1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2019 Samsung Electronics Co., Ltd.
4 * Author: Lukasz Luba <l.luba@partner.samsung.com>
5 */
6
7#include <linux/clk.h>
8#include <linux/devfreq.h>
9#include <linux/devfreq-event.h>
10#include <linux/device.h>
11#include <linux/interrupt.h>
12#include <linux/io.h>
13#include <linux/mfd/syscon.h>
14#include <linux/module.h>
15#include <linux/moduleparam.h>
16#include <linux/of.h>
17#include <linux/pm_opp.h>
18#include <linux/platform_device.h>
19#include <linux/regmap.h>
20#include <linux/regulator/consumer.h>
21#include <linux/slab.h>
22#include "../jedec_ddr.h"
23#include "../of_memory.h"
24
25static int irqmode;
26module_param(irqmode, int, 0644);
27MODULE_PARM_DESC(irqmode, "Enable IRQ mode (0=off [default], 1=on)");
28
29#define EXYNOS5_DREXI_TIMINGAREF		(0x0030)
30#define EXYNOS5_DREXI_TIMINGROW0		(0x0034)
31#define EXYNOS5_DREXI_TIMINGDATA0		(0x0038)
32#define EXYNOS5_DREXI_TIMINGPOWER0		(0x003C)
33#define EXYNOS5_DREXI_TIMINGROW1		(0x00E4)
34#define EXYNOS5_DREXI_TIMINGDATA1		(0x00E8)
35#define EXYNOS5_DREXI_TIMINGPOWER1		(0x00EC)
36#define CDREX_PAUSE				(0x2091c)
37#define CDREX_LPDDR3PHY_CON3			(0x20a20)
38#define CDREX_LPDDR3PHY_CLKM_SRC		(0x20700)
39#define EXYNOS5_TIMING_SET_SWI			BIT(28)
40#define USE_MX_MSPLL_TIMINGS			(1)
41#define USE_BPLL_TIMINGS			(0)
42#define EXYNOS5_AREF_NORMAL			(0x2e)
43
44#define DREX_PPCCLKCON		(0x0130)
45#define DREX_PEREV2CONFIG	(0x013c)
46#define DREX_PMNC_PPC		(0xE000)
47#define DREX_CNTENS_PPC		(0xE010)
48#define DREX_CNTENC_PPC		(0xE020)
49#define DREX_INTENS_PPC		(0xE030)
50#define DREX_INTENC_PPC		(0xE040)
51#define DREX_FLAG_PPC		(0xE050)
52#define DREX_PMCNT2_PPC		(0xE130)
53
54/*
55 * A value for register DREX_PMNC_PPC which should be written to reset
56 * the cycle counter CCNT (a reference wall clock). It sets zero to the
57 * CCNT counter.
58 */
59#define CC_RESET		BIT(2)
60
61/*
62 * A value for register DREX_PMNC_PPC which does the reset of all performance
63 * counters to zero.
64 */
65#define PPC_COUNTER_RESET	BIT(1)
66
67/*
68 * Enables all configured counters (including cycle counter). The value should
69 * be written to the register DREX_PMNC_PPC.
70 */
71#define PPC_ENABLE		BIT(0)
72
73/* A value for register DREX_PPCCLKCON which enables performance events clock.
74 * Must be written before first access to the performance counters register
75 * set, otherwise it could crash.
76 */
77#define PEREV_CLK_EN		BIT(0)
78
79/*
80 * Values which are used to enable counters, interrupts or configure flags of
81 * the performance counters. They configure counter 2 and cycle counter.
82 */
83#define PERF_CNT2		BIT(2)
84#define PERF_CCNT		BIT(31)
85
86/*
87 * Performance event types which are used for setting the preferred event
88 * to track in the counters.
89 * There is a set of different types, the values are from range 0 to 0x6f.
90 * These settings should be written to the configuration register which manages
91 * the type of the event (register DREX_PEREV2CONFIG).
92 */
93#define READ_TRANSFER_CH0	(0x6d)
94#define READ_TRANSFER_CH1	(0x6f)
95
96#define PERF_COUNTER_START_VALUE 0xff000000
97#define PERF_EVENT_UP_DOWN_THRESHOLD 900000000ULL
98
99/**
100 * struct dmc_opp_table - Operating level desciption
101 * @freq_hz:		target frequency in Hz
102 * @volt_uv:		target voltage in uV
103 *
104 * Covers frequency and voltage settings of the DMC operating mode.
105 */
106struct dmc_opp_table {
107	u32 freq_hz;
108	u32 volt_uv;
109};
110
111/**
112 * struct exynos5_dmc - main structure describing DMC device
113 * @dev:		DMC device
114 * @df:			devfreq device structure returned by devfreq framework
115 * @gov_data:		configuration of devfreq governor
116 * @base_drexi0:	DREX0 registers mapping
117 * @base_drexi1:	DREX1 registers mapping
118 * @clk_regmap:		regmap for clock controller registers
119 * @lock:		protects curr_rate and frequency/voltage setting section
120 * @curr_rate:		current frequency
121 * @curr_volt:		current voltage
122 * @opp:		OPP table
123 * @opp_count:		number of 'opp' elements
124 * @timings_arr_size:	number of 'timings' elements
125 * @timing_row:		values for timing row register, for each OPP
126 * @timing_data:	values for timing data register, for each OPP
127 * @timing_power:	balues for timing power register, for each OPP
128 * @timings:		DDR memory timings, from device tree
129 * @min_tck:		DDR memory minimum timing values, from device tree
130 * @bypass_timing_row:	value for timing row register for bypass timings
131 * @bypass_timing_data:	value for timing data register for bypass timings
132 * @bypass_timing_power:	value for timing power register for bypass
133 *				timings
134 * @vdd_mif:		Memory interface regulator
135 * @fout_spll:		clock: SPLL
136 * @fout_bpll:		clock: BPLL
137 * @mout_spll:		clock: mux SPLL
138 * @mout_bpll:		clock: mux BPLL
139 * @mout_mclk_cdrex:	clock: mux mclk_cdrex
140 * @mout_mx_mspll_ccore:	clock: mux mx_mspll_ccore
141 * @counter:		devfreq events
142 * @num_counters:	number of 'counter' elements
143 * @last_overflow_ts:	time (in ns) of last overflow of each DREX
144 * @load:		utilization in percents
145 * @total:		total time between devfreq events
146 * @in_irq_mode:	whether running in interrupt mode (true)
147 *			or polling (false)
148 *
149 * The main structure for the Dynamic Memory Controller which covers clocks,
150 * memory regions, HW information, parameters and current operating mode.
