(void *arg)
475{
476	struct dw_mci *host = arg;
477	struct mmc_data *data = host->data;
478
479	dev_vdbg(host->dev, "DMA complete\n");
480
481	if ((host->use_dma == TRANS_MODE_EDMAC) &&
482	    data && (data->flags & MMC_DATA_READ))
483		/* Invalidate cache after read */
484		dma_sync_sg_for_cpu(mmc_dev(host->slot->mmc),
485				    data->sg,
486				    data->sg_len,
487				    DMA_FROM_DEVICE);
488
489	host->dma_ops->cleanup(host);
490
491	/*
492	 * If the card was removed, data will be NULL. No point in trying to
493	 * send the stop command or waiting for NBUSY in this case.
494	 */
495	if (data) {
496		set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
497		tasklet_schedule(&host->tasklet);
498	}
499}
500
501static int dw_mci_idmac_init(struct dw_mci *host)
502{
503	int i;
504
505	if (host->dma_64bit_address == 1) {
506		struct idmac_desc_64addr *p;
507		/* Number of descriptors in the ring buffer */
508		host->ring_size =
509			DESC_RING_BUF_SZ / sizeof(struct idmac_desc_64addr);
510
511		/* Forward link the descriptor list */
512		for (i = 0, p = host->sg_cpu; i < host->ring_size - 1;
513								i++, p++) {
514			p->des6 = (host->sg_dma +
515					(sizeof(struct idmac_desc_64addr) *
516							(i + 1))) & 0xffffffff;
517
518			p->des7 = (u64)(host->sg_dma +
519					(sizeof(struct idmac_desc_64addr) *
520							(i + 1))) >> 32;
521			/* Initialize reserved and buffer size fields to "0" */
522			p->des0 = 0;
523			p->des1 = 0;
524			p->des2 = 0;
525			p->des3 = 0;
526		}
527
528		/* Set the last descriptor as the end-of-ring descriptor */
529		p->des6 = host->sg_dma & 0xffffffff;
530		p->des7 = (u64)host->sg_dma >> 32;
531		p->des0 = IDMAC_DES0_ER;
532
533	} else {
534		struct idmac_desc *p;
535		/* Number of descriptors in the ring buffer */
536		host->ring_size =
537			DESC_RING_BUF_SZ / sizeof(struct idmac_desc);
538
539		/* Forward link the descriptor list */
540		for (i = 0, p = host->sg_cpu;
541		     i < host->ring_size - 1;
542		     i++, p++) {
543			p->des3 = cpu_to_le32(host->sg_dma +
544					(sizeof(struct idmac_desc) * (i + 1)));
545			p->des0 = 0;
546			p->des1 = 0;
547		}
548
549		/* Set the last descriptor as the end-of-ring descriptor */
550		p->des3 = cpu_to_le32(host->sg_dma);
551		p->des0 = cpu_to_le32(IDMAC_DES0_ER);
552	}
553
554	dw_mci_idmac_reset(host);
555
556	if (host->dma_64bit_address == 1) {
557		/* Mask out interrupts - get Tx & Rx complete only */
558		mci_writel(host, IDSTS64, IDMAC_INT_CLR);
559		mci_writel(host, IDINTEN64, SDMMC_IDMAC_INT_NI |
560				SDMMC_IDMAC_INT_RI | SDMMC_IDMAC_INT_TI);
561
562		/* Set the descriptor base address */
563		mci_writel(host, DBADDRL, host->sg_dma & 0xffffffff);
564		mci_writel(host, DBADDRU, (u64)host->sg_dma >> 32);
565
566	} else {
567		/* Mask out interrupts - get Tx & Rx complete only */
568		mci_writel(host, IDSTS, IDMAC_INT_CLR);
569		mci_writel(host, IDINTEN, SDMMC_IDMAC_INT_NI |
570				SDMMC_IDMAC_INT_RI | SDMMC_IDMAC_INT_TI);
571
572		/* Set the descriptor base address */
573		mci_writel(host, DBADDR, host->sg_dma);
574	}
575
576	return 0;
577}
578
579static inline int dw_mci_prepare_desc64(struct dw_mci *host,
580					 struct mmc_data *data,
581					 unsigned int sg_len)
582{
583	unsigned int desc_len;
584	struct idmac_desc_64addr *desc_first, *desc_last, *desc;
585	u32 val;
586	int i;
587
588	desc_first = desc_last = desc = host->sg_cpu;
589
590	for (i = 0; i < sg_len; i++) {
591		unsigned int length = sg_dma_len(&data->sg[i]);
592
593		u64 mem_addr = sg_dma_address(&data->sg[i]);
594
595		for ( ; length ; desc++) {
596			desc_len = (length <= DW_MCI_DESC_DATA_LENGTH) ?
597				   length : DW_MCI_DESC_DATA_LENGTH;
598
599			length -= desc_len;
600
601			/*
602			 * Wait for the former clear OWN bit operation
603			 * of IDMAC to make sure that this descriptor
604			 * isn't still owned by IDMAC as IDMAC's write
605			 * ops and CPU's read ops are asynchronous.
606			 */
607			if (readl_poll_timeout_atomic(&desc->des0, val,
608						!(val & IDMAC_DES0_OWN),
609						10, 100 * USEC_PER_MSEC))
610				goto err_own_bit;
611
612			/*
613			 * Set the OWN bit and disable interrupts
614			 * for this descriptor
615			 */
616			desc->des0 = IDMAC_DES0_OWN | IDMAC_DES0_DIC |
617						IDMAC_DES0_CH;
618
619			/* Buffer length */
620			IDMAC_64ADDR_SET_BUFFER1_SIZE(desc, desc_len);
621
622			/* Physical address to DMA to/from */
623			desc->des4 = mem_addr & 0xffffffff;
624			desc->des5 = mem_addr >> 32;
625
626			/* Update physical address for the next desc */
627			mem_addr += desc_len;
628
629			/* Save pointer to the last descriptor */
630			desc_last = desc;
631		}
632	}
633
634	/* Set first descriptor */
635	desc_first->des0 |= IDMAC_DES0_FD;
636
637	/* Set last descriptor */
638	desc_last->des0 &= ~(IDMAC_DES0_CH | IDMAC_DES0_DIC);
639	desc_last->des0 |= IDMAC_DES0_LD;
640
641	return 0;
642err_own_bit:
643	/* restore the descriptor chain as it's polluted */
644	dev_dbg(host->dev, "descriptor is still owned by IDMAC.\n");
645	memset(host->sg_cpu, 0, DESC_RING_BUF_SZ);
646	dw_mci_idmac_init(host);
647	return -EINVAL;
648}
649
650
651static inline int dw_mci_prepare_desc32(struct dw_mci *host,
652					 struct mmc_data *data,
653					 unsigned int sg_len)
654{
655	unsigned int desc_len;
656	struct idmac_desc *desc_first, *desc_last, *desc;
657	u32 val;
658	int i;
659
660	desc_first = desc_last = desc = host->sg_cpu;
661
662	for (i = 0; i < sg_len; i++) {
663		unsigned int length = sg_dma_len(&data->sg[i]);
664
665		u32 mem_addr = sg_dma_address(&data->sg[i]);
666
667		for ( ; length ; desc++) {
668			desc_len = (length <= DW_MCI_DESC_DATA_LENGTH) ?
669				   length : DW_MCI_DESC_DATA_LENGTH;
670
671			length -= desc_len;
672
673			/*
674			 * Wait for the former clear OWN bit operation
675			 * of IDMAC to make sure that this descriptor
676			 * isn't still owned by IDMAC as IDMAC's write
677			 * ops and CPU's read ops are asynchronous.
678			 */
679			if (readl_poll_timeout_atomic(&desc->des0, val,
680						      IDMAC_OWN_CLR64(val),
681						      10,
682						      100 * USEC_PER_MSEC))
683				goto err_own_bit;
684
685			/*
686			 * Set the OWN bit and disable interrupts
687			 * for this descriptor
688			 */
689			desc->des0 = cpu_to_le32(IDMAC_DES0_OWN |
690						 IDMAC_DES0_DIC |
691						 IDMAC_DES0_CH);
692
693			/* Buffer length */
694			IDMAC_SET_BUFFER1_SIZE(desc, desc_len);
695
696			/* Physical address to DMA to/from */
697			desc->des2 = cpu_to_le32(mem_addr);
698
699			/* Update physical address for the next desc */
700			mem_addr += desc_len;
701
702			/* Save pointer to the last descriptor */
703			desc_last = desc;
704		}
705	}
706
707	/* Set first descriptor */
708	desc_first->des0 |= cpu_to_le32(IDMAC_DES0_FD);
709
710	/* Set last descriptor */
711	desc_last->des0 &= cpu_to_le32(~(IDMAC_DES0_CH |
712				       IDMAC_DES0_DIC));
713	desc_last->des0 |= cpu_to_le32(IDMAC_DES0_LD);
714
715	return 0;
716err_own_bit:
717	/* restore the descriptor chain as it's polluted */
718	dev_dbg(host->dev, "descriptor is still owned by IDMAC.\n");
719	memset(host->sg_cpu, 0, DESC_RING_BUF_SZ);
720	dw_mci_idmac_init(host);
721	return -EINVAL;
722}
723
724static int dw_mci_idmac_start_dma(struct dw_mci *host, unsigned int sg_len)
725{
726	u32 temp;
727	int ret;
728
729	if (host->dma_64bit_address == 1)
730		ret = dw_mci_prepare_desc64(host, host->data, sg_len);
731	else
732		ret = dw_mci_prepare_desc32(host, host->data, sg_len);
733
734	if (ret)
735		goto out;
736
737	/* drain writebuffer */
738	wmb();
739
740	/* Make sure to reset DMA in case we did PIO before this */
741	dw_mci_ctrl_reset(host, SDMMC_CTRL_DMA_RESET);
742	dw_mci_idmac_reset(host);
743
744	/* Select IDMAC interface */
745	temp = mci_readl(host, CTRL);
746	temp |= SDMMC_CTRL_USE_IDMAC;
747	mci_writel(host, CTRL, temp);
748
749	/* drain writebuffer */
750	wmb();
751
752	/* Enable the IDMAC */
753	temp = mci_readl(host, BMOD);
754	temp |= SDMMC_IDMAC_ENABLE | SDMMC_IDMAC_FB;
755	mci_writel(host, BMOD, temp);
756
757	/* Start it running */
758	mci_writel(host, PLDMND, 1);
759
760out:
761	return ret;
762}
763
764static const struct dw_mci_dma_ops dw_mci_idmac_ops = {
765	.init = dw_mci_idmac_init,
766	.start = dw_mci_idmac_start_dma,
767	.stop = dw_mci_idmac_stop_dma,
768	.complete = dw_mci_dmac_complete_dma,
769	.cleanup = dw_mci_dma_cleanup,
770};
771
772static void dw_mci_edmac_stop_dma(struct dw_mci *host)
773{
774	dmaengine_terminate_async(host->dms->ch);
775}
776
777static int dw_mci_edmac_start_dma(struct dw_mci *host,
778					    unsigned int sg_len)
779{
780	struct dma_slave_config cfg;
781	struct dma_async_tx_descriptor *desc = NULL;
782	struct scatterlist *sgl = host->data->sg;
783	static const u32 mszs[] = {1, 4, 8, 16, 32, 64, 128, 256};
784	u32 sg_elems = host->data->sg_len;
785	u32 fifoth_val;
786	u32 fifo_offset = host->fifo_reg - host->regs;
787	int ret = 0;
788
789	/* Set external dma config: burst size, burst width */
790	memset(&cfg, 0, sizeof(cfg));
791	cfg.dst_addr = host->phy_regs + fifo_offset;
792	cfg.src_addr = cfg.dst_addr;
793	cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
794	cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
795
796	/* Match burst msize with external dma config */
797	fifoth_val = mci_readl(host, FIFOTH);
798	cfg.dst_maxburst = mszs[(fifoth_val >> 28) & 0x7];
799	cfg.src_maxburst = cfg.dst_maxburst;
800
801	if (host->data->flags & MMC_DATA_WRITE)
802		cfg.direction = DMA_MEM_TO_DEV;
803	else
804		cfg.direction = DMA_DEV_TO_MEM;
805
806	ret = dmaengine_slave_config(host->dms->ch, &cfg);
807	if (ret) {
808		dev_err(host->dev, "Failed to config edmac.\n");
809		return -EBUSY;
810	}
811
812	desc = dmaengine_prep_slave_sg(host->dms->ch, sgl,
813				       sg_len, cfg.direction,
814				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
815	if (!desc) {
816		dev_err(host->dev, "Can't prepare slave sg.\n");
817		return -EBUSY;
818	}
819
820	/* Set dw_mci_dmac_complete_dma as callback */
821	desc->callback = dw_mci_dmac_complete_dma;
822	desc->callback_param = (void *)host;
823	dmaengine_submit(desc);
824
825	/* Flush cache before write */
826	if (host->data->flags & MMC_DATA_WRITE)
827		dma_sync_sg_for_device(mmc_dev(host->slot->mmc), sgl,
828				       sg_elems, DMA_TO_DEVICE);
829
830	dma_async_issue_pending(host->dms->ch);
831
832	return 0;
833}
834
835static int dw_mci_edmac_init(struct dw_mci *host)
836{
837	/* Request external dma channel */
838	host->dms = kzalloc(sizeof(struct dw_mci_dma_slave), GFP_KERNEL);
839	if (!host->dms)
840		return -ENOMEM;
841
842	host->dms->ch = dma_request_chan(host->dev, "rx-tx");
843	if (IS_ERR(host->dms->ch)) {
844		int ret = PTR_ERR(host->dms->ch);
845
846		dev_err(host->dev, "Failed to get external DMA channel.\n");
847		kfree(host->dms);
848		host->dms = NULL;
849		return ret;
850	}
851
852	return 0;
853}
854
855static void dw_mci_edmac_exit(struct dw_mci *host)
856{
857	if (host->dms) {
858		if (host->dms->ch) {
859			dma_release_channel(host->dms->ch);
860			host->dms->ch = NULL;
861		}
862		kfree(host->dms);
863		host->dms = NULL;
864	}
865}
866
867static const struct dw_mci_dma_ops dw_mci_edmac_ops = {
868	.init = dw_mci_edmac_init,
869	.exit = dw_mci_edmac_exit,
870	.start = dw_mci_edmac_start_dma,
871	.stop = dw_mci_edmac_stop_dma,
872	.complete = dw_mci_dmac_complete_dma,
873	.cleanup = dw_mci_dma_cleanup,
874};
875
876static int dw_mci_pre_dma_transfer(struct dw_mci *host,
877				   struct mmc_data *data,
878				   int cookie)
879{
880	struct scatterlist *sg;
881	unsigned int i, sg_len;
882
883	if (data->host_cookie == COOKIE_PRE_MAPPED)
884		return data->sg_len;
885
886	/*
887	 * We don't do DMA on "complex" transfers, i.e. with
888	 * non-word-aligned buffers or lengths. Also, we don't bother
889	 * with all the DMA setup overhead for short transfers.
