162306a36Sopenharmony_ci// SPDX-License-Identifier: (GPL-2.0 OR MIT) 262306a36Sopenharmony_ci/* 362306a36Sopenharmony_ci * SPI core driver for the Ocelot chip family. 462306a36Sopenharmony_ci * 562306a36Sopenharmony_ci * This driver will handle everything necessary to allow for communication over 662306a36Sopenharmony_ci * SPI to the VSC7511, VSC7512, VSC7513 and VSC7514 chips. The main functions 762306a36Sopenharmony_ci * are to prepare the chip's SPI interface for a specific bus speed, and a host 862306a36Sopenharmony_ci * processor's endianness. This will create and distribute regmaps for any 962306a36Sopenharmony_ci * children. 1062306a36Sopenharmony_ci * 1162306a36Sopenharmony_ci * Copyright 2021-2022 Innovative Advantage Inc. 1262306a36Sopenharmony_ci * 1362306a36Sopenharmony_ci * Author: Colin Foster <colin.foster@in-advantage.com> 1462306a36Sopenharmony_ci */ 1562306a36Sopenharmony_ci 1662306a36Sopenharmony_ci#include <linux/device.h> 1762306a36Sopenharmony_ci#include <linux/err.h> 1862306a36Sopenharmony_ci#include <linux/errno.h> 1962306a36Sopenharmony_ci#include <linux/export.h> 2062306a36Sopenharmony_ci#include <linux/ioport.h> 2162306a36Sopenharmony_ci#include <linux/mod_devicetable.h> 2262306a36Sopenharmony_ci#include <linux/module.h> 2362306a36Sopenharmony_ci#include <linux/regmap.h> 2462306a36Sopenharmony_ci#include <linux/spi/spi.h> 2562306a36Sopenharmony_ci#include <linux/types.h> 2662306a36Sopenharmony_ci#include <linux/units.h> 2762306a36Sopenharmony_ci 2862306a36Sopenharmony_ci#include "ocelot.h" 2962306a36Sopenharmony_ci 3062306a36Sopenharmony_ci#define REG_DEV_CPUORG_IF_CTRL 0x0000 3162306a36Sopenharmony_ci#define REG_DEV_CPUORG_IF_CFGSTAT 0x0004 3262306a36Sopenharmony_ci 3362306a36Sopenharmony_ci#define CFGSTAT_IF_NUM_VCORE (0 << 24) 3462306a36Sopenharmony_ci#define CFGSTAT_IF_NUM_VRAP (1 << 24) 3562306a36Sopenharmony_ci#define CFGSTAT_IF_NUM_SI (2 << 24) 3662306a36Sopenharmony_ci#define CFGSTAT_IF_NUM_MIIM (3 << 24) 3762306a36Sopenharmony_ci 3862306a36Sopenharmony_ci#define VSC7512_DEVCPU_ORG_RES_START 0x71000000 3962306a36Sopenharmony_ci#define VSC7512_DEVCPU_ORG_RES_SIZE 0x38 4062306a36Sopenharmony_ci 4162306a36Sopenharmony_ci#define VSC7512_CHIP_REGS_RES_START 0x71070000 4262306a36Sopenharmony_ci#define VSC7512_CHIP_REGS_RES_SIZE 0x14 4362306a36Sopenharmony_ci 4462306a36Sopenharmony_cistatic const struct resource vsc7512_dev_cpuorg_resource = 4562306a36Sopenharmony_ci DEFINE_RES_REG_NAMED(VSC7512_DEVCPU_ORG_RES_START, 4662306a36Sopenharmony_ci VSC7512_DEVCPU_ORG_RES_SIZE, 4762306a36Sopenharmony_ci "devcpu_org"); 4862306a36Sopenharmony_ci 4962306a36Sopenharmony_cistatic const struct resource vsc7512_gcb_resource = 5062306a36Sopenharmony_ci DEFINE_RES_REG_NAMED(VSC7512_CHIP_REGS_RES_START, 5162306a36Sopenharmony_ci VSC7512_CHIP_REGS_RES_SIZE, 5262306a36Sopenharmony_ci "devcpu_gcb_chip_regs"); 5362306a36Sopenharmony_ci 5462306a36Sopenharmony_cistatic int ocelot_spi_initialize(struct device *dev) 5562306a36Sopenharmony_ci{ 5662306a36Sopenharmony_ci struct ocelot_ddata *ddata = dev_get_drvdata(dev); 5762306a36Sopenharmony_ci u32 val, check; 5862306a36Sopenharmony_ci int err; 5962306a36Sopenharmony_ci 6062306a36Sopenharmony_ci