151 */
152struct exynos5_dmc {
153	struct device *dev;
154	struct devfreq *df;
155	struct devfreq_simple_ondemand_data gov_data;
156	void __iomem *base_drexi0;
157	void __iomem *base_drexi1;
158	struct regmap *clk_regmap;
159	/* Protects curr_rate and frequency/voltage setting section */
160	struct mutex lock;
161	unsigned long curr_rate;
162	unsigned long curr_volt;
163	struct dmc_opp_table *opp;
164	int opp_count;
165	u32 timings_arr_size;
166	u32 *timing_row;
167	u32 *timing_data;
168	u32 *timing_power;
169	const struct lpddr3_timings *timings;
170	const struct lpddr3_min_tck *min_tck;
171	u32 bypass_timing_row;
172	u32 bypass_timing_data;
173	u32 bypass_timing_power;
174	struct regulator *vdd_mif;
175	struct clk *fout_spll;
176	struct clk *fout_bpll;
177	struct clk *mout_spll;
178	struct clk *mout_bpll;
179	struct clk *mout_mclk_cdrex;
180	struct clk *mout_mx_mspll_ccore;
181	struct devfreq_event_dev **counter;
182	int num_counters;
183	u64 last_overflow_ts[2];
184	unsigned long load;
185	unsigned long total;
186	bool in_irq_mode;
187};
188
189#define TIMING_FIELD(t_name, t_bit_beg, t_bit_end) \
190	{ .name = t_name, .bit_beg = t_bit_beg, .bit_end = t_bit_end }
191
192#define TIMING_VAL2REG(timing, t_val)			\
193({							\
194		u32 __val;				\
195		__val = (t_val) << (timing)->bit_beg;	\
196		__val;					\
197})
198
199struct timing_reg {
200	char *name;
201	int bit_beg;
202	int bit_end;
203	unsigned int val;
204};
205
206static const struct timing_reg timing_row_reg_fields[] = {
207	TIMING_FIELD("tRFC", 24, 31),
208	TIMING_FIELD("tRRD", 20, 23),
209	TIMING_FIELD("tRP", 16, 19),
210	TIMING_FIELD("tRCD", 12, 15),
211	TIMING_FIELD("tRC", 6, 11),
212	TIMING_FIELD("tRAS", 0, 5),
213};
214
215static const struct timing_reg timing_data_reg_fields[] = {
216	TIMING_FIELD("tWTR", 28, 31),
217	TIMING_FIELD("tWR", 24, 27),
218	TIMING_FIELD("tRTP", 20, 23),
219	TIMING_FIELD("tW2W-C2C", 14, 14),
220	TIMING_FIELD("tR2R-C2C", 12, 12),
221	TIMING_FIELD("WL", 8, 11),
222	TIMING_FIELD("tDQSCK", 4, 7),
223	TIMING_FIELD("RL", 0, 3),
224};
225
226static const struct timing_reg timing_power_reg_fields[] = {
227	TIMING_FIELD("tFAW", 26, 31),
228	TIMING_FIELD("tXSR", 16, 25),
229	TIMING_FIELD("tXP", 8, 15),
230	TIMING_FIELD("tCKE", 4, 7),
231	TIMING_FIELD("tMRD", 0, 3),
232};
233
234#define TIMING_COUNT (ARRAY_SIZE(timing_row_reg_fields) + \
235		      ARRAY_SIZE(timing_data_reg_fields) + \
236		      ARRAY_SIZE(timing_power_reg_fields))
237
238static int exynos5_counters_set_event(struct exynos5_dmc *dmc)
239{
240	int i, ret;
241
242	for (i = 0; i < dmc->num_counters; i++) {
243		if (!dmc->counter[i])
244			continue;
245		ret = devfreq_event_set_event(dmc->counter[i]);
246		if (ret < 0)
247			return ret;
248	}
249	return 0;
250}
251
252static int exynos5_counters_enable_edev(struct exynos5_dmc *dmc)
253{
254	int i, ret;
255
256	for (i = 0; i < dmc->num_counters; i++) {
257		if (!dmc->counter[i])
258			continue;
259		ret = devfreq_event_enable_edev(dmc->counter[i]);
260		if (ret < 0)
261			return ret;
262	}
263	return 0;
264}
265
266static int exynos5_counters_disable_edev(struct exynos5_dmc *dmc)
267{
268	int i, ret;
269
270	for (i = 0; i < dmc->num_counters; i++) {
271		if (!dmc->counter[i])
272			continue;
273		ret = devfreq_event_disable_edev(dmc->counter[i]);
274		if (ret < 0)
275			return ret;
276	}
277	return 0;
278}
279
280/**
281 * find_target_freq_idx() - Finds requested frequency in local DMC configuration
282 * @dmc:	device for which the information is checked
283 * @target_rate:	requested frequency in KHz
284 *
285 * Seeks in the local DMC driver structure for the requested frequency value
286 * and returns index or error value.
287 */
288static int find_target_freq_idx(struct exynos5_dmc *dmc,
289				unsigned long target_rate)
290{
291	int i;
292
293	for (i = dmc->opp_count - 1; i >= 0; i--)
294		if (dmc->opp[i].freq_hz <= target_rate)
295			return i;
296
297	return -EINVAL;
298}
299
300/**
301 * exynos5_switch_timing_regs() - Changes bank register set for DRAM timings
302 * @dmc:	device for which the new settings is going to be applied
303 * @set:	boolean variable passing set value
304 *
305 * Changes the register set, which holds timing parameters.
306 * There is two register sets: 0 and 1. The register set 0
307 * is used in normal operation when the clock is provided from main PLL.
308 * The bank register set 1 is used when the main PLL frequency is going to be
309 * changed and the clock is taken from alternative, stable source.
310 * This function switches between these banks according to the
311 * currently used clock source.
312 */
313static int exynos5_switch_timing_regs(struct exynos5_dmc *dmc, bool set)
314{
315	unsigned int reg;
316	int ret;
317
318	ret = regmap_read(dmc->clk_regmap, CDREX_LPDDR3PHY_CON3, &reg);
319	if (ret)
320		return ret;
321
322	if (set)
323		reg |= EXYNOS5_TIMING_SET_SWI;
324	else
325		reg &= ~EXYNOS5_TIMING_SET_SWI;
326
327	regmap_write(dmc->clk_regmap, CDREX_LPDDR3PHY_CON3, reg);
328
329	return 0;
330}
331
332/**
333 * exynos5_init_freq_table() - Initialized PM OPP framework
334 * @dmc:	DMC device for which the frequencies are used for OPP init
335 * @profile:	devfreq device's profile
336 *
337 * Populate the devfreq device's OPP table based on current frequency, voltage.
338 */
339static int exynos5_init_freq_table(struct exynos5_dmc *dmc,
340				   struct devfreq_dev_profile *profile)
341{
342	int i, ret;
343	int idx;
344	unsigned long freq;
345
346	ret = devm_pm_opp_of_add_table(dmc->dev);
347	if (ret < 0) {
348		dev_err(dmc->dev, "Failed to get OPP table\n");
349		return ret;
350	}
351
352	dmc->opp_count = dev_pm_opp_get_opp_count(dmc->dev);
353
354	dmc->opp = devm_kmalloc_array(dmc->dev, dmc->opp_count,
355				      sizeof(struct dmc_opp_table), GFP_KERNEL);
356	if (!dmc->opp)
357		return -ENOMEM;
358
359	idx = dmc->opp_count - 1;
360	for (i = 0, freq = ULONG_MAX; i < dmc->opp_count; i++, freq--) {
361		struct dev_pm_opp *opp;
362
363		opp = dev_pm_opp_find_freq_floor(dmc->dev, &freq);
364		if (IS_ERR(opp))
365			return PTR_ERR(opp);
366
367		dmc->opp[idx - i].freq_hz = freq;
368		dmc->opp[idx - i].volt_uv = dev_pm_opp_get_voltage(opp);
369
370		dev_pm_opp_put(opp);
371	}
372
373	return 0;
374}
375
376/**
377 * exynos5_set_bypass_dram_timings() - Low-level changes of the DRAM timings
378 * @dmc:	device for which the new settings is going to be applied
379 *
380 * Low-level function for changing timings for DRAM memory clocking from
381 * 'bypass' clock source (fixed frequency @400MHz).
382 * It uses timing bank registers set 1.
383 */
384static void exynos5_set_bypass_dram_timings(struct exynos5_dmc *dmc)
385{
386	writel(EXYNOS5_AREF_NORMAL,
387	       dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGAREF);
388
389	writel(dmc->bypass_timing_row,
390	       dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGROW1);
391	writel(dmc->bypass_timing_row,
392	       dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGROW1);
393	writel(dmc->bypass_timing_data,
394	       dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGDATA1);
395	writel(dmc->bypass_timing_data,
396	       dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGDATA1);
397	writel(dmc->bypass_timing_power,
398	       dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGPOWER1);
399	writel(dmc->bypass_timing_power,
400	       dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGPOWER1);
401}
402
403/**
404 * exynos5_dram_change_timings() - Low-level changes of the DRAM final timings
405 * @dmc:	device for which the new settings is going to be applied
406 * @target_rate:	target frequency of the DMC
407 *
408 * Low-level function for changing timings for DRAM memory operating from main
409 * clock source (BPLL), which can have different frequencies. Thus, each
410 * frequency must have corresponding timings register values in order to keep
411 * the needed delays.
412 * It uses timing bank registers set 0.