890	 */
891	if (data->blocks * data->blksz < DW_MCI_DMA_THRESHOLD)
892		return -EINVAL;
893
894	if (data->blksz & 3)
895		return -EINVAL;
896
897	for_each_sg(data->sg, sg, data->sg_len, i) {
898		if (sg->offset & 3 || sg->length & 3)
899			return -EINVAL;
900	}
901
902	sg_len = dma_map_sg(host->dev,
903			    data->sg,
904			    data->sg_len,
905			    mmc_get_dma_dir(data));
906	if (sg_len == 0)
907		return -EINVAL;
908
909	data->host_cookie = cookie;
910
911	return sg_len;
912}
913
914static void dw_mci_pre_req(struct mmc_host *mmc,
915			   struct mmc_request *mrq)
916{
917	struct dw_mci_slot *slot = mmc_priv(mmc);
918	struct mmc_data *data = mrq->data;
919
920	if (!slot->host->use_dma || !data)
921		return;
922
923	/* This data might be unmapped at this time */
924	data->host_cookie = COOKIE_UNMAPPED;
925
926	if (dw_mci_pre_dma_transfer(slot->host, mrq->data,
927				COOKIE_PRE_MAPPED) < 0)
928		data->host_cookie = COOKIE_UNMAPPED;
929}
930
931static void dw_mci_post_req(struct mmc_host *mmc,
932			    struct mmc_request *mrq,
933			    int err)
934{
935	struct dw_mci_slot *slot = mmc_priv(mmc);
936	struct mmc_data *data = mrq->data;
937
938	if (!slot->host->use_dma || !data)
939		return;
940
941	if (data->host_cookie != COOKIE_UNMAPPED)
942		dma_unmap_sg(slot->host->dev,
943			     data->sg,
944			     data->sg_len,
945			     mmc_get_dma_dir(data));
946	data->host_cookie = COOKIE_UNMAPPED;
947}
948
949static int dw_mci_get_cd(struct mmc_host *mmc)
950{
951	int present;
952	struct dw_mci_slot *slot = mmc_priv(mmc);
953	struct dw_mci *host = slot->host;
954	int gpio_cd = mmc_gpio_get_cd(mmc);
955
956	/* Use platform get_cd function, else try onboard card detect */
957	if (((mmc->caps & MMC_CAP_NEEDS_POLL)
958				|| !mmc_card_is_removable(mmc))) {
959		present = 1;
960
961		if (!test_bit(DW_MMC_CARD_PRESENT, &slot->flags)) {
962			if (mmc->caps & MMC_CAP_NEEDS_POLL) {
963				dev_info(&mmc->class_dev,
964					"card is polling.\n");
965			} else {
966				dev_info(&mmc->class_dev,
967					"card is non-removable.\n");
968			}
969			set_bit(DW_MMC_CARD_PRESENT, &slot->flags);
970		}
971
972		return present;
973	} else if (gpio_cd >= 0)
974		present = gpio_cd;
975	else
976		present = (mci_readl(slot->host, CDETECT) & (1 << slot->id))
977			== 0 ? 1 : 0;
978
979	spin_lock_bh(&host->lock);
980	if (present && !test_and_set_bit(DW_MMC_CARD_PRESENT, &slot->flags))
981		dev_dbg(&mmc->class_dev, "card is present\n");
982	else if (!present &&
983			!test_and_clear_bit(DW_MMC_CARD_PRESENT, &slot->flags))
984		dev_dbg(&mmc->class_dev, "card is not present\n");
985	spin_unlock_bh(&host->lock);
986
987	return present;
988}
989
990static void dw_mci_adjust_fifoth(struct dw_mci *host, struct mmc_data *data)
991{
992	unsigned int blksz = data->blksz;
993	static const u32 mszs[] = {1, 4, 8, 16, 32, 64, 128, 256};
994	u32 fifo_width = 1 << host->data_shift;
995	u32 blksz_depth = blksz / fifo_width, fifoth_val;
996	u32 msize = 0, rx_wmark = 1, tx_wmark, tx_wmark_invers;
997	int idx = ARRAY_SIZE(mszs) - 1;
998
999	/* pio should ship this scenario */
1000	if (!host->use_dma)
1001		return;
1002
1003	tx_wmark = (host->fifo_depth) / 2;
1004	tx_wmark_invers = host->fifo_depth - tx_wmark;
1005
1006	/*
1007	 * MSIZE is '1',
1008	 * if blksz is not a multiple of the FIFO width
1009	 */
1010	if (blksz % fifo_width)
1011		goto done;
1012
1013	do {
1014		if (!((blksz_depth % mszs[idx]) ||
1015		     (tx_wmark_invers % mszs[idx]))) {
1016			msize = idx;
1017			rx_wmark = mszs[idx] - 1;
1018			break;
1019		}
1020	} while (--idx > 0);
1021	/*
1022	 * If idx is '0', it won't be tried
1023	 * Thus, initial values are uesed
1024	 */
1025done:
1026	fifoth_val = SDMMC_SET_FIFOTH(msize, rx_wmark, tx_wmark);
1027	mci_writel(host, FIFOTH, fifoth_val);
1028}
1029
1030static void dw_mci_ctrl_thld(struct dw_mci *host, struct mmc_data *data)
1031{
1032	unsigned int blksz = data->blksz;
1033	u32 blksz_depth, fifo_depth;
1034	u16 thld_size;
1035	u8 enable;
1036
1037	/*
1038	 * CDTHRCTL doesn't exist prior to 240A (in fact that register offset is
1039	 * in the FIFO region, so we really shouldn't access it).
1040	 */
1041	if (host->verid < DW_MMC_240A ||
1042		(host->verid < DW_MMC_280A && data->flags & MMC_DATA_WRITE))
1043		return;
1044
1045	/*
1046	 * Card write Threshold is introduced since 2.80a
1047	 * It's used when HS400 mode is enabled.
1048	 */
1049	if (data->flags & MMC_DATA_WRITE &&
1050		host->timing != MMC_TIMING_MMC_HS400)
1051		goto disable;
1052
1053	if (data->flags & MMC_DATA_WRITE)
1054		enable = SDMMC_CARD_WR_THR_EN;
1055	else
1056		enable = SDMMC_CARD_RD_THR_EN;
1057
1058	if (host->timing != MMC_TIMING_MMC_HS200 &&
1059	    host->timing != MMC_TIMING_UHS_SDR104 &&
1060	    host->timing != MMC_TIMING_MMC_HS400)
1061		goto disable;
1062
1063	blksz_depth = blksz / (1 << host->data_shift);
1064	fifo_depth = host->fifo_depth;
1065
1066	if (blksz_depth > fifo_depth)
1067		goto disable;
1068
1069	/*
1070	 * If (blksz_depth) >= (fifo_depth >> 1), should be 'thld_size <= blksz'
1071	 * If (blksz_depth) <  (fifo_depth >> 1), should be thld_size = blksz
1072	 * Currently just choose blksz.
1073	 */
1074	thld_size = blksz;
1075	mci_writel(host, CDTHRCTL, SDMMC_SET_THLD(thld_size, enable));
1076	return;
1077
1078disable:
1079	mci_writel(host, CDTHRCTL, 0);
1080}
1081
1082static int dw_mci_submit_data_dma(struct dw_mci *host, struct mmc_data *data)
1083{
1084	unsigned long irqflags;
1085	int sg_len;
1086	u32 temp;
1087
1088	host->using_dma = 0;
1089
1090	/* If we don't have a channel, we can't do DMA */
1091	if (!host->use_dma)
1092		return -ENODEV;
1093
1094	sg_len = dw_mci_pre_dma_transfer(host, data, COOKIE_MAPPED);
1095	if (sg_len < 0) {
1096		host->dma_ops->stop(host);
1097		return sg_len;
1098	}
1099
1100	host->using_dma = 1;
1101
1102	if (host->use_dma == TRANS_MODE_IDMAC)
1103		dev_vdbg(host->dev,
1104			 "sd sg_cpu: %#lx sg_dma: %#lx sg_len: %d\n",
1105			 (unsigned long)host->sg_cpu,
1106			 (unsigned long)host->sg_dma,
1107			 sg_len);
1108
1109	/*
1110	 * Decide the MSIZE and RX/TX Watermark.
1111	 * If current block size is same with previous size,
1112	 * no need to update fifoth.
1113	 */
1114	if (host->prev_blksz != data->blksz)
1115		dw_mci_adjust_fifoth(host, data);
1116
1117	/* Enable the DMA interface */
1118	temp = mci_readl(host, CTRL);
1119	temp |= SDMMC_CTRL_DMA_ENABLE;
1120	mci_writel(host, CTRL, temp);
1121
1122	/* Disable RX/TX IRQs, let DMA handle it */
1123	spin_lock_irqsave(&host->irq_lock, irqflags);
1124	temp = mci_readl(host, INTMASK);
1125	temp  &= ~(SDMMC_INT_RXDR | SDMMC_INT_TXDR);
1126	mci_writel(host, INTMASK, temp);
1127	spin_unlock_irqrestore(&host->irq_lock, irqflags);
1128
1129	if (host->dma_ops->start(host, sg_len)) {
1130		host->dma_ops->stop(host);
1131		/* We can't do DMA, try PIO for this one */
1132		dev_dbg(host->dev,
1133			"%s: fall back to PIO mode for current transfer\n",
1134			__func__);
1135		return -ENODEV;
1136	}
1137
1138	return 0;
1139}
1140
1141static void dw_mci_submit_data(struct dw_mci *host, struct mmc_data *data)
1142{
1143	unsigned long irqflags;
1144	int flags = SG_MITER_ATOMIC;
1145	u32 temp;
1146
1147	data->error = -EINPROGRESS;
1148
1149	WARN_ON(host->data);
1150	host->sg = NULL;
1151	host->data = data;
1152
1153	if (data->flags & MMC_DATA_READ)
1154		host->dir_status = DW_MCI_RECV_STATUS;
1155	else
1156		host->dir_status = DW_MCI_SEND_STATUS;
1157
1158	dw_mci_ctrl_thld(host, data);
1159
1160	if (dw_mci_submit_data_dma(host, data)) {
1161		if (host->data->flags & MMC_DATA_READ)
1162			flags |= SG_MITER_TO_SG;
1163		else
1164			flags |= SG_MITER_FROM_SG;
1165
1166		sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
1167		host->sg = data->sg;
1168		host->part_buf_start = 0;
1169		host->part_buf_count = 0;
1170
1171		mci_writel(host, RINTSTS, SDMMC_INT_TXDR | SDMMC_INT_RXDR);
1172
1173		spin_lock_irqsave(&host->irq_lock, irqflags);
1174		temp = mci_readl(host, INTMASK);
1175		temp |= SDMMC_INT_TXDR | SDMMC_INT_RXDR;
1176		mci_writel(host, INTMASK, temp);
1177		spin_unlock_irqrestore(&host->irq_lock, irqflags);
1178
1179		temp = mci_readl(host, CTRL);
1180		temp &= ~SDMMC_CTRL_DMA_ENABLE;
1181		mci_writel(host, CTRL, temp);
1182
1183		/*
1184		 * Use the initial fifoth_val for PIO mode. If wm_algined
1185		 * is set, we set watermark same as data size.
1186		 * If next issued data may be transfered by DMA mode,
1187		 * prev_blksz should be invalidated.
1188		 */
1189		if (host->wm_aligned)
1190			dw_mci_adjust_fifoth(host, data);
1191		else
1192			mci_writel(host, FIFOTH, host->fifoth_val);
1193		host->prev_blksz = 0;
1194	} else {
1195		/*
1196		 * Keep the current block size.
1197		 * It will be used to decide whether to update
1198		 * fifoth register next time.
1199		 */
1200		host->prev_blksz = data->blksz;
1201	}
1202}
1203
1204static void dw_mci_setup_bus(struct dw_mci_slot *slot, bool force_clkinit)
1205{
1206	struct dw_mci *host = slot->host;
1207	unsigned int clock = slot->clock;
1208	u32 div;
1209	u32 clk_en_a;
1210	u32 sdmmc_cmd_bits = SDMMC_CMD_UPD_CLK | SDMMC_CMD_PRV_DAT_WAIT;
1211
1212	/* We must continue to set bit 28 in CMD until the change is complete */
1213	if (host->state == STATE_WAITING_CMD11_DONE)
1214		sdmmc_cmd_bits |= SDMMC_CMD_VOLT_SWITCH;
1215
1216	slot->mmc->actual_clock = 0;
1217
1218	if (!clock) {
1219		mci_writel(host, CLKENA, 0);
1220		mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1221	} else if (clock != host->current_speed || force_clkinit) {
1222		div = host->bus_hz / clock;
1223		if (host->bus_hz % clock && host->bus_hz > clock)
1224			/*
1225			 * move the + 1 after the divide to prevent
1226			 * over-clocking the card.
1227			 */
1228			div += 1;
1229
1230		div = (host->bus_hz != clock) ? DIV_ROUND_UP(div, 2) : 0;
1231
1232		if ((clock != slot->__clk_old &&
1233			!test_bit(DW_MMC_CARD_NEEDS_POLL, &slot->flags)) ||
1234			force_clkinit) {
1235			/* Silent the verbose log if calling from PM context */
1236			if (!force_clkinit)
1237				dev_info(&slot->mmc->class_dev,
1238					 "Bus speed (slot %d) = %dHz (slot req %dHz, actual %dHZ div = %d)\n",
1239					 slot->id, host->bus_hz, clock,
1240					 div ? ((host->bus_hz / div) >> 1) :
1241					 host->bus_hz, div);
1242
1243			/*
1244			 * If card is polling, display the message only
1245			 * one time at boot time.