val = OCELOT_SPI_BYTE_ORDER; 6162306a36Sopenharmony_ci 6262306a36Sopenharmony_ci /* 6362306a36Sopenharmony_ci * The SPI address must be big-endian, but we want the payload to match 6462306a36Sopenharmony_ci * our CPU. These are two bits (0 and 1) but they're repeated such that 6562306a36Sopenharmony_ci * the write from any configuration will be valid. The four 6662306a36Sopenharmony_ci * configurations are: 6762306a36Sopenharmony_ci * 6862306a36Sopenharmony_ci * 0b00: little-endian, MSB first 6962306a36Sopenharmony_ci * | 111111 | 22221111 | 33222222 | 7062306a36Sopenharmony_ci * | 76543210 | 54321098 | 32109876 | 10987654 | 7162306a36Sopenharmony_ci * 7262306a36Sopenharmony_ci * 0b01: big-endian, MSB first 7362306a36Sopenharmony_ci * | 33222222 | 22221111 | 111111 | | 7462306a36Sopenharmony_ci * | 10987654 | 32109876 | 54321098 | 76543210 | 7562306a36Sopenharmony_ci * 7662306a36Sopenharmony_ci * 0b10: little-endian, LSB first 7762306a36Sopenharmony_ci * | 111111 | 11112222 | 22222233 | 7862306a36Sopenharmony_ci * | 01234567 | 89012345 | 67890123 | 45678901 | 7962306a36Sopenharmony_ci * 8062306a36Sopenharmony_ci * 0b11: big-endian, LSB first 8162306a36Sopenharmony_ci * | 22222233 | 11112222 | 111111 | | 8262306a36Sopenharmony_ci * | 45678901 | 67890123 | 89012345 | 01234567 | 8362306a36Sopenharmony_ci */ 8462306a36Sopenharmony_ci err = regmap_write(ddata->cpuorg_regmap, REG_DEV_CPUORG_IF_CTRL, val); 8562306a36Sopenharmony_ci if (err) 8662306a36Sopenharmony_ci return err; 8762306a36Sopenharmony_ci 8862306a36Sopenharmony_ci /* 8962306a36Sopenharmony_ci * Apply the number of padding bytes between a read request and the data 9062306a36Sopenharmony_ci * payload. Some registers have access times of up to 1us, so if the 9162306a36Sopenharmony_ci * first payload bit is shifted out too quickly, the read will fail. 9262306a36Sopenharmony_ci */ 9362306a36Sopenharmony_ci val = ddata->spi_padding_bytes; 9462306a36Sopenharmony_ci err = regmap_write(ddata->cpuorg_regmap, REG_DEV_CPUORG_IF_CFGSTAT, val); 9562306a36Sopenharmony_ci if (err) 9662306a36Sopenharmony_ci return err; 9762306a36Sopenharmony_ci 9862306a36Sopenharmony_ci /* 9962306a36Sopenharmony_ci * After we write the interface configuration, read it back here. This 10062306a36Sopenharmony_ci * will verify several different things. The first is that the number of 10162306a36Sopenharmony_ci * padding bytes actually got written correctly. These are found in bits 10262306a36Sopenharmony_ci * 0:3. 10362306a36Sopenharmony_ci * 10462306a36Sopenharmony_ci * The second is that bit 16 is cleared. Bit 16 is IF_CFGSTAT:IF_STAT, 10562306a36Sopenharmony_ci * and will be set if the register access is too fast. This would be in 10662306a36Sopenharmony_ci * the condition that the number of padding bytes is insufficient for 10762306a36Sopenharmony_ci * the SPI bus frequency. 