413 */
414static int exynos5_dram_change_timings(struct exynos5_dmc *dmc,
415				       unsigned long target_rate)
416{
417	int idx;
418
419	for (idx = dmc->opp_count - 1; idx >= 0; idx--)
420		if (dmc->opp[idx].freq_hz <= target_rate)
421			break;
422
423	if (idx < 0)
424		return -EINVAL;
425
426	writel(EXYNOS5_AREF_NORMAL,
427	       dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGAREF);
428
429	writel(dmc->timing_row[idx],
430	       dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGROW0);
431	writel(dmc->timing_row[idx],
432	       dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGROW0);
433	writel(dmc->timing_data[idx],
434	       dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGDATA0);
435	writel(dmc->timing_data[idx],
436	       dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGDATA0);
437	writel(dmc->timing_power[idx],
438	       dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGPOWER0);
439	writel(dmc->timing_power[idx],
440	       dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGPOWER0);
441
442	return 0;
443}
444
445/**
446 * exynos5_dmc_align_target_voltage() - Sets the final voltage for the DMC
447 * @dmc:	device for which it is going to be set
448 * @target_volt:	new voltage which is chosen to be final
449 *
450 * Function tries to align voltage to the safe level for 'normal' mode.
451 * It checks the need of higher voltage and changes the value. The target
452 * voltage might be lower that currently set and still the system will be
453 * stable.
454 */
455static int exynos5_dmc_align_target_voltage(struct exynos5_dmc *dmc,
456					    unsigned long target_volt)
457{
458	int ret = 0;
459
460	if (dmc->curr_volt <= target_volt)
461		return 0;
462
463	ret = regulator_set_voltage(dmc->vdd_mif, target_volt,
464				    target_volt);
465	if (!ret)
466		dmc->curr_volt = target_volt;
467
468	return ret;
469}
470
471/**
472 * exynos5_dmc_align_bypass_voltage() - Sets the voltage for the DMC
473 * @dmc:	device for which it is going to be set
474 * @target_volt:	new voltage which is chosen to be final
475 *
476 * Function tries to align voltage to the safe level for the 'bypass' mode.
477 * It checks the need of higher voltage and changes the value.
478 * The target voltage must not be less than currently needed, because
479 * for current frequency the device might become unstable.
480 */
481static int exynos5_dmc_align_bypass_voltage(struct exynos5_dmc *dmc,
482					    unsigned long target_volt)
483{
484	int ret = 0;
485
486	if (dmc->curr_volt >= target_volt)
487		return 0;
488
489	ret = regulator_set_voltage(dmc->vdd_mif, target_volt,
490				    target_volt);
491	if (!ret)
492		dmc->curr_volt = target_volt;
493
494	return ret;
495}
496
497/**
498 * exynos5_dmc_align_bypass_dram_timings() - Chooses and sets DRAM timings
499 * @dmc:	device for which it is going to be set
500 * @target_rate:	new frequency which is chosen to be final
501 *
502 * Function changes the DRAM timings for the temporary 'bypass' mode.
503 */
504static int exynos5_dmc_align_bypass_dram_timings(struct exynos5_dmc *dmc,
505						 unsigned long target_rate)
506{
507	int idx = find_target_freq_idx(dmc, target_rate);
508
509	if (idx < 0)
510		return -EINVAL;
511
512	exynos5_set_bypass_dram_timings(dmc);
513
514	return 0;
515}
516
517/**
518 * exynos5_dmc_switch_to_bypass_configuration() - Switching to temporary clock
519 * @dmc:	DMC device for which the switching is going to happen
520 * @target_rate:	new frequency which is going to be set as a final
521 * @target_volt:	new voltage which is going to be set as a final
522 *
523 * Function configures DMC and clocks for operating in temporary 'bypass' mode.
524 * This mode is used only temporary but if required, changes voltage and timings
525 * for DRAM chips. It switches the main clock to stable clock source for the
526 * period of the main PLL reconfiguration.
527 */
528static int
529exynos5_dmc_switch_to_bypass_configuration(struct exynos5_dmc *dmc,
530					   unsigned long target_rate,
531					   unsigned long target_volt)
532{
533	int ret;
534
535	/*
536	 * Having higher voltage for a particular frequency does not harm
537	 * the chip. Use it for the temporary frequency change when one
538	 * voltage manipulation might be avoided.
539	 */
540	ret = exynos5_dmc_align_bypass_voltage(dmc, target_volt);
541	if (ret)
542		return ret;
543
544	/*
545	 * Longer delays for DRAM does not cause crash, the opposite does.
546	 */
547	ret = exynos5_dmc_align_bypass_dram_timings(dmc, target_rate);
548	if (ret)
549		return ret;
550
551	/*
552	 * Delays are long enough, so use them for the new coming clock.
553	 */
554	ret = exynos5_switch_timing_regs(dmc, USE_MX_MSPLL_TIMINGS);
555
556	return ret;
557}
558
559/**
560 * exynos5_dmc_change_freq_and_volt() - Changes voltage and frequency of the DMC
561 * using safe procedure
562 * @dmc:	device for which the frequency is going to be changed
563 * @target_rate:	requested new frequency
564 * @target_volt:	requested voltage which corresponds to the new frequency
565 *
566 * The DMC frequency change procedure requires a few steps.
567 * The main requirement is to change the clock source in the clk mux
568 * for the time of main clock PLL locking. The assumption is that the
569 * alternative clock source set as parent is stable.
570 * The second parent's clock frequency is fixed to 400MHz, it is named 'bypass'
571 * clock. This requires alignment in DRAM timing parameters for the new
572 * T-period. There is two bank sets for keeping DRAM
573 * timings: set 0 and set 1. The set 0 is used when main clock source is
574 * chosen. The 2nd set of regs is used for 'bypass' clock. Switching between
575 * the two bank sets is part of the process.
576 * The voltage must also be aligned to the minimum required level. There is
577 * this intermediate step with switching to 'bypass' parent clock source.
578 * if the old voltage is lower, it requires an increase of the voltage level.
579 * The complexity of the voltage manipulation is hidden in low level function.
580 * In this function there is last alignment of the voltage level at the end.
581 */
582static int
583exynos5_dmc_change_freq_and_volt(struct exynos5_dmc *dmc,
584				 unsigned long target_rate,
585				 unsigned long target_volt)
586{
587	int ret;
588
589	ret = exynos5_dmc_switch_to_bypass_configuration(dmc, target_rate,
590							 target_volt);
591	if (ret)
592		return ret;
593
594	/*
595	 * Voltage is set at least to a level needed for this frequency,
596	 * so switching clock source is safe now.
597	 */
598	clk_prepare_enable(dmc->fout_spll);
599	clk_prepare_enable(dmc->mout_spll);
600	clk_prepare_enable(dmc->mout_mx_mspll_ccore);
601
602	ret = clk_set_parent(dmc->mout_mclk_cdrex, dmc->mout_mx_mspll_ccore);
603	if (ret)
604		goto disable_clocks;
605
606	/*
607	 * We are safe to increase the timings for current bypass frequency.
608	 * Thanks to this the settings will be ready for the upcoming clock
609	 * source change.
610	 */
611	exynos5_dram_change_timings(dmc, target_rate);
612
613	clk_set_rate(dmc->fout_bpll, target_rate);
614
615	ret = exynos5_switch_timing_regs(dmc, USE_BPLL_TIMINGS);
616	if (ret)
617		goto disable_clocks;
618
619	ret = clk_set_parent(dmc->mout_mclk_cdrex, dmc->mout_bpll);
620	if (ret)
621		goto disable_clocks;
622
623	/*
624	 * Make sure if the voltage is not from 'bypass' settings and align to
625	 * the right level for power efficiency.
626	 */
627	ret = exynos5_dmc_align_target_voltage(dmc, target_volt);
628
629disable_clocks:
630	clk_disable_unprepare(dmc->mout_mx_mspll_ccore);
631	clk_disable_unprepare(dmc->mout_spll);
632	clk_disable_unprepare(dmc->fout_spll);
633
634	return ret;
635}
636
637/**
638 * exynos5_dmc_get_volt_freq() - Gets the frequency and voltage from the OPP
639 * table.