1246			 */
1247			if (slot->mmc->caps & MMC_CAP_NEEDS_POLL &&
1248					slot->mmc->f_min == clock)
1249				set_bit(DW_MMC_CARD_NEEDS_POLL, &slot->flags);
1250		}
1251
1252		/* disable clock */
1253		mci_writel(host, CLKENA, 0);
1254		mci_writel(host, CLKSRC, 0);
1255
1256		/* inform CIU */
1257		mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1258
1259		/* set clock to desired speed */
1260		mci_writel(host, CLKDIV, div);
1261
1262		/* inform CIU */
1263		mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1264
1265		/* enable clock; only low power if no SDIO */
1266		clk_en_a = SDMMC_CLKEN_ENABLE << slot->id;
1267		if (!test_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags))
1268			clk_en_a |= SDMMC_CLKEN_LOW_PWR << slot->id;
1269		mci_writel(host, CLKENA, clk_en_a);
1270
1271		/* inform CIU */
1272		mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1273
1274		/* keep the last clock value that was requested from core */
1275		slot->__clk_old = clock;
1276		slot->mmc->actual_clock = div ? ((host->bus_hz / div) >> 1) :
1277					  host->bus_hz;
1278	}
1279
1280	host->current_speed = clock;
1281
1282	/* Set the current slot bus width */
1283	mci_writel(host, CTYPE, (slot->ctype << slot->id));
1284}
1285
1286static void dw_mci_set_data_timeout(struct dw_mci *host,
1287				    unsigned int timeout_ns)
1288{
1289	const struct dw_mci_drv_data *drv_data = host->drv_data;
1290	u32 clk_div, tmout;
1291	u64 tmp;
1292
1293	if (drv_data && drv_data->set_data_timeout)
1294		return drv_data->set_data_timeout(host, timeout_ns);
1295
1296	clk_div = (mci_readl(host, CLKDIV) & 0xFF) * 2;
1297	if (clk_div == 0)
1298		clk_div = 1;
1299
1300	tmp = DIV_ROUND_UP_ULL((u64)timeout_ns * host->bus_hz, NSEC_PER_SEC);
1301	tmp = DIV_ROUND_UP_ULL(tmp, clk_div);
1302
1303	/* TMOUT[7:0] (RESPONSE_TIMEOUT) */
1304	tmout = 0xFF; /* Set maximum */
1305
1306	/* TMOUT[31:8] (DATA_TIMEOUT) */
1307	if (!tmp || tmp > 0xFFFFFF)
1308		tmout |= (0xFFFFFF << 8);
1309	else
1310		tmout |= (tmp & 0xFFFFFF) << 8;
1311
1312	mci_writel(host, TMOUT, tmout);
1313	dev_dbg(host->dev, "timeout_ns: %u => TMOUT[31:8]: %#08x",
1314		timeout_ns, tmout >> 8);
1315}
1316
1317static void __dw_mci_start_request(struct dw_mci *host,
1318				   struct dw_mci_slot *slot,
1319				   struct mmc_command *cmd)
1320{
1321	struct mmc_request *mrq;
1322	struct mmc_data	*data;
1323	u32 cmdflags;
1324
1325	mrq = slot->mrq;
1326
1327	host->mrq = mrq;
1328
1329	host->pending_events = 0;
1330	host->completed_events = 0;
1331	host->cmd_status = 0;
1332	host->data_status = 0;
1333	host->dir_status = 0;
1334
1335	data = cmd->data;
1336	if (data) {
1337		dw_mci_set_data_timeout(host, data->timeout_ns);
1338		mci_writel(host, BYTCNT, data->blksz*data->blocks);
1339		mci_writel(host, BLKSIZ, data->blksz);
1340	}
1341
1342	cmdflags = dw_mci_prepare_command(slot->mmc, cmd);
1343
1344	/* this is the first command, send the initialization clock */
1345	if (test_and_clear_bit(DW_MMC_CARD_NEED_INIT, &slot->flags))
1346		cmdflags |= SDMMC_CMD_INIT;
1347
1348	if (data) {
1349		dw_mci_submit_data(host, data);
1350		wmb(); /* drain writebuffer */
1351	}
1352
1353	dw_mci_start_command(host, cmd, cmdflags);
1354
1355	if (cmd->opcode == SD_SWITCH_VOLTAGE) {
1356		unsigned long irqflags;
1357
1358		/*
1359		 * Databook says to fail after 2ms w/ no response, but evidence
1360		 * shows that sometimes the cmd11 interrupt takes over 130ms.
1361		 * We'll set to 500ms, plus an extra jiffy just in case jiffies
1362		 * is just about to roll over.
1363		 *
1364		 * We do this whole thing under spinlock and only if the
1365		 * command hasn't already completed (indicating the irq
1366		 * already ran so we don't want the timeout).
1367		 */
1368		spin_lock_irqsave(&host->irq_lock, irqflags);
1369		if (!test_bit(EVENT_CMD_COMPLETE, &host->pending_events))
1370			mod_timer(&host->cmd11_timer,
1371				jiffies + msecs_to_jiffies(500) + 1);
1372		spin_unlock_irqrestore(&host->irq_lock, irqflags);
1373	}
1374
1375	host->stop_cmdr = dw_mci_prep_stop_abort(host, cmd);
1376}
1377
1378static void dw_mci_start_request(struct dw_mci *host,
1379				 struct dw_mci_slot *slot)
1380{
1381	struct mmc_request *mrq = slot->mrq;
1382	struct mmc_command *cmd;
1383
1384	cmd = mrq->sbc ? mrq->sbc : mrq->cmd;
1385	__dw_mci_start_request(host, slot, cmd);
1386}
1387
1388/* must be called with host->lock held */
1389static void dw_mci_queue_request(struct dw_mci *host, struct dw_mci_slot *slot,
1390				 struct mmc_request *mrq)
1391{
1392	dev_vdbg(&slot->mmc->class_dev, "queue request: state=%d\n",
1393		 host->state);
1394
1395	slot->mrq = mrq;
1396
1397	if (host->state == STATE_WAITING_CMD11_DONE) {
1398		dev_warn(&slot->mmc->class_dev,
1399			 "Voltage change didn't complete\n");
1400		/*
1401		 * this case isn't expected to happen, so we can
1402		 * either crash here or just try to continue on
1403		 * in the closest possible state
1404		 */
1405		host->state = STATE_IDLE;
1406	}
1407
1408	if (host->state == STATE_IDLE) {
1409		host->state = STATE_SENDING_CMD;
1410		dw_mci_start_request(host, slot);
1411	} else {
1412		list_add_tail(&slot->queue_node, &host->queue);
1413	}
1414}
1415
1416static void dw_mci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1417{
1418	struct dw_mci_slot *slot = mmc_priv(mmc);
1419	struct dw_mci *host = slot->host;
1420
1421	WARN_ON(slot->mrq);
1422
1423	/*
1424	 * The check for card presence and queueing of the request must be
1425	 * atomic, otherwise the card could be removed in between and the
1426	 * request wouldn't fail until another card was inserted.
1427	 */
1428
1429	if (!dw_mci_get_cd(mmc)) {
1430		mrq->cmd->error = -ENOMEDIUM;
1431		mmc_request_done(mmc, mrq);
1432		return;
1433	}
1434
1435	spin_lock_bh(&host->lock);
1436
1437	dw_mci_queue_request(host, slot, mrq);
1438
1439	spin_unlock_bh(&host->lock);
1440}
1441
1442static void dw_mci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1443{
1444	struct dw_mci_slot *slot = mmc_priv(mmc);
1445	const struct dw_mci_drv_data *drv_data = slot->host->drv_data;
1446	u32 regs;
1447	int ret;
1448
1449	switch (ios->bus_width) {
1450	case MMC_BUS_WIDTH_4:
1451		slot->ctype = SDMMC_CTYPE_4BIT;
1452		break;
1453	case MMC_BUS_WIDTH_8:
1454		slot->ctype = SDMMC_CTYPE_8BIT;
1455		break;
1456	default:
1457		/* set default 1 bit mode */
1458		slot->ctype = SDMMC_CTYPE_1BIT;
1459	}
1460
1461	regs = mci_readl(slot->host, UHS_REG);
1462
1463	/* DDR mode set */
1464	if (ios->timing == MMC_TIMING_MMC_DDR52 ||
1465	    ios->timing == MMC_TIMING_UHS_DDR50 ||
1466	    ios->timing == MMC_TIMING_MMC_HS400)
1467		regs |= ((0x1 << slot->id) << 16);
1468	else
1469		regs &= ~((0x1 << slot->id) << 16);
1470
1471	mci_writel(slot->host, UHS_REG, regs);
1472	slot->host->timing = ios->timing;
1473
1474	/*
1475	 * Use mirror of ios->clock to prevent race with mmc
1476	 * core ios update when finding the minimum.
1477	 */
1478	slot->clock = ios->clock;
1479
1480	if (drv_data && drv_data->set_ios)
1481		drv_data->set_ios(slot->host, ios);
1482
1483	switch (ios->power_mode) {
1484	case MMC_POWER_UP:
1485		if (!IS_ERR(mmc->supply.vmmc)) {
1486			ret = mmc_regulator_set_ocr(mmc, mmc->supply.vmmc,
1487					ios->vdd);
1488			if (ret) {
1489				dev_err(slot->host->dev,
1490					"failed to enable vmmc regulator\n");
1491				/*return, if failed turn on vmmc*/
1492				return;
1493			}
1494		}
1495		set_bit(DW_MMC_CARD_NEED_INIT, &slot->flags);
1496		regs = mci_readl(slot->host, PWREN);
1497		regs |= (1 << slot->id);
1498		mci_writel(slot->host, PWREN, regs);
1499		break;
1500	case MMC_POWER_ON:
1501		if (!slot->host->vqmmc_enabled) {
1502			if (!IS_ERR(mmc->supply.vqmmc)) {
1503				ret = regulator_enable(mmc->supply.vqmmc);
1504				if (ret < 0)
1505					dev_err(slot->host->dev,
1506						"failed to enable vqmmc\n");
1507				else
1508					slot->host->vqmmc_enabled = true;
1509
1510			} else {
1511				/* Keep track so we don't reset again */
1512				slot->host->vqmmc_enabled = true;
1513			}
1514
1515			/* Reset our state machine after powering on */
1516			dw_mci_ctrl_reset(slot->host,
1517					  SDMMC_CTRL_ALL_RESET_FLAGS);
1518		}
1519
1520		/* Adjust clock / bus width after power is up */
1521		dw_mci_setup_bus(slot, false);
1522
1523		break;
1524	case MMC_POWER_OFF:
1525		/* Turn clock off before power goes down */
1526		dw_mci_setup_bus(slot, false);
1527
1528		if (!IS_ERR(mmc->supply.vmmc))
1529			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1530
1531		if (!IS_ERR(mmc->supply.vqmmc) && slot->host->vqmmc_enabled)
1532			regulator_disable(mmc->supply.vqmmc);
1533		slot->host->vqmmc_enabled = false;
1534
1535		regs = mci_readl(slot->host, PWREN);
1536		regs &= ~(1 << slot->id);
1537		mci_writel(slot->host, PWREN, regs);
1538		break;
1539	default:
1540		break;
1541	}
1542
1543	if (slot->host->state == STATE_WAITING_CMD11_DONE && ios->clock != 0)
1544		slot->host->state = STATE_IDLE;
1545}
1546
1547static int dw_mci_card_busy(struct mmc_host *mmc)
1548{
1549	struct dw_mci_slot *slot = mmc_priv(mmc);
1550	u32 status;
1551
1552	/*
1553	 * Check the busy bit which is low when DAT[3:0]
1554	 * (the data lines) are 0000
1555	 */
1556	status = mci_readl(slot->host, STATUS);
1557
1558	return !!(status & SDMMC_STATUS_BUSY);
1559}
1560
1561static int dw_mci_switch_voltage(struct mmc_host *mmc, struct mmc_ios *ios)
1562{
1563	struct dw_mci_slot *slot = mmc_priv(mmc);
1564	struct dw_mci *host = slot->host;
1565	const struct dw_mci_drv_data *drv_data = host->drv_data;
1566	u32 uhs;
1567	u32 v18 = SDMMC_UHS_18V << slot->id;
1568	int ret;
1569
1570	if (drv_data && drv_data->switch_voltage)
1571		return drv_data->switch_voltage(mmc, ios);
1572
1573	/*
1574	 * Program the voltage.  Note that some instances of dw_mmc may use
1575	 * the UHS_REG for this.  For other instances (like exynos) the UHS_REG
1576	 * does no harm but you need to set the regulator directly.  Try both.
1577	 */
1578	uhs = mci_readl(host, UHS_REG);
1579	if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1580		uhs &= ~v18;
1581	else
1582		uhs |= v18;
1583
1584	if (!IS_ERR(mmc->supply.vqmmc)) {
1585		ret = mmc_regulator_set_vqmmc(mmc, ios);
1586		if (ret < 0) {
1587			dev_dbg(&mmc->class_dev,
1588					 "Regulator set error %d - %s V\n",
1589					 ret, uhs & v18 ? "1.8" : "3.3");
1590			return ret;
1591		}
1592	}
1593	mci_writel(host, UHS_REG, uhs);
1594
1595	return 0;
1596}
1597
1598static int dw_mci_get_ro(struct mmc_host *mmc)
1599{
1600	int read_only;
1601	struct dw_mci_slot *slot = mmc_priv(mmc);
1602	int gpio_ro = mmc_gpio_get_ro(mmc);
1603
1604	/* Use platform get_ro function, else try on board write protect */
1605	if (gpio_ro >= 0)
1606		read_only = gpio_ro;
1607	else
1608		read_only =
1609			mci_readl(slot->host, WRTPRT) & (1 << slot->id) ? 1 : 0;
1610
1611	dev_dbg(&mmc->class_dev, "card is %s\n",
1612		read_only ? "read-only" : "read-write");
1613
1614	return read_only;
1615}
1616
1617static void dw_mci_hw_reset(struct mmc_host *mmc)
1618{
1619	struct dw_mci_slot *slot = mmc_priv(mmc);
1620	struct dw_mci *host = slot->host;
1621	int reset;
1622
1623	if (host->use_dma == TRANS_MODE_IDMAC)
1624		dw_mci_idmac_reset(host);
1625
1626	if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_DMA_RESET |
1627				     SDMMC_CTRL_FIFO_RESET))
1628		return;
1629
1630	/*
1631	 * According to eMMC spec, card reset procedure:
1632	 * tRstW >= 1us:   RST_n pulse width
1633	 * tRSCA >= 200us: RST_n to Command time
1634	 * tRSTH >= 1us:   RST_n high period
1635	 */
1636	reset = mci_readl(host, RST_N);
1637	reset &= ~(SDMMC_RST_HWACTIVE << slot->id);
1638	mci_writel(host, RST_N, reset);
1639	usleep_range(1, 2);
1640	reset |= SDMMC_RST_HWACTIVE << slot->id;
1641	mci_writel(host, RST_N, reset);
1642	usleep_range(200, 300);
1643}
1644
1645static void dw_mci_prepare_sdio_irq(struct dw_mci_slot *slot, bool prepare)
1646{
1647	struct dw_mci *host = slot->host;
1648	const u32 clken_low_pwr = SDMMC_CLKEN_LOW_PWR << slot->id;
1649	u32 clk_en_a_old;
1650	u32 clk_en_a;
1651
1652	/*
1653	 * Low power mode will stop the card clock when idle.  According to the
1654	 * description of the CLKENA register we should disable low power mode
1655	 * for SDIO cards if we need SDIO interrupts to work.