10862306a36Sopenharmony_ci * 10962306a36Sopenharmony_ci * The last check is for bits 31:24, which define the interface by which 11062306a36Sopenharmony_ci * the registers are being accessed. Since we're accessing them via the 11162306a36Sopenharmony_ci * serial interface, it must return IF_NUM_SI. 11262306a36Sopenharmony_ci */ 11362306a36Sopenharmony_ci check = val | CFGSTAT_IF_NUM_SI; 11462306a36Sopenharmony_ci 11562306a36Sopenharmony_ci err = regmap_read(ddata->cpuorg_regmap, REG_DEV_CPUORG_IF_CFGSTAT, &val); 11662306a36Sopenharmony_ci if (err) 11762306a36Sopenharmony_ci return err; 11862306a36Sopenharmony_ci 11962306a36Sopenharmony_ci if (check != val) 12062306a36Sopenharmony_ci return -ENODEV; 12162306a36Sopenharmony_ci 12262306a36Sopenharmony_ci return 0; 12362306a36Sopenharmony_ci} 12462306a36Sopenharmony_ci 12562306a36Sopenharmony_cistatic const struct regmap_config ocelot_spi_regmap_config = { 12662306a36Sopenharmony_ci .reg_bits = 24, 12762306a36Sopenharmony_ci .reg_stride = 4, 12862306a36Sopenharmony_ci .reg_shift = REGMAP_DOWNSHIFT(2), 12962306a36Sopenharmony_ci .val_bits = 32, 13062306a36Sopenharmony_ci 13162306a36Sopenharmony_ci .write_flag_mask = 0x80, 13262306a36Sopenharmony_ci 13362306a36Sopenharmony_ci .use_single_read = true, 13462306a36Sopenharmony_ci .use_single_write = true, 13562306a36Sopenharmony_ci .can_multi_write = false, 13662306a36Sopenharmony_ci 13762306a36Sopenharmony_ci .reg_format_endian = REGMAP_ENDIAN_BIG, 13862306a36Sopenharmony_ci .val_format_endian = REGMAP_ENDIAN_NATIVE, 13962306a36Sopenharmony_ci}; 14062306a36Sopenharmony_ci 14162306a36Sopenharmony_cistatic int ocelot_spi_regmap_bus_read(void *context, const void *reg, size_t reg_size, 14262306a36Sopenharmony_ci void *val, size_t val_size) 14362306a36Sopenharmony_ci{ 14462306a36Sopenharmony_ci struct spi_transfer xfers[3] = {0}; 14562306a36Sopenharmony_ci struct device *dev = context; 14662306a36Sopenharmony_ci struct ocelot_ddata *ddata; 14762306a36Sopenharmony_ci struct spi_device *spi; 14862306a36Sopenharmony_ci struct spi_message msg; 14962306a36Sopenharmony_ci unsigned int index = 0; 15062306a36Sopenharmony_ci 15162306a36Sopenharmony_ci ddata = dev_get_drvdata(dev); 15262306a36Sopenharmony_ci spi = to_spi_device(dev); 15362306a36Sopenharmony_ci 15462306a36Sopenharmony_ci xfers[index].tx_buf = reg; 15562306a36Sopenharmony_ci xfers[index].len = reg_size; 15662306a36Sopenharmony_ci index++; 15762306a36Sopenharmony_ci 15862306a36Sopenharmony_ci if (ddata->spi_padding_bytes) { 15962306a36Sopenharmony_ci xfers[index].len = ddata->spi_padding_bytes; 16062306a36Sopenharmony_ci xfers[index].tx_buf = ddata->dummy_buf; 16162306a36Sopenharmony_ci xfers[index].dummy_data = 1; 16262306a36Sopenharmony_ci index++; 16362306a36Sopenharmony_ci } 16462306a36Sopenharmony_ci 16562306a36Sopenharmony_ci xfers[index].rx_buf = val; 16662306a36Sopenharmony_ci xfers[index].len = val_size; 16762306a36Sopenharmony_ci index++; 16862306a36Sopenharmony_ci 16962306a36Sopenharmony_ci spi_message_init_with_transfers(&msg, xfers, index); 17062306a36Sopenharmony_ci 17162306a36Sopenharmony_ci return spi_sync(spi, &msg); 17262306a36Sopenharmony_ci} 17362306a36Sopenharmony_ci 17462306a36Sopenharmony_cistatic int ocelot_spi_regmap_bus_write(void *context, const void *data, size_t count) 17562306a36Sopenharmony_ci{ 17662306a36Sopenharmony_ci struct device *dev = context; 17762306a36Sopenharmony_ci struct spi_device *spi = to_spi_device(dev); 17862306a36Sopenharmony_ci 17962306a36Sopenharmony_ci return