640 * @dmc:	device for which the frequency is going to be changed
641 * @freq:       requested frequency in KHz
642 * @target_rate:	returned frequency which is the same or lower than
643 *			requested
644 * @target_volt:	returned voltage which corresponds to the returned
645 *			frequency
646 * @flags:	devfreq flags provided for this frequency change request
647 *
648 * Function gets requested frequency and checks OPP framework for needed
649 * frequency and voltage. It populates the values 'target_rate' and
650 * 'target_volt' or returns error value when OPP framework fails.
651 */
652static int exynos5_dmc_get_volt_freq(struct exynos5_dmc *dmc,
653				     unsigned long *freq,
654				     unsigned long *target_rate,
655				     unsigned long *target_volt, u32 flags)
656{
657	struct dev_pm_opp *opp;
658
659	opp = devfreq_recommended_opp(dmc->dev, freq, flags);
660	if (IS_ERR(opp))
661		return PTR_ERR(opp);
662
663	*target_rate = dev_pm_opp_get_freq(opp);
664	*target_volt = dev_pm_opp_get_voltage(opp);
665	dev_pm_opp_put(opp);
666
667	return 0;
668}
669
670/**
671 * exynos5_dmc_target() - Function responsible for changing frequency of DMC
672 * @dev:	device for which the frequency is going to be changed
673 * @freq:	requested frequency in KHz
674 * @flags:	flags provided for this frequency change request
675 *
676 * An entry function provided to the devfreq framework which provides frequency
677 * change of the DMC. The function gets the possible rate from OPP table based
678 * on requested frequency. It calls the next function responsible for the
679 * frequency and voltage change. In case of failure, does not set 'curr_rate'
680 * and returns error value to the framework.
681 */
682static int exynos5_dmc_target(struct device *dev, unsigned long *freq,
683			      u32 flags)
684{
685	struct exynos5_dmc *dmc = dev_get_drvdata(dev);
686	unsigned long target_rate = 0;
687	unsigned long target_volt = 0;
688	int ret;
689
690	ret = exynos5_dmc_get_volt_freq(dmc, freq, &target_rate, &target_volt,
691					flags);
692
693	if (ret)
694		return ret;
695
696	if (target_rate == dmc->curr_rate)
697		return 0;
698
699	mutex_lock(&dmc->lock);
700
701	ret = exynos5_dmc_change_freq_and_volt(dmc, target_rate, target_volt);
702
703	if (ret) {
704		mutex_unlock(&dmc->lock);
705		return ret;
706	}
707
708	dmc->curr_rate = target_rate;
709
710	mutex_unlock(&dmc->lock);
711	return 0;
712}
713
714/**
715 * exynos5_counters_get() - Gets the performance counters values.
716 * @dmc:	device for which the counters are going to be checked
717 * @load_count:	variable which is populated with counter value
718 * @total_count:	variable which is used as 'wall clock' reference
719 *
720 * Function which provides performance counters values. It sums up counters for
721 * two DMC channels. The 'total_count' is used as a reference and max value.
722 * The ratio 'load_count/total_count' shows the busy percentage [0%, 100%].
723 */
724static int exynos5_counters_get(struct exynos5_dmc *dmc,
725				unsigned long *load_count,
726				unsigned long *total_count)
727{
728	unsigned long total = 0;
729	struct devfreq_event_data event;
730	int ret, i;
731
732	*load_count = 0;
733
734	/* Take into account only read+write counters, but stop all */
735	for (i = 0; i < dmc->num_counters; i++) {
736		if (!dmc->counter[i])
737			continue;
738
739		ret = devfreq_event_get_event(dmc->counter[i], &event);
740		if (ret < 0)
741			return ret;
742
743		*load_count += event.load_count;
744
745		if (total < event.total_count)
746			total = event.total_count;
747	}
748
749	*total_count = total;
750
751	return 0;
752}
753
754/**
755 * exynos5_dmc_start_perf_events() - Setup and start performance event counters
756 * @dmc:	device for which the counters are going to be checked
757 * @beg_value:	initial value for the counter
758 *
759 * Function which enables needed counters, interrupts and sets initial values
760 * then starts the counters.
761 */
762static void exynos5_dmc_start_perf_events(struct exynos5_dmc *dmc,
763					  u32 beg_value)
764{
765	/* Enable interrupts for counter 2 */
766	writel(PERF_CNT2, dmc->base_drexi0 + DREX_INTENS_PPC);
767	writel(PERF_CNT2, dmc->base_drexi1 + DREX_INTENS_PPC);
768
769	/* Enable counter 2 and CCNT  */
770	writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi0 + DREX_CNTENS_PPC);
771	writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi1 + DREX_CNTENS_PPC);
772
773	/* Clear overflow flag for all counters */
774	writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi0 + DREX_FLAG_PPC);
775	writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi1 + DREX_FLAG_PPC);
776
777	/* Reset all counters */
778	writel(CC_RESET | PPC_COUNTER_RESET, dmc->base_drexi0 + DREX_PMNC_PPC);
779	writel(CC_RESET | PPC_COUNTER_RESET, dmc->base_drexi1 + DREX_PMNC_PPC);
780
781	/*
782	 * Set start value for the counters, the number of samples that
783	 * will be gathered is calculated as: 0xffffffff - beg_value
784	 */
785	writel(beg_value, dmc->base_drexi0 + DREX_PMCNT2_PPC);
786	writel(beg_value, dmc->base_drexi1 + DREX_PMCNT2_PPC);
787
788	/* Start all counters */
789	writel(PPC_ENABLE, dmc->base_drexi0 + DREX_PMNC_PPC);
790	writel(PPC_ENABLE, dmc->base_drexi1 + DREX_PMNC_PPC);
791}
792
793/**
794 * exynos5_dmc_perf_events_calc() - Calculate utilization
795 * @dmc:	device for which the counters are going to be checked
796 * @diff_ts:	time between last interrupt and current one
797 *
798 * Function which calculates needed utilization for the devfreq governor.
799 * It prepares values for 'busy_time' and 'total_time' based on elapsed time
800 * between interrupts, which approximates utilization.
801 */
802static void exynos5_dmc_perf_events_calc(struct exynos5_dmc *dmc, u64 diff_ts)
803{
804	/*
805	 * This is a simple algorithm for managing traffic on DMC.
806	 * When there is almost no load the counters overflow every 4s,
807	 * no mater the DMC frequency.
808	 * The high load might be approximated using linear function.
809	 * Knowing that, simple calculation can provide 'busy_time' and
810	 * 'total_time' to the devfreq governor which picks up target
811	 * frequency.
812	 * We want a fast ramp up and slow decay in frequency change function.
813	 */
814	if (diff_ts < PERF_EVENT_UP_DOWN_THRESHOLD) {
815		/*
816		 * Set higher utilization for the simple_ondemand governor.
817		 * The governor should increase the frequency of the DMC.
818		 */
819		dmc->load = 70;
820		dmc->total = 100;
821	} else {
822		/*
823		 * Set low utilization for the simple_ondemand governor.
824		 * The governor should decrease the frequency of the DMC.
825		 */
826		dmc->load = 35;
827		dmc->total = 100;
828	}
829
830	dev_dbg(dmc->dev, "diff_ts=%llu\n", diff_ts);
831}
832
833/**
834 * exynos5_dmc_perf_events_check() - Checks the status of the counters
835 * @dmc:	device for which the counters are going to be checked
836 *
837 * Function which is called from threaded IRQ to check the counters state
838 * and to call approximation for the needed utilization.