1656	 */
1657
1658	clk_en_a_old = mci_readl(host, CLKENA);
1659	if (prepare) {
1660		set_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags);
1661		clk_en_a = clk_en_a_old & ~clken_low_pwr;
1662	} else {
1663		clear_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags);
1664		clk_en_a = clk_en_a_old | clken_low_pwr;
1665	}
1666
1667	if (clk_en_a != clk_en_a_old) {
1668		mci_writel(host, CLKENA, clk_en_a);
1669		mci_send_cmd(slot, SDMMC_CMD_UPD_CLK | SDMMC_CMD_PRV_DAT_WAIT,
1670			     0);
1671	}
1672}
1673
1674static void __dw_mci_enable_sdio_irq(struct dw_mci_slot *slot, int enb)
1675{
1676	struct dw_mci *host = slot->host;
1677	unsigned long irqflags;
1678	u32 int_mask;
1679
1680	spin_lock_irqsave(&host->irq_lock, irqflags);
1681
1682	/* Enable/disable Slot Specific SDIO interrupt */
1683	int_mask = mci_readl(host, INTMASK);
1684	if (enb)
1685		int_mask |= SDMMC_INT_SDIO(slot->sdio_id);
1686	else
1687		int_mask &= ~SDMMC_INT_SDIO(slot->sdio_id);
1688	mci_writel(host, INTMASK, int_mask);
1689
1690	spin_unlock_irqrestore(&host->irq_lock, irqflags);
1691}
1692
1693static void dw_mci_enable_sdio_irq(struct mmc_host *mmc, int enb)
1694{
1695	struct dw_mci_slot *slot = mmc_priv(mmc);
1696	struct dw_mci *host = slot->host;
1697
1698	dw_mci_prepare_sdio_irq(slot, enb);
1699	__dw_mci_enable_sdio_irq(slot, enb);
1700
1701	/* Avoid runtime suspending the device when SDIO IRQ is enabled */
1702	if (enb)
1703		pm_runtime_get_noresume(host->dev);
1704	else
1705		pm_runtime_put_noidle(host->dev);
1706}
1707
1708static void dw_mci_ack_sdio_irq(struct mmc_host *mmc)
1709{
1710	struct dw_mci_slot *slot = mmc_priv(mmc);
1711
1712	__dw_mci_enable_sdio_irq(slot, 1);
1713}
1714
1715static int dw_mci_execute_tuning(struct mmc_host *mmc, u32 opcode)
1716{
1717	struct dw_mci_slot *slot = mmc_priv(mmc);
1718	struct dw_mci *host = slot->host;
1719	const struct dw_mci_drv_data *drv_data = host->drv_data;
1720	int err = -EINVAL;
1721
1722	if (drv_data && drv_data->execute_tuning)
1723		err = drv_data->execute_tuning(slot, opcode);
1724	return err;
1725}
1726
1727static int dw_mci_prepare_hs400_tuning(struct mmc_host *mmc,
1728				       struct mmc_ios *ios)
1729{
1730	struct dw_mci_slot *slot = mmc_priv(mmc);
1731	struct dw_mci *host = slot->host;
1732	const struct dw_mci_drv_data *drv_data = host->drv_data;
1733
1734	if (drv_data && drv_data->prepare_hs400_tuning)
1735		return drv_data->prepare_hs400_tuning(host, ios);
1736
1737	return 0;
1738}
1739
1740static bool dw_mci_reset(struct dw_mci *host)
1741{
1742	u32 flags = SDMMC_CTRL_RESET | SDMMC_CTRL_FIFO_RESET;
1743	bool ret = false;
1744	u32 status = 0;
1745
1746	/*
1747	 * Resetting generates a block interrupt, hence setting
1748	 * the scatter-gather pointer to NULL.
1749	 */
1750	if (host->sg) {
1751		sg_miter_stop(&host->sg_miter);
1752		host->sg = NULL;
1753	}
1754
1755	if (host->use_dma)
1756		flags |= SDMMC_CTRL_DMA_RESET;
1757
1758	if (dw_mci_ctrl_reset(host, flags)) {
1759		/*
1760		 * In all cases we clear the RAWINTS
1761		 * register to clear any interrupts.
1762		 */
1763		mci_writel(host, RINTSTS, 0xFFFFFFFF);
1764
1765		if (!host->use_dma) {
1766			ret = true;
1767			goto ciu_out;
1768		}
1769
1770		/* Wait for dma_req to be cleared */
1771		if (readl_poll_timeout_atomic(host->regs + SDMMC_STATUS,
1772					      status,
1773					      !(status & SDMMC_STATUS_DMA_REQ),
1774					      1, 500 * USEC_PER_MSEC)) {
1775			dev_err(host->dev,
1776				"%s: Timeout waiting for dma_req to be cleared\n",
1777				__func__);
1778			goto ciu_out;
1779		}
1780
1781		/* when using DMA next we reset the fifo again */
1782		if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_FIFO_RESET))
1783			goto ciu_out;
1784	} else {
1785		/* if the controller reset bit did clear, then set clock regs */
1786		if (!(mci_readl(host, CTRL) & SDMMC_CTRL_RESET)) {
1787			dev_err(host->dev,
1788				"%s: fifo/dma reset bits didn't clear but ciu was reset, doing clock update\n",
1789				__func__);
1790			goto ciu_out;
1791		}
1792	}
1793
1794	if (host->use_dma == TRANS_MODE_IDMAC)
1795		/* It is also required that we reinit idmac */
1796		dw_mci_idmac_init(host);
1797
1798	ret = true;
1799
1800ciu_out:
1801	/* After a CTRL reset we need to have CIU set clock registers  */
1802	mci_send_cmd(host->slot, SDMMC_CMD_UPD_CLK, 0);
1803
1804	return ret;
1805}
1806
1807static const struct mmc_host_ops dw_mci_ops = {
1808	.request		= dw_mci_request,
1809	.pre_req		= dw_mci_pre_req,
1810	.post_req		= dw_mci_post_req,
1811	.set_ios		= dw_mci_set_ios,
1812	.get_ro			= dw_mci_get_ro,
1813	.get_cd			= dw_mci_get_cd,
1814	.card_hw_reset          = dw_mci_hw_reset,
1815	.enable_sdio_irq	= dw_mci_enable_sdio_irq,
1816	.ack_sdio_irq		= dw_mci_ack_sdio_irq,
1817	.execute_tuning		= dw_mci_execute_tuning,
1818	.card_busy		= dw_mci_card_busy,
1819	.start_signal_voltage_switch = dw_mci_switch_voltage,
1820	.prepare_hs400_tuning	= dw_mci_prepare_hs400_tuning,
1821};
1822
1823#ifdef CONFIG_FAULT_INJECTION
1824static enum hrtimer_restart dw_mci_fault_timer(struct hrtimer *t)
1825{
1826	struct dw_mci *host = container_of(t, struct dw_mci, fault_timer);
1827	unsigned long flags;
1828
1829	spin_lock_irqsave(&host->irq_lock, flags);
1830
1831	/*
1832	 * Only inject an error if we haven't already got an error or data over
1833	 * interrupt.
1834	 */
1835	if (!host->data_status) {
1836		host->data_status = SDMMC_INT_DCRC;
1837		set_bit(EVENT_DATA_ERROR, &host->pending_events);
1838		tasklet_schedule(&host->tasklet);
1839	}
1840
1841	spin_unlock_irqrestore(&host->irq_lock, flags);
1842
1843	return HRTIMER_NORESTART;
1844}
1845
1846static void dw_mci_start_fault_timer(struct dw_mci *host)
1847{
1848	struct mmc_data *data = host->data;
1849
1850	if (!data || data->blocks <= 1)
1851		return;
1852
1853	if (!should_fail(&host->fail_data_crc, 1))
1854		return;
1855
1856	/*
1857	 * Try to inject the error at random points during the data transfer.
1858	 */
1859	hrtimer_start(&host->fault_timer,
1860		      ms_to_ktime(get_random_u32_below(25)),
1861		      HRTIMER_MODE_REL);
1862}
1863
1864static void dw_mci_stop_fault_timer(struct dw_mci *host)
1865{
1866	hrtimer_cancel(&host->fault_timer);
1867}
1868
1869static void dw_mci_init_fault(struct dw_mci *host)
1870{
1871	host->fail_data_crc = (struct fault_attr) FAULT_ATTR_INITIALIZER;
1872
1873	hrtimer_init(&host->fault_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1874	host->fault_timer.function = dw_mci_fault_timer;
1875}
1876#else
1877static void dw_mci_init_fault(struct dw_mci *host)
1878{
1879}
1880
1881static void dw_mci_start_fault_timer(struct dw_mci *host)
1882{
1883}
1884
1885static void dw_mci_stop_fault_timer(struct dw_mci *host)
1886{
1887}
1888#endif
1889
1890static void dw_mci_request_end(struct dw_mci *host, struct mmc_request *mrq)
1891	__releases(&host->lock)
1892	__acquires(&host->lock)
1893{
1894	struct dw_mci_slot *slot;
1895	struct mmc_host	*prev_mmc = host->slot->mmc;
1896
1897	WARN_ON(host->cmd || host->data);
1898
1899	host->slot->mrq = NULL;
1900	host->mrq = NULL;
1901	if (!list_empty(&host->queue)) {
1902		slot = list_entry(host->queue.next,
1903				  struct dw_mci_slot, queue_node);
1904		list_del(&slot->queue_node);
1905		dev_vdbg(host->dev, "list not empty: %s is next\n",
1906			 mmc_hostname(slot->mmc));
1907		host->state = STATE_SENDING_CMD;
1908		dw_mci_start_request(host, slot);
1909	} else {
1910		dev_vdbg(host->dev, "list empty\n");
1911
1912		if (host->state == STATE_SENDING_CMD11)
1913			host->state = STATE_WAITING_CMD11_DONE;
1914		else
1915			host->state = STATE_IDLE;
1916	}
1917
1918	spin_unlock(&host->lock);
1919	mmc_request_done(prev_mmc, mrq);
1920	spin_lock(&host->lock);
1921}
1922
1923static int dw_mci_command_complete(struct dw_mci *host, struct mmc_command *cmd)
1924{
1925	u32 status = host->cmd_status;
1926
1927	host->cmd_status = 0;
1928
1929	/* Read the response from the card (up to 16 bytes) */
1930	if (cmd->flags & MMC_RSP_PRESENT) {
1931		if (cmd->flags & MMC_RSP_136) {
1932			cmd->resp[3] = mci_readl(host, RESP0);
1933			cmd->resp[2] = mci_readl(host, RESP1);
1934			cmd->resp[1] = mci_readl(host, RESP2);
1935			cmd->resp[0] = mci_readl(host, RESP3);
1936		} else {
1937			cmd->resp[0] = mci_readl(host, RESP0);
1938			cmd->resp[1] = 0;
1939			cmd->resp[2] = 0;
1940			cmd->resp[3] = 0;
1941		}
1942	}
1943
1944	if (status & SDMMC_INT_RTO)
1945		cmd->error = -ETIMEDOUT;
1946	else if ((cmd->flags & MMC_RSP_CRC) && (status & SDMMC_INT_RCRC))
1947		cmd->error = -EILSEQ;
1948	else if (status & SDMMC_INT_RESP_ERR)
1949		cmd->error = -EIO;
1950	else
1951		cmd->error = 0;
1952
1953	return cmd->error;
1954}
1955
1956static int dw_mci_data_complete(struct dw_mci *host, struct mmc_data *data)
1957{
1958	u32 status = host->data_status;
1959
1960	if (status & DW_MCI_DATA_ERROR_FLAGS) {
1961		if (status & SDMMC_INT_DRTO) {
1962			data->error = -ETIMEDOUT;
1963		} else if (status & SDMMC_INT_DCRC) {
1964			data->error = -EILSEQ;
1965		} else if (status & SDMMC_INT_EBE) {
1966			if (host->dir_status ==
1967				DW_MCI_SEND_STATUS) {
1968				/*
1969				 * No data CRC status was returned.
1970				 * The number of bytes transferred
1971				 * will be exaggerated in PIO mode.
1972				 */
1973				data->bytes_xfered = 0;
1974				data->error = -ETIMEDOUT;
1975			} else if (host->dir_status ==
1976					DW_MCI_RECV_STATUS) {
1977				data->error = -EILSEQ;
1978			}
1979		} else {
1980			/* SDMMC_INT_SBE is included */
1981			data->error = -EILSEQ;
1982		}
1983
1984		dev_dbg(host->dev, "data error, status 0x%08x\n", status);
1985
1986		/*
1987		 * After an error, there may be data lingering
1988		 * in the FIFO
1989		 */
1990		dw_mci_reset(host);
1991	} else {
1992		data->bytes_xfered = data->blocks * data->blksz;
1993		data->error = 0;
1994	}
1995
1996	return data->error;
1997}
1998
1999static void dw_mci_set_drto(struct dw_mci *host)
2000{
2001	const struct dw_mci_drv_data *drv_data = host->drv_data;
2002	unsigned int drto_clks;
2003	unsigned int drto_div;
2004	unsigned int drto_ms;
2005	unsigned long irqflags;
2006
2007	if (drv_data && drv_data->get_drto_clks)
2008		drto_clks = drv_data->get_drto_clks(host);
2009	else
2010		drto_clks = mci_readl(host, TMOUT) >> 8;
2011	drto_div = (mci_readl(host, CLKDIV) & 0xff) * 2;
2012	if (drto_div == 0)
2013		drto_div = 1;
2014
2015	drto_ms = DIV_ROUND_UP_ULL((u64)MSEC_PER_SEC * drto_clks * drto_div,
2016				   host->bus_hz);
2017
2018	dev_dbg(host->dev, "drto_ms: %u\n", drto_ms);
2019
2020	/* add a bit spare time */
2021	drto_ms += 10;
2022
2023	spin_lock_irqsave(&host->irq_lock, irqflags);
2024	if (!test_bit(EVENT_DATA_COMPLETE, &host->pending_events))
2025		mod_timer(&host->dto_timer,
2026			  jiffies + msecs_to_jiffies(drto_ms));
2027	spin_unlock_irqrestore(&host->irq_lock, irqflags);
2028}
2029
2030static bool dw_mci_clear_pending_cmd_complete(struct dw_mci *host)
2031{
2032	if (!test_bit(EVENT_CMD_COMPLETE, &host->pending_events))
2033		return false;
2034
2035	/*
2036	 * Really be certain that the timer has stopped.  This is a bit of
2037	 * paranoia and could only really happen if we had really bad
2038	 * interrupt latency and the interrupt routine and timeout were
2039	 * running concurrently so that the del_timer() in the interrupt
2040	 * handler couldn't run.