spi_write(spi, data, count); 18062306a36Sopenharmony_ci} 18162306a36Sopenharmony_ci 18262306a36Sopenharmony_cistatic const struct regmap_bus ocelot_spi_regmap_bus = { 18362306a36Sopenharmony_ci .write = ocelot_spi_regmap_bus_write, 18462306a36Sopenharmony_ci .read = ocelot_spi_regmap_bus_read, 18562306a36Sopenharmony_ci}; 18662306a36Sopenharmony_ci 18762306a36Sopenharmony_cistruct regmap *ocelot_spi_init_regmap(struct device *dev, const struct resource *res) 18862306a36Sopenharmony_ci{ 18962306a36Sopenharmony_ci struct regmap_config regmap_config; 19062306a36Sopenharmony_ci 19162306a36Sopenharmony_ci memcpy(®map_config, &ocelot_spi_regmap_config, sizeof(regmap_config)); 19262306a36Sopenharmony_ci 19362306a36Sopenharmony_ci regmap_config.name = res->name; 19462306a36Sopenharmony_ci regmap_config.max_register = resource_size(res) - 1; 19562306a36Sopenharmony_ci regmap_config.reg_base = res->start; 19662306a36Sopenharmony_ci 19762306a36Sopenharmony_ci return devm_regmap_init(dev, &ocelot_spi_regmap_bus, dev, ®map_config); 19862306a36Sopenharmony_ci} 19962306a36Sopenharmony_ciEXPORT_SYMBOL_NS(ocelot_spi_init_regmap, MFD_OCELOT_SPI); 20062306a36Sopenharmony_ci 20162306a36Sopenharmony_cistatic int ocelot_spi_probe(struct spi_device *spi) 20262306a36Sopenharmony_ci{ 20362306a36Sopenharmony_ci struct device *dev = &spi->dev; 20462306a36Sopenharmony_ci struct ocelot_ddata *ddata; 20562306a36Sopenharmony_ci struct regmap *r; 20662306a36Sopenharmony_ci int err; 20762306a36Sopenharmony_ci 20862306a36Sopenharmony_ci ddata = devm_kzalloc(dev, sizeof(*ddata), GFP_KERNEL); 20962306a36Sopenharmony_ci if (!ddata) 21062306a36Sopenharmony_ci return -ENOMEM; 21162306a36Sopenharmony_ci 21262306a36Sopenharmony_ci spi_set_drvdata(spi, ddata); 21362306a36Sopenharmony_ci 21462306a36Sopenharmony_ci if (spi->max_speed_hz <= 500000) { 21562306a36Sopenharmony_ci ddata->spi_padding_bytes = 0; 21662306a36Sopenharmony_ci } else { 21762306a36Sopenharmony_ci /* 21862306a36Sopenharmony_ci * Calculation taken from the manual for IF_CFGSTAT:IF_CFG. 21962306a36Sopenharmony_ci * Register access time is 1us, so we need to configure and send 22062306a36Sopenharmony_ci * out enough padding bytes between the read request and data 22162306a36Sopenharmony_ci * transmission that lasts at least 1 microsecond. 22262306a36Sopenharmony_ci */ 22362306a36Sopenharmony_ci ddata->spi_padding_bytes = 1 + (spi->max_speed_hz / HZ_PER_MHZ + 2) / 8; 22462306a36Sopenharmony_ci 22562306a36Sopenharmony_ci ddata->dummy_buf = devm_kzalloc(dev, ddata->spi_padding_bytes, GFP_KERNEL); 22662306a36Sopenharmony_ci if (!ddata->dummy_buf) 22762306a36Sopenharmony_ci return -ENOMEM; 22862306a36Sopenharmony_ci } 22962306a36Sopenharmony_ci 23062306a36Sopenharmony_ci spi->bits_per_word = 8; 23162306a36Sopenharmony_ci 23262306a36Sopenharmony_ci err = spi_setup(spi); 23362306a36Sopenharmony_ci if (err) 23462306a36Sopenharmony_ci return dev_err_probe(&spi->dev, err, "Error performing SPI setup\n"); 23562306a36Sopenharmony_ci 23662306a36Sopenharmony_ci r = ocelot_spi_init_regmap(dev, &vsc7512_dev_cpuorg_resource); 23762306a36Sopenharmony_ci if (IS_ERR(r)) 23862306a36Sopenharmony_ci return PTR_ERR(r); 23962306a36Sopenharmony_ci 