839 */
840static void exynos5_dmc_perf_events_check(struct exynos5_dmc *dmc)
841{
842	u32 val;
843	u64 diff_ts, ts;
844
845	ts = ktime_get_ns();
846
847	/* Stop all counters */
848	writel(0, dmc->base_drexi0 + DREX_PMNC_PPC);
849	writel(0, dmc->base_drexi1 + DREX_PMNC_PPC);
850
851	/* Check the source in interrupt flag registers (which channel) */
852	val = readl(dmc->base_drexi0 + DREX_FLAG_PPC);
853	if (val) {
854		diff_ts = ts - dmc->last_overflow_ts[0];
855		dmc->last_overflow_ts[0] = ts;
856		dev_dbg(dmc->dev, "drex0 0xE050 val= 0x%08x\n",  val);
857	} else {
858		val = readl(dmc->base_drexi1 + DREX_FLAG_PPC);
859		diff_ts = ts - dmc->last_overflow_ts[1];
860		dmc->last_overflow_ts[1] = ts;
861		dev_dbg(dmc->dev, "drex1 0xE050 val= 0x%08x\n",  val);
862	}
863
864	exynos5_dmc_perf_events_calc(dmc, diff_ts);
865
866	exynos5_dmc_start_perf_events(dmc, PERF_COUNTER_START_VALUE);
867}
868
869/**
870 * exynos5_dmc_enable_perf_events() - Enable performance events
871 * @dmc:	device for which the counters are going to be checked
872 *
873 * Function which is setup needed environment and enables counters.
874 */
875static void exynos5_dmc_enable_perf_events(struct exynos5_dmc *dmc)
876{
877	u64 ts;
878
879	/* Enable Performance Event Clock */
880	writel(PEREV_CLK_EN, dmc->base_drexi0 + DREX_PPCCLKCON);
881	writel(PEREV_CLK_EN, dmc->base_drexi1 + DREX_PPCCLKCON);
882
883	/* Select read transfers as performance event2 */
884	writel(READ_TRANSFER_CH0, dmc->base_drexi0 + DREX_PEREV2CONFIG);
885	writel(READ_TRANSFER_CH1, dmc->base_drexi1 + DREX_PEREV2CONFIG);
886
887	ts = ktime_get_ns();
888	dmc->last_overflow_ts[0] = ts;
889	dmc->last_overflow_ts[1] = ts;
890
891	/* Devfreq shouldn't be faster than initialization, play safe though. */
892	dmc->load = 99;
893	dmc->total = 100;
894}
895
896/**
897 * exynos5_dmc_disable_perf_events() - Disable performance events
898 * @dmc:	device for which the counters are going to be checked
899 *
900 * Function which stops, disables performance event counters and interrupts.
901 */
902static void exynos5_dmc_disable_perf_events(struct exynos5_dmc *dmc)
903{
904	/* Stop all counters */
905	writel(0, dmc->base_drexi0 + DREX_PMNC_PPC);
906	writel(0, dmc->base_drexi1 + DREX_PMNC_PPC);
907
908	/* Disable interrupts for counter 2 */
909	writel(PERF_CNT2, dmc->base_drexi0 + DREX_INTENC_PPC);
910	writel(PERF_CNT2, dmc->base_drexi1 + DREX_INTENC_PPC);
911
912	/* Disable counter 2 and CCNT  */
913	writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi0 + DREX_CNTENC_PPC);
914	writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi1 + DREX_CNTENC_PPC);
915
916	/* Clear overflow flag for all counters */
917	writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi0 + DREX_FLAG_PPC);
918	writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi1 + DREX_FLAG_PPC);
919}
920
921/**
922 * exynos5_dmc_get_status() - Read current DMC performance statistics.
923 * @dev:	device for which the statistics are requested
924 * @stat:	structure which has statistic fields
925 *
926 * Function reads the DMC performance counters and calculates 'busy_time'
927 * and 'total_time'. To protect from overflow, the values are shifted right
928 * by 10. After read out the counters are setup to count again.
929 */
930static int exynos5_dmc_get_status(struct device *dev,
931				  struct devfreq_dev_status *stat)
932{
933	struct exynos5_dmc *dmc = dev_get_drvdata(dev);
934	unsigned long load, total;
935	int ret;
936
937	if (dmc->in_irq_mode) {
938		mutex_lock(&dmc->lock);
939		stat->current_frequency = dmc->curr_rate;
940		mutex_unlock(&dmc->lock);
941
942		stat->busy_time = dmc->load;
943		stat->total_time = dmc->total;
944	} else {
945		ret = exynos5_counters_get(dmc, &load, &total);
946		if (ret < 0)
947			return -EINVAL;
948
949		/* To protect from overflow, divide by 1024 */
950		stat->busy_time = load >> 10;
951		stat->total_time = total >> 10;
952
953		ret = exynos5_counters_set_event(dmc);
954		if (ret < 0) {
955			dev_err(dev, "could not set event counter\n");
956			return ret;
957		}
958	}
959
960	return 0;
961}
962
963/**
964 * exynos5_dmc_get_cur_freq() - Function returns current DMC frequency
965 * @dev:	device for which the framework checks operating frequency
966 * @freq:	returned frequency value
967 *
968 * It returns the currently used frequency of the DMC. The real operating
969 * frequency might be lower when the clock source value could not be divided
970 * to the requested value.
971 */
972static int exynos5_dmc_get_cur_freq(struct device *dev, unsigned long *freq)
973{
974	struct exynos5_dmc *dmc = dev_get_drvdata(dev);
975
976	mutex_lock(&dmc->lock);
977	*freq = dmc->curr_rate;
978	mutex_unlock(&dmc->lock);
979
980	return 0;
981}
982
983/*
984 * exynos5_dmc_df_profile - Devfreq governor's profile structure
985 *
986 * It provides to the devfreq framework needed functions and polling period.
987 */
988static struct devfreq_dev_profile exynos5_dmc_df_profile = {
989	.timer = DEVFREQ_TIMER_DELAYED,
990	.target = exynos5_dmc_target,
991	.get_dev_status = exynos5_dmc_get_status,
992	.get_cur_freq = exynos5_dmc_get_cur_freq,
993};
994
995/**
996 * exynos5_dmc_align_init_freq() - Align initial frequency value
997 * @dmc:	device for which the frequency is going to be set
998 * @bootloader_init_freq:	initial frequency set by the bootloader in KHz
999 *
1000 * The initial bootloader frequency, which is present during boot, might be
1001 * different that supported frequency values in the driver. It is possible
1002 * due to different PLL settings or used PLL as a source.
1003 * This function provides the 'initial_freq' for the devfreq framework
1004 * statistics engine which supports only registered values. Thus, some alignment
1005 * must be made.
1006 */
1007static unsigned long
1008exynos5_dmc_align_init_freq(struct exynos5_dmc *dmc,
1009			    unsigned long bootloader_init_freq)
1010{
1011	unsigned long aligned_freq;
1012	int idx;
1013
1014	idx = find_target_freq_idx(dmc, bootloader_init_freq);
1015	if (idx >= 0)
1016		aligned_freq = dmc->opp[idx].freq_hz;
1017	else
1018		aligned_freq = dmc->opp[dmc->opp_count - 1].freq_hz;
1019
1020	return aligned_freq;
1021}
1022
1023/**
1024 * create_timings_aligned() - Create register values and align with standard
1025 * @dmc:	device for which the frequency is going to be set
1026 * @reg_timing_row:	array to fill with values for timing row register
1027 * @reg_timing_data:	array to fill with values for timing data register
1028 * @reg_timing_power:	array to fill with values for timing power register
1029 * @clk_period_ps:	the period of the clock, known as tCK
1030 *
1031 * The function calculates timings and creates a register value ready for
1032 * a frequency transition. The register contains a few timings. They are
1033 * shifted by a known offset. The timing value is calculated based on memory
1034 * specyfication: minimal time required and minimal cycles required.