2041	 */
2042	WARN_ON(del_timer_sync(&host->cto_timer));
2043	clear_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2044
2045	return true;
2046}
2047
2048static bool dw_mci_clear_pending_data_complete(struct dw_mci *host)
2049{
2050	if (!test_bit(EVENT_DATA_COMPLETE, &host->pending_events))
2051		return false;
2052
2053	/* Extra paranoia just like dw_mci_clear_pending_cmd_complete() */
2054	WARN_ON(del_timer_sync(&host->dto_timer));
2055	clear_bit(EVENT_DATA_COMPLETE, &host->pending_events);
2056
2057	return true;
2058}
2059
2060static void dw_mci_tasklet_func(struct tasklet_struct *t)
2061{
2062	struct dw_mci *host = from_tasklet(host, t, tasklet);
2063	struct mmc_data	*data;
2064	struct mmc_command *cmd;
2065	struct mmc_request *mrq;
2066	enum dw_mci_state state;
2067	enum dw_mci_state prev_state;
2068	unsigned int err;
2069
2070	spin_lock(&host->lock);
2071
2072	state = host->state;
2073	data = host->data;
2074	mrq = host->mrq;
2075
2076	do {
2077		prev_state = state;
2078
2079		switch (state) {
2080		case STATE_IDLE:
2081		case STATE_WAITING_CMD11_DONE:
2082			break;
2083
2084		case STATE_SENDING_CMD11:
2085		case STATE_SENDING_CMD:
2086			if (!dw_mci_clear_pending_cmd_complete(host))
2087				break;
2088
2089			cmd = host->cmd;
2090			host->cmd = NULL;
2091			set_bit(EVENT_CMD_COMPLETE, &host->completed_events);
2092			err = dw_mci_command_complete(host, cmd);
2093			if (cmd == mrq->sbc && !err) {
2094				__dw_mci_start_request(host, host->slot,
2095						       mrq->cmd);
2096				goto unlock;
2097			}
2098
2099			if (cmd->data && err) {
2100				/*
2101				 * During UHS tuning sequence, sending the stop
2102				 * command after the response CRC error would
2103				 * throw the system into a confused state
2104				 * causing all future tuning phases to report
2105				 * failure.
2106				 *
2107				 * In such case controller will move into a data
2108				 * transfer state after a response error or
2109				 * response CRC error. Let's let that finish
2110				 * before trying to send a stop, so we'll go to
2111				 * STATE_SENDING_DATA.
2112				 *
2113				 * Although letting the data transfer take place
2114				 * will waste a bit of time (we already know
2115				 * the command was bad), it can't cause any
2116				 * errors since it's possible it would have
2117				 * taken place anyway if this tasklet got
2118				 * delayed. Allowing the transfer to take place
2119				 * avoids races and keeps things simple.
2120				 */
2121				if (err != -ETIMEDOUT &&
2122				    host->dir_status == DW_MCI_RECV_STATUS) {
2123					state = STATE_SENDING_DATA;
2124					continue;
2125				}
2126
2127				send_stop_abort(host, data);
2128				dw_mci_stop_dma(host);
2129				state = STATE_SENDING_STOP;
2130				break;
2131			}
2132
2133			if (!cmd->data || err) {
2134				dw_mci_request_end(host, mrq);
2135				goto unlock;
2136			}
2137
2138			prev_state = state = STATE_SENDING_DATA;
2139			fallthrough;
2140
2141		case STATE_SENDING_DATA:
2142			/*
2143			 * We could get a data error and never a transfer
2144			 * complete so we'd better check for it here.
2145			 *
2146			 * Note that we don't really care if we also got a
2147			 * transfer complete; stopping the DMA and sending an
2148			 * abort won't hurt.
2149			 */
2150			if (test_and_clear_bit(EVENT_DATA_ERROR,
2151					       &host->pending_events)) {
2152				if (!(host->data_status & (SDMMC_INT_DRTO |
2153							   SDMMC_INT_EBE)))
2154					send_stop_abort(host, data);
2155				dw_mci_stop_dma(host);
2156				state = STATE_DATA_ERROR;
2157				break;
2158			}
2159
2160			if (!test_and_clear_bit(EVENT_XFER_COMPLETE,
2161						&host->pending_events)) {
2162				/*
2163				 * If all data-related interrupts don't come
2164				 * within the given time in reading data state.
2165				 */
2166				if (host->dir_status == DW_MCI_RECV_STATUS)
2167					dw_mci_set_drto(host);
2168				break;
2169			}
2170
2171			set_bit(EVENT_XFER_COMPLETE, &host->completed_events);
2172
2173			/*
2174			 * Handle an EVENT_DATA_ERROR that might have shown up
2175			 * before the transfer completed.  This might not have
2176			 * been caught by the check above because the interrupt
2177			 * could have gone off between the previous check and
2178			 * the check for transfer complete.
2179			 *
2180			 * Technically this ought not be needed assuming we
2181			 * get a DATA_COMPLETE eventually (we'll notice the
2182			 * error and end the request), but it shouldn't hurt.
2183			 *
2184			 * This has the advantage of sending the stop command.
2185			 */
2186			if (test_and_clear_bit(EVENT_DATA_ERROR,
2187					       &host->pending_events)) {
2188				if (!(host->data_status & (SDMMC_INT_DRTO |
2189							   SDMMC_INT_EBE)))
2190					send_stop_abort(host, data);
2191				dw_mci_stop_dma(host);
2192				state = STATE_DATA_ERROR;
2193				break;
2194			}
2195			prev_state = state = STATE_DATA_BUSY;
2196
2197			fallthrough;
2198
2199		case STATE_DATA_BUSY:
2200			if (!dw_mci_clear_pending_data_complete(host)) {
2201				/*
2202				 * If data error interrupt comes but data over
2203				 * interrupt doesn't come within the given time.
2204				 * in reading data state.
2205				 */
2206				if (host->dir_status == DW_MCI_RECV_STATUS)
2207					dw_mci_set_drto(host);
2208				break;
2209			}
2210
2211			dw_mci_stop_fault_timer(host);
2212			host->data = NULL;
2213			set_bit(EVENT_DATA_COMPLETE, &host->completed_events);
2214			err = dw_mci_data_complete(host, data);
2215
2216			if (!err) {
2217				if (!data->stop || mrq->sbc) {
2218					if (mrq->sbc && data->stop)
2219						data->stop->error = 0;
2220					dw_mci_request_end(host, mrq);
2221					goto unlock;
2222				}
2223
2224				/* stop command for open-ended transfer*/
2225				if (data->stop)
2226					send_stop_abort(host, data);
2227			} else {
2228				/*
2229				 * If we don't have a command complete now we'll
2230				 * never get one since we just reset everything;
2231				 * better end the request.
2232				 *
2233				 * If we do have a command complete we'll fall
2234				 * through to the SENDING_STOP command and
2235				 * everything will be peachy keen.
2236				 */
2237				if (!test_bit(EVENT_CMD_COMPLETE,
2238					      &host->pending_events)) {
2239					host->cmd = NULL;
2240					dw_mci_request_end(host, mrq);
2241					goto unlock;
2242				}
2243			}
2244
2245			/*
2246			 * If err has non-zero,
2247			 * stop-abort command has been already issued.
2248			 */
2249			prev_state = state = STATE_SENDING_STOP;
2250
2251			fallthrough;
2252
2253		case STATE_SENDING_STOP:
2254			if (!dw_mci_clear_pending_cmd_complete(host))
2255				break;
2256
2257			/* CMD error in data command */
2258			if (mrq->cmd->error && mrq->data)
2259				dw_mci_reset(host);
2260
2261			dw_mci_stop_fault_timer(host);
2262			host->cmd = NULL;
2263			host->data = NULL;
2264
2265			if (!mrq->sbc && mrq->stop)
2266				dw_mci_command_complete(host, mrq->stop);
2267			else
2268				host->cmd_status = 0;
2269
2270			dw_mci_request_end(host, mrq);
2271			goto unlock;
2272
2273		case STATE_DATA_ERROR:
2274			if (!test_and_clear_bit(EVENT_XFER_COMPLETE,
2275						&host->pending_events))
2276				break;
2277
2278			state = STATE_DATA_BUSY;
2279			break;
2280		}
2281	} while (state != prev_state);
2282
2283	host->state = state;
2284unlock:
2285	spin_unlock(&host->lock);
2286
2287}
2288
2289/* push final bytes to part_buf, only use during push */
2290static void dw_mci_set_part_bytes(struct dw_mci *host, void *buf, int cnt)
2291{
2292	memcpy((void *)&host->part_buf, buf, cnt);
2293	host->part_buf_count = cnt;
2294}
2295
2296/* append bytes to part_buf, only use during push */
2297static int dw_mci_push_part_bytes(struct dw_mci *host, void *buf, int cnt)
2298{
2299	cnt = min(cnt, (1 << host->data_shift) - host->part_buf_count);
2300	memcpy((void *)&host->part_buf + host->part_buf_count, buf, cnt);
2301	host->part_buf_count += cnt;
2302	return cnt;
2303}
2304
2305/* pull first bytes from part_buf, only use during pull */
2306static int dw_mci_pull_part_bytes(struct dw_mci *host, void *buf, int cnt)
2307{
2308	cnt = min_t(int, cnt, host->part_buf_count);
2309	if (cnt) {
2310		memcpy(buf, (void *)&host->part_buf + host->part_buf_start,
2311		       cnt);
2312		host->part_buf_count -= cnt;
2313		host->part_buf_start += cnt;
2314	}
2315	return cnt;
2316}
2317
2318/* pull final bytes from the part_buf, assuming it's just been filled */
2319static void dw_mci_pull_final_bytes(struct dw_mci *host, void *buf, int cnt)
2320{
2321	memcpy(buf, &host->part_buf, cnt);
2322	host->part_buf_start = cnt;
2323	host->part_buf_count = (1 << host->data_shift) - cnt;
2324}
2325
2326static void dw_mci_push_data16(struct dw_mci *host, void *buf, int cnt)
2327{
2328	struct mmc_data *data = host->data;
2329	int init_cnt = cnt;
2330
2331	/* try and push anything in the part_buf */
2332	if (unlikely(host->part_buf_count)) {
2333		int len = dw_mci_push_part_bytes(host, buf, cnt);
2334
2335		buf += len;
2336		cnt -= len;
2337		if (host->part_buf_count == 2) {
2338			mci_fifo_writew(host->fifo_reg, host->part_buf16);
2339			host->part_buf_count = 0;
2340		}
2341	}
2342#ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2343	if (unlikely((unsigned long)buf & 0x1)) {
2344		while (cnt >= 2) {
2345			u16 aligned_buf[64];
2346			int len = min(cnt & -2, (int)sizeof(aligned_buf));
2347			int items = len >> 1;
2348			int i;
2349			/* memcpy from input buffer into aligned buffer */
2350			memcpy(aligned_buf, buf, len);
2351			buf += len;
2352			cnt -= len;
2353			/* push data from aligned buffer into fifo */
2354			for (i = 0; i < items; ++i)
2355				mci_fifo_writew(host->fifo_reg, aligned_buf[i]);
2356		}
2357	} else
2358#endif
2359	{
2360		u16 *pdata = buf;
2361
2362		for (; cnt >= 2; cnt -= 2)
2363			mci_fifo_writew(host->fifo_reg, *pdata++);
2364		buf = pdata;
2365	}
2366	/* put anything remaining in the part_buf */
2367	if (cnt) {
2368		dw_mci_set_part_bytes(host, buf, cnt);
2369		 /* Push data if we have reached the expected data length */
2370		if ((data->bytes_xfered + init_cnt) ==
2371		    (data->blksz * data->blocks))
2372			mci_fifo_writew(host->fifo_reg, host->part_buf16);
2373	}
2374}
2375
2376static void dw_mci_pull_data16(struct dw_mci *host, void *buf, int cnt)
2377{
2378#ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2379	if (unlikely((unsigned long)buf & 0x1)) {
2380		while (cnt >= 2) {
2381			/* pull data from fifo into aligned buffer */
2382			u16 aligned_buf[64];
2383			int len = min(cnt & -2, (int)sizeof(aligned_buf));
2384			int items = len >> 1;
2385			int i;
2386
2387			for (i = 0; i < items; ++i)
2388				aligned_buf[i] = mci_fifo_readw(host->fifo_reg);
2389			/* memcpy from aligned buffer into output buffer */
2390			memcpy(buf, aligned_buf, len);
2391			buf += len;
2392			cnt -= len;
2393		}
2394	} else
2395#endif
2396	{
2397		u16 *pdata = buf;
2398
2399		for (; cnt >= 2; cnt -= 2)
2400			*pdata++ = mci_fifo_readw(host->fifo_reg);
2401		buf = pdata;
2402	}
2403	if (cnt) {
2404		host->part_buf16 = mci_fifo_readw(host->fifo_reg);
2405		dw_mci_pull_final_bytes(host, buf, cnt);
2406	}
2407}
2408
2409static void dw_mci_push_data32(struct dw_mci *host, void *buf, int cnt)
2410{
2411	struct mmc_data *data = host->data;
2412	int init_cnt = cnt;
2413
2414	/* try and push anything in the part_buf */
2415	if (unlikely(host->part_buf_count)) {
2416		int len = dw_mci_push_part_bytes(host, buf, cnt);
2417
2418		buf += len;
2419		cnt -= len;
2420		if (host->part_buf_count == 4) {
2421			mci_fifo_writel(host->fifo_reg,	host->part_buf32);
2422			host->part_buf_count = 0;
2423		}
2424	}
2425#ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2426	if (unlikely((unsigned long)buf & 0x3)) {
2427		while (cnt >= 4) {
2428			u32 aligned_buf[32];
2429			int len = min(cnt & -4, (int)sizeof(aligned_buf));
2430			int items = len >> 2;
2431			int i;
2432			/* memcpy from input buffer into aligned buffer */
2433			memcpy(aligned_buf, buf, len);
2434			buf += len;
2435			cnt -= len;
2436			/* push data from aligned buffer into fifo */
2437			for (i = 0; i < items; ++i)
2438				mci_fifo_writel(host->fifo_reg,	aligned_buf[i]);
2439		}
2440	} else
2441#endif
2442	{
2443		u32 *pdata = buf;
2444
2445		for (; cnt >= 4; cnt -= 4)
2446			mci_fifo_writel(host->fifo_reg, *pdata++);
2447		buf = pdata;
2448	}
2449	/* put anything remaining in the part_buf */