24062306a36Sopenharmony_ci ddata->cpuorg_regmap = r; 24162306a36Sopenharmony_ci 24262306a36Sopenharmony_ci r = ocelot_spi_init_regmap(dev, &vsc7512_gcb_resource); 24362306a36Sopenharmony_ci if (IS_ERR(r)) 24462306a36Sopenharmony_ci return PTR_ERR(r); 24562306a36Sopenharmony_ci 24662306a36Sopenharmony_ci ddata->gcb_regmap = r; 24762306a36Sopenharmony_ci 24862306a36Sopenharmony_ci /* 24962306a36Sopenharmony_ci * The chip must be set up for SPI before it gets initialized and reset. 25062306a36Sopenharmony_ci * This must be done before calling init, and after a chip reset is 25162306a36Sopenharmony_ci * performed. 25262306a36Sopenharmony_ci */ 25362306a36Sopenharmony_ci err = ocelot_spi_initialize(dev); 25462306a36Sopenharmony_ci if (err) 25562306a36Sopenharmony_ci return dev_err_probe(dev, err, "Error initializing SPI bus\n"); 25662306a36Sopenharmony_ci 25762306a36Sopenharmony_ci err = ocelot_chip_reset(dev); 25862306a36Sopenharmony_ci if (err) 25962306a36Sopenharmony_ci return dev_err_probe(dev, err, "Error resetting device\n"); 26062306a36Sopenharmony_ci 26162306a36Sopenharmony_ci /* 26262306a36Sopenharmony_ci * A chip reset will clear the SPI configuration, so it needs to be done 26362306a36Sopenharmony_ci * again before we can access any registers. 26462306a36Sopenharmony_ci */ 26562306a36Sopenharmony_ci err = ocelot_spi_initialize(dev); 26662306a36Sopenharmony_ci if (err) 26762306a36Sopenharmony_ci return dev_err_probe(dev, err, "Error initializing SPI bus after reset\n"); 26862306a36Sopenharmony_ci 26962306a36Sopenharmony_ci err = ocelot_core_init(dev); 27062306a36Sopenharmony_ci if (err) 27162306a36Sopenharmony_ci return dev_err_probe(dev, err, "Error initializing Ocelot core\n"); 27262306a36Sopenharmony_ci 27362306a36Sopenharmony_ci return 0; 27462306a36Sopenharmony_ci} 27562306a36Sopenharmony_ci 27662306a36Sopenharmony_cistatic const struct spi_device_id ocelot_spi_ids[] = { 27762306a36Sopenharmony_ci { "vsc7512", 0 }, 27862306a36Sopenharmony_ci { } 27962306a36Sopenharmony_ci}; 28062306a36Sopenharmony_ciMODULE_DEVICE_TABLE(spi, ocelot_spi_ids); 28162306a36Sopenharmony_ci 28262306a36Sopenharmony_cistatic const struct of_device_id ocelot_spi_of_match[] = { 28362306a36Sopenharmony_ci { .compatible = "mscc,vsc7512" }, 28462306a36Sopenharmony_ci { } 28562306a36Sopenharmony_ci}; 28662306a36Sopenharmony_ciMODULE_DEVICE_TABLE(of, ocelot_spi_of_match); 28762306a36Sopenharmony_ci 28862306a36Sopenharmony_cistatic struct spi_driver ocelot_spi_driver = { 28962306a36Sopenharmony_ci .driver = { 29062306a36Sopenharmony_ci .name = "ocelot-soc", 29162306a36Sopenharmony_ci .of_match_table = ocelot_spi_of_match, 29262306a36Sopenharmony_ci }, 29362306a36Sopenharmony_ci .id_table = ocelot_spi_ids, 29462306a36Sopenharmony_ci .probe = ocelot_spi_probe, 29562306a36Sopenharmony_ci}; 29662306a36Sopenharmony_cimodule_spi_driver(ocelot_spi_driver); 29762306a36Sopenharmony_ci 29862306a36Sopenharmony_ciMODULE_DESCRIPTION("SPI Controlled Ocelot Chip Driver"); 29962306a36Sopenharmony_ciMODULE_AUTHOR("Colin Foster <colin.foster@in-advantage.com>"); 30062306a36Sopenharmony_ciMODULE_LICENSE("Dual MIT/GPL"); 30162306a36Sopenharmony_ciMODULE_IMPORT_NS(MFD_OCELOT); 302