1035 */
1036static int create_timings_aligned(struct exynos5_dmc *dmc, u32 *reg_timing_row,
1037				  u32 *reg_timing_data, u32 *reg_timing_power,
1038				  u32 clk_period_ps)
1039{
1040	u32 val;
1041	const struct timing_reg *reg;
1042
1043	if (clk_period_ps == 0)
1044		return -EINVAL;
1045
1046	*reg_timing_row = 0;
1047	*reg_timing_data = 0;
1048	*reg_timing_power = 0;
1049
1050	val = dmc->timings->tRFC / clk_period_ps;
1051	val += dmc->timings->tRFC % clk_period_ps ? 1 : 0;
1052	val = max(val, dmc->min_tck->tRFC);
1053	reg = &timing_row_reg_fields[0];
1054	*reg_timing_row |= TIMING_VAL2REG(reg, val);
1055
1056	val = dmc->timings->tRRD / clk_period_ps;
1057	val += dmc->timings->tRRD % clk_period_ps ? 1 : 0;
1058	val = max(val, dmc->min_tck->tRRD);
1059	reg = &timing_row_reg_fields[1];
1060	*reg_timing_row |= TIMING_VAL2REG(reg, val);
1061
1062	val = dmc->timings->tRPab / clk_period_ps;
1063	val += dmc->timings->tRPab % clk_period_ps ? 1 : 0;
1064	val = max(val, dmc->min_tck->tRPab);
1065	reg = &timing_row_reg_fields[2];
1066	*reg_timing_row |= TIMING_VAL2REG(reg, val);
1067
1068	val = dmc->timings->tRCD / clk_period_ps;
1069	val += dmc->timings->tRCD % clk_period_ps ? 1 : 0;
1070	val = max(val, dmc->min_tck->tRCD);
1071	reg = &timing_row_reg_fields[3];
1072	*reg_timing_row |= TIMING_VAL2REG(reg, val);
1073
1074	val = dmc->timings->tRC / clk_period_ps;
1075	val += dmc->timings->tRC % clk_period_ps ? 1 : 0;
1076	val = max(val, dmc->min_tck->tRC);
1077	reg = &timing_row_reg_fields[4];
1078	*reg_timing_row |= TIMING_VAL2REG(reg, val);
1079
1080	val = dmc->timings->tRAS / clk_period_ps;
1081	val += dmc->timings->tRAS % clk_period_ps ? 1 : 0;
1082	val = max(val, dmc->min_tck->tRAS);
1083	reg = &timing_row_reg_fields[5];
1084	*reg_timing_row |= TIMING_VAL2REG(reg, val);
1085
1086	/* data related timings */
1087	val = dmc->timings->tWTR / clk_period_ps;
1088	val += dmc->timings->tWTR % clk_period_ps ? 1 : 0;
1089	val = max(val, dmc->min_tck->tWTR);
1090	reg = &timing_data_reg_fields[0];
1091	*reg_timing_data |= TIMING_VAL2REG(reg, val);
1092
1093	val = dmc->timings->tWR / clk_period_ps;
1094	val += dmc->timings->tWR % clk_period_ps ? 1 : 0;
1095	val = max(val, dmc->min_tck->tWR);
1096	reg = &timing_data_reg_fields[1];
1097	*reg_timing_data |= TIMING_VAL2REG(reg, val);
1098
1099	val = dmc->timings->tRTP / clk_period_ps;
1100	val += dmc->timings->tRTP % clk_period_ps ? 1 : 0;
1101	val = max(val, dmc->min_tck->tRTP);
1102	reg = &timing_data_reg_fields[2];
1103	*reg_timing_data |= TIMING_VAL2REG(reg, val);
1104
1105	val = dmc->timings->tW2W_C2C / clk_period_ps;
1106	val += dmc->timings->tW2W_C2C % clk_period_ps ? 1 : 0;
1107	val = max(val, dmc->min_tck->tW2W_C2C);
1108	reg = &timing_data_reg_fields[3];
1109	*reg_timing_data |= TIMING_VAL2REG(reg, val);
1110
1111	val = dmc->timings->tR2R_C2C / clk_period_ps;
1112	val += dmc->timings->tR2R_C2C % clk_period_ps ? 1 : 0;
1113	val = max(val, dmc->min_tck->tR2R_C2C);
1114	reg = &timing_data_reg_fields[4];
1115	*reg_timing_data |= TIMING_VAL2REG(reg, val);
1116
1117	val = dmc->timings->tWL / clk_period_ps;
1118	val += dmc->timings->tWL % clk_period_ps ? 1 : 0;
1119	val = max(val, dmc->min_tck->tWL);
1120	reg = &timing_data_reg_fields[5];
1121	*reg_timing_data |= TIMING_VAL2REG(reg, val);
1122
1123	val = dmc->timings->tDQSCK / clk_period_ps;
1124	val += dmc->timings->tDQSCK % clk_period_ps ? 1 : 0;
1125	val = max(val, dmc->min_tck->tDQSCK);
1126	reg = &timing_data_reg_fields[6];
1127	*reg_timing_data |= TIMING_VAL2REG(reg, val);
1128
1129	val = dmc->timings->tRL / clk_period_ps;
1130	val += dmc->timings->tRL % clk_period_ps ? 1 : 0;
1131	val = max(val, dmc->min_tck->tRL);
1132	reg = &timing_data_reg_fields[7];
1133	*reg_timing_data |= TIMING_VAL2REG(reg, val);
1134
1135	/* power related timings */
1136	val = dmc->timings->tFAW / clk_period_ps;
1137	val += dmc->timings->tFAW % clk_period_ps ? 1 : 0;
1138	val = max(val, dmc->min_tck->tFAW);
1139	reg = &timing_power_reg_fields[0];
1140	*reg_timing_power |= TIMING_VAL2REG(reg, val);
1141
1142	val = dmc->timings->tXSR / clk_period_ps;
1143	val += dmc->timings->tXSR % clk_period_ps ? 1 : 0;
1144	val = max(val, dmc->min_tck->tXSR);
1145	reg = &timing_power_reg_fields[1];
1146	*reg_timing_power |= TIMING_VAL2REG(reg, val);
1147
1148	val = dmc->timings->tXP / clk_period_ps;
1149	val += dmc->timings->tXP % clk_period_ps ? 1 : 0;
1150	val = max(val, dmc->min_tck->tXP);
1151	reg = &timing_power_reg_fields[2];
1152	*reg_timing_power |= TIMING_VAL2REG(reg, val);
1153
1154	val = dmc->timings->tCKE / clk_period_ps;
1155	val += dmc->timings->tCKE % clk_period_ps ? 1 : 0;
1156	val = max(val, dmc->min_tck->tCKE);
1157	reg = &timing_power_reg_fields[3];
1158	*reg_timing_power |= TIMING_VAL2REG(reg, val);
1159
1160	val = dmc->timings->tMRD / clk_period_ps;
1161	val += dmc->timings->tMRD % clk_period_ps ? 1 : 0;
1162	val = max(val, dmc->min_tck->tMRD);
1163	reg = &timing_power_reg_fields[4];
1164	*reg_timing_power |= TIMING_VAL2REG(reg, val);
1165
1166	return 0;
1167}
1168
1169/**
1170 * of_get_dram_timings() - helper function for parsing DT settings for DRAM
1171 * @dmc:        device for which the frequency is going to be set
1172 *
1173 * The function parses DT entries with DRAM information.