2450	if (cnt) {
2451		dw_mci_set_part_bytes(host, buf, cnt);
2452		 /* Push data if we have reached the expected data length */
2453		if ((data->bytes_xfered + init_cnt) ==
2454		    (data->blksz * data->blocks))
2455			mci_fifo_writel(host->fifo_reg, host->part_buf32);
2456	}
2457}
2458
2459static void dw_mci_pull_data32(struct dw_mci *host, void *buf, int cnt)
2460{
2461#ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2462	if (unlikely((unsigned long)buf & 0x3)) {
2463		while (cnt >= 4) {
2464			/* pull data from fifo into aligned buffer */
2465			u32 aligned_buf[32];
2466			int len = min(cnt & -4, (int)sizeof(aligned_buf));
2467			int items = len >> 2;
2468			int i;
2469
2470			for (i = 0; i < items; ++i)
2471				aligned_buf[i] = mci_fifo_readl(host->fifo_reg);
2472			/* memcpy from aligned buffer into output buffer */
2473			memcpy(buf, aligned_buf, len);
2474			buf += len;
2475			cnt -= len;
2476		}
2477	} else
2478#endif
2479	{
2480		u32 *pdata = buf;
2481
2482		for (; cnt >= 4; cnt -= 4)
2483			*pdata++ = mci_fifo_readl(host->fifo_reg);
2484		buf = pdata;
2485	}
2486	if (cnt) {
2487		host->part_buf32 = mci_fifo_readl(host->fifo_reg);
2488		dw_mci_pull_final_bytes(host, buf, cnt);
2489	}
2490}
2491
2492static void dw_mci_push_data64(struct dw_mci *host, void *buf, int cnt)
2493{
2494	struct mmc_data *data = host->data;
2495	int init_cnt = cnt;
2496
2497	/* try and push anything in the part_buf */
2498	if (unlikely(host->part_buf_count)) {
2499		int len = dw_mci_push_part_bytes(host, buf, cnt);
2500
2501		buf += len;
2502		cnt -= len;
2503
2504		if (host->part_buf_count == 8) {
2505			mci_fifo_writeq(host->fifo_reg,	host->part_buf);
2506			host->part_buf_count = 0;
2507		}
2508	}
2509#ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2510	if (unlikely((unsigned long)buf & 0x7)) {
2511		while (cnt >= 8) {
2512			u64 aligned_buf[16];
2513			int len = min(cnt & -8, (int)sizeof(aligned_buf));
2514			int items = len >> 3;
2515			int i;
2516			/* memcpy from input buffer into aligned buffer */
2517			memcpy(aligned_buf, buf, len);
2518			buf += len;
2519			cnt -= len;
2520			/* push data from aligned buffer into fifo */
2521			for (i = 0; i < items; ++i)
2522				mci_fifo_writeq(host->fifo_reg,	aligned_buf[i]);
2523		}
2524	} else
2525#endif
2526	{
2527		u64 *pdata = buf;
2528
2529		for (; cnt >= 8; cnt -= 8)
2530			mci_fifo_writeq(host->fifo_reg, *pdata++);
2531		buf = pdata;
2532	}
2533	/* put anything remaining in the part_buf */
2534	if (cnt) {
2535		dw_mci_set_part_bytes(host, buf, cnt);
2536		/* Push data if we have reached the expected data length */
2537		if ((data->bytes_xfered + init_cnt) ==
2538		    (data->blksz * data->blocks))
2539			mci_fifo_writeq(host->fifo_reg, host->part_buf);
2540	}
2541}
2542
2543static void dw_mci_pull_data64(struct dw_mci *host, void *buf, int cnt)
2544{
2545#ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2546	if (unlikely((unsigned long)buf & 0x7)) {
2547		while (cnt >= 8) {
2548			/* pull data from fifo into aligned buffer */
2549			u64 aligned_buf[16];
2550			int len = min(cnt & -8, (int)sizeof(aligned_buf));
2551			int items = len >> 3;
2552			int i;
2553
2554			for (i = 0; i < items; ++i)
2555				aligned_buf[i] = mci_fifo_readq(host->fifo_reg);
2556
2557			/* memcpy from aligned buffer into output buffer */
2558			memcpy(buf, aligned_buf, len);
2559			buf += len;
2560			cnt -= len;
2561		}
2562	} else
2563#endif
2564	{
2565		u64 *pdata = buf;
2566
2567		for (; cnt >= 8; cnt -= 8)
2568			*pdata++ = mci_fifo_readq(host->fifo_reg);
2569		buf = pdata;
2570	}
2571	if (cnt) {
2572		host->part_buf = mci_fifo_readq(host->fifo_reg);
2573		dw_mci_pull_final_bytes(host, buf, cnt);
2574	}
2575}
2576
2577static void dw_mci_pull_data(struct dw_mci *host, void *buf, int cnt)
2578{
2579	int len;
2580
2581	/* get remaining partial bytes */
2582	len = dw_mci_pull_part_bytes(host, buf, cnt);
2583	if (unlikely(len == cnt))
2584		return;
2585	buf += len;
2586	cnt -= len;
2587
2588	/* get the rest of the data */
2589	host->pull_data(host, buf, cnt);
2590}
2591
2592static void dw_mci_read_data_pio(struct dw_mci *host, bool dto)
2593{
2594	struct sg_mapping_iter *sg_miter = &host->sg_miter;
2595	void *buf;
2596	unsigned int offset;
2597	struct mmc_data	*data = host->data;
2598	int shift = host->data_shift;
2599	u32 status;
2600	unsigned int len;
2601	unsigned int remain, fcnt;
2602
2603	do {
2604		if (!sg_miter_next(sg_miter))
2605			goto done;
2606
2607		host->sg = sg_miter->piter.sg;
2608		buf = sg_miter->addr;
2609		remain = sg_miter->length;
2610		offset = 0;
2611
2612		do {
2613			fcnt = (SDMMC_GET_FCNT(mci_readl(host, STATUS))
2614					<< shift) + host->part_buf_count;
2615			len = min(remain, fcnt);
2616			if (!len)
2617				break;
2618			dw_mci_pull_data(host, (void *)(buf + offset), len);
2619			data->bytes_xfered += len;
2620			offset += len;
2621			remain -= len;
2622		} while (remain);
2623
2624		sg_miter->consumed = offset;
2625		status = mci_readl(host, MINTSTS);
2626		mci_writel(host, RINTSTS, SDMMC_INT_RXDR);
2627	/* if the RXDR is ready read again */
2628	} while ((status & SDMMC_INT_RXDR) ||
2629		 (dto && SDMMC_GET_FCNT(mci_readl(host, STATUS))));
2630
2631	if (!remain) {
2632		if (!sg_miter_next(sg_miter))
2633			goto done;
2634		sg_miter->consumed = 0;
2635	}
2636	sg_miter_stop(sg_miter);
2637	return;
2638
2639done:
2640	sg_miter_stop(sg_miter);
2641	host->sg = NULL;
2642	smp_wmb(); /* drain writebuffer */
2643	set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
2644}
2645
2646static void dw_mci_write_data_pio(struct dw_mci *host)
2647{
2648	struct sg_mapping_iter *sg_miter = &host->sg_miter;
2649	void *buf;
2650	unsigned int offset;
2651	struct mmc_data	*data = host->data;
2652	int shift = host->data_shift;
2653	u32 status;
2654	unsigned int len;
2655	unsigned int fifo_depth = host->fifo_depth;
2656	unsigned int remain, fcnt;
2657
2658	do {
2659		if (!sg_miter_next(sg_miter))
2660			goto done;
2661
2662		host->sg = sg_miter->piter.sg;
2663		buf = sg_miter->addr;
2664		remain = sg_miter->length;
2665		offset = 0;
2666
2667		do {
2668			fcnt = ((fifo_depth -
2669				 SDMMC_GET_FCNT(mci_readl(host, STATUS)))
2670					<< shift) - host->part_buf_count;
2671			len = min(remain, fcnt);
2672			if (!len)
2673				break;
2674			host->push_data(host, (void *)(buf + offset), len);
2675			data->bytes_xfered += len;
2676			offset += len;
2677			remain -= len;
2678		} while (remain);
2679
2680		sg_miter->consumed = offset;
2681		status = mci_readl(host, MINTSTS);
2682		mci_writel(host, RINTSTS, SDMMC_INT_TXDR);
2683	} while (status & SDMMC_INT_TXDR); /* if TXDR write again */
2684
2685	if (!remain) {
2686		if (!sg_miter_next(sg_miter))
2687			goto done;
2688		sg_miter->consumed = 0;
2689	}
2690	sg_miter_stop(sg_miter);
2691	return;
2692
2693done:
2694	sg_miter_stop(sg_miter);
2695	host->sg = NULL;
2696	smp_wmb(); /* drain writebuffer */
2697	set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
2698}
2699
2700static void dw_mci_cmd_interrupt(struct dw_mci *host, u32 status)
2701{
2702	del_timer(&host->cto_timer);
2703
2704	if (!host->cmd_status)
2705		host->cmd_status = status;
2706
2707	smp_wmb(); /* drain writebuffer */
2708
2709	set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2710	tasklet_schedule(&host->tasklet);
2711
2712	dw_mci_start_fault_timer(host);
2713}
2714
2715static void dw_mci_handle_cd(struct dw_mci *host)
2716{
2717	struct dw_mci_slot *slot = host->slot;
2718
2719	mmc_detect_change(slot->mmc,
2720		msecs_to_jiffies(host->pdata->detect_delay_ms));
2721}
2722
2723static irqreturn_t dw_mci_interrupt(int irq, void *dev_id)
2724{
2725	struct dw_mci *host = dev_id;
2726	u32 pending;
2727	struct dw_mci_slot *slot = host->slot;
2728
2729	pending = mci_readl(host, MINTSTS); /* read-only mask reg */
2730
2731	if (pending) {
2732		/* Check volt switch first, since it can look like an error */
2733		if ((host->state == STATE_SENDING_CMD11) &&
2734		    (pending & SDMMC_INT_VOLT_SWITCH)) {
2735			mci_writel(host, RINTSTS, SDMMC_INT_VOLT_SWITCH);
2736			pending &= ~SDMMC_INT_VOLT_SWITCH;
2737
2738			/*
2739			 * Hold the lock; we know cmd11_timer can't be kicked
2740			 * off after the lock is released, so safe to delete.
2741			 */
2742			spin_lock(&host->irq_lock);
2743			dw_mci_cmd_interrupt(host, pending);
2744			spin_unlock(&host->irq_lock);
2745
2746			del_timer(&host->cmd11_timer);
2747		}
2748
2749		if (pending & DW_MCI_CMD_ERROR_FLAGS) {
2750			spin_lock(&host->irq_lock);
2751
2752			del_timer(&host->cto_timer);
2753			mci_writel(host, RINTSTS, DW_MCI_CMD_ERROR_FLAGS);
2754			host->cmd_status = pending;
2755			smp_wmb(); /* drain writebuffer */
2756			set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2757
2758			spin_unlock(&host->irq_lock);
2759		}
2760
2761		if (pending & DW_MCI_DATA_ERROR_FLAGS) {
2762			spin_lock(&host->irq_lock);
2763
2764			if (host->quirks & DW_MMC_QUIRK_EXTENDED_TMOUT)
2765				del_timer(&host->dto_timer);
2766
2767			/* if there is an error report DATA_ERROR */
2768			mci_writel(host, RINTSTS, DW_MCI_DATA_ERROR_FLAGS);
2769			host->data_status = pending;
2770			smp_wmb(); /* drain writebuffer */
2771			set_bit(EVENT_DATA_ERROR, &host->pending_events);
2772
2773			if (host->quirks & DW_MMC_QUIRK_EXTENDED_TMOUT)
2774				/* In case of error, we cannot expect a DTO */
2775				set_bit(EVENT_DATA_COMPLETE,
2776					&host->pending_events);
2777
2778			tasklet_schedule(&host->tasklet);
2779
2780			spin_unlock(&host->irq_lock);
2781		}
2782
2783		if (pending & SDMMC_INT_DATA_OVER) {
2784			spin_lock(&host->irq_lock);
2785
2786			del_timer(&host->dto_timer);
2787
2788			mci_writel(host, RINTSTS, SDMMC_INT_DATA_OVER);
2789			if (!host->data_status)
2790				host->data_status = pending;
2791			smp_wmb(); /* drain writebuffer */
2792			if (host->dir_status == DW_MCI_RECV_STATUS) {
2793				if (host->sg != NULL)
2794					dw_mci_read_data_pio(host, true);
2795			}
2796			set_bit(EVENT_DATA_COMPLETE, &host->pending_events);
2797			tasklet_schedule(&host->tasklet);
2798
2799			spin_unlock(&host->irq_lock);
2800		}
2801
2802		if (pending & SDMMC_INT_RXDR) {
2803			mci_writel(host, RINTSTS, SDMMC_INT_RXDR);
2804			if (host->dir_status == DW_MCI_RECV_STATUS && host->sg)
2805				dw_mci_read_data_pio(host, false);
2806		}
2807
2808		if (pending & SDMMC_INT_TXDR) {
2809			mci_writel(host, RINTSTS, SDMMC_INT_TXDR);
2810			if (host->dir_status == DW_MCI_SEND_STATUS && host->sg)
2811				dw_mci_write_data_pio(host);
2812		}
2813
2814		if (pending & SDMMC_INT_CMD_DONE) {
2815			spin_lock(&host->irq_lock);
2816
2817			mci_writel(host, RINTSTS, SDMMC_INT_CMD_DONE);
2818			dw_mci_cmd_interrupt(host, pending);
2819
2820			spin_unlock(&host->irq_lock);
2821		}
2822
2823		if (pending & SDMMC_INT_CD) {
2824			mci_writel(host, RINTSTS, SDMMC_INT_CD);
2825			dw_mci_handle_cd(host);
2826		}
2827
2828		if (pending & SDMMC_INT_SDIO(slot->sdio_id)) {
2829			mci_writel(host, RINTSTS,
2830				   SDMMC_INT_SDIO(slot->sdio_id));
2831			__dw_mci_enable_sdio_irq(slot, 0);
2832			sdio_signal_irq(slot->mmc);
2833		}
2834
2835	}
2836
2837	if (host->use_dma != TRANS_MODE_IDMAC)
2838		return IRQ_HANDLED;
2839
2840	/* Handle IDMA interrupts */
2841	if (host->dma_64bit_address == 1) {
2842		pending = mci_readl(host, IDSTS64);
2843		if (pending & (SDMMC_IDMAC_INT_TI | SDMMC_IDMAC_INT_RI)) {
2844			mci_writel(host, IDSTS64, SDMMC_IDMAC_INT_TI |
2845							SDMMC_IDMAC_INT_RI);
2846			mci_writel(host, IDSTS64, SDMMC_IDMAC_INT_NI);
2847			if (!test_bit(EVENT_DATA_ERROR, &host->pending_events))
2848				host->dma_ops->complete((void *)host);
2849		}
2850	} else {
2851		pending = mci_readl(host, IDSTS);
2852		if (pending & (SDMMC_IDMAC_INT_TI | SDMMC_IDMAC_INT_RI)) {
2853			mci_writel(host, IDSTS, SDMMC_IDMAC_INT_TI |
2854							SDMMC_IDMAC_INT_RI);
2855			mci_writel(host, IDSTS, SDMMC_IDMAC_INT_NI);
2856			if (!test_bit(EVENT_DATA_ERROR, &host->pending_events))
2857				host->dma_ops->complete((void *)host);
2858		}
2859	}
2860
2861	return IRQ_HANDLED;
2862}
2863
2864static int dw_mci_init_slot_caps(struct dw_mci_slot *slot)
2865{
2866	struct dw_mci *host = slot->host;
2867	const struct dw_mci_drv_data *drv_data = host->drv_data;
2868	struct mmc_host *mmc = slot->mmc;
2869	int ctrl_id;
2870
2871	if (host->pdata->caps)
2872		mmc->caps = host->pdata->caps;
2873
2874	if (host->pdata->pm_caps)
2875		mmc->pm_caps = host->pdata->pm_caps;
2876
2877	if (drv_data)
2878		mmc->caps |= drv_data->common_caps;
2879
2880	if (host->dev->of_node) {
2881		ctrl_id = of_alias_get_id(host->dev->of_node, "mshc");
2882		if (ctrl_id < 0)
2883			ctrl_id = 0;
2884	} else {
2885		ctrl_id = to_platform_device(host->dev)->id;
2886	}
2887
2888	if (drv_data && drv_data->caps) {
2889		if (ctrl_id >= drv_data->num_caps) {
2890			dev_err(host->dev, "invalid controller id %d\n",
2891				ctrl_id);
2892			return -EINVAL;
2893		}
2894		mmc->caps |= drv_data->caps[ctrl_id];
2895	}
2896
2897	if (host->pdata->caps2)
2898		mmc->caps2 = host->pdata->caps2;
2899
2900	/* if host has set a minimum_freq, we should respect it */
2901	if (host->minimum_speed)
2902		mmc->f_min = host->minimum_speed;
2903	else
2904		mmc->f_min = DW_MCI_FREQ_MIN;
2905
2906	if (!mmc->f_max)
2907		mmc->f_max = DW_MCI_FREQ_MAX;
2908
2909	/* Process SDIO IRQs through the sdio_irq_work. */
2910	if (mmc->caps & MMC_CAP_SDIO_IRQ)
2911		mmc->caps2 |= MMC_CAP2_SDIO_IRQ_NOTHREAD;
2912
2913	return 0;
2914}
2915
2916static int dw_mci_init_slot(struct dw_mci *host)
2917{
2918	struct mmc_host *mmc;
2919	struct dw_mci_slot *slot;
2920	int ret;
2921
2922	mmc = mmc_alloc_host(sizeof(struct dw_mci_slot), host->dev);
2923	if (!mmc)
2924		return -ENOMEM;
2925
2926	slot = mmc_priv(mmc);
2927	slot->id = 0;
2928	slot->sdio_id = host->sdio_id0 + slot->id;
2929	slot->mmc = mmc;
2930	slot->host = host;
2931	host->slot = slot;
2932
2933	mmc->ops = &dw_mci_ops;
2934
2935	/*if there are external regulators, get them*/
2936	ret = mmc_regulator_get_supply(mmc);
2937	if (ret)
2938		goto err_host_allocated;
2939
2940	if (!mmc->ocr_avail)
2941		mmc->ocr_avail = MMC_VDD_32_33 | MMC_VDD_33_34;
2942
2943	ret = mmc_of_parse(mmc);
2944	if (ret)
2945		goto err_host_allocated;
2946
2947	ret = dw_mci_init_slot_caps(slot);
2948	if (ret)
2949		goto err_host_allocated;
2950
2951	/* Useful defaults if platform data is unset. */
2952	if (host->use_dma == TRANS_MODE_IDMAC) {
2953		mmc->max_segs = host->ring_size;
2954		mmc->max_blk_size = 65535;
2955		mmc->max_seg_size = 0x1000;
2956		mmc->max_req_size = mmc->max_seg_size * host->ring_size;
2957		mmc->max_blk_count = mmc->max_req_size / 512;
2958	} else if (host->use_dma == TRANS_MODE_EDMAC) {
2959		mmc->max_segs = 64;
2960		mmc->max_blk_size = 65535;
2961		mmc->max_blk_count = 65535;
2962		mmc->max_req_size =
2963				mmc->max_blk_size * mmc->max_blk_count;
2964		mmc->max_seg_size = mmc->max_req_size;
2965	} else {
2966		/* TRANS_MODE_PIO */
2967		mmc->max_segs = 64;
2968		mmc->max_blk_size = 65535; /* BLKSIZ is 16 bits */
2969		mmc->max_blk_count = 512;
2970		mmc->max_req_size = mmc->max_blk_size *
2971				    mmc->max_blk_count;
2972		mmc->max_seg_size = mmc->max_req_size;
2973	}
2974
2975	dw_mci_get_cd(mmc);
2976
2977	ret = mmc_add_host(mmc);
2978	if (ret)
2979		goto err_host_allocated;
2980
2981#if defined(CONFIG_DEBUG_FS)
2982	dw_mci_init_debugfs(slot);
2983#endif
2984
2985	return 0;
2986
2987err_host_allocated:
2988	mmc_free_host(mmc);
2989	return ret;
2990}
2991
2992static void dw_mci_cleanup_slot(struct dw_mci_slot *slot)
2993{
2994	/* Debugfs stuff is cleaned up by mmc core */
2995	mmc_remove_host(slot->mmc);
2996	slot->host->slot = NULL;
2997	mmc_free_host(slot->mmc);
2998}
2999
3000static void dw_mci_init_dma(struct dw_mci *host)
3001{
3002	int addr_config;
3003	struct device *dev = host->dev;
3004
3005	/*
3006	* Check tansfer mode from HCON[17:16]
3007	* Clear the ambiguous description of dw_mmc databook:
3008	* 2b'00: No DMA Interface -> Actually means using Internal DMA block
3009	* 2b'01: DesignWare DMA Interface -> Synopsys DW-DMA block
3010	* 2b'10: Generic DMA Interface -> non-Synopsys generic DMA block
3011	* 2b'11: Non DW DMA Interface -> pio only
3012	* Compared to DesignWare DMA Interface, Generic DMA Interface has a
3013	* simpler request/acknowledge handshake mechanism and both of them
3014	* are regarded as external dma master for dw_mmc.
3015	*/
3016	host->use_dma = SDMMC_GET_TRANS_MODE(mci_readl(host, HCON));
3017	if (host->use_dma == DMA_INTERFACE_IDMA) {
3018		host->use_dma = TRANS_MODE_IDMAC;
3019	} else if (host->use_dma == DMA_INTERFACE_DWDMA ||
3020		   host->use_dma == DMA_INTERFACE_GDMA) {
3021		host->use_dma = TRANS_MODE_EDMAC;
3022	} else {
3023		goto no_dma;
3024	}
3025
3026	/* Determine which DMA interface to use */
3027	if (host->use_dma == TRANS_MODE_IDMAC) {
3028		/*
3029		* Check ADDR_CONFIG bit in HCON to find
3030		* IDMAC address bus width
3031		*/
3032		addr_config = SDMMC_GET_ADDR_CONFIG(mci_readl(host, HCON));
3033
3034		if (addr_config == 1) {
3035			/* host supports IDMAC in 64-bit address mode */
3036			host->dma_64bit_address = 1;
3037			dev_info(host->dev,
3038				 "IDMAC supports 64-bit address mode.\n");
3039			if (!dma_set_mask(host->dev, DMA_BIT_MASK(64)))
3040				dma_set_coherent_mask(host->dev,
3041						      DMA_BIT_MASK(64));
3042		} else {
3043			/* host supports IDMAC in 32-bit address mode */
3044			host->dma_64bit_address = 0;
3045			dev_info(host->dev,
3046				 "IDMAC supports 32-bit address mode.\n");
3047		}
3048
3049		/* Alloc memory for sg translation */
3050		host->sg_cpu = dmam_alloc_coherent(host->dev,
3051						   DESC_RING_BUF_SZ,
3052						   &host->sg_dma, GFP_KERNEL);
3053		if (!host->sg_cpu) {
3054			dev_err(host->dev,
3055				"%s: could not alloc DMA memory\n",
3056				__func__);
3057			goto no_dma;
3058		}
3059
3060		host->dma_ops = &dw_mci_idmac_ops;
3061		dev_info(host->dev, "Using internal DMA controller.\n");
3062	} else {
3063		/* TRANS_MODE_EDMAC: check dma bindings again */
3064		if ((device_property_string_array_count(dev, "dma-names") < 0) ||
3065		    !device_property_present(dev, "dmas")) {
3066			goto no_dma;
3067		}
3068		host->dma_ops = &dw_mci_edmac_ops;
3069		dev_info(host->dev, "Using external DMA controller.\n");
3070	}
3071
3072	if (host->dma_ops->init && host->dma_ops->start &&
3073	    host->dma_ops->stop && host->dma_ops->cleanup) {
3074		if (host->dma_ops->init(host)) {
3075			dev_err(host->dev, "%s: Unable to initialize DMA Controller.\n",
3076				__func__);
3077			goto no_dma;
3078		}
3079	} else {
3080		dev_err(host->dev, "DMA initialization not found.\n");
3081		goto no_dma;
3082	}
3083
3084	return;
3085
3086no_dma:
3087	dev_info(host->dev, "Using PIO mode.\n");
3088	host->use_dma = TRANS_MODE_PIO;
3089}
3090
3091static void dw_mci_cmd11_timer(struct timer_list *t)
3092{
3093	struct dw_mci *host = from_timer(host, t, cmd11_timer);
3094
3095	if (host->state != STATE_SENDING_CMD11) {
3096		dev_warn(host->dev, "Unexpected CMD11 timeout\n");
3097		return;
3098	}
3099
3100	host->cmd_status = SDMMC_INT_RTO;
3101	set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
3102	tasklet_schedule(&host->tasklet);
3103}
3104
3105static void dw_mci_cto_timer(struct timer_list *t)
3106{
3107	struct dw_mci *host = from_timer(host, t, cto_timer);
3108	unsigned long irqflags;
3109	u32 pending;
3110
3111	spin_lock_irqsave(&host->irq_lock, irqflags);
3112
3113	/*
3114	 * If somehow we have very bad interrupt latency it's remotely possible
3115	 * that the timer could fire while the interrupt is still pending or
3116	 * while the interrupt is midway through running.  Let's be paranoid
3117	 * and detect those two cases.  Note that this is paranoia is somewhat
3118	 * justified because in this function we don't actually cancel the
3119	 * pending command in the controller--we just assume it will never come.
3120	 */
3121	pending = mci_readl(host, MINTSTS); /* read-only mask reg */
3122	if (pending & (DW_MCI_CMD_ERROR_FLAGS | SDMMC_INT_CMD_DONE)) {
3123		/* The interrupt should fire; no need to act but we can warn */
3124		dev_warn(host->dev, "Unexpected interrupt latency\n");
3125		goto exit;
3126	}
3127	if (test_bit(EVENT_CMD_COMPLETE, &host->pending_events)) {
3128		/* Presumably interrupt handler couldn't delete the timer */
3129		dev_warn(host->dev, "CTO timeout when already completed\n");
3130		goto exit;
3131	}
3132
3133	/*
3134	 * Continued paranoia to make sure we're in the state we expect.
3135	 * This paranoia isn't really justified but it seems good to be safe.
3136	 */
3137	switch (host->state) {
3138	case STATE_SENDING_CMD11:
3139	case STATE_SENDING_CMD:
3140	case STATE_SENDING_STOP:
3141		/*
3142		 * If CMD_DONE interrupt does NOT come in sending command
3143		 * state, we should notify the driver to terminate current
3144		 * transfer and report a command timeout to the core.
3145		 */
3146		host->cmd_status = SDMMC_INT_RTO;
3147		set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
3148		tasklet_schedule(&host->tasklet);
3149		break;
3150	default:
3151		dev_warn(host->dev, "Unexpected command timeout, state %d\n",
3152			 host->state);
3153		break;
3154	}
3155
3156exit:
3157	spin_unlock_irqrestore(&host->irq_lock, irqflags);
3158}
3159
3160static void dw_mci_dto_timer(struct timer_list *t)
3161{
3162	struct dw_mci *host = from_timer(host, t, dto_timer);
3163	unsigned long irqflags;
3164	u32 pending;
3165
3166	spin_lock_irqsave(&host->irq_lock, irqflags);
3167
3168	/*
3169	 * The DTO timer is much longer than the CTO timer, so it's even less
3170	 * likely that we'll these cases, but it pays to be paranoid.
3171	 */
3172	pending = mci_readl(host, MINTSTS); /* read-only mask reg */
3173	if (pending & SDMMC_INT_DATA_OVER) {
3174		/* The interrupt should fire; no need to act but we can warn */
3175		dev_warn(host->dev, "Unexpected data interrupt latency\n");
3176		goto exit;
3177	}
3178	if (test_bit(EVENT_DATA_COMPLETE, &host->pending_events)) {
3179		/* Presumably interrupt handler couldn't delete the timer */
3180		dev_warn(host->dev, "DTO timeout when already completed\n");
3181		goto exit;
3182	}
3183
3184	/*
3185	 * Continued paranoia to make sure we're in the state we expect.
3186	 * This paranoia isn't really justified but it seems good to be safe.
3187	 */
3188	switch (host->state) {
3189	case STATE_SENDING_DATA:
3190	case STATE_DATA_BUSY:
3191		/*
3192		 * If DTO interrupt does NOT come in sending data state,
3193		 * we should notify the driver to terminate current transfer
3194		 * and report a data timeout to the core.
3195		 */
3196		host->data_status = SDMMC_INT_DRTO;
3197		set_bit(EVENT_DATA_ERROR, &host->pending_events);
3198		set_bit(EVENT_DATA_COMPLETE, &host->pending_events);
3199		tasklet_schedule(&host->tasklet);
3200		break;
3201	default:
3202		dev_warn(host->dev, "Unexpected data timeout, state %d\n",
3203			 host->state);
3204		break;
3205	}
3206
3207exit:
3208	spin_unlock_irqrestore(&host->irq_lock, irqflags);
3209}
3210
3211#ifdef CONFIG_OF
3212static struct dw_mci_board *dw_mci_parse_dt(struct dw_mci *host)
3213{
3214	struct dw_mci_board *pdata;
3215	struct device *dev = host->dev;
3216	const struct dw_mci_drv_data *drv_data = host->drv_data;
3217	int ret;
3218	u32 clock_frequency;
3219
3220	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
3221	if (!pdata)
3222		return ERR_PTR(-ENOMEM);
3223
3224	/* find reset controller when exist */
3225	pdata->rstc = devm_reset_control_get_optional_exclusive(dev, "reset");
3226	if (IS_ERR(pdata->rstc))
3227		return ERR_CAST(pdata->rstc);
3228
3229	if (device_property_read_u32(dev, "fifo-depth", &pdata->fifo_depth))
3230		dev_info(dev,
3231			 "fifo-depth property not found, using value of FIFOTH register as default\n");
3232
3233	device_property_read_u32(dev, "card-detect-delay",
3234				 &pdata->detect_delay_ms);
3235
3236	device_property_read_u32(dev, "data-addr", &host->data_addr_override);
3237
3238	if (device_property_present(dev, "fifo-watermark-aligned"))
3239		host->wm_aligned = true;
3240
3241	if (!device_property_read_u32(dev, "clock-frequency", &clock_frequency))
3242		pdata->bus_hz = clock_frequency;
3243
3244	if (drv_data && drv_data->parse_dt) {
3245		ret = drv_data->parse_dt(host);
3246		if (ret)
3247			return ERR_PTR(ret);
3248	}
3249
3250	return pdata;
3251}
3252
3253#else /* CONFIG_OF */
3254static struct dw_mci_board *dw_mci_parse_dt(struct dw_mci *host)
3255{
3256	return ERR_PTR(-EINVAL);
3257}
3258#endif /* CONFIG_OF */
3259
3260static void dw_mci_enable_cd(struct dw_mci *host)
3261{
3262	unsigned long irqflags;
3263	u32 temp;
3264
3265	/*
3266	 * No need for CD if all slots have a non-error GPIO
3267	 * as well as broken card detection is found.