1174 */
1175static int of_get_dram_timings(struct exynos5_dmc *dmc)
1176{
1177	int ret = 0;
1178	int idx;
1179	struct device_node *np_ddr;
1180	u32 freq_mhz, clk_period_ps;
1181
1182	np_ddr = of_parse_phandle(dmc->dev->of_node, "device-handle", 0);
1183	if (!np_ddr) {
1184		dev_warn(dmc->dev, "could not find 'device-handle' in DT\n");
1185		return -EINVAL;
1186	}
1187
1188	dmc->timing_row = devm_kmalloc_array(dmc->dev, TIMING_COUNT,
1189					     sizeof(u32), GFP_KERNEL);
1190	if (!dmc->timing_row) {
1191		ret = -ENOMEM;
1192		goto put_node;
1193	}
1194
1195	dmc->timing_data = devm_kmalloc_array(dmc->dev, TIMING_COUNT,
1196					      sizeof(u32), GFP_KERNEL);
1197	if (!dmc->timing_data) {
1198		ret = -ENOMEM;
1199		goto put_node;
1200	}
1201
1202	dmc->timing_power = devm_kmalloc_array(dmc->dev, TIMING_COUNT,
1203					       sizeof(u32), GFP_KERNEL);
1204	if (!dmc->timing_power) {
1205		ret = -ENOMEM;
1206		goto put_node;
1207	}
1208
1209	dmc->timings = of_lpddr3_get_ddr_timings(np_ddr, dmc->dev,
1210						 DDR_TYPE_LPDDR3,
1211						 &dmc->timings_arr_size);
1212	if (!dmc->timings) {
1213		dev_warn(dmc->dev, "could not get timings from DT\n");
1214		ret = -EINVAL;
1215		goto put_node;
1216	}
1217
1218	dmc->min_tck = of_lpddr3_get_min_tck(np_ddr, dmc->dev);
1219	if (!dmc->min_tck) {
1220		dev_warn(dmc->dev, "could not get tck from DT\n");
1221		ret = -EINVAL;
1222		goto put_node;
1223	}
1224
1225	/* Sorted array of OPPs with frequency ascending */
1226	for (idx = 0; idx < dmc->opp_count; idx++) {
1227		freq_mhz = dmc->opp[idx].freq_hz / 1000000;
1228		clk_period_ps = 1000000 / freq_mhz;
1229
1230		ret = create_timings_aligned(dmc, &dmc->timing_row[idx],
1231					     &dmc->timing_data[idx],
1232					     &dmc->timing_power[idx],
1233					     clk_period_ps);
1234	}
1235
1236
1237	/* Take the highest frequency's timings as 'bypass' */
1238	dmc->bypass_timing_row = dmc->timing_row[idx - 1];
1239	dmc->bypass_timing_data = dmc->timing_data[idx - 1];
1240	dmc->bypass_timing_power = dmc->timing_power[idx - 1];
1241
1242put_node:
1243	of_node_put(np_ddr);
1244	return ret;
1245}
1246
1247/**
1248 * exynos5_dmc_init_clks() - Initialize clocks needed for DMC operation.
1249 * @dmc:	DMC structure containing needed fields
1250 *
1251 * Get the needed clocks defined in DT device, enable and set the right parents.
1252 * Read current frequency and initialize the initial rate for governor.
1253 */
1254static int exynos5_dmc_init_clks(struct exynos5_dmc *dmc)
1255{
1256	int ret;
1257	unsigned long target_volt = 0;
1258	unsigned long target_rate = 0;
1259	unsigned int tmp;
1260
1261	dmc->fout_spll = devm_clk_get(dmc->dev, "fout_spll");
1262	if (IS_ERR(dmc->fout_spll))
1263		return PTR_ERR(dmc->fout_spll);
1264
1265	dmc->fout_bpll = devm_clk_get(dmc->dev, "fout_bpll");
1266	if (IS_ERR(dmc->fout_bpll))
1267		return PTR_ERR(dmc->fout_bpll);
1268
1269	dmc->mout_mclk_cdrex = devm_clk_get(dmc->dev, "mout_mclk_cdrex");
1270	if (IS_ERR(dmc->mout_mclk_cdrex))
1271		return PTR_ERR(dmc->mout_mclk_cdrex);
1272
1273	dmc->mout_bpll = devm_clk_get(dmc->dev, "mout_bpll");
1274	if (IS_ERR(dmc->mout_bpll))
1275		return PTR_ERR(dmc->mout_bpll);
1276
1277	dmc->mout_mx_mspll_ccore = devm_clk_get(dmc->dev,
1278						"mout_mx_mspll_ccore");
1279	if (IS_ERR(dmc->mout_mx_mspll_ccore))
1280		return PTR_ERR(dmc->mout_mx_mspll_ccore);
1281
1282	dmc->mout_spll = devm_clk_get(dmc->dev, "ff_dout_spll2");
1283	if (IS_ERR(dmc->mout_spll)) {
1284		dmc->mout_spll = devm_clk_get(dmc->dev, "mout_sclk_spll");
1285		if (IS_ERR(dmc->mout_spll))
1286			return PTR_ERR(dmc->mout_spll);
1287	}
1288
1289	/*
1290	 * Convert frequency to KHz values and set it for the governor.
1291	 */
1292	dmc->curr_rate = clk_get_rate(dmc->mout_mclk_cdrex);
1293	dmc->curr_rate = exynos5_dmc_align_init_freq(dmc, dmc->curr_rate);
1294	exynos5_dmc_df_profile.initial_freq = dmc->curr_rate;
1295
1296	ret = exynos5_dmc_get_volt_freq(dmc, &dmc->curr_rate, &target_rate,
1297					&target_volt, 0);
1298	if (ret)
1299		return ret;
1300
1301	dmc->curr_volt = target_volt;
1302
1303	ret = clk_set_parent(dmc->mout_mx_mspll_ccore, dmc->mout_spll);
1304	if (ret)
1305		return ret;
1306
1307	clk_prepare_enable(dmc->fout_bpll);
1308	clk_prepare_enable(dmc->mout_bpll);
1309
1310	/*
1311	 * Some bootloaders do not set clock routes correctly.
1312	 * Stop one path in clocks to PHY.
1313	 */
1314	regmap_read(dmc->clk_regmap, CDREX_LPDDR3PHY_CLKM_SRC, &tmp);
1315	tmp &= ~(BIT(1) | BIT(0));
1316	regmap_write(dmc->clk_regmap, CDREX_LPDDR3PHY_CLKM_SRC, tmp);
1317
1318	return 0;
1319}
1320
1321/**
1322 * exynos5_performance_counters_init() - Initializes performance DMC's counters
1323 * @dmc:	DMC for which it does the setup
1324 *
1325 * Initialization of performance counters in DMC for estimating usage.
1326 * The counter's values are used for calculation of a memory bandwidth and based
1327 * on that the governor changes the frequency.
1328 * The counters are not used when the governor is GOVERNOR_USERSPACE.
1329 */
1330static int exynos5_performance_counters_init(struct exynos5_dmc *dmc)
1331{
1332	int ret, i;
1333
1334	dmc->num_counters = devfreq_event_get_edev_count(dmc->dev,
1335							"devfreq-events");
1336	if (dmc->num_counters < 0) {
1337		dev_err(dmc->dev, "could not get devfreq-event counters\n");
1338		return dmc->num_counters;
1339	}
1340
1341	dmc->counter = devm_kcalloc(dmc->dev, dmc->num_counters,
1342				    sizeof(*dmc->counter), GFP_KERNEL);
1343	if (!dmc->counter)
1344		return -ENOMEM;
1345
1346	for (i = 0; i < dmc->num_counters; i++) {
1347		dmc->counter[i] =
1348			devfreq_event_get_edev_by_phandle(dmc->dev,
1349						"devfreq-events", i);
1350		if (IS_ERR_OR_NULL(dmc->counter[i]))
1351			return -EPROBE_DEFER;
1352	}
1353
1354	ret = exynos5_counters_enable_edev(dmc);
1355	if (ret < 0) {
1356		dev_err(dmc->dev, "could not enable event counter\n");
1357		return ret;
1358	}
1359
1360	ret = exynos5_counters_set_event(dmc);
1361	if (ret < 0) {
1362		exynos5_counters_disable_edev(dmc);
1363		dev_err(dmc->dev, "could not set event counter\n");
1364		return ret;
1365	}
1366
1367	return 0;
1368}
1369
1370/**
1371 * exynos5_dmc_set_pause_on_switching() - Controls a pause feature in DMC
1372 * @dmc:	device which is used for changing this feature
1373 *
1374 * There is a need of pausing DREX DMC when divider or MUX in clock tree
1375 * changes its configuration. In such situation access to the memory is blocked
1376 * in DMC automatically. This feature is used when clock frequency change
1377 * request appears and touches clock tree.
1378 */
1379static inline int exynos5_dmc_set_pause_on_switching(struct exynos5_dmc *dmc)
1380{
1381	unsigned int val;
1382	int ret;
1383
1384	ret = regmap_read(dmc->clk_regmap, CDREX_PAUSE, &val);
1385	if (ret)
1386		return ret;
1387
1388	val |= 1UL;
1389	regmap_write(dmc->clk_regmap, CDREX_PAUSE, val);
1390
1391	return 0;
1392}
1393
1394static irqreturn_t dmc_irq_thread(int irq, void *priv)
1395{
1396	int res;
1397	struct exynos5_dmc *dmc = priv;
1398
1399	mutex_lock(&dmc->df->lock);
1400	exynos5_dmc_perf_events_check(dmc);
1401	res = update_devfreq(dmc->df);
1402	mutex_unlock(&dmc->df->lock);
1403
1404	if (res)
1405		dev_warn(dmc->dev, "devfreq failed with %d\n", res);
1406
1407	return IRQ_HANDLED;
1408}
1409
1410/**
1411 * exynos5_dmc_probe() - Probe function for the DMC driver
1412 * @pdev:	platform device for which the driver is going to be initialized
1413 *
1414 * Initialize basic components: clocks, regulators, performance counters, etc.
1415 * Read out product version and based on the information setup
1416 * internal structures for the controller (frequency and voltage) and for DRAM
1417 * memory parameters: timings for each operating frequency.
1418 * Register new devfreq device for controlling DVFS of the DMC.
1419 */
1420static int exynos5_dmc_probe(struct platform_device *pdev)
1421{
1422	int ret = 0;
1423	struct device *dev = &pdev->dev;
1424	struct device_node *np = dev->of_node;
1425	struct exynos5_dmc *dmc;
1426	int irq[2];
1427
1428	dmc = devm_kzalloc(dev, sizeof(*dmc), GFP_KERNEL);
1429	if (!dmc)
1430		return -ENOMEM;
1431
1432	mutex_init(&dmc->lock);
1433
1434	dmc->dev = dev;
1435	platform_set_drvdata(pdev, dmc);
1436
1437	dmc->base_drexi0 = devm_platform_ioremap_resource(pdev, 0);
1438	if (IS_ERR(dmc->base_drexi0))
1439		return PTR_ERR(dmc->base_drexi0);
1440
1441	dmc->base_drexi1 = devm_platform_ioremap_resource(pdev, 1);
1442	if (IS_ERR(dmc->base_drexi1))
1443		return PTR_ERR(dmc->base_drexi1);
1444
1445	dmc->clk_regmap = syscon_regmap_lookup_by_phandle(np,
1446							  "samsung,syscon-clk");
1447	if (IS_ERR(dmc->clk_regmap))
1448		return PTR_ERR(dmc->clk_regmap);
1449
1450	ret = exynos5_init_freq_table(dmc, &exynos5_dmc_df_profile);
1451	if (ret) {
1452		dev_warn(dev, "couldn't initialize frequency settings\n");
1453		return ret;
1454	}
1455
1456	dmc->vdd_mif = devm_regulator_get(dev, "vdd");
1457	if (IS_ERR(dmc->vdd_mif)) {
1458		ret = PTR_ERR(dmc->vdd_mif);
1459		return ret;
1460	}
1461
1462	ret = exynos5_dmc_init_clks(dmc);
1463	if (ret)
1464		return ret;
1465
1466	ret = of_get_dram_timings(dmc);
1467	if (ret) {
1468		dev_warn(dev, "couldn't initialize timings settings\n");
1469		goto remove_clocks;
1470	}
1471
1472	ret = exynos5_dmc_set_pause_on_switching(dmc);
1473	if (ret) {
1474		dev_warn(dev, "couldn't get access to PAUSE register\n");
1475		goto remove_clocks;
1476	}
1477
1478	/* There is two modes in which the driver works: polling or IRQ */
1479	irq[0] = platform_get_irq_byname(pdev, "drex_0");
1480	irq[1] = platform_get_irq_byname(pdev, "drex_1");
1481	if (irq[0] > 0 && irq[1] > 0 && irqmode) {
1482		ret = devm_request_threaded_irq(dev, irq[0], NULL,
1483						dmc_irq_thread, IRQF_ONESHOT,
1484						dev_name(dev), dmc);
1485		if (ret) {
1486			dev_err(dev, "couldn't grab IRQ\n");
1487			goto remove_clocks;
1488		}
1489
1490		ret = devm_request_threaded_irq(dev, irq[1], NULL,
1491						dmc_irq_thread, IRQF_ONESHOT,
1492						dev_name(dev), dmc);
1493		if (ret) {
1494			dev_err(dev, "couldn't grab IRQ\n");
1495			goto remove_clocks;
1496		}
1497
1498		/*
1499		 * Setup default thresholds for the devfreq governor.
1500		 * The values are chosen based on experiments.
1501		 */
1502		dmc->gov_data.upthreshold = 55;
1503		dmc->gov_data.downdifferential = 5;
1504
1505		exynos5_dmc_enable_perf_events(dmc);
1506
1507		dmc->in_irq_mode = 1;
1508	} else {
1509		ret = exynos5_performance_counters_init(dmc);
1510		if (ret) {
1511			dev_warn(dev, "couldn't probe performance counters\n");
1512			goto remove_clocks;
1513		}
1514
1515		/*
1516		 * Setup default thresholds for the devfreq governor.
1517		 * The values are chosen based on experiments.
1518		 */
1519		dmc->gov_data.upthreshold = 10;
1520		dmc->gov_data.downdifferential = 5;
1521
1522		exynos5_dmc_df_profile.polling_ms = 100;
1523	}
1524
1525	dmc->df = devm_devfreq_add_device(dev, &exynos5_dmc_df_profile,
1526					  DEVFREQ_GOV_SIMPLE_ONDEMAND,
1527					  &dmc->gov_data);
1528
1529	if (IS_ERR(dmc->df)) {
1530		ret = PTR_ERR(dmc->df);
1531		goto err_devfreq_add;
1532	}
1533
1534	if (dmc->in_irq_mode)
1535		exynos5_dmc_start_perf_events(dmc, PERF_COUNTER_START_VALUE);
1536
1537	dev_info(dev, "DMC initialized, in irq mode: %d\n", dmc->in_irq_mode);
1538
1539	return 0;
1540
1541err_devfreq_add:
1542	if (dmc->in_irq_mode)
1543		exynos5_dmc_disable_perf_events(dmc);
1544	else
1545		exynos5_counters_disable_edev(dmc);
1546remove_clocks:
1547	clk_disable_unprepare(dmc->mout_bpll);
1548	clk_disable_unprepare(dmc->fout_bpll);
1549
1550	return ret;
1551}
1552
1553/**
1554 * exynos5_dmc_remove() - Remove function for the platform device
1555 * @pdev:	platform device which is going to be removed
1556 *
1557 * The function relies on 'devm' framework function which automatically
1558 * clean the device's resources. It just calls explicitly disable function for
1559 * the performance counters.
1560 */
1561static int exynos5_dmc_remove(struct platform_device *pdev)
1562{
1563	struct exynos5_dmc *dmc = dev_get_drvdata(&pdev->dev);
1564
1565	if (dmc->in_irq_mode)
1566		exynos5_dmc_disable_perf_events(dmc);
1567	else
1568		exynos5_counters_disable_edev(dmc);
1569
1570	clk_disable_unprepare(dmc->mout_bpll);
1571	clk_disable_unprepare(dmc->fout_bpll);
1572
1573	return 0;
1574}
1575
1576static const struct of_device_id exynos5_dmc_of_match[] = {
1577	{ .compatible = "samsung,exynos5422-dmc", },
1578	{ },
1579};
1580MODULE_DEVICE_TABLE(of, exynos5_dmc_of_match);
1581
1582static struct platform_driver exynos5_dmc_platdrv = {
1583	.probe	= exynos5_dmc_probe,
1584	.remove = exynos5_dmc_remove,
1585	.driver = {
1586		.name	= "exynos5-dmc",
1587		.of_match_table = exynos5_dmc_of_match,
1588	},
1589};
1590module_platform_driver(exynos5_dmc_platdrv);
1591MODULE_DESCRIPTION("Driver for Exynos5422 Dynamic Memory Controller dynamic frequency and voltage change");
1592MODULE_LICENSE("GPL v2");
1593MODULE_AUTHOR("Lukasz Luba");
1594