3268	 */
3269	if (host->slot->mmc->caps & MMC_CAP_NEEDS_POLL)
3270		return;
3271
3272	if (mmc_gpio_get_cd(host->slot->mmc) < 0) {
3273		spin_lock_irqsave(&host->irq_lock, irqflags);
3274		temp = mci_readl(host, INTMASK);
3275		temp  |= SDMMC_INT_CD;
3276		mci_writel(host, INTMASK, temp);
3277		spin_unlock_irqrestore(&host->irq_lock, irqflags);
3278	}
3279}
3280
3281int dw_mci_probe(struct dw_mci *host)
3282{
3283	const struct dw_mci_drv_data *drv_data = host->drv_data;
3284	int width, i, ret = 0;
3285	u32 fifo_size;
3286
3287	if (!host->pdata) {
3288		host->pdata = dw_mci_parse_dt(host);
3289		if (IS_ERR(host->pdata))
3290			return dev_err_probe(host->dev, PTR_ERR(host->pdata),
3291					     "platform data not available\n");
3292	}
3293
3294	host->biu_clk = devm_clk_get(host->dev, "biu");
3295	if (IS_ERR(host->biu_clk)) {
3296		dev_dbg(host->dev, "biu clock not available\n");
3297	} else {
3298		ret = clk_prepare_enable(host->biu_clk);
3299		if (ret) {
3300			dev_err(host->dev, "failed to enable biu clock\n");
3301			return ret;
3302		}
3303	}
3304
3305	host->ciu_clk = devm_clk_get(host->dev, "ciu");
3306	if (IS_ERR(host->ciu_clk)) {
3307		dev_dbg(host->dev, "ciu clock not available\n");
3308		host->bus_hz = host->pdata->bus_hz;
3309	} else {
3310		ret = clk_prepare_enable(host->ciu_clk);
3311		if (ret) {
3312			dev_err(host->dev, "failed to enable ciu clock\n");
3313			goto err_clk_biu;
3314		}
3315
3316		if (host->pdata->bus_hz) {
3317			ret = clk_set_rate(host->ciu_clk, host->pdata->bus_hz);
3318			if (ret)
3319				dev_warn(host->dev,
3320					 "Unable to set bus rate to %uHz\n",
3321					 host->pdata->bus_hz);
3322		}
3323		host->bus_hz = clk_get_rate(host->ciu_clk);
3324	}
3325
3326	if (!host->bus_hz) {
3327		dev_err(host->dev,
3328			"Platform data must supply bus speed\n");
3329		ret = -ENODEV;
3330		goto err_clk_ciu;
3331	}
3332
3333	if (host->pdata->rstc) {
3334		reset_control_assert(host->pdata->rstc);
3335		usleep_range(10, 50);
3336		reset_control_deassert(host->pdata->rstc);
3337	}
3338
3339	if (drv_data && drv_data->init) {
3340		ret = drv_data->init(host);
3341		if (ret) {
3342			dev_err(host->dev,
3343				"implementation specific init failed\n");
3344			goto err_clk_ciu;
3345		}
3346	}
3347
3348	timer_setup(&host->cmd11_timer, dw_mci_cmd11_timer, 0);
3349	timer_setup(&host->cto_timer, dw_mci_cto_timer, 0);
3350	timer_setup(&host->dto_timer, dw_mci_dto_timer, 0);
3351
3352	spin_lock_init(&host->lock);
3353	spin_lock_init(&host->irq_lock);
3354	INIT_LIST_HEAD(&host->queue);
3355
3356	dw_mci_init_fault(host);
3357
3358	/*
3359	 * Get the host data width - this assumes that HCON has been set with
3360	 * the correct values.
3361	 */
3362	i = SDMMC_GET_HDATA_WIDTH(mci_readl(host, HCON));
3363	if (!i) {
3364		host->push_data = dw_mci_push_data16;
3365		host->pull_data = dw_mci_pull_data16;
3366		width = 16;
3367		host->data_shift = 1;
3368	} else if (i == 2) {
3369		host->push_data = dw_mci_push_data64;
3370		host->pull_data = dw_mci_pull_data64;
3371		width = 64;
3372		host->data_shift = 3;
3373	} else {
3374		/* Check for a reserved value, and warn if it is */
3375		WARN((i != 1),
3376		     "HCON reports a reserved host data width!\n"
3377		     "Defaulting to 32-bit access.\n");
3378		host->push_data = dw_mci_push_data32;
3379		host->pull_data = dw_mci_pull_data32;
3380		width = 32;
3381		host->data_shift = 2;
3382	}
3383
3384	/* Reset all blocks */
3385	if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_ALL_RESET_FLAGS)) {
3386		ret = -ENODEV;
3387		goto err_clk_ciu;
3388	}
3389
3390	host->dma_ops = host->pdata->dma_ops;
3391	dw_mci_init_dma(host);
3392
3393	/* Clear the interrupts for the host controller */
3394	mci_writel(host, RINTSTS, 0xFFFFFFFF);
3395	mci_writel(host, INTMASK, 0); /* disable all mmc interrupt first */
3396
3397	/* Put in max timeout */
3398	mci_writel(host, TMOUT, 0xFFFFFFFF);
3399
3400	/*
3401	 * FIFO threshold settings  RxMark  = fifo_size / 2 - 1,
3402	 *                          Tx Mark = fifo_size / 2 DMA Size = 8
3403	 */
3404	if (!host->pdata->fifo_depth) {
3405		/*
3406		 * Power-on value of RX_WMark is FIFO_DEPTH-1, but this may
3407		 * have been overwritten by the bootloader, just like we're
3408		 * about to do, so if you know the value for your hardware, you
3409		 * should put it in the platform data.
3410		 */
3411		fifo_size = mci_readl(host, FIFOTH);
3412		fifo_size = 1 + ((fifo_size >> 16) & 0xfff);
3413	} else {
3414		fifo_size = host->pdata->fifo_depth;
3415	}
3416	host->fifo_depth = fifo_size;
3417	host->fifoth_val =
3418		SDMMC_SET_FIFOTH(0x2, fifo_size / 2 - 1, fifo_size / 2);
3419	mci_writel(host, FIFOTH, host->fifoth_val);
3420
3421	/* disable clock to CIU */
3422	mci_writel(host, CLKENA, 0);
3423	mci_writel(host, CLKSRC, 0);
3424
3425	/*
3426	 * In 2.40a spec, Data offset is changed.
3427	 * Need to check the version-id and set data-offset for DATA register.
3428	 */
3429	host->verid = SDMMC_GET_VERID(mci_readl(host, VERID));
3430	dev_info(host->dev, "Version ID is %04x\n", host->verid);
3431
3432	if (host->data_addr_override)
3433		host->fifo_reg = host->regs + host->data_addr_override;
3434	else if (host->verid < DW_MMC_240A)
3435		host->fifo_reg = host->regs + DATA_OFFSET;
3436	else
3437		host->fifo_reg = host->regs + DATA_240A_OFFSET;
3438
3439	tasklet_setup(&host->tasklet, dw_mci_tasklet_func);
3440	ret = devm_request_irq(host->dev, host->irq, dw_mci_interrupt,
3441			       host->irq_flags, "dw-mci", host);
3442	if (ret)
3443		goto err_dmaunmap;
3444
3445	/*
3446	 * Enable interrupts for command done, data over, data empty,
3447	 * receive ready and error such as transmit, receive timeout, crc error
3448	 */
3449	mci_writel(host, INTMASK, SDMMC_INT_CMD_DONE | SDMMC_INT_DATA_OVER |
3450		   SDMMC_INT_TXDR | SDMMC_INT_RXDR |
3451		   DW_MCI_ERROR_FLAGS);
3452	/* Enable mci interrupt */
3453	mci_writel(host, CTRL, SDMMC_CTRL_INT_ENABLE);
3454
3455	dev_info(host->dev,
3456		 "DW MMC controller at irq %d,%d bit host data width,%u deep fifo\n",
3457		 host->irq, width, fifo_size);
3458
3459	/* We need at least one slot to succeed */
3460	ret = dw_mci_init_slot(host);
3461	if (ret) {
3462		dev_dbg(host->dev, "slot %d init failed\n", i);
3463		goto err_dmaunmap;
3464	}
3465
3466	/* Now that slots are all setup, we can enable card detect */
3467	dw_mci_enable_cd(host);
3468
3469	return 0;
3470
3471err_dmaunmap:
3472	if (host->use_dma && host->dma_ops->exit)
3473		host->dma_ops->exit(host);
3474
3475	reset_control_assert(host->pdata->rstc);
3476
3477err_clk_ciu:
3478	clk_disable_unprepare(host->ciu_clk);
3479
3480err_clk_biu:
3481	clk_disable_unprepare(host->biu_clk);
3482
3483	return ret;
3484}
3485EXPORT_SYMBOL(dw_mci_probe);
3486
3487void dw_mci_remove(struct dw_mci *host)
3488{
3489	dev_dbg(host->dev, "remove slot\n");
3490	if (host->slot)
3491		dw_mci_cleanup_slot(host->slot);
3492
3493	mci_writel(host, RINTSTS, 0xFFFFFFFF);
3494	mci_writel(host, INTMASK, 0); /* disable all mmc interrupt first */
3495
3496	/* disable clock to CIU */
3497	mci_writel(host, CLKENA, 0);
3498	mci_writel(host, CLKSRC, 0);
3499
3500	if (host->use_dma && host->dma_ops->exit)
3501		host->dma_ops->exit(host);
3502
3503	reset_control_assert(host->pdata->rstc);
3504
3505	clk_disable_unprepare(host->ciu_clk);
3506	clk_disable_unprepare(host->biu_clk);
3507}
3508EXPORT_SYMBOL(dw_mci_remove);
3509
3510
3511
3512#ifdef CONFIG_PM
3513int dw_mci_runtime_suspend(struct device *dev)
3514{
3515	struct dw_mci *host = dev_get_drvdata(dev);
3516
3517	if (host->use_dma && host->dma_ops->exit)
3518		host->dma_ops->exit(host);
3519
3520	clk_disable_unprepare(host->ciu_clk);
3521
3522	if (host->slot &&
3523	    (mmc_can_gpio_cd(host->slot->mmc) ||
3524	     !mmc_card_is_removable(host->slot->mmc)))
3525		clk_disable_unprepare(host->biu_clk);
3526
3527	return 0;
3528}
3529EXPORT_SYMBOL(dw_mci_runtime_suspend);
3530
3531int dw_mci_runtime_resume(struct device *dev)
3532{
3533	int ret = 0;
3534	struct dw_mci *host = dev_get_drvdata(dev);
3535
3536	if (host->slot &&
3537	    (mmc_can_gpio_cd(host->slot->mmc) ||
3538	     !mmc_card_is_removable(host->slot->mmc))) {
3539		ret = clk_prepare_enable(host->biu_clk);
3540		if (ret)
3541			return ret;
3542	}
3543
3544	ret = clk_prepare_enable(host->ciu_clk);
3545	if (ret)
3546		goto err;
3547
3548	if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_ALL_RESET_FLAGS)) {
3549		clk_disable_unprepare(host->ciu_clk);
3550		ret = -ENODEV;
3551		goto err;
3552	}
3553
3554	if (host->use_dma && host->dma_ops->init)
3555		host->dma_ops->init(host);
3556
3557	/*
3558	 * Restore the initial value at FIFOTH register
3559	 * And Invalidate the prev_blksz with zero
3560	 */
3561	mci_writel(host, FIFOTH, host->fifoth_val);
3562	host->prev_blksz = 0;
3563
3564	/* Put in max timeout */
3565	mci_writel(host, TMOUT, 0xFFFFFFFF);
3566
3567	mci_writel(host, RINTSTS, 0xFFFFFFFF);
3568	mci_writel(host, INTMASK, SDMMC_INT_CMD_DONE | SDMMC_INT_DATA_OVER |
3569		   SDMMC_INT_TXDR | SDMMC_INT_RXDR |
3570		   DW_MCI_ERROR_FLAGS);
3571	mci_writel(host, CTRL, SDMMC_CTRL_INT_ENABLE);
3572
3573
3574	if (host->slot && host->slot->mmc->pm_flags & MMC_PM_KEEP_POWER)
3575		dw_mci_set_ios(host->slot->mmc, &host->slot->mmc->ios);
3576
3577	/* Force setup bus to guarantee available clock output */
3578	dw_mci_setup_bus(host->slot, true);
3579
3580	/* Re-enable SDIO interrupts. */
3581	if (sdio_irq_claimed(host->slot->mmc))
3582		__dw_mci_enable_sdio_irq(host->slot, 1);
3583
3584	/* Now that slots are all setup, we can enable card detect */
3585	dw_mci_enable_cd(host);
3586
3587	return 0;
3588
3589err:
3590	if (host->slot &&
3591	    (mmc_can_gpio_cd(host->slot->mmc) ||
3592	     !mmc_card_is_removable(host->slot->mmc)))
3593		clk_disable_unprepare(host->biu_clk);
3594
3595	return ret;
3596}
3597EXPORT_SYMBOL(dw_mci_runtime_resume);
3598#endif /* CONFIG_PM */
3599
3600static int __init dw_mci_init(void)
3601{
3602	pr_info("Synopsys Designware Multimedia Card Interface Driver\n");
3603	return 0;
3604}
3605
3606static void __exit dw_mci_exit(void)
3607{
3608}
3609
3610module_init(dw_mci_init);
3611module_exit(dw_mci_exit);
3612
3613MODULE_DESCRIPTION("DW Multimedia Card Interface driver");
3614MODULE_AUTHOR("NXP Semiconductor VietNam");
3615MODULE_AUTHOR("Imagination Technologies Ltd");
3616MODULE_LICENSE("GPL